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ABSTRACT
BRIAN SANDERSON CLIPP: Multi-Camera Simultaneous Localization and Mapping

(Under the direction of Marc Pollefeys and Jan-Michael Frahm)

In this thesis, we study two aspects of simultaneous localization and mapping (SLAM)

for multi-camera systems: minimal solution methods for the scaled motion of non-overlapping

and partially overlapping two camera systems and enabling online, real-time mapping of

large areas using the parallelism inherent in the visual simultaneous localization and map-

ping (VSLAM) problem.

We present the only existing minimal solution method for six degree of freedom struc-

ture and motion estimation using a non-overlapping, rigid two camera system with known

intrinsic and extrinsic calibration. One example application of our method is the three-

dimensional reconstruction of urban scenes from video. Because our method does not

require the cameras’ fields-of-view to overlap, we are able to maximize coverage of the

scene and avoid processing redundant, overlapping imagery.

Additionally, we developed a minimal solution method for partially overlapping stereo

camera systems to overcome degeneracies inherent to non-overlapping two-camera systems

but still have a wide total field of view. The method takes two stereo images as its input. It

uses one feature visible in all four views and three features visible across two temporal view

pairs to constrain the system camera’s motion. We show in synthetic experiments that our

method creates rotation and translation estimates that are more accurate than the perspective

three-point method as the overlap in the stereo camera’s fields-of-view is reduced.

A final part of this thesis is the development of an online, real-time visual SLAM sys-

tem that achieves real-time speed by exploiting the parallelism inherent in the VSLAM
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problem. We show that feature tracking, relative pose estimation, and global mapping

operations such as loop detection and loop correction can be effectively parallelized. Addi-

tionally, we demonstrate that a combination of short baseline, differentially tracked corner

features, which can be tracked at high frame rates and wide baseline matchable but slower

to compute features such as the scale-invariant feature transform (SIFT) (Lowe, 2004) can

facilitate high speed visual odometry and at the same time support location recognition for

loop detection and global geometric error correction.
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CHAPTER 1

Introduction

Visual Simultaneous Localization and Mapping (VSLAM) is the problem of using a mov-

ing sensor system with one or more cameras to map an unknown environment and simul-

taneously keep track of the sensor system’s pose within the map. The sensor system might

be as simple as a single camera or could be a multi-camera system including other sensors

such as accelerometers, gyroscopes, and wheel encoders. Like many problems in artificial

intelligence VSLAM is something that most humans do fairly easily but is highly complex

and difficult to automate.

The more general simultaneous localization and mapping (SLAM) problem has been

studied extensively in the robotics community (Kaess et al., 2007; Paskin, 2003; Thrun

et al., 2005; Smith and Cheeseman, 1987). The sensors used in SLAM typically include

Light Direction and Ranging (LIDAR), acoustic range sensors, bump sensors, as well as

accelerometers, gyroscopes and wheel encoders. What sets apart visual SLAM is the use

of cameras as sensors. In contrast to LIDAR, cameras are purely passive sensors and so do

not emit any electromagnetic radiation. Because cameras are non-emissive, they typically

require less power and are suitable for applications where stealth or a lack of interference

between multiple systems is crucial. Additionally, cameras are less expensive than special-

ized LIDAR sensors and are more pervasive in our world today. Most people today carry

a mobile phone that includes a camera, which can be used for SLAM, as well as location

recognition, which can support location-based services.

The peculiarities of cameras, in comparison to other sensing modalities, make the



VSLAM problem a separate class of problem from general SLAM. Cameras provide bearing-

only information, e.g. the direction to a target but not the distance to the target. Cameras

also have effectively unlimited range; they detect the first object a ray encounters as it em-

anates from the camera. In contrast, the range of LIDAR and acoustic sensors is limited by

the amount of energy the sensor can broadcast into the environment and the reflectivity or

absorbtion of the environment’s surfaces. This limited range actually simplifies the SLAM

problem since only what is near the sensor can be measured by the sensor. This can lead

to certain subdivisions of the map, which can simplify the SLAM problem. In contrast, the

position of a camera system may have little to do with the spatial distribution of the objects

it measures.

The VSLAM problem is important because it has applications in augmented reality,

robotic navigation, remote sensing, and generating dense three-dimensional models from

video. In augmented reality, a user views the world through some form of output device,

generally either with a head-mounted display or hand-held device such as a cell phone.

Synthetic objects are then placed on top of the real-scene in the user’s view. These objects

could include information about the environment or synthetic game characters. In any

case, to insert synthetic objects accurately, SLAM must be used to measure the pose of

the display device in the environment. Visual SLAM (VSLAM) is an attractive option for

augmented reality because of the low cost and power requirements of cameras and their

relatively high angular resolution.

SLAM is also necessary for a robotic system to autonomously navigate its environment.

It must have some way to create a map of its surroundings and measure its pose in the

environment. The use of cameras in SLAM for robots is motivated by many of the same

factors as in augmented reality. In particular, low power requirements can drive the choice

of using VSLAM.

The VSLAM problem is known in the vision community as Structure from Motion

(SfM) and is the first step toward creating three-dimensional models of the world from

2



Figure 1.1: Textured 3D models reconstructed from multiple images.

video. Given the camera poses from VSLAM dense image matching can be performed to

find the depth of the scene with respect to the cameras, and given the camera poses the

shape of the scene can be recovered in a global coordinate frame. Once the scene shape is

recovered, it can be textured with the imagery to create visually appealing virtual models

of the measured environment. Some example models are shown in Figure 1.1.

This thesis introduces the VSLAM problem and addresses two fundamental issues in

VSLAM. The first is the trade-off in two camera systems between field-of-view overlap

and accurate scaled motion estimation. We show this trade-off to be false and that non-

overlapping and partially overlapping two-camera systems can be used in absolutely scaled

VSLAM. The second issue is real-time performance. Through a principled analysis of

the VSLAM problem, we show how a combination of tolerable latency, parallelism, and

integration of 3D pose estimation with 2D feature matching can accelerate six degree of

freedom (DOF) VSLAM to a previously unachieved level of performance combining speed

with accurate structure and motion computation.
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CHAPTER 2

The Visual SLAM Problem

The “Visual SLAM” problem, which is also known as “Structure from Motion”, has been

studied extensively in the robotics and computer vision fields. This chapter will give a brief

history of the VSLAM problem as well as introduce the state of the art in VSLAM. It will

then discuss the structure of the VSLAM problem and the various sub-processes that must

be done in any VSLAM system namely, correspondence finding, relative pose estimation,

and global mapping.

Harris and Pike demonstrated one of the first VSLAM methods on an image sequence

(Harris and Pike, 1988). Their work contained many of the major components of a VSLAM

system including feature matching, relative pose estimation, and a Kalman filter based

method for fusing the measurements from multiple views. Using a stereo camera, their

system created a map of point and line features with covariance matrices representing their

uncertainties. However, they neglected the correlations between features which can create

problems.

With estimated correlations between features, if feature A is detected in an image but

not feature B, then the measurement update of A can be propagated to an update of B

through their covariance. This reflects what we would expect. If the system has previously

build a map of the outside of my home and it detects my home’s front door in an image,

then that also gives information about where the front window is even if the window was

not seen in the same image as the door. Without modeling the correlations between window

and door we may become over-confident in the door’s position with respect to the window



and when we finally see the window reject it’s features as outliers.

Another area where correlations are critical is in loop completion. Consider the simple

case were a camera is panned around the vertical so that it views the walls of a room. As

it turns it builds a map of the walls and its pose. The farther it turns away from the origin

(its starting pose) the more uncertain its pose is as well as its feature estimates. When the

camera turns all the way around and re-detects features that were mapped in the first image

this completes a loop. Recognizing that the features at the end of the loop are the same

as those at the beginning should reduce the uncertainty of the features seen in the frames

just before the loop was completed as well as update their positions. Without modeling

the correlations between features this update is impossible and the loop cannot be properly

completed. As stated by Davison (2007), ignoring the correlations between features could

lead to over-confidence in the feature estimates’ accuracy and the inability to close loops

or detect drift.

Azarbayejani and Pentland presented an Extended Kalman Filter (EKF) approach to

recursively estimate the structure, camera motion and camera focal length from an image

sequence (Azarbayejani and Pentland, 1995). Davison (2007) was the first to demonstrate a

real-time VSLAM system using a single camera as its only measurement device. His work

was also based on an Extended Kalman Filter and could map areas the size of a desktop

or small room, detecting and completing loops. Davison’s system modeled the correlations

between mapped features. This made the filter’s estimate of uncertainty consistent, but it

limited the number of features that could be mapped in real time to less than one-hundred.

A particle filter approach to VSLAM was presented by Eade and Drummond (2006).

Their system could also map small office scale environments but the small number of par-

ticles that could be processed in real time limited their map size.

Recent work on VSLAM has focused primarily on overcoming speed limitations as the

number of cameras or 3D features in the map increases. Clemente et al. (Clemente et al.,

2007) proposed a sub-map approach where the total map is made up of a set of smaller
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Euclidean maps connected by transformations. Since each Euclidean map is limited in size

it can be updated in real-time. A major drawback of this approach is that global correction

is done by fixing the sub-maps and varying the transformations between them. This forces

all of the error accumulated in each of the sub-maps into the joints between the maps.

Eade and Drummond (2007) used a sub-map based approach to accelerate the mapping

process in. In their work, each sub-map contained about fifty 3D features with their associ-

ated uncertainties and correlations stored in a covariance matrix. They used the Laplacian

of the projection function as a measure of the non-linearity of the projection function in or-

der to decide where to split the map into sub-maps. By limiting the sub-map sizes they can

fold the information from a new image into the map in real-time. Additionally, they can op-

timize the sub-maps with respect to each other to arrive at a globally consistent map. This

is critical because inconsistency can lead to problems in detecting and correcting loops.

Klein and Murray (2007) developed a system for VSLAM they call “Parallel Tracking

and Mapping” or PTAM. In PTAM, online, real-time camera pose estimation (tracking) and

structure estimation (mapping) are separated into two threads. During tracking, the cam-

era’s pose is estimated by matching features extracted in the current image to features in the

map. The map is represented as a set of point features and key-frame camera poses. Batch

optimization processes such as bundle adjustment can be used to optimize the mapped

feature positions and key-frame poses in the images in a second parallel thread. Bundle

adjustment is a process that minimizes the difference between the measured and expected

projections of the 3D point features by varying the camera poses and 3D feature locations

in the map. This optimization need not be real-time since the camera tracking is done in

real-time in the first thread. Klein and Murray developed PTAM for use in augmented re-

ality in small workspaces. Their use of parallel threads allows the camera pose estimation

to run at frame rate to support adding synthetic objects to the scene while also refining the

map using consistent, batch optimization. Klein and Murray (2009) developed a version of

PTAM for the iPhone which shows great potential as an augmented reality platform.
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The VSLAM method presented in Chapter 5 differs from PTAM in that we can explore

new areas while the map is globally corrected. In PTAM new key-frames can only be added

between global map corrections, limiting the rate of key-frame addition as the map grows.

In our method global map correction must complete between new loop completions rather

than between new key-frames, significantly increasing the size of areas that can be mapped

online and in real-time.

Scalability of performance to larger map sizes was a focus of Konolige and Agrawal’s

method called “FrameSLAM” (2008). Like Klein and Murray, they also used selected

key-frames from the image sequence and only included these in the map. Konolige and

Agrawal’s innovation was to convert the constraints imposed by corresponding feature mea-

surements in two images into a synthetic measurement with an associated uncertainty tying

the two camera poses together with a sort of virtual spring. This permanently marginalizes

out the features from the map, significantly speeding up the minimization used to correct

for loops in the camera’s path. Their method achieves this speedup at the cost of a less

accurate map structure. Accuracy is reduced because the feature measurements cannot be

re-linearized once the features are permanently marginalized out of the optimization.

2.1 Basic Structure of the VSLAM Problem

Visual SLAM can be broken up into three primary operations: correspondence finding, rel-

ative pose estimation, and global mapping. Correspondence finding involves determining

which areas of the current image correspond to known features in the map or to areas in the

previous image. Relative pose estimation uses these correspondences to find the camera

motion from one frame to the next. Global mapping involves detecting long-range loops

in the camera’s path and correcting the map to reflect these loops and eliminate long-term

mapping error. Figure 2.1 shows the basic architecture of a VSLAM system and the data

that passes between the modules. Sections 2.2 through 2.5 will introduce these operations
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Figure 2.1: Basic VSLAM operations and data that passes between them

and discuss relevant prior work.

Any visual SLAM approach must complete each of the three above operations. Some

such as the one we have developed (Clipp et al., 2010) treat each of the operations as largely

independent with well-defined but limited data transfer between operations. Others, such

as the method of Davison et al. (2007) perform the correspondence finding, relative pose,

and global mapping operations in a single, unified manner. Both the separate and unified

approaches have benefits. Separating correspondence finding, relative pose estimation and

global mapping operations introduces parallelism to VSLAM that can improve processing

speed as well as allow for exploration while the map is globally updated after a loop is com-

pleted. However, a unified approach also has benefits. For example, tying pose prediction

to correspondence finding can aid in tracking features when camera motion is erratic.
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2.2 Correspondence Finding

There are two major types of correspondence finding approaches: unguided approaches

that find correspondences without modeling inter-correspondence relationships, and those

guided by and coupled to 3D relative camera pose estimation. Unguided approaches were

the first to be developed by the computer vision community so they will be described first.

2.2.1 Unguided Correspondence

Unguided correspondence methods estimate optical flow without any camera motion model

or other external sensors, e.g. inertial sensors. Unguided approaches can be roughly divided

into two classes: differential-tracking approaches that depend on a small feature motion

assumption, and matching approaches that can find correspondence in pairs of images with

larger viewpoint changes.

In Kanade, Lukas, Tomasi (KLT) feature tracking (Lucas and Kanade, 1981; Tomasi

and Kanade, 1991), a sparse set of corner features are extracted from the image. These

features have a strong gradient in two orthogonal directions and so are well constrained in

the image (Shi and Tomasi, 1994). Newton’s method is then used to find the minimum of

the cost function ε =
∫ ∫

W
[J

(
x+ d

2

)− I
(
x− d

2

)
]2w (x) dx and solve for the feature dis-

placement from one image to the next in a temporal sequence. This equation integrates the

difference between patches of images I and J over window size W parameterized by their

center location x and a displacement d. The KLT tracking formulation assumes sub-pixel

feature from image to image. A scale space pyramid is used for tracking motions greater

than a single pixel. The KLT feature tracker treats each feature in an image independently

and so can be easily parallelized and mapped to the graphics processor to achieve fast track-

ing. One implementation achieves greater than two-hundred frames per second tracking,

including estimating the mean intensity change for all features on monocular 720x560 pixel

resolution video (Zach, 2009).
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Many approaches exist for finding feature correspondences over wide baselines. Harris

features (Harris and Stephens, 1988) are extracted at strong corners in the image as mea-

sured by the gradient magnitude in a local region. Harris corners use an approximation

to the eigenvalues of the structure tensor to detect features. For this reason, they give a

less accurate response than Tomasi and Shi’s operator (1994) but are more computationally

efficient.

One of the limitations of Harris features is that they are point features, lacking an in-

trinsic scale or neighborhood size. Lowe (2004) showed how a scale space approach to

detecting blob-like features using convolution with a difference of Gaussian (DoG) oper-

ator could lead to scale invariance. The difference of Gaussian operator is an approxima-

tion to the Laplacian of Gaussian operator and so reacts strongly to blobs. The equation

f(x) = 1
2Πσ2 exp

(
−x2

2σ2

)
− 1

2ΠK2σ2 exp
(

−x2

2K2σ2

)
describes a DoG filter kernel. In that equa-

tion x is the position with respect to the filter origin, σ is the filter’s standard deviation and

K is a scaling factor tuned to make the DoG best approximate the Laplacian of Gaussian.

An example DoG filter is shown in Figure 2.2 with K = 1.6 and σ = 1.0. Lowe’s SIFT

feature (2004) combines the scale space blob detection with patch orientation based on

gradient magnitude and a descriptor based on a histogram of gradients to achieve corre-

spondence between images at up to a thirty-degree change in viewing angle.

Another example of wide-baseline matchable features is the maximally stable extremal

region (MSER) first introduced by Matas et al. (2002). Rather than looking for a strong

response to a corner or blob detector, MSER features are image regions that have a rela-

tively stable size over a range of different image thresholds. To calculate MSER, the image

is converted into a series of binary images with different thresholds where pixels below the

threshold are zero and above the threshold are one. Connected components are then found

in these binary images. Components that have a relatively constant size over a wide range

of thresholds are detected as features. MSER features are invariant to intensity changes and

to projective distortion. Hence they are ideal for wide baseline feature matching. Matas et
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Figure 2.2: A one-dimensional Difference of Gaussian kernel.

al. demonstrated an extraction method that was O(n log(log(n))) where n is the number of

pixels in the image. Later Nistér and Stewénius (2008) showed that MSER features can be

extracted with an algorithm that is at worst O(n).

Each of the preceding feature extraction methods extracts features in each frame ind-

pendently and without regard for the correlations between feature positions that can come

from an underlying model of the scene geometry and camera motion. The following section

will introduce guided correspondence finding methods that make use of this correlation to

improve matching.

2.2.2 Guided Correspondence

Guided correspondence finding uses a camera motion model and inter-feature probabilis-

tic relationships to match features. In its simplest incarnation, active matching can use a

prediction of the camera’s motion, usually based on a constant rotational and translation

velocity model, together with the estimated 3D feature positions to predict the projection

of the features in the next image. This approach was used by Davison (2003) to constrain
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the search area for correspondences. A refinement is then performed starting at these pre-

dicted feature locations to find the features. The advantage of this framework is that it can

handle faster camera dynamics than a differential feature tracker, can cope to some extent

with repetitive features, and is less computationally expensive than many feature extraction

methods.

This search-based approach does not take into account how informative a given feature

is about the camera pose. Davison (2005) shows that the mutual information between the

map state (3D feature positions and camera pose with uncertainties) and the measurements

can determine how much information is gained by finding a given feature. This expected

information gain can then be combined with the cost of detecting that feature to determine

the relative efficiency in terms of information gain per unit computational cost of detecting

a feature. Features can then be found in the most informative order. As each feature is

found, it also reduces the uncertainty of the other features, which reduces the computational

cost of finding those features. Given a fixed time budget, ordering by relative information

efficiency gives the most information about the map state possible.

Chli and Davison show that a mixture of Gaussians model can be used along with the

information gain criteria developed in (Davison, 2005) to achieve matching in ”perviously

unmanageable cases of jerky, rapid motion,” (Chli and Davison, 2008). While Davison’s

previous work was limited to synthetic imagery, Chli and Davison applied their mixture

of Gaussians model to a real-time camera tracking 3D SLAM system. However, Chli and

Davison’s primary contribution was to show that the correlation between image features

could be used to reduce the search area for successive features after initial matches are

found. This significantly sped up feature matching over Davison’s standard monoSLAM

(Davison et al., 2007) matching implementation based on Joint Compatibility Branch and

Bound (Neira and Tardós, 2001). Later work by Handa and Davison (2010) improved

on the efficiency of Chli and Davison’s algorithm by sparsifying the dense probabilistic

relationships between feature correspondences. With sparsification, Handa et al. can match
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many more features in real time than were possible with a dense measurement covariance

matrix.

2.3 Relative Pose Estimation

Relative pose estimation is the process of calculating the rotation and translation of a cam-

era or multi-camera system from two sets of images taken at two different times. Relative

pose estimation methods can be broken up into two primary classes: those that use sparse

feature correspondences as their input, and those that rely on dense optical flow. The for-

mer are much more commonly used in practice. An example of the latter, dense optical

flow based method, was introduced in (Yang et al., 2007).

Relative pose methods that use sparse feature correspondences can further be broken

into two classes, those that use a predictive motion model, and those that do not. A predic-

tive motion model is generally a very simple assumption on the camera motion such as, ”the

camera moves with constant velocity.” Filtering approaches to visual SLAM (Azarbayejani

and Pentland, 1995; Davison et al., 2007; Eade and Drummond, 2006) use a predictive

motion model which, in combination with the expected 3D position of the sparse features

based on a static world model and their uncertainties, gives a search region in the current

frame for previously mapped features. Once these features are found, the pose estimate can

be refined starting from the predicted pose.

