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ABSTRACT 

 

ISAAC BLAIR HILTON:  Small and Large-Scale Gene Regulation in Kaposi’s Sarcoma-associated 

Herpesvirus 

(Under the direction of Dirk P. Dittmer, PhD) 

 

 Viruses depend upon host cells for genome replication and propagation.  Viral genomes must 

be labile in order to exist inertly within infectious extracellular virions and also dynamically as self-

replicating entities within infected host cells.  Herpesviruses are large double-stranded DNA viruses 

which can establish persistent lifelong infections in vertebrates.  Kaposi’s Sarcoma-associated 

Herpesvirus (KSHV) is the most recently discovered human herpesvirus.  KSHV infects endothelial 

and B cells which can lead to three human cancers:  Kaposi’s Sarcoma, Multicentric Castleman’s 

Disease, and Primary Effusion Lymphoma.   KSHV alternates between a latent replication phase, 

during which viral gene expression is restricted and no progeny virions are produced; and a lytic 

replication phase, which entails robust viral transcription and genome replication as well as host cell 

lysis and the release of new infectious daughter virions.  Both replication patterns are implicated in 

KSHV pathology, however nearly all infected cells, including those within tumors, display latent 

infection.   

 The balance between lytic and latent KSHV infection is sensitive and complex.  Viral latency 

is characterized by the expression of a multifunctional viral protein called the KSHV Latency-

Associated Nuclear Antigen (LANA).  LANA maintains the viral genome and modulates gene 

expression to ensure persistent latent infection.  KSHV latency can be reversed upon appropriate 

stimuli in a process called reactivation.  Reactivation of KSHV is coordinated through a virally-

encoded transcription factor called RTA.  In this dissertation I have characterized a novel small-scale 

regulatory mechanism by which RTA acts to selectively synthesize either latent (i.e. LANA) or lytic 
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transcripts from within the major KSHV latency locus.  This selective bidirectional gene expression 

results in competitive RTA-mediated transactivation, the potency of which varies in proportion to 

RTA concentration.  The resulting transcriptional circuit may have a role in the early establishment of 

KSHV latency, in attenuating and fine-tuning viral transcription, or both.  In a second study presented 

here I have investigated how nucleosome depletion, or “open chromatin” is dispersed in latent KSHV 

genomes.   This effort integrates our own work with that of others in the KSHV community, and 

collectively the data indicate that open chromatin in KSHV may be programmed for latency; with 

select latent regions accessible and most others insulated by CTCF and Cohesin.  CTCF-free and 

CTCF-enriched subsets of latent open chromatin occur proximal to mapped H3-ac/H3K4-me3 

modifications on the KSHV genome.  Many of these regions also contain identified RTA Recognition 

Elements (RRE’s) and RNA polymerase II occupancy, including the viral lytic replication origins.   

This pattern of nucleosome depletion is mostly shared among latent episomes in both B and 

endothelial cells, implying a common latent open chromatin landscape in the viral genome.  These 

studies of small-scale bidirectional gene induction and of large-scale latent nucleosome depletion in 

KSHV are connected.  This work extends our understanding of KSHV biology and could reveal novel 

targets of therapeutic intervention.   
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CHAPTER I 

INTRODUCTION 

 

 Life expectancy in humans continues to rise as does the rate of human population growth 

(Burger et al., 2012).   Along with other factors these realities translate into increasing rates and 

prevalence of oncogenesis in humans.  This issue represents a philosophical, humanitarian, and 

economic burden; our mechanistic understanding of which is linked to our understanding of our 

biological origin and evolution as a species.  The biomedical scientist is charged with the privilege 

and responsibility of furthering the collective understanding of our world on basic biological levels 

and in relation to human health and quality of life.    

 The mechanisms of oncogenesis in humans are varied and are incompletely understood.  

However, direct links exist between biological agents and many human cancers (Bouvard et al., 2009; 

Parkin, 2006).  Moreover, a significant fraction of human cancers are mediated specifically by human 

viruses (reviewed in (Butt and Miggin, 2012; Martin and Gutkind, 2008)).   The identification of the 

oncogenic mechanisms utilized by these viruses can enable the development of novel therapeutics and 

treatments aimed at limiting viral propagation and thus decreasing global cancer rates.  Understanding 

how these viruses persist in human cells and how they hijack cellular regulatory mechanisms to cause 

malignancy can also provide insights into more general fields of human disease including non-viral 

associated cancers.  In this dissertation it has been my goal to advance human understanding of the 

regulation of a persistent human oncogenic herpesvirus:  Kaposi’s sarcoma-associated herpesvirus 

(KSHV).   
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1.1 Kaposi’s Sarcoma-associated Herpesvirus 

 

 At present, several oncogenic human viruses have been identified (reviewed in (2012; Butt 

and Miggin, 2012; Moore and Chang, 2010)).   While many other human viral pathogens exhibit 

tumorigenic properties, their links to human cancers have yet to be verified.  Truly oncogenic human 

viruses can be identified across the spectrum of virology; from retroviruses to persistent DNA viruses.  

The herpesviridae are a family of large, double-stranded DNA viruses which can persist within 

infected host cell nuclei for life (Davison, 2007).  All herpesviruses are enveloped, double-stranded 

DNA viruses with relatively complex genomes.  The herpesvirus lineage is biologically prevalent and 

is capable of infecting a wide range of vertebrate hosts.     

 To date eight human herpesviruses have been identified (Zamora, 2011).  KSHV (also called 

Human herpesvirus 8; HHV-8) is the most recently discovered human herpesvirus and was identified 

in 1994 from skin lesions in an HIV-infected patient (Chang et al., 1994).  The virus is a member of 

the gammaherpesvirus subfamily (Moore et al., 1996b) (Figure 1.1).  Two known human 

gammaherpesviruses exist; Epstein-Barr virus (EBV) and KSHV; and both are etiologically linked 

with malignancy in infected human hosts.   

 The unique region of the KSHV genome is approximately 140,000bp in size (Russo et al., 

1996) and is flanked by ~800bp terminal repeats (TR’s) which vary in repeat number depending on 

viral isolate (Lagunoff and Ganem, 1997; Renne et al., 1996a).  Russo et al. initially annotated 87 

open reading frames (ORF’s) and since then 12 pre-miRNA’s  have been discovered (reviewed in 

(Gottwein, 2012; Mesri et al., 2010)) as well as larger noncoding RNA’s and antisense transcripts 

(Chandriani et al., 2010; Dresang et al., 2011; Lin et al., 2010; Sun et al., 1996; Xu and Ganem, 

2010).  Subsequent to infection the virion-associated linear viral genome is rapidly circularized as a 

multi-copy minichromosome called an episome (Figure 1.2) (Dezube et al., 2002; Renne et al., 

1996a).  Though largely conserved the KSHV genome can be sub-classified into four major subtypes 

based on DNA sequence variation, which correlate with ethnic and global distributions: A, B, C, and 
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D (Hayward, 1999).  The variance observed among KSHV subtypes (~0.4%) is principally due to 

differences within the coding regions of two viral membrane signaling proteins near the genomic 

termini called K1 (30% variability) and K15 (predominant; P, and minor; M, alleles) (Poole et al., 

1999).  

 

1.2 KSHV-associated Malignancies 

 

 The principle target of KSHV in vivo is the B cell, however the virus is also found in 

endothelial cells and cells surrounding associated skin lesions (Ambroziak et al., 1995; Dupin et al., 

1999; Parravicini et al., 2000).  KSHV is the etiologic agent in three human malignancies (Figure 

1.3).  KSHV-mediated oncogenesis manifests in endothelial cells as Kaposi’s sarcoma (KS) (Chang et 

al., 1994; Neipel and Fleckenstein, 1999).  The virus also infects B cells to generate two 

lymphoproliferative malignancies; Primary Effusion Lymphoma (PEL) (Cesarman et al., 1995a) and 

Multicentric Castleman’s Disease (MCD) (Soulier et al., 1995) described below.   

 

Kaposi’s Sarcoma 

 Kaposi’s sarcoma (KS) is a tumor of endothelial cell origin and is caused by KSHV.  KS was 

first described by Dr. Moritz Kaposi, a Hungarian dermatologist in the late 19
th
 century (Kaposi, 

1872).  Dr. Kaposi described the skin as cutaneous lesions, which were evident in older men of 

Mediterranean origin.  KS is histologically complex and at present, four forms of the disease exist 

(Dittmer et al., 2012; Ganem, 2006); the original form described by Dr. Kaposi is termed “Classical 

KS”.  Three other types of KS are now recognized:  endemic KS, transplant-associated KS, and 

AIDS-associated KS. 

 Endemic KS largely occurs in sub-Saharan Africa and incidents of this sub-class of KS have 

been observed since long before the AIDS-epidemic (Maclean, 1963).  This form of KS is commonly 

identified in African children and it has been characterized as aggressive (Slavin et al., 1970).  In 
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certain parts of Africa the overwhelming prevalence of KSHV has made endemic KS the leading 

cancer in the male population.  Treatment options are often limited, underscoring the need for a more 

thorough understanding of pathogenesis. 

 Transplant-associated KS is restricted to patients undergoing organ transplants and receiving 

immunosuppressant therapy as a preventative measure against transplant rejection.  The onset is 

predicated upon KSHV seroprevalence in either the transplant donor or recipient and as such this 

disease sub-classification is closely correlated with KSHV infection rates.  Hence, in locations where 

KSHV infection rates are high and transplantations are medically feasible such as Italy, Saudi Arabia, 

and Turkey, the incidence of transplant-associated KS is concordantly relatively high (Barozzi et al., 

2003; Dittmer et al., 2012).  

            The last sub-classification of KS is AIDS-associated KS, or AIDS-KS.  While classical KS is 

not generally life-threatening (Safai, 1984), KS in the context of HIV infection is often much more 

aggressive and  can affect large areas of the body surface and viscera (Dezube, 1996; Ganem, 2010).   

Complications from AIDS-KS can give rise to disfiguring lesions and life-threatening issues; such as 

respiratory failure and gastrointestinal bleeding.   Multifocal lesions are often observed in AIDS-KS, 

suggestive of independent multicentric occurrence rather than single lesion origin.  In fact KSHV 

genomes from different lesions, but from the same AIDS-KS patient, are often from distinct viral 

subpopulations based on analysis of the viral genomic termini (Duprez et al., 2007).   

 With the onset of the AIDS epidemic in the 1980’s a dramatic increase of KS was observed, 

so much so that AIDS-KS was initially termed “epidemic KS”.  The co-occurrence of KS in AIDS 

patients initially suggested that HIV might in fact be the causative agent, however the lack of proviral 

HIV and inequalities in KS risk among HIV-infected populations refuted this possibility (Ganem, 

2010).   With the discovery of KSHV in KS lesions by Chang and Moore in 1994 (Chang et al., 

1994), the evidence was clear that KSHV was the cause of AIDS-KS.  KS has now become the most 

common malignancy in AIDS patients, and is a bona-fide AIDS-defining cancer, the treatment and 

management of which demand a more complete understanding. 
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Primary Effusion Lymphoma 

 Subsequent to the identification of KSHV as the driving factor in KS in 1994, the virus was 

identified within AIDS-related B cell lymphomas (Cesarman et al., 1995a).  One variant of these 

KSHV-associated lymphomas exhibit an accumulation of fluid in the serous cavities of the body, such 

as within the pleural and peritoneal cavities, and are known as primary effusion lymphomas; or PEL.  

PEL is a rare form of AIDS-related non-Hodgkin’s lymphoma and the disease has a very poor 

prognosis (Cesarman, 2011; Komanduri et al., 1996; Nador et al., 1996; Wen and Damania, 2010).  

Most PEL presents within serous cavities in the absence of a solid mass, however there are instances 

of extra-cavity exceptions (Chadburn et al., 2004; Grubb et al., 2006).     

 Unlike in KS, PEL presents as a clonally expanded neoplastic entity of B cell origin.  

However despite bearing a B cell genotype, PEL often lack B cell-associated antigens (Cesarman, 

2011; Nador et al., 1996).  Similar to KS, KSHV is a necessary cofactor for the genesis of PEL.  

Within infected PEL cell nuclei there are estimated to be 50-100 copies of the double-stranded KSHV 

episome (Renne et al., 1996a), and in addition to harboring the KSHV genome, the majority of 

infected PEL cells are also co-infected with multiple copies EBV episomes; complicating both the 

understanding and treatment of this virally induced malignancy.   

 

Multicentric Castleman’s Disease 

 A second malignant entity of B cell origin has been confirmed as linked to KSHV infection:  

a plasmablastic variant of Multicentric Castleman’s Disease, or MCD (Dupin et al., 2000; Hillier et 

al., 2004; Soulier et al., 1995). KSHV-associated MCD lymphomas are not co-infected with EBV, 

and are thought to arise from more naïve B cell precursor (Cesarman, 2011; Du et al., 2001).  

Moreover MCD exhibits a polyclonal origin, unlike PEL (Dupin et al., 1999) and MCD progression 

may be linked to alterations in key cytokines such as IL-6 (Parravicini et al., 1997).   While it is clear 

that KSHV is linked to MCD, this disease is the least understood of the KSHV-associated 

malignancies at present (Uldrick et al., 2012).   
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1.3 Latency and Reactivation of KSHV 

 

 All viruses have obligatorily parasitic lifestyles which require host cell infrastructure for 

persistence and propagation.  Outside of cells, human herpesvirus genomes are enclosed within 

proteinaceous viral capsids, which are further surrounded by a layer of tegument and finally by a lipid 

bilayer containing distinct viral glycoproteins, called the envelope (Chakraborty et al., 2012; Trus et 

al., 2001).   The first stages of viral infections involve binding and entry into naïve cell targets, after 

which viral genomes are rapidly trafficked and accessed to modify host cells for infection and 

exploitation.  A hallmark of herpesvirus infection is the ability to establish a persistent lifelong 

infection within host cells called latency.  KSHV is no exception and after primary infection the virus 

can persist in latency, a semi-quiescent state, which can be reversibly interrupted by viral reactivation 

and subsequent reinfection (Figure 1.4).  During KSHV latency the Latency-associated Nuclear 

Antigen (LANA) is expressed and ensures episome persistence (Ballestas et al., 1999).  Latent 

infection is disrupted upon expression of the KSHV lytic-switch protein; the Replication and 

Transcription Activator (RTA) (Sun et al., 1998).  Both replication phases are involved in KSHV-

mediated oncogenesis; the autocrine/paracrine signaling and viral spread associated with lytic 

infection, and the modulation of host cells and maintained viral reservoirs characteristic of viral 

latency.   

 

KSHV Latent Gene Expression 

 Like all known herpesviruses, KSHV displays two phases of replication; latency and lytic 

infection.  Subsequent to primary infection KSHV adopts a latent infection program in the vast 

majority of infected cells and in almost all tumor cells (Krishnan et al., 2004; Renne et al., 1996b; 

Staskus et al., 1997; Zhong et al., 1996).  During latency the KSHV genome exists as a non-integrated 

chromatin-associated circular episome and is thought to attach to host chromatin.  Only a small subset 

of the viral genome is transcribed during latency and certain cell surface markers are down-regulated 
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such that the potential for viral recognition by host immune surveillance is minimized (Coscoy and 

Ganem, 2000, 2001; Ishido et al., 2000).  Viral transcripts that are expressed during latency play 

important roles in modifying the host cell and the virus to ensure the persistence of stable latent 

infection. 

 

Transcripts from the KSHV Latency Locus 

 The linearized incoming viral genome is circularized as an episome in the infected host cell 

nucleus and expression is limited during latency (Dezube et al., 2002; Fakhari and Dittmer, 2002; 

Jenner et al., 2001; Renne et al., 1996a).  The most well characterized transcripts originate from a 

cluster known as the major KSHV latency locus (Figure 1.5).  This locus encodes the viral genes 

LANA, vCyclin, vFLIP, all 3 isoforms of Kaposin (A-C), as well as 12 stem loops from which the 

KSHV miRNA’s are derived (Cai et al., 2005; Dittmer et al., 1998; Pfeffer et al., 2005; Samols et al., 

2005).  LANA, vCyclin, and vFLIP are generated from the major latent promoter (the constitutive 

LANA promoter; LANApc) via the alternative splicing of co-terminal RNA’s (Bieleski and Talbot, 

2001; Dittmer et al., 1998; Jeong et al., 2004; Sarid et al., 1999; Talbot et al., 1999).  Splicing events 

also allow derivation of the viral miRNA’s and Kaposin isoforms from the LANApc (Cai and Cullen, 

2006).  Although the results are controversial, a second latently active downstream promoter called 

the LANAds is thought to generate all forms of Kaposin through alternative splicing and to also direct 

the expression of vCyclin and vFLIP and viral miRNA’s, (Cai and Cullen, 2006; Li et al., 2002; 

Pearce et al., 2005).   

 Transcription from the latency locus is complex and in addition to constitutively active 

promoters, other transcription start sites (TSS’s) can be induced during lytic infection.  KSHV miR-

K10, miR-K12, and all Kaposin isoforms can be transcribed from an inducible TSS upstream of 

Kaposin (Cai and Cullen, 2006; Sadler et al., 1999).  A second lytic-phase promoter called LANApi 

directs the expression of LANA, vCyclin, and vFLIP (Lan et al., 2005b; Matsumura et al., 2005; 

Staudt and Dittmer, 2006).  This promoter region acts bidirectionally to synthesize either a transcript 
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encoding LANA/vCyclin/vFLIP or a bicistronic message encoding a viral immunomodulatory 

glycoprotein (K14/vOX2) and a viral G-protein coupled receptor (vGPCR) (Hilton and Dittmer, 

2012; Kirshner et al., 1999).   Furthermore a lytically induced antisense transcript of unknown 

function called “antisense to latency transcripts” (ALT) originates upstream of miR-K7 from the 

ALTp, and is antisense to several viral miRNA’s, vFLIP, vCyclin, and LANA (Chandriani et al., 

2010).  

 

Latent Transcription Outside of the Latency Locus 

 All of the products derived from true latent promoters at the latency locus are present in 

latently infected PEL and KS cells (Dittmer, 2003; Fakhari and Dittmer, 2002; Marshall et al., 2007).  

Certain viral transcripts also originate outside of the latency locus expressed during latent infection, 

albeit with more variable patterns.  For instance vIRF-3 (also called LANA-2) is latently expressed in 

PEL but not KS, and thus latent expression of this viral ORF is restricted to B cells (Rivas et al., 

2001).   Latent expression of other viral ORF’s is more controversial.  vIRF-1 has classically been 

considered a lytic phase gene product (Jenner et al., 2001; Sarid et al., 1998), however others have 

observed latent expression, including within KS tumor cells (Chen et al., 2000; Cunningham et al., 

2003; Dittmer, 2003).  vIRF-1 may also use two distinct promoter elements, suggesting the possibility 

of cell type-specific gene expression.  Evidence has also surfaced highlighting the fact that vIL-6, 

often considered to be a lytic gene, exhibits consistently high levels of expression during KSHV 

latency, but only in certain conditions, particularly MCD  (Chandriani and Ganem, 2010; Nicholas et 

al., 1997).    

 In addition two membrane-bound signaling molecules at the left and right ends of the viral 

genome respectively; K1 and K15, have exhibited latent expression, further demonstrating that the 

latent KSHV episome may be transcriptionally active at loci outside of the latency cluster (Bowser et 

al., 2002; Chandriani and Ganem, 2010; Wong and Damania, 2006).  This raises the possibility that 

KSHV latency may be more dynamic than previously thought.  Recent evidence suggests large scale 
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production of previously underappreciated mRNA from the both strands of the latent KSHV episome, 

including antisense transcription at critical latent loci (Chandriani and Ganem, 2010; Dresang et al., 

2011; Xu and Ganem, 2010).  In the closely related EBV there are three distinct latency programs and 

given the phylogenetic and biological similarities between KSHV and EBV the prospect of adaptable 

patterns of latent KSHV infection has precedent and rationale.  The situation is further complicated 

by the fact that in any given population of KSHV-infected cells (at least in vitro), a small percentage 

of cells undergo spontaneous lytic reactivation (Renne et al., 1996b), and vIRF-3, vIL-6, K1, and K15 

are all induced early during lytic reactivation.     

 

KSHV Latent Genome Maintenance and Replication 

 During latent infection the KSHV LANA protein tethers the viral genome to host chromatin 

through interactions between the episomal TR’s and host chromatin (Ballestas et al., 1999; Cotter and 

Robertson, 1999; Grundhoff and Ganem, 2003).  Both the amino (N) and carboxy (C) termini of 

LANA interact with chromatin (Barbera et al., 2004; Kelley-Clarke et al., 2007).  The N-terminus of 

LANA binds to an acidic pocket between histones H2A and H2B (Barbera et al., 2006; 

Chodaparambil et al., 2007) and the LANA C-terminus binds the viral TR’s (reviewed in (Ballestas 

and Kaye, 2011)).  This interaction physically links the viral and host genomes during latency.  

LANA binds to host chromatin in the presence and absence of the viral genome, however in the 

presence of KSHV distinct punctate foci are formed at the sites of KSHV episomes, whereas without 

the viral genome LANA binding is diffuse on host chromatin (Ballestas et al., 1999).   

 LANA also directs the replication of the episome during latent infection.  The carboxy 

terminus of LANA binds specific sequences of TR DNA and this interaction is essential for latent 

replication and persistence (Ballestas and Kaye, 2001; Garber et al., 2002; Komatsu et al., 2004; 

Srinivasan et al., 2004).  LANA self-associates to cooperatively bind a minimal replicator element 

within the TR, which consists of two LANA Binding Sites (LBS’s) and a 32bp GC rich element (Hu 

and Renne, 2005; Verma et al., 2007a).  Data indicates that the LANA-mediated replication of the 
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latent episome requires the replication of host cell machinery (Hu et al., 2009; Purushothaman et al., 

2012; Stedman et al., 2004), however the field remains bereft of a full understanding of how latent 

episomal replication occurs.    

 

KSHV Reactivation and Lytic Gene Expression 

 While viral latency is relatively stable and is the default replicative phase for KSHV, it is not 

indefinite.  The physiologic stimuli which interrupt KSHV latency are varied and are still being 

elucidated.  Activation of toll-like receptors, cellular cytokines and transcription factors, and 

treatment with chemicals which activate the protein kinase C pathway or which inhibit histone 

deacetylase (HDAC) activity; such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or sodium 

butyrate respectively, can interrupt latency and reactivate KSHV (Chang et al., 2000; Gregory et al., 

2009; Lan et al., 2006; Mercader et al., 2000; Renne et al., 1996b; Yu et al., 2007; Yu et al., 1999).    

While these inputs are diverse, all reactivation stimuli are ultimately coordinated through a single 

viral gene encoded by KSHV ORF50 called the Replication and Transcription Activator; RTA (Sun 

et al., 1998). 

 RTA expression from the KSHV genome (or ectopic expression) initiates an ordered cascade 

of viral gene expression and genome replication.  This ultimately results in host cell lysis and the 

production of new infectious virions.  During reactivation nearly the entire KSHV genome is robustly 

transcribed in a stage-specific manner, with transcripts temporally designated as: (i) immediate-early 

(IE) – based upon their expression occurring in the absence of de novo protein synthesis.  (ii)  

delayed-early (DE) – by default based upon expression which occurs after the IE class, but before the 

late (L) class of lytic viral transcripts.  (iii) Late transcripts (L) – viral transcripts which are sensitive 

to DNA replication inhibitors, and hence require viral genome replication for synthesis (Lu et al., 

2004; Nakamura et al., 2003; Paulose-Murphy et al., 2001; Zhu et al., 1999).  Most viral transcripts 

encoding structural proteins (such as capsid proteins) are expressed after those encoding viral DNA 

replication proteins (Jenner et al., 2001; Paulose-Murphy et al., 2001).  However, this temporal 
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pattern may be more complex, with large portions of both strands of the KSHV genome abundantly 

transcribed in both latency and reactivation (Chandriani and Ganem, 2010; Dresang et al., 2011; Xu 

and Ganem, 2010).   Moreover RTA-independent mechanisms of KSHV lytic gene induction have 

been characterized (Chang et al., 2005a; Toth et al., 2012) and variance in viral gene expression 

across host cell cycle may also occur (Kang and Lieberman, 2009).  Emerging data challenge the idea 

of such a clear transcriptional demarcation between two static viral lifestyles, and instead seem to 

suggest a more variable (and likely more adaptable), expression pattern.    

 

RTA Promoter Specification 

 The RTA protein contains 691 amino acids (aa), two nuclear localization signals (NLS), an 

N-terminal DNA binding and dimerization domain, and a C-terminal transactivation domain, as 

shown in Figure 1.6a (Lukac et al., 1998).  RTA is a DNA binding protein and physically interacts 

with a number of cellular and viral proteins (including itself) to activate transcription of cellular and 

viral genes; including activation of its own promoter (Bu et al., 2007; Carroll et al., 2006; Carroll et 

al., 2007; Chang et al., 2008; Deng et al., 2000; Gould et al., 2009; Gwack et al., 2002; Gwack et al., 

2003b; He et al., 2010; Izumiya et al., 2003; Liang et al., 2002; Lukac et al., 2001; Lukac et al., 1999; 

Palmeri et al., 2007; Sakakibara et al., 2001; Song et al., 2002; Wang et al., 2003; Yada et al., 2006; 

Yang et al., 2008; Yu et al., 2005).  Purified RTA rapidly forms multimers of decamers and tetramers 

by size-exclusion chromatography, however the transcriptionally active state of RTA appears to occur 

only in a tetrameric form (Bu et al., 2007).   

 RTA induces widespread transcription at multiple viral ORF’s and is recruited to RTA-

response elements (RRE’s) by either by direct DNA binding or interaction with transcriptional 

cofactors (Figure 1.6b) (Chen et al., 2009; Ellison et al., 2009; Song et al., 2001; Song et al., 2003; 

Wang et al., 2004b; Wang et al., 2004d), though the mechanisms are not mutually exclusive (Chang 

et al., 2005b; Hilton and Dittmer, 2012; Song et al., 2003).  Direct RTA-DNA binding is observed at 

the Polyadenylated Nuclear RNA (PAN) promoter and at the Kaposin promoter using a homologous 
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RTA-response element (RRE) (Chang et al., 2002).  A similar RRE is bound by RTA at lytic 

replication origins (OriLyt’s) (AuCoin et al., 2004; Wang et al., 2004d).  Although RTA recognizes 

RRE’s at many loci, a conserved consensus sequence for binding has not yet been established (Chang 

et al., 2002; Chen et al., 2009; Liao et al., 2003; Palmeri et al., 2011; Song et al., 2001; Ziegelbauer et 

al., 2006).  Recent data suggests that RTA may recognize a 14bp consensus sequence containing the 

core nucleotides of Cytosine-Adenine-N-Thymine (where N is any base); termed “CANT” repeats 

(Palmeri et al., 2011).   CANT repeat elements may co-occur with other cis recognition elements at 

RTA-responsive promoters, however only one instance of CANT repeat utility has been demonstrated 

(Guito and Lukac, 2012; Palmeri et al., 2011).   

 

The RTA:RBPjκ Interaction   

 While RTA interacts with several proteins to activate transcription; the interaction with 

RBPjκ (also called CSL) is perhaps the most well established and ubiquitous (Liang et al., 2002).  

RBPjκ is the downstream effector on the Notch signaling pathway (reviewed in (Kovall and 

Blacklow, 2010)).  The RBPjκ molecule canonically acts as a transcriptional repressor and binds to 

the sequence motif 5’-GTGGGAA-3 (Tun et al., 1994); although there is a significant degree of motif 

redundancy, including within the KSHV genome (Persson and Wilson, 2010).  Moreover the 

surrounding sequence context also plays an important role in directing RBPjκ activation (Ong et al., 

2006).  Within the KSHV genome, over 260 RBPjκ binding motifs exist (variable depending on P or 

M allelic genomes), though it is unlikely that all are bound by RBPjκ (Persson and Wilson, 2010).  

RTA physically interacts with RBPjκ to activate a growing list of KSHV promoters (Chang et al., 

2005a; Chang et al., 2005b; Hilton and Dittmer, 2012; Liang et al., 2002; Liang and Ganem, 2004; 

Liu et al., 2008; Lu et al., 2012b; Matsumura et al., 2005; Persson and Wilson, 2010; Wang and 

Yuan, 2007; Xu and Ganem, 2010; Ziegelbauer et al., 2006).  The importance of this interaction is 

underscored by the fact that in the absence of RBPjκ latent KSHV is unable to be effectively 

reactivated (Liang and Ganem, 2003).      
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 The RTA:RBPjκ interaction is transcriptionally robust; even artificial promoters containing 

RBPjκ recognition sites can be transcriptionally activated by RTA (Liang et al., 2002).  RBPjκ 

binding to DNA is likely more dynamic than initially characterized, and it is thought that the RTA 

tetramer is able to “stabilize” RBPjκ binding to initiate a transactivation response at RTA-responsive 

promoters (Carroll et al., 2006).  The mechanisms underlying this stabilization are not fully known, 

but recent evidence suggests that the presence of CANT repeats or AT repeats could coordinate this 

interaction (Liao et al., 2003; Palmeri et al., 2011).  Both gammaherpesviruses rely on RBPjκ for the 

effective coordination of gene expression (Hayward, 2004).  Given the widespread decoration of the 

KSHV genome with RBPjκ binding sites, it is not surprising that intracellular Notch, (the canonical 

activator of RBPjκ) is able to transactivate some RBPjκ-dependent viral genes, and has even been 

shown to reactivate latent KSHV (Lan et al., 2006).  However many RPBjκ-dependent KSHV genes 

do not respond to Notch signals, indicating that at the majority of responsive loci, the RTA:RBPjκ 

interaction is exclusively required (Chang et al., 2005a; Hilton and Dittmer, 2012).  The RTA:RBPjκ 

interaction is further complicated by the fact that LANA has also been shown to interact with RBPjκ 

with functional consequences (Jin et al., 2012; Lan et al., 2005a; Lan et al., 2005b).   The interactions 

between RBPjκ and the major viral latent (LANA) and lytic (RTA) transcriptional regulators imply 

that RBPjκ is a central player in mediating the balance between latency and lytic reactivation. 

 

1.4 Selected KSHV-Encoded Oncogenic Factors 

 

 KSHV-associated oncogenesis occurs in both endothelial cells and B cells, which manifests 

as KS and PEL or MCD respectively.  This process is not completely understood, but at present we 

know that several factors encoded by KSHV contribute to cellular transformation and the progression 

of KSHV-associated malignancy.  Gene expression from the KSHV genome is variable depending 

upon the viral replication cycle, which alternates between a restricted state of latency and a robust 

transcriptional/replication program called the lytic phase (see Section 1.3).   Both phases of KSHV 
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replication are involved in the malignant pathology of the virus and outlined below are selected 

products generated by the virus which have characterized roles in viral oncogenesis.   

 

Latently Expressed Oncogenic Factors 

 

LANA 

 The KSHV Latency-associated nuclear antigen (LANA) is a virally encoded protein with a 

multitude of diverse functions in infected cells (reviewed in (Ballestas and Kaye, 2011)).  LANA is 

constitutively expressed from the major latency locus of the viral genome in all infected cells 

(Dittmer et al., 1998; Gao et al., 1996; Kedes et al., 1997; Rainbow et al., 1997).  The LANA protein 

is responsible for maintaining the KSHV genome and for systemic coordination of latency within 

infected cells.   

