
HIGH-DOF MOTION PLANNING IN DYNAMIC ENVIRONMENTS
USING TRAJECTORY OPTIMIZATION

Chonhyon Park

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2016

Approved by:

Dinesh Manocha

Ming C. Lin

Ron Alterovitz

Jan-Michael Frahm

Carol O’Sullivan

©2016
Chonhyon Park

ALL RIGHTS RESERVED

ii

ABSTRACT

Chonhyon Park: High-DOF Motion Planning in Dynamic Environments
using Trajectory Optimization

(Under the direction of Dinesh Manocha)

Motion planning is an important problem in robotics, computer-aided design, and simulated

environments. Recently, robots with a high number of controllable joints are increasingly used for

different applications, including in dynamic environments with humans and other moving objects. In

this thesis, we address three main challenges related to motion planning algorithms for high-DOF

robots in dynamic environments: 1) how to compute a feasible and constrained motion trajectory in

dynamic environments; 2) how to improve the performance of realtime computations for high-DOF

robots; 3) how to model the uncertainty in the environment representation and the motion of the

obstacles.

We present a novel optimization-based algorithm for motion planning in dynamic environments.

We model various constraints corresponding to smoothness, as well as kinematics and dynamics

bounds, as a cost function, and perform stochastic trajectory optimization to compute feasible

high-dimensional trajectories. In order to handle arbitrary dynamic obstacles, we use a replanning

framework that interleaves planning with execution. We also parallelize our approach on multiple

CPU or GPU cores to improve the performance and perform realtime computations. In order to

deal with the uncertainty of dynamic environments, we present an efficient probabilistic collision

detection algorithm that takes into account noisy sensor data. We predict the future obstacle motion

as Gaussian distributions, and compute the bounded collision probability between a high-DOF robot

and obstacles. We highlight the performance of our algorithms in simulated environments as well as

with a 7-DOF Fetch arm.

iii

To the memory of my only sister, Tahae.

iv

ACKNOWLEDGEMENTS

First and foremost, I want to thank my advisor, Dinesh Manocha. His grand vision introduced

me to the domain of motion planning and guided my direction of research. I would never have

accomplished this work without his excellent support and belief in me.

I also would like to thank all of my committee members. I thank Ming C. Lin for her support and

insightful feedback on my work at GAMMA group meeting. I thank Ron Alterovitz and Jan-Michael

Frahm for teaching me Robotics and Computer Vision. I thank Carol O’Sullivan for granting me the

opportunities to work with her at Disney Research as a summer intern, and being a coauthor.

I would like to thank Jia Pan, who introduced me to motion planning and gave me brilliant ideas

in different projects. I would additionally like to thank Steve Tonneau, Andrew Phillip Best, Sahil

Narang, and Jae Sung Park for their collaborations and helps. Many thanks to all the members of the

GAMMA group for their feedbacks and comments.

I would like to thank my parents. They have not only supported my education, but been my

academic role models. I also thank my parents-in-law and sister-in-law in Korea for their care and

support. Finally, I would like to thank my wife Sinae Lee for her constant love and support.