The main advantage of a predictive motion approach is that pose estimation does not use

random sampling and so the correct relative pose can be found in a fixed amount of time,

a necessary property in any hard-real-time system. A primary disadvantage of predictive

motion models is that the model used must match the expected motion, or the uncertainty of

the predictive model must be accounted for in the filter’s process noise. Otherwise, the true

feature matches would not be within their predicted uncertainty region and the matching

would fail, leading to failure of the relative pose estimate.
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Relative pose estimates that do not use a predictive motion model generally rely on ran-

dom sampling of correspondences between features in the current image and either another

image or 3D features in the map itself. This random sampling and consensus (RANSAC)

approach was first introduced by Bolles and Fischler in (Bolles and Fischler, 1981). The

basic RANSAC algorithm for relative pose is given in Algorithm 1.

Data: Set of putative correspondences C

Result: Relative pose Pi and inlier correspondences Cin

confidence in having seen a good solution = 0;

best sample support = 0;

while confidence in having seen a good solution < threshold do

select a minimal set of correspondences;

use minimal set of correspondences to calculate relative pose;

test whether or not correspondences support solution;

if current sample support > best sample support then

best sample = current sample;

best sample support = current sample support;

end

calculate confidence in having seen a correct solution;

end

Algorithm 1: The RANSAC algorithm applied to relative pose estimation

Using a minimal set of correspondences to calculate the putative relative pose is de-

sirable because it minimizes the chance that an incorrect correspondence or outlier will

contaminate the putative solution. The confidence in the current best solution can be cal-

culated using c(solution) = 1 − (1 − psolution set size
in )num samples a variant of which was first

introduced in (Bolles and Fischler, 1981). This confidence is dependent on the probability

of a correspondence being an inlier pin, the solution set size and the number of samples
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taken so far. pin can be taken from the inlier ratio of the best solution found yet in the data.

The interplay of the inlier ratio pin and the number of samples determines the number of

random samples that must be drawn to generate an output from the RANSAC algorithm

with an acceptable level of confidence c(solution). This means that with low inlier ratios,

pin, a large number of samples may be required to get a solution with a desired level of

confidence. Unfortunately, this means that unless some a priori bound can be given on

the inlier ratio, the sampling time is not bounded and so RANSAC cannot be used in a

hard-real-time system.

Many optimizations to RANSAC have been suggested (Nistér, 2003; Raguram et al.,

2008) but none has overcome this fundamental flaw in RANSAC. Given a fixed time budget

these methods will return the least bad solution they can find. However, the confidence in

that solution may be too low for the solution to be used in practice if a lower bound on the

inlier ratio is not given.

The RANSAC algorithm returns the best minimal sample solution found as well as

the set of inliers. To get a more accurate solution, a refinement of the solution should be

performed using all of the inlier correspondences. Even the best solution after RANSAC is

still based only on a small set of correspondences which themselves contain some amount

of noise. Assuming the noise on the inliers is normally distributed, refinement with a larger

set of inlier correspondences will arrive at a more accurate result. This refinement can be

done with a simple linear method or a more complicated non-linear minimization may be

required.

2.4 Direct Solution Methods

Direct solution methods are used to calculate the relative pose of a camera from correspon-

dences in each RANSAC sample. Many different direct solution methods exist to calculate

the relative pose of a camera from a sequence of images. Each method is aimed at a spe-
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cific problem such as homography estimation (Brown et al., 2007; Horn, 1987), motion

estimation for calibrated monocular cameras (Nistér, 2003), uncalibrated monocular cam-

eras (Hartley and Zisserman, 2004), multi-camera systems (Clipp et al., 2008; Kim et al.,

2007) or generalized camera approaches (Stewénius et al., 2005).

Each direct solution method is typically formulated as a problem of algebraic geometry

and then solved using a unique method of the author’s choosing. Recently, Kukelova et

al. (2008) have developed a method to automatically generate minimal problem solvers.

Careful consideration must be given to numerical performance in a direct solver, as this

can greatly influence the reliability of the solver’s result. Additionally some solution meth-

ods are based on finding the roots of a polynomial function. Each of these roots must be

tested in the RANSAC framework as a separate possible solution and so the degree of the

polynomial also has a great impact on performance.

This dissertation focuses on visual SLAM for rigid multi-camera systems and so some

background on direct solution methods for these systems is in order. Nistér’s seminal work

on visual odometry (2004) used the perspective three-point (P3P) method (Haralick et al.,

1994) to generate relative pose samples. The P3P method uses correspondence between

an image from a calibrated camera and a set of 3D point features to find the pose of the

camera with respect to those features. In Nistér’s case he built a map of 3D point features

as he moved the camera, enabling him to estimate the next camera pose with respect to the

existing map. His verification in RANSAC was then done with correspondences from both

cameras in his system’s rigid stereo head.

Nistér also developed a generalized three-point method that could work with a rigid

multi-camera system with one to three cameras (Nistér, 2004). Three correspondences

between the images and the 3D point features could be drawn from any combination of

the cameras to generate the solution with each feature projection having its own center

of projection. However, improved results were not demonstrated with respect to the P3P

method where all feature projections share the same center of projection.
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A particularly challenging problem is to develop a method to calculate the six degree of

freedom motion of a non-overlapping multi-camera system. Weng and Huang (1992) pre-

sented one of the earliest works in this area. In their work they described how this motion

could be calculated using a non-minimal linear equation and described motions that could

lead to degenerate solutions algebraically. Their equations allow for the non-overlapping

multi-camera system’s extrinsic calibration to change between images. However, this cali-

bration must be known at each frame.

Dornaika and Chung (2003) extended the work of Weng and Huang (1992) by showing

that a non-overlapping multi-camera system could be calibrated up to an unknown scale

factor without stereo correspondence. Their method uses a three-stage process. First, the

ego-motion of each camera is calculated separately. These ego-motions are then combined

to calculate the relative orientation between the multi-camera system’s cameras. Finally,

the relative scaling between the motions of the various cameras is found, placing each of

the cameras in a single arbitrarily scaled coordinate frame.

Frahm et al. (2004) also developed a pose estimation method for multi-camera systems

with non-overlapping fields of view. Theirs is a linear but non-minimal approach. Interest-

ingly, when applying their equations to model a single camera system the equations reduce

to the linear single camera pose estimation method with respect to a known set of homoge-

nous world features given in (Hartley and Zisserman, 2004). Frahm et al. also develop a

method to automatically calibrate a multi-camera system up to an unknown scale factor

from correspondences. In contrast to Dornaika and Chung (2003), the calibration method

of Frahm et al. requires overlap in the cameras’ fields of view.

Kim and Chung (2006) studied the problem of estimating the six degree of freedom

motion (including scale) of multi-camera systems from only temporal correspondences.

They give proofs for all of the degenerate motions the camera system can take that do not

allow for the scale of the motion to be calculated. These motions will later be introduced in

Chapter 3. They then develop an Extended Kalman Filter for 6DOF structure and motion
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estimation using the known geometry of the multi-camera system to find the absolute scale

of the scene and motion without stereo correspondence. Kim and Chung also point out that

adding a simple rotation of the multi-camera system about a single axis as the rig is moved

can prevent degenerate motions in almost all practical cases.

Kim et al. (2007) have also solved the problem of 6DOF motion estimation by formu-

lating it as a triangulation problem. They first solve for the rotation of the multi-camera sys-

tem by averaging the rotations measured by each of the cameras independently. They then

triangulate the translation directions of the system’s cameras to arrive at a scaled measure

of the camera system’s translation. They use a second order cone programming approach

for triangulation, which is optimal in the L-Infinity norm. Since it requires 5DOF motion

estimates for each of the cameras to calculate the scaled motion, theirs is a non-minimal

solution method.

Tariq and Dellaert (2004) have also developed a method for estimating the pose of a

multi-camera system. Their method uses a non-linear minimization of the reprojection

error of known 3D features. Using synthetic data, they show that increasing the number

of cameras in a multi-camera system can improve the rotation and translation estimation

accuracy, and prevent catastrophic failures due to a lack of tracked features.

Ni and Dellaert (2006) developed a method for six degree of freedom stereo camera

motion estimation based on decomposing the problem into estimating the rotation from

points at infinity followed by the translation. Their method assumes an initial starting point

close to the true motion solution, and then performs a non-linear minimization to find the

rotation, and then translation in a two-stage approach. Assuming an initialization as they

do is appropriate for applications processing video sequences but cannot be used on general

photo collections.

Another approach to solving the 6DOF motion of non-overlapping rigid multi-camera

system is the generalized camera framework (Grossberg and Nayar, 2001; Pless, 2003). A

generalized camera is an image formation system, which is made up of a set of rays. These
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rays can intersect at any number of optical centers with each ray possibly having its own

optical center. A generalized camera can be used to model any camera or multi-camera

system. Nistér’s (2004) generalized three-point solution method is based on a generalized

camera model, hence its name.

Stewénius et al. (2005) presented a minimal solution method for estimating the six

degree of freedom motion of a generalized camera from image correspondences. They

showed that there are up to sixty-four solutions to the relative pose of two generalized

cameras given six ray correspondences. One of the limitations of their approach is that it is

degenerate for generalized cameras where the rays’ centers of projection are all on a line.

This naturally excludes all two-camera systems, as two camera centers always form a line.

Chapter 3 will describe one of the contributions of this dissertation, a novel six degree

of freedom relative pose estimation method for a non-overlapping rigid two camera system

using a minimal set of six correspondences. Using a system of two or more non-overlapping

cameras, scene coverage can be maximized with this method while still measuring the true

scale of the motion. In Chapter 4, another contribution of this dissertation is described. This

is a method for estimating the scaled, six degree of freedom motion of a stereo camera with

only a small overlap in the cameras’ fields-of-view. This novel method overcomes some of

the limitations of the method introduced in Chapter 3 while still giving the multi-camera

system a large total field of view.

Each of the processes described to this point can operate with only temporally or spa-

tially local information, including feature extraction, feature tracking, and relative pose

estimation. The next section will give background on global mapping operations, which

use non-local information to create a map of the camera system’s operating environment.
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2.5 Global Mapping

In this dissertation, global mapping refers to the processes that a SLAM system must per-

form to create an internal representation of its operating environment when all of the en-

vironment is not visible from a single point of view. At a minimum, the global map must

reflect the topology of the operating environment, i.e. the connectivity between the various

parts of the environment. This requires that the VSLAM system perform loop detection.

However, for many practical applications, a topological map is not enough and a Eu-

clidean map is required. Some example applications where a Euclidean map is required are

efficient path planning and automated targeting. A Euclidean map is the sort of map we

are generally accustomed to where each point on the map is known with respect to every

other point and the map has a single scale. Additionally, in a Euclidean map distances and

angles are preserved. When creating a Euclidean map it is not simply enough to make note

of a loop when it is detected. The system must also perform loop correction to make the

geometry of the map reflect the Euclidean geometry, not just the topology, of the operating

environment. Additionally, the global geometry of a Euclidean map can help to eliminate

false loop detections. For example, when mapping a building by moving around it, if two

corners of a building look the same and have similar geometry, we can use the shape of the

path taken around the building to disambiguate the corners.

2.5.1 Loop Detection

Visual loop detection has been studied extensively in the vision and robotics communi-

ties. Some authors chose to tackle loop detection based only on appearance (Cummins

and Newman, 2008; Eade and Drummond, 2008; Nistér and Stewénius, 2006) while oth-

ers included geometry in their approaches (Chli and Davison, 2008; Davison, 2003; Eade

and Drummond, 2006; Ankur Handa and Davison, 2010; Irschara et al., 2009; Sivic and

Zisserman, 2003; Williams et al., 2007).
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Sivic and Zisserman (2003) were the first to apply text retrieval techniques to find ob-

jects within a video sequence. Their approach is suitable for loop detection since it finds

images with common structure in a video sequence. They use both SIFT descriptors (Lowe,

2004) and maximally stable extremal regions (MSER) (Matas et al., 2002). Their approach

consists of a preprocessing step followed by a retrieval phase. In the preprocessing step

SIFT and MSER features are extracted in each of the images. A subset of these image’s

features are then grouped using K-means clustering. Each of these clusters is referred to

as a visual word. They use approximately 500 images in the clustering and generate ap-

proximately 10000 distinct visual words. They are limited in the number of clusters they

can generate by the complexity of K-means clustering with such a large number of clus-

ters. Each image’s features are then quantized into visual words. An inverted file is stored

for each visual word, which contains which images a visual word is found within and the

visual word’s position in that image.

When querying to find an object in the video the user selects a region of interest con-

taining this object. The system then finds the descriptors in this region and their visual

words. It then uses a term-frequency inverse document frequency (TF-IDF) weighting for-

mula to find other images in the video that contain the same visual words. The TF-IDF

weighting takes into account both the frequency of a given visual word in the current im-

age and the log inverse frequency of a visual word in the documents. The TF-IDF formula

is ti =
nid

nd
log N

ni
where nid is the number of occurrences of visual word i in document d,

nd is the total number of visual words in document d, N is the number of documents in the

database and ni is the number of documents containing visual word i.

Each document in the database (video) is represented by a vector of TF-IDF values for

each visual word:

vd = (t1, ..., ti, ..., tv). (2.1)
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The dot products of the vector representing the query region and each document in the

database can then be taken to find images that are likely to contain the object of interest.

The method then performs a final geometric verification step. Their method starts with two

matched feature regions and looks at the local neighborhood of each feature. The same

features in the local neighborhood of the matched features should be found in both frames.

This is a form of loose geometric verification, which does not enforce any sort of global

model such as a homography or essential matrix.

Sivic and Zisserman show that their system vastly out-performs this naive approach in

terms or run time as well as precision-recall curves. The improvement in precision and

recall is primarily due to the TF-IDF weighting of the descriptors and their weak geometric

verification.

Nistér and Stewénius (2006) extended the work of Sivic and Zisserman in image re-

trieval. Their vocabulary tree approach uses a hierarchical k-means clustering of the feature

space to partition features into visual words. The tree-based approach overcomes scaling

issues that limited the vocabulary size in Sivic and Zisserman (2003). With a larger number

of visual words, the descriptor space can be broken up into more discriminative, smaller

clusters. A larger number of smaller clusters improve image retrieval performance. Addi-

tionally, because their visual words were more discriminative, Nistér and Stewénius found

that they did not need to use geometric verification to achieve good performance. They

show results on up to a one-million image database, three orders of magnitude larger than

Sivic and Zisserman’s results.

Cummins and Newman (2008) developed a probabilistic approach to loop detection

using only image information without geometric verification. Their fast appearance based

mapping (FAB-MAP) approach uses a bag-of-words (Sivic and Zisserman, 2003) approach

to represent the images where the features are quantized into particular visual words. How-

ever, rather than use TF-IDF to determine the likelihood of two images matching, Cummins

and Newman learn a generative model for the visual words. This model, learned from train-
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ing data, reflects the fact that certain visual words are likely to co-occur in an image because

they come from the same object. Knowing which features are likely to appear or disappear

together because they are part of the same object or objects, the system in effect recognizes

unique locations by finding unique groupings of objects in the imagery. The system also

recognizes which visual words appear in many locations because of repetitive scene parts.

This is known as perceptual aliasing. In Nistér and Stewénius’s approach, perceptual alias-

ing is handled by the inverse document frequency term while in Cummins and Newman’s

model a probabilistic approach is taken.

Cummins and Newman make a comparison between a naive Bayesian assumption that

the likelihood of a visual word being found in an image is independent of the other visual

words in the image and a model that takes into account the correlations between visual

word occurrences. They show that using a simplification of the full correlation between all

features based on a Chow Liu tree (Chow and Liu, 1968) can provide significant perfor-

mance improvements over the naive Bayesian approach at little additional computational

cost. The Chow Liu tree is a maximal spanning tree over the correlation between features

which, while it is a simplification over the full correlation matrix, provides good perfor-

mance with close to real-time computation.

Loop detection methods that use geometry as well as appearance can be divided into

two classes: those that first use a camera pose prior and scene geometry to guide appearance

based matching (Chli and Davison, 2008; Davison, 2003; Eade and Drummond, 2006;

Ankur Handa and Davison, 2010), and those that first match based on appearance and then

verify the match geometrically (Irschara et al., 2009; Wang et al., 2005; Williams et al.,

2007). Geometry-first approaches presume that there is some non-uniform prior on the

camera’s pose within the map and use this prior to guide feature matching. The mean and

variance of the 3D features are projected into the next expected camera. In combination

with the uncertainty on the current camera pose, this gives a search region in the image

to look for each feature. Chli et al. showed that when sequentially finding features in this
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way, the information from one feature match can reduce the pose uncertainty and therefore

limits the search region size for subsequent features. In later work, they developed more

efficient methods to represent the probabilistic constraints between the feature projections

(Ankur Handa and Davison, 2010). These methods make real-time probabilistic feature

matching possible.

Geometry-first methods have been successfully demonstrated on small room-sized en-

vironments. However, were they to be used in mapping larger environments, the large

uncertainty in the camera pose prior after traveling long distances would become an issue.

With a large pose uncertainty, such as one would have after traversing a large loop, the

projection of the feature uncertainty regions in the image would be extremely large. Also,

the number of features that might project in the image grows as the camera may take on a

wide range of poses. A more efficient approach is needed.

Appearance-first approaches can detect loops of any size because they do not rely on a

camera pose prior. In the work of Irschara et al. , a vocabulary tree (Nistér and Stewénius,

2006) and inverted files are used to find visually similar parts of a database of images.

These images have been previously processed into a 3D point cloud model of the environ-

ment. Features are then matched between the query image and the map based on descriptor

similarity (dot product of SIFT features). The perspective three-point method (Haralick

et al., 1994) in a RANSAC framework is then used to verify that the geometry of the scene

could indeed generate the feature distribution in the query image. However, Irschara et al.

do more than just this. They create virtual views of the 3D point cloud model and use these

as the database that query images are compared with. This significantly reduces the num-

ber of images in the database, speeding up the histogram generation from the inverted files.

They also make extensive use of the graphics processing unit (GPU) to speed up processing

query image features into visual words through the vocabulary tree.

A wholly different approach to feature or key-point identification was developed by

Ozuysal et al. (2007,2010) and demonstrated in a real-time monocular SLAM system by
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Williams et al. (2007). Their approach, which they call ferns, uses a collection of simple

Bayesian classifiers to separate key-points into a set of classes. These classifiers (ferns)

start with an image patch representing the key-point. Each classifier is then made up of a

set of binary decisions. Two pixels are randomly selected in the patch and if one pixel is

brighter than the other the value is one, otherwise the binary decision value is zero. Using a

large number of these random binary measurements over the image patch a distribution of

resulting binary numbers (fern results) can be found over a large training set of examples

of the same image patch. These examples can be synthetically generated affine warps of

an original image patch. In practice the number of binary decisions (leaves in the fern)

must be large (L = 300) to achieve acceptable classification performance. For each key-

point, the method must calculate the probability that it takes on any one of the 2300 possible

fern output values. This is intractable and so the authors simplify the computation by

breaking up the large fern into M smaller ferns each of which can take on 2L/M values.

The classification results of this group of ferns are then multiplied together to form the

final probability of a feature being of a particular class. Grouping the binary decisions into

small ferns performs better experimentally than assuming that each of the binary decisions

is statistically independent.

Ferns were an outgrowth of and an improvement on Lepetit and Fua’s work on ran-

domized forests (Lepetit and Fua, 2006). Lepetit and Fua were the first to consider the

wide-baseline matching problem as a classification problem where a key-point should be

mapped to a class or view-set. This is the same approach they later took in Ferns but with

the difference that randomized forests make use of randomized trees (Amit et al., 1996) for

the classification while ferns makes use of the non-hierarchical fern structure.

Ozuysal et al. ’s ferns perform the same sort of quantization as a combination of

affine invariant feature extraction (SIFT for example) followed by hierarchical quantiza-

tion through a vocabulary tree. However, ferns do not require an affine invariant feature to

be extracted with a descriptor vector, which is usually costly to compute. Also, the number
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of ferns and the number of binary decisions in each fern can be tailored to the computa-

tional resources available on a given platform. Fewer ferns might be used in an embedded

system while more might be used in a laptop for example. Of course, this comes at a

price. With fewer ferns, the features can be broken into fewer classes reducing the classes’

discriminative power.

Williams et al. (2007) showed that ferns could be used to recover from a loss of tracking

in monocular VSLAM. While loss of tracking is not exactly the same problem as loop

detection, Eade and Drummond (2008) have pointed out that the same location recognition

mechanism can be used for both. Willams’s SLAM system is based on an Extended Kalman

Filter for map and pose estimation (Davison et al., 2007). Each feature that is added to the

map is passed to a background process that warps a patch about the feature in various ways

such as rotation, scaling, and perspective warping. These warped patches are then passed

into the ferns which learn the distribution of appearances that may occur for a given feature

patch. Later when the camera becomes lost, the system can classify the features in a new

image using the ferns to find likely matches between the features in the current image and

those in the map.