 LANA is critical for persistence of the KSHV genome though infected cellular divisions 

(Ballestas et al., 1999).  LANA mediates this feat by tethering the KSHV episome to host 

chromosomes through a bridging interaction between the viral TR’s and host nucleosomes (Ballestas 

and Kaye, 2001; Barbera et al., 2006; Cotter and Robertson, 1999; Grundhoff and Ganem, 2003; 

Skalsky et al., 2007a).  This arrangement ensures that the viral genome is maintained during cellular 

mitotic division(s).  In addition LANA directs episomal DNA replication at the latent viral replication 

origin during latency by binding to specific sequence elements within the viral TR’s (Ballestas and 

Kaye, 2001; Hu et al., 2002; Stedman et al., 2004; Verma et al., 2006).  LANA also has 

transcriptional and protein:protein interactions which modulate infected host cells to ensure continued 

cellular proliferation and growth and the stable preservation of viral latency.   

 LANA binds to several sites within the host and viral genome and has been shown to repress 

and activate transcription of both viral and cellular promoters, including its own (An et al., 2005; 

Jeong et al., 2004; Lan et al., 2004; Lu et al., 2012a; Ottinger et al., 2006; Renne et al., 2001; 

Roupelieva et al., 2010; Shamay et al., 2006; Tang et al., 2003; Verma et al., 2004).  The LANA 
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protein also interacts with DNA methyltransferases, chromatin remodelers, and cellular transcription 

factors which contribute to its transcriptional modulatory functions (An et al., 2004; Bubman et al., 

2007; Cai et al., 2006; Chen et al., 2012b; Kusano and Eizuru, 2010; Lan et al., 2005a; Lim et al., 

2001; Lim et al., 2000; Liu et al., 2007; Roupelieva et al., 2010; Sakakibara et al., 2004; Shamay et 

al., 2006; Stuber et al., 2007; Verma et al., 2004).  Furthermore, LANA interferes with cellular tumor 

suppressors functions, such as p53 and retinoblastoma protein, and several other pathways important 

to cell proliferation and oncogenesis (Ballestas and Kaye, 2011; Chen et al., 2010; Fakhari et al., 

2006; Friborg et al., 1999; Fujimuro and Hayward, 2003; Fujimuro et al., 2003; Katano et al., 2001; 

Radkov et al., 2000).  The transcriptional capacity and the interactions with other important proteins 

in infected cells make the KSHV LANA protein a nexus of viral genome persistence and cellular 

proliferation and oncogenesis. 

 

vCyclin 

 vCyclin is a virally encoded homologue of cellular cyclin.  In KSHV pirated homologues of 

cellular genes are denoted by a preceding “v” (see Figure 1.2).  The protein is constitutively 

expressed from the viral latency locus along with LANA (Bieleski and Talbot, 2001; Dittmer et al., 

1998; Pearce et al., 2005; Talbot et al., 1999).  vCyclin is a functional cyclin that can stimulate 

retinoblastoma protein (Rb) to overcome cell-cycle arrest (Godden-Kent et al., 1997).  Unlike cellular 

cyclin D, vCyclin is capable of degrading the cyclin-dependent kinase (CDK) p27Kip when 

complexed with CDK6, thus promoting cell cycle progression and proliferation in infected cells (Ellis 

et al., 1999).  Moreover, transgenic mice with vCyclin develop lymphomas, albeit only in the absence 

of p53 (Verschuren et al., 2002) suggesting that in addition to cell cycle dysregulation, vCyclin may 

also have a role in the induction of genomic instability.   
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vFLIP 

 Viral FADD-like interleukin-1-β-converting enzyme (FLICE) inhibitory protein (called 

vFLIP) is the KSHV homologue of cellular FLIP (cFLIP).  vFLIP is also latently expressed co-

terminally with LANA and/or vCyclin (Bieleski et al., 2004; Bieleski and Talbot, 2001; Dittmer et al., 

1998; Grundhoff and Ganem, 2001; Pearce et al., 2005; Talbot et al., 1999).  vFLIP inhibits apoptosis 

induced by cellular death receptors which may provide a growth advantage to infected cells (Djerbi et 

al., 1999; Low et al., 2001; Thome et al., 1997).  vFLIP can also induce the expression of anti-

apoptotic genes via activation of NF-κB; a mechanism which protects cells against Fas-induced death 

(Chaudhary et al., 1999; Field et al., 2003; Guasparri et al., 2006; Matta and Chaudhary, 2004).  

vFLIP is essential for tumor cell survival in in vitro systems and can also prevent autophagy in B cells 

(Guasparri et al., 2004; Lee et al., 2009b).  Additionally, transgenic mice bearing the vFLIP ORF 

develop B cell malignancies (Ballon et al., 2011; Chugh et al., 2005).    

 

KSHV miRNA’s 

 KSHV also constitutively expresses several miRNA’s derived from 12 stem loops within the 

latency locus, some of which are also induced during lytic phase replication (Cai and Cullen, 2006; 

Cai et al., 2005; Gottwein, 2012; Pearce et al., 2005).  At present the complete functionality of the 

KSHV miRNA’s is unknown and our understanding thereof is continually expanding.  Emerging 

evidence demonstrates that KSHV miRNA’s are important in the context of oncogenesis and that they 

can modulate apoptosis, cell growth, cell cycle, and transcription in infected cells (Gottwein, 2012; 

Ramalingam et al., 2012).  The KSHV miRNA’s show some capacity to reprogram infected cells both 

transcriptionally and even epigenetically (Gottwein et al., 2011; Haecker et al., 2012; Hansen et al., 

2010; Lu et al., 2010), and miRNA expression levels may even correlate with KSHV-associated 

disease progression (O'Hara et al., 2009; O'Hara et al., 2008).   

 KSHV encoded miRNA’s can also target specific apoptotic factors such as Bcl2-associated 

factor (BCLAF1) and caspase 3, among others (Suffert et al., 2011; Ziegelbauer et al., 2009) to 
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overcome apoptosis in infected cells.  KSHV miRNA expression also enhances angiogenic and 

proliferative phenotypes (Boss et al., 2011; Gottwein et al., 2007; Liu et al., 2012; Samols et al., 

2007; Skalsky et al., 2007b).   Although we do not fully understand the breadth of the KSHV miRNA 

repertoire, the known functions of these virally encoded factors suggest involvement in KSHV-

associated malignancy.   

 

Kaposin 

 The robust transcriptional program for the Kaposin ORF undergoes a complex splicing 

program to generate 3 different isoforms Kaposin A, B and C (Cai and Cullen, 2006; Li et al., 2002; 

Pearce et al., 2005; Sadler et al., 1999).   Kaposin is abundantly expressed from the constitutive 

LANApc, and possibly also the LANAds, during latency (Cai and Cullen, 2006; Sarid et al., 1998; 

Sun et al., 1999), and low levels of latent expression have also been detected from the inducible 

Kaposin promoter (K12p) immediately upstream of the K12 ORF.  Transcription from K12p is weak 

during latency but is potently induced during reactivation (Cai and Cullen, 2006).   When transfected 

into Rat-3 cells Kaposin A generated focal transformation, and these cells subsequently generated 

highly vascular sarcomas after subcutaneous injection into athymic nu/nu mice (Muralidhar et al., 

1998) and these phenotypic changes are thought to be driven by an interaction with cytohesin-

1(Kliche et al., 2001).  The Kaposin B isoform is capable of activating the p38 pathway and the 

stabilization of cytokine mRNAs which likely enhance the protein’s transforming potential 

(McCormick and Ganem, 2005).  Of note one of the KSHV miRNAs, miRNA- K12-10, is nested 

within the kaposin ORF and may contribute to the observed transforming potential of the Kaposin 

gene. While the levels of individual Kaposin isoforms can vary based upon cell line examined (Li et 

al., 2002; Sadler et al., 1999), expression from the Kaposin ORF is linked to the oncogenic capacity 

of KSHV.   
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Variably Expressed Oncogenic Factors 

 

K1 

 Genes which are not found in other organisms but are instead unique to the KSHV genome 

are designated by the prefix “K”.  The K1 protein of KSHV is a transmembrane signaling protein 

encoded by the first (“leftmost”) ORF of the viral genome.  The K1 ORF is one of the most 

polymorphic viral ORF’s (Hayward, 1999; Lagunoff and Ganem, 1997; Poole et al., 1999).  K1 

expression is induced during the viral lytic cycle, however low levels of latent expression have been 

observed (Chandriani and Ganem, 2010; Lagunoff and Ganem, 1997; Wang et al., 2006a). K1 has 

transforming potential and can immortalize endothelial cells in culture and can enhance angiogenesis 

and tumor vasculature in vivo (Lee et al., 1998b; Wang et al., 2006a).  Cell signaling pathways 

relating to oncogenesis, angiogenesis, and proliferation are also perturbed via the K1 protein 

(Lagunoff et al., 1999; Lee et al., 1998a; Tomlinson and Damania, 2004; Wang et al., 2004a).  

Furthermore in transgenic mice the K1 protein can produce sarcoma-like tumors and lymphomas 

(Prakash et al., 2002).   

 

K15 

 The K15 ORF of KSHV initiates near the distal (“rightmost”) terminus of the viral genome 

and encodes a transmembrane protein with multiple spliced isoforms (Choi et al., 2000; Glenn et al., 

1999; Wong and Damania, 2006).   K15 is induced during the lytic cycle however some reports have 

identified expression in uninduced cultures (Choi et al., 2000; Jenner et al., 2001; Paulose-Murphy et 

al., 2001; Wong and Damania, 2006).  Two different alleles of K15 are observed and are the basis for 

allelic differences in viral isolates; P and M (Poole et al., 1999).  The K15 protein has been shown to 

have anti-apoptotic functions and is also capable of the activating NF-κB and mitogen-activated 

protein kinase pathways (Brinkmann et al., 2003; Sharp et al., 2002).  The protein may also be able to 

generate pro-angiogenic signals and manipulate B cell activation in infected cells (Bala et al., 2012; 
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Pietrek et al., 2010). 

 

vIRF-1 

 KSHV encodes 4 genes with homology to cellular interferon regulatory factors (IRF’s) 

known as vIRF’s.  These proteins have roles in modulating host interferon system and innate 

immunity (reviewed in (Lee et al., 2009a)).  In addition to innate immune perturbation, vIRF-1 and 

vIRF-3 have reproducibly demonstrated oncogenic properties (reviewed in (Jacobs and Damania, 

2011)).  vIRF-1 is considered a lytic gene, although latent expression has been detected in culture and 

in primary KS lesions (Dittmer, 2003; Jenner et al., 2001; Moore et al., 1996a; Sarid et al., 1998).  

Moreover, the vIRF-1 ORF is thought to contain two different start sites which could be under 

differential temporal regulation (Chen et al., 2000; Cunningham et al., 2003).  vIRF-1 is capable of 

interfering with the tumor suppressor p53 and blocking p53-mediated apoptotic and transcriptional 

activities (Nakamura et al., 2001; Seo et al., 2001).  vIRF-1 has also exhibited transforming potential 

in vivo (Gao et al., 1997), at least in part mediated through interactions with c-Myc (Jayachandra et 

al., 1999).   

 

vIRF-3 

 Like vIRF-1, vIRF-3 (also called LANA2) also modulates the host immune system and is 

capable of suppressing p53 function (Jacobs and Damania, 2011; Lee et al., 2009a; Rivas et al., 

2001).  Unlike vIRF-1, vIRF-3 exhibits latent expression which is restricted to B cells and may or 

may not be induced during reactivation (Cunningham et al., 2003; Fakhari and Dittmer, 2002; Jenner 

et al., 2001; Lubyova and Pitha, 2000; Rivas et al., 2001; Wies et al., 2008).   vIRF-3 is thought to 

inhibit apoptosis and NF-κB activity (Esteban et al., 2003; Seo et al., 2004) and stabilize hypoxia-

inducible factor 1α (Shin et al., 2008).  vIRF-3 may be required for the survival of KSHV-infected 

cells (Wies et al., 2008) and similarly to vIRF-1, vIRF-3 can also interact with c-Myc to promote 

lymphomagenesis (Baresova et al., 2012). 
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vIL-6 

 Human interleukin-6 (hIL-6) is an important cytokine involved in a wide array of cellular 

activities including cell grown and differentiation (reviewed in (Kishimoto, 2010)).  KSHV encodes a 

homologue of hIL-6, called vIL-6 (reviewed in (Sakakibara and Tosato, 2011)).  vIL-6 is expressed at 

low levels during viral latency and is up-regulated during lytic replication (Chandriani and Ganem, 

2010; Moore et al., 1996a; Nicholas et al., 1997).  The vIL-6 transcript can initiate at two different 

start sites and is responsive to RTA (Deng et al., 2002).  RBPjκ binding is thought to mediate the 

RTA response and unlike most other viral genes also allows vIL-6 to respond to intracellular Notch 

(Chang et al., 2005a).  Although vIL-6 expression has been differentially detected in KS, PEL, and 

MCD tumors; the role of vIL-6 in KSHV-associated malignancy has been established through various 

experimental means (Parravicini et al., 2000; Staskus et al., 1999).   

 T-cell immunodeficient mice injected with NIH3T3 cells transduced with vIL-6 demonstrated 

the potency of vIL-6 in augmenting angiogenesis, tumor growth, and plasmocytosis (Aoki et al., 

1999).   vIL-6 activates pathways such as MAPK, JAK/STAT, etc. similarly to hIL-6  (Molden et al., 

1997; Osborne et al., 1999), which in addition to other effects can lead to increased VEGF expression 

and signaling effects (Liu et al., 2001).  vIL-6 is not limited by the physiologic checkpoints that 

regulate endogenous hIL-6 activity, and hence this viral mimic has enhanced hIL-6-reponsive 

signaling capacity relative to hIL-6 (Molden et al., 1997).      

 

vGPCR 

 KSHV also encodes a G-protein coupled receptor with homology to the cellular IL-8 

receptor, and which contains seven transmembrane domains that are found in all cellular G-protein 

coupled receptors (Arvanitakis et al., 1997; Cesarman et al., 1996; Guo et al., 1997).  vGPCR is 

considered one of the most potently induced lytic genes (Damania et al., 2004) and has constitutively 

active signaling capacity which can potently activate a multitude of cellular pathways important for 
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angiogenesis and proliferation including VEGF, p38, MAPK, Akt, mTOR, PI3 kinase, and small 

GTPases  (Bais et al., 2003; Martin et al., 2011; Montaner, 2007; Montaner et al., 2001; Rosenkilde et 

al., 1999; Shepard et al., 2001; Sodhi et al., 2000).  vGPCR can also upregulate transcription factors 

including NF-κB, HIF-α, CREB, and AP-1 which subsequently induce cytokines and 

proliferative/angiogenic factors (Cannon et al., 2003; Cannon and Cesarman, 2004).   

 Further, vGPCR is capable of direct immortalization and transformation of certain cell lines 

and can also generate tumors reminiscent of KS lesions in nude mice (Bais et al., 1998; Bais et al., 

2003; Yang et al., 2000).  vGPCR is expressed early in lytic infection as part of a bicistronic 

transcript which also encodes K14 (vOX2) (Kirshner et al., 1999), however expression may occur 

outside of viral reactivation during cell cycling (Kang and Lieberman, 2009) or in a subset of infected 

cells in culture or in tumors (Cesarman et al., 1995a) .  Both vGPCR and vOX messages are 

expressed from the K14 promoter (K14p).  The K14p is unusual as it is a member of the RTA-

responsive bidirectional LANApi/K14p promoter which can also synthesize latent messages (Hilton 

and Dittmer, 2012; Matsumura et al., 2005).  Notably, vGPCR expression can lead to both autocrine 

and paracrine signaling effects (Martin et al., 2011; Montaner et al., 2004), and hence vGPCR 

expression can affect infected cells and nearby cells which may or may not be infected.   

 

1.5 Epigenetic Regulation of the KSHV Genome 

 

 The epigenetic regulation of eukaryotic genomes is a synthesis of chromatin structure and 

nucleosome positioning which serves to modulate transcription, differentiation, and the maintenance 

and replication of DNA (reviewed in (Luger et al., 2012)).    Developments in the field have shed 

light on proteins that manipulate nucleosome structure, placement, modification, and ultimately the 

access to genomic DNA.  The recent advances in epigenetic regulation extend beyond eukaryotic 

cells and into the realm of viral genomes (reviewed in (Knipe et al., 2013)).  The study of epigenetic 

regulation in viral systems is tractable, and discoveries associated with viral epigenetics are 
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intrinsically interwoven with the understanding of chromatin biology in general.  Moreover, such 

endeavors may prove invaluable in the pursuit of antiviral strategies.   

 Chromatin modifications during viral infections often occur in both the host and invading 

viral genomes.  Large DNA viruses, especially those which establish long-live persistent infections 

are not excluded from epigenetic regulation.  This is exemplified in KSHV, and the virus has evolved 

intricate tactics to utilize host epigenetic machinery to navigate existence within human cell nuclei, 

which are outlined below and are discussed in greater detail in Chapter IV.   

 

Epigenetically Programming the KSHV Episome for Latency 

 In the incoming virion the linear KSHV genome is devoid of DNA methylation and 

nucleosomes (Bechtel et al., 2005; Gunther and Grundhoff, 2010).  Shortly after de novo infection, 

the viral genome circularizes by joining of the TR’s.  Early in the stages of infection, before latency is 

effectively established, little is known about how the viral genome is epigenetically programmed for 

latency.  Despite the relatively high GC content across the KSHV genome, DNA methylation of the 

viral genome is not an early event, but in culture models takes several days.  The most noticeable 

effects of DNA methylation upon the viral life cycle are observed at the RTA promoter region, with a 

notably paucity of methylated viral DNA at the latency locus (Chen et al., 2001; Gunther and 

Grundhoff, 2010).  DNA methylation occurs in KSHV during latency, but it is not required for the 

establishment of latency, and has only extensively (and inconsistently) been observed, at late time 

points in viral infection (Chen et al., 2001; Gunther and Grundhoff, 2010).    

 As viral latency ensues nucleosomes are incorporated through an unknown mechanism.  

However by five days post-infection, activating and repressive histone modifications are already 

present upon latent KSHV episomes, and these modifications persist after stable latent establishment 

(Gunther and Grundhoff, 2010; Stedman et al., 2004; Toth et al., 2010).  Activating modifications on 

histone tails such as acetylated H3K9/K14 (H3K9/K14-ac; H3-ac) and trimethylated H3K4 (H3K4-

me3) are found at the latency locus and other latent loci (i.e. the vIRF-3 promoter) in B cells.  
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Activating marks are also present at many immediate-early (IE) and delayed-early (DE) lytic cycle 

genes.   IE/DE genes also contain so-called “bivalent” chromatin structures (Gunther and Grundhoff, 

2010; Toth et al., 2010); histone tails modified with H3-ac or H3K4-me3 in addition trimethylated 

H3K27 (H3K27-me3).   ORF’s of the viral genome encoding late-lytic phase (L) products are 

generally marked by the sole presence of heterochromatic H3K27-me3 or trimethylation H3K9 

(H3K9-me3).  These observations have led the field to theorize that the modification of histone tails 

during latency generates poising at key lytic IE/DE genes and repression at L genes.      

 Histone-modifying enzymes are also bound to the viral genome including; (i) a Polycomb 

group repressive complex 2 (PRC2) member called EZH2, and (ii) a histone H3K9-me3 demethylase 

called JMJD2A (Chang et al., 2011; Toth et al., 2010).  The EZH2 methyltransferase is co-localized 

with H3K27-me3 on the KSHV genome is thought to maintain the bivalency or repression at lytic 

loci.  JMJD2A binding to the viral genome is anti-correlated with H3K9-me3 and instead binds at 

activated histone modifications where it serves to prevent H3K9 methylation.  Other reports suggest 

wide scale genomic binding of the heterochromatic organizing protein Kruppel-associated box 

domain-associated protein-1 (KAP-1) (Chang et al., 2009). 

 Some lytic IE and DE genes adopt euchromatic structures in the latent episome yet remain 

transcriptionally inactive.  Near the left lytic KSHV replication origin (called OriLyt-L) lie RTA-

responsive promoters involved in immune-modulation and lytic viral genome replication:  OriLyt-L, 

K5, K6, K7, and KSHV Polyadenylated Nuclear RNA (PAN) (Karki et al., 2011; Nakano et al., 2003; 

Wang et al., 2002; Wang et al., 2004d).  Although RNA polymerase II (PolII) localization occurs at 

these lytic promoters during latency, productive transcriptional elongation is repressed by cellular 

components such as Negative Elongation Factor (NELF) (Toth et al., 2012).  This phenomenon 

allows for rapid induction at this locus during lytic infection as well gene expression outside of the 

context of bona fide lytic induction.  Productive PolII association which is not subject to repression 

occurs at latent episomal loci, such as the major LANA promoter; LANApc.   Other reports indicate 

that the CCCTC binding factor (CTCF) and associated Cohesins can program PolII at the latency 
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locus, manipulate KSHV lytic transcription, control episomal maintenance, and coordinate long range 

inter-episomal linkages (Chen et al., 2012a; Kang et al., 2013; Kang et al., 2011; Stedman et al., 

2008). 

 CTCF is emerging as a master regulator of stable latency in both human gammaherpesviruses 

(Kang et al., 2011; Knipe et al., 2013; Tempera et al., 2011).  CTCF is a zinc finger DNA binding 

protein that can insulate chromatin, mediate interactions between distal regulatory elements, 

structurally configure DNA into looped structures, and regulate transcription (Donohoe et al., 2009; 

Merkenschlager, 2010; Phillips and Corces, 2009; Rubio et al., 2008; Wendt et al., 2008).  In addition 

CTCF affects nucleosome positioning and the modification of histone tails (Barski et al., 2007; Fu et 

al., 2008).  CTCF binding is widespread in the latent KSHV episome and a major peak exists within 

the KSHV latency locus.  Here CTCF/Cohesins are thought to regulate a balance between latent and 

lytic transcription through local PolII programming and physical connections to other episomal (Chen 

et al., 2012a; Kang et al., 2013; Kang and Lieberman, 2009; Kang et al., 2011; Stedman et al., 2008).  

CTCF/Cohesin may be involved in silencing lytic viral gene expression and in coordinating long-

range interactions between the viral genome during latency.  Several questions still remain to be 

addressed regarding CTCF/Cohesin-mediated epigenetic regulation of KSHV latency, including how 

long-range interactions are specified and how CTCF programming unfolds at specific loci.   

 

Reactivation from Latency in the Epigenetic Context 

 At present a full understanding of the epigenetic regulation of both the latent and lytic viral 

replication programs is lacking, moreover it is possible that latency and lytic infection are not as 

clearly demarcated as once suspected.  Recent evidence indicates that even within a single cell, 

different viral genomes exhibit distinctly different epigenetic accessibility (Darst et al., 2013).   It is 

clear however, that indirect as well as direct epigenetic mechanisms control reactivation.  Canonical 

reactivation from latent infection is ultimately dependent upon relieving repressive chromatin at the 

RTA promoter (Lu et al., 2003).  During latent infection the RTA promoter is covered in so-called 
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“bivalent” chromatin but is repressed by PRC2 and histone deacetylases (Toth et al., 2010).  Upon 

reactivation the KSHV lytic gene PAN chaperones H3K27-me3 histone demethylases and H3K4-me3 

methyltransferases to the RTA promoter (Rossetto and Pari, 2012).  RTA then recruits histone 

acetyltransferases and chromatin remodelers to lytic promoters; including its own (Gwack et al., 

2003a).   

 RTA expression is autoregulated at its own promoter to generate a positive transcriptional 

feedback loop with the aid of cellular transcriptional cofactors (Deng et al., 2000; Harrison and 

Whitehouse, 2008; Sakakibara et al., 2001; Wang et al., 2004b; Wang et al., 2003).  Indirect 

epigenetic mechanisms prevent RTA activity to fine tune the dynamic balance between latency and 

reactivation (He et al., 2010; Jin et al., 2012; Lan et al., 2004; Lu et al., 2010; Yada et al., 2006).  The 

extent to which LANA epigenetically organizes the viral genome outside of the TR’s and how RTA 

overcomes CTCF/Cohesin-mediated repression at lytic loci is unknown.  Understanding these 

biophysical phenomena would have broad applicability within and beyond our understanding of 

KSHV.   
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Figure 1.1:  Human Herpesvirus Phylogeny.  The eight known human herpesviruses are shown based upon 

amino acid similarity in respective major capsid proteins.  The α-herpesviruses; varicella-zoster virus (VZV) 

and herpes simplex viruses 1 and 2 (HSV-1/2), are shown in orange.  The β-herpesviruses; human 

cytomegalovirus (HCMV) and human herpesviruses 6 and 7 (HHV-6/7), are shown in blue.  The gamma (γ) 

herpesviruses; Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV) are shown in 

red.  The gammaherpesviruses are associated with malignancy in infected humans.  (Figure adapted from 

Moore et al., 1996b).   
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Figure 1.2:  The KSHV Episome.  The ~140 kilobase (kb) double-stranded DNA coding region of the KSHV 

genome is circularized in an episomal configuration after infection by fusing of viral terminal repeats (TR).  

Known KSHV open reading frames (ORF’s) are numbered and those unique to the KSHV genome are denoted 

with a “K” prefix.  Viral homologues of cellular genes are designated by yellow boxes and are lettered with a 

“v” prefix.  Constitutively expressed latently-encoded genes, such as LANA, are shown in green.  Noncoding 

RNA’s such as the miRNA’s are designated with purple boxes.  Upon reactivation lytic genes are expressed in 

an ordered temporal cascade, with early lytic genes encoding transcriptional and viral replication proteins, and 

later lytic genes involved in the assembly of mature viral particles called virions.  (Figure adapted with 

permission from Mesri et al., 2010). 
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Figure 1.3:  KSHV-Associated Malignancies.  A.  KSHV-induced oncogenesis manifests as Primary Effusion 

Lymphoma (PEL) in B cells (adapted with permission from Grubb et al., 2006)   B.  B cell infection can also 

give rise to Multicentric Castleman’s Disease (MCD) (adapted with permission from Hillier et al., 2004).   C.  

KSHV oncogenesis also occurs in endothelial cells in the form of Kaposi’s Sarcoma (image courtesy of the 

National Cancer Institute).   
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Figure 1.4:  The KSHV Life Cycle.  After KSHV infection the default viral replication program is latency, 

during which the viral genome exhibits very restricted gene expression.  A handful of genes escape repression 

during latency including the KSHV Latency Associated Nuclear Antigen (LANA).  LANA maintains the viral 

reservoir by assisting in viral genome replication and maintenance and also modulates the host cell 

transcriptionally and via protein interactions.  Latency can be disrupted by various stimuli which ultimately 

induce expression of the KSHV Replication and Transcription Activator (RTA).  RTA coordinates a temporal 

cascade of genome-wide viral gene expression and replication which leads to the production of mature virions 

and viral dissemination by lysis of the infected host cell.  Both replication phases of KSHV are involved in 

mediating oncogenesis by encoding molecules which manipulate host cell signaling, proliferation, and growth. 
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Figure 1.5:  Transcripts from the KSHV Latency Locus.  Constitutively expressed transcripts (shown in 

blue) originate from two promoters within the KSHV latency locus; the major latent promoter – the LANApc, 

and a downstream promoter – the LANAds.  Through alternative splicing the LANApc can direct transcription 

of the viral genes LANA, vCyclin, vFLIP, Kaposin, and all identified viral pre-miRNA’s (green chevrons 

numbered 1-12).  During lytic phase induction other transcripts are generated in response to KSHV RTA 

(shown in red).  This includes the Kaposin promoter (K12p) and the Antisense to Latency Transcripts 

noncoding RNA (ALT) of unknown function, the transcription start site (TSS) of which is incompletely 

mapped.  The LANApi and K14p are members of a bidirectional promoter which responds to RTA.   LANApi 

encodes LANA, vCyclin, and vFLIP but cannot generate the KSHV miRNA’s or Kaposin due to lack of an 

appropriate splice donor.  K14p drives expression of a bicistronic message encoding K14 (vOX2) and vGPCR.  

TSS’s (shown as arrows) and polyadenylation sites (pA) are noted with and corresponding nucleotide positions 

in NC_009333.  Splice sites are indicated but lack nucleotide labeling for simplicity.   
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Figure 1.6:  The KSHV Lytic Switch Protein:  RTA   A.  The RTA protein is 691 amino acids (aa) in length 

and contains two putative nuclear-localization signals (NLS1/2).  The protein is shown along with the 

corresponding aa numbers for; a basic amino acid rich region (+++), a leucine repeat region (LR), a 

serine/threonine rich region (ST), and a region containing repeats of hydrophobic/acidic aa.  Numbered 

fragments below indicate mapped interacting domains of RTA and associated citations.  The amino terminus of 

RTA binds DNA and the carboxy terminus contains the transactivation domain.  In between are domains 

involved in self-association and binding to RBPjκ.  B.  RTA transactivates some promoters independently of 

RBPjκ by directly binding DNA and attempts at derived consensus motifs for RTA DNA binding elements are 

shown with citations.  RTA transactivation is dependent upon the RTA:RBPjκ interaction at several viral 

promoters.  Immediate-early (IE) viral genes (red), delayed-early (DE) viral genes (orange), and late (L) viral 

genes (blue) are indicated.  RTA also relies on RBPjκ to initiate an antisense RNA from the bidirectional 50AS 

promoter.  (Parts of this figure are adapted from Guito and Lukac, 2012).   
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CHAPTER II 

 

QUANTITATIVE ANALYSIS OF THE BIDIRECTIONAL VIRAL G-PROTEIN-COUPLED 

RECEPTOR AND LYTIC LATENCY-ASSOCIATED NUCLEAR ANTIGEN PROMOTER 

OF KAPOSI’S SARCOMA-ASSOCIATED HERPESVIRUS
1 

 

2.1 Overview 

 

 Kaposi’s sarcoma-associated herpesvirus (KSHV) establishes sustained latent persistence in 

susceptible cells. This is dependent on the latency-associated nuclear antigen (LANA). Understanding 

how LANA transcription is regulated thus aids our fundamental understanding of KSHV biology. 

Two hundred ninety-four base pairs are sufficient to regulate LANA transcription in response to the 

viral RTA protein and RBPjκ. The same region controls K14/viral G-protein-coupled receptor 

(vGPCR) transcription in the opposite direction. We used a quantitative analysis in conjunction with 

specific nucleotide substitutions and defined gain-of-function and loss-of-function RTA mutants to 

dissect this region. We used a bidirectional reporter driving red and green luciferase to study the 

LANApi and K14p promoters simultaneously. This established that LANApi/K14p functions as a 

canonical bidirectional promoter. Both were TATA dependent. K14p was favored by 50-fold in this 

context. Eliminating the distal LANApi TATA box increased maximal output and lowered the 

induction threshold (T) of K14p even further. Two RBPjκ binding sites were independently required; 

however, at high concentrations of RTA, direct interactions with an RTA-responsive element (RRE) 

could complement the loss of one RBPjκ binding site. Intracellular Notch (ICN) was no longer able to 

activate RBPjκ in the viral context.  

1
This chapter has been adapted from:  Hilton, I.B., and Dittmer, D.P. (2012). Quantitative analysis of the 

bidirectional viral G-protein-coupled receptor and lytic latency-associated nuclear antigen promoter of Kaposi's 

sarcoma-associated herpesvirus. J Virol 86, 9683-9695. 
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This suggests a model whereby KSHV alters ICN-RBPjκ gene regulation. When the architecture of 

this pair of head-to-head RBPjκ binding sites is changed, the sites now respond exclusively to the 

viral transactivator RTA and no longer to the host mediator ICN. 

 

2.2 Introduction 

 

 Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic gammaherpesvirus. 

The KSHV genome is 137,000 bp long and encodes more than 70 open reading frames (ORFs). 