v

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xx

1 Introduction . 1

1.1 Motion Planning in Dynamic Environments . 3

1.2 Optimization-based Motion Planning . 4

1.3 Motion Planning of High-DOF Robots . 6

1.4 Modeling Uncertainties in Dynamic Environments . 7

1.5 Thesis Statement . 9

1.6 Main Results . 9

1.6.1 Incremental Trajectory Optimization . 10

1.6.2 Efficient Motion Planning of High-DOF Robots . 10

1.6.3 Efficient Approximation of Environment Uncertainties . 11

1.7 Organization . 12

2 Incremental Trajectory Optimization . 14

2.1 Introduction. 14

2.1.1 Main Results . 14

2.1.2 Organization . 15

2.2 Related Work . 15

2.2.1 Planning in Dynamic Environments . 15

2.2.2 Real-time Replanning . 16

vi

2.2.3 Optimization-based Planning Algorithms . 17

2.3 Overview . 17

2.4 ITOMP : Incremental Trajectory Optimization for Motion Planning in
Dynamic Environments . 20

2.4.1 Obstacle Costs . 20

2.4.2 Dynamic Environment and Replanning . 23

2.5 Results . 25

2.6 Conclusion . 29

3 Hierarchical Trajectory Optimization of High-DOF Robots . 31

3.1 Introduction. 31

3.1.1 Main Results . 31

3.1.2 Organization . 32

3.2 Related Work . 32

3.3 Overview . 33

3.3.1 Assumptions and Notations . 33

3.3.2 Hierarchical Planning . 34

3.4 Hierarchical Optimization-based Planning . 35

3.4.1 Multi-stage Planning using Constrained Coordination . 35

3.4.2 Trajectory Optimization with Local Refinement . 36

3.5 Performance Analysis . 38

3.6 Results . 41

3.7 Conclusions and Limitations . 44

4 Planning Dynamically Stable Motion for Human-like Robots . 46

4.1 Introduction. 46

4.1.1 Main Results . 46

4.1.2 Organization . 47

4.2 Related Work . 47

4.3 Background . 48

vii

4.3.1 ITOMP : Incremental Trajectory Optimization . 49

4.3.2 Contact-Invariant Optimization . 49

4.4 Motion Planning with Dynamic Stability . 51

4.4.1 Optimization with Stability Cost . 51

4.4.2 Dynamic Stability Computation . 51

4.4.3 Computation of Physics Violation Cost . 53

4.5 Results . 54

4.5.1 Planning of Dynamically Stable Motion . 55

4.5.1.1 Comparisons with Related Approaches . 57

4.5.2 Planning of Multiple Robots . 58

4.5.2.1 Implementation of Multi-robot Motion Planning 58

4.5.2.2 Experimental Results . 59

4.5.3 Natural-Looking Motion Generation of Virtual Characters 61

4.5.3.1 Plausible Motion Constraints . 61

4.5.3.2 Experimental Results . 62

4.5.3.3 Comparisons with Related Approaches . 64

4.6 Conclusions and Limitations . 67

5 Parallel Trajectory Optimization using GPUs . 68

5.1 Introduction. 68

5.1.1 Main Results . 68

5.1.2 Organization . 69

5.2 Related Work . 69

5.2.1 Real-time Motion Planning . 69

5.2.2 Parallel Planning Algorithms using GPUs . 70

5.3 Overview . 70

5.4 Parallel Multi-trajectory Optimization . 72

5.4.1 Parallelized Replanning with Multiple Trajectories . 73

viii

5.4.2 Highly Parallel Trajectory Optimization using GPUs . 75

5.5 Analysis . 76

5.5.1 Responsiveness . 76

5.5.2 Quality . 79

5.6 Results . 81

5.7 Conclusions. 83

6 Constrained Trajectory Planning using Precomputed Roadmaps . 85

6.1 Introduction. 85

6.1.1 Main Results . 86

6.1.2 Organization . 86

6.2 Related Work . 86

6.3 Planning Algorithm . 87

6.3.1 Assumptions and Notations . 87

6.3.2 Algorithm Overview . 89

6.4 Roadmap Precomputation and Multiple Path Selection . 90

6.4.1 Roadmap Precomputation . 91

6.4.2 Multiple Path Selection . 92

6.5 Parallel Trajectory Refinement . 92

6.5.1 Initial Trajectory Generation . 92

6.5.2 Trajectory Optimization with Cartesian Planning Constraints 93

6.6 Benefits of Parallelization . 95

6.7 Results . 95

6.7.1 Planning with Orientation Constraints . 96

6.7.2 Planning with Position Constraints . 98

6.7.3 Constrained Planning in Dynamic Environments . 100

6.8 Conclusions. 100

7 Handling Environment Uncertainty using Probabilistic Collision Detection 101

ix

7.1 Introduction. 101

7.1.1 Main Results . 102

7.1.2 Organization . 102

7.2 Related Work . 102

7.2.1 Probabilistic Collision Detection . 103

7.2.2 Planning in Dynamic and Uncertain Environments . 104

7.3 Probabilistic Collision Detection for High-DOF Robots . 104

7.3.1 Notation and Assumptions . 104

7.3.2 Fast and Bounded Collision Probability Approximation . 105

7.3.3 Comparisons with Other Algorithms. 108

7.4 Belief State Estimation . 109

7.4.1 Environment State Model . 110

7.4.2 Belief State Estimation and Prediction . 111

7.4.3 Spatial and Temporal Uncertainties in Belief State . 112

7.5 Space-Time Trajectory Optimization . 114

7.6 Results . 117

7.6.1 Experimental Results . 117

7.6.2 Probabilistic Collision Checking and Trajectory Planning 119

7.7 Conclusions and Limitations . 120

8 Conclusions and Future Work . 123

8.1 Limitations and Future Work. 124

BIBLIOGRAPHY . 126

x

LIST OF TABLES

2.1 Results obtained from sensor noise experiments. Success rate of planning and
trajectory cost are measured with different sensor noise values. As the noise
increases, the trajectory cost increases. 26

2.2 Results obtained from experiments corresponding to varying obstacle speeds.
The higher speed of obstacles lowers the success rate of planning and increases
the trajectory cost. 28

2.3 Results obtained from the experiments with different number of moving obsta-
cles. Success rate of planning and trajectory cost are measured. The success
rate of the planner decreases when there are more obstacles in the environment. 29