Since their map only contains on the order of eighty features they have no need to

use an inverted file data structure to find likely matching images to the current image,

but can simply do exhaustive matching to the features in the map. However, they do cull

the possible feature matches based on prior common visibility (the features were all seen

together before) and proximity. Features that are not close together in the map are not likely

to be correctly matched to the features in the current image. Finally, Williams et al. use

the perspective three-point method in a RANSAC procedure to geometrically verify their

matches.
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2.5.2 Loop Correction

After a loop is detected, some process must be performed to correct the accumulated error

in pose estimates and scene structure over the camera’s path. A given system’s approach

to loop correction depends on the kind of map that the SLAM system builds. A system

may create a Euclidean map, one in which all points in the map are known with respect

to each other and the shortest distance between two points is a line, or a topological map

which models the connections or transitions between various locations, but does not give

an overall picture of the shape of the environment.

An atlas is an example of a Euclidean map we have probably all used at some point.

The map has a single common scale that can be used to find the distance between any two

points on the map. On the other hand, a subway map is a common example of a topological

map. A subway layout shows the way to get between a set of stations along a prescribed

set of paths. However, it does not show the exact geometry of the subway system.

Euclidean maps are more common in SLAM systems because they allow paths to be

planned through the map which have not been traversed before and because they natu-

rally represent the Euclidean structure of the world we inhabit. However, this universal

knowledge of location comes at a high computational cost. Topological mapping systems,

because they do not have a Euclidean structure, can be much less costly. A topological

map at its simplest is a graph with nodes representing locations and edges representing

known paths between locations. Loop correction in a topological map is as simple as

adding another edge to the graph. This makes topological maps an attractive alternative in

real-time systems. Recently, hybrid approaches have also been developed which are locally

Euclidean but globally topological in nature (Sibley, 2009; Sibley et al., 2009).

27



2.5.3 Globally Euclidean Loop Correction

Two opposite ends of the global loop correction spectrum are taken up by Extended Kalman

Filter based approaches and bundle adjustment. In EKF approaches, the map and only the

latest camera pose are corrected after a loop is detected. In contrast, bundle adjustment tries

to create a maximum likelihood estimate of all camera poses and the map. Sub-map based

approaches fall in-between these two ends of the spectrum. They generally break the map

into a set of many sub-maps. Each of these maps is then corrected separately in their own

coordinate frames. Lastly, the sub-maps are held internally fixed and a correction process

is performed which minimizes the error of measurements between sub-maps by changing

the sub-maps’ relative poses.

Extended Kalman Filter approaches to VSLAM such as Davison’s (2007) only estimate

the most recent camera pose. After detecting a loop, the current camera pose and map are

updated to reflect the new measurements. If one were to plot the camera’s path based

on the EKF estimates, one would see a discontinuity in the camera’s pose just after loop

completion, since the previous poses are not updated when the loop is found. This will

cause significant problems for procedures that rely on an accurate camera path, including

dense stereo matching and scene reconstruction.

Bundle adjustment (Triggs et al., 2000) represents the opposite end of loop correction

spectrum. Using a non-linear minimization, bundle adjustment seeks to find the globally

optimal camera path and 3D scene structure given the images in a video sequence and

feature correspondences between the frames. Many different parameterizations of bundle

adjustment exist, but the basic form of the bundle adjustment error term is

∑
i

∑
j

d(xij,Π(Ri, Ci, Xj))
2 (2.2)

where i is the camera index, j is the 3D feature index, Ri is the rotation of camera i,

Ci is the center of camera i, Xj is the three-dimensional position of feature j, xij is the

28



measured value of feature j in camera i, Π models the projection of the 3D point into the

camera, and d() is a measure of the distance between the measured and expected projec-

tion of the feature and is generally given in image pixels. Typically, bundle adjustment

procedures minimize this sum of squared errors using a Levenberg-Marquardt algorithm

(Levenberg, 1944; Marquardt, 1963). However, others have shown promising results using

preconditioned conjugate gradients (Byrod and Astrom, 2009; Dellaert et al., 2010).

Bundle adjustment is a highly sparse minimization problem. Each expected measure-

ment is only affected by a single camera and 3D point. This gives the Jaccobian of the pro-

jection function Π its sparse structure. Lourakis and Argyros (2009) take advantage of this

structure in their open source implementation sparse bundle adjustment, or . The bundle

adjustment problem state can be partitioned into cameras and points. The Schur comple-

ment can be used to factor out the points, converting their non-zeros in the full Jaccobian

matrix into constraints between cameras that both see the same feature. The features are

generally factored out rather than the cameras because there are many more features than

cameras in a typical bundle adjustment problem. However, in a situation where a camera

moves in the same environment for a long period of time, it may be more efficient to factor

out the cameras if there are more camera poses than points. At each iteration of the min-

imization, the Schur complement is used to factor out the features, the camera portion of

the state is updated based on the measurement residuals, and finally the updated 3D feature

positions are calculated.

Bundle adjustment re-linearizes the measurement functions in each update step. In

contrast, the EKF linearizes the measurements only once about the state estimate of the

feature and camera at the time of the measurement. The influence of a given measurement

is then folded into the EKF’s pose and map estimates as well as their uncertainties. The

problem with this approach is that if the linearization point was far away from the true

position the EKF will not be able to recover from this error. In contrast, starting from

a state somewhat far from the global minimum of the bundle adjustment cost function
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(Equation 2.2), re-linearization can allow bundle adjustment to converge to the correct

solution where an EKF will not. Of course, the error function has local minima in which

the optimization may get stuck.

In addition to problems with local minima,due to its least squares formulation, bundle

adjustment cannot deal directly with outlier measurements. However, a lack of robustness

is a problem for any least-squares framework, including the EKF. Robust bundle adjustment

methods try to deal with outliers by down-weighing their influence in the minimization. A

simple method to do this is to assign a higher uncertainty to measurements that exhibit large

residual errors (McGlone et al., 2004). Other approaches involve down-weighing the error

term for measurements with large residuals according to some function (McGlone et al.,

2004).

Bundle adjustment can be extended to other types of sensors besides cameras. Thrun et

al. describe the GraphSLAM algorithm in their book Probabilistic Robotics (Thrun et al.,

2005). The GraphSLAM algorithm generalizes bundle adjustment to include robotic con-

trol inputs, odometry information, and any other type of sensor information that can be

used to map a pose of the robot or camera to another pose or a pose to a feature in the

world.

2.5.4 Loop Completion by Subdivision

While bundle adjustment is the gold standard for loop completion methods, its computa-

tional complexity scales with the cube of the lesser of the number of cameras or features in

the map. This makes bundle adjustment impractical for large loop closures that have to be

done in real time. Various methods exist to deal with this complexity problem. Most fall

into the category of divide and conquer or hierarchical approaches.

Fitzgibbon and Zisserman (1998) developed one of the earliest hierarchical scene re-

construction methods for image sequences. Their technique breaks the sequence into se-
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quential groups of three images. These image triplets are then reconstructed independently,

finding image correspondences and a trifocal tensor between the images. This yields a large

set of projective reconstructions. Each of these projective reconstructions is then bundle-

adjusted independently. They are then combined by estimating a homography of three-

space between the two projective reconstructions and bundle-adjusting the homography.

This same homography estimation and refinement process can then be applied hierarchi-

cally to join the entire sequence. A final bundle adjustment on all views is then performed

to create the resulting reconstruction of the total sequence.

Shum et al. (1999) take a different approach to hierarchical bundle adjustment. They

split a video sequence into many small sections which they independently reconstruct using

bundle adjustment. Then they select two virtual key frames for each section. One virtual

key frame could be the first frame in the sub-sequence and the other is selected at some

other location. They calculate the 3D uncertainty of the features based on the measurements

and cameras in a subsequence. This uncertainty is projected into the two virtual key-frames

and stored. This gives two frames for each sub-sequence that contain all of the information

constraining the other camera poses and the features up to linearization error.

The sub-sequences are then joined together into a single model with only the two virtual

key-frames included in the final reconstruction for each sub-sequence. In the final recon-

struction, the uncertainty of the 3D points projected into the virtual key-frames is modeled

by non-isotropic measurement errors on the virtual measurements. The use of virtual key-

frames dramatically reduces the number of images in the final reconstruction, achieving

faster processing speed in the final bundle adjustment. At the same time, the virtual mea-

surements with their associated non-isotropic uncertainties contain all of the information

about the structure in the original images.

Nistér (2000) extended the work of Fitzgibbon and Zisserman (1998) and dealt with the

problem of view selection. While Fitzgibbon and Zisserman assume that all sequential sets

of three images can be used to create accurate trifocal tensors, Nistér developed a method
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for selecting sets of views that were more likely to work well. In view selection, there is a

tradeoff between the amount of parallax feature correspondences exhibit, which increases

over time and the number of correspondences between images in a sequence, which tends

to decrease over time. Nistér’s approach attempted to find the sweet spot in this tradeoff

that results in the best reconstruction possible with general amateur videos, which may

have varying camera separation over time. The view selection criterion measures both the

number of feature correspondences and the ratio of correspondences that are inliers to the

trifocal tensor but not to a homography. Effectively, this is a measure of the parallax in the

scene. More parallax is desirable to arrive at an accurate 3D reconstruction. In addition

to finding good view triplets, Nistér also used line matches in his system to improve the

reconstruction accuracy. The guided line matching approach used can be found in (Schmid

and Zisserman, 1997).

How to break up a collection of cameras and feature correspondences to speed up bun-

dle adjustment was further studied by Steedly et al. (2003). Their approach was to break

the graph of cameras and features into weakly connected sub-maps and then bundle-adjust

these independently. The sub-maps are then fixed internally and optimized with respect

to each other to arrive at the final reconstructed cameras and scene geometry. They used

spectral graph partitioning on the Hessian matrix to find the low-error modes of the reduced

Hessian with the 3D features factored out using the Schur complement. Their partitioning

took into account the fact that each camera has multiple corresponding rows and columns in

the Hessian and forces the partitioning to keep each camera’s parameters together in a sin-

gle partition. They compared the reprojection error after their spectral partitioning method

against a simpler partitioning approach based only on the non-zero entries of the Hessian.

This simpler approach does not take into account the degree of connectedness between dif-

ferent sets of cameras but only whether or not two cameras measure any common features.

They show that by using a partitioning in the low-error modes of the camera system, they

can achieve lower final reprojection errors than the simpler visibility based approach.
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Chli and Davision presented a method to split a map of camera poses and cameras

hierarchically based on the mutual information between expected feature measurements in

(Chli and Davison, 2009). Using the mutual information between measurements, features

can be clustered into groups to split the map into sub-maps. These sub-maps can be further

split in a hierarchical fashion and independently optimized, then held internally fixed and

optimized with respect to each other.

Ni et al. (2007a,2007b) developed an out-of-core bundle adjustment method for large-

scale 3D reconstruction. Their method starts by decomposing the graph of cameras and

features in the bundle adjustment into a set of sub-maps. This partitioning is done with

a graph cut that minimizes the number of edges (visibility connections between cameras

and 3D features) that span the sub-maps. Each of these sub-maps is parameterized in-

dependently with one camera of each sub-map serving as the base node or origin of the

sub-map’s local coordinate frame. This allows the sub-maps to be optimized separately.

Their method partitions the measurements in the reconstruction into those that depend on

multiple sub-maps and those that depend only on a single sub-map. Cameras or features

that yield measurements that only depend on a single sub-map are internal variables while

those that span different sub-maps are separator variables. First, the internal variables

are optimized for each sub-map. This can be performed in parallel. The linearizations of

the internal variables are then cached and used in optimizing the separator variables while

holding the internal variables fixed. Finally, the separator variables are held fixed and the

internal variables are given a final polish. This separation mechanism reduces the total

time required to reconstruct a sequence even without using parallel processors because the

Cholesky factorization used in each iteration of bundle adjustment is super-linear in its

complexity.

Rather than a hierarchical approach, Snavely et al. developed a method that selects the

most important cameras in a bundle adjustment and only bundle adjusts the cameras in this

skeletal set (Snavely et al., 2008). After bundling the skeletal set, they could then fix this
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set and the associated 3D geometry and use standard robust pose estimation techniques

to find the pose of the cameras not in the skeletal set. Their algorithm increased bundle

adjustment speed by more than an order of magnitude with ”little or no loss in accuracy”

(Snavely et al., 2008).

The skeletal set is built by first creating a graph with edges between every pair of cam-

eras that share features in common. The edge weight contains the trace of the covariance

matrix representing the uncertainty of the relative pose between the two cameras. This

graph is then pruned, removing edges, checking that removing an edge in the graph does

not increase the relative uncertainty between any two nodes in the graph by more than a

factor t. The relative pose uncertainty between any two nodes is measured by summing the

covariance trace values along the shortest path between the two nodes. Snavely et al. de-

veloped an efficient algorithm based on a maximum leaf spanning tree (Guha and Khuller,

1998) to prune edges and arrive at the skeletal set. This skeletal set contains considerably

fewer cameras than the original graph for typical Internet photo collections, which are the

application of this work. Although not an exact measure, having fewer cameras in a bundle

adjustment is very likely to increase processing speed.

Since image sequences were not the target of the skeletal set approach, there is still

some question as to whether the skeletal set approach would dramatically improve loop

correction speed in visual SLAM. However, this appears to be a promising possible ap-

proach since it would eliminate the many redundant cameras in a video sequence, increas-

ing processing speed.

Frahm et al. (2010) developed an approach to efficient bundle adjustment that might be

applied to loop correction. Their method clusters images based on appearance and selects

a single image from each cluster as a representative of the cluster or iconic image. Only the

poses of the iconic images are corrected in the bundle adjustment rather than the entire set

of camera poses.

Eade and Drummond presented a state of the art monocular SLAM system in (Eade
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and Drummond, 2008) which uses many local coordinate frames to store the map and

camera poses. Their system will be described in detail so that their unified loop correction

and tracking recovery mechanism can be introduced. A many-coordinate-frame approach

was first put forward by Bosse et al. in their Atlas framework (Bosse et al., 2004). In

contrast to Bosse et al. who used the number of features in a given sub-map as a measure of

when to create a new sub-map, Eade and Drummond make note of the non-linearity of the

projection of a feature into a camera and use this as the basis to decide when to create a new

local coordinate frame or sub-map. In Eade and Drummond’s system, features can exist in

many sub-maps and are stored in inverse depth parametrization (Montiel et al., 2006) with

an associated information matrix. The inverse depth parametrization has the advantage

that it is nearly linear close to the coordinate system origin, which in this case is the local

coordinate frame’s origin. The projection of a feature with standard parametrization into a

camera with no rotation and translation T is:

f(x) = π(x+ T )

=
1

z + T3

(x+ T1, y + T2)

Note that even for T3 = 0 the projection is non-linear in the feature’s coordinates. However,

using an inverse depth representation where the features coordinates are:

(u v q)T ≡ 1

z
(x y 1)T

This makes the observation model near the origin nearly linear:
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f((u v q)T ) = π((
1

q
(u v 1)T )

= π((u v 1)T + qT )

=
1

1 + qT3

(u+ T1 v + T + 2)T

Eade and Drummond use an iterative minimization to incorporate new measurements

into a node and estimate the new camera’s coordinates. The near-linearity of the inverse

depth parametrization for features makes the minimization converge very quickly, they say

more than 99% of the time in one iteration. The near-linearity of the feature parameteriza-

tions depends on the current camera being close to the origin of the current node. They use

the trace of the Hessian of a synthetic measurement with coordinates (0 0 1) in the current

node to measure the non-linearity of the current camera in its node. If the non-linearity is

too high, they move the camera to a different node that is more linear or create a new node.

In Eade and Drummond’s system each local node is connected to its neighbors (nodes

it shares features with) using a similarity transform. Common features between any two

nodes introduce constraints between those nodes. Eade and Drummond update the global

map by finding loops in the graph of local nodes connected by similarity transforms. They

then use a non-linear minimization to update the similarity transforms between nodes.

Since any similarity transform cycle in the graph should sum to identity, they use a minimal

spanning tree to find the cycles. Any transform connecting two nodes of the spanning tree

along and edge not in the spanning tree introduces a cycle in the graph. A cost function

is used that penalizes the divergence of any transform in the cycle from the transform that

the inter-node feature constraints support. This cost function over all cycles is then mini-

mized to update the global graph of local coordinate frames. Their method of converting

inter-sub-map measurements into virtual measurements constraining the sub-maps is very

similar to the FrameSLAM work by Konolige and Agrawal (2008) which will be discussed
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below.

The use of cycles in the graph of poses or local coordinate frames for global map cor-

rection is becoming a topic of interest in VSLAM. Zach et al. (Zach et al., 2010) use cycles

in the graph of camera poses in bundle adjustment to detect incorrect feature matches be-

tween images. These incorrect correspondences might be due to repetitive structure in the

scene as suggested by Zach, but may have other causes as well. By considering cycles

in the graph in a Bayesian framework, they can determine which relative pose estimates

between a pair of cameras are likely to be incorrect and prune the measurements connect-

ing these cameras from the bundle adjustment before starting the minimization. Removing

these gross outliers dramatically improves the quality of the bundle adjustment results when

repetitive structures are present in the scene.

One final approach to loop completion that will be covered here is FrameSLAM by

Konolige and Agrawal (2008). In their approach, feature correspondences are found only

between pairs of images, rather than across many images. For each pair of images with

correspondences in common, a transformation between the cameras is calculated with an

uncertainty found by marginalizing out the 3D features measured in both images. This

camera-to-camera transformation with uncertainty is then used as a synthetic measurement

in a non-linear minimization over all camera poses. The advantage of this approach is that it

factors out the 3D features from the non-linear minimization once and for all and so saves

computation over standard sparse bundle adjustment. Unfortunately, because Konolige

and Agrawal only use two-frame matches to estimate the 3D features, the linearization

point they use to calculate the relative pose and uncertainty between the pair of cameras

can be inaccurate in comparison to methods using longer feature tracks. This can lead

to inaccurate transformations, which are inconsistent, meaning they have greater certainty

than they should because of linearization error. These measurements are not re-linearized

as they would be in an update step in bundle adjustment. This can lead to inconsistency in

the entire map and inaccuracy in the camera path.
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With measurements of features converted to synthetic measurements between poses,

their approach can then further marginalize out camera poses using the Schur Complement.

This creates synthetic measurements between camera poses that did not share any features

in common and reduces the size of the state in the non-linear minimization. This state

reduction dramatically speeds up the minimization but at the cost of some accuracy. By

eliminating cameras from the map, the authors have a VSLAM system that creates maps

that scale with the size of the environment rather than the number of key-frames used to

measure the environment. This is a very desirable property for any SLAM system.

Unfortunately, factoring out a camera in their framework generates measurements be-

tween all of the other cameras that share a synthetic measurement with the removed camera.

This is not a problem when synthetic measurements are only allowed for cameras that are

temporal neighbors in the video sequence. However, when loops are completed, or if longer

tracks are allowed, the reduction in the state size through factoring out cameras can cause

an explosion in the number of synthetic measurements, slowing the minimization process.

Performing loop correction in real-time remains an open research problem in computer

vision and robotics. Each of the approaches mentioned above has its advantages. However,

none has been shown to scale to large enough environments to support loop correction

for mobile robots operating in city scale environments. Since loop correction only needs

to keep up with the exploration speed of a robotic platform, real-time loop correction in

city-scale environments is probably as fast as loop correction ever needs to be for prac-

tical purposes. At the moment, solutions that could scale to cities do exist but only for

topological maps. These will be introduced next.

2.5.5 Hybrid Metric-Topological Loop Completion

Topological maps have been used in SLAM for many years (Angeli et al., 2008; Kuipers,

1978; Werner et al., 2009). Since they do not support path planning based on Euclidean
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constraints, there is some question about their usefulness in robotics applications. Addi-

tionally, purely topological maps cannot be used for augmented reality applications. An

example of a purely topological map is a graph with nodes representing locations each of

which may contain many images, and with edges representing a temporal connection be-

tween areas (Angeli et al., 2008). This temporal connection implies that two locations are

close to each other, since they have been traversed in close succession.