KSHV is associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric 

Castleman's disease (MCD). Viral transcription is tightly regulated and can be divided into two well-

defined states (Dittmer, 2003; Jenner et al., 2001). (i) During the lytic phase, the genome replicates 

and every viral promoter is active. (ii) During latency, the viral genome persists within the nucleus as 

a circular plasmid (episome) and is subject to the same regulation as human chromosomes (Gunther 

and Grundhoff, 2010; Pantry and Medveczky, 2009; Toth et al., 2010). As a result, this 

minichromosome is transcriptionally silent, with the exception of some key genes: the KSHV latency 

locus and a few genes that respond to cell type-specific and environmental stimuli. The KSHV 

latency locus encodes vital viral genes, which drive latent episome persistence: for instance, the 

latency-associated nuclear antigen (LANA) gene, as well as all viral microRNAs (Cai and Cullen, 

2006; Dittmer et al., 1998; Ganem, 2010; Kang and Lieberman, 2009; Pearce et al., 2005; Talbot et 

al., 1999; Wen and Damania, 2010). Latent genes are central to KSHV tumorigenesis, since 

abrogation of LANA protein expression by small interfering RNA (siRNA) results in a loss of the 

KSHV plasmid and induction of apoptosis (Godfrey et al., 2005). Conversely, LANA expression can 

drive B cell hyperplasia in vivo (Fakhari et al., 2006; Sin et al., 2010). 

 LANA, vCyc, vFLIP, the viral microRNAs (miRNAs), and kaposin are transcribed via 

alternative splicing from a single promoter. Other promoters can regulate kaposin, vCyc/vFLIP, and 

the microRNAs separately from LANA (Bieleski et al., 2004; Bieleski and Talbot, 2001; Cai and 
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Cullen, 2006; Dittmer et al., 1998; Li et al., 2002; Pearce et al., 2005; Sarid et al., 1998; Talbot et al., 

1999). The LANA promoter ensures the coordinated expression of this KSHV latent gene cluster, 

including all viral microRNA. Elucidating the molecular details of this regulation can be expected to 

contribute significantly to our understanding of KSHV persistence and the AIDS-defining 

malignancies, KS and PEL. A contiguous ∼1,200-bp fragment contains all cis regulatory elements to 

ensure constitutive LANA promoter (LANApc) activity (Dittmer et al., 1998; Jeong et al., 2001; 

Jeong et al., 2002; Jeong et al., 2004). The LANA promoter is never methylated and is free of 

repressive histone marks (Chen et al., 2001; Gunther and Grundhoff, 2010; Toth et al., 2010). Thus, 

this locus provides the opportunity to investigate general principles of promoter structure and function 

in a defined genomic context; however, the situation is more complicated. 

 During latency, LANApc, a largely constitutive promoter, drives transcription of the LANA 

mRNA (Fig. 2.1A). It initiates transcription at position 127880. It is B cell-specific in transgenic mice 

(Jeong et al., 2002) and constitutively active in a large number of tissue culture cell lines. During 

reactivation, additional promoters are used. These are termed the LANApi, which is a promoter that 

can drive LANA transcription in response to the viral immediate-early transactivator RTA, and K14p, 

which is a promoter that drives a large K14/viral G-protein-coupled receptor (vGPCR) mRNA. 

Transcripts initiating from these two promoters have thus far been detected only in lytically 

reactivating cells. Nested within the LANApc untranslated region (UTR) is the bidirectional 

LANApi/K14p promoter (Fig. 2.1A), which is the subject of this study. The LANApi/K14 promoter 

is small (297 bp), and both transcription start sites (TSSs) are inactive during latency despite being 

located within an open chromatin environment. The LANApi/K14p region is part of a large class of 

bidirectional regulatory regions. Approximately 10% of human open reading frames (ORFs) are 

regulated via bidirectional promoters (Li et al., 2006; Trinklein et al., 2004; Wei et al., 2011). 

Bidirectional promoters regulate two ORFs positioned 5′ to 5′ (“head to head”) on opposite DNA 

strands. The TSSs for the majority of these bidirectional promoters are separated by less than 400 bp. 

Members of bidirectional gene pairs tend to utilize shared cis regulatory elements. Another human 
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gammaherpesvirus, Epstein-Barr virus (EBV), also exploits this mode of regulation (Jimenez-

Ramirez et al., 2006). 

 A number of studies have looked at either K14p or LANApi by itself (Lan et al., 2005b; 

Liang and Ganem, 2004; Matsumura et al., 2005; Staudt and Dittmer, 2006) but thus far not at both in 

the bidirectional context. The LANApi TSS is positioned 313 bp upstream of the LANA protein 

translation initiation site (Matsumura et al., 2005; Staudt and Dittmer, 2006), and the K14p TSS 

initiates transcription 35 bp upstream of the K14 translation initiation site on the opposite strand 

(Chiou et al., 2002; Kirshner et al., 1999; Nador et al., 2001). The LANApi TSS utilizes a canonical 

TATA element (Matsumura et al., 2005; Staudt and Dittmer, 2006). A K14p TATA element has been 

predicted but not yet confirmed by functional studies. In sum, features of the LANApi/K14p pair 

resemble the architectural (spacing and strand identity) and functional (coexpression and 

coregulation) features of bidirectional promoters. 

 The LANApi and K14p TSSs are induced by the KSHV RTA transactivator. In fact, K14p is 

the most highly RTA-induced TSS in the entire KSHV genome (Damania et al., 2004). The RTA-

mediated transactivation of LANApi and K14p displays a strict reliance upon two binding sites (Fig. 

2.1B) for the human transcriptional adaptor RBPjκ (Liang and Ganem, 2004; Matsumura et al., 

2005). The RTA-RBPjκ complex binds to these sites and activates the TSS. RTA functions as a 

multimer (Bu et al., 2007; Palmeri et al., 2011). The situation is more complex, however, since RTA 

can also bind DNA directly through a loosely defined RTA-responsive element (RRE) (Chen et al., 

2009; Song et al., 2003; Song et al., 2002) and thus can activate other viral promoters independent of 

RBPjκ. Further, RBPjκ can be activated by its host partner intracellular Notch (ICN) independent of 

any viral proteins;  reviewed in -(Miele, 2011). The LANApi/K14p region contains two RBPjκ 

elements, as well as a centrally located RRE, which could function to regulate K14p, LANApi, or 

both. 

 To further understand this regulation, we applied a quantitative model combined with single 

nucleotide and single amino acid mutant alleles of the cis recognition sequence elements and the RTA 
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DNA binding domain. Transactivators (trans inputs) and their cognate sequence elements (cis inputs) 

coalesce to regulate mRNA production in the form of a transcriptional regulatory circuit (Kim et al., 

2009). These regulatory circuits can be described in quantitative terms using the Hill function (see 

equation (1)) (Kim and O'Shea, 2008; Kim et al., 2009; Kuhlman et al., 2007; Rosenfeld et al., 2005). 

This equation relates promoter output to transactivator concentration. Traditional, enzymatic studies 

use purified proteins and enzyme activity relates to the enzyme protein concentration. In our 

transfection studies, we did not know the intracellular RTA concentration, but we established that 

within the boundaries of our transfection series, doubling the input of a transfected expression 

plasmid resulted in a linear increase in the RTA protein. Hence, we can use this equation to 

characterize promoter behavior. 

 Three parameters describe the Hill function: the maximal output, measured herein as RLU 

s
−1

max; T, the induction threshold; and n, the Hill coefficient, which is a measure of cooperativity. By 

determining these parameters, we can make inferences about regulation and the biochemical 

mechanism of action. 

 

 This mathematical framework is well known and has also been applied to study promoter 

activity in transfected cells (Kim and O'Shea, 2008; Kim et al., 2009; Kuhlman et al., 2007; 

Rosenfeld et al., 2005). For instance, the induction threshold T determines at which activator 

concentration the promoter is 50% active. A promoter with a lower T will be more active at lower 

transactivator concentrations. The Hill coefficient, n, indicates the cooperativity of the response. A 

Hill coefficient of >1 indicates a high degree of cooperativity and a step-like, “all-or-nothing” 

response curve; a Hill coefficient of ≤1 indicates a more gradual response. The maximal output 

provides a measure of promoter strength. A weak promoter will produce fewer transcripts 

(specifically, initiation events per unit time) than a strong promoter. One way to understand maximal 



37 
 

output is as follows: at the limit, the promoter initiates as many new transcripts per time unit as 

possible. Adding more specific transactivator no longer increases this rate, which is determined by 

how fast the general transcription factor complex can assemble and “reset” at the TATA element. 

 Using this framework, we investigated the LANApi/K14p response to RTA and report two 

new findings. (i) Our studies revealed a competitive relationship between the two TSSs, i.e., we found 

that one function of the LANApi TSS is to dampen the K14p response to RTA. (ii) Since 

LANApi/K14p contains two RBPjκ sites, we expected RTA-dependent transactivation to be highly 

cooperative. This was not the case. We found an unconventional utilization of the head-to-head 

RBPjκ element pair reminiscent of sequence-paired site (SPS) Notch signaling (Arnett et al., 2010; 

Cave et al., 2005; Ong et al., 2006) but evolved to respond solely to the viral transactivator and no 

longer to ICN. 

 

2.3 Materials and Methods 

 

Plasmids 

 All plasmids were sequence verified and match nucleotide positions 127583 to 128879 of the 

BC-1 KSHV genome (Russo et al., 1996). Site-directed mutations are shown in Fig. 2.1B. LANApi 

and K14p single reporter constructs (pDD2002 and pDD2005, respectively) were generated by 

cloning the genomic portion indicated above from pDD919 (nucleotides [nt] 127583 to 127879 in 

pBluescript II(KS+) [Stratagene]) into pCBG68 Basic and pCBR Basic (Promega Corp.) via 

SmaI/HindIII and KpnI/SmaI restriction sites, respectively. The bidirectional reporter construct 

(pDD2000) was generated by cloning the green luciferase isoform (pCBG68 Basic) into pDD919 via 

HindIII/SalI restriction sites, with a secondary subcloning step to incorporate the red luciferase 

isoform (pCBR Basic) via ligation of blunt-ended (End-It DNA repair kit; Epicentre), SmaI/BamHI-

digested pCBR Basic, with the SmaI-digested, green-only vector intermediate. The LANApi single 

reporter, K14p single reporter, and bidirectional reporter variants, LANApiTBP (pDD2026, -2027, 
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and -2029_3-1), RBP A (pDD2024, -2028, and -2031), RBP B (pDD2022, -2023, and -2030), and 

K14pTBP mutants (pDD2013, -2015, and -2016), respectively, were generated using the GeneTailor 

site-directed mutagenesis system (Invitrogen) and the GeneAmp high-fidelity PCR system (Applied 

Biosystems). The bidirectional mutant variants, RRE (pDD2038) and 611-843 REV (pDD2034), were 

designed as synthetic oligonucleotides (Blue Heron Biotechnology Inc.) with flanking HindIII sites 

for subcloning into the HindIII self-ligated bidirectional empty vector (pDD2045). Regulatory 

elements were identified using the software program Alibaba 2.1 and a literature review. The wild-

type (WT) ORF50 expression vector was a kind gift from J. Choe (Gwack et al., 2001). 4X-RBPjκ 

Luc (4X-CBF Luc) was generously provided by S. D. Hayward (Hsieh et al., 1996). The ORF50 

mutant expression vectors (ORF50 KK/EE and ORF50 R161A) were generous gifts from G. Miller 

(Chang and Miller, 2004; Chang et al., 2005b). The Flag-tagged human intracellular Notch- and Myc-

tagged RTA (Nakamura et al., 2003)-encoding constructs were kindly provided by J. Jung. Myc-

tagged ORF50 KK/EE (pDD2032) and ORF50 R161A (pDD2033) were generated using the same 

methods as in reference -(Nakamura et al., 2003). 

 

Tissue Culture and Transfection 

 SLK cells (Herndier et al., 1994) were cultured in Dulbecco's modified Eagle's medium 

(DMEM) supplemented with 5% fetal bovine serum, penicillin (0.05 μg/ml), and streptomycin (5 

U/ml) (Invitrogen Inc.) at 37°C under 5% CO2. SLK cells were seeded at a density of 1.0 × 10
4
 cells 

per well in 96-well plates (Sarstedt). The next day, transfection mixes were prepared using the 

RoboGo liquid handling system (Aviso) (or by hand in the case of Fig. 8 only) and then mixed with 

incomplete medium (DMEM without serum or antibiotic) and Superfect (Qiagen) as per the 

manufacturer's instructions. Total DNA was normalized with pBluescript II(KS+) (pDD223) such that 

a total 0.5 μg of total input DNA was transfected per well in all experiments. Similar to previous 

observations (Staudt and Dittmer, 2006), coincident expression of ORF50 consistently led to 

deviations in the expression of β-galactosidase, rendering this value unreliable for normalization 
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purposes. We therefore relied on extensive biological replicates. Transfections utilized the MWG 

RoboGo liquid handling system and were performed in triplicate, at least three different times. Those 

transfections that were performed by hand were performed in duplicate, at least two different times. 

 

Luciferase Data Acquisition 

 Cells were lysed with 100 μl 1X cell Culture lysis reagent (Promega), undergoing gentle 

orbital rotation for 10 min at room temperature. Lysate was then mixed with the Chromaglo luciferase 

assay system (Promega) substrate or with luciferase assay system (Promega) substrate as per the 

manufacturer's instructions. Luciferase activity was measured using a FLUOstar Optima 96-well 

luminometer (BMG Labtech). Red and green signal outputs were separated as per the manufacturer's 

instructions using a 590-nm long-pass and 510/60-nm filter (Chroma Corp.), respectively. Luciferase 

activity was measured from each well for 10 s at 1-s intervals, with the final values derived by the 

luminometer software as the average of all interval readings (n = 10), such that the output therein was 

expressed as relative light units observed per second (RLU s
−1

obs). Filter correction was achieved 

using the Chroma-Luc technology calculator (Promega). 

 

Data Fitting and Analysis 

 Raw luciferase data in the form of RLU s
−1

obs was generated via titration of WT RTA, KKEE 

RTA, or R161A RTA, with input values of RTA-encoding expression vector ranging from 0 to 86.5, 

0 to 76.9, and 0 to 76.9 nM, respectively. Because equal molecular weights were input to maintain the 

optimal 0.5-μg/well transfection conditions outlined above in all experiments, the different molecular 

amounts between the input RTA expression vectors are reflective of the differences in double-

stranded molecular weights. The raw output curves were fit to the Hill function (see equation (1)) via 

nonlinear least-squares regression (Kemmer and Keller, 2010), with three freely varying parameters: 

RLU s
−1

max, T (expressed in nM), and n (the Hill coefficient). Independent regression analyses were 

performed on each individual titration curve to generate independent values of RLU s
−1

max, T, and n 
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for each individual trial (i.e., n ≥ 9 data points per titration curve). Global values were subsequently 

calculated by fitting the averaged outputs across all runs from each condition to generate a global fit, 

with standard error derived from the variance among individual runs. Initial analyses revealed 

adherence to first-order Hill kinetics (see Fig. 2.2); as such, we fixed the Hill coefficient to n = 1 for 

subsequent calculations (see equation (2)) (Chow et al., 2011; Kim and O'Shea, 2008; Ong et al., 

2010). The apparent kcat and efficiency T were calculated as described above (see equations (3) and 

(4)). The initial concentration (Et) used to calculate the apparent kcat was defined as the concentration 

(in nM) of measurable input reporter construct (held constant throughout each titration curve). This 

definition expresses the observed output as a function of total detectable molecular quantities, and 

other definitions (such as potential binding sites, etc.) arbitrarily dilute this relationship. Due to the 

differences in molecular weight, the single reporter alone, bidirectional reporter, and single reporter in 

trans (1:1) thus had corresponding values of Et of 138 nM, 99 nM, and 69 nM, respectively. 

 

Immunoblotting 

 SLK cells were transfected with Myc-tagged WT RTA, Myc-tagged KKEE RTA, Myc-

tagged R161A RTA, or Flag-tagged ICN expression vectors as described above. After 4°C 1X 

phosphate-buffered saline (PBS) rinsing, two of three wells were harvested, rinsed again, and pooled, 

with subsequent lysis via RIPA buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1% NP-40, 0.5% 

deoxycholate [DOC], 0.1% SDS, 1 mM NaVO3, 1 mM dithiothreitol [DTT], 1X protease inhibitor 

cocktail [Sigma], and 1 mM phenylmethylsulfonyl fluoride [PMSF]). Total protein from lysates was 

normalized via a bovine serum albumin (BSA) assay (Pierce) and separated on 10% SDS-PAGE 

followed by transfer to PVDF membrane (GE Healthcare). Membranes were blocked in 5% nonfat 

milk in PBST (0.1% Tween 20). Antibodies were diluted in blocking buffer at 1:1,000 for anti-Myc 

(Cell Signaling), 1:5,000 for anti-Flag (Sigma), 1:5,000 for anti-β-actin (Sigma), and 1:5,000 for anti-

mouse horseradish peroxidase (HRP) (Vector Labs). Luciferase analysis was carried out on the 



41 
 

remaining wells to ensure that epitope-tagged RTA variants responded similarly to responses of 

untagged variants (data not shown). 

 

2.4 Results 

 

LANApi and K14p Form a Bidirectional Promoter 

 To understand LANApi and K14p, we cloned the KSHV genomic region encompassing both 

TSSs (nt 127583 to 127879 (Russo et al., 1996)) into a dual reporter context (Fig. 2.3A). The 

LANApi TSS drove a green-emitting luciferase isoform and the K14p TSS drove a red-emitting 

luciferase isoform on the same plasmid. Previous experiments by us and others (Lan et al., 2005b; 

Liang and Ganem, 2004; Matsumura et al., 2005; Staudt and Dittmer, 2006) always used either one or 

the other promoter but never investigated both TSSs within the same construct. 

 We transfected the bidirectional-reporter vector and single-reporter controls with increasing 

amounts of an RTA transactivator expression construct into SLK cells. SLK cells are derived from a 

KS lesion but do not carry KSHV (Herndier et al., 1994). As a control, we switched the isoforms in 

some experiments and obtained the same response curves (Fig. 2.4). We used 12 different amounts of 

RTA expression plasmid to obtain high-resolution response curves. Western blotting confirmed 

expression of RTA upon transfection (Fig. 2.3D). 

 

 To test the hypothesis that RTA cooperatively transactivates either TSS, the response RLU 

s
−1

obs) to increasing amounts of input RTA-encoding expression vector was fit to the Hill function. 

We found no evidence of cooperativity (i.e., Hill coefficient ≤ 1; see Fig. 2.2). This was surprising for 

a transactivator like RTA, which functions as a dimer or tetramer. The RTA response curves 

exhibited first-order kinetics. These can be modeled by the simpler equation (2) (Chow et al., 2011; 

Ong et al., 2010). It suggests that the RTA transactivation complex does not assemble from individual 
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monomers cooperatively at the DNA interface but that the slowest and thus rate-determining step is 

RTA dimerization/tetramerization. Our data suggest that in intact cells, RTA 

dimerization/tetramerization happens prior to DNA binding. 

 

Bidirectional Promoter is Dominated by K14p 

 Both TSSs were responsive to RTA when transfected as single reporters (Fig. 2.3B and C, 

triangles) or when positioned in the bidirectional orientation (Fig. 2.3B and C, circles). Regardless of 

context, however, the K14p TSS had 10- to 100-fold-higher maximal output than the LANApi TSS. 

K14p was a much stronger promoter. 

 Since these experiments were conducted in transfected cells rather than with purified 

components in vitro, they take into account all molecular interactions that lead to luciferase output. 

Thus, rather than absolute numbers, the relative comparison of LANApi and K14p is important. We 

assume that the only variable in our experiments is the amount of RTA, and we conducted a series of 

validation experiments to support our data (see Fig. 2.4). Each data point is the result of three 

technical replicates. Each titration experiment was conducted in at least three biological replicates on 

different days. We switched the colored luciferase isoforms to verify that the response curves were 

defined by the cis elements rather than the reporter. We conducted real-time quantitative PCR (qPCR) 

for each luciferase reporter mRNA to show that the level of luciferase activity was linearly correlated 

with the level of mRNA and that the amount of transfected reporter DNA was the same among all 

replicates (see Fig. 2.4). These experiments validated that the luciferase readings are an accurate 

reflection of TSS activity. 

 Because the RTA response could be described by a first-order kinetic fit, we were able to 

calculate the parameters which characterize such a response. The first is kcat, as shown in equation (3) 

(Garrett and Grisham, 2010): 
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 kcat describes the promoter behavior at saturating levels of a specific transactivator. A higher 

kcat value indicates more transcription initiation events per unit time. In kinetic studies, it relates the 

maximal output to the enzyme concentration (Et). Here, calculating an apparent kcat allowed us to 

directly compare experiments that used the bidirectional promoter and experiments that used the 

single reporter (as well as mutants) and also to normalize across biological replicates that transfect 

different amounts of luciferase reporter constructs. 

 K14p had a kcat value of 713 ± 64 RLU s
−1

, and LANApi had a kcat value of 175 ± 32 RLU s
−1

 

(Fig. 2.5A), verifying the differential promoter strength we observed when analyzing the raw data in 

each individual experiment. 

 

LANApi TATA Element Limits K14p Activity. 

 We observed a consistent increase in the induction threshold T (Fig. 2.3E) for both TSSs 

when assayed in the bidirectional context compared to results in the single-reporter context. For 

K14p, the induction threshold T shifted from 4.2 nM input vector DNA for the single reporter to 13.1 

nM in the bidirectional-reporter context. For LANApi, the induction threshold T shifted from 7.4 nM 

for the single-reporter to 33.7 nM in the bidirectional-reporter context. 

 A second, very informative and perhaps more relevant parameter (Bauer et al., 2001; Garrett 

and Grisham, 2010) is the ratio of kcat to T (see equation (4)). This ratio is the promoter efficiency. It 

can be thought of as promoter activity at physiological levels, i.e., at and around the induction 

threshold T (the analog to T in enzyme biochemistry is the Km, though that strictly applies only to 

purified proteins). It is the most biologically relevant comparator among promoters. A promoter can 

be very strong (high kcat), but if the induction threshold T is high, it will yield little output at low 

concentrations of transactivator. Conversely, a promoter can be very sensitive, i.e., become active at 

very low concentrations of transactivator, and still not yield much output if kcat is low. 
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 For each LANApi and K14p, the efficiency was much lower in the bidirectional context than 

in the single-reporter context (Fig. 2.5B, compare filled bars to empty bars). This reduction in 

efficiency when assayed in the bidirectional promoter construct compared to the single-reporter 

context was statistically significant, with a P value of ≤0.005 for LANApi and a P value of ≤0.05 for 

K14p using Student's t test. Similar differences were observed regardless of the luciferase isoform 

assayed (Fig. 2.4). These results provided the first indication that in the bidirectional context, more 

RTA is required for induction than in the single-reporter context. One model to explain this difference 

proposes that both TSSs compete for a central common RTA binding site. In the single-reporter 

context, the distal TSS is not functional. Even though a preinitiation complex may assemble, there is 

no ORF to transcribe and no poly(A) site to support efficient transcription. In the bidirectional 

reporter, preinitiation complexes assemble around both TATA elements and now can compete for the 

arriving RTA complex. This model predicts that the distal TATA element negatively regulates 

promoter activity, i.e., the LANApi TATA would inhibit K14p and vice versa (Fig. 2.6A). 

 To test this hypothesis, we inactivated the predicted TATA elements through site-directed 

mutagenesis. LANApi activity was dependent on a proximal TATA element. If we mutated the 

proximal LANApi TATA element, activity was abolished (Fig. 2.6B, arrow and red triangles). K14p 

activity also was dependent upon the proximal TATA element (Fig. 2.6C, gray diamonds). Note that 

panels B and C have different scales to account for the different overall activities. These experiments 

confirm the LANApi TATA element and define the K14p TATA element, which had been predicted 

but was not previously experimentally verified. 

 Deletion of the distal, (LANApi) TATA element dramatically increased the activity of K14p 

(Fig. 2.6C, red triangles and arrow). This observation is consistent with the aforementioned model in 

which the distal LANApi element inhibits K14p in the context of the bidirectional promoter. By 

comparison, deletion of the distal (K14p) TATA element only marginally affected LANApi activity 

(Fig. 2.6B, gray diamonds). This observation introduces asymmetry into the model. The LANApi 

TATA element inhibits the K14p TSS, but the K14p TATA element has no impact on the LANApi 
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TSS. In the absence of the LANApi TATA element, the K14p promoter became hyperresponsive to 

RTA. This prompted us to hypothesize that a second purpose of LANApi was the inhibition of K14p, 

more than driving the expression of the LANA protein. 

 

Direct DNA Binding by RTA Augments Promoter Efficiency 

 Binding of RTA to the bidirectional LANApi/K14p region is mediated by RBPjκ, which is 

the essential downstream mediator of Notch signaling; reviewed in (Kovall and Blacklow, 2010). 

Two RBPjκ elements, RBP A and RBP B, mediate the response to RTA (Fig. 2.7A) (Liang and 

Ganem, 2004; Matsumura et al., 2005). To verify these observations, we mutated each in the context 

of the bidirectional reporter construct. As predicted, mutation of either RBPjκ element abolished 

promoter activity (Fig. 2.7B and C; please note the 10-fold difference in scale between the two 

panels). This demonstrates that both RBP elements were necessary. 

 In addition to RBPjκ-mediated DNA recognition, RTA can also bind DNA directly (Carroll 

et al., 2006; Chang et al., 2005b; Liang et al., 2002; Palmeri et al., 2011; Persson and Wilson, 2010). 

To test the hypothesis that direct RTA-DNA interactions were important, we used an RTA mutant 

with enhanced DNA binding capacity, called KKEE (Chang and Miller, 2004; Chang et al., 2005b). 

KKEE RTA increased the activity for both LANApi and K14p TSSs in the context of the 

bidirectional reporter. The maximal output increased from the WT level of ∼17,000 to ∼130,000 

RLU s
−1

 for the LANApi promoter and from the WT RTA level of ∼70,000 to ∼880,000 RLU s
−1

 for 

the K14p. This translated into an increase in kcat of 7.3-fold for LANApi and 12.4-fold for K14p. In 

contrast, another mutant, RTA R161A, which is capable of interaction with RBPjκ (Chang et al., 

2010) but no longer binds DNA directly, decreased the efficiency for each TSS compared to results 

with wild-type RTA (Fig. 2.8A and D). This demonstrated that in addition to binding via RBPjκ, 

RTA binds directly to a binding site within K14p/LANApi and that this RTA-DNA interaction 

modulates the activation efficiency of either TSS. 

 To test the hypothesis that the KKEE mutant phenotype was dependent on an intact promoter, 
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we analyzed TSS efficiency for the TATA box mutants. Enhanced DNA binding by RTA could not 

compensate for a mutated proximal TATA box, presumably because there was no RNA polymerase II 

(Pol II) complex to activate in the first place. We recorded only a minimal signal (Fig. 2.8B and F). 

The DNA binding mutant RTA R161A was worse than the wild type under all conditions tested. As 

before, we observed an increase in K14p efficiency if the distal TATA box was compromised (Fig. 

2.8D and E). This was not the case for LANApi (Fig. 2.8A and C). More subtle differences were also 

evident. In the wild-type situation, the KKEE mutant enhanced efficiency (Fig. 2.8A and D); 

however, in the context of a mutated distal TATA element (Fig. 2.8E and C), this was no longer the 

case. In sum, the hypermorphic phenotype of the KKEE mutant can be attributed solely to increased 

DNA binding. The dependency on the general transcription complex remains. 

 To test the hypothesis that at saturating concentrations RTA no longer depends on its own 

DNA binding activity, we used the R161A mutant, which is deficient in binding to the RTA-

responsive element (RRE) but still binds to RBPjκ. First, we analyzed RTA R161A in the context of 

the wild-type promoter. There was no significant difference between the WT and the R161A mutant 

(Fig. 2.9A, and D, yellow bars). As expected, the KKEE mutant had increased activity (Fig. 2.9A and 

D, blue bars). The maximal output was 26,458 ± 3,993 RLU s
−1

 for the R161 mutant, compared to 

17,275 ± 3,181 RLU s
−1

 for the WT RTA for LANApi and 80,527 ± 9,735 RLU s
−1

 for the R161 

mutant for K14p, compared to 70,439 ± 6,347 RLU s
−1

 for the WT RTA for K14p. Thus, direct RTA-

DNA interactions are not required at saturating concentrations of RTA. All contacts are established 

through RBPjκ. 

 What would happen in the absence of an RBPjκ binding element? Inactivation of either RBP 

A or RBP B severely reduces the activation by RTA. This was the main message of the results shown 

in Fig. 2.7. However, the power of our quantitative analysis and the large number of replicates and 

dose steps allows us to compare accurate parameters, such as maximal output, shown in Fig. 2.9, 

among promoters of vastly different activities. At saturating concentrations, the DNA binding mutant 

R161 was no worse than the wild type on the LANApi promoter. (Fig. 2.9B and C, yellow). The 



47 
 

situation was different for K14p (Fig. 2.9E and F, yellow). In the absence of a functional RBP A site, 

R161A RTA had a lower maximal output than the WT on K14p (Fig. 2.9E, red star). In the absence 

of a functional RBP B site, which is proximal to K14p, the R161A DNA binding mutant was identical 

to the wild type. This suggests that the RRE contributes to the activity of K14p. Note that loss of any 

one RBP site severely cripples the promoter. Hence, this difference should not be overinterpreted. 

 In each case the KKEE mutant could substitute for the loss of an RBP site (Fig. 2.9, blue 

bars). In the context of a wild-type promoter, KKEE RTA was better than WT RTA, as previously 

observed. In the context of an RBP-deficient promoter, KKEE RTA was able to complement the cis 

defect and restore kcat to wild-type levels. These data demonstrate that improved interactions between 

RTA and an RRE DNA element in the case of KKEE RTA can complement for a loss of interaction 

between RTA-RBPjκ and a single RBP site. 

 The absence of functional DNA binding by RTA increased the activation threshold for both 

TSSs. The induction threshold was 126.4 ± 2.7 nM for the R161 expression plasmid, compared to 

33.7 ± 8.3 nM for the WT for the LANApi TSS, and 80 ± 14.2 nM for the R161 mutant, compared to 

13.1 ± 5.5 nM for the WT for the K14p TSS. Of note, R161 also makes normal RBPjκ interactions. 

This verifies two aspects of our model: (i) direct RTA-DNA contacts increase the responsiveness of 

these TSSs at low concentrations of RTA, and (ii) at saturating concentrations, the direct RTA-DNA 

contacts can complement RBPjκ element defects. 

 The direct RTA-DNA contact is mediated by a regulatory element, termed the RTA Response 

Element (RRE), which is present between the two RBP elements (Fig. 2.10A). Previously this RRE 

element was shown to have less of an impact upon transactivation than the RBPjκ elements (Liang 

and Ganem, 2004; Matsumura et al., 2005). We confirmed these observations. Loss of the RRE site 

led to equivalent reductions in output for both TSSs when assayed with any RTA variant (data not 

shown). This suggests that three cis elements, RBP A, RBP B, and RRE, together define the response 

behavior of the K14/LANApi bidirectional promoter. 
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Sequence Architecture between TBP Elements Provided Directionality for RBPjκ Transactivation 

 Since RTA binding sites function in tandem, transactivation could in principle act toward 

either side. In isolation, RTA-RBPjκ can bind to and activate promoters independent of orientation 

(Liang et al., 2002). In contrast, we hypothesized that spacing of the RBPjκ elements imparted 

directionality to the bidirectional KSHV promoter. To test this hypothesis, we switched the 

orientation of the intervening sequence between the two TATA elements (Fig. 2.10A). We then 

cotransfected either the WT or KEEE RTA at a 1:1 molar ratio. Reversing the sequence of binding 

sites relative to LANApi increased the output of LANApi (Fig. 2.10B). This was true for either 

mutant. KKEE RTA in this experiment served as a better RTA. The reverse was not true. Reversing 

the sequence of binding sites relative to K14p did not increase the output of K14p (Fig. 2.10C). This 

demonstrates that the specific orientation and distance of the two RBPjκ binding sites and the RRE 

element confer preferential activation of the K14p TSS. 