3.1 The performance of our hierarchical planning algorithm is compared with the
non-hierarchical ITOMP algorithm. We compute collision-free trajectories
in static and dynamic environments. We measure the number of iterations
used in the numerical optimization procedure; planning time to find the first
collision-free solution; trajectory cost based on Equation (3.1); and the success
rate of our planner, i.e., the total number of trials that found a collision-free
trajectory. In the static scenes, our hierarchical planner results in up to 14X
speedup over the non-hierarchical algorithm. The trajectory costs for the
hierarchical and non-hierarchical algorithms are small (less than 0.1), which
means the quality of the solution with the hierarchical planner is close to the
trajectory computed by the non-hierarchical planner. 41

3.2 We highlight the runtime performance of our planning algorithm in static and
dynamic environments. We show the number of iterations; the planning time
to find the first collision-free solution; the trajectory costs; and the number of
trials in which back-tracings occur for each stage of our hierarchical planning
algorithm, i.e., when a stage fails to find a collision-free trajectory for the
corresponding component, the planner merges the component and its parent,
then computes the trajectory of the merged component. 42

4.1 Planning results for different benchmarks on a single CPU core. We highlight
the robot DOFs and the number of potential contact points with the environ-
ment. We measure the means and the standard deviations for the number of
iterations in the numerical optimization process; the planning time needed to
compute the first collision-free solution; and the smoothness of the trajectory
for different benchmarks. The smoothness is computed by the sum of joint
accelerations at the trajectory waypoints for all active joints, which means that
trajectories with lower values are smoother. 55

xi

4.2 This table compares the feature of our motion planning with dynamic stability
algorithm with other approaches. Our approach can handle all the constraints,
similar to the direct contact force optimization algorithm (Posa and Tedrake,
2013), but is an order of magnitude faster. 58

4.3 Planning results for different benchmarks. We show the number of robots; the
trajectory length that corresponds to the total time that the robots took to reach
their goals; the average computation times for the collision avoidance and the
trajectory optimization for each planning step. 59

4.4 Model complexity and the performance of trajectory planning: We highlight
the complexity of each benchmark in terms of number of joints, the number of
input discrete poses, and the number of frames that is governed by the length
of the motion. We compute the average trajectory planning time per frame for
each benchmark on a multi-core PC. 62

5.1 Results obtained from our trajectory computation algorithm based on different
levels of parallelization and number of trajectories (for the benchmarks shown
in Fig. 5.8). The planning time decreases when the planner uses more trajectories. 81

6.1 Planning results for our benchmarks. We measure the number of iterations
for the trajectory optimization; planning time; success rate of the planning.
We classify the planner as a success if it can find a solution in the maximum
iteration limit (2000). As we increase M, the reliability of the planner improves
with respect to various constraints. 96

6.2 Planning results for the benchmarks with dynamic obstacles. As we increase
M, the success rate of the planner improves. 99

7.1 Performance of our probabilistic collision detection: We measure the com-
putation time of the probabilistic collision detection per single robot configuration. 117

7.2 Planning results in our benchmarks: We measure the planning results of the
computed trajectories: the minimum distance to the human obstacle, trajectory
duration, and trajectory length, for different benchmark scenarios. 118

xii

LIST OF FIGURES

1.1 The task planning repeatedly performs sensing, motion planning and execution
steps in a closed loop. 3

2.1 Optimization-based motion planning for dynamic environments. We show
how the configuration space changes over time: each plane slice represents the
configuration space at time t. In the environment, there are two C-obstacles:
the static obstacle COs and the dynamic obstacle COd. We need to plan a
trajectory to avoid these obstacles. The trajectory starts at time 0, stops at time
T , and is represented by a set of way points q1, ..., qk, ..., qN . Supposing that
the trajectory is to be executed by the robot during time interval I = [t0, t1],
we only need to consider the conservative bound COd([t0, t1]) for the dynamic
obstacle during the time interval. The C-obstacles shown in the red color
correspond to the obstacles at time t ∈ I . 21

2.2 The overall pipeline of ITOMP: the scheduling module runs the main algorithm.
It gets input from the user and interleaves the planning and execution threads.
The Motion Planner module computes the trajectory for the robot and the
Robot Controller module is used to execute the trajectory. The planner also
receives updated environment information frequently from sensors. 23

2.3 Interleaving of planning and execution. The planner starts at time t0. During
the first planning time budget [t0, t1], it plans a safe trajectory for the first
execution interval [t1, t2], which is also the next planning interval. In order
to compute the safe trajectory, the planner needs to compute a conservative
bound for each moving obstacle during [t1, t2]. The planner is interrupted
at time t1 and the ITOMP scheduling module notifies the controller to start
execution. Meanwhile, the planner starts the planning computation for the
next interval [t2, t3], after updating the bounds on the trajectory of the moving
obstacles. Such interleaving of planning and execution is repeated until the
robot reaches the goal position. In this example, n interleaving steps are used,
and the time budget allocated to each step is ∆i, which can be fixed or changed
adaptively. Notice that if the robot is currently is an open space, the planner
may compute an optimal solution before the time budget runs out (e.g., during [t2, t3]). . . 24