However, recent advances have been made in hybrid Euclidean-topological mapping

that resolve some of the problems with topological maps and Euclidean maps. In hybrid

Euclidean-topological maps, the geometry at any one point in the map is known and each

point in the map (possibly a camera pose or key-frame) is connected to other nearby points

in the map by geometric transformations. Sibley et al. ’s Relative Bundle Adjustment (Sib-

ley, 2009) introduced this sort of map configuration to VSLAM. In contrast to global bun-

dle adjustment approaches that parameterize features with respect to the global coordinate

frame, in relative bundle adjustment, feature points are parameterized with respect to the

first camera that measures them. Cameras are parameterized in relative coordinates with

respect to each other. Each key-frame in a video sequence is parameterized with respect

to some previous key-frame with which it has measured the largest number of common

landmarks.

The advantage of hybrid mapping is that by dropping the constraint that the map must

be globally Euclidean, loop correction becomes very simple. Loops are corrected by simply

adding a new transformation to the graph of camera poses or local coordinate frames. A

hybrid map contains all of the measurement information that a Euclidean map does and

so at any point using standard bundle adjustment techniques it could be upgraded to a

Euclidean map. However, this upgrading does not have to be done on a global scale. If a

path needs to be planned in the robot’s local environment only the local environment needs

to be upgraded to a Euclidean map. The remainder of the map can remain topological.

Additionally, as is suggested in (Holmes et al., 2009), the robot’s local environment can
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be represented with relative coordinates while at the same time the rest of the map can be

globally corrected using bundle adjustment in a seamless framework.

This discussion of VSLAM has shown that the VSLAM problem can be broken into

many sub-problems. Later Chapters in this dissertation will address the sub-problem of

6DOF pose estimation for multi-camera systems as well as exploiting the subdivisions of

the VSLAM problem introduced here to parallelize VSLAM and map office-build scale

scenes online and in real-time.
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CHAPTER 3

Scaled Motion with Non-Overlapping

Two-Camera Systems

3.1 Introduction

Multi-camera systems are an attractive alternative to single cameras or omnidirectional

cameras for VSLAM, where the absolute, scaled ego-motion must be calculated. These

systems have also been used to capture ground based and indoor data sets for 3D recon-

struction (Akbarzadeh et al., 2006; Uyttendaele et al., 2004). They are relatively inex-

pensive and provide wide scene coverage while at the same allowing scaled ego-motion

measurement.

In contrast, with a single camera absolute scale cannot be determined. Omnidirectional

cameras based on parabolic mirrors provide wide-angle scene coverage but at the expense

of uneven sampling of the visual sphere and also unknowable absolute scale. Some om-

nidirectional cameras are essentially small clusters of standard perspective cameras (Im-

mersiveMedia,Imove,Ladybug2) but without a large baseline between the cameras, these

cannot be used to measure absolute, scaled ego-motion. This is a problem of signal to noise

ratio where the baseline of the cameras is small relative to the scene depth making the scale

constraint from the camera geometry weak. Another possible approach to scaled motion

estimation from video was presented by Scaramuzza et al. (2009). They use the fact that the

camera moves with nonholonomic motion in a plane to calculate the scaled camera motion



Figure 3.1: Example of a multi-camera system on a vehicle

with one point correspondence.

It can be difficult to avoid losing part of the field-of-view due of a single camera or

omnidirectional camera due to occlusion, which may require camera cluster placement

high up on a boom. Alternatively, for mounting on a vehicle the system can be split into

two clusters so that one can be placed on each side of the vehicle and occlusion problems

are minimized while giving a large baseline for scale estimation. In this chapter we will

show that by using a system of two camera clusters, consisting of one or more cameras

each, separated by a known transformation, the six degrees of freedom (DOF) of camera

system motion, including scale, can be recovered.

An example of a multi-camera system for the capture of ground-based video is shown

in Figure 3.1. It consists of two camera clusters, one on each side of a vehicle. The cameras

are attached tightly to the vehicle and can be considered a rigid object. This system is used

for the experimental evaluation of our approach.

Computing the scale, structure and camera motion from video of a general scene is

an important application of our scale estimation approach. In Nistér et al., 2004 Nistér

et al. investigated the properties of visual odometry for single-camera and stereo-camera

systems. Their analysis showed that a single camera system is not capable of maintaining

a consistent scale over time. Their stereo system is able to maintain absolute scale over
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(a) (b)

Figure 3.2: (a) Overlapping stereo camera pair, (b) Non-overlapping multi-camera system

extended periods of time by using a known baseline and cameras with overlapping fields of

view. Our approach eliminates the requirement for overlapping fields of view and is able

to maintain the absolute scale over time.

In the next section 3.2, we introduce our novel solution to finding the 6DOF motion of a

two-camera system with non-overlapping views. We derive the mathematical basis for our

technique in section 3.3 as well as give a geometrical interpretation of the scale constraint.

The algorithm used to solve for the scaled motion is described in section 3.4. Section 3.5

discusses the evaluation of the technique on synthetic data and on real imagery.

3.2 6DOF Multi-camera Motion

The proposed approach addresses the 6DOF motion estimation of multi-camera systems

with non-overlapping fields-of-view. Most previous approaches to 6DOF motion estima-

tion have used camera configurations with overlapping fields of view, which allow corre-

spondences to be triangulated simultaneously across multiple views with a known, rigid

baseline. Our approach uses a temporal baseline where points are only visible in one cam-

era at a given time. The difference in the two approaches is illustrated in Figure 3.2.

Our technique assumes we can establish at least five temporal correspondences in one

of the cameras and one temporal correspondence in any additional camera. In practice, this

assumption is not a limitation, as a reliable estimation of camera motion requires multiple

43



correspondences from each camera due to noise.

The essential matrix which defines the epipolar geometry of a single freely moving cal-

ibrated camera can be estimated from five points. Nistér proposed an efficient algorithm

for this estimation in (Nistér, 2003). It delivers up to ten valid solutions for the epipolar

geometry. The ambiguity can be eliminated with additional points. With oriented geometry

the rotation and the translation up to scale of the camera can be extracted from the essential

matrix. Consequently, a single camera provides 5DOF of the camera motion. The remain-

ing degree is the scale of the translation. Given these 5DOF of multi-camera system motion

(rotation and translation direction), we can compensate for the rotation of the system. Our

approach is based on the observation that given the temporal epipolar geometry of one of

the cameras, the position of the epipole in each of the other cameras of the multi-camera

system is restricted to a line in the image. Hence, the scale as the remaining degree of

freedom of the camera motion describes a linear subspace.

In the next section, we derive the mathematical basis of our approach to motion recov-

ery.

3.3 Two Camera Systems – Theory

We consider a system involving two cameras, rigidly coupled with respect to each other.

The cameras are assumed to be calibrated. Figure 3.3 shows the configuration of the two-

camera system. The cameras are denoted by C1 and C2, at the starting position and C′1 and

C′2 after a rigid motion.

We will consider the motion of the camera-pair to a new position. Our purpose is to de-

termine the motion using image measurements. It is possible through standard techniques

to compute the motion of the cameras up to scale, by determining the motion of just one

of the cameras using point correspondences from that camera. However, from one camera,

motion can be determined only up to scale. The direction of the camera translation may be
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determined, but not the magnitude of the translation. It will be demonstrated in this chapter

that a single correspondence from the second camera is sufficient to determine the scale

of the motion, that is, the magnitude of the translation. This result is summarized in the

following theorem.

Theorem 1. Let a two camera system have initial configuration determined by camera

matrices P1 = [I | 0] and P2 = [R2 | − R2C2]. Suppose it moves rigidly to a new position

for which the first camera is specified by P′1 = [R′1 | − λR′1C
′
1]. Then the scale of the

translation, λ, is determined by a single point correspondence x′ ↔ x seen in the second

camera according to the formula

x′�Ax+ λx′�Bx = 0 (3.1)

where A = R2R
′
1 [(R

′
1
�− I)C2]×R2� and B = R2R

′
1 [C

′
1]×R2

�. In this chapter [a]×b denotes

the skew-symmetric matrix inducing the cross product a× b.

E2

λC1'

C1

R1'
T
C2

C2

λC1'+R1'
T
C2

Figure 3.3: Motion of a multi-camera system consisting of two rigidly coupled conven-

tional cameras.

In order to simplify the derivation we assume the coordinate system is centered on the

initial position of the first camera, so that P1 = [I | 0]. Any other coordinate system is

easily transformed to this one by a Euclidean change of coordinates.
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Observe also that after the motion, the first camera has moved to a new position with

camera center at λC′1. The scale is unknown at this point because in our method we propose

as a first step determining the motion of the cameras by computing the essential matrix of

the first camera over time. This allows us to compute the motion up to scale only. Thus,

the scale λ remains unknown. We now proceed to derive Theorem 1. Our immediate goal

is to determine the camera matrix for the second camera after the motion. First note that

the camera P′1 may be written as

P′1 = [I | 0]

⎡
⎢⎣ R′1 −λR′1C

′
1

0� 1

⎤
⎥⎦ = P1T .

where the matrix T, is the Euclidean transformation induced by the motion of the camera

pair. Since the second camera undergoes the same Euclidean motion, we can compute the

camera P′2 to be

P′2 = P2T

= [R2 | − R2C2]

⎡
⎢⎣ R′1 −λR′1C

′
1

0� 1

⎤
⎥⎦

= [R2R
′
1 | − λR2R

′
1C

′
1 − R2C2]

= R2R
′
1[I | − (λC′1 + R′1

�C2)] . (3.2)

From the form of the two camera matrices P2 and P′2, we may compute the essential matrix

E2 for the second camera.

E2 = R2R
′
1[λC

′
1 + R′1

�C2 −C2]×R2�

= R2R
′
1[R

′
1
�C2 −C2]×R2� + λR2R

′
1[C

′
1]×R2

� (3.3)

= A+ λB .
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Now, given a single point correspondence x′ ↔ x as seen in the second camera, we

may determine the value of λ, the scale of the camera translation. The essential matrix

equation x′�E2x = 0 yields x′�Ax+ λx′�Bx = 0, and hence:

λ = −x′�Ax
x′�Bx

= −x′�
(
R2R

′
1[R

′
1
�C2 −C2]×R2�

)
x

x′�
(
R2R

′
1[C

′
1]×R2

�)x (3.4)

.

So each correspondence in the second camera provides a measure for the scale. In the

next section, we give a geometric interpretation for this constraint.

3.3.1 Geometric Interpretation

The situation may be understood via a different geometric interpretation, shown in Fig-

ure 3.4. We note from (3.2) that the second camera moves to a new position C′2(λ) =

R′1
�C2 + λC′1. The locus of this point for varying values of λ is a straight line with its

direction vector C′1, passing through the point R′1
�C2. From its new position, the camera

observes a point at position x′ in its image plane. This image point corresponds to a ray

v′ along which the 3D point X must lie. If we think of the camera as moving along the

line C′2(λ) (the locus of possible final positions of the second camera center), then this ray

traces out a plane Π; the 3D point X must lie on this plane.

On the other hand, the point X is also seen (as image point x) from the initial position

of the second camera, and hence lies along a ray v through C2. The point where this ray

meets the plane Π must be the position of the point X. In turn, this determines the scale

factor λ.

3.3.2 Critical configurations

This geometric interpretation allows us to identify critical configurations in which the scale

factor λ cannot be determined. As shown in Figure 3.4, the 3D point X is the intersection of
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Figure 3.4: The 3D point X must lie on the plane traced out by the ray corresponding to

x′ for different values of the scale λ. It also lies on the ray corresponding to x through the

initial camera center C2.

the plane Π with a ray v through the camera center C2. If the plane does not pass through

C2, then the point X can be located as the intersection of plane and ray. Thus, a critical

configuration can only occur when the plane Π passes through the second camera center,

C2.

According to the construction, the line C′2(λ) lies on the plane Π. For different 3D

points X, and corresponding image measurement x′, the plane will vary, but always contain

the line C′2(λ). Thus, the planes Π corresponding to different points X form a pencil of

planes hinged around the axis line C′2(λ). Unless this line actually passes through C2, there

will be at least one point X for which C2 does not lie on the plane Π, and this point can be

used to determine the point X, and hence the scale.

Finally, if the line C′2(λ) passes through the point C2, then the method will fail. In this

case, the ray corresponding to any point X will lie within the plane Π, and a unique point

of intersection cannot be found.

In summary, if the line C′2(λ) does not pass through the initial camera center C2, almost

any point correspondence x′ ↔ x may be used to determine the point X and the translation
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scale λ. The exceptions are point correspondences given by points X that lie in the plane

defined by the camera center C2 and the line C′2(λ) as well as far away points for which Π

and v are almost parallel. The interested reader may wish to read another analysis of the

critical configurations for scale estimation in non-overlapping multi-camera systems given

in (Kim and Chung, 2006).

If on the other hand, the line C′2(λ) passes through the center C2, then the method will

always fail. It may be seen that this occurs most importantly if there is no camera rotation,

namely R′1 = I. In this case, we see that C′2(λ) = C2 + λC′1, which passes through C2. It

is easy to give an algebraic condition for this critical condition. Since C′1 is the direction

vector of the line, the point C2 will lie on the line precisely when the vector R′1
�C2 − C2

is in the direction C′1. This gives a condition for singularity (R′1
�C2 − C2) × C′1 = 0, or

rearranging this expression, and observing that the vector C2 × C′1 is perpendicular to the

plane of the three camera centers C2, C
′
1 and C1 (the last of these being the coordinate

origin), we may state:

Theorem 2. The critical condition for singularity for scale determination is

(R′1
�C2)×C′1 = C2 ×C′1 .

In particular, the motion is not critical unless the axis of rotation is perpendicular to the

plane determined by the three camera centers C2, C′1 and C1.

Intuitively, critical motions occur when the rotation induced translation R′1
�C2 −C2 is

aligned with the translation C′1. The most common motion that causes a critical condition

is when the camera system translates but has no rotation. Another common, but less ob-

vious, critical motion occurs when both camera paths move along concentric circles. This

configuration is illustrated in Figure 3.5. A vehicle borne multi-camera system turning at a

constant rate undergoes critical motion, but not when it enters and exits a turn.

Detecting critical motions is important to determining when the scale estimates are
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Figure 3.5: Critical motion due to constant rotation rate

reliable. One method to determine the criticality of a given motion is to use the approach

of (Frahm and Pollefeys, 2006). We need to determine the dimension of the space that

includes our estimate of the scale. To do this we double the scale λ and measure the

difference in the fraction of inliers to the essential matrix of our initial estimate and the

doubled scale essential matrix. If a large proportion of inliers are not lost when the scale

is doubled then the scale is not observable from the data. If the scale is observable, the

deviation from the estimated scale value would cause the correspondences to violate the

epipolar constraint, which means they are outliers to the constraint for the doubled scale.

When the scale is ambiguous, doubling the scale does not cause correspondences to be

classified as outliers. This method proved to work on real data sets in practice.

3.4 Algorithm

Figure 3.6 shows an algorithm to solve relative motion of two generalized cameras from

6 rays with two centers where 5 rays meet one center and a sixth ray meets the other

center. First, we use 5 correspondences in one ordinary camera to estimate an essential
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Figure 3.6: Algorithm for estimating 6DOF motion of a multi-camera system with non-

overlapping fields of view.

matrix between two frames in time. The algorithm used to estimate the essential matrix

from 5 correspondences is the method by Nistér (Nistér, 2003). It is also possible to use a

simpler algorithm, which gives the same result developed by Li and Hartley (Li and Hartley,

2006). The 5 correspondences are selected by the RANSAC (Random Sample Consensus)

algorithm (Bolles and Fischler, 1981). The distance between a selected feature and its

corresponding epipolar line is used as an inlier criterion in the RANSAC algorithm. The

essential matrix is decomposed into a skew-symmetric matrix of translation and a rotation

matrix. When decomposing the essential matrix into rotation and translation the chirality

constraint is used to determine the correct configuration (Hartley and Zisserman, 2004). At

this point, the translation is recovered up to scale.

To find the scale of translation, we use Eq. 3.4 with RANSAC. One correspondence is

randomly selected from the second camera and is used to calculate a scale value based on

the constraint given in Eq. 3.4. We have also used a variant of the pbM-Estimator (Chen and

Meer, 2003) to find the initial scale estimate with similar results and speed to the RANSAC

approach. This approach forms a continuous function based on the discrete scale estimates
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from each of the correspondences in the second camera and selects the maximum of that

continuous function as the initial scale estimate.

Based on this scale factor, the translation direction and rotation of the first camera, and

the known extrinsics between the cameras, an essential matrix is generated for the second

camera. Inlier correspondences in the second camera are then determined based on their

distance to the epipolar lines. A linear least squares calculation of the scale factor is then

made with all of the inlier correspondences from the second camera. This linear solution is

refined with a non-linear minimization technique using the graduated non-convexity (GNC)

function (Blake and Zisserman, 1987) which takes into account the influence of all corre-

spondences, not just the inliers of the RANSAC sample, in calculating the error. This error

function measures the distance of all correspondences to their epipolar lines and smoothly

varies between zero for perfect correspondence and one for an outlier with distance to the

epipolar line greater than some threshold. One could just as easily take single pixel steps

from the initial linear solution in the direction which maximizes inliers, or equivalently

minimizing the robust error function. The non-linear minimization simply allows us to

select step sizes depending on the sampled Jacobian of the error function, which should

converge faster than single pixel steps and allows for sub-pixel precision.

Following refinement of the scale estimate, the inlier correspondences of the second

camera are calculated and their number is used to score the current RANSAC solution.

The final stage in the scale estimation algorithm is a bundle adjustment of the multi-camera

system’s motion. Inliers are calculated for both cameras and they are used in a bundle

adjustment refining the rotation and scaled translation of the total, multi-camera system.

While this algorithm is described for a system consisting of two cameras, it is rela-

tively simple to extend the algorithm to use any number of rigidly mounted cameras. The

RANSAC for the initial scale estimate, initial linear solution and non-linear refinement are

performed over correspondences from all cameras other than the camera used in the five-

point pose estimate. The final bundle adjustment is then performed over all of the system’s
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cameras.

3.5 Experiments

We begin with results using synthetic data to show the algorithm’s performance over vary-

ing levels of noise and different camera system motions. Following these results, we show

the system operating on real data and measure its performance using data from a GPS/INS

(inertial navigation system). The GPS/INS measurements are post-processed and are ac-

curate to 4cm in position and 0.03 degrees in rotation, providing a good basis for error

analysis.

3.5.1 Synthetic Data

We use results on synthetic data to demonstrate the performance of the 6DOF motion es-

timate in the presence of varying levels of normally distributed Gaussian noise on the cor-

respondences over a variety of motions. A set of 3D points was generated within the walls

of an axis-aligned cube. Each cube wall consisted of 5000 3D points randomly distributed

within a 20m x 20m x 0.5m volume. The two-camera system, which has an inter-camera

distance of 1.9m, a 100o angle between optical axes and non-overlapping fields of view, is

initially positioned at the center of the cube, with identity rotation. A random motion for

the camera system was then generated. The camera system’s rotation was generated from

a uniform ±6o distribution sampled independently in each Euler angle. Additionally, the

system was translated by a uniformly distributed distance of 0.4m to 0.6m in a random

direction. A check for degenerate motion is performed by measuring the distance between

the epipole of the second camera (see Fig. 3.3) due to rotation of the camera system and the

epipole due to the combination of rotation and translation. This check can be performed

because we have perfect knowledge of the camera motion in synthetic data. Only results

of non-degenerate motions with epipole separations equivalent to a 5o angle between the
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Figure 3.7: Angle Between True and Estimated Rotations, Synthetic Results of 100 Sam-

ples Using Two Cameras

translation vector and the rotation induced translation vector are shown. Results are given

for 100 sample motions for each of the different values of normally distributed, zero mean

Gaussian white noise added to the projections of the 3D points into the system’s cameras.

The synthetic cameras have calibration matrices and fields-of-view that match the cameras

used in our real multi-camera system. Each real camera has an approximately 40o x 30o

field-of-view and a resolution of 1024 x 768 pixels.