 

RBPjκ binding sites are RTA specific and insensitive to Notch  

 Given the stringent reliance of this viral promoter upon the effector of Notch signaling, 

RBPjκ, we hypothesized that overexpression of the host ligand might also activate these TSSs. The 

host ligand for RBPjκ is the transcriptionally active, cleaved form of the human Notch protein: 

intracellular Notch (ICN). Unlike RTA, ICN does not have RBPjκ-independent DNA binding activity 

and thus cannot engage the RRE. We transfected cells with LANApi, K14p, or a positive control 

consisting of 4 RBPjκ sites. The positive control containing four RBPjκ sites -(Hsieh et al., 1996) 

responded as expected (Fig. 2.11A); however, neither K14p nor LANApi responded to activation by 

ICN. Western blotting confirmed ICN expression (Fig. 2.11B). Thus, even though the RBPjκ 

elements are essential with regard to RTA-mediated induction of either TSS, their orientation within 

the viral promoter can no longer use ICN. 

 We had observed a similar phenotype when we profiled KSHV gene expression in response 
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to ICN and RTA (Chang et al., 2005a). One possibility to explain this phenotype comes from recent 

observations that revealed a requirement for ICN target loci to have a head-to-head, paired RBP 

element orientation as well as strict spacing requirements -(Arnett et al., 2010; Cave et al., 2005; Ong 

et al., 2006) .  In human promoters the canonical architecture is spatially restricted to a maximum 

distance of ∼15 to 19 bp between adjacent RBPjκ sites. In contrast, 79 base pairs bridge the two 

head-to-head RBPjκ sites in the KSHV promoter (Fig. 2.11C). By extending the sequence spacing, 

the RBPjκ pair can no longer be bridged by ICN but requires multimers of a different transactivator: 

RTA. 

 

2.5 Discussion 

 

 The KSHV latency control region plays multiple roles during the viral life cycle. During de 

novo infection, the immediate-early transactivator RTA is brought in with the virion (Bechtel et al., 

2005; Lan et al., 2005b). This results in an initial burst of lytic and latent transcription (Krishnan et 

al., 2004). During this phase, RTA drives LANA and K14/vGPCR protein expression from the lytic 

LANApi and K14/vGPCR promoters (Lu et al., 2011). Eventually the constitutive LANA promoter 

takes over. It is active independent of RTA or other viral proteins (Jeong et al., 2002; Jeong et al., 

2004). As LANA protein accumulates, it also inhibits RTA (Jin et al., 2012; Lan et al., 2004). This 

leads to a stable autoregulatory loop during which LANA activates its own promoter (Jeong et al., 

2001; Jeong et al., 2004). Reexpression of RTA is necessary and sufficient for KSHV reactivation 

(Lukac et al., 1999; Lukac et al., 1998; Stedman et al., 2008; Xu et al., 2005). Yet LANA is 

dispensable for KSHV reactivation and replication in KSHV and related gammaherpesviruses (Budt 

et al., 2011; Li et al., 2008; Lu et al., 2006; Moorman et al., 2003; Wen et al., 2009). Perhaps 

LANApi evolved not to regulate LANA protein expression during lytic replication. Perhaps the 

unique architecture of two divergent RTA-dependent TSSs in such close proximity reveals a novel 

molecular mechanism of RTA/RBPjκ/ICN regulation. To investigate these conjectures, we studied 
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the regulation of LANApi and of K14p in quantitative terms. 

 This report demonstrates that the LANApi/K14p locus constitutes a bona fide KSHV 

bidirectional promoter. This is the first functional verification of a bidirectional promoter within the 

KSHV genome; others are predicted (I. B. Hilton, D. Wang, and D. P. Dittmer, unpublished). 

Bidirectional transcription has been identified in Epstein-Barr-Virus (EBV) (Jimenez-Ramirez et al., 

2006; Laux et al., 1989). It was studied in yeast and other eukaryotic model systems (Neil et al., 

2009). By applying the same quantitative framework to KSHV, we have generated a detailed 

understanding of the functional roles that cis (regulatory elements) and trans (DNA binding) factors 

play in the transactivation of this genetic circuit. Each TSS (LANApi, K14p) is responsive to RTA 

when positioned on the same reporter. At least three shared RTA-responsive elements (RBP A, RBP 

B, and RRE) modulate this response. There exists a selective advantage for the K14p TSS. K14p is 

10X to 100X more active than LANApi. 

 This report demonstrates a competitive relationship between the two TATA elements. This is 

reflected in a decreased efficiency for each TSS in the bidirectional reporter relative to the single-

reporter-only input condition. The distal LANApi TATA element negatively regulates and limits 

K14p. A similar phenotype has been seen for some bidirectional promoters in yeast (Neil et al., 

2009). Here too, mutation of one TATA element resulted in upregulation of the other. In the majority 

of those cases, however, the second distal TATA box initiates a noncoding or “cryptic” transcript. In 

the case of KSHV LANApi, the resulting transcript has the potential to encode the entire LANA 

ORF. We speculate that perhaps the LANApi TATA box evolved for two purposes: first, to drive 

transcription of the LANA protein during lytic replication, but more importantly to fine-tune the 

expression of K14 and vGPCR. 

 The interaction between RTA and RBPjκ is well established (Chang et al., 2010; Lan et al., 

2005b; Liang et al., 2002; Liang and Ganem, 2004; Lu et al., 2011; Matsumura et al., 2005; Palmeri 

et al., 2011; Persson and Wilson, 2010; Staudt and Dittmer, 2006). Biochemical evidence suggests 

that RTA functions as a tetramer. This higher-order RTA complex then stabilizes RBPjκ on the DNA 



51 
 

and changes conformation such that the transactivation event takes place (Bu et al., 2007; Carroll et 

al., 2006; Chang et al., 2008; Palmeri et al., 2011). Here we have shown that while both RBP 

elements are critical, their importance is differential. The RBP B element is located 71 bp from the 

K14p TATA element (Fig. 2.12). The RBP A element is located only 7 bp from the LANApi TATA 

element. This introduces asymmetry. The asymmetry is also reflected in the spacing between the RRE 

and the RBPjκ elements. The RRE is spaced 17 bp away from the K14p-proximal RBP B element. 

This is the same spacing as for ICN-dependent RBPjκ pairs. In contrast, the RRE is spaced 50 bp 

away from the LANApi-proximal RBP A element. The net result is that K14p is 10 to 15 times more 

active at physiological, low concentrations of RTA. Last, we show that ICN no longer activates these 

paired RBP sites, because of extended spacing, and that now RTA is required as the bridging factor. 

 Taken together, we suggest the following model (Fig. 2.12). Based on prior work on RBPjκ -

(Miele, 2011), we assume that in the ground state RBPjκ exists as a transcriptional repressor of both 

the LANApi and K14p TSSs (Fig. 2.12A). RBPjκ bound to RBP A effectively occludes other 

molecules from binding the LANApi TATA element due to extreme proximity (7 bp). In contrast, 71 

base pairs separate the RBP B element from the K14p TATA element. Thus, the repression mediated 

by RBP B is less potent, resulting in a preassembly of the basal machinery at the K14p TSS. The 

RTA complex (likely tetrameric) then interfaces with the RBPjκ-bound DNA using the RRE to 

position the higher-order complex in favor of RBP B (Fig. 2.12B). Only 17 bp separates RRE from 

RBP B, compared to 50 bp which separates RRE from RBP A. This asymmetric assembly leads to an 

approximately 10-fold advantage for the K14p TSS over LANApi (Fig. 2.12C). 

 Since both LANA and vGPCR mediate important phenotypes in KSHV persistence, 

transmission, and tumorigenesis, the detailed dissection of this regulatory unit may contribute to our 

overall understanding of KSHV biology and gene regulation. 
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Figure 2.1:  KSHV Genomic Organization of the LANApi and K14p TSS’s.  A.  Schematic depiction of the 

nucleotide positions (according to Russo et al., 1996) spanning the LANA and K14 coding regions within the 

KSHV latency locus (vCyclin, vFLIP, and vGPCR are omitted for simplicity); SD, splice donor site; SA, splice 

acceptor site. LANApi, LANApc, and K14p TSSs as previously identified are shown. Also shown are CTCF 

binding sites as previously identified (Stedman et al., 2008).  B.  Sequence of the cloned genomic fragment used 

in analyses. Regulatory elements are indicated by text and boxed. Mutated nucleotides described in this report 

are shown in lowercase text, and nucleotide positions are indicated in the key below. Horizontal triangles 

indicate relative RBPjκ directionality; REV, location of the internal reversion mutant. 
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Figure 2.2:  WT LANApi and K14p Adhere to First-Order Hill Kinetics.  A.  The global mean of raw data 

points (shown as diamonds, here for the WT K14p bidirectional configuration) corresponding to individually 

fitted response curves (n ≥ 9 for all quantitative analyses) fit to the Hill equation without (left panel) or with 

(right panel) fixation of the Hill coefficient (1-3) to n=1 (i.e. MM kinetics).  B.  LANApi Hill coefficient in the 

absence of fixation reveals adherence to MM kinetics among various WT input configurations (Bidir. Red; 

bidirectional promoter reversed in which LANApi directs expression of red luciferase isoform).  C.  K14p Hill 

coefficient in the absence of fixation similarly reveals adherence to MM kinetics among various WT input 

configurations (Bidir. Green; bidirectional promoter reversed in which K14p directs expression from green 

luciferase isoform).  D/E.  Plot of the sum of squared residuals (SSR) against extracted parameters RLUsec
-1

max 

(1D) and induction threshold (T; 1E) fitted via MM kinetics (shown for the WT K14p bidirectional 

configuration).  Blue and yellow lines indicate 95% and 99% confidence intervals respectively, and vertical red 

lines indicate fitted values.  (Figure adapted from Hilton and Dittmer, 2012 supplement).     
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Figure 2.3:  LANApi and K14p are a Bidirectional Promoter Activated by RTA.  A.  Single and 

bidirectional reporter constructs. LANApi directs expression of a green luciferase isoform, and K14p directs 

expression of an isogenic red luciferase isoform.  B.  The response to RTA for LANApi in single (triangles) and 

bidirectional (circles) reporter input contexts.  C.  The K14p response to RTA in single (triangles) and 

bidirectional (circles) reporter input contexts.  D.  RTA expression over the range of input expression vector as 

assayed by Western blotting.  E.  Induction threshold ± SE for each TSS.  (Figure title adapted by first author 

from Hilton and Dittmer, 2012).   
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Figure 2.4:  The Relative Advantage in Efficiency of WT K14p over WT LANApi is Static.  A.  Fitted 

output curves derived from assay with the LANApi (left panel) or the K14p TSS (right panel, note change in 

scale) in various indicated WT cloning configurations.  B.  The relative differential in the efficiency between 

K14p and LANApi in response to WT RTA is not significantly different among all WT input configurations 

independent of luciferase isoform.  C.  mRNA production from the WT LANApi cloned into a red-encoding 

single reporter construct (red X’s and red fitted line) or into a green-encoding single reporter construct (green 

X’s and green fitted line); indicating a similar response to RTA irrespective of luciferase isoform as assayed by 

QPCR using primer sets specific for each isoform.  D.  Input DNA from the same experiment as in 2C assayed 

contemporaneously indicating results are not reflective of increased input DNA.  (Figure adapted from Hilton 

and Dittmer, 2012 supplement).    
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Figure 2.5:  RTA Transactivation Based on Fit to Noncooperative Response Model (n = 1).  A.  The 

maximal output is shown for each TSS when assayed as single reporters alone (black bars) or in the 

bidirectional reporter (white bars).  B.  The efficiency of RTA-mediated induction is shown for each TSS as 

single reporters (black bars) or in the bidirectional reporter (white bars). “*” indicates P ≤ 0.05; “**” indicates P 

≤ 0.01. P values were determined by Student's t test. 
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Figure 2.6:  The LANApi-Proximal TATA Box Binding Protein (LANApi TATA) Element Limits K14p 

Output.  A.  Schematic illustrating the positions of the LANApi and K14p-proximal TATA elements (LANApi 

TATA [triangle] and K14pTATA [diamond], respectively) that were mutated in the bidirectional reporter 

construct.  B.  LANApi response to RTA in the presence (WT; cross) or absence of TSS-proximal (LANApi 

TATA; triangles) or TSS-distal (K14p TATA; diamonds) elements.  C.  K14p response to WT RTA in the 

presence (WT, X's) or absence of TSS-proximal (K14p TATA; diamonds) or TSS-distal (LANApi TATA; 

triangles) elements. Note the 10-fold change in scale between panel B and panel C. 
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Figure 2.7:  Both RBPjκ Elements are Essential.  A.  Schematic depicting the position of the LANApi- and 

K14p-proximal RBPjκ elements (RBP A [circle] and RBP B [square], respectively) mutated for analysis in the 

bidirectional reporter construct.  B.  LANApi response to RTA in the presence (WT; crosses) or absence of 

TSS-proximal (RBP A; circles) or TSS-distal (RBP B; squares) RBPjκ elements.  C.  K14p response to WT 

RTA in the presence (WT; Xs) or absence of TSS-proximal (RBP B; squares) or TSS-distal (RBP A; circles) 

elements. Note the change in scale between panels B and C. 
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Figure 2.8:  Enhanced DNA Binding by RTA Augments Promoter Activity.  A.  Log LANApi efficiency in 

response to increased RTA DNA binding (KKEE RTA) or loss of RTA DNA binding (R161A RTA).  B and C.  

Efficiency of the LANApi response to KKEE, WT, or R161A RTA in the absence of proximal LANApi TATA 

(B) or distal K14p TATA (C). Note that in the absence of the proximal TATA element (B), we did not see 

significant reporter activity.  D.  K14p efficiency in response to increased RTA DNA binding (KKEE RTA) or 

loss of RTA DNA binding (R161A RTA).  E and F.  Efficiency of the K14p response to KKEE, WT, or R161A 

RTA in the absence of distal LANApi TATA (E) or proximal K14p TATA (F). Note that in the absence of the 

proximal TATA element (F), we did not see significant reporter activity. *, P ≤ 0.05; ** P ≤ 0.01; ****, P ≤ 

0.001; P values were determined by Student's t test, and dotted lines indicate mean WT efficiency. 
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Figure 2.9:  At Saturating Levels, RTA DNA Binding Becomes Dispensable.  A. Normalized LANApi 

maximal output (analogous to kcat for enzymes) in response to increased RTA DNA binding (KKEE RTA) or 

loss of RTA DNA binding (R161A RTA) mutant.  B and C.  LANApi response in the absence of proximal RBP 

A (B) or distal RBP B (C).  D.  Normalized K14p maximal output in response to increased RTA DNA binding 

(KKEE RTA) or loss of RTA DNA binding (R161A RTA).  E and F.  K14p response to KKEE, WT, or R161A 

RTA in the absence of distal RBP A (E) or proximal RBP B (F). The red star indicates a significant (P ≤ 0.05) 

difference between WT and R161A RTA only in K14p with a mutated RBP A element (E). *, P ≤ 0.05; **, P ≤ 

0.01; ***, P ≤ 0.005; ****, P ≤ 0.001. P values were determined by Student's t test; dotted lines indicate the 

mean WT promoter response to WT RTA. 
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Figure 2.10:  Directionality of RTA-RBPjκ Transactivation.  A.  Depiction of the REV mutant (sequence 

reversal of −2 bp relative to TATA elements) in the bidirectional reporter. RRE refers to the predicted RTA 

direct DNA binding element.  B.  LANApi output in the WT (black bars) and REV (white bars) bidirectional 

promoter variants in response to KKEE or WT RTA.  C.  K14p output in the WT (black bars) and REV (white 

bars) bidirectional promoter variants in response to KKEE or WT RTA.). **, P ≤ 0.01; P values were 

determined by Student's t test. 
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Figure 2.11:  LANApi/K14p Response to Intracellular Notch (ICN).  A.  Fold change in relative luciferase 

activity in response to ICN for each TSS in the bidirectional reporter (LANApi, circles; K14p, triangles) or the 

TSS of positive control 4X-RBPjκ Luc (diamonds).  B.  Expression of ICN, detected by Western blotting.  C.  

Illustration of the unequal RBPjκ head-to-head spacing within the LANApi/K14p bidirectional promoter. 

Shown are the distances in bp between the two RBP elements (top) and between each RBP element and the 

central RRE. Also shown are the two essential TATA elements for each promoter. 
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Figure 2.12:  Summary and Putative Model of LANApi/K14p Activation by RTA. Shown is an artist's 

rendition of a general model of RTA/RBPjκ binding to bidirectional LANApi/K14p.  A. “Ground state” RBPjκ 

elements are dynamically bound. RBPjκ complex bound to the RBP A cis site represses LANApi via shielding 

of the LANApi TATA cis element due to immediate (7 bp) proximity. RBPjκ complex bound to the RBP B cis 

site does not repress K14p because of distance (71 bp).  B. “Recognition event” The interaction between the 

DNA surface and RTA is guided by interaction with both RBPjκ elements (1°; green) and the RTA protein 

complexes (presumably tetramer or higher (Palmeri et al., 2011)). Note that the RRE cis element also is 

recognized by the RTA protein complex. The distance between the RRE cis element and the RBP A cis element 

is 50 bp; that between the RRE and RBP B is only 17 bp.  C. “Activation state” We envision a third state 

accompanied by overall conformational changes upon recruitment of the TBP complex. This is mediated by 

RTA DNA binding-dependent selective stabilization of proximal RBPjκ elements and is conveyed via low 

(LANApi)- or high (K14p)-activity TATA elements. Structural and cis regulatory discrepancies result in a 

suboptimal (LANApi) and optimal (K14p) asymmetric transactivation exclusively via RTA. The abbreviations 

are as follows: TATA, DNA consensus sequence element; TBP, TATA binding complex consisting of TATA 

binding protein and TAFs; RRE, DNA sequence element, RBPA/B RBPjκ complex consisting of one or more 

RBPjκ proteins and associated, undetermined cellular factors. 
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CHAPTER III 

 

THE OPEN CHROMATIN LANDSCAPE OF KAPOSI’S-SARCOMA ASSOCIATED 

HERPESVIRUS
2 

 

3.1 Overview 

 

 Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus which 

establishes latent infection in endothelial and B cells, as well as in primary effusion lymphoma (PEL).  

During latency the viral genome exists as a circular DNA minichromosome (episome) and is 

packaged into chromatin analogous to human chromosomes.  Only a small subset of promoters, those 

which drive latent RNAs, are active in latent episomes. In general nucleosome depletion, or “open 

chromatin”, is a hallmark of eukaryotic regulatory elements such as promoters and transcriptional 

enhancers or insulators.  We applied formaldehyde-assisted isolation of regulatory elements (FAIRE) 

followed by Illumina –based next generation sequencing to identify regulatory elements in the KSHV 

genome on the basis of nucleosome depletion and integrated this data with previously derived histone 

occupancy and CTCF Chip-Seq data. We find that (i) regions of open chromatin were not restricted to 

the transcriptionally defined latent loci, (ii) open chromatin was adjacent to regions enriched with 

activating histone marks, even at transcriptionally inactive loci; (iii) open chromatin overlapped with 

CTCF binding sites, with few exceptions including the constitutive LANA promoter and the vIL6 

promoter.  Nucleosome depletion was similar among B or endothelial cell lineage, suggesting a 

common viral genome architecture in all forms of latency. 

 

2
This chapter has been adapted from a manuscript in preparation by Hilton I.B., Simon J.M., Lieb J.D., Davis 

I.D., Damania B., and Dittmer D.P. The open chromatin landscape of Kaposi’s sarcoma-associated herpesvirus. 
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3.2 Introduction 

 

 Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8 is the most recently 

discovered human herpesvirus and is a member of the gammaherpesvirus subfamily (Chang et al., 

1994).  It is linked with three human malignancies of either endothelial or B cell origin:  Kaposi 

sarcoma (KS, of endothelial cell origin), Primary Effusion Lymphoma (PEL, of B cell origin), and a 

variant of Multicentric Castleman’s Disease (MCD, of B cell origin) (Cesarman et al., 1995a; Chang 

et al., 1994; Soulier et al., 1995).  

All herpesviruses display two alternating forms of infection: latency and productive lytic 

infection.  During KSHV latency the ~140 kb viral genome exists as a non-integrated circular 

nucleosome-associated episome (reviewed in (Knipe et al., 2013; Mesri et al., 2010; Speck and 

Ganem, 2010)).  The KSHV genome encodes over 80 predicted open reading frames (ORFs), 22 

known viral microRNAs, and several long noncoding RNAs ((Chandriani et al., 2010; Dresang et al., 

2011; Sun et al., 1996); reviewed in (Cullen, 2006; Zheng, 2010)).  During latent infection only a few 

viral genes are transcribed including those within the KSHV latency locus (Dittmer et al., 1998; Sarid 

et al., 1999; Talbot et al., 1999).  This locus employs a complex transcriptional circuitry to generate 

key viral messages including the mRNAs coding for the KSHV Latency Associated Nuclear Antigen 

(LANA; ORF73) (Cai and Cullen, 2006; Dittmer et al., 1998; Hilton and Dittmer, 2012; Kedes et al., 

1997; Rainbow et al., 1997; Talbot et al., 1999), the viral cyclin homolog vCyclin (ORF72), vFLIP 

(ORF71), Kaposin, as well as all 12 viral microRNAs genes. Each micro RNA gene encodes one pre-

miRNA, which can give rise to two mature miRNAs, albeit at widely differing ratios.  LANA is 

necessary and sufficient to tether the KSHV genome to the human chromosome, thereby ensuring 

coordinated genome duplication and segregation during host cell division (reviewed in (Ballestas and 

Kaye, 2011)).  

Prior studies established histone occupancy on the latent KSHV episome (Gunther and 

Grundhoff, 2010; Stedman et al., 2004; Toth et al., 2010), mapping specific activating and repressive 
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histones signatures, as well as DNA methylation status, PolII occupancy, LANA occupancy, and also 

CTCF/Cohesin interactions (Chen et al., 2012a; Kang et al., 2013; Kang and Lieberman, 2009; Kang 

et al., 2011; Stedman et al., 2008; Toth et al., 2012).  Most of these prior studies were conducted 

solely in the prototypical BCBL1 cell line. Many, but not all, achieved single nucleotide resolution 

using ChIP-Seq technology.  By comparison to mapping individual histone modifications little is 

known about chromatin organization, and how regions of open chromatin in KSHV are integrated 

with the so-called “histone code”.  Thanks to the authors of all prior studies making their raw data 

publicly available, we were able to expand on their work and to add our detailed map of KSHV 

nucleosome depletion in multiple KSHV infected cell lines at single nucleotide resolution.   

          The detection of nucleosome depletion has classically been accomplished by techniques such as 

DNase I hypersensitivity, which rely upon the differential in sensitivity to nuclease digestion of open 

chromatin relative to regions enriched in nucleosomes (Boyle et al., 2008; Gross and Garrard, 1988; 

Song and Crawford, 2010).  An alternative method, called Formaldehyde-Assisted Isolation of 

Regulatory Elements (FAIRE), has been developed to identify regions of open chromatin (Giresi and 

Lieb, 2009; Hogan et al., 2006; Nagy et al., 2003; Simon et al., 2012).  FAIRE has been used to 

identify nucleosome depletion in several different eukaryotic organisms, cell lines, and tissues 

(Calabrese et al., 2012; Dunham et al., 2012; Gaulton et al., 2010; Giresi et al., 2007; Nagy et al., 

2003; Ponts et al., 2010; Song et al., 2011).   FAIRE is based on differences in cross-linking 

efficiency between DNA bound to nucleosomes and DNA in nucleosome depleted regions (Giresi and 

Lieb, 2009).  Regions detected by FAIRE are concordant with DNase I hypersensitivity, however the 

efficacy of FAIRE is not dependent upon antibodies or enzymes making it a more robust approach 

(Dunham et al., 2012; Giresi et al., 2007; Simon et al., 2012; Song et al., 2011).   

  We find that histone modifications associated with transcriptional activity (H3K9/K14-ac and 

H3K4-me3) are enriched near FAIRE peaks, i.e. regions of open chromatin. Nucleosome depletion 

also overlapped with CTCF binding sites at many, but not all, KSHV loci.  In fact, we could for the 

first time discern two types of open chromatin loci on the KSHV episome: those associated with 
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CTCF binding, which mapped to regions of immediate early and early genes, known to be 

transcriptionally silent during latency; and those free of CTCF, which mapped to transcriptionally 

active regions, such as the major latent promoter (LANA promoter; LANApc) and vIL6 promoter. 

Patterns of nucleosome depletion were largely conserved across different latently infected cell types, 

among multiple KSHV isolates, and independent of the episomal copy number in a latently infected 

cell.   

 

3.2 Materials and Methods 

 

Cell Culture 

 Latent KSHV infected lymphoma cell lines (BC1, BCBL1, and KSHV-BJAB) were cultured 

in RPMI supplemented with 10% FBS as previously described (Roy et al., 2011), with the exception 

that KSHV BJAB cells were maintained under 0.2mg/mL hygromycin selection (Nun et al., 2007).  

Latent KSHV-infected endothelial L1-TIVE cells (An et al., 2006) were grown in DMEM 

supplemented with 100 ug/mL streptomycin sulfate and 100 U/mL penicillin G and 5% FBS.  

Latently infected KSHV-HUVEC cells were cultured in endothelial growth medium (EGM-2, 

Clonetics) supplemented with 0.5ug/ml puromycin as previously described (Wang and Damania, 

2008).   

 

FAIRE-Seq 

 Chromatin was isolated from ~1.0x10
7
 cells and subjected to FAIRE as detailed previously 

(Simon et al., 2012).  Briefly, cells were cross-linked with formaldehyde, lysed, and then sonicated to 

shear DNA to an average fragment length of 200-400bp.  Sheared chromatin was then collected by 

phenol/chloroform extraction.  Two biological replicates of cell lines (BC1, KSHV BJAB, KSHV 

HUVEC, and L1 TIVE) were harvested and processed on different days to account for variation.  

FAIRE-enriched DNA was then subjected to library preparation using the Illumina Truseq DNA 
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Sample Preparation Kit V2 (Illumina) as per manufacturers instruction, or was prepared by the UNC 

High-Throughput Sequencing Facility (BCBL1).  Indexed samples were sequenced using the Illumina 

HiSeq 2000 or GAII (for BCBL1 samples) (UNC High-Throughput Sequencing Facility) with 50bp 

single-end reads.   

 

Sequence Analysis 

 Reads were filtered using TagDust (Lassmann et al., 2009) and individual sequencing runs 

were aligned to the reference KSHV genome NC_009333 using Bowtie (Langmead et al., 2009).  

Reads were permitted to align to up to four locations in the genome, but the single best possible 

alignment was chosen. Regions with significantly enriched FAIRE signal were differentiated from 

background using MACS2 (Feng et al., 2012) assuming the average fragment size was 250bp. Results 

from biological replicates were merged and resulting .BAM and .BED files were imported into CLC 

Bio (version 5.5.1) software for graphical display and further analysis.  Previously published KSHV 

histone modification data (Gunther and Grundhoff, 2010) was analyzed, and regions with signal 3 

standard deviations above baseline (from “Dataset S1”) were considered significant enrichment and 

imported into CLC Bio.  CTCF and KSHV LANA ChIP-Seq data (Chen et al., 2012a) were aligned to 

NC_009333 in CLC Bio using Gene Expression Omnibus (GEO) datasets GSM941710 and 

GSM941712 respectively.  Further statistical analysis was conducted in R version 2.15.2. 

 

3.4 Results 

 

Open Chromatin Map of the KSHV Episome 

To determine the regions of latent open chromatin in KSHV, we performed FAIRE-Seq on 

representative, latently infected cell lines.  Table 3.1 summarizes the sequencing data. Because each 

latently infected PEL cell contains 20 – 50 viral genomes (Renne et al., 1996b), we achieved deep 

coverage and thus are confident in the detailed position of each FAIRE peak. Because KSHV-



69 
 

HUVEC and L1-TIVE contain lower copies of the viral genome (Darst et al., 2013), a fewer 

percentage of reads from those samples aligned to KSHV. Nevertheless, even in these cases our mean 

coverage was comparable to the mean coverage used for FAIRE-based analysis of the human genome 

(Dunham et al., 2012). Confirming earlier data most of the viral episome was covered in nucleosomes 

and not enriched for open chromatin. 

First, we performed FAIRE-Seq on the KSHV infected PEL cell line BCBL1 and aligned the 

resulting sequence reads to the KSHV reference genome NC_009333.  We used the NCBI designated 

reference genome as the basis for comparison, rather than individual viral strain genomes, to attain 

common map positions across multiple samples. We showed earlier (Tamburro et al., 2012) that with 

the exception of the repeat regions, few large InDels exist among KSHV strains. The existing 

variation of small InDels and SNPs was accommodated by the analysis software.  Of the ~2.6 x 10
7
 

total reads, 0.10% mapped to the KSHV genome in BCBL1 cells (Table 3.1).  We used MACS2 to 

derive statistically significant nucleosome depletion (FAIRE peaks) at single nucleotide resolution.  

Figure 3.1A shows a linear representation of the KSHV genome and Figure 3.1B the FAIRE-Seq 

coverage (raw read counts) in BCBL1. FAIRE peaks were not detected in samples processed without 

crosslinking (Figure 3.1C). Note the difference in scale, with the highest FAIRE signal at 289 fold 

coverage, whereas the highest non-crosslinked signal was at 18 fold coverage.  The coverage was 

unrelated to viral GC content (Figure 3.1D).  Except for the two lytic origins of replication and the 

terminal repeat latent replication origin, GC content was largely uniform across the genome. 

  As expected, FAIRE enrichment, i.e. nucleosome depletion, was identified upstream of the 

constitutively expressed LANA ORF, i.e. at the constitutively active LANA promoter (Figure 3.1B).  

This held true for a second PEL cell line.  To independently confirm the result from BCBL1 cells we 

profiled the BC1 cell line (Figure 3.2). The same regions gave rise to prominent coverage peaks.  

Importantly for FAIRE-Seq, as for ChIP-Seq data, the peak height  is deceiving and cannot be used to 

infer a linear relationship of abundance (Lee et al., 2013).  We therefore chose to show FAIRE peak 

region boundaries as boxes beneath the raw data.  Open chromatin was observed near the promoter 
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regions of 14 ORF’s in BC1, many of which are strongly induced during lytic reactivation, as well as 

within lytic origins of replication (OriLyt-L or R) (Figure 3.2, Table 3.2).  We could not map any 

FAIRE signal to the latent origin of replication, which is located within the terminal repeats 

(reviewed in (Ballestas and Kaye, 2011)), because of the repeat nature of the target sequence.  Every 

FAIRE site corresponded to a previously recognized or predicted regulatory element in the KSHV 

genome (Table 3.2).   