Results on synthetic data are shown in Figures 3.7 to 3.10. One can see that the system

is able to estimate the rotation (Fig. 3.7) and translation direction (Fig. 3.8) well given noise

levels that could be expected using a 2D feature tracker on real data. Figure 3.9 shows a

plot of ‖Test − Ttrue‖ / ‖Ttrue‖. This ratio measures both the accuracy of the estimated

translation direction, as well as the scale of the translation and would ideally have a value

of zero because the true and estimated translation vectors would be the same. Given the

challenges of translation estimation and the precise rotation estimation, we use this ratio as

the primary performance metric for the 6DOF motion estimation algorithm. The translation

vector ratio, along with the rotation error plot, demonstrate that the novel system performs

well given a level of noise that could be expected in real tracking results.
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Figure 3.8: Angle Between True and Estimated Translation Vectors, Synthetic Results of

100 Samples Using Two Cameras
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Figure 3.9: Scaled Translation Vector Error, Synthetic Results of 100 Samples Using Two

Cameras
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Figure 3.10: Scale Ratio, Synthetic Results of 100 Samples Using Two Cameras

3.5.2 Real data

For a performance analysis on real data, we collected video using an eight-camera system

mounted on a vehicle. The system included a highly accurate GPS/INS unit, which allows

comparisons of the scaled camera system motion calculated with our method to ground

truth measurements. The eight cameras have almost no overlap to maximize the total field-

of-view and are arranged in two clusters facing toward the opposite sides of the vehicle. In

each cluster, the camera centers are within 25cm of each other. A camera cluster is shown

in Fig. 3.1. The camera clusters are separated by approximately 1.9m and the line between

the camera clusters is approximately parallel with the rear axle of the vehicle. Three of the

four cameras in each cluster cover a horizontal field-of-view on each side of the vehicle of

approximately 120o x 30o. A fourth camera points to the side of the vehicle and upward. Its

principle axis has an angle of 30o with the horizontal plane of the vehicle, which is colinear

with the optical axes of the other three cameras.

In these results on real data, we take advantage of the fact that we have six horizontal

cameras and use all of the cameras to calculate the 6DOF system motion. The upward

facing cameras were not used because they only recorded sky in the sequence. For each pair

of frames recorded at different times, each camera in turn is selected and the five-point pose
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Figure 3.11: Angle Between True and Estimated Translation Vectors, Real Data with Six

Cameras

estimate is performed for that camera using correspondences found using a KLT (Lucas and

Kanade, 1981) 2D feature tracker. The other cameras are then used to calculate the scaled

motion of the camera system using the five-point estimate from the selected camera as an

initial estimate of the camera system rotation and translation direction. The 6DOF motion

solution for each camera selected for the five-point estimate is scored according to the

fraction of inliers of all other cameras. The motion with the largest fraction of inliers is

selected as the 6DOF motion for the camera system.

In table 3.1, we show the effect of critical motions described in section 3.3.2 over a

sequence of 200 frames. Critical motions were detected using the QDEGSAC (Frahm

and Pollefeys, 2006) approach described in that section. Even with critical motion, the

system degrades to the standard 5DOF motion estimation from a single camera and only

the scale remains ambiguous as shown by the translation direction and rotation angle error

in Figures 3.11 and 3.12. This graceful degradation to the one camera motion estimation

solution means that the algorithm solves for all of the possible degrees of freedom of motion

given the data provided to it.

In this particular experiment, the system appears to consistently underestimate the scale

with our multi-camera system when the motion is non-critical. This is likely due to a
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Figure 3.12: Angle Between True and Estimated Rotations, Real Data with Six Cameras
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Figure 3.13: Scale Ratio, Real Data with Six Cameras
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Figure 3.14: Scaled Translation Vector Difference from Ground Truth, Real Data with Six

Cameras
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‖Test−Ttrue‖
‖Ttrue‖ 0.23± 0.19
‖Test‖
‖Ttrue‖ 0.90± 0.28

Table 3.1: Relative translation vector error including angle and error of relative translation

vector length mean± std.dev.

combination of error in the camera system extrinsics and error in the GPS/INS ground

truth measurements.

Figure 3.15 shows the path of the vehicle mounted multi-camera system and locations

where the scale can be estimated. From the map, it is clear that the scale cannot be estimated

in straight segments as well as in smooth turns. This is due to the constant rotation rate

critical motion condition described in section 3.3.2.

We selected a small section of the camera path circled in figure 3.15 and used a cali-

brated structure from motion (SfM) system similar to the system used in (Nistér, 2003) to

reconstruct the motion of one of the system’s cameras. For a ground truth measure of scale

error accumulation, we scaled the distance traveled by a camera between two frames at the

beginning of this reconstruction to match the true scale of the camera motion according to

the GPS/INS measurements. Figure 3.16 shows how error in the scale accumulates over the

200 frames (recorded at 30 frames per second) of the reconstruction. We then processed

the scale estimates from the 6DOF motion estimation system with a Kalman filter to de-

termine the scale of the camera’s motion over many frames and measured the error in the

SfM reconstruction scale using only our algorithm’s scale measurements. The scale drift

estimates from the 6DOF motion estimation algorithm clearly measure the scale drift and

provide a measure of absolute scale.

3.6 Conclusion

This chapter has introduced a novel algorithm that determines the 6DOF motion of a rigid

multi-camera system with non-overlapping fields of view. We have provided a complete
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Figure 3.16: Scaled structure from motion reconstruction
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analysis of the critical motions of the multi-camera system that make the absolute scale

unobservable. Our algorithm can detect these critical motions and gracefully degrades to

the estimation of the epipolar geometry. We have demonstrated the performance of our

solution through both synthetic and real motion sequences. Additionally, we embedded

our novel algorithm in a structure from motion system to demonstrate that our technique

allows the determination absolute scale without requiring overlapping fields of view.

The next chapter will introduce a different minimal solution method for the six de-

gree of freedom motion of a partially overlapping stereo camera. The approach is de-

signed to overcome the degeneracies inherent estimating six degree of freedom motion for

non-overlapping cameras by taking advantage of a small region of overlap in the rigidly

mounted cameras’ fields of view.
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CHAPTER 4

Scaled Motion with a Slightly

Overlapping Stereo Camera

4.1 Introduction

In this chapter, we present a new minimal solution method for use in stereo camera based

structure from motion (SfM) or visual simultaneous localization and mapping (VSLAM).

This novel minimal solution method overcomes the degeneracies in absolute scaled mo-

tion estimation inherent in non-overlapping rigid two camera systems, including the most

common case of pure translational motion.

Our principal application is VSLAM for a humanoid robot. The approach proposed in

this work is analogous to human vision where both eyes overlap in only part of the total

viewing frustum. Excluding prior models humans possess, such as relative sizes of objects,

expected relative positions, expected ego-motion etc, depth could be perceived from the

region of overlap between our eyes while rotation is derived from both overlapping and

non-overlapping regions. This configuration of eyes (or cameras) provides a large total

field-of-view for the combined camera system while at the same time allowing the scale

to be fixed based on triangulated features in the camera’s region of overlap. This gives the

best of what a two-camera system can deliver, a wide field-of-view for accurate rotation

estimation with an absolutely scaled translation measurement.

Our solution method is based on the observation that a feature visible in all four cameras



(corresponding to a pair of cameras at two poses) constrains the relative pose of the second

stereo camera to be on a sphere around this particular feature, which has a known position

relative to the first stereo camera pose from triangulation, as shown in Figure 4.1. Features

seen in only the left or right camera at both poses (two-view features) are labeled S1..3,

and the feature seen in all four cameras is labeled Q (for quad or four-view feature). The

constraint imposed by the four-view feature leaves three degrees of freedom: two degrees

for the location of the second camera on the induced sphere, and one for the rotation in the

tangent plane to the sphere.

It appears natural to employ two-view correspondences visible only either in the left

or right view. There is a surprising degeneracy in this setting, if e.g. the left camera of

the stereo pair has the same distance from the triangulated four-view feature in both poses

(which can be readily verified e.g. using Macaulay 2 (Grayson and Stillman). More im-

portantly, this degeneracy also has an impact on the numerical accuracy of the returned

solution, if the camera-point distances at both time instances do not vary significantly

(which is usually the case in VSLAM settings). To avoid this degeneracy and to obtain

well-conditioned solutions even in the small motion case, we use a pair of two-view cor-

respondences in the left (or right) camera and one two-view correspondence in the other

camera to solve for the remaining three degrees of freedom.

The major advantage of our approach is that it uses the total field-of-view of the stereo

camera system to determine the rotation, which maximizes accuracy. Given a stereo pair

with a small overlap between its views, one could triangulate 3D points in the region of

overlap in the first stereo camera. And, use the three-point perspective pose solution (Har-

alick et al., 1994) or its generalized incarnation (Nistér, 2004) to find the relative pose of

the second stereo camera with respect to the first camera. Due to the small overlap, the

relative rotation and translation from these methods could be inaccurate because most of

the 3D points would be in approximately the same viewing direction relative to the first

camera. Our method fixes the rotation with features which do not have to be in the region
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Figure 4.1: Geometry of stereo pair relative pose problem. Features seen in only the left

or right camera are labeled Si (two-view features). The feature seen in both left and right

cameras at both times is labeled Q (four-view feature).

of overlap. With this method we get a more accurate rotation with small overlap, which in

turn feeds into a more accurate translation measurement.

Our solver necessitates some modification to standard RANSAC (Bolles and Fischler,

1981) to account for the differing amount of information in a two-view correspondence and

a twice-triangulated four-view correspondence. We develop a method to weigh the relative

information in each type of inlier to determine the best solution in the RANSAC process.

We also describe how to modify the RANSAC stopping criteria to account for two classes

of measurement.

4.2 Background

Estimating SfM using multi-camera systems has been a topic of recent interest in the lit-

erature. In some instances, one can take advantage of a reduced degree of freedom (DOF)

motion model to simplify SfM. This can be used to estimate the planar motion of a wheeled

robot for example. This approach was taken by Stewénius and Åström in (Stewénius and
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Åström, 2004) where they theoretically derive solutions for planar SfM for many different

combinations of rigidly mounted cameras, features, and multi-camera system poses. Scara-

muzza et al. (Scaramuzza et al., 2009) take advantage of the fact that a vehicle moves with

planar non-holonomic motion to calculate the absolutely scaled structure and motion using

only one point correspondence. In contrast, our approach is to be used with stereo camera

systems allowed to move in all 6DOF.

A few approaches to solve for six degree of freedom motion of a multi-camera system

exist which can solve for the system’s motion without any overlapping views. Kim et al.

described one such method in (Kim et al., 2007). They first calculate essential matrices for

all the system’s cameras and decompose these essential matrices into rotation and transla-

tion direction. They show that the scale of the motion can then be solved as a triangulation

problem.

Another approach was presented in Chapter 3 and in Clipp et al. (2008) where the same

problem is addressed using a minimal number of six feature correspondences: five from

one camera are used to determine the rotation and translation direction, and the sixth one

from a different camera determines the translation scale. Both methods (Clipp et al., 2008;

Kim et al., 2007) are based on decomposing the translation of the individual cameras into

translation of the total system and the rotation induced translation. This can only be done if

these two vectors are not parallel or close to parallel. Accordingly, these methods are only

applicable to certain key-frames in any general video sequence.

The generalized epipolar constraint of multi-camera systems was developed by Pless

in (Pless, 2003) to allow a network of rigidly-coupled cameras to be treated as a single

imaging device for SfM. Pless suggests a linear 17-point solution for relative motion us-

ing the generalized epipolar constraint but left numerical results for this approach to future

work. Li et al. show in (Li et al., 2008) that this standard linear 17-point approach to solve

for relative motion using the generalized epipolar constraint based on singular value de-

composition does not work in many common scenarios and propose a non-minimal, linear
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solution that does.

In (Stewénius et al., 2005) Stewénius and Nistér show that there are two minimal cases

for the relative pose of a generalized camera and develop a solution method for the relative

pose of stereo cameras from six ray correspondences. They demonstrate that up to 64

solutions may exist for the proposed constraints. Their solution is degenerate if all cameras

in the multi-camera system are on a line, which of course is the case with a stereo camera

(our target here).

At the other end of the spectrum are methods that require all features used in pose esti-

mation to be in the multi-camera system’s region of overlap in the first pose. These include

the before mentioned three-point perspective pose problem (Haralick et al., 1994) and the

generalized three-point perspective pose problem (Nistér, 2004). While these methods are

not vulnerable to the pure translation degeneracy, in contrast to (Clipp et al., 2008; Kim

et al., 2007), they require sufficient overlap between the cameras’ fields-of-view, necessi-

tating a large trade-off between overlap and total field-of-view.

Our approach, using one four-view feature to fix the camera translation and three two-

view correspondences to find the rotation, occupies a middle ground in the space of prob-

lems considered until now.

4.3 Solution Method

In this section, we describe our approach for relative pose estimation between two poses of

a stereo rig. Let P0 and P1 denote the projection matrices of the left and the right camera for

the first time instance, and P ′0 and P ′1 are those for the second time instance. Without loss of

generality, we assume a rectified stereo system, i.e. P0 = (I|0) and P1 = (I|b), where −b is

the baseline between the cameras on the stereo rig. General configurations can be reduced

to this case by appropriate rotation of the 2D feature positions (corresponding to 3D camera

rays emerging from the projection center). We also assume the camera intrinsics and lens
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distortion parameters are known, and that feature positions in the image are undistorted and

normalized according to the intrinsic parameters.

Let (R|t) denote the Euclidean transformation between the time instances, i.e.

P ′0 = (R|t) and P ′1 = (R|t+ b).

The 3D point visible in both cameras has coordinates x for the first time instance and y in

the second instance (always with respect to the left camera in the rig). The 3D points x

and y are found through triangulating their associated correspondences in each stereo pair.

Hence,

y = Rx+ t,

and t = y − Rx. 2D feature matches p0 ↔ q0 visible only in the left camera must satisfy

the epipolar constraint,

qT0 E0p0 = qT0 [t]×Rp0 = 0. (4.1)

The epipolar constraint for feature correspondences p1 ↔ q1 only visible in the right cam-

era can be easily derived as

qT1 E1p1 = qT1 [b+ t−Rb]×Rp1

= qT1 [b+ y −Rx−Rb]×Rp1 with [t = y −Rx]

= qT1
(
[b+ y]×R−R[x+ b]×

)
p1, (4.2)

where we used the fact that [Rx]×Ry = (Rx) × (Ry) = R(x × y) = R[x]×y for rotation

matrices R.

Overall, Equations 4.1 and 4.2 allow us to express both essential matrices in terms of
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the unknown rotation R, i.e.

E0 = [t]×R = [y]×R−R[x]×, and (4.3)

E1 = [b+ y]×R−R[x+ b]×. (4.4)

In general, with two correspondences in the left camera and one correspondence in the right

camera, there are three equations for the three degrees of freedom of the rotation. Using e.g.

unit quaternions to represent the rotation matrix R, a polynomial system of four equations

can be formulated, which contains the three epipolar constraints (two constraint equations

for the two-view correspondence in the left camera and one constraint equation for the two-

view correspondence in the right camera, or one left and two right)and the unit quaternion

constraint. By computing the elimination ideal (e.g. (Cox et al., 1997)), a 16th degree

univariate polynomial (with only even powers) is obtained. The two solutions differing

only in sign correspond to the quaternions (q0, q1, q2, q3) and (−q0,−q1,−q2,−q3), which

actually represent the same rotation.

In our initial experiments we compute a Gröbner basis trace for the polynomial system

of equations described above (using exact arithmetic in finite prime fields, as suggested

in (Stewénius, 2005)), and generate efficient code automatically using Buchberger’s algo-

rithm to solve real instances of the pose estimation problem. In order to allow real-time

processing, we utilize a root finding procedure based on Sturm bracketing instead of us-

ing one of the numerically more stable, but substantially slower approaches (e.g. (Bujnak

et al., 2008; Byröd et al., 2007)). The observed numerical accuracy of this method de-

grades with decreasing baselines in terms of the 3D scene depths, which reduces its utility

in real-world situations. Nevertheless, the assumption of small motion (in particular small

rotations) of the camera system over time (also commonly employed in differential feature

tracking methods) allows us to simplify the polynomial system as follows.

First, we represent the rotation R by modified Rodrigues parameters σ (Schaub and
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Junkins, 2003),

R(σ) = I +
8[σ]2× − 4(1− ‖σ‖2)[σ]×

(1 + ‖σ‖2)2 , (4.5)

where σ is a 3-vector. Since the modified Rodrigues parameters can be expressed in terms

of the Euler axis ā and angle θ as σ = ā tan(θ/4), the linearization error increases with

θ/4 instead of e.g. θ/2 for the classical Rodriguez parametrization. Hence, this particular

representation relaxes the assumption of small rotation angles in comparison with other

representations.

Under the assumption of small rotations, we approximate R(σ) by its second order

Taylor approximation and insert the resulting expression into Eqs. 4.3 and 4.4. We chose

to use a second order Taylor series approximation so that our solution would work with

larger rotations than a first order approximation would allow. The resulting polynomial

system has three equations of degree two. The corresponding Groebner basis trace leads

to an 8th degree polynomial and consists of only a few steps, hence the induced solution

procedure is considered to be numerically stable. Root finding and back-substitution give

the modified Rodrigues parameters σ and the corresponding rotation through Eq. 4.5, which

is only an approximate solution to the original problem. The reported possible rotations are

nonlinearly refined to satisfy Eqs. 4.3 and 4.4 precisely.

4.4 RANSAC Considerations

The minimal solution method described in the previous section uses two modes of data

points—point feature matches in 3D space, and feature correspondences in 2D. Hence, we

have to deviate from the uniform treatment of samples employed in traditional RANSAC

settings.

The first modification addresses the refined stopping criterion to account for the poten-

tially different inlier ratios for the two different types of correspondences. The algorithm
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maintains the inlier ratio εl for feature correspondences visible in the left camera, the inlier

ratio εr for features visible in the right camera, and the inlier ratio εd for features visible in

both cameras (four-view features). Without loss of generality we assume that two temporal

correspondences from the left camera and one correspondence from the right camera are

utilized in the minimal solver. Then the modified stopping criterion is given by

n =
log(1− α)

log(1− ε2l εrεd)
, (4.6)

where n is the number of samples required to achieve confidence α in the solution. Clearly,

the term ε2l εrεd is the probability of selecting only inliers as required by our solution method

(Section 4.3).

The inlier scoring function for a pose hypothesis also needs adjustment. In standard

RANSAC the total count of inliers is used to score the current hypothesis, which assumes

that all data points contain the same amount of information. In the given setup we face

a mixed set of data points consisting of 3D points visible in 4 images in total, and 2D

feature correspondences. In both cases the latent variables have 3 degrees of freedom

per sample—the coordinates of the underlying 3D point. However, the dimension of the

observed measurement is either 4-dimensional (two 2D feature positions in either the left

or the right camera) or 8-dimensional (2D positions in both cameras at both points in time).

Consequently, the residual error lies in the space orthogonal to the fitted manifold (Torr,

2002). Accordingly, the error space for 3D points visible in all cameras is 5-dimensional

(8-3), and the residuals for points visible either in the left or right camera is 1-dimensional

(4-3). Therefore, inlier features visible in four views carry five times more information than

two view correspondences. Thus, the utilized weighting to combine the respective inlier
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counts is given by

score = 5×#Inliers(3D)

+ #Inliers(left) + #Inliers(right), (4.7)

where #Inliers(3D) denotes the number of inliers among fully visible 3D points (four-

view features), and #Inliers(left) and #Inliers(right) designate the inlier counts of the

respective two-view correspondences.

4.5 Minimal Sets of Correspondences for Stereo Cameras

Our method uses a novel combination of image correspondences to determine the relative

pose of a stereo camera. This leads to the question of what other combinations of cor-

respondences can be used to solve for a stereo camera’s relative pose. Four images are

available as input to compute the relative pose between stereo cameras. Thus, a point fea-

ture may be detected and matched in all four (4-V), three (3-V) or only two views (2-V).

Table 4.5 shows all of the combinations of respective feature correspondences, which result

in a minimal set of constraints fully determining the relative pose of a stereo camera. Only

three sets of constraints (out of 6 possible ones) have been used for relative pose estimation

for stereo cameras in the literature so far.

The displayed minimal sets of correspondences are established by looking at inde-

pendent constraints induced by a combination of correspondences. A four-view corre-

spondence constrains 3DOF between the two stereo cameras, a three-view correspondence

2DOF and a one-view correspondence 1DOF. It is clear the total number of constraints gen-

erated by the correspondences needs to be exactly six for a minimal case. However, one

must be careful to consider the redundancy in combinations of correspondences. A sim-

ple counting argument would suggest a relative pose with two four-view correspondences
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Description 4-V 3-V 2-V

Figure 4.3 1 1 1

Chapter 4, Figure 4.1 1 0 3

P3P (Haralick et al., 1994; Nistér, 2004) 0 3 0

Figure 4.4 0 1 4

Figures 4.5 and 4.6 0 2 2

Chapter 3, Figure 3.3 0 0 6

Table 4.1: Combinations of N-view correspondences that minimally constrain the 6DOF

relative pose of a stereo camera

and no others would be minimal. In fact this situation is under-determined because of its

geometry.

Figures 4.3 to 4.6 illustrate additional minimal geometric configurations that could give

rise to minimal solution methods. None of these methods has been verified by developing

an algebraic solution method based on the geometry. These cases are described by their

number of four-view, three-view and two-view correspondences in the following format

case< #four−view,#three−view,#two−view >. For example, the solution method

using a non-overlapping stereo camera described in Chapter 3 is denoted case< 0, 0, 6 >.

In the figures solid, thick lines connect camera centers with rays to points where the ray

direction and point depth are both known. Dashed lines connect camera centers to points

with rays where only the ray direction is known. Since the second camera in the stereo pair

is only used to find the depth of three-view and four-view features, it is not drawn in the

figures.

Case< 1, 1, 1 > is shown in Figure 4.3. This geometry clearly fully constrains the two

cameras since the four-view and three-view features constrain the two cameras so that their

only degree of freedom is rotation about the vertical line through the two features. A single

additional two-view correspondence should provide the additional constraint required to

fully constrain the relative pose of the two cameras, P0 and P1.

Figure 4.4 illustrates case< 0, 1, 4 > which also clearly reflects a fully constrained ge-

ometry. This can be seen by considering the solution method that might be applied to find
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4-V 3-V 2-V 4-V 3-V 2-V 4-V 3-V 2-V 4-V 3-V 2-V

3 3 6 2 3 6 1 3 6 0 3 6

3 3 5 2 3 5 1 3 5 0 3 5

3 3 4 2 3 4 1 3 4 0 3 4

3 3 3 2 3 3 1 3 3 0 3 3

3 3 2 2 3 2 1 3 2 0 3 2

3 3 1 2 3 1 1 3 1 0 3 1

3 3 0 2 3 0 1 3 0 0 3 0

3 2 6 2 2 6 1 2 6 0 2 6

3 2 5 2 2 5 1 2 5 0 2 5

3 2 4 2 2 4 1 2 4 0 2 4

3 2 3 2 2 3 1 2 3 0 2 3

3 2 2 2 2 2 1 2 2 0 2 2

3 2 1 2 2 1 1 2 1 0 2 1

3 2 0 2 2 0 1 2 0 0 2 0

3 1 6 2 1 6 1 1 6 0 1 6

3 1 5 2 1 5 1 1 5 0 1 5

3 1 4 2 1 4 1 1 4 0 1 4

3 1 3 2 1 3 1 1 3 0 1 3

3 1 2 2 1 2 1 1 2 0 1 2

3 1 1 2 1 1 1 1 1 0 1 1

3 1 0 2 1 0 1 1 0 0 1 0

3 0 6 2 0 6 1 0 6 0 0 6

3 0 5 2 0 5 1 0 5 0 0 5

3 0 4 2 0 4 1 0 4 0 0 4

3 0 3 2 0 3 1 0 3 0 0 3

3 0 2 2 0 2 1 0 2 0 0 2

3 0 1 2 0 1 1 0 1 0 0 1

3 0 0 2 0 0 1 0 0 0 0 0

P3P

Clipp et al.
2008

Clipp et al.
2009

over constrained

minimal

under constrained

2-View

Left to Right

Time

4-View

3-View

or

or

Figure 4.2: Over-constrained, minimally-constrained and under-constrained combinations

of features for six degree of freedom motion estimation for a rigid, calibrated two-camera

system.
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the scaled transformation from P0 to P1. The five-point relative pose method Nistér, 2003

can be used with the five correspondences, ignoring for the moment that one of the corre-

spondences has a known depth. The five-point method finds the transformation’s rotation

and translation direction. At this point the transformation is known up to an unknown scale

factor. Using the three-view correspondence’s depth this scale factor can be determined to

recover the six degree of freedom, absolutely scaled transformation from P0 to P1. Ad-

ditional combinations of three-view and two-view features may lead to other geometries

for case< 0, 1, 4 >. In these geometries rather than all of the two-view features coming

from the same camera, e.g. the left camera in the stereo pair, they might come from some

combination of left to left and right to right camera correspondences. These combinations

of correspondences might be looked at in future work.

Two possible geometries exist for case< 0, 2, 2 > which we will refer to as case<

0, 2, 2 >a and case< 0, 2, 2 >b. Case< 0, 2, 2 >a fully constrains the relative pose of P0

and P1. After the two three-view correspondences are included in the geometry, camera P1

has two remaining degrees of freedom. It can rotate about the line through the two three-

view features and it can move along the circle shown in Figure 4.5. These two degrees

of freedom should be resolved with the two two-view correspondences. Upon inspection

case< 0, 2, 2 >b, Figure 4.6, does not appear to fully constrain the relative pose but it is

included here because it warrants additional study.

4.6 Degenerate Cases

In this section, we describe certain configurations of features that lead to degeneracies in

our solution for case< 1, 0, 3 >. The major reason we use two two-view correspondences

in the left (or right) camera and one two-view correspondence in the other camera to solve

for the rotation is a degeneracy that can occur when using correspondences only from one

of the cameras. If all three two-view correspondences are selected from either the left or

74



P0

P1

X0

X1

Figure 4.3: The minimal geometry consisting of one four-view, one three-view and one

two-view correspondence, case< 1, 1, 1 >.

P0 P1

Figure 4.4: The minimal geometry consisting of one three-view and four two-view corre-

spondences, case< 0, 1, 4 >.
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P0

P1

Figure 4.5: The first case of the minimal geometry consisting of two three-view and two

two-view correspondences, case< 0, 2, 2 >a. While an algebraic solution is not provided

in this dissertation, this geometry appears to fully constrain the relative camera poses.

P0

P1

Figure 4.6: The second case of the minimal geometry consisting of two three-view and two

two-view correspondences,case< 0, 2, 2 >b. It is not immediately clear that this geometry

fully constrains the relative camera poses but it may.
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Figure 4.7: The first degenerate case. When all the features (two-view and four-view) lie

on a 3D line through the four-view feature the second camera can be anywhere on a circle

which is the intersection of the sphere and a plane orthogonal to the line containing the

four-view feature.

the right camera to solve for the rotation, and the four-view feature is equidistant from the

left camera at both poses, then this setting is degenerate and the 1D variety of solutions

exists. This situation is resolved by utilizing two-view correspondences from both the left

and right cameras to solve for the rotation.

One truly degenerate case that may arise with our method in practice is when all three

features, which give rise to the 2D correspondences, lie on a line through the 3D point

used in the minimal solution at the center of the sphere. In this case, the camera can

be anywhere on a circle described by the intersection of the sphere and a plane through

the center of the sphere orthogonal to the line. This configuration is depicted in Figure 4.7.

This configuration might occur in man-made environments where straight lines are present.

However, this configuration is a common degeneracy for all relative pose solution methods

and can be easily avoided by never selecting correspondences that are all co-linear in both

images.
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4.7 Synthetic Experiments

In this section, we evaluate the performance of our minimal solver using two synthetic

experiments. First, we evaluate the performance after nonlinear refinement of the solver

under varying levels of image noise with and without outliers to test the solver’s ability

to deal with corrupted data. Second, we compare our solver to the three-point perspective

pose solution without refinement while decreasing the overlap of the stereo pair by rotating

the cameras on the rigid system around their vertical axes. In these and the experiments

in Section4.8, the solution method based on the small angle approximation is used as it

considerably simplifies the polynomial equations that must be solved to find the camera

system motion.

The first experimental setup tests random motions of a stereo camera. For ease of ex-

planation, we assume all units of length are in meters. The two cameras have a baseline of

0.5 m, have parallel optical axes, and are placed in a standard stereo camera configuration

where both camera centers are on a line from the left optical axis to the right optical axis

orthogonal to the axes. The first camera is placed with identity rotation and the left cam-

era of the stereo head at the origin. Three dimensional feature points are distributed in a

20x20x20m volume in front of the camera. The second camera pose is generated by first

randomly translating the camera between 0.2 and 3.5 meters in a random direction. The

minimum translation reduces the effect of being close to the degenerate case when the two

cameras are the same distance from the 3D feature, which is the center of rotation. The

second stereo pair is then rotated randomly up to five degrees in each of the three rotation

axes. Based on visibility we divide the 3D features into three classes: those that can be

seen in both cameras of the stereo system at both times (four-view features), those that can

be seen only in the left camera at both times, and those that can be seen only in the right.

In this way we model the effect of a limited overlap in the fields of view.

We test the performance of our proposed minimal solver under varying levels of noise
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and outliers. We use RANSAC (Bolles and Fischler, 1981) to find an initial solution and do

a bundle adjustment on the inliers to refine the relative pose solution. Figure 4.8 shows the

rotation and translation direction error with varying levels of noise added to the features

in the images with and without outliers. In all Figures in this chapter, the rotation error

is defined as the angle component of RtrueR
T
est in an axis-angle representation, and the

translation error is the angle between the true and estimated translation vectors. We use

the translation direction rather than distance because in situations where the features are

relatively far from the camera compared to the stereo camera baseline the magnitude of

the translation will be only weakly observable. By comparing the translation directions

we compare quantities which should have greater observability in the data. Given that our

method uses the 3D location of one feature, we triangulate the noisy image measurements

of this feature in both stereo pairs independently and use the triangulated point locations as

input to our solver. Image noise is reported in degrees. Note that 0.1◦ corresponds to two

pixels for a camera with a sixty-degree field-of-view and 1200 pixels horizontal resolution.

Figures 4.8 and 4.9 clearly show our solver is able to separate inliers from outliers in the

presence of noise.

The second experiment is designed to test our method’s performance vs. the three-

point perspective pose method (P3P) in a typical indoor scenario. The camera is placed

in a corridor, which has 3D features randomly distributed in the 0.1m thick walls. The

corridor is 20m long, 2m high and 2m wide. The first stereo camera is placed in the middle

of the corridor pointing down the corridor at the far wall, which is 10m away from the

camera. The second stereo camera is randomly translated and rotated in a way that it is

moving down the hall and points on the far wall are visible.

We progressively reduce the overlap between the cameras by rotating the left and right

cameras’ optical axes away from each other. We compare the accuracy of the relative pose

calculated using our method and (P3P) after RANSAC but without non-linear refinement.

This provides a measure of how close the RANSAC solution is to the true solution. The
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Figure 4.8: Absolute rotation error and translation direction error after non-linear refine-

ment under varying noise with and without outliers. The slightly larger error with outliers

at larger noise values may be due to the fact that fewer inlier features are used to calculate

these solutions than the pure inlier sets. For example, if 100 features were used in the ex-

periment then with 10% outliers only 90 features would be used to calculate the motion vs.

100 with 0% outliers.
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Figure 4.9: Error in the scale of camera translation under varying noise with and without

outliers. The displayed error is given as
∣∣‖Test‖ − ‖Ttrue‖

∣∣/‖Ttrue‖.

closer to the true solution the more likely it is that a non-linear refinement will find the

global minimal error solution. We test both methods on exactly the same random motions,

3D feature locations and same noisy feature measurements over 1000 trials and report the

average results.

For the P3P method we first triangulate 3D points between the left and right cameras of

the stereo system at the initial pose, P0. We then use the projections of these triangulated

features in the left image of the stereo head at the second pose, P ′0, to calculate the relative

pose. We calculate inliers and outliers and score both the P3P solution and our solution

method in the same manner. We use an adaptive stopping criterion so that we can compare

the required number of RANSAC samples to reach 99% confidence. We also compare the

rotation and translation direction error and scale error of the two methods. In Figures 4.10

through 4.12, the percentage on the legend shows the percent overlap at infinity between
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Figure 4.10: Comparison of absolute rotation error after RANSAC without outliers. This

is the error for the best sample from RANSAC without non-linear refinement.

the cameras. The cameras have a 60◦ field-of-view horizontally and vertically.

Comparing Figures 4.10 and 4.11 one can clearly see that the performance of the P3P

method decreases with decreased overlap in the cameras while our method has virtually

constant performance regardless of overlap. With 100% overlap, P3P outperforms our

method. However, with 25% overlap, the two methods perform comparably and with 5%

overlap, our minimal solution outperforms P3P for typical noise values. Figure 4.12 shows

that our method performs with roughly the same scale error regardless of overlap while the

P3P method degrades.
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Figure 4.11: Comparison of translation direction error after RANSAC without outliers.

This is the error for the best sample from RANSAC without non-linear refinement.

4.8 Experimental Evaluation in Structure from Motion

To demonstrate our minimal solver we have incorporated it into a real-time (12fps pro-

cessed), stereo camera based structure from motion system. The system uses a stereo pair

of 1024x768 resolution cameras with approximately 40o by 30o fields of view to collect

video input. The system does 2D feature tracking using a graphics processing unit (GPU)

implementation of multi-camera scene flow (Devernay et al., 2006). This work is an exten-

sion of Kanade-Lucas-Tomasi (KLT) tracking (Lucas and Kanade, 1981) into three dimen-

sions. Features are matched between the two cameras in the stereo head and triangulated.

Image motion can then be parameterized as the motion of the 3D feature in front of the

camera. This gives accurate correspondences between the four cameras of a stereo pair at
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two different times. In addition, we also track features that cannot be matched between

the left and right image using a standard image space KLT formulation. The image feature

tracking runs at approximately seventy frames per second including stereo feature matching

and feature re-detection.

Estimating the scene structure and camera motion is done using a RANSAC framework

to find an initial pose estimate, followed by a local bundle adjustment to refine the camera

poses and 3D feature estimates. Structure from motion is performed only on key-frames,

which are determined based on the average feature motion in the images. This consid-

erably speeds up processing of a video sequence without significant loss in accuracy. The

RANSAC framework uses the minimal solver described in this chapter and makes the mod-

ifications to RANSAC mentioned in Section 4.4. Local bundle adjustment is performed on

the previous seven key-frames and all of the features visible in at least two of those views.

Additionally, the two least recent camera poses are held fixed to ensure the continuity of

the SfM results.

Figure 4.13 shows a top down view of the left camera path calculated using a video

sequence shot in an office environment. Example images of the video sequences are show

in Figure 4.14. The office loop is approximately 18 by 10 meters. The camera rounded the

loop twice. The path was not exactly the same in both trips around the loop, which accounts

for most of the variation of the paths. Note the upper left of Figure 4.13, where the camera

path crosses over itself three times just before the clockwise turn. This location is a point

of constriction in the environment, which forced the camera to take the same position on

each trip around the loop and is shown in the top right image of Figure 4.14.

4.9 RANSAC with Multiple Solvers

Typically, in solving for a stereo camera’s motion using RANSAC one solution method is

selected before hand and then applied to the available correspondences. Selecting a solver
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beforehand, without knowledge of the correspondences available may not produce optimal

results. For example, say that four-view features have a very low inlier ratio for some

reason in a given sequence. However, three-view features have a very high inlier ratio.

Then selecting case< 1, 0, 3 > as the solution method would be much less efficient than

the P3P method, case< 0, 3, 0 >.

What is needed is a modified RANSAC approach that can find the best solver to use,

given the inlier ratios found in a video sequence. These ratios can be calculated with

windowed averaging over the last few frames. Then, given these inlier ratios finding which

solver to try next in a RANSAC procedure is fairly simple. We simply choose the solver

which after it has run will most increase the probability of the solution being correct as

shown in Equation 4.8. In that Equation j, k, and l are the number of four-view, three-

view and two-view features in a given solver and in is the inlier ratio for n-view features.

|case < j, k, l >| then is the number of times the solver using j four-view, k three-view and

l two-view features has been tried in the RANSAC iterations so far. The function C(j, k, l)

returns the number of times the solver for case < j, k, l > has been used so far in the

RANSAC iterations.

max
case<j,k,l>

((
1− ij4i

k
3i

l
2

)C(j,k,l) − (
1− ij4i

k
3i

l
2

)C(j,k,l)+1
)

(4.8)

In this framework we can also take into account the relative cost or calculating each

minimal solution. The five-point method (and so case< 0, 1, 4 >) is perhaps a factor of

twenty slower to compute than the P3P method based on my experiments. If we do not

take this higher cost into account then we would not find the correct solution in the fastest

possible time. The RANSAC solution method selection equation which takes into account

computation cost is shown in Equation 4.9. The next solver selected in the RANSAC is the

solver which maximizes this equation. In the equation costcase<j,k,l> is the time taken to

compute a solution of case < j, k, l >.
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max
case<j,k,l>

((
1− ij4i

k
3i

l
2

)C(j,k,l) − (
1− ij4i

k
3i

l
2

)C(j,k,l)+1

costcase<j,k,l>

)
(4.9)

Of course, Equations 4.8 and 4.9 require knowledge of the inlier ratios for the various

types of features. If these inlier ratios are unknown then a sort of Catch-22 appears, a

logical paradox arising from a situation in which an individual needs something that can

only be acquired by not being in that very situation. In order to select the best solver to get

the solution as fast as possible we need to know the inlier ratios. However, until we find

the correct solution we have no knowledge of the inlier ratios. For this reason, RANSAC

which selects between solution methods can only be applied to situations where the inlier

ratios are at least roughly known a-priori. After the first frame, visual odometry on a video

sequence meets this requirement, since the inlier ratios from previous frames can be used

as an approximation of the current frame’s inlier ratios.

4.10 Conclusion

In this chapter, we have introduced a novel minimal solution for the relative pose of a stereo

camera using one feature observed in all four views, two two-view correspondences from

the left (or right) camera and one two-view correspondence from the other camera. Our

approach allows the scaled translation to be estimated between poses while at the same

time enables a wide total field-of-view to increase the relative motion estimation accuracy.

We have evaluated our solver on synthetic data with noise and outliers. Additionally, we

demonstrated our solver’s application in a real-time visual odometry system.

This chapter completes the discussion of our work on motion estimation for rigid multi-

camera systems. The next chapter will introduce a parallel, real-time VSLAM system. This

system takes advantage of the underlying parallelism in the VSLAM problem to enable the

exploration and mapping of areas the size of a small office building online and in real time.
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Figure 4.12: Error in the length of translation direction after RANSAC without outliers

for out solution method and P3P with varying stereo camera overlap. No refinement is

performed on the best RANSAC sample.
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Figure 4.13: View from above of the reconstructed camera path showing the overlapping

loops. The camera made just over two roughly 18x10m laps around an office environment.

No global bundle adjustment was performed. We have attempted to remove features on the

ceiling and floor so the layout of the environment is visible. Left camera axes are drawn as

well as a purple line for the baseline.
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Figure 4.14: Sample frames from the left camera of the stereo pair for the office sequence.

The images are ordered left to right, top to bottom according to their time in the sequence.
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CHAPTER 5

Real-Time Globally Euclidean VSLAM

5.1 Introduction

In recent years the visual simultaneous localization and mapping (VSLAM) problem has

become a focus of the robotics and vision communities. This effort has been made possible

by advances in camera hardware and the computational power available in a personal com-

puter. In this chapter, we introduce a novel, real-time system for six degree of freedom vi-

sual simultaneous localization and mapping. Our system fully decouples Visual Odometry

and Global map correction. This decoupling enables our system to create Euclidean maps

of larger areas than have been mapped before in real-time. Real-time operation at more than

15 frames per second is achieved by leveraging a combination of data parallel algorithms

on the GPU, parallel execution of compute intensive operations and producer/consumer

thread relationships that effectively use modern multi-core CPU architectures.

Indoor environments, due to their lack of salient features, pose a particular problem

for visual navigation. A combination of local tracking and global location recognition en-

ables our system to robustly operate in these environments. The system is demonstrated

on two challenging indoor sequences that include sections with very few salient features

to track because of large textureless regions. To overcome inherent drift problems from

local feature tracking the system detects loops once it re-enters an area it has mapped be-

fore using SIFT (Lowe, 2004) features. The loop closing mechanism additionally enables

re-initialization into the global model after local tracking failure. We demonstrate the im-



provement in the maps after loop detection and loop completion in comparison to using

only visual odometry, which does not detect loops.

5.2 System Description

Our parallel, real-time VSLAM system is composed of three primary modules: Scene Flow

(SF), Visual Odometry (VO), and Global SLAM (GS) as shown in Figure 5.1. The Scene

Flow module calculates the sparse optical flow and selects key-frames based on the magni-

tude of the average flow. It then passes the key-frames and the tracks to the Visual Odom-

etry module, which calculates the inter-key-frame motion and passes this motion as well

as the 3D features to the Global SLAM module. The Global SLAM module then performs

loop detection, and global error correction of the map based on the detected loops. The fi-

nal result of our method is a globally consistent sparse 3D model of the environment made

up of 3D feature points and camera poses for the key-frames.