KSHV exhibits tropism for endothelial and B cell lineages. To expand our observations and 

to determine if differences in chromatin organization existed among different cell lines, and/or among 

distinct viral isolates, we performed FAIRE-Seq on multiple latently infected KSHV cell lines (Figure 

3.3).   The majority of FAIRE-enriched regions were identified across most of the cell lines (Table 

3.3). In addition the FAIRE-enriched regions spanning 60180-60488nt (the presumed bidirectional 

ORF39/ORF40 promoter), 68656-69159nt (the presumed ORF45 promoter), and 121605-121917nt 

(within the KSHV miRNA locus in NC_009333) were only present in the B-cell lineage cell lines, i.e. 

the PEL lines and the artificially KSHV-infected Burkitt lymphoma cell line KSHV-BJAB, and not in 

the endothelial cell lines. 

Overall, this result supports the notion that during latency in PEL the majority of viral 

promoters and viral genes are populated by closed chromatin and hence inaccessible to transcription 

factors/PolII.  These regions are likely only accessible during lytic reactivation.  24 viral regulatory 

regions and genes were not occupied by nucleosomes in latent BC1 cells.  These included the KSHV 

latency region and the OriLyt’s as expected; but also other regions that are not associated with high 

levels of latent transcription but which direct viral early and immediate early lytic transcripts.  Open 

chromatin is necessary, but not sufficient for transcription initiation and this result suggests that other 

modulators/marks add transcriptional specificity.  
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Latent Episomal Open Chromatin is Adjacent to Activating Histone Markings 

Histones incorporated into the latent KSHV episome display modifications associated with 

either transcriptionally active or repressed chromatin, except for within the viral latency locus 

(Gunther and Grundhoff, 2010; Toth et al., 2010).  To further characterize the regions of FAIRE 

enrichment, we integrated our FAIRE data with published ChIP-chip data (Gunther and Grundhoff, 

2010) for specific histone modifications (Figure 3.4); specifically H3K9/K14-ac and/or H3K4-me3, 

which are interpreted to represent activating histone marks associated with transcription. Regions of 

nucleosome depletion were flanked by these activating histone markings across all FAIRE peak 

regions (data not shown).  18 of 24 (~75%) regulatory elements identified by FAIRE-Seq in BC1 

were within 250bp (i.e. one tiling window length from (Gunther and Grundhoff, 2010)) of regions 

enriched with H3K9/K14-ac and/or H3K4-me3 histone enrichment.  Note that FAIRE regions and 

regions demarcated by an activating histone modification can never overlap, since by definition 

FAIRE identifies regions of histone depletion.  We used a very stringent cut-off requiring enrichment 

to be ≥ 3 standard deviations above baseline in Dataset S1 (Gunther and Grundhoff, 2010).  For 

instance, in the OriLyt-L region open chromatin was found adjacent to H3K4-me3 and H3K9/K14-ac 

enrichment (Figure 3.4A).   

In addition, within the Lytic Control Region FAIRE peaks and H3K4-me3 and H3K9/K14-ac 

were in close proximity (Figure 3.4B). Importantly, neither open chromatin nor activating histone 

marks were found near the RTA/ORF50 promoter.  Repressive H3K27-me3 marks were observed 

within ORF48 and ORF52. Open chromatin was detected within the RTA/ORF50 intron, consistent 

with prior experience that splice donor/acceptor/branch sites are often free of nucleosomes and can be 

detected by FAIRE.  A combined FAIRE/activating histone signal was also found at the K8 promoter. 

Lastly the KSHV latency locus which, as a whole is actively transcribed and subjected to alternative 

splicing, showed an expected pattern of open chromatin. We observed increased chromatin 

accessibility at the LANA promoter, at the OriLyt-R, and across the KSHV miRNA locus (Figure 

3.4C) which overlapped with previously reported H3K4-me3 and/or H3K9/K14-ac enrichment.  This 
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suggests that these regions are accessible for association with active transcriptional regulators and/or 

poised to initiate transcription in response to specific regulators, while the virus is in a latent state. 

Six FAIRE peaks were not adjacent to activating modifications in BC1 (Table 3.2). Three 

mapped to introns within ORF29, ORF40/41, and ORF50 (RTA), and three were observed at viral 

tegument and replication genes; i.e. within the gene body of ORF8, and the near promoter regions of 

ORF9 and ORF39/40. No FAIRE peaks were observed near regions of H3K9-me3 enrichment. This 

is expected since H3K9-me3 enrichment typically denotes closed, transcriptionally inactive 

constitutive heterochromatin.  Thus our experiments using a novel, independent technique, verify 

prior work (Gunther and Grundhoff, 2010; Toth et al., 2010), and the classification of H3K9-me3 as a 

valuable marker for transcriptionally inactive regions of the latent KSHV genome. 

 

Open Chromatin Regions Overlap with CTCF Binding Sites at Lytic, but not Latent Promoters  

 Work by Lieberman and colleagues has shown that interactions between gammaherpesvirus 

genomes and cellular CTCF/associated Cohesins, are key regulators of viral gene expression and 

genome conformation (Chau et al., 2006; Chen et al., 2012a; Kang and Lieberman, 2009; Tempera et 

al., 2011). We therefore compared the overlap between regions of nucleosome depletion and CTCF 

binding sites during KSHV latency using published CTCF ChIP-Seq data (dataset GSM941710 from 

(Chen et al., 2012a)). 18 of the 24 (75%) regions identified by FAIRE-Seq overlapped with CTCF 

binding sites in latently infected BC1 cells (Table 3.2).   

 Six regions identified by FAIRE-Seq did not demonstrate coincident CTCF binding. If CTCF 

serves in its canonical role as an insulator and repressor, we would predict that these regions represent 

active regulatory scaffolds during latent infection, which function independently of CTCF. Two of 

these regions (one intragenic to the noncoding PAN RNA (Sun et al., 1996) and one in the 3’UTR of 

the K15 gene (Glenn et al., 1999)) contained sites which are bound by LANA based on ChIP-Seq data 

(GSM941712 from (Chen et al., 2012a)) (Table 3.2).  At this point the functional relevance of LANA 

binding to these regions is unknown.  Given LANA’s ability to function as a transactivator if bound 
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to single binding sites outside the TR region (which contain multimeric LANA binding sites) (Jeong 

et al., 2004), one could speculate that these regions may contain yet to be discovered latent promoters.    

 “CTCF-free” FAIRE peaks occurred within the promoter regions of vIL6 (vIL6p; (Deng et 

al., 2002), the constitutive LANA promoter (LANApc; (Dittmer et al., 1998)), and upstream from the 

lytically induced Kaposin promoter (K12p; (Sadler et al., 1999)) (Figure 3.5). The vIL6 gene is 

transcribed in otherwise latently infected MCD cells, and K12p expression has been observed during 

latency (Cai and Cullen, 2006; Chandriani and Ganem, 2010; Chen et al., 2009; Deng et al., 2002; 

Nicholas et al., 1997; Sadler et al., 1999). The vIL6p is strongly activated by RTA, but also 

independently of RTA by the IFN signaling pathway and by intracellular Notch (Chang et al., 2005a; 

Chatterjee et al., 2002).  These phenotypes are consistent with the identified open chromatin region in 

Figure 3.5A, which may be regulated by cellular factors independently of the complete replication 

cycle, and in certain instances independently of RTA.   

Another “CTCF-free” FAIRE peak overlapped with OriLyt-R, K12p, and with the predicted 

transcription start site (~120544nt in NC_009333) of a novel antisense to latent transcripts (ALT) 

noncoding RNA (Chandriani et al., 2010) (Figure 3.5B).  Hence, it is possible that this region is 

involved in regulation of three elements: the proximal Kaposin promoter; which is a RTA-responsive 

early promoter, OriLyt-R accessibility, and the novel ALT promoter.  We observed CTCF marks 

within open chromatin in the miRK3/K4 locus, a region of abundant latent transcription, but no 

known cis-regulatory elements (Figure 3.5B).   “CTCF-free” FAIRE peaks also covered the 

intergenic region between the LANA ORF and K14 ORF. This region contains known CTCF binding 

sites downstream of the inducible LANApi, however, the constitutive LANApc transcription 

initiation site was accessible (as expected) and was not bound by CTCF (Figure 3.5C).   

Overall this data suggests that nucleosome depleted regions of the latent KSHV genome can 

be divided into two subsets: first, nucleosome depleted regions that are transcriptionally inaccessible 

because they are bound by CTCF; and second, nucleosome depleted regions that are not bound by 

CTCF.  These represent constitutively active or poised promoters, such as LANApc and the 
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Kaposin/OriLyt/ALTp region, or promoters which may be regulated by host factors independent of 

RTA and KSHV lytic reactivation; such as the vIL6 promoter. 

 

Open Chromatin Regions Overlap with RNA PolII Deposition at Active and Poised Promoters 

 One way to think about the extensive epigenetic information that has been generated for 

KSHV is as a tiered arrangement of safety locks; each lock has to be opened before a transcript is 

produced. The first layer of access is at the nucleosome level. Only sites that are nucleosome depleted 

can engage transcription factors. These are identifiable by FAIRE. The next layer of access is at the 

histone-code level. Only regions enriched in activating histone marks are likely to engage 

transcription factors. A safeguard here is CTCF, which marks open chromatin regions as closed for 

transcription. The final layer is recruitment of RNA PolII and its activation via CTD serine 5 and 2 

hyper-phosphorylation. Toth et al. (Toth et al., 2012) recently determined these activated RNA PolII 

sites on the KSHV genome. Chen et al. (Chen et al., 2012a) determined the LANA binding sites, 

which in latent KSHV infection represent another layer of regulation. We were able to integrate these 

studies with our data set. RNA PolII was enriched at the vIL6, vIRF3, LANApc, K4/5/7, K15 and the 

OriLyt regions (Figure 3.6A). The same regions were depleted for nucleosomes (Figure 3.6B). As 

mentioned above FAIRE identified many more regions of open chromatin and the majority of these 

were bound by CTCF (Figure 3.6C), which excluded PolII enrichment to a large degree. LANA 

bound in the vicinity of CTCF at the OriLyt’s, at the presumed vIRF promoter, and at the inducible 

LANA promoter (LANApi); but not the constitutively active LANA promoter (LANApc) (Figure 

3.6D and Table 3.2).   

It is important to recognize the limitations of this type of comparative analysis, which tries to 

match data from separate experiments, obtained with reagents of differing performance and on 

different experimental platforms. Array data are normally distributed and have a rather narrow signal 

to noise ratio. Chip-Seq data follow a Poisson distribution. This type of distribution is highly non-

linear and tends to over emphasize peaks (Lee et al., 2013). To compare these data we applied 
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successive transformation steps to facilitate the comparison between both data types (Figure 3.6E). 

Each of these transformations incurs some loss of resolution and of course represents averages of 

many cells in one or more cell lines.  These data support the general conclusion of a layered model, in 

which each of the layers (nucleosome position, histone marks, methylation, CTCF, and LANA) 

contribute to the final signal, which is RNA PolII recruitment and active transcription. 

 

3.5 Discussion 

 

The goal of this study was to investigate the organization of chromatin in KSHV during 

latency. It follows our prior work mapping KSHV mRNA and miRNA transcription (Fakhari and 

Dittmer, 2002; O'Hara et al., 2009).  Initially, only two regions of the genome were known to be 

consistently transcribed in latently infected cells: the KSHV latency locus encoding LANA, vCYC, 

vFLIP, Kaposin/K12 and all viral miRNAs, and vIRF3/LANA-2 (Dittmer et al., 1998; Rivas et al., 

2001).  More recently, evidence for more widespread viral transcription has emerged.  The vIL6 gene 

is expressed at high levels in MCD and can respond to IFN-alpha independent of other viral genes 

(Aoki et al., 2001; Chatterjee et al., 2002).  For vIRF1, both a latent and lytic transcription start site 

has been described (Cunningham et al., 2003), and we previously detected vIRF1 mRNA in KS 

lesions (Dittmer, 2003).  Similarly, K1 was widely expressed in at least a subset of KS tumors (Wang 

et al., 2006a).  Lastly, genomic surveys found extensive transcription, including the expression of 

non-coding RNAs, across the entire genome (Chandriani et al., 2010; Dresang et al., 2011; Xu and 

Ganem, 2010). We hypothesized that mapping open chromatin, which is a prerequisite for 

transcription may yield further insights and may allow us to classify KSHV cis-elements into 

different groups, based on their epigenetic status during latency. 

  We are not the first to investigate the viral epigenome (reviewed in (Knipe et al., 2013)). 

Extensive studies by many groups determined the KSHV CpG methylation status and modified 

histone deposition across the genome (Gunther and Grundhoff, 2010; Toth et al., 2010). We were able 
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to integrate this information into our approach using FAIRE (Giresi and Lieb, 2009; Simon et al., 

2012) as a novel method to map chromatin status in KSHV.  The open chromatin regions identified 

by FAIRE can be thought as a minimal requirement for epigenetic and/or transcriptional regulation 

(reviewed in (Jiang and Pugh, 2009)).  Modified histone marks and transcription factor occupancy 

represent the next layer, and PolII recruitment and successful elongation the final level of regulation. 

  We found that regions of open chromatin decorated 7.76% of the latent BC1 genome and 

hence that most of the KSHV genome was occupied by nucleosomes during latency. This is 

consistent with prior work by Günther and Grundhoff (Gunther and Grundhoff, 2010), who also 

reported genome-wide CpG methylation. Repressed chromatin, as ascertained by lack of a significant 

FAIRE peak, correlated (within the limit of ChIP-chip) well with repressive histone marks H3K9-

me3 and H3K27-me3, as well as EZH2 binding as reported by Toth et al. (Toth et al., 2010), and also 

by Günther and Grundhoff, and others (Chen et al., 2012a; Gunther and Grundhoff, 2010; Stedman et 

al., 2004) . A few open chromatin regions, devoid of nearby H3K9/K14-ac or H3K4-me3, mapped 

outside of proximal promoter regions and instead to known splice donor or acceptor sites, which is 

expected based on other studies that employed FAIRE (Gaulton et al., 2010; Song et al., 2011).  

We found 24 highly significant FAIRE peaks, which corresponded to regions of latent open 

chromatin in the KSHV genome in BC1 (Table 3.2).  These were depleted for repressive histone 

marks, and were in close proximity to previously reported (Gunther and Grundhoff, 2010) histone 

marks associated with transcriptional activity (H3K4-me3 and H3K9/K14-ac).  These 24 regions of 

open chromatin could be further sub-divided on the basis of CTCF co-occupancy as determined by 

Chen et al. and others (Chen et al., 2012a; Kang et al., 2013; Kang and Lieberman, 2009; Kang et al., 

2011; Stedman et al., 2004; Stedman et al., 2008). 

The constitutive LANA promoter (LANApc), the vIL6 promoter, and the proximal 

Kaposin/presumed promoter for the ALT transcript, represent open chromatin regions not co-

occupied by CTCF. Nearly all other regions of nucleosome depletion contained previously reported 

CTCF occupancy; which we presume prevents transcriptional utility of these regions (Chen et al., 
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2012a).  CTCF has a predominantly insulating, albeit dynamic and variable, role at cellular loci 

(reviewed in (Merkenschlager, 2010; Ohlsson et al., 2010a; Phillips and Corces, 2009)).  CTCF 

modulates latent gene regulation and episomal configuration in both human gammaherpesviruses, 

(Chau and Lieberman, 2004; Chen et al., 2012a; Holdorf et al., 2011; Hughes et al., 2012; Kang and 

Lieberman, 2009; Kang et al., 2011; Tempera and Lieberman, 2010; Tempera et al., 2010), thus 

CTCF-mediated silencing represents a mechanism which may prevent the usage of KSHV episomal 

regulatory scaffolds during latent infection. 11 of 24 (46%) latent regions of open chromatin revealed 

by FAIRE also localized to known binding sites for the KSHV lytic switch protein; RTA ((Chen et 

al., 2009; Deng et al., 2002); Table 2), suggesting that latent regions of nucleosome depletion may 

also require RTA expression for regulatory function.         

By and large the nucleosome occupancy pattern was conserved among multiple cells with 

stably and latently maintained KSHV episomes.  PEL cell lines and artificially KSHV-infected BJAB 

cells yielded largely super-imposable FAIRE profiles. Two endothelial lineage models of latent 

KSHV infection; L1-TIVE (An et al., 2006) and KSHV-HUVEC (Wang and Damania, 2008), also 

shared many of the same regions of open chromatin with B cells.  However, we also identified B cell-

specific regions of open chromatin, which are the subject of further study. 

Lastly, we integrated FAIRE data with LANA binding data from Chen et al. ((Chen et al., 

2012a); GSM941712), and activated (as determined by PolII CTD serine 5 and 2 hyper-

phosphorylation) PolII data from Toth et al. (Toth et al., 2012). This indicated that the most highly 

PolII associated regions were indeed the extended KSHV latency locus, the vIRF3 locus, and regions 

on either side of each OriLyt, and that these were bordered by FAIRE peaks. There were fewer PolI 

peaks than FAIRE peaks, as expected.  Additional suppressive mechanisms during latency may arise 

from negative elongation factor (NELF) mediated PolII stalling, which has been characterized in 

KSHV, such as within the region spanning OriLyt-L to K7 (Toth et al., 2012) .  

In sum FAIRE–Seq represents a robust method, perhaps more so than antibody-dependent 

ChIP-Seq, to identify regions of open chromatin with single nucleotide resolution.  We applied this 
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method for the first time to the KSHV genome and identified several regions of open chromatin in 

latent viral episomes.  Regions of open chromatin identified by FAIRE are not sufficient to identify 

regions of active latent transcription, but by integrating prior histone-modification, LANA, PolII, and 

CTCF mapping data, we were able to generate a consensus epigenetic map of the latent KSHV 

genome. This effort is in concordance with transcriptional profiling and suggests the presence of 

additional latent regulatory regions in the viral genome. 
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Table 3.1:  Summary of KSHV FAIRE-Sequencing Data.  Read information is displayed for each FAIRE-

Sequenced KSHV-infected cell line 

a. KSHV reference genome NC_009333 

b. Using MACS2 software assuming an average fragment size of 250bp 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 
 

 

Figure 3.1:  FAIRE-Seq Analysis of PEL (BCBL1).  A.  Schematic of the KSHV genome (depicted linearly). 

Boxes indicate open reading frames (ORF’s). ORF’s on the upper strand are transcribed in right-ward directions 

(with corresponding, predicted or known regulatory regions on the left) and the lower strand corresponds to 

ORF’s transcribed in the leftward direction (with corresponding, predicted or known regulator regions on the 

right).  B. Read coverage data for FAIRE across the KSHV genome (BCBL1). Genome position is indicated on 

top. The maximal peak height was 289 reads covering a single nucleotide. C. Read coverage of DNA not 

subjected to FAIRE cross-linking and enrichment.  D. Predicted GC content across the KSHV genome. 
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Figure 3.2:  Regions of Latent Open Chromatin across the KSHV Genome (BC1).  A.  FAIRE-Seq reads 

from latent BC1 cells mapped to the KSHV reference genome NC_009333 are shown as in Figure 3.1.  Regions 

of increased coverage density correspond to regions depleted of nucleosomes.  B.  FAIRE peaks in BC1 (light 

blue) are identified as blocks and correspond to nucleotide level resolution latent open chromatin as determined 

by MACS2.  Regions of open chromatin occur in KSHV lytic replication origins (OriLyt-L/R), promoter 

regions (green), and at intronic/intragenic sites (blue) during latency. 
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Table 3.2:  Correlation between FAIRE Peaks in BC1 and Other Notable Chromatin Marks.     

a. KSHV reference genome NC_009333 

b. Distance to histone mark H3K9-ac/H3K4-me3  ≥250bp, “Dataset S1”; Gunther and Grundhoff, 

2010 (PMID: 20532208) 

c. GEO dataset GSM941710 (PMID: 22740398), X indicates enrichment of CTCF and Cohesin, O 

indicates CTCF without Cohesin 

d. GEO dataset GSM941712 (PMID: 22740398) 

e. Chen et al., 2009 (PMID: 19233445) 

f. Deng et al., 2002 (PMID: 12134031)   

g. 35 TR added to KSHV reference genome “HQ404500.1” in PMID: 22740398; approximated in 

NC_009333 

h. From Russo et al., 1996 (PMID: 8962146) 

i. Regions of accessible latent chromatin based on FAIRE (in red) 
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Figure 3.3:  Regions of Open Chromatin are Conserved in Latent KSHV Infected Endothelial and B cells. 

A heatmap of normalized coverage counts across five cell lines (BC1, BCBL1, BJAB carrying latent KSHV, 

KSHV-HUVEC carrying latent KSHV and TIVE L1 cells) is shown. Orange hues indicate nucleosome 

depletion, i.e. higher FAIRE coverage (averaged over a 40bp sliding window). On top the average coverage 

across all cell lines is shown. 
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Table 3.3:  Nucleotide Resolution of FAIRE Regions in Latently Infected Cells.  Nucleotide (nt) coordinates 

(in NC_009333) of FAIRE peak regions correspond to regions of open chromatin identified in BC1, BCBL1, 

KSHV-BJAB, KSHV-HUVEC, and L1 TIVE.  The total number of peaks identified (n) is shown, and the 

numbers of peaks which are conserved (present in ≥80% of isolates), shared (occurring in at least 2 isolates) or 

unique are shown below.  The asterisk “*” indicates a region of overlap (6nt) omitted from conserved B cell nt 

boundaries.  Conserved peaks among all isolates are shown and highlighted in gray.  Peaks conserved in B cells, 

shared, or unique to a viral isolate, are highlighted in orange, green, and in blue, respectively.  (Adapted from 

Supplemental Material of manuscript in preparation).   
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Figure 3.4:  Regions of Latent KSHV Open Chromatin Occur Near Activated Histone Modifications.  
Significant regions of probe enrichment for histone modifications on the latent KSHV genome were annotated 

from previous work (Gunther and Grundhoff, 2010).  Regions of H3K9/K14-ac and H3K4-me3 activating 

marks are shown in green and pink respectively.  FAIRE peaks are shown in light blue.  H3K27-me3 and 

H3K9-me3 modifications are shown in grey and red respectively.  The KSHV OriLyt-L region (A), Lytic 

Control Region (RTA promoter; B), and the KSHV Latency locus (C) are shown.   
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Figure 3.5:  Regions of KSHV Open Chromatin Coincide with CTCF Binding Sites.  Published CTCF 

ChIP-Seq enrichment (GSM941710; (Chen et al., 2012a)) is shown in relation to FAIRE-Seq coverage (green 

and light blue, respectively).  A.  The KSHV genomic region spanning the vIL6p region is shown (11,000-

19,000nt) along with two mapped transcription start sites for the vIL6p depicted by black arrows.  B.  The 

approximately mapped transcription start sites for the K12p and the Antisense to Latent Transcripts (ALT) 

RNA (Chandriani et al., 2010) are indicated with gray arrows, and the OriLyt-R is shown in red (spanning 

117,000-123,000nt).  C.  The bidirectional transcription start sites for the lytic LANApi and K14p promoters are 

indicated by gray arrows and the constitutive LANApc is denoted with a black arrow (spanning 123,000-

128,000nt).  Note changes in scale between panels.  All nucleotide coordinates based on NC_009333. 
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Figure 3.6:  RNA PolII Designates KSHV Latent Promoters. Comparison of (A) RNA PolII, (B) FAIRE, 

(C) CTCF and (D) LANA enrichment across the KSHV genome. The horizontal axis represents the genome 

location, the vertical axis the relative enrichment score over a 100bp sliding window. Dots indicate significant 

peaks. (E) Normalization process: shown on the horizontal axis is the unit and on the vertical axis the 

cumulative density.  Deep sequence-derived coverage counts (raw), normalized counts: [n
1/3

 – median (n
1/3

)] / 

(IQR n
1/3

/1.349), and log10 of normalized counts, which are approximately normally distributed. 
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CHAPTER IV 

CONCLUSIONS AND PERSPECTIVES 

 

 The KSHV genome must navigate between existence within an inert extracellular virion and 

a dynamic cellular milieu.  After engaging a host cell, virion-associated components (proteins and 

miRNA’s) immediately begin to modulate the host and the KSHV genome is trafficked into the 

nucleus.  Within the nucleus host and viral gene expression is rapidly programmed.  These activities 

establish and maintain a life cycle of KSHV infection in humans conventionally divided into latency 

and lytic phase.  The orchestrated regulatory and epigenetic programming of the KSHV genome 

within host cells is a collaborative process.  The simple LANApi/K14p bidirectional transcriptional 

circuit is a piece of this coordinated effort, and collectively with other viral and host components 

facilitates a sensitive and adaptable system of KSHV genome propagation.      

 In this final chapter I have attempted to frame my graduate work in relation to the KSHV 

field.  I have also discussed potential extensions of my work as well as intrinsic connections, and 

connections to unknown aspects of KSHV biology.  Of course nothing exists in a vacuum and bonds 

among KSHV biology, biomedical research, and human awareness should not be ignored.   The 

human pathology observed coincident with KSHV infection fuels academic intrigue and collective 

notions of self-preservation.  Systems with adequate resources attempt to address these issues by 

funding research and training.    The current length of one lifetime is not enough to adequately 

understand complex biological problems and systems.  Hence like KSHV, researchers should work 

collaboratively to complete pieces of a large collective puzzle.  In my time as a doctoral student I 

have done my best to characterize RTA activation at the LANApi/K14p and to profile the dispersal of 

open chromatin in the viral genome.  It has always been my hope that my doctoral efforts might 

contribute to the collective understanding of KSHV.   
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4.1 The Nature of Bidirectional Transactivation via RTA:Paired RPBjκ 

 

 Transcription from the KSHV latency locus has a long history of analysis by Dr. Dirk 

Dittmer’s group and others (Dittmer et al., 1998; Sarid et al., 1999; Talbot et al., 1999).  Previous 

students in Dr. Dittmer’s lab characterized the LANApc region in detail, and with others, were 

instrumental in initial characterization of the overlapping regions of the LANApi and K14p (Jeong et 

al., 2001; Jeong et al., 2002; Jeong et al., 2004; Lan et al., 2005b; Liang and Ganem, 2004; 

Matsumura et al., 2005; Staudt and Dittmer, 2006).   I extended these observations by taking a 

uniquely quantitative approach to model transcription from the LANApi/K14p region.  My personal 

goals with these studies were to generate a comprehensive analysis that was robust enough to (i): 

reveal if the locus was bidirectional and if so, (ii): to allow a detailed mechanistic understanding of 

LANApi/K14p transactivation by RTA.  In this subsection I have considered the nature of this RTA-

mediated bidirectional transactivation outside the context of Chapter II; including extended regulatory 

and functional analysis.  

 

Potential Functions of the LANApi/K14p Bidirectional Promoter 

 The RTA transactivator can be detected within KSHV virions (Lan et al., 2005b).  Early in 

KSHV infection an initial burst of RTA expression precedes the onset of latency and subsides with 

latent establishment (Krishnan et al., 2004).  The duration of initial RTA expression is cell line 

dependent. In non-permissive cells, such as fibroblasts, RTA expression is quickly shut down. In 

permissive and semi-permissive cells (or conditions), RTA expression is maintained, eventually wins 

out and the virus enters the lytic phase of the replicative cycle.  Speculation has arisen that this initial 

burst of RTA might act on the LANApi/K14p region to induce synthesis of the LANA protein as in 

Figure 4.1D (Lan et al., 2005b; Matsumura et al., 2005).  The LANA protein auto-activates the 

LANApc and increases in LANA gene expression correlate with the establishment of latency during 

de novo infection, supporting this inference (Jeong et al., 2004; Krishnan et al., 2004).  Moreover, 
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mutation of the RBP B element (K14p proximal) in a KSHV recombinant BAC system 

(BACLANAp; (Lu et al., 2011)) led to a virus with modest defects in the establishment of latency and 

higher levels of spontaneous early reactivation and virion production compared to WT.   

 It remains unclear how RTA could be directed to the LANApi but not to other RTA-

responsive promoters early during infection.  I suspect that at least two mechanisms could be 

responsible.  (i):  The accumulation of LANA protein from the LANApi directly inhibits RTA 

function early in infection through protein-protein interactions (Lan et al., 2005a; Lan et al., 2004), 

and/or (ii):  the early, naïve KSHV genome is regulated differently than the epigenetically established 

genome (Gunther and Grundhoff, 2010), which could generate locus specificity at early time points.  

Complete genetic ablation of KSHV LANA in the BAC36 system generated a virus with an enhanced 

lytic phenotype in both uninduced and induced in vitro cultures (Li et al., 2008).  Similarly in the 

closely related Rhesus monkey rhadinovirus (RRV), genetic disruption of LANA led to increased 

lytic expression/replication and defects in the establishment of viral latency after de novo infection 

(Wen et al., 2009).  Another recombinant KSHV virus, engineered with constitutive RTA expression, 

entered lytic phase by default after de novo infection, which was unaffected by the presence or 

absence of KSHV LANA (Budt et al., 2011).  However, in the related murine gammaherpesvirus 68 

(MHV68) a mutant virus engineered with stop codons to prevent mLANA expression led to defects in 

lytic induction but not viral genome maintenance (Paden et al., 2010).  Thus collectively the data 

suggesting specific utility for LANA expression (and hence the LANApi) during early infection are 

convincing, but the situation is likely muddled and complex and may depend upon many factors.    

 The response of K14p to WT RTA was ~10-15 fold more efficient than that of LANApi in all 

WT input promoter configurations (Figure 2.4).  At the lowest levels of RTA tested, the K14p 

generated over 10 fold more output than the LANApi, whereas near saturation (i.e. kcat) this margin 

had narrowed to ~4 fold (Figure 4.1E).   This suggests that the inhibitory effects of the LANApi upon 

the K14p increase in direct proportion to RTA concentration.  Thus, LANApi acts as an attenuator of 

transcription, which limits K14p in proportion to RTA amount.   
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 The LANApi inhibits the K14p response to RTA through TATA competition as shown in 

Figure 2.6.  In addition, although in the absence of RBP A K14p output was diminished (Figure 2.7); 

there was no significant difference in K14p efficiency (Figure 4.1A).  This was due to a reduction in 

K14p induction threshold in the absence of RBP A (Figure 4B).  Thus both LANApi-proximal cis 

regulatory elements limit the K14p; the LANApiTATA limits K14p responsiveness and output, 

whereas the RBP A element limits responsiveness but is critical for K14p output.  In my opinion the 

LANApi likely serves to inhibit lytic infection regardless of timing (de novo/latency/reactivation).  

Expression from LANApi/K14p is selective; hence any message produced from the LANApi is a 

message “lost” to K14p.  In this way the LANApi directly inhibits K14p from producing the vOX 

(also called vOX2/vCD200) and vGPCR proteins.  This is important, as each of these viral proteins 

have potent immuno-modulatory and signaling capabilities outside of the infected cell.   

 The function(s) of vOX remain relatively unclear, but the protein has been found to have both 

proinflammatory and immune-suppressive effects on the host cell (Chung et al., 2002; Foster-Cuevas 

et al., 2004) which may be related to stage of infection (Salata et al., 2009) (i.e. early lytic vs. later).  

vGPCR is capable of potent signaling both within infected cells and in a paracrine fashion  (reviewed 

in  (Lee et al., 2012); see also Section 1.4).  vGPCR expression occurs in a subset of KS tumor cells, 

and this signaling may be involved in sustained lesion progression (Bais et al., 2003; Martin et al., 

2011).  Limitations upon vOX/vGPCR expression may serve to keep protein levels of these viral 

signaling molecules appropriately balanced in infected cells.  Alternatively, there have also been 

reports of a cooperative oncogenic phenotype between latent genes (i.e. LANA) and vGPCR 

(Montaner et al., 2003). 