5.2.1 Scene Flow Module

To determine the local motion of the camera we track features from frame to frame using

multi-camera scene flow proposed by Devernay et al. in (Devernay et al., 2006), which is an

extension of differential KLT tracking into three dimensions. To meet the real-time goal our

system uses an efficient GPU based implementation. In multi-camera scene flow, features

are first extracted using the approach of Shi and Tomasi (1994) and then matched from left

to right image enforcing both the epipolar constraint and cross-validating feature matches

to eliminate outliers. After the features are matched, they are triangulated to establish

3D positions for the inlier features. At this point, features are tracked as small 3D planar

surface patches in front of the cameras. The feature motion in 3D is determined through the

temporal image flow of the 2D features in the stereo cameras. Using this parametrization

the epipolar constraint is enforced without resorting to stereo matching a feature in each
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Figure 5.1: The main threads of the system architecture.

stereo image.

Given the varying temporal redundancy in the video, which is mainly due to camera

motion, we adaptively select key-frames through a threshold on the minimum average opti-

cal flow of features since the last key-frame. To minimize costly feature detection, detection

is only performed in the selected key-frames with the additional constraint that if too few

features are tracked, another key-frame occurs. Hence, images with small camera motion

are not taken as key-frames. The 2D feature tracks and the triangulated 3D points are then

passed to the Visual-Odometry module.

5.2.2 Visual Odometry Module

The stereo camera system enables estimation of the 3D points in the Scene Flow module.

Therefore, we use an approach along the lines of Nistér (2004) to determine the camera

motion. Our method uses the three-point perspective pose method (Haralick et al., 1994)
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in a RANSAC (Bolles and Fischler, 1981) framework to determine the camera pose using

tracks from the Scene Flow module. While this method is sufficient for tracking the differ-

ential camera motion it accumulates small inaccuracies over time, which theoretically lead

to an unbounded drift.

To counter the drift our system detects camera path intersections using SIFT features

(Lowe, 2004). SIFT features can be matched over large changes in viewpoint, in contrast

to differentially tracked KLT-features. To boost performance we use a CUDA based GPU

implementation (Wu, 2007). In addition to using the SIFT features for loop detection we

also use them in refining the incremental motion estimation. This refinement is performed

using a windowed bundle adjustment (Engels et al., 2006) delivering refined camera poses

and more accurate 3D points than those delivered by the scene flow described in Section

5.2.1. In our windowed bundle adjustment a window spanning the last n (typically seven)

key-frame poses is optimized. We selected seven key-frames in our windowed bundle

adjustment because it seemed to be a good point in the trade space between computation

speed and mapping accuracy. This trade space is explored in detail in Engles et al. (2006).

The oldest two key-frame poses are held fixed while the youngest n − 2 key-frame poses

are varied along with all of the 3D features, both SIFT and KLT. The bundle adjustment

uses a robust cost function so outliers have a limited influence on the result.

Combining the refined camera motion estimate based on KLT feature tracks with the

3D position of the SIFT features we can predict where the SIFT features should project into

the current key-frame. We use this prediction to our advantage by limiting the candidate

matches to close by SIFT features in the current key-frame (see Figure 5.2). The benefits

of this are twofold. We are less prone to problems caused by repetitive structures and given

the smaller number of potentially matching features we can reduce the number of SIFT-

descriptor comparisons. Furthermore, we empirically found that this prediction allows

us to relax Lowe’s SIFT matching uniqueness criteria (Lowe, 2004) but still be robust to

repetitive structures in the scene.

93



Figure 5.2: Repetitive SIFT features can be disambiguated using geometry calculated from

the scene flow features. Additionally, using the geometry reduces the number of potential

SIFT feature correspondences tested increasing matching efficiency.

Following predictive SIFT matching we match the remaining unmatched SIFT features

from left to right images in the current key-frame using the stereo camera’s calibration to

constrain the search for matches along the epipolar lines. These matches are then triangu-

lated and un-matched SIFT features are discarded.

At this point, the newest key-frame has been completely incorporated into the local

map. It will be considered until it leaves the bundle adjustment window or the visual

odometry fails and a new sub-map is started. Please note that as soon as a frame has an

initial pose in the visual odometry module, its 3D pose with respect to the global map

can be found. This pose will be locally accurate and will be refined through the windowed

bundle adjustment. The pose may be changed when loops are detected in the Global SLAM

module but this should not affect tasks such as obstacle avoidance. After exiting the bundle

adjustment window, key-frames are processed by the Global SLAM module.
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5.2.3 Global SLAM Module

The Global SLAM module ensures global consistency in our VSLAM system. It incor-

porates the information of all currently available key-frame poses, feature measurements,

and initial 3D feature estimates from the Visual Odometry module. The final result is a

set of globally consistent, Euclidean sub-maps each of which has its own global coordinate

frame. The sub-maps are disjoint, meaning they cover separate areas in the environment

or cannot be linked by common 3D features due to limitations of wide-baseline feature

matching.

The key element to improve the incremental motion estimation provided by the Visual-

Odometry module is the detection of loop completions. Loop completions provide addi-

tional constraints to the local constraints found in the VO module. Our system uses the vo-

cabulary tree (Nistér and Stewénius, 2006) based approach to detect loops. Please note, any

alternative approach like the Fab-Map approach of Cummins and Newman (2008) could be

used instead. In our approach, SIFT feature descriptors are quantized into visual words

using a K-d tree over a descriptor space, which is pre-computed. The visual words seen in

an image are then organized so that one can find out quickly, which images a visual word is

seen in. Finding similar images to a query image is then as simple as computing a vote to

determine in what other images a query image’s visual words are found. In the vote higher

weight is given to the more discriminative visual words that are found less frequently.

The Global SLAM module can operate in one of two modes. When exploring new areas

the system operates in loop seeking mode while in previously mapped regions the system

operates in known location mode.

5.2.3.1 Loop Seeking Mode

Loop seeking mode performs loop detection for each new key-frame and after a successful

loop identification a global refinement is computed through bundle adjustment. Loop de-
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tection begins by using the vocabulary tree to find a list of the most similar images to the

current key-frame sorted by similarity. Images from recent key-frames are removed from

the list so that loops are only found to older sections of the map. In our system recent key-

frames are selected by the number of key-frames between the current key-frame and other

key-frames and is a selectable parameter. A more principled approach might use visibility

constraints on the previous key-frames in the sequence to determine which ones could see

the current key-frame’s features and therefore should be considered ”recent”. Images in the

list are tested in order of similarity until a matching image is found or the similarity score

of the next best match is too low.

Rather than simply match SIFT features from the query image to those visible in the

next most similar image we use the putative matching image to find a region of local 3D

scene structure and match the query image to this structure. This can be seen as a form

of query expansion based on 3D geometry. The expansion is done by finding the images

near the next most similar image and including all of the 3D features visible in all of

these images in the SIFT matching and geometric verification. The SIFT matching is then

performed from the image to the 3D structure. SIFT descriptor matching is performed from

the descriptors of the features in the current key-frame to the 3D features’ descriptors. We

only try to match SIFT descriptors with the same associated visual word, which reduces the

number of descriptor dot products performed. A RANSAC process using the three-point

perspective pose method is then used to find the pose of the current camera and the pose is

non-linearly optimized afterwards.

If the above method finds a solution supported by enough inlier matches, it is considered

a loop. The features associated with the inlier measurements to the RANSAC are linked

so that they are treated as a single feature in bundle adjustment. Using 3D feature to 2D

projection matching with geometric verification makes false positive loop detections much

less likely than using an image-to-image, appearance only, matching approach. This is

because our approach combines both visual and geometric similarity to detect loops. Still
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truly repetitive 3D structures which also look the same can cause incorrect loops to be

detected. Dealing with repetitive structures remains an open research problem.

If no loop has been detected, then the next key-frame is tested for a potential loop

closing. If a loop was detected, the system performs a global correction to the current sub-

map incorporating the newly detected loop. Since the newly detected loop features have

high reprojection errors in the current key-frame, they would be deemed invalid by our

bundle adjustment, which uses a robust cost function. Hence, they would not influence the

error mitigation process. To overcome this effect we re-distribute the error before bundle

adjustment. This initializes the bundle adjustment much closer to the global minimum of

its cost function, increasing its convergence rate and decreasing the chance of converging

to a local minimum.

We re-distribute the accumulated error by starting with the difference in the current

key-frame pose and the current key-frame’s pose calculated w.r.t. the old features. This

gives us the amount of drift that the system has accumulated since it left the last known

location in the sub-map. This last known location is either the first frame in the sequence

if no loops have been found so far or the last place the system was operating in known

location mode. The system is operating in known location mode when it has reacquired

features it has mapped before and is tracking with respect to that known map. The system

linearly distributes the error correction for the cameras back to the point it was operating in

known location mode. Spherical linear interpolation (Shoemake, 1985) of the rotation error

quaternion is used to interpolate the rotation error. Feature points are similarly corrected by

moving them along with the camera that first views them. A global bundle adjustment of

the map is then performed. After bundle adjustment, outlier measurements are removed as

well as features visible in fewer than two key-frames. These features give little information

about the scene structure and are more likely to be incorrect since they do not match the

camera’s motion. After successfully detecting the loop and correcting the accumulated

error the Global SLAM module enters known location mode.
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5.2.3.2 Known Location Mode

After successfully identifying a loop, this mode continuously verifies that the robot is still

moving in the previously mapped environment. Verification is done by linking the current

3D SIFT features to previously seen 3D SIFT features in the environment surrounding the

current location. These matches are added to a windowed bundle adjustment in the GS

module, which keeps the camera path consistent with the older previously computed parts

of the map.

In known location mode SIFT feature matching between the current key-frame and the

old 3D SIFT features is done using the predictive approach described in the visual odometry

module (see Section 5.2.2 for a discussion of visual odometry). Older features can be linked

to the features visible in the current frame by projecting all of the 3D SIFT features seen in

the previous key-frame and it’s neighboring images (two key-frames are neighbors if they

see the same 3D feature) and comparing descriptors. If no matching older SIFT features

are found then the robot has left the previously observed parts of the environment and the

system reenters the ”Loop Seeking” mode.

The windowed bundle adjustment in GS is much the same as the one performed in the

Visual Odometry module. The only difference in this case is that the older key-frames are

also included in the bundle but fixed. This ensures the new camera poses stay consistent

with the existing map. Fixing the older cameras is also justified since they have already

been globally bundle adjusted and are probably more accurate than the more recent key-

frames. After the windowed bundle adjustment processing begins on the next key-frame.

5.3 Implementation Details

A key to the performance our system is that each of the three modules Scene Flow, Visual

Odometry, and Global SLAM operates independently and in parallel. To ensure that all

captured information is used, only the Scene Flow module has to operate at frame-rate. The
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timing constraints on the visual odometry are dynamic and only depend on the frequency

of key-frames. This module can lag behind by a few frames. The Global SLAM module is

less time constrained since its corrections can be incorporated into the local tracking when

they are available. The system’s modules operate in separate threads that each adhere to

the individual module timing requirements.

5.3.1 Scene Flow Module

The Scene Flow module begins by taking raw, Bayer pattern images off of the stereo cam-

eras. These images must be converted to luminance images and radially undistorted before

the sparse scene flow can be measured. We use color cameras so that the video we record

can later be used for dense stereo estimation and 3D modeling. While tracking could be

performed on radially distorted images, we remove the radial distortion from the images

so that later SIFT feature extraction in the Visual Odometry module can be done on undis-

torted images. Using undistorted images helps in SIFT matching when using cameras with

a large amount of radial distortion.

De-mosaicing, radial undistortion, and sparse scene flow are all calculated on the graph-

ics processing unit (GPU) using CUDA. To increase performance we minimize data transfer

between CPU to GPU by downloading the raw image to GPU for each frame, performing

all computations in GPU memory, and then only uploading undistorted images to the CPU

for the key-frames as well as the tracked feature positions.

After each key-frame the feature tracks (2D position and feature identifier) and the

undistorted images are passed to the Visual Odometry module. While the Visual Odometry

module processes the key-frame the Scene Flow thread can track ahead of it, buffering new

key frames until the Visual Odometry module is able to process them. Hence, the speed of

Visual Odometry does constrain the Scene Flow module’s real-time performance. This is

just one example of how parallelism adds robustness to our system.
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5.3.2 Visual Odometry Module

In this module we perform the incremental motion estimation from the KLT-features tracks

and the detection of SIFT features in parallel. For efficiency we use one thread for each

of the two stereo images. After the SIFT detection we release the image buffers to save

memory.

As described in Section 5.2.2 the Visual Odometry module’s outputs are the relative

camera motion and the new 3D points. These outputs are stored in a queue and are removed

from Visual Odometry’s local storage. Using a queue decouples processing in the VO and

GS module threads. Whenever tracking fails all the VO module’s internal data (key-frame

poses and 3D features) is queued for processing by the Global SLAM module.

5.4 Experimental Results

In order to demonstrate the speed, accuracy, and long-term stability of our VSLAM system

we present results from two video sequences of two indoor environments with different

characteristics. The first sequence was taken in an office environment, which has a large,

open floor plan. I will refer to this as the ”office” sequence. The second sequence was

shot in a building with long, but relatively narrow (1.7m) hallways. It will be called the

”hallway” sequence. The closed floor plan does not allow features to be tracked for long

periods of time since they quickly leave the stereo camera’s field-of-view, yet the system

successfully maps the halls accurately with an error of less than 30cm over the 51.2m length

of the longest hall shown in Figure 5.10. This is an error of less than 0.6%.

Our setup uses a calibrated stereo camera pair consisting of two Point Grey Grasshop-

per cameras with 1224×1024 pixel resolution color CCD sensors delivering video at fifteen

frames (stereo pairs) per second. The system’s 7cm baseline is comparable to the median

human inter-pupil distance. The cameras are mounted on a rolling platform with the com-

puter. Using a rolling platform the planarity of the camera path can be used to evaluate the
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quality of the reconstruction results. However, the full six degrees of freedom are estimated

for the camera’s motion. While performing real-time VSLAM the system also records the

imagery to disk for debugging or archival purposes.

The office sequence includes transparent glass walls and other reflective surfaces that

make tracking more challenging (please see Figure 5.3 for example frames). It also has

a hallway with relatively low texture, which our system successfully maps, showing it is

robust to areas without a large amount of structure. In one section of the video a person

moves in front of the camera, partially occluding some of the tracked features (see Fig-

ure 5.3). Even in this case, the system is able to reject the moving person’s feature tracks

as outliers and continue tracking correctly.

Figure 5.4 shows the difference between operating only using visual odometry and

performing the full VSLAM with loop detection and global map correction. In the top

pane of Figure 5.4, the map is shown using only visual odometry where the relative motion

from frame to frame is accumulated to form the camera path. In visual odometry no loop

detection of global map correction is performed hence, the system drifts over time. In

this scene, VO accumulated drift of approximately 3m over an approximately 150 meter

path. In the bottom pane, the results of our Global SLAM module are shown. Clearly, the

long-term drift of visual odometry is eliminated by loop detection and the succeeding error

mitigation through bundle adjustment.

Additionally, in Figure 5.5 we show the vertical drift using only visual odometry of

approximately 2 meters over a traveled distance of 70 meters. Figure 5.5 shows two side

views of the map without (top) and with (bottom) loop detection and global map correction.

In the top pane, the accumulated vertical error of 2.0 meters is clearly visible while in

the bottom pane it is eliminated. Note the regular pattern on the ground in the bottom

pane that reflects the repetitive pattern in the carpet there. We have overlaid the results of

our system with loop detection and correction over an architectural layout of the office as

illustrated in Figure 5.6. This figure demonstrates the accuracy of our system. The results
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shown here were processed from 8304 stereo frames of video at fifteen frames per second

including multiple loop detections and global bundle adjustments, one for each time a loop

was detected.

We use the hallway sequence to demonstrate our system working in a less open envi-

ronment where feature tracks are typically shorter and fewer in number. As shown in the

panes of Figure 5.8 some of the hallways have large amounts of texture while others are

largely textureless. The system robustly performs camera tracking in either case, at times

tracking with fewer than ten features.

Figure 5.10 shows an architectural drawing of the building’s hallways with dimensions.

From the overlay of our model on top of the floor plan, it is clear that our system creates

accurate maps. Taking the difference between the measured center-to-center distance of

the longest mapped hallways on the figure and the distances between comparable camera

centers in our reconstructed map we find an error of 30cm in the horizontal direction and

40cm in the vertical direction in the figure. These errors equate to 0.6% error in the figure’s

horizontal direction and 1.4% in the vertical.

The three modules’ timing results on this sequence are shown in Figure 5.7. Note the

four spikes in the Global SLAM module’s processing time. These are times when loops

were detected and the map was bundle adjusted. In the Scene Flow graph the spikes in

processing time occur when new features are detected. In a typical frame 200-500 scene

flow features are tracked. In the global SLAM module there are typically 60-120 scene flow

features and 100-200 SIFT features, which are inliers to the motion model. Reprojection

errors in the Global SLAM module’s results average approximately 0.6 throughout the

sequence.

Another example of loop completion is illustrated in Figure 5.9 showing the map before

loop detection and correction in the top pane and the bottom pane gives the result after loop

detection. In these panes, the camera returned to the known area from the right. Note how

the accumulated error in the camera poses and features is eliminated by the loop detection
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Figure 5.3: Sample frames from the left camera of the stereo pair for the office sequence.

Note the reflective glass walls, textureless regions, and moving person in the images.
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Figure 5.4: Results of office sequence top view. Top: Camera path calculated using visual

odometry only. Bottom: Camera path calculated loop detection and correction global slam

module. Green points are differentially tracked scene-flow feature and blue points are SIFT

features.
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Figure 5.5: Results of office sequence side view. Top: Camera path calculated using visual

odometry only. Bottom: Camera path calculated loop detection and correction global slam

module. Note that the path processed through the global slam module is planar where

visual odometry has large vertical error accumulation as shown by the red arrow. Green

points are differentially tracked scene-flow feature and blue points are SIFT features.
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Figure 5.6: Results of office sequence. Camera path from global SLAM module using

bundle adjustment for loop correction. The camera made two complete passes around both

loops. Blue walls are glass. Grey walls are half ceiling height partitions. Green points are

differentially tracked scene-flow feature and blue points are SIFT features.

and global map correction. Finally, a side view of the hallway map is shown in Figure 5.11.

The side view demonstrates the planarity of the map, which matches the flat floor of the

halls.

5.5 The Challenge of Loop Correction

Creating large-scale Euclidean maps in real-time remains an unsolved challenge in VSLAM.

Real-time is a somewhat ambiguous term in this case, so for the purposes here real-time

will be considered ”fast enough to support online path planning.” In terms of the multi-

threaded approach to VSLAM presented in this chapter, real-time operation means that

the system can globally correct the map in the time between subsequent loop completions.

This means that real-time operation depends both on the size of the environment and on the

complexity of the robot’s path through the environment.

Before delving into a few promising approaches for real-time bundle adjustment, a brief

introduction why bundle adjustment scales poorly as the problem size increases is in order.
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Figure 5.7: Timing results on the hallway sequence. Note the processing time spikes in the

scene flow module when new features are extracted. The four large spikes in Global SLAM

processing time are caused by bundle adjustments after loop completions. The average

scene flow processing rate is 37.1 frames per second (fps), visual odometry is 61.0 fps and

global SLAM is 33.5 fps. The VO and Global SLAM processing rates are calculated as

total processing time/video frames (not key-frames).
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Figure 5.8: Sample frames from the left camera of the stereo pair for the hallway sequence.

Note the lack of texture in some images and the forward motion, which makes visual odom-

etry more challenging than if the camera was pointing to the side.
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Figure 5.9: Results of hallway sequence. Top: Camera path intersection before loop detec-

tion and global map correction. Bottom: Corrected camera path. Note that the paths are

now in the same plane. Green points are differentially tracked scene-flow feature and blue

points are SIFT features.

109



Figure 5.10: Results of hallway sequence. The camera made three rounds of the left loop

and one of the right. Green points are differentially tracked scene-flow feature and blue

points are SIFT features.