 While we found that LANApi directly inhibits K14p (dose-dependently) via proximal 

TATA/RBPjκ elements, the LANApi likely also has other effects on lytic infection.  As mentioned 

above, LANA may also interact with RBPjκ to repress the RTA promoter and directly inhibit the 

RTA protein (Lan et al., 2005a; Lan et al., 2004; Lan et al., 2005b).  Thus during de novo infection 

and during reactivation the LANApi likely inhibits lytic induction directly and indirectly.  These 
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mechanisms may not be mutually exclusive.  The LANApi cannot direct any of the spliced isoforms 

that originate from the LANApc (Figure 1.5), and it is also possible that transcripts from LANApi are 

unique in ways that are beyond current levels of scientific characterization.  

 

A Conserved Transcriptional Brake in KSHV 

 In an effort to find analogous mechanisms I looked for bidirectional promoters in other 

viruses.  DNA viruses like Vaccinia and the KSHV homolog EBV have similar bidirectional loci 

(Jimenez-Ramirez et al., 2006; Knutson et al., 2009).  In Vaccinia 5 out of 6 of these bidirectional loci 

served to “attenuate” opposing promoter strength through initiator/TATA elements, similarly to the 

LANApi/K14p.  Intriguingly, in EBV paired RBPjκ elements were found within the LMP1/2B 

bidirectional promoter region.  It is unclear if a similar mechanism of attenuation occurs at host 

eukaryotic bidirectional promoters, but this regulatory device could have been hijacked by these 

viruses (or vice versa).  

 At the KSHV Lytic Control Region, a second locus responds bidirectionally to RTA (Xu and 

Ganem, 2010).   This bidirectional promoter element is also reliant upon paired RBPjκ elements 

(Wang et al., 2004c; Wang and Yuan, 2007; Xu and Ganem, 2010) and drives expression of an 

antisense RNA to ORF50 (ORF50 encodes RTA) and the K8 (also called k-bZIP) protein on the 

opposite strand.  Bioinformatic analysis of this locus revealed that the 50AS/K8DE bidirectional 

region showed remarkable homology to the LANApi/K14p in terms of regulatory elements (RBP 

A/B, RRE, K8 TATA element) and their spacing (Figure 4.2).   

 This homology was especially apparent between the K8DE and K14p “sides” of each 

respective locus.  The 50AS drives expression of an antisense RNA to RTA that may also encode 

small peptides (Xu and Ganem, 2010).  Although the function of the lytic 50AS promoter and 

resulting transcript(s) remain unknown one group has recently suggested that this RNA encodes a 

peptide which regulates RTA stability (Jaber and Yuan, 2013).  Unlike LANApi, which drives 

canonical viral ORF’s the 50AS promoter does not contain a characterized TATA element to express 
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the 50AS RNA.  The K8DE opposes the 50AS promoter and directs synthesis of the K8 protein, a 

multifunctional lytic phase gene involved in viral genome replication and transcription.  K8 binds the 

Ori-Lyt regions for viral replication, but also causes cell cycle arrest and inhibition of RTA 

transactivation at some loci (Izumiya et al., 2003; Lin et al., 2003; Wu et al., 2002).  Moreover, K8 

gene expression is differential between immediate and delayed-early lytic phase and utilizes two 

different TSS’s; thus fine tuning of K8 expression is likely important, similarly to vOX/vGPCR.  

Collectively these indicate to me that the homologous bidirectional mechanisms at the latency locus 

(LANApi/K14p) and lytic locus (50AS/K8DE) act primarily to direct vOX/vGPCR and K8 

expression, but have evolved shared cis bidirectional architectures to fine tune and balance lytic gene 

expression by the addition of an opposing TSS (Figure 4.2).   

 

Mechanistic Nuances of the LANApi/K14p Bidirectional Locus 

 We noted that RTA DNA binding became dispensable at saturation levels (i.e. kcat) of RTA, 

as there was no difference in output between WT or R161A RTA (Figure 2.9).  This was true in the 

WT promoter configuration, but also in the absence of TSS-proximal RBPjκ elements.  Thus given 

enough RTA, the output from LANApi or K14p is not dependent upon RTA DNA binding, and in the 

absence of proximal RBPjκ, output is drastically reduced but not due to changes in DNA binding.  

KKEE RTA could rescue the output in the absence of proximal RBPjκ elements  (Figure 2.9), and in 

every cis context examined (mutant or WT) KKEE led to increased output.  One could speculate that 

the increased abundance and altered on/off kinetics (Chang et al., 2008); as well as the enhanced 

DNA binding of KKEE, contribute to this global increase in promoter output.  

 Promoter efficiency is related to, but different from, promoter behavior at saturation (see 

Section 2.4, equations 3 and 4).  The efficiency of both WT LANApi and WT K14p was proportional 

to RTA DNA binding capacity (Figure 2.8A and D).  This increase in efficiency in response to KKEE 

was dependent upon TSS-proximal TATA/RBPjκ elements for both LANApi/K14p (Figure 4.3).  

Moreover, in the absence of the most critical regulators of efficiency; RPBjκ elements, loss of DNA 
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binding still compromised efficiency.  Collectively the data imply that RTA DNA binding acts 

through proximal RBPjκ and that this is relayed to respective TSS’s via proximal TATA elements.  

 However RTA DNA binding also activates the locus through other cis features, which we 

showed included a directional component that skews activation towards K14p (i.e. RBP B), a 

phenomenon likely due to cis asymmetry of the RRE (Figure 2.10).   I found that mutation of the 

RRE led to ~30% reduction in all RTA variants (i.e. the RRE was required even without RTA DNA 

binding).  Moreover, a cellular protein(s) binds to the LANApi/K14p RRE in vitro, though this 

protein(s) remains unidentified (Liang and Ganem, 2004) .  This led Liang and Ganem to infer that a 

co-activator occupies the RRE.  My data corroborate this finding but also indicate that the RRE 

asymmetrically directs RTA DNA binding resulting in selective stabilization of RBP B (and hence 

K14p).   

 Although the LANApi TATA element competed against K14p, the reverse was not obvious 

(Figure 2.6).  Moreover, even in the REV mutant, LANApi was incapable of K14p levels of output 

(Figure 2.10).  In addition I noticed that in our in vitro system K14p displayed basal activity, whereas 

the LANApi did not (Figure 4.4A and B).  This basal K14p activity was dependent upon intact 

regulatory elements (including the K14p TATA element).  Together these data imply that the 

LANApi TATA is much weaker than the K14p TATA.  Evidence suggests that the distance between 

RBPjκ and TATA elements can regulate RBPjκ -mediated repression via TFIID (Olave et al., 1998).  

Interestingly in the REV mutant basal activity is reduced in K14p, suggesting that the RBP A element 

might also have a repressive effect due to its close proximity (7bp) to the LANApi TATA element in 

WT.  In fact in the absence of RTA DNA binding the LANApi TATA element is dispensable for 

efficiency (Figure 4.3B); and in my opinion the LANApi TATA can only be operational after RBP A 

is activated and stabilized by RTA DNA binding (i.e. TATA repression is relieved by RTA stabilizing 

RBP A).   

 The fact that regulatory elements were required for K14p in vitro basal activity suggested that 

the locus must be “programmed” with regulatory elements for a transcriptional event to occur.  
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Throughout my analysis of this region I was perplexed as to why the single promoter constructs had 

an approximate 2-fold reduction in kcat when assayed in trans (Figure 4.4C).  These two concepts are 

related.  Since kcat is a measure of output when saturated with RTA (i.e. RTA is not rate limiting), this 

indicated that the reduction in trans was not related to RTA.  I realized that the most logical and 

simplest explanation was that a refractory period was occurring at saturation.  This phenomenon was 

only observable in trans, since at saturation in trans the ratio of RTA recognition of a newly 

“reprogrammed” promoter (Figure 4.4D) would be 1:2 (either single K14p or single LANApi), 

whereas in the bidirectional or single only input contexts, the newly reprogrammed promoter region 

would always be the bidirectional reporter (1:1) or the single K14p or LANApi (1:1) respectively.   

 

4.2 Applications and Extensions of the LANApi/K14p Bidirectional Promoter 

 

in vivo Mechanistic Consequences 

 The analysis of the LANApi/K14p bidirectional promoter was performed in vitro; hence 

within the context of the epigenetically programmed viral genome, mechanistic subtleties may exist 

which we were unable to characterize in vitro.  To understand this question, and to more fully 

understand the potential function(s) of the LANApi/K14p (see Section 4.1) we created a bacterial 

artificial chromosome (BAC) system with the help of a talented research associate in Dr. Blossom 

Damania’s lab named Zhigang Zhang.  The KSHV BAC system (reviewed in (Warden et al., 2011)) 

allowed us to introduce in vivo mutations of the LANApiTATA element alone (Lp3BAC) or of the 

LANApiTATA element and the LANApi TSS (Lp7BAC).   

 The preliminary data using the BAC system indicates that there may be some differences in 

growth profiles (Figure 4.5A).  Loss of the LANApi TATA element may induce slightly faster 

cellular growth kinetics (in stable BAC293 cells).  However, loss of both the LANApiTATA and 

LANApi TSS (Lp3BAC) substantially reduces both growth kinetics and maximal confluence.  I 

hesitate to over-speculate and these phenotypes need to be refined, but this could indicate that loss of 
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LANApi-mediated repression of K14p leads to aberrant viral signaling/replication.  Experimental 

characterization of signaling pathways, defects in the establishment of latent infection, and 

reactivation potential (to name a few) are required for a more thorough understanding. 

 

Manipulation of the Bidirectional RTA:RBPjκ Mechanism:  Implications for Therapy 

 The bidirectional LANApi/K14p is unique as it synthesizes either latent or lytic viral gene 

products in response to the KSHV lytic switch RTA.  We found that this occurs selectively and non-

simultaneously, and that expression from the LANApi attenuates the strength of the K14p.  This 

attenuation is proportional to RTA concentration.  The K14p is extremely sensitive to RTA (Damania 

et al., 2004) and as outlined above, vGPCR and vOX have potent signaling abilities.  In the context of 

LANApi TATA deletion, the K14p is even more responsive (Hilton and Dittmer, 2012) and thus 

represents an ideal target for RTA inhibition (Figure 4.5B).  The high levels of signal output and the 

specificity of the response to RTA (and insensitivity to intracellular Notch) are useful properties.  

Given the homology at the lytic locus with the 50AS/K8DE region, the understanding of this 

mechanism could shed insight into therapeutic targets aimed at forcing lytic induction by inhibiting 

transcriptional attenuation at these loci.  Additionally, the identification of drugs or compounds which 

inhibit RTA transactivation could prevent KSHV propagation to naïve host cells.   

 

(Re) Engineering the LANApi/K14p Transcriptional Circuit:  Implications for Industry 

 As synthetic biology and the design of synthetic gene circuitry “evolves”, science is capable 

of engineering transcriptional systems (reviewed in (Slusarczyk et al., 2012)).  Although I am biased, 

the LANApi/K14p bidirectional mechanism represents an exceptional bioengineering substrate in the 

long-term.  First, the promoter is functional in mammalian cells, whereas most synthetic biology 

underway occurs in prokaryotic systems.  Second the response is specific to a non-host transactivator 

which can be supplied in vitro and in the absence of KSHV infection; moreover the region is largely 

inactive without induction.  Third the bidirectional nature allows for one TSS to generate a gene (or 
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regulatory RNA) of interest (GOI) while the opposing TSS generates a positive or negative regulator 

(Figure 4.5C).   

 Advances in synthetic gene circuits allow directed artificial synthesis of biofuels, 

pharmaceuticals, and other compounds, within engineered cells (Peralta-Yahya and Keasling, 2010; 

Ro et al., 2006; Wang et al., 2009; Weber et al., 2008).  Moreover mammalian biosensors and 

actuators can be fabricated for numerous applications (Carr and Church, 2009).  The LANApi/K14p 

bidirectional locus has built in transcriptional control and encodes two divergent transcripts within a 

short (>300bp) stretch of DNA.  Implementation of this circuit alone or arrayed in a synthetic 

networks could allow for a transcriptional system with intricate, layered, and precise regulation. 

 

4.3 Toward a Functional KSHV Epigenetic Atlas 

 

KSHV Genome-Wide Epigenetic Regulation 

 At present, once infected, the human host will maintain the KSHV DNA genome for the 

duration of his/her lifetime.  This genome will persist as a multicopy circular minichromosome (non-

integrated) called an episome.   During latent infection the KSHV genome is nucleosome-associated.  

Latently-expressed genes, such as those encoded within the latency locus, are enriched with 

nucleosomes bearing histones modifications associated with transcriptional activity (i.e. H3K9/14-ac 

and H3K4-me3) (Gunther and Grundhoff, 2010; Toth et al., 2010).   Similarly, viral genes expressed 

during immediate-early (IE) or delayed-early (DE) phases of lytic reactivation are enriched in these 

markings (Figure 4.6A).  However IE/DE loci may or may not also bear coincident H3K27-me3 

enrichment; interpreted by the KSHV field as being epigenetically “bivalent” or “poised” (Gunther 

and Grundhoff, 2010; Knipe et al., 2013; Toth et al., 2010).  Whereas, viral genes expressed late 

during reactivation are generally exclusively enriched in heterochromatic H3K9/K27-me3.   

 Given the wide-scale deposition of nucleosomes in the latent KSHV genome, it is not 

surprising that cellular proteins involved in histone modification are also associated with the episome.  
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For instance the histone methyltransferase EZH2, a component of the Polycomb repressive complex 2 

(PRC2), co-localizes with H3K27-me3 across the KSHV genome.  EZH2 catalyzes the trimethylation 

of histone H3 lysine 27 which ultimately results in transcriptional repression (reviewed in (Simon and 

Kingston, 2009)), and in the viral genome EZH2 is similarly involved in the repression of lytic genes 

and lytic phase induction.  In fact, EZH2 is found to be highly expressed in KS tumors and inhibition 

of PRC2 by the small molecule 3-Deazaneplanocin A leads to reactivation of latent KSHV from PEL 

cells (He et al., 2012; Toth et al., 2010).  Moreover, EZH2 dissociation from certain regions of the 

KSHV genome (e.g. early lytic genes) occurs in a temporal fashion during reactivation.    

 JMJD2A, a member of the jmjC domain-containing histone demethylase family, also 

interacts with the KSHV genome during latency (Chang et al., 2011; Toth et al., 2010).  JmjC 

domain-containing histone demethylases catalyze demethylation of lysines on histones by an 

oxidative reaction that can remove all three histone methylation states (Hsia et al., 2010; Klose et al., 

2006).  The primary target of JMJD2A is the repressive H3K9-me3 histone mark, and hence JMJD2A 

is considered to be a transcriptional coactivator (Shin and Janknecht, 2007; Whetstine et al., 2006).   

JMJD2A binds across the KSHV genome, and is anti-correlated with H3K9-me3 enrichment during 

latency (Chang et al., 2011).   

 Interestingly, JMJD2A demethylase activity was found to be inhibited by the viral k-bZIP 

protein (encoded by the K8 ORF), the overexpression of which led to increased global and viral 

H3K9 trimethylation.  Interestingly k-bZIP is encoded by K8, the same region exhibiting bidirectional 

homology to LANApi/K14p (Figure 4.2, (Xu and Ganem, 2010)).  JMJD2A knock-down also led to 

increased lytic replication, however this was only after RTA expression was induced and no 

difference was observed in the basal latent state.  Collectively these data have led the field to suggest 

that JMJD2A binds at H3-ac or H3K4-me3 to prevent methylation of H3K27 and maintain a readied 

state for reactivation (Chang et al., 2011; Knipe et al., 2013; Toth et al., 2010).  However, while 

JMJD2A binding was observed in regions of the viral genome bearing such marks, to my knowledge 

no evidence of JMJD2A binding directly to H3-ac or H3K4-me3 has ever been shown.   
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 Another cellular protein called CTCF interacts with gammaherpesvirus (i.e. KSHV) genomes 

(reviewed in (Deng et al., 2012; Knipe et al., 2013)).  CTCF has been called the master weaver of the 

genome, and over 30,000 binding sites exist in the human genome (Kim et al., 2007; Phillips and 

Corces, 2009).  CTCF is ubiquitous, essential, and known binding sites are highly conserved among 

different cell types (Heath et al., 2008).  CTCF has well-established roles in chromatin folding and 

gene expression at several human loci including the MHC class II, the H19/Igf2, and the β-globin 

locus among others (reviewed in (Holwerda and de Laat, 2012)).  In addition to higher-order nuclear 

organization of genomes, CTCF regulation of transcription is versatile and can act locally at promoter 

regions or over large distances through chromosomal looping (Bell et al., 1999; Filippova et al., 1996; 

Lobanenkov et al., 1990).    

 ChIP combined with chromatin conformation capture (ChIA-PET) suggests that a subset of 

CTCF forms loops in the human genome, while another subset is involved in local gene regulation 

(Handoko et al., 2011).  In the human genome CTCF-mediated loops range from 10-200kb in size and 

can bring together enhancers and promoters and/or insulate active chromatin from inactive regions or 

vice versa.   In KSHV CTCF binding is widespread, and some CTCF-bound molecules are thought to 

participate in looping of the viral genome, regulating gene expression during cell cycling and latency, 

and/or programming RNA polymerase for transcription (Figure 4.6B; Figure 3.5; Table 3.2; (Chen et 

al., 2012a; Kang et al., 2013; Kang et al., 2011)).  In many cases in both the human and KSHV 

genomes CTCF binding is coincident with other factors, namely the Cohesin complex (Chen et al., 

2012a; Parelho et al., 2008; Rubio et al., 2008; Wendt et al., 2008). 

 The Cohesin complex has four subunits (SMC1, SMC3, SCC3, and RAD21) which form a 

ring like structure linking sister chromatids to ensure appropriate segregation during cellular division, 

with peak activity in S phase (reviewed in (Lee and Iyer, 2012; Nasmyth and Haering, 2009)).  

However, other roles for Cohesin are emerging including potential functions at centrosomes, in DNA 

double-strand break repair, and in transcriptional control at non-sister chromatids.  In KSHV shRNA 

knockdown of Cohesin subunits (but not CTCF) led to viral reactivation in BCBL1 PEL cells, and 
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moreover knockdown of the RAD21 subunit led to lytic gene induction and enrichment of activated 

PolII at lytic genes (Chen et al., 2012a).  Interestingly, nearly all CTCF-bound sites were also bound 

by Cohesin in KSHV; with the exception of three regions; (i) near the OriLyt-L, (ii) the K6/K7/PAN 

promoter regions, and (iii) within the miRNA locus.  

 CTCF is often found at DNase hypersensitive loci and at regions of nucleosome depletion 

(Parelho et al., 2008; Song et al., 2011), suggesting that CTCF binding prevents nucleosome 

deposition or alternatively that CTCF binding sites are refractory to nucleosome incorporation.  We 

found that a similar correlation existed between CTCF and nucleosome depletion across the KSHV 

genome (Figure 3.5; Table 3.2; Chapter III).  The work of the Lieberman group has shown that CTCF 

and Cohesin can modulate viral transcription, genome maintenance, and latent conformation (Chen et 

al., 2012a; Kang et al., 2013; Kang et al., 2011; Stedman et al., 2004; Stedman et al., 2008).  Our data 

refine the understanding of latent KSHV epigenetic regulation and suggest that CTCF may reside at 

regions of open chromatin to insulate genomic regulatory elements from transcriptional utility, 

prevent the spread of histone modifications, and/or regulate long range episomal interactions (Figure 

4.6B).    

 Most latent open chromatin is bound by CTCF, however we found that a large fraction 

(~25% in latent BC1) of nucleosome depleted regions in KSHV lacked CTCF binding during latency, 

indicating that at some viral loci, open chromatin is accessible to other transcription factors/PolII (see 

Table 3.2).  Many of these regions of accessible open chromatin mapped to annotated regions of the 

viral genome associated with latent transcription, such as the vIL-6 and constitutive LANA promoters 

(Chandriani and Ganem, 2010; Deng et al., 2002; Dittmer et al., 1998).  Some of the CTCF-free 

regions of latent open chromatin identified by FAIRE-Seq also contained binding sites for KSHV 

LANA or RTA, and hence may only be active in the presence/absence of these specific viral 

transactivators.  Interestingly LANA has both activating and suppressive effects on transcription as 

well as coupled binding between host and viral genomes (Ballestas and Kaye, 2011; Han et al., 2010; 

Renne et al., 2001), thus the nature of LANA binding at CTCF-free regions of open chromatin likely 
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has importance for our understanding of KSHV biology and pathology.   

 RNA production from the KSHV genome is complicated and incompletely characterized.  

Surprisingly; at least to me, analyses of viral mRNA production at the time of this writing have been 

limited to specific loci or performed using QPCR Arrays/Microarrays (Chandriani and Ganem, 2010; 

Chandriani et al., 2010; Dittmer, 2003; Dresang et al., 2011; Fakhari and Dittmer, 2002; Jenner et al., 

2001; Paulose-Murphy et al., 2001).  As of yet no unbiased RNA-Seq experiments have been 

performed on KSHV during latency nor during reactivation.   The KSHV genome generates several 

RNA species lacking polyadenylation, which have been detected by deep sequencing of small viral 

RNA’s; including mature miRNA’s (reviewed in (Gottwein, 2012)), antisense miRNA’s (miRNA-

AS), and miRNA-offset-RNA’s (moRNA’s) (Lin et al., 2010).   

 Classically, KSHV transcript production is divided into latent and lytic programs.  However, 

both infection patterns are disproportionately observed among populations of cells, and I expect that 

the viral life cycle is more of a balanced continuum; with latency and lytic infection being obvious 

pathological nodes and with intermediate phases being either too transient or too subtle to currently 

detect.  An inference which is supported by recent evidence of viral heterogeneity within single cells 

(Darst et al., 2013) and of novel viral transcript/peptide production (Chandriani and Ganem, 2010; 

Chandriani et al., 2010; Dresang et al., 2011; Jaber and Yuan, 2013).  That said data clearly shows 

that latent infection is associated with a restricted viral expression pattern relative to the lytic phase, 

and that the reversal of latency (i.e. lytic progression) proceeds in a coordinated temporal manner (see 

Chapter I).   

 Genome-wide studies of KSHV gene expression using limited dilution QPCR (Chandriani 

and Ganem, 2010) or high-resolution mass spectrometry (Dresang et al., 2011) coupled with tiling 

arrays indicate that latent viral transcription and protein production is likely more widespread than 

previously appreciated.  Further, during reactivation nearly the entire KSHV genome is transcribed on 

both sense and antisense strands, to generate a multitude of viral RNA and protein species 

(Chandriani et al., 2010; Dresang et al., 2011).  ChIP-chip analysis of RNA polymerase II association 
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with the KSHV genome supports these notions, with substantial PolII enrichment not only at the 

latency locus and vIRF-3, but also at the OriLyt’s and near the ORF’s of K5,K6, and K7 during 

latency (Toth et al., 2012).  PolII enrichment was increased at these loci 8 hours post lytic 

reactivation, (using Doxycycline in TREx-BCBL1 RTA cells) as well as at most other regions of the 

viral genome.  The carboxy–terminal domain (CTD) tail of PolII at the OriLyt-L, K5, K6, and K7 

(OriLyt-K7) was found to be enriched in serine 5 phosphorylation and depleted in serine 2 

phosphorylation during latency; which was interpreted by the authors to be “stalled” polymerase 

(Figure 4.6C; (Toth et al., 2012)).  Exogenous inhibition of cellular NELF released the stalled PolII 

and induced productive transcription at the OriLyt-K7 region suggesting that KSHV may have 

alternative transcription patterns outside of conventional latency and reactivation, which can occur 

independently of RTA/LANA transactivation.   

 

Local Epigenetic Modifications and DNA Methylation in the KSHV Genome 

 Although many of the epigenetic regulatory mechanisms outlined below may very well be in 

play across the viral genome, they have (at the time of this writing) been characterized only at single, 

or a few viral loci.   While this is not technically the case for DNA methylation, there is some 

ambiguity surrounding the role of DNA methylation in KSHV gene expression.  Further only one 

genome-wide analysis of KSHV DNA methylation has been performed (Gunther and Grundhoff, 

2010); which suggested that DNA methylation plays a minor role in epigenetic regulation of KSHV, 

long after the onset of stable latency.   Thus I have included an overview of these local epigenetic 

modifications and of viral DNA methylation in this separate subsection.   

 One such protein that has been shown to interact with a handful of viral loci is a human 

methyltransferase called Set1.  The conserved Set1 complex (Set1A; Set1 hereafter) is composed of 

several subunits which deposit methylation marks to H3K4 residues (reviewed in (Shilatifard, 2012)).  

Set1 recruitment was found to occur as several KSHV promoters including RTA, PAN, ORF 57, 

LANA, and also at the OriLyt’s following viral reactivation in a Doxycycline-inducible RTA cell line 
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called TREx-BCBL1 RTA (Jong et al., 2013).  This enrichment was coincident with increases in 

H3K4-me3 enrichment and was taken to indicate that Set1 catalyzes enhanced H3K4 trimethylation, 

and hence aids in transcriptional activation of lytic viral loci during reactivation.   

 One report also indicates that the KRAB domain-associated protein-1 (KAP-1) associates 

with several KSHV promoters during latency (Chang et al., 2009).  This protein interacts with 

SETDB1 and HP1, as well as other proteins (Ryan et al., 1999; Schultz et al., 2002) to generate 

heterochromatic signatures in genomic DNA.  Knockdown of KAP-1 was shown to enhance KSHV 

lytic replication and moreover the association between this protein and select viral loci was abolished 

with the onset of lytic phase (Chang et al., 2009).  Chang et al., also found that the viral protein 

kinase, encoded by KSHV ORF 36, targeted KAP-1 to relieve its repressive effect on lytic genes.   

 The RTA promoter is also subject to epigenetic modifications, alterations in which can lead 

to viral reactivation (Figure 4.6D).  KSHV can be reactivated by HDAC inhibitors such as sodium 

butyrate and trichostatin A, chemicals which cause dissociation of HDAC’s from the RTA promoter 

(Lu et al., 2003; Sun et al., 1996), as well as valproic acid and vorinostat ((Lechowicz et al., 2009); 

Chugh, Dittmer, personal communication).  The RTA promoter is also decorated with EZH2, and 

repressive H3K27-me3, both of which also dissociate during reactivation (Toth et al., 2010).  Once 

RTA expression occurs the protein physically interacts with chromatin remodelers such as the 

Swi/Snf and TRAP-mediator complexes, to chaperone these elements to lytic viral promoters, 

including the RTA promoter (Gwack et al., 2003a; Lu et al., 2003).  Subsequently RTA can positively 

autoregulate its own promoter through interaction with RBPjκ, and Oct1 (Deng et al., 2000; Lu et al., 

2012b; Sakakibara et al., 2001).  In addition, siRNA knockdown of a cellular kinase called Tousled-

like kinase 2 (TLK2) leads to a reduction in phospho-histone H3 at the RTA promoter and 

reactivation of KSHV from latency (Dillon et al., 2013).  

  RTA expression also induces synthesis of the viral noncoding PAN RNA.  PAN is capable of 

physical interaction with the H3K27 demethylases JMJD3 and UTX, and this interaction directs 

JMJD3 and UTX to the RTA promoter to augment RTA synthesis during reactivation (Rossetto and 
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Pari, 2012).   Rossetto and Pari also showed that the KSHV PAN RNA physically associates with the 

H3K4 methylase, MLL2; however a direct interaction between MLL2 and the RTA promoter/KSHV 

genome was not demonstrated.  In addition to the PAN RNA, viral proteins, including RTA and 

LANA, interact with chromatin remodelers.   

 RTA interacts with CREB-binding protein (CBP) and HDAC1 and these proteins, as well as 

the histone acetyltransferase p300, were found to modulate RTA expression levels (Gwack et al., 

2001).  KSHV LANA interacts with chromatin at the viral TR’s and within the host genome to 

faithfully maintain the viral episome during latency (reviewed in (Ballestas and Kaye, 2011; Ohsaki 

and Ueda, 2012; Tempera and Lieberman, 2010)).  Specifically LANA interacts with chromatin 

regulatory proteins including CBP, RING3, HBO1, mSin3, SUV39H1, and HP1, as well as cellular 

replication proteins ORC1 and MCM2 (Krithivas et al., 2002; Krithivas et al., 2000; Lim et al., 2001; 

Platt et al., 1999; Sakakibara et al., 2004; Stedman et al., 2004; Tempera and Lieberman, 2010).  

However, these interactions have largely only been characterized at the viral TR’s, leading to 

ambiguity regarding the effects at other viral and human loci.   

 LANA also associates with cellular proteins involved in DNA methylation including the 

methyl-cytosine binding protein MeCP2 (Krithivas et al., 2002; Matsumura et al., 2010) and the DNA 

methyltransferase DNMT3A (Shamay et al., 2006).  The role of DNA methylation (which is generally 

considered a hallmark of transcriptional repression) in KSHV is unclear.  Relative to alpha and 

betaherpesviruses the KSHV genome exhibits CpG suppression indicating that methylation of CpG 

residues occurs.  Further, treatment of latent PEL cells with inhibitors of DNA methylation leads to 

demethylation of the RTA promoter region and subsequent viral reactivation (Chen et al., 2001).  

 That said, the establishment of KSHV latency does not seem to be dependent upon DNA 

methylation of the viral genome (Gunther and Grundhoff, 2010).  Instead DNA methylation appears 

to occur gradually, long after de novo infection, after KSHV episomes are stably latent and 

transcriptionally restricted relative to lytic infection.  It has been suggested that this gradual 

deposition of DNA methylation may help to prevent reactivation of “older” episomes within infected 
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cells, however this speculation has not been addressed experimentally and the precise function of 

DNA methylation across the KSHV genome is not entirely clear.     

 

Addressing the Missing Links in a Functional KSHV Epigenetic Atlas 

 While work by us and others has revealed important information about KSHV transcriptional, 

oncogenic, and epigenetic regulatory mechanisms, there is still a great deal that remains unknown.  

For instance how KSHV is programmed for latency after de novo infection is not understood.  We 

know that a short burst of lytic gene induction occurs but that this is rapidly silenced coincident with 

the expression of genes from the latency cluster (i.e. LANA) within 5 days post-infection (Krishnan et 

al., 2004).  The mechanisms which underlie this silencing are not known, but we do know that 

nucleosome incorporation into the viral genome (in endothelial cells) also occurs within 5 days post-

infection whereas DNA methylation takes much longer (Gunther and Grundhoff, 2010).  I suspect 

CTCF is likely also involved in early viral/host gene modulation.  I predict that this probably silences 

local regulatory elements, causes conformational changes in the viral genome, zips the episome to 

host chromatin, and also localizes the episome to specific compartments within the nucleus.  Given 

the ubiquity and known roles of CTCF this notion seems plausible, but remains untested (reviewed in 

(Holwerda and de Laat, 2012)).  

 There is also limited understanding of how the virus manipulates the host cell during 

infection, and moreover if this manipulation is differential dependent upon infected cell lineage (i.e. B 

cell vs. Endothelial cell).  In vivo and in vitro studies demonstrate important phenotypic differences in 

the virus dependent upon infected host cell type (reviewed in (Ganem, 2010); see Section 4.4).  

Experimental evidence also indicates that viral genes and RNA’s from both lytic and latent infection 

patterns modulate the host cell (Ballestas and Kaye, 2011; Gottwein, 2012; Guito and Lukac, 2012; 

Haecker et al., 2012; Lee et al., 2012; Lu et al., 2012a; Yada et al., 2006); however a clear atlas of 

cellular (and viral) modulation is lacking.  Hence our understanding of KSHV, and of infected host 
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cell regulation, requires refinement in order to comprehensively and therapeutically addresses KSHV 

pathology.   