Figure 5.11: The final hallway sequence model viewed from the side. Note that the model is

planar matching the planar structure of the building. Green points are differentially tracked

scene-flow feature and blue points are SIFT features.
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Bundle adjustment uses non-linear minimization to optimize Equation 5.1. This equations

assumes that the cameras’ calibrations are known. In that equation N cameras and M

points are involved in the minimization. Ri and Ci are the rotation and center of camera

i. Xj is the 3D location of feature j and xij is the measured feature j in image i. Π is the

projection function and d() is a distance function, typically the reprojection error in pixels.

min
Ri,Ci,Xj

(
N∑
i=1

M∑
j=1

d(xij,Π(Ri, Ci, Xj))
2) (5.1)

Equation 5.1 can be expressed as a minimization of the difference of two vectors x, the

measured image locations of the features, and x̂ the estimated image locations based on the

camera pose, 3D feature parameters and camera calibration.

x = (xT
11, ..., x

T
1N , x

T
21, ..., x

T
M1, ..., x

T
MN)

T (5.2)

x̂ = (x̂T
11, ..., x̂

T
1N , x̂

T
21, ..., x̂

T
M1, ..., x̂

T
MN)

T (5.3)

Assuming some prior noise distribution on the feature measurements Σx bundle adjust-

ment minimizes the squared Mahalanobis distance (x−x̂)Σ−1x (x−x̂) over the parameters of

x̂, Ri, Ci and Xj . The Levenberg-Marquadt algorithm is used to minimize the augmented

normal equations below.

(JTΣ−1x J + μI)δ = −JTΣ−1x ε (5.4)

In this equation J is the Jaccobian of the projection function Π evaluated at the current

state estimate and δ is the change in the state parameters that reduces the residual error

ε = x− x̂.
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Jij = (
∂Π(Ri, Ci, Xj)

∂Ri

∂Π(Ri, Ci, Xj)

∂Ci

∂Π(Ri, Ci, Xj)

∂Xj

) |Ri=R̂i,Ci=Ĉi,Xj=X̂j
(5.5)

In this equation R̂i, Ĉi and X̂j are the estimates of those parameters for the current

iteration of the minimization.

One approach to solve Equation 5.1 is to split the problem into two groups, cameras

and 3D features, solve for the camera update and then back substitute to recover the feature

updates. This can be done using the Schur complement as shown below.

(
JTΣ−1x J + μI

)
δ = −JTΣ−1x ε (5.6)⎛

⎜⎝ A B

BT D

⎞
⎟⎠ =

(
JTΣ−1x J + μI

)
(5.7)

⎛
⎜⎝δc

δp

⎞
⎟⎠ = δ (5.8)

⎛
⎜⎝zc

zp

⎞
⎟⎠ = JTΣ−1x ε (5.9)

⎛
⎜⎝ A B

BT D

⎞
⎟⎠

⎛
⎜⎝δc

δp

⎞
⎟⎠ = −

⎛
⎜⎝zc

zp

⎞
⎟⎠ (5.10)

In the above equations A is the portion of the augmented Hessian approximation con-

taining the camera parameters, D contains the 3D features and B stores the constraints

between features and cameras. δ, the update, has been split into camera, δc and a 3D point

feature δp portions as has the measurement residual mapped into parameter space JTΣ−1x ε.

(A− BC−1BT )δc = −zc − BC−1Zp (5.11)
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Cδp = −zp − BT δc (5.12)

The, now decomposed, augmented normal equation is then solved using Equation 5.11

and substituting δc into Equation 5.12 to find the point update, δp. C−1 is easy to compute

because it is block diagonal and so this efficiently reduces the least squares problem size.

However, the camera Hessian matrix (A − BC−1BT ) can be fairly dense, making the

solution still slow to compute. The more loops there are in the camera trajectory the more

fill-in there will be in this matrix. This is because any two cameras that see a 3D feature in

common will have a non-zero off diagonal term in the matrix. Block reordering approaches

exist to try to make the matrix as diagonal as possible. Ultimately then it is the remaining

off-diagonal fill-in that limits the speed of each bundle adjustment update iteration.

Conjugate Gradient approaches have shown some promise in large scale bundle adjust-

ment (Byrod and Astrom, 2009; Agarwal et al., 2010).

Even with more efficient solvers, for large bundle adjustment problems the number

of iterations required for convergence grows super-linearly in the number of cameras and

features. A collection of images in a bundle adjustment can be visualized as a graph with

cameras as nodes and edges connecting cameras with features in common. In the first few

iterations local errors in the camera poses and 3D features are reduced fairly quickly. These

local error corrections happen quickly because changes to cameras and 3D features need to

only move a short distance through the graph to neighboring cameras. At this point what is

left is a fairly smooth error function. Corrections to camera poses and features that reduce

this error take more iterations to propagate through the graph because they have to pass

through a longer path from the node to it’s neighbor’s neighbors etc. This slow propagation

of camera pose and 3D point corrections is shown in Figure 5.12.

To this point the community has addressed this error propagation problem by reducing

the size of the bundle. This means reducing the size of the Hessian matrix JTΣ−1x J , which
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Figure 5.12: The propagation of error through a bundle adjustment problem. At iteration

zero the distance d01 between the first two cameras is too small (as given by some external

measurement system). After iteration 0 the first feature on the left has moved away from

the cameras to match the now father apart cameras. This forces the distance between the

second two cameras to extend as well as the distance to the second feature and so on. After

iteration three the system has reached the minimum of the cost function.

is tied to the number of cameras and the number of features in the map and also limiting

the number of measurements. The number of measurements must be reduced because they

are involved in calculating the Jaccobians and in the error term ε in JTΣ−1x ε.

One approach to reduce the number of cameras and measurements is to subdivide the

map into multiple sections, solve them separately and then re-combine them in the final re-

sult. This sort of approach is exemplified by the out-of-core bundle adjustment approach of

Ni et al. ((2007)) described previously in Section 2.5.4. Out-of-core bundle adjustment has

shown some impressive results. However, because it splits the map into multiple section,

solves the sections separately, and then re-combines them only optimizing the inter-submap

variables, it may not reach the same global minimum that a full bundle adjustment would.

FrameSLAM (Konolige and Agrawal, 2008) presents another possible reduction tech-
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nique based on permanently marginalizing out the features from the minimization and pos-

sibly some of the cameras. This technique was introduced along with other subdivision-

based loop correction techniques in Section 2.5.4 as well. Permanently marginalizing out

the features also has its drawbacks. Once marginalized out the feature measurements can-

not be re-linearized. This will likely lead to higher error than a full bundle adjustment that

re-linearizes the measurements.

What is needed is an approach that makes the large-scale errors propagate through the

bundle adjustment graph faster. A scale space approach applied to the bundle adjustment

graph could speed the error propagation. A similar problem can be found in heat transfer

problems. Say we have a sheet of material with its edges fixed at a lower temperature and at

its center heat is applied. Starting with these initial conditions, the temperature of the sheet

at steady state can be found using a system of partial differential equations. The surface is

discretized into a 2D grid with the temperature given at each point on the grid. An iterative

approach such as Gauss-Seidel relaxation can then be used to find the heat distribution.

Each iteration propagates the temperature correction a small distance on the grid. This

meas that, in a similar way to bundle adjustment error reduction, small scale temperature

errors are eliminated quickly while larger scale corrections take many more iterations to

propagate through the graph.

The multigrid approach can be used to accelerate the temperature correction propaga-

tion and arrive at a solution in fewer, faster iterations. A more complete introduction to

the multigrid method can be found in (Briggs et al., 2000) but it will briefly be introduced

here. The basic idea of multigrid is to first eliminate the small scale error with one or more

iterations. At this point larger scale error corrections will be all that is left. These larger

scale errors will take longer to propagate through the graph. However, if we reduce the size

of the graph by restriction, say dropping every other grid point we can reduce the problem

size by a factor of two (see Figure 5.14). At this coarser scale the large scale error at the

fine scale are now smaller scale errors which can be efficiently eliminated. Once the errors
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Figure 5.13: A single multi-grid V-cycle.

are corrected at the coarser scale the original grid points are re-inserted by an interpolation

operator. This might be as simple as bi-linearly interpolating the temperature values of a

coarse grid point’s neighbors. Then at the fine level another few iterations are performed to

eliminate the error caused by the interpolation. This fine level iteration, restriction, coarse

level iteration, interpolation, fine level iteration cycle is referred to as a V-cycle in the

multi-grid literature and is shown in Figure 5.13.

Frese and Duckett (2003) showed that a multigrid style approach could be applied to

the general SLAM problem. Their approach uses the temporal connections between robot

poses as the grid. This temporal sequence can be sub-sampled to arrive at coarser repre-

sentations of the robot’s path. Their approach uses scan matching or odometry to relate

one robot pose to the next as well as to relate poses when loops complete. Then each mea-

surement is a transformation with associated uncertainty between two camera poses. When

coarsening (restricting) the graph they simply drop every other pose and combine measure-

ments to arrive at measurements with uncertainties linking the dropped pose’s neighbors.

Converting back from coarse to fine in the upward section of the V-cycle is performed using

a linear interpolation of the camera poses at the coarse level.

With a general bundle adjustment problem, the situation is not so simple as Frese and

Duckett’s case because features are measured in multiple cameras. This means that the
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Finest Level 0 Level 1 Coarsest Level 2

Figure 5.14: The finest level heat distribution solution grid and it’s down-sampled coun-

terparts. Grey dots are the grid locations of the heat distribution that are kept on the next

coarsest level.

simple inter-robot pose measurement restriction operator they use cannot be applied to

the measurements in bundle adjustment. Instead I have developed a bundle adjustment

method that restricts the number of cameras in the bundle adjustment while leaving the

number of features and measurements the same. Since the 3D features can be eliminated

efficiently using the Schur Complement, this restriction operator should allow the error

correction to propagate through a bundle adjustment problem more quickly than standard

bundle adjustment.

The idea behind this multi-grid approach to bundle adjustment is to adjust not the cam-

era poses themselves, but try to find a temporal error function that describes how the camera

pose error accumulates over time. Since the initial camera poses from a VSLAM system

come from visual odometry, the error on the poses will be an accumulation of small inter-

key-frame errors. This temporal summation of error generates a random walk in 6DOF

error space. This random error walk contains trends (generally increasing or decreasing

segments) at various temporal scales. This sort of multi-scale error growth can be seen in

the one-dimensional random walk in Figure 5.15. This random walk in this figure is the

summation of samples from a gaussian distribution with standard deviation one.

Assuming that the initial camera path has error that can be modeled as a random walk,
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Figure 5.15: A random walk generated by summing one-hundred samples of a normally

distributed random variable with standard deviation one. Note the increasing and decreas-

ing trends at various temporal (sample number) scales.

it should be possible to use a sort of multigrid v-cycle to estimate the random error walk’s

shape. Knowing the error’s shape, the inverse error can be applied to the cameras in order

to eliminate it and arrive at the minimum of the bundle adjustment function, Equation 5.1.

In Figure 5.16 the bottom most pane shows the largest scale error approximation. The

two purple cameras are control nodes. The error correction that is applied to the control

nodes is linearly interpolated between any two neighboring control nodes in the sequence

and applied to the blue cameras in between. The interpolation multiplier is based on the

temporal distance between the blue non-control node and its neighboring control nodes in

the sequence. The green lines show which error correction is linearly interpolated to find

the error correction of a blue camera. In this way in the bottom pane all the cameras can be

moved by modifying only the six degrees of freedom of camera seven, not the full thirty-

six degrees of freedom of all the cameras (camera zero fixes the gauge). In the middle

pane an additional control node is added allowing the error function to be approximated

at a smaller, finer scale. In the top pane all cameras are control nodes and the problem is
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equivalent to a standard bundle adjustment. Performing a v-cycle, starting at the top pane,

moving to the bottom and back up should more efficiently approximate the error function

and therefor eliminate the error than standard bundle adjustment because the multi-scale

nature of the error is taken into account.

Unfortunately, in practice this has not proven to be the case. A series of experiments

was performed comparing standard and multi-grid, error-state bundle adjustment. The per-

formance of both methods tended to scale approximately equally as the number of cameras

in a minimization was increased. This may be due to the fact that numerical derivatives

were used to find the Jaccobian of the multi-grid BA projection function. This was done

because finding the analytic Jaccobians for interpolated error correction values proved to

be very complicated, although they may be possible to calculate in the future. A more

likely reason why a performance increase was not found is that the measurement space

was not down-sampled at the same time as the cameras in the state. In standard multi-grid

both the hidden state (the temperature values in a Poisson heat distribution problem) and

the measurement error function (the deviation of the temperature values from the values

predicted by the Poisson heat equation) are down sampled. However, in my approach the

measurements are not down-sampled, all reprojection errors are measured at all scales. A

possible way to get around this might be to use synthetic features and measurements in a

similar way to the Virtual Key Frame work of Shum et al. (1999). These synthetic features

and measurements could summarize the information in a collection of measurements and

reduce the measurement space size in addition to the state size.

5.6 Conclusion

In this chapter, we introduced a VSLAM system that fully exploits the recent parallelism

gains in consumer computer hardware. The system uses imagery from a stereo camera as

its only input. We implemented a two-view consistent 2D tracking module on the GPU
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Figure 5.16: Three levels of multigrid, error-state bundle adjustment. The top pane shows

the finest scale approximation to the error function, which is equivalent to standard bundle

adjustment. The middle and bottom panes show larger temporal-scale approximations to

the camera path error. Purple cameras are control nodes which are included in the bundle

adjustment problem state. The correction applied to blue cameras is calculated by linearly

interpolating the error approximation Evw between the blue camera’s two closest control

nodes.

120



to find sparse optical flow. We also used the GPU to extract wide-baseline features for

use in loop detection. Our system exploits modern multi-core processors using multiple

concurrent threads to perform sparse scene flow, visual odometry and global mapping in

parallel. This parallelism allows us to perform the full Euclidean map reconstruction in real

time.

While our system operates in real time on office building scale scenes, extension to

larger environments remains a challenge. Hierarchical bundle adjustment methods like (Ni

et al., 2007a) or (Steedly et al., 2003) may help to overcome these scaling issues. This

would allow the system to optimize several sub-problems that are mutually very weakly

dependent on each other in parallel. After that, a global combination step could create a

globally consistent map.
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CHAPTER 6

Conclusion

6.1 Summary

This dissertation has introduced several novel improvements to the problem of multi-camera

visual simultaneous localization and mapping. A concise summary of this dissertation’s

contributions is given in my thesis statment:

• Rigid, two-camera systems with little or no field-of-view overlap can be used in

efficient, absolutely scaled visual simultaneous localization and mapping.

• Further, the inherent parallelism in the visual simultaneous localization and mapping

problem can be exploited to allow real-time, Euclidean mapping of large areas by

decoupling online exploration from loop detection and correction.

In Chapter 3, we developed a solution method for the scaled, six degree of freedom

motion of a non-overlapping two-camera system that uses a minimal six temporal feature

correspondences. This solution method was studied in detail and degenerate cases were

identified where the scale of the motion cannot be calculated, primarily pure translational

motion, and motion with the cameras’ baseline aligned with the axle of a vehicle in a

constant velocity turn.

A second minimal solution method was developed to overcome the inherent degenera-

cies in non-overlapping stereo cameras while still allowing a wide total field-of-view. The

method, presented in Chapter 4, uses a stereo camera with a small region of overlap of the



views. In contrast to the perspective three-point (P3P) method (Haralick et al., 1994), our

solution method needs to find only one feature correspondence in the cameras’ region of

overlap. This is used to find the camera system’s translation while the other three degrees

of rotational freedom are solved with features in the non-overlapping regions. Our solution

method was shown to be more accurate than the P3P method when the cameras’ region of

overlap is reduced.

Real-time Visual SLAM requires much more than accumulating relative motion esti-

mates to find the camera system’s path. It requires real-time feature tracking, visual odom-

etry, loop detection and loop correction. We showed in Chapter 5 that the inherent paral-

lelism in the VSLAM task and a small amount of acceptable latency can be combined to

create an effective online, real-time VSLAM system. Three primary computational pro-

cesses run in parallel in our implementation, scene flow estimation for temporally local

correspondence finding, visual odometry for relative ego-motion estimation and global

SLAM for loop detection and correction. Splitting the processing into these threads of

execution feature tracking can always keep up with the cameras’ frame rate and select

key-frames based on optical flow for the visual odometry module to process. The visual

odometry module can then estimate the relative pose of the cameras using RANSAC while

simultaneously extracting wide baseline matchable SIFT features. These relative poses and

measurements are then passed to the Global SLAM module which finds loops and corrects

the map to reflect them. Current loop correction implementations based on bundle adjust-

ment are too slow to keep up with the rate of key frames. However, our system allows the

Global SLAM module to fall behind the visual odometry module while correcting a loop

and then later catch up after the loop is completed. By separating visual odometry from

loop correction, the camera system can continue to explore its environment while it corrects

the map to reflect loops it has already found.
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6.2 Future Work

Many interesting, practical problems remain to be solved in visual SLAM. Feature match-

ing over large changes in viewpoint remains a challenge. Using SIFT (Lowe, 2004) or

MSER (Matas et al., 2002) features can be reliably matched at up to approximately a thirty

degree change in viewing direction. This makes loop detection possible when a camera re-

turns to the same part of a scene from roughly the same direction. However, when entering

a hallway from the opposite direction for example, a loop cannot be recognized because

features cannot be matched. In the future a variant of the Viewpoint Invariant Patch (VIP)

by Wu et al. (Wu et al., 2008) may help with this matching. VIP features can be matched at

up to a ninety degree viewing direction difference. While they will make loop completion

from greatly varying viewing directions possible they will not allow for the most common

case in indoor scenes, returning to the same hallway from the opposite direction.

The VIP is a kind of hybrid between sparse, image based matching methods and dense

matching, where a depth value is assigned to most or all of the pixels in an image. With

dense matching a more complete geometry for the scene can be recovered. In the future,

this more complete geometry may allow loop completion using a form of iterative closest

point (ICP) which uses the geometry rather than appearance to join models or detect loops.

Another major problem is extending VSLAM so that it can map larger areas. Promising

methods exist such as the out of core bundle adjustment of Ni et al. (Ni et al., 2007a). Their

work uses as single level decomposition of the environment to split the bundle adjustment

problem into multiple sub-problems. In the future, a multi-level, hierarchical decompo-

sition may allow mapping of areas of virtually unlimited size and complexity (limited by

disk space).

Dynamic, changing scenes are another challenge for VSLAM. Current VSLAM ap-

proaches assume a static world and try to exclude non-static objects from the map. But

over time the environment can change. In offices chairs move, cars enter and leave parking
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spaces, buildings are built and torn down, and even the terrain can change through erosion

and other processes. Detecting these changes and incorporating them into the map will be

necessary for any autonomous system using VSLAM over a long period of time. To know

whether a point feature has moved or is simply an outlier it will need to be grouped with

other points on a single object or re-detected in the same location over a number of frames.

Points on a single object will have to have moved with a single consistent motion to be con-

sidered inlier features. If a consistent, non-static motion is found for a group of features,

even in a single frame, then the points could be grouped as an object and considered inliers

to the camera’s motion and the dynamic object’s motion with respect to the fixed scene.

One possible approach to dealing with dynamic scenes is to create a sort of four-

dimensional map. Static parts of the scene, or parts that have not been detected to change

yet, could be placed in one map while a temporal map can be added on top of this. The

temporal map would store objects that have changed pose or disappeared with pose infor-

mation as well as a time of detection. This would allow the system to form a more complete

understanding of its environment.

Low power VSLAM for embedded systems such as cell phones also remains a chal-

lenge. Klein and Murray’s cell phone PTAM (Klein and Murray, 2009) shows that VSLAM

can be performed on these limited systems in real-time when the mapped area is very small.

However, wider area mapping on these extremely limited systems presents many difficul-

ties. Feature extraction for loop detection requires significant resources, either a high per-

formance processor for SIFT like operators, or a large amount of memory for the classifica-

tion based feature matching done with Ferns (Özuysal et al., 2010). Loop correction with

bundle adjustment is also a compute intensive operation. Map simplification techniques

like the ones presented by Klein and Murray (Klein and Murray, 2009) will be needed to

reduce the number of variables to optimize and reduce the necessary computation.

A scalable solution to the visual SLAM problem will open up many new possibilities.

Robots will be able to navigate unknown areas with low cost, non-emissive sensors, which
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do not interfere with each other. Vehicles will be able to drive themselves using sensors

that are within the budget of the average consumer. Even now, some vehicle makers are

developing stereo vision based systems that will stop the vehicle to prevent crashes and

warn of pedestrians stepping into the vehicle’s path. The military will be able to deploy

small robots to map buildings before soldiers enter them. This will allow the soldiers to get

a better impression of the building and its inhabitants, hopefully reducing casualties, both

civilian and military, through better situational awareness. This indoor mapping technol-

ogy will be directly applicable in search and rescue. Robots using VSLAM will be able

to explore areas too dangerous for human searchers, discovering survivors that could not

otherwise be found. These are just a few of the many ways that VSLAM will change the

way we interact with the world.
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