 I have considered a few ways in which some of these missing links might be addressed 

experimentally here and also in Section 4.4 (shown schematically in Figure 4.7).  The profile of open 

chromatin undertaken in Chapter III represents a small component of this potential atlas, and begins 

to address the tip of the KSHV epigenetic programming iceberg.   The way I initially designed the 

project was to use both KSHV-infected and non-infected syngenic control cells (Figure 4.7A).  

FAIRE-Seq would be used to generate a map of potential regulatory elements in the viral and cellular 

genomes and would be performed in parallel with non-polyA selected RNA-Seq and with ChIP-Seq 

for cellular and viral proteins.  In this way alterations in viral and cellular transcripts and in transcript 

abundance could be mapped back to differential FAIRE signal intensities (i.e. differences in 

nucleosomal positioning).   

 To potentially integrate the functional relevance of transcription factor occupancy the 

analysis would benefit from the tandem ChIP-Seq for proteins with likely roles in cellular/viral 

programming, such as CTCF or LANA (or other pre-determined candidates).  Importantly, while 

preparing the cells used for FAIRE-Seq analysis of open chromatin profiling (Chapter III), I also 

collected cell pellets for experiment-matched RNA-Seq and ChIP-Seq analyses.  A long term 

experimental vision could extend these analyses beyond latent infection to encompass all phases of 

the viral life cycle.  This could generate a functional atlas with temporal meaning; from de novo 

KSHV infection through complete viral reactivation.  ChIP-Seq reactions could also be coupled with 

ChIA-PET to generate a contextual understanding of viral genome conformation.    

 The use of KSHV-infected and non-infected syngenic control cells would allow one to 

correlate the cellular changes associated with KSHV latency.  In addition, by using infected/non-

infected syngenic cell types of B and Endothelial lineage (BJAB/HUVEC +/- Latent KSHV) one 

would ideally be able to discern cell type-specific differences that were due solely to viral infection.  

This approach would be complemented and controlled by the use of ex-vivo PEL B cell lines (i.e. 
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BCBL1) and a model for latent KSHV endothelial infection (L1 TIVE; (An et al., 2006)).  By 

comparing the overlap between cellular loci altered by latent viral infection with those shared among 

latently infected ex-vivo or model cells, one could identify bona fide cellular loci modified by KSHV 

infection for a given assay (FAIRE/ChIP/RNA-Seq) as shown in Figure 4.7B.  The resulting overlaps 

could then be compared in order to generate a functional atlas of cell type-specific and global 

regulation in infected host cells (Figure 4.7C), and through simpler application and analysis a similar 

atlas could be derived for the KSHV genome with the same dataset.  

 

4.4 Connecting the Dots; Open Chromatin:CTCF:Cohesin:RTA:LANA 

 

Programmed Nucleosome Depletion and an Open Chromatin Code in the KSHV Genome 

 Our results characterizing open chromatin across the latent KSHV genome indicated that 

CTCF binding (Chen et al., 2012a) occupied the majority of nucleosome depleted regions (Figure 3.5, 

Table 3.2).  This is not unexpected given the concordance between CTCF binding and nucleosome 

depletion in the human genome (Parelho et al., 2008; Song et al., 2011).  Moreover, recent evidence 

suggests that CTCF can displace and alternatively phase nucleosomes within the latency locus of the 

KSHV genome (Kang et al., 2013).  In this final section of my dissertation I have attempted to 

integrate the literature and our results to further reflect on potential extensions to our studies and on 

important gaps in our understanding of KSHV transcriptional and conformation control.   

 In the human genome a so-called “CTCF code” (Ohlsson et al., 2010b) is predicted to exist 

which could explain how the various functions (insulation vs. activation vs. looping) of CTCF are 

coordinated at specific sites.  I expect that a similar code exists for long-lived coexistent DNA viruses 

like KSHV.  Although CTCF enrichment was found at most regions of latent viral nucleosome 

depletion, a large fraction of open chromatin was CTCF-free and was observed at important viral loci.  

This has led me to speculate that regions of viral open chromatin may be programmed for latency and 

that the resulting “open chromatin code” could direct viral transcription and genome conformation.   
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 The CTCF protein is capable of directly repressing and activating transcription at promoters 

(Filippova et al., 1996; Yang et al., 1999).   CTCF interactions also generate long-range effects on 

gene regulation and epigenetic topology through looping of DNA and positioning of the genome 

within the nucleus (Dixon et al., 2012; Guelen et al., 2008; Handoko et al., 2011).  It is thought that in 

mammalian genomes CTCF looping and conformational effects can bridge promoters with 

enhancers/insulators and create boundaries between conflicting histone marks delineating 

transcriptionally active loci from those which are transcriptionally repressed (reviewed in (Holwerda 

and de Laat, 2012; Ohlsson et al., 2010a; Ohlsson et al., 2010b)).  CTCF associates with several 

proteins, including itself, to coordinate these effects.  Notably CTCF associates with the large subunit 

of PolII in the human genome and this relationship is thought to serve several roles in programming 

local transcription (Chernukhin et al., 2007).  This mechanism is complicated by interactions between 

CTCF and other transcription factors; as well as between inhibitors of transcriptional elongation, such 

as NELF (Egloff et al., 2009; Ohlsson et al., 2010b).   

 One of the most well characterized interacting partners of CTCF is the Cohesin complex.  

CTCF binds to a specific region of the Cohesin subunit SCC3 (SA2; (Xiao et al., 2011)) and this 

interaction is required for CTCF/Cohesin insulator function.  In the presence of CTCF, Cohesin 

binding across human chromosomes occurs at specific locations whereas without CTCF, Cohesin 

binding occurs non-specifically; indicating that CTCF positions Cohesin on human chromatin 

(Parelho et al., 2008; Rubio et al., 2008; Wendt et al., 2008).  Tens of thousands of CTCF binding 

sites occur in the human genome, yet only a fraction of CTCF-bound genomic DNA is looped 

(Handoko et al., 2011) suggesting that the functional outcome of CTCF binding might be determined 

by associated cofactors and/or cis binding site architecture. 

 As work by Lieberman and colleagues showed the binding profile of CTCF in KSHV B Cells 

is widespread (see Figure 3.5; Table 3.2; (Chen et al., 2012a)).  Chen et al. showed in 2012 that 

knockdown of CTCF by shRNA disrupted Cohesin binding but did not significantly alter histones, 

PolII, or transcription at lytic genes (ORF50; RTA).  However, shRNA-mediated loss of Cohesin 
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(specifically the Rad21 subunit) led to alterations in enrichment of transcriptionally permissive 

histones and PolII at the Lytic Control Region which did result in RTA expression and viral 

reactivation (Chen et al., 2012a).  Furthermore, reductions in global CTCF levels, or mutation of 

CTCF binding sites within the viral latency locus have been repeatedly found to disrupt episomal 

maintenance (Kang et al., 2013; Kang and Lieberman, 2009; Kang et al., 2011; Stedman et al., 2008) 

potentially suggesting separate roles for CTCF and Cohesin in genome maintenance and viral 

transcriptional repression respectively.    Although roles for Cohesin independent of CTCF have been 

identified (Kagey et al., 2010; Schmidt et al., 2010) this result is a little difficult to understand given 

the necessity of CTCF for appropriate Cohesin positioning in the human and viral genomes (Chen et 

al., 2012a; Kang and Lieberman, 2009; Kang et al., 2011; Parelho et al., 2008; Rubio et al., 2008; 

Wendt et al., 2008).  Furthermore a direct interaction has been established between CTCF and PolII 

(Chernukhin et al., 2007), whereas Cohesin is not known to directly inhibit PolII, but has been found 

to interact with NELF to prevent PolII elongation at some loci (Fay et al., 2011).   

  In latent BC1 PEL cells 75% (18 of 24) of FAIRE-Seq identified regions of open chromatin 

overlapped published regions of latent CTCF ChIP-Seq enrichment (Chen et al., 2012a).  CTCF and 

Cohesin co-localize at all but 3 regions on the latent KSHV genome, at which CTCF enrichment 

occurs in the absence of Cohesin  (Chen et al., 2012a).  We found latent nucleosome depletion at all 3 

of these loci; overlapping the K4.2p/OriLyt-L, upstream of the K7 ORF, and overlapping the OriLyt-

R/ALTp (Table 3.2).  The remaining 25% of regions of latent BC1 open chromatin were not bound by 

CTCF/Cohesin, but some did contain LANA ChIP-Seq enrichment or RTA Response Elements 

(RRE’S).  Collectively this data suggests that latent viral open chromatin can be CTCF-free or 

enriched in CTCF/Cohesin or CTCF alone; these states can occur with and without LANA and RTA 

recognition sites.  The potential links between these permutations and control of KSHV 

transcriptional and conformational are discussed below.   

Interpreting the Code: KSHV Transcription 
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 All regions of latent open chromatin identified by FAIRE-Seq in BC1 were shared or 

conserved in other KSHV episomes examined (Table 3.3).  This includes the 18 of 24 (75%) regions 

adjacent to histones associated with transcriptional activity (H3K9/K14-ac and/or H3K4-me3; Table 

3.3; Figure 3.3; (Gunther and Grundhoff, 2010)).  This also includes the 6 regions of open chromatin 

not near these histone marks, which mapped to spliced introns (n=3) or control regions for DE virally 

encoded DNA replication proteins (e.g. ORF’s 9, 39, and 40/41) and all of which were bound by 

CTCF/Cohesin.  A similar trend in proximity was not clear for the facultative heterochromatic 

H3K27-me3 marks, and no regions of nucleosome depletion were within 250bp of the constitutive 

heterochromatic mark H3K9-me3 using a stringent enrichment cutoff of 3 Std. deviations above 

baseline from Gunther and Grundhoff , 2010 “Dataset S1” (Gunther and Grundhoff, 2010).  Overall 

this indicates that the regions of latent open chromatin which are associated with transcription during 

the viral life cycle (i.e. non-intronic), occur near “active” histones signatures, while regions of 

intronic and intragenic open chromatin do not (Table 3.2).  Most of these H3-ac/H3K4-me3 proximal 

latent nucleosome depleted regions also contain CTCF, but some remain CTCF-free during latency. 

  

Transcriptional Utility of CTCF-Free Open Chromatin  

 All CTCF-free regions of nucleosome depletion also lacked Cohesin but were proximal to 

H3K9/K14-ac and/or H3K4-me3.  This includes the vIL-6 region and the constitutive LANApc 

(Table 3.2), each of which generates latent transcripts (Chandriani and Ganem, 2010; Deng et al., 

2002; Dittmer et al., 1998), and hence represent a class of regulatory elements freely available for 

productive transcription during KSHV latency.  Two other CTCF-free regions of open chromatin 

contained binding sites for KSHV LANA as determined by ChIP-Seq (Chen et al., 2012a); one 

intergenic to the KSHV noncoding PAN RNA, and one between of KSHV ORF’s 75 (a viral 

tegument protein) and K15 (a viral transmembrane signaling protein).  Both OriLyt’s also contained 

CTCF-free open chromatin.  At OriLyt-R nucleosome depletion overlapped with the RTA-inducible 

K12p.   
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 In fact 3 out of 6 CTCF-free regions of latent open chromatin overlapped with annotated 

RTA Response Elements (RRE’s; Table 3.2).  This occurred at the vIL-6p (Deng et al., 2002), 

K12p/OriLyt-R, and OriLyt-L (Chen et al., 2009) regions.  While these regions are transcriptionally 

accessible during latency they likely require RTA for basal and/or inducible gene expression, and this 

has been observed at each of these loci (AuCoin et al., 2004; Cai and Cullen, 2006; Li et al., 2002; 

Wang et al., 2006b).  The nature of LANA binding to CTCF-free open chromatin during latency is 

unclear.  LANA can positively and negatively regulate transcription and also regulates viral genome 

maintenance through interaction with host chromatin (reviewed in (Ballestas and Kaye, 2011)).  

LANA-enriched CTCF-free open chromatin was found intergenic to KSHV PAN RNA, but 

interestingly only in ex vivo cultured PEL BC1 and BCBL1 cell lines (Table 3.3; (Cesarman et al., 

1995b; Komanduri et al., 1996)).  LANA-enriched CTCF-free open chromatin also occurred between 

KSHV ORF’s 75 and K15, and in all viral isolates examined.  ORF 75 and K15 expression have been 

detected during latency (Chandriani and Ganem, 2010; Wong and Damania, 2006), and moreover 

transcription of the K15 ORF can read through to give rise to ORF 75 (Glenn et al., 1999).  However 

the function of LANA enrichment at CTCF-free nucleosome depleted regions is unknown.   

 In sum accessible CTCF-free regions of latent open chromatin occur near H3K9/K14-ac 

and/or H3K4-me3 and may be constitutively transcriptionally active (vIL-6/LANApc), or may require 

interaction with viral cofactors such as RTA or LANA, for transcriptional activity (OriLyt’s/K12p 

and PAN/ORF 75/K15 respectively).  Constitutively active regions of CTCF-free open chromatin are 

conserved and those regions interacting with viral cofactors, such as LANA and/or RTA, display a 

degree of variability in relation to viral isolate (Table 3.3).  The functional consequences of LANA 

binding at open chromatin in the absence of CTCF during latency are unknown but could be related to 

episomal transcription and/or conformation.   

 

Transcriptional Utility of CTCF-Enriched Open Chromatin 
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 Chen et al., 2012 found that regions of latent open chromatin which contained CTCF were 

also enriched with Cohesin at all but three loci in BCBL1 cells.   These three loci corresponded to the 

OriLyt-L, K7p, and OriLyt-R/ALTp regions, all of which also contained binding sites for RTA 

((Chen et al., 2009; Deng et al., 2002); Table 3.2).  Each of these regions is also enriched in RNA 

PolII during latency, the occupancy of which increases during reactivation (Toth et al., 2012).  Toth et 

al., 2012 showed that at OriLyt-L and the K7p, the cellular NELF complex inhibited stalled PolII 

elongation and other reports have found evidence of NELF and PolII pausing at the K12p/OriLyt-R 

region of open chromatin (Kang et al., 2013).  Hence all three regions of latent open chromatin which 

contain CTCF but not Cohesin also contain PolII occupancy during latency.  All three also contain 

RRE’s and were conserved among viral isolates (Tables 3.2 and 3.3).  This suggests that CTCF-

bound open chromatin lacking Cohesin may be poised for RTA during latency (Figure 4.8B).   

 CTCF and Cohesin co-occupied 15 of 24 (~58%) FAIRE peaks in latent BC1 cells.  These 15 

regions of open chromatin were proximal (n=9) or distal (n=6) to H3ac and/or H3K4-me3 (Table 3.2; 

(Gunther and Grundhoff, 2010)) 5 of the 9 (~56%) CTCF/Cohesin-enriched latent FAIRE peaks 

proximal to H3-ac/H3K4-me3 also contained RRE’s (Chen et al., 2009; Deng et al., 2002) and most 

occurred at annotated lytic promoter regions.  The 6 regions of CTCF/Cohesin-enriched open 

chromatin distal to H3-ac/H3K4-me3 occurred in intragenic/intron regions (5/6) or and near KSHV 

ORF39/40-41 (viral glycoprotein/helicase-primase, respectively) in B cells (Tables 3.2 and 3.3).  This 

data indicates that regions of open chromatin which contain CTCF and Cohesin during latency can be 

sub-classified based upon proximity to H3-ac/H3K4-me3.  Those near H3-ac/H3K4-me3 largely map 

to lytic promoter regions, many of which also contain RRE’s (Figure 4.8C).  Those distal to H3-

ac/H3K4-me3 occur within introns and at intragenic regions, and at a promoter region identified as 

open chromatin only in infected B cells (Figure 4.8D) 

 Together the data indicates that CTCF-free, accessible latent open chromatin occurs at 

transcriptionally active latent loci (vIL-6p; LANApc) and at other loci which may or may not require 

viral cofactors for utility (i.e. RTA and LANA).  CTCF-enriched open chromatin occurs in the 
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absence of Cohesin at loci poised with stalled PolII (such at the OriLyt’s, K7p, and ALTp).  CTCF-

enriched open chromatin which also contains Cohesin during latency can be sub-classified based on 

proximity to H3-ac/H3K4-me3.  CTCF/Cohesin-enriched latent open chromatin near H3-ac/H3K4-

me3 occurs at lytic promoter regions, many of which contain RRE’s.  CTCF/Cohesin-enriched latent 

open chromatin distal to H3-ac/H3K4-me3 largely occurs at intronic/intragenic regions as 

summarized in Figure 4.8. 

 

Interpreting the Code: KSHV Genome Conformation and Replication 

 Loss of CTCF has less dramatic transcriptional effects than loss of Cohesin (Chen et al., 

2012a; Kang et al., 2011).  However, loss of CTCF (or binding sites within the latency locus) in 

KSHV leads to instability in viral genome maintenance and similar effects are observed in the related 

herpesvirus Samiri (HVS) (Chen et al., 2012a; Kang et al., 2013; Kang and Lieberman, 2009; Kang et 

al., 2011; Stedman et al., 2008; Zielke et al., 2012)).  The CTCF binding sites in the KSHV latency 

locus are thought to generate CTCF/Cohesin mediated intra-episomal looping in the viral genome 

(Kang et al., 2011).  One loop was found between this region and a downstream region near the K12 

ORF (Figure 4.9A).  This loop potentially directs the programming of latent PolII at the latency locus 

(Kang et al., 2013).  A second inter-episomal loop originating from this major CTCF/Cohesin peak in 

the latency locus is thought to physically link the latency locus with the Lytic Control Region (i.e. 

near ORF50/RTA).   Thus two CTCF/Cohesin-mediated loops are thought to connect the first LANA 

intron to either (i) the K12p region or (ii) the RTA promoter region (Figure 4.9B and C).  Although 

CTCF and Cohesin may have functionally distinct roles in the human and KSHV genomes they work 

together to modulate transcription and also long-range conformation.  How specificity between long-

range vs. short-range CTCF/Cohesin effects is determined is unclear.  How this is coupled to viral 

proteins expression (i.e. LANA/RTA), viral genome replication, and the nuclear geography are all 

unknown questions that I have considered in the following section. 
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 The KSHV LANA protein is involved in viral genome maintenance and conformation 

(Chapter I; reviewed in (Ballestas and Kaye, 2011; Deng et al., 2012)).  The LANA C-terminus is 

responsible for LANA multimerization and DNA binding, both of which are necessary for binding at 

the KSHV TR’s (Ballestas et al., 1999; Ballestas and Kaye, 2001; Garber et al., 2002; Kelley-Clarke 

et al., 2009; Komatsu et al., 2004; Schwam et al., 2000).  The LANA N-terminus represents the 

dominant chromosome attachment region and binds to host chromosomes through interacting with an 

acidic patch at the interface of histone H2A and H2B (Barbera et al., 2006).  The simultaneous 

contacts between viral TR’s and host chromosomes, allow the LANA protein to tether the viral 

genome and ensure efficient persistence of the latent extra-chromosomal KSHV genome (Figure 

4.10A).   

 We found latent open chromatin at the regions involved in CTCF/Cohesin long-range 

episomal interactions between the latency locus and either the K12 region or the Lytic Control Region 

(Table 3.2; (Kang et al., 2011)).  All of these loci contain RRE’s, and the first LANA intron (near the 

inducible LANApi) also contains LANA enrichment during latency (Figure 4.10B; Table 3.2).  

Regions of CTCF enrichment that lack Cohesin (Figure 4.9B) do not appear to be involved in looping 

interactions (Chen et al., 2012a; Kang et al., 2011).  LANA bound at two regions of CTCF-free latent 

open chromatin.  One occurred only in ex vivo PEL lines intragenic to KSHV PAN, and the other 

occurred in all cell lines between KSHV ORF75/K15.   CTCF-free LANA-enriched latent open 

chromatin exhibited some evidence of long range interaction in chromatin conformation analysis 

(Figure 4.9C; (Kang et al., 2011)); however the use of very specific primer sets and restriction 

fragments for 3C analysis limits interpretation to small sections of viral genome only.   Since these 

regions are nucleosome depleted (and thus lack H2A/H2B) I believe this LANA enrichment likely 

reflects C-terminal LANA DNA binding.  C-terminal LANA can modulate transcription and also bind 

TR DNA and binding at these two loci may specify latent transcriptional modulation and/or long-

range episomal contacts independent of CTCF/Cohesin (Figure 4.10C).   
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 12 remaining CTCF/Cohesin-enriched FAIRE-Seq identified open chromatin regions were 

found in BC1 (Table 3.2), and all were shared in other viral isolates (Table 3.3).  These regions occur 

proximal and distal to H3-ac/H3K4-me3, and may or may not contain and RRE or LANA binding.  

Given the limited 3C analysis and the known functions of CTCF/Cohesin in the human and viral 

genomes, it is possible that these remaining CTCF/Cohesin-enriched regions of open chromatin form 

other long range interactions during latency.  These could be inter-episomal or between the episome 

and host chromosomes (Figure 4.10D).   

  In latently infected cells the viral genome replicates from the TR’s, this is dependent upon 

LANA and occurs in concert with cell division to maintain appropriate ratios of persistent latent 

episomes (Garber et al., 2002; Grundhoff and Ganem, 2003; Hu et al., 2002; Hu and Renne, 2005; 

Stedman et al., 2004; Verma et al., 2006; Verma et al., 2007a).  Other reports suggest alternative 

regions of viral replication during latency (Verma et al., 2007b; Verma et al., 2011), however the 

results of these studies are dubious and intentionally ambiguous in my opinion.  

 Regions of CTCF-free and CTCF-enriched open chromatin (without Cohesin) were also 

found at both KSHV lytic replications during latency (Table 3.2).  RTA-mediated transcription at the 

OriLyt’s is required for lytic genome amplification (AuCoin et al., 2004; Wang et al., 2006b) and 

stalled PolII enrichment during latency has been observed at both OriLyt regions (Kang et al., 2013; 

Toth et al., 2012).  RTA activation at these regions, and at other CTCF/Cohesin-enriched latent open 

chromatin (Figure 4.10D) could serve to “unzip” the viral episome from the host chromosome and/or 

“unfold” inter-episomal interactions during lytic reactivation (Figure 4.13).  This model would link 

RTA-induced transcription and genome replication and would allow for the replication of linearized 

and non-chromatin zed viral genomes for subsequent incorporation into virions during reactivation.  

 CTCF is also capable of coordinating the nuclear geography, and positioning transcriptionally 

inactive regions near nuclear Lamina-Associated Domains (LAD’s; reviewed in (Holwerda and de 

Laat, 2012)).  A long-term vision could include an investigation of the 3D positioning of KSHV 

episomes the nucleus.  I predict nucleosome depleted regions of the viral genome bearing 
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CTCF/Cohesin will be enriched in long-range contacts (inter-episomally and with host CTCF sites) 

and localized to LAD’s, whereas open chromatin elements without CTCF and Cohesin will be 

localized to transcriptionally active regions of the nuclear landscape; such as so called “transcription 

factories”. 

 Together the data demonstrate that CTCF, Cohesin, and LANA assemble at the TR to 

replicate and tether the viral genome to host chromosomes during latency (Figure 4.10A).  

CTCF/Cohesin co-localize with LANA at open chromatin near the first LANA intron and are thought 

physically link this region with the K12p or Lytic Control Region during latency (Figure 4.10B).  

LANA-enrichment also occurs at two CTCF-free nucleosome depleted regions in the latent episome 

and may be involved in CTCF-free loops (Figure 4.10C).  LANA binds at over 250 cellular loci (Lu 

et al., 2012a) and hence these loci could potentially couple the viral genome to host chromatin outside 

of the TR’s (Figure 4.10C).  Other CTCF/Cohesin-enriched regions of latent open chromatin are 

shared among viral episomes (Tables 3.2 and 3.3), and could be involved in “zipping” the viral 

genome to host chromatin (Figure 4.10D).    

 Many regions of open chromatin enriched in CTCF also contain RTA binding sites; including 

both OriLyt’s.  This suggests that RTA-mediated induction could displace CTCF to transcribe and 

replicate the lytic genome.  In support of this hypothesis, CTCF and Cohesin dissociate from the 

KSHV genome early during reactivation (Chen et al., 2012a; Kang et al., 2011); a phenomenon which 

also occurs in HSV (Ertel et al., 2012). In HSV this effect is transcription-dependent, and in KSHV 

lytic reactivation also requires lytic transcription (Lin et al., 2003).  Better conformational analyses 

are needed to distinguish inter/intra-episomal vs. episomal/host chromosomal interactions. CTCF 

could also topologically position latent viral open chromatin in specific sub-nuclear compartments to 

prevent aberrant lytic induction; while CTCF-free chromatin could remain transcriptionally 

accessible.  Understanding how LANA and RTA interact with CTCF, and if CTCF mediates long 

range interactions between latent episomes and host chromatin are important unknown questions in 

the field.   
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Ghost(s) in the Machine: Potential Variance Associated with Cell Type, Cell Division, and 

Heterogeneic KSHV Genomes 

 Other unknowns in KSHV biology include (i) the observed phenotypic and morphological 

differences between KSHV infected B cells and endothelial cells; and (ii) the consistently observed 

low levels lytic gene expression in KSHV cultures and tumors.  In this sub-section I have considered 

how these unknowns could relate to open chromatin, cell division, and viral heterogeneity in single 

cells.   

 The primary in vivo target of KSHV is the B cell, and in immuno-competent hosts this is 

where the virus is localized (Ambroziak et al., 1995).  The virus can also infect endothelial cells in 

vivo, such as KS lesion-associated spindle cells and others (Dupin et al., 1999; Parravicini et al., 

1997).  In vitro KSHV infection is counter-intuitive; KSHV cannot infect most established B cell 

lines, but can infect a variety of adherent cells in vitro (reviewed in (Ganem, 2010)), which alters 

their morphology.  Moreover, while B cells can be cultured ex vivo, primary endothelial cells rapidly 

lose KSHV in culture.   

 Infected B cells also exhibit higher rates of spontaneous KSHV reactivation, better lytic 

induction, and higher episomal copy numbers than endothelial culture models (An et al., 2006; Renne 

et al., 1996b), as well as different levels of global gene expression during both viral replication phases 

(Chandriani and Ganem, 2010; Chandriani et al., 2010).  In addition some viral genes are latently 

expressed only in B cells (i.e. vIRF-3; (Rivas et al., 2001)), and other transcripts can exhibit variable 

promoter usage in BC1 vs. BCBL1 PEL cells (i.e. K12; (Li et al., 2002)).  Thus differences in 

morphology, phenotype, and gene expression patterns are observed among and between infected B 

cell and endothelial lineages.    

 As of yet there is no clear explanation for these differences.  However some interesting cell 

type-specific differences in the nucleosome depletion of latent episomes have emerged.  Some 

regions of latent nucleosome depletion were observed only in B cells.  Open chromatin at the 
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promoters of virally encoded genome replication/tegument proteins (ORF’s 39/40/41 and ORF 45, 

respectively) and encompassing viral miRNA’s 5-2 (121605-121917nt), was identified in all B cell 

derived KSHV genomes, but was absent in the endothelial lineage.   In addition, latent open 

chromatin intragenic to KSHV PAN was observed only in ex vivo PEL lines (BC1/BCBL1).  This 

region was unique in that KSHV LANA is localized here in the absence of CTCF/Cohesin during 

latency.  Open chromatin at these B cell specific loci could have transcriptional and conformation 

effects.  This could include differential availability of regulatory elements at promoters encoding viral 

DNA replication and tegument proteins (ORF40-41 and ORF45, respectively) and altered access of 

KSHV LANA to CTCF-free open chromatin intragenic to KSHV PAN.    

 While latent episomes from endothelial cells had unique open chromatin regions (Figure 

3.5B) nucleosome depletion that was observed in both endothelial cell lines was also present in B 

cells.  That is; no endothelial-specific nucleosome depletion was observed during latent infection.  

However some FAIRE-Seq regions displayed increased intensity in endothelial-derived episomes.  

Regions of open chromatin in the latency locus, upstream of the K12p and LANA ORF’s, were 

hyper-intense in latent endothelial cells (data not shown).  The nature of this differential in FAIRE-

Seq signal is unclear, but may be related to CTCF mediated PolII programming (Kang et al., 2013), 

and could indicate differential latency locus chromatin structures between B and endothelial cells.  

Collectively cell type-specific differences in open chromatin were observed but the functionality 

thereof remains speculative.   

 While CTCF binding is highly conserved, Cohesin may have cell type-specificity (reviewed 

and Cohesin activity cycles with cell division (Mehta et al., 2012; Merkenschlager, 2010)).  In 

addition to infecting endothelial and B cells, KSHV exists latently in actively dividing cells.  The 

LANA protein interacts with the viral TR’s and other host proteins to replicate the viral genome 

during latency to ensure proper segregation to daughter cells, and many LANA-associated 

interactions may be cell cycle dependent (reviewed in (Ballestas and Kaye, 2011; Deng et al., 2012)).  

Cohesin activity is cell cycle regulated and is functional surrounding and during S phase to maintain 



119 
 

sister-chromatid cohesion, but is released prior to prophase/anaphase (reviewed in (Mehta et al., 

2012)).   Studies have shown that Cohesin binding to the KSHV latency locus is also highly enriched 

in S phase, but dissociated thereafter (Kang and Lieberman, 2009).  This transient Cohesin-depletion 

was correlated with uninduced expression from K14p, and was cell cycle-dependent.   

 Kang and Lieberman, 2009 further showed that the sub-nuclear localization of CTCF and the 

CTCF interaction with Cohesin oscillated with cell cycle.  Later Kang et al., 2011 found that both 

CTCF and Cohesin together mediated episomal loops during latency (Figure 4.9; (Kang et al., 2011)).  

These loops were decreased, but still present, in the absence of either CTCF or Cohesin and were 

enriched in S phase.  More recently, Lieberman and associates have shown that knockdown of 

Cohesin subunits leads to KSHV lytic gene induction and reactivation, whereas knockdown of CTCF 

leads to viral genome instability (Chen et al., 2012a).  Collectively this indicates that CTCF and 

Cohesin could have separable roles in the viral genome, and that CTCF/Cohesin-mediated effects at 

regions of latent open chromatin may display variability during cell cycling, leading to bursts of 

“lytic” transcription.   

 Low levels of spontaneous KSHV reactivation and transient lytic gene expression are 

detected in culture and primary tumors (Dittmer, 2003; Pauk et al., 2000; Renne et al., 1996b; Vieira 

et al., 1997).  The KSHV field is still divided as to whether this represents full reactivation leading to 

host cell lysis and virion maturation, or transient lytic gene expression.  Personally, I think there is a 

likely continuum of lytic gene expression outside of conventional “reactivation”.  This is probably 

linked to KSHV pathology during immunosuppression/HIV infection and may not lead to widespread 

host cell lysis.  Dynamic lytic gene expression could arise from cell type-specific factors and/or cell 

cycling variance among CTCF/Cohesin (and hence open chromatin accessibility); as well as 

oscillations in other host and viral proteins (i.e. LANA).  Moreover the most recent transcriptional 

analyses of KSHV suggest that the latent viral episome may be more active than previously 

appreciated (Chandriani and Ganem, 2010; Dresang et al., 2011).   
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 Many of the regions we identified as nucleosome depleted by FAIRE-Seq in BC1 

qualitatively correlate to regions of the viral genome displaying latent transcriptional activity and also 

latent PolII enrichment (Figure 3.6; Figure 4.11; (Dresang et al., 2011; Kang et al., 2013; Toth et al., 

2012)). This includes open chromatin at which CTCF binding occurs without Cohesin and at which 

PolII is “stalled”.  This could indicate that once each cell division, coincident with Cohesin 

degradation, opportunities for lytic gene expression from latent open chromatin could be possible.  

This could be one explanation for the low levels of lytic gene expression observed in latent KSHV 

cultures/tumors.  Additionally, heterogeneous episomal populations could cause variable latent gene 

expression.   

 Recent single-molecule analyses of the LANA, RTA, and vIL-6 promoter regions; using 

accessibility of local nucleic acid to methylation (MAPit), suggests that a wide range of epigenetic 

heterogeneity at each locus exits among a given population of episomes (Darst et al., 2013).  The 

largest subset of chromatin at all three loci appeared to be inaccessible, and this subset was higher in 

endothelial cells compared to B cells.  This inaccessible subset of chromatin was not changed upon 

reactivation. This could explain why even with exogenous TPA/sodium butyrate/RTA treatment, only 

a small fraction of KSHV can ever be reactivated from latency and why this rate is far lower in 

endothelial cells relative to B cells. This suggests that diversity exists among latent viral episomes 

within single cells, and that most episomes are inaccessible.  This form of epigenetic drift could also 

explain why only ~ 1% of available herpesvirus genomes give rise to functional progeny during 

reactivation (Darst et al., 2013; Kobiler et al., 2010).    

 The gradual DNA methylation of the KSHV genome occurs slowly after de novo infection 

(Gunther and Grundhoff, 2010) and continued lytic replication is thought to be critical for sustained 

viral persistence (Grundhoff and Ganem, 2004).  Progressive epigenetic silencing of these genomes 

could lead to decreased LANA synthesis and hence and viral genomes (Grundhoff and Ganem, 2004; 

Skalsky et al., 2007a), and heterogeneity in latent/lytic gene expression may serve to circumvent this 

dilution of the infectious capacity of KSHV.   Some episomes contained epigenetically accessible 
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chromatin at the RTA promoter in Darst et at., 2013, indicating that heterogeneous episomal 

distributions might also generate varied levels of transcription, including low levels of lytic 

transcripts within a single cell.    

 The phenotypic and morphological differences observed between infected B and endothelial 

cells could be related to access to latent open chromatin, but currently this association is unclear.  

CTCF expression is ubiquitous, whereas expression levels of Cohesin and other cellular proteins can 

be cell-specific.  Low levels of spontaneous lytic transcription and reactivation are observed in KSHV 

cultures and tumors; the levels of which are higher in B cells.  This could be related to cell cycle-

mediated degradation of Cohesin and/or heterogeneity among episomes, even within a single cell.   

Gradual episomal DNA methylation in the KSHV genome could lead to bona fide genetic/epigenetic 

drift.  At the human H19/Igf2 locus, CTCF binding is methylation sensitive  (reviewed in (Holwerda 

and de Laat, 2012)).  This progressive epigenetic silencing could lead to viral genome instability and 

the observed low levels of heterogeneic lytic gene expression could provide sustained viral signaling 

and new progeny.   

 In sum, the latent viral genome may not be as transcriptionally silent as was once believed.  

Low levels of spontaneous lytic activity occur in KSHV infected cell populations which is variable 

between B and endothelial cells.  This could be related to differences in open chromatin between B 

and endothelial cells and/or differences in associated factors such as Cohesin.  Given the variances 

observed in the KSHV genome across cell cycle and within single cells, it is plausible that FAIRE-

Seq identified regions of nucleosome depletion are dynamically accessed (Figure 4.11) within a 

single cell and among entire populations of infected cells (i.e. viral tumors).   

 

The KSHV Episome Comes Full-Circle  

 The cell cycle-associated fluctuations in Cohesin discussed in the previous subsection were 

observed with functional consequences at the KSHV latency locus (Kang and Lieberman, 2009).  

Later the Lieberman lab found that CTCF/Cohesin mediated a chromatin loop in between the KSHV 
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latency locus and the Lytic Control Region, and that this loop was dynamic through cell cycling and 

lost during viral reactivation (Kang et al., 2011).   This looping is thought to coordinate a 

transcriptional balance between the Lytic Control Region and the latency locus; both of which contain 

RTA-responsive bidirectional promoters (Figure 4.2).  In addition these two regions also shared open 

chromatin/CTCF-enrichment profiles (Figure 4.12).  Both loci contain strong CTCF/Cohesin-

enrichment and nucleosome depletion downstream of the LANApi/50AS TSS’s.  However at the 

latency locus the constitutive LANApc occupied a distinct CTCF-free region of open chromatin.  This 

suggests that the LANApi/K14p and 50AS/K8DE bidirectional promoters share cis homology, open 

chromatin profiles, and physical proximity (Figure 4.12).  This results is the physically linkage of 

these transcriptional attenuation circuits.  This could allow dynamic and coordinated control of both 

bidirectional loci in response to RTA and/or cell cycling.   

 Validated long range conformational interactions in KSHV include extra-episomal 

attachment to host chromatin via LANA and the viral TR’s (reviewed in (Ballestas and Kaye, 2011)) 

and CTCF/Cohesin-mediated inter-episomal contacts between the latency locus and the K12 and/or 

Lytic Control Regions (Kang et al., 2011).  Given that there are over 30,000 ubiquitous binding sites 

for CTCF in the human genome (Kim et al., 2007; Phillips and Corces, 2009), it is hard to imagine 

how the several latent viral loci enriched with CTCF and/or Cohesin binding avoid interaction with 

cellular CTCF/Cohesin sites.   It remains unknown how CTCF-mediated loops are specified in the 

human genome (reviewed in (Holwerda and de Laat, 2012; Mehta et al., 2012; Merkenschlager, 

2010)).  

 In the KSHV genome, outside of the viral TR’s, long range interactions between regions of 

nucleosome depletion could potentially be specified by KSHV LANA.  This could occur at 

CTCF/Cohesin-enriched open chromatin (the latency locus) and at CTCF-free open chromatin 

(intragenic to PAN).  LANA is expressed in all infected cells to maintain the viral genome and can 

also modulate host and viral transcription. LANA also binds host chromatin in the presence or 

absence of the viral genome (Ballestas et al., 1999; Lu et al., 2012a).  Hence the nature of LANA-
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enrichment at regions of open chromatin is not fully clear but could serve transcriptional and/or 

conformational functions.    

 Many regions of open chromatin identified by FAIRE-Seq which were enriched in CTCF 

and/or Cohesin during latency also contained RTA binding sites (Table 3.2).  This included both of 

the KSHV OriLyt’s, which depend upon RTA transcription for the activation of viral lytic genome 

replication (Wang et al., 2006b).  This could suggest that RTA and CTCF physically interact at some 

regions of open chromatin during lytic induction.  The simplest scenario is one in which RTA could 

physically displace CTCF to activate transcription and viral genome replication.  Studies examining 

this direct interaction are limited but CTCF/Cohesin dissociate from the viral genome during 

reactivation, and this dissociation disrupts inter-episomal long range contacts (Chen et al., 2012a; 

Kang et al., 2011).  Thus upon external stimuli which result in RTA expression, these regions of 

latent open chromatin can “unfold” the latent episome.  If long range CTCF/Cohesin interactions 

between episomal and host chromatin exist these linkages are also likely similarly “unzipped” during 

RTA expression.   

 Collectively I believe the model with the most parsimony is one in which the latent KSHV 

episome adheres to host chromosomes, not only at the TR’s, but also at other CTCF/Cohesin bearing 

sites in an arrangement termed the CTCF “zipper” model (Figure 4.13).   This organization would 

allow the viral genome to be packaged into chromatin and intimately linked with the host genome; 

avoiding host DNA damage triggers, nuclear/chromosomal malformation, and also allowing 

topological epigenetic regulation.  With over 6 billion bp in the haploid host genome, this would 

easily accommodate the highest estimates of hundreds of viral genomes per cell (~3,000 viral 

genomes if interactions with host chromatin are non-specific).   

 Reactivation stimuli could cause displacement of CTCF/Cohesin thus coupling the lytic 

transcriptional response to viral lytic genome detachment and subsequent histone-free packaging into 

virions.  The facts that (i) CTCF/Cohesin dissociate from the viral genome during reactivation; that 

(ii) activated histones surround these RRE-containing open chromatin regions but are insulated by 
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CTCF/Cohesin; that (iii) lytic DNA replication results in linear, nucleosome free KSHV genomes; 

and that (iv) in HSV CTCF dissociation during reactivation is dependent upon lytic transcription 

(Ertel et al., 2012); all support this hypothesis.  If this speculation is indeed true, then it begs the 

question:  “Would viral:host genomic interactions occur at specific cellular loci (other than CTCF 

enrichment)?”  The answer cannot be generated at present, which in no way obviates its pursuit.  

 So what “programs” the non-chromatin associated incoming viral genome for latency 

following de novo infection?  Data indicates that DNA methylation of the viral genome accrues 

slowly (Gunther and Grundhoff, 2010); however CTCF and nucleosomes are abundant and ubiquitous 

and nucleosome incorporation into the viral genome occurs within 5 days post-infection.  Moreover, 

regions of conserved latent open chromatin not only bind CTCF (Figures 3.4 and 3.5; Table 3.2), but 

CTCF binding are over-represented at regions of open chromatin as determined by motif elicitation 

programs (Figure 4.14).  This implies that nucleosomes are not deposited and then displaced by 

CTCF, but rather that CTCF occupies recognition elements within open chromatin to prevent and 

nucleosome deposition and maintain nucleosome depletion.  Other regions of latent open chromatin 

contained over-representation of AT-rich motifs.  DNA polymers with AT-rich architectures may be 

refractory to nucleosome incorporation (reviewed in (Kaplan et al., 2010)); alternatively this could 

reflect RTA recognition elements (Liao et al., 2003), or recognition elements of other associated 

transcription factors (TBP or developmental transcription factors; SOX12/21).     

 

Potential Targeting of Latent KSHV Open Chromatin  

 While targeting latent virus is a recurring challenge in herpesvirus biology, the targeting of 

reactivated virus is clinically feasible (Dittmer et al., 2012).  The FAIRE-Seq identified regions of 

latent KSHV open chromatin were enriched in CTCF and AT rich motifs (Figure 4.14).  

CTCF/Cohesin displays episome-wide distribution in latent KSHV (Figure 3.5), and loss of CTCF or 

Cohesin leads to loss of viral genome integrity and lytic induction respectively (Chen et al., 2012a; 
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Kang et al., 2011).  This suggests that these two host proteins, and the open chromatin which they 

occupy, represent ideal targets for latent viral infection (Figure 4.15A).    

 I am not aware of any pharmacological compounds which directly target CTCF or Cohesin; 

however endogenous factors may play a role in their displacement/degradation.  For instance Cohesin 

is naturally degraded by the protein Separase during cellular division (reviewed in (Mehta et al., 

2012)).  Overexpression or alterations in Separase function could disrupt viral latency.  CTCF can be 

displaced from endogenous binding sites by noncoding RNA’s (Faust et al., 2012; Taft et al., 2011)), 

and manipulation of this mechanism could have therapeutic impact.  However, directly targeting 

CTCF/Cohesin would likely lead to widespread effects on the host genome and may be of limited 

clinical utility.   

 Specific targeting of the viral genome may avert interference with the host cell.  For instance 

delivery of long noncoding RNA’s (lncRNA’s) with specific homology to regions of viral open 

chromatin could potentially displace CTCF/Cohesin and/or limit the function of open chromatin 

scaffolds.  This could lead to alterations in viral gene expression and conformation, and ideally lytic 

reactivation.  Possible obstacles include off-target effects of exogenous lncRNA’s, failure to illicit 

any response, failure to reactivate epigenetically refractory viral sub-populations, and the difficulty of 

in vivo delivery of noncoding RNA’s.    However, if the lncRNA’s were specific enough off-target 

effects could be avoided, even in KSHV negative cells, and would not alter open chromatin nor 

CTCF/Cohesin binding at cellular loci.  in vitro systems employing rKSHV.219, which generates 

RFP during lytic viral gene expression (Vieira and O'Hearn, 2004), would be a useful starting point 

for robust screening.  While clearly a long-term vision, projects such as this could lead to novel 

therapeutic means to awaken dormant herpesviruses for subsequent elimination.   
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Potential Engineering of Gammaherpesviral Genomes as Substrates for Programmable Genetic 

Networks  

 Understanding gammaherpesviral biology is fascinating and it is necessary for the prevention 

of associated illnesses.  The continued pursuit of this understanding has the potential to facilitate 

awareness in other scientific arenas.  A long term vision could include the use of engineered 

herpesviral genomes for multiple applications; both clinical and industrial.  Gammaherpesviral 

genomes have many unique properties which make them ideal substrates for guided design.  Unlike 

other viral systems these circular genomes do not integrate, have potential for massive genetic 

payloads (>200kb), exist as multiple copies per cell, and can be controllably maintained.   As 

synthetic genetic circuit and protein design advances (Khalil and Collins, 2010; Nandagopal and 

Elowitz, 2011; Ruder et al., 2011; Slusarczyk et al., 2012), coupled use of gammaherpesvirus 

episomal derivatives could assist delivery and network assimilation.   

 This possibility currently has many obstacles, but if a complete understanding of 

transcriptional circuitry, viral entry specification, and synthetic protein design (i.e. synthetic LANA 

for maintenance), can be generated, the potential applications for artificial herpesviral genomes are 

diverse (Figure 4.15B).  Once delivered to host cells these non-integrated genomes could respond to 

varying endogenous (immune activation/oncogene levels, nutrients) or exogenous (drugs/toxins) 

signals.  With a comprehensive transcriptional network, both host and episomal behavior could be 

specifically manipulated for a desired response.  Moreover, controlled episomal maintenance through 

toggled loss (preset synthetic LANA silencing) or robust genome replication and viral spread (i.e. 

reactivation), could allow for tunable control among tissues or populations of unicellular organisms 

(bacteria/yeast).  This technology could be useful for enzyme replacement, population skewing, cell-

specific targeting, and the creation of single-cell level factories.   

 

 

 



127 
 

 

 

 

Figure 4.1:  Potential Functions of the LANApi/K14p.  A.  Although K14p output was reduced ~6 fold in the 

absence of the LANApi-proximal RBP A (see Figure 2.7), this was accompanied by a drop in induction 

threshold from 13.1 to 2.8 nM (~80% reduction) in response to WT RTA as shown in Panel B.  C.  Both 

LANApi-proximal TATA and RBPjκ elements (LANApiTATA shown in light blue; and RBP A shown in 

yellow, respectively) limit K14p.  The LANApiTATA limits K14p output and response, and the RBP A limits 

K14p response but is crucial for output.  D.  During de novo infection the LANApi might produce LANA.  The 

LANA protein then induces the constitutive LANApc and also inhibits RTA to establish latency.  E.  The K14p 

generates ~10 fold more output than the LANApi at low levels of RTA (in our in vitro system).  However at 

saturation this margin narrows to ~4 fold, suggesting that the potency of LANApi attenuation occurs in 

proportion to RTA concentration.  See section 4.1. 
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Figure 4.2:  A Conserved Transcriptional Brake in KSHV.  A.  The LANApi/K14p bidirectional promoter at 

the KSHV latency locus is depicted schematically.  LANApiTATA, RBP A, the RRE, RBP B, and the K14p 

TATA element are shown in light blue, yellow, gray, purple, and orange, respectively.  B.  The bidirectional 

50AS/K8DE region (Xu and Ganem, 2010) is depicted schematically as in A.  Both K8DE and K14p synthesize 

potent lytic molecules in response to RTA, whereas LANApi generates latent transcripts and the 50AS encodes 

an antisense RNA to ORF50 (RTA; see Section 4.1).   
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Figure 4.3:  RTA DNA Binding Increases Efficiency via TSS-Proximal Regulatory Elements.  A.  The 

LANApi/K14p bidirectional promoter at the KSHV latency locus is depicted schematically.  LANApiTATA, 

RBP A, RBP B, and the K14p TATA element are shown in light blue, yellow, purple, and orange, respectively.  

B.  The efficiency of LANApi in response to KKEE, WT, or RI61A RTA is shown (on a log scale) for the WT 

promoter (left panel), LANApiTATA deleted promoter (center panel), and RBP A deleted promoter (right 

panel) configurations respectively.  C.  The efficiency of K14p in response to KKEE, WT, or RI61A RTA is 

shown as in B.  The dotted line represents the mean efficiency of LANApi (B) or K14p (C) in response to WT 

RTA.  Note that TSS-proximal elements are required for increased efficiency in response to KKEE RTA and 

that in the absence of TSS-proximal RBPjκ elements, DNA Binding by RTA is still required for interaction at 

the RRE (see Section 4.1; Figures 2.10 and  2.11). 
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Figure 4.4:  Promoter Reprogramming Creates a Refractory Period and Limits kcat in trans.  A.  Basal 

activity (in our in vitro system) in the LANApi TSS from the bidirectional reporter is shown in the WT and 

indicated mutant configurations.   B.  Similarly to A., K14p basal activity is shown.  Note that the K14p basal 

output is dependent upon intact cis regulatory elements in vitro.  C.  kcat is shown for LANApi (green bars) and 

K14p (red, hashed bars) in the single reporter only, bidirectional reporter only, and single reporter together in 

trans inputs.  At saturation with RTA (kcat) output is reduced ~2 fold in trans due to a refractory period during 

which the promoter region must likely be “reprogrammed” for activation as shown in D.  All reprogrammed 

input molecules are identical in the single only/bidirectional input contexts, and hence newly reprogrammed 

promoters are activated at a ratio of 1:1 at saturation; in trans this ratio is 1:2 (see Section 4.1).  n.s., not 

significant, asterisks (*) indicate a significant difference from single only/bidirectional reporter inputs as 

determined by Student’s T-test.    
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Figure 4.5:  Applications and Extensions of the LANApi/K14p Bidirectional Promoter.  A.  Preliminary 

analysis of the manipulation of the LANApi/K14p locus in vivo using a KSHV Bacterial Artificial Chromosome 

(BAC) system.  Growth curves, in stable BAC-harboring 293 cells are shown.  B.  One potential high-

throughput screening scheme to identify reagents that block RTA-mediated induction is shown.  C.  The use of 

the bidirectional LANApi/K14p promoter as a substrate to engineer positive transcriptional feedback to 

generate any gene (or transcript) of interest (GOI) in producer cells is shown on the left.  Similar circuits could 

be arrayed in more complex networks to collaboratively respond to any number of stimuli. The example shown 

here is in relation to immune surveillance by a “sentinel” cell, but other applications could be similarly 

designed.   
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Figure 4.6:  Overview of KSHV Epigenetic Regulation.  A.  During viral latency latent genes are enriched in 

acetylated histone H3 (H3-ac; green) and trimethylation of histone H3 lysine 4 (H3K4-me3; pink) and are 

constitutively expressed.  Temporally expressed immediate-early (IE), delayed-early (DE) lytic viral genes 

display similar enrichment with and without coincident trimethylation of histone H3 lysine 27 (H3K27-me3; 

gray) and/or histone H3 lysine 9 (H3K9-me3; red), whereas viral genes expressed late during lytic induction (L) 

are generally only enriched with H3K27-me3 and H3K9-me3.  The JMJD2A histone demethylase associates 

with IE/DE viral loci during latency, and the EZH2 histone methyltransferase co-localizes with H3K27-me3 

enrichment.  Additional methylation of viral DNA leads to repression of lytic loci during latency.  B.  Regions 

of episomal latent open chromatin occur near H3-ac/H3K4-me3 and may be accessible or repressed by 

CTCF/Cohesin binding.  CTCF/Cohesin may also coordinate long range episomal interactions.  C.  RNA 

polymerase II (here; RNAPII) many regions of the latent episome.  At latent loci active RNAPII generates 

productive transcription, whereas at certain lytic loci/origins of lytic replication (OriLyt’s) RNAPII is stalled by 

NELF-mediated suppression.  This can result in “canonical” and “non-canonical” lytic gene expression; with 

and without the production of new virus respectively.  D.  At the RTA promoter region Polycomb repressive 

complex (PRC2) and HDAC’s mediate transcriptional suppression.  Coincident H3K27-me3 and H3-ac/H3K4-

me3 are interpreted by the KSHV field as “bivalent” chromatin.  Upon varying stimuli chromatin remodeling 

can occur at the RTA promoter leading to transcription and regulated viral reactivation.    This is coordinated by 

several proteins including Swi/Snf, CBP/p300, MLL/Set1, recruitment of JMJD3/UTX by KSHV PAN RNA, 

and interactions between RTA and RBPjκ.  See Section 4.3 for more information.  Panels A,C, and D were 

modified with permission from (Knipe et al., 2013).   
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Figure 4.7:  Toward a Functional KSHV Epigenetic Atlas.  A.  Latently KSHV-infected B cells (BCBL1) 

and endothelial cells (L1-TIVE), as well as infected (KSHV-BJAB, KSHV-HUVEC) and non-infected syngenic 

control cells (BJAB, HUVEC) could be examined on the basis of regulatory loci (FAIRE-Seq), transcript 

production (RNA-Seq), and viral/cellular transcription factors (LANA, CTCF, others) enrichment (ChIP-Seq).  

A long term vision could include temporal context (de novo through lytic infection) and viral genome 

conformation (ChIA-PET) as components of a functional atlas (shown in red).  B.  By appropriately 

interrogating the resulting data from each assay, overlaps between differentially modified loci (+/- KSHV 

infection) and shared modified loci (+ KSHV infection) would result in high-confidence targets with functional 

relevance for each cell type.  C.  By comparing the resulting targets from B, functionally modified loci for each 

cell lineage could be determined; the overlap of which would indicate a target shared among lineage, whereas B 

and endothelial cell specific targets would be non-overlapping and distinct.  A simpler experimental approach 

could be employed for the identification of virus specific targets.   
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Figure 4.8:  An Open Chromatin Code for Latent KSHV Transcription.  A.  Some regions of latent KSHV 

open chromatin are accessible to transcription factors and RNA polymerase II (PolII), such as the constitutive 

LANA and vIL-6 promoters (LANApc and vIL-6p respectively).  These regions of open chromatin occur near 

H3K4-me3/H3-ac, may or may not contain binding sites for viral transcription factors (i.e. LANA and/or RTA), 

and are not enriched in CTCF or Cohesin binding.  B.  Other regions of FAIRE-Seq identified latent viral open 

chromatin contain CTCF binding, but lack Cohesin (Chen et al., 2012a); such as the lytic replication origins 

(OriLyt’s), and promoter regions of K7 (K7p) and the Antisense to Latent Transcripts (ALT) noncoding RNA 

(ALTp).  These loci are also near H3K4-me3/H3-ac and contain stalled PolII (Kang et al., 2013; Toth et al., 

2012) likely in a poised configuration in addition to response elements for the KSHV lytic switch RTA 

(RRE’s).  C.  The majority of latent viral open chromatin contains coincident CTCF and Cohesin enrichment.  

These insulated regions may or may not contain an RRE and are near H3K4-me3/H3-ac signatures, but are not 

generally transcriptionally active during latency.  D.  A subset of latent episomal open chromatin is distal to 

H3K4-me3/H3-ac, bears CTCF/Cohesin occupancy, and is not enriched in LANA/RTA binding.  These inactive 

regions correspond to spliced intronic regions and near the promoters of ORF’s encoding viral DNA replication 

proteins, such as ORF 9 (KSHV DNA polymerase) and ORF 40/41 (KSHV helicase/primase).   
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Figure 4.9:  Overview of CTCF and Cohesin-Mediated Looping in the KSHV Episome.  A.  During viral 

latency a site of major CTCF/Cohesin enrichment is thought to program nucleosome displacement and RNA 

polymerase II (PolII) activity at the KSHV latency locus.  This site has previously been shown to modulate 

looping within the viral genome between both the K12 region and the Lytic Control Region (upstream of the 

RTA ORF).  B.  Model of CTCF/Cohesin-mediated linkage between the viral latency locus and the K12 and 

Lytic Control Regions determined by chromatin conformation capture (3C).  C.  3C analysis using BamHI 

fragments from the latent KSHV episome and specified primer sets.  Fragments which contain FAIRE-Seq 

identified open chromatin enriched in LANA binding, but lacking CTCF/Cohesin (Chen et al., 2012a) are 

indicated by orange asterisks.  Regions in red boxes were not discussed in the main text of (Kang et al., 2011), 

but could potentially be involved in transcriptional and/or conformational regulation via LANA.  The genomic 

region of open chromatin encompassing the KSHV noncoding RNA; PAN, is depicted in light blue lettering to 

indicate B cell specificity.  Panel A modified with permission from (Kang et al., 2013), and panels B/C 

modified with permission from (Kang et al., 2011).   
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Figure 4.10:  An Open Chromatin Code for Latent KSHV Conformation.  A.  KSHV LANA, CTCF, 

Cohesin, H3-ac, H3K4-me3, and cellular replication machinery (not shown) localize to the viral TR’s during 

latency.  The interaction between the N-terminus of KSHV LANA with an acidic patch of the histone H2A/H2B 

dimer and the C-terminus of LANA with the terminal repeats of the KSHV genome tethers the episome to host 

chromatin.  This maintains the episome through cellular divisions and also serves as the latent viral origin of 

replication (reviewed in (Ballestas and Kaye, 2011)).  B.  A major CTCF/Cohesin site at the KSHV latency 

locus is thought to coordinate long range inter-episomal looping (see Figure 4.9).  This likely occurs between 

the latency locus and the K12p and/or Lytic Control Region (Kang et al., 2013; Kang et al., 2011). C.  LANA 

occupancy occurs independently of CTCF/Cohesin intergenic to KSHV PAN (in B cells; light blue lettering) 

and between KSHV ORF75 and K15.  These regions overlap latent nucleosome depletion and were enhanced in 

3C analysis (see Figure 4.9C).  I predict transcriptional or conformational latent functionality at these loci.  D.  

Other CTCF-mediated loops may exist among KSHV episomes and between episomes and host chromatin.  

Some regions of latent episomal open chromatin contained coincident occupancy of CTCF/Cohesin.  These 

regions lack KSHV LANA binding, may or may not contain an RTA Response Element (RRE), and may or 

may not occur near H3-ac/H3K4-me3.  How the various transcriptional functions of CTCF are delineated and 

how long range CTCF looping is specified in the human genome is incompletely understood.  It is difficult to 

imagine a scenario in which these regions of episomal open chromatin are prevented from interaction with host 

open chromatin enriched in CTCF.    
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Figure 4.11:  Transcriptional Profile of “Latent” KSHV in BC1 PEL Cells.  The approximate locations of 

all identified FAIRE peak regions in the latent KSHV episome in BC1 cells are shown as orange dots across a 

linearized depiction of the KSHV genome (genomic coordinates are in units of kbp).  The predicted “open 

chromatin code” for KSHV transcription is indicated by closed circles annotated as per the legend at the bottom 

of the figure.  The BC1 latent transcriptome as determined by tiling array (in purple (Dresang et al., 2011)) is 

shown beneath the coded regions of latent nucleosome depletion and annotated with nearby viral ORF’s.  RNA 

PolII occupancy on the latent KSHV genome as determined by ChIP-chip is shown beneath the latent BC1 

transcriptome.  “S” indicates “stalled” polymerase as determined by Ser5 hyperphosphorylation and Ser2 

hypophosphorylation of carboxy tail of the large RNA pol II subunit (Kang et al., 2013; Toth et al., 2012).  

Many latent regions of open chromatin qualitatively occur near loci not conventionally associated with “latent” 

transcription.  This could be related to cell cycle, cell lineage, and/or episomal diversity (see Section 4.4).   
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Figure 4.12:  The KSHV Episome Comes Full-Circle.  The LANApi/K14p and 50AS/K8DE bidirectional 

promoters share cis homology, open chromatin profiles, and physical proximity.  A major CTCF/Cohesin peak 

occurs immediately downstream of the LANApi/K14p within the first intron of the LANA ORF.  The LANApi 

start site generates latent transcripts and the K14p start site synthesizes a bicistronic message encoding two lytic 

signaling molecules; vOX and vGPCR.  CTCF/Cohesin occupancy at this region prevents nucleosome 

deposition and is thought to link the locus to the K12 and Lytic Control Region (see Figures 4.9 and 4.10).  The 

Lytic Control Region also contains latent CTCF/Cohesin enrichment downstream of the homologous 

50AS/K8DE bidirectional promoter.  The 50AS start site generates a transcript antisense to the RTA ORF and 

the K8 delayed-early (DE) start site drives expression of a transcript encoding k-bZIP; a multifunctional lytic 

protein involved in viral DNA replication and transcription (see Section 4.4).   

 

 

 

 



139 
 

 

 

 

 

Figure 4.13:  The Zipper Model of Latent Infection.  Immunofluorescence of DAPI-stained nuclei and 

Texas-red stained KSHV LANA in latently infected BCBL1 cells.  LANA appears punctate in host nuclei due 

to multicopy localization at viral TR’s while tethered to host chromatin.  Interactions with CTCF/Cohesin can 

form inter-episomal loops, but could hypothetically also topologically position the viral genome within the host 

nucleus through interaction with host CTCF binding sites.   This would allow accessible open chromatin to be 

localized and utilized differently than insulated or inactive (CTCF/Cohesin enriched) open chromatin. This 

would also prevent aberrant viral immunological signaling/recognition.  Many regions of open chromatin which 

bind CTCF/Cohesin also contain transcriptionally responsive RRE’s, including open chromatin near the 

OriLyt’s.  This raises the possibility that RTA expression could, in response to appropriate stimuli, 

transcriptionally activate the latent episome while simultaneously physically decoupling the host and viral 

genomes.  This would facilitate the observed robust viral transcription and viral genome replication which 

occurs prior to nucleosome-free packaging into infectious virions.   
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Figure 4.14:  Regions of Conserved Latent Viral Open Chromatin Contain CTCF binding sites and AT-

rich Regions.  A.  Motif elucidation software (MEME Suite) analysis of the conserved regions of latent open 

chromatin display over-representation of CTCF recognition elements and AT-rich regions.  The top 4 recurrent 

motifs in viral open chromatin are shown along with associated transcription factor recognition sites 

(TOMTOM).  TBP (TATA binding protein) is involved in basal transcription and the SOX family encodes 

developmental transcription factors.  Poly dA:dT tracts have been shown to be anti-correlated with nucleosome 

occupancy, but could also serve as recognition sites for the viral RTA transcription factor as shown in panel B., 

or recognition sites for other host factors. Collectively I believe that these regions of open chromatin are cis-

programmed for nucleosome depletion.  CTCF is likely recruited to most of these regions early in infection to 

maintain this depletion and to coordinate viral transcription and conformation.  Cell cycling and RTA 

expression could cause dynamic access to these regions thereafter.   
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Figure 4.15:  Extensions to Profiling Latent Episomal Open Chromatin.  A.  CTCF/Cohesin inhibitors, or 

manipulation of endogenous regulators such as Separase, could prove effective in unzipping the viral genome 

from the host and in inducing lytic viral transactivation.  However disruption of CTCF/Cohesin would likely be 

deleterious to host cells and would thus be difficult to administer therapeutically.  CTCF binding has been 

shown to be modulated by noncoding RNA’s   (Taft et al., 2011; Yao et al., 2010), further noncoding RNA’s 

can be designed for specificity (i.e. homology).  This methodology could afford targeted disruption of 

CTCF/Cohesin at viral open chromatin only, minimizing side effects.  B.  One long term vision of herpesviral 

episomal derivatives as non-integrating, self-propagating, on/off tunable genetic systems, which could be 

“zipped” onto and off of host genomes.  
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