2.4 The planning environment used in experiments related to sensor noise. The
planner computes a trajectory for the right arm of PR2 robot, moving it from
the start configuration to the goal configuration while avoiding both static and
dynamic obstacles. In the figure, green spheres correspond to static obstacles
and the red spheres are dynamic obstacles. 27

xiii

2.5 Planning environments used to evaluate the performance of our planner with
moving obstacles with varying speeds. The planner uses the latest obstacle
position and velocity to estimate the local trajectory. (a)(b) The obstacles
(corresponding to red spheres) in the environment have varying (high or low)
speeds. The size of each arrow corresponds to the magnitude of each’s speed. 28

2.6 A collision-free trajectory and conservative bounds of moving obstacles. (a)
There are five moving obstacles. The arrows shows the direction of obstacles.
(b)(c) During each step, the planner computes conservative local bounds on
obstacle trajectory for the given time step. (b)(c)(d) The robot moves to
the goal position while avoiding collisions with the obstacle local trajectory
computed using the bounds. (d) The robot reaches the goal position.. 29

2.7 Planning environments used to evaluate the performance of our planner with
different numbers of moving obstacles. 30

3.1 An example of hierarchical decomposition for various robots. These hierar-
chical decompositions are used to divide a high-dimensional problem into a
sequence of low-dimensional problems. 34

3.2 Incremental trajectory planning. The robot model consists of {A1 (3 DOFs),
A2 (1 DOF)}. (a) During stage 1, the algorithm computes trajectoryM1(t) for
A1 while avoiding collisions between A1 and the obstacle shown in the black
region. (b) During stage 2 of the planning algorithm, the trajectory M2(t) for
A2 is computed while A1 is assumed to move along the trajectory M1(t). 36

3.3 Planning with local refinement. By adjusting the configuration of the joint j1

connecting A1 and A2, we can move A1 away from the obstacle and leave
more space for A2 to pass through. As a result, the planner can compute a
collision-free solution M̄2(t) = {M1(t),M2(t)}. 37

3.4 (a)(b) Hierarchical planning of a PR2 robot and a human-like robot in a static
environment. The planned trajectory for different components is marked using
different colors. (c)(d) Planning in dynamic environments. With the static
obstacles, we also use human-like obstacles (shown in cyan) that follow a path
generated from motion-capture data. The robot does not have any a priori
information about the trajectory of this obstacle, which is designed to interrupt
the robot’s trajectory. 43

3.5 Hierarchical planning of HRP-4 robot. Using stability constraints, the optimization-
based planner computes physically plausible walking motion. 45

4.1 A humanoid robot makes contacts c1 and c2 with the ground plane. The gravity
wrench wg and the inertia wrench wi are applied to the robot. The contact
wrenches w1

c and w2
c can have values in their friction cone. The robot is stable

when w1
c + w2

c + wg + wi = 0. 52

xiv

4.2 Snapshots of the computed trajectory planned across uneven terrain of varying
heights. The proper footstep points are computed during the optimization, and
the entire walking motion trajectory is dynamically stable. 56

4.3 Snapshots of the computed trajectory for the environment with obstacles.
There is an obstacle between the initial position and the goal position that the
robot cannot detour around. The computed trajectory passes over the obstacle. 56

4.4 We highlight the smooth and dynamic stable trajectory computed by our
planner to perform the specific tasks. The robot uses multiple degrees of
freedom, including 14 DOF on the legs to move and 7 DOF on the arm to
open the door. 56

4.5 We highlight the high-DOF trajectory for the robot to perform the tasks for
opening the drawer by our algorithm. 57

4.6 Timing breakdown of an iteration of the trajectory optimization. 57

4.7 (a)(b)(c)(d) Multi-robot planning benchmarks. (e) Plot of the the planning time
of the collision avoidance and the trajectory optimization along the trajectory
for a robot. 60

4.8 Construction site benchmark scenario. A human-like virtual character navi-
gates through various obstacles in 3D space such as scaffolding, metal beams,
uneven solid mound etc. 63

4.9 A virtual character passes under a scaffold. 63

4.10 A virtual character steps over a beam placed on the ground. 64

4.11 A virtual character is walking over a uneven solid mound. 64

4.12 The computed trajectories for the (a) Climbing, (b) Crawling and (c) Truck benchmarks. 65

4.13 The computed trajectories for the (a) Walking, (b) Pushing and (c) Holding benchmarks. 66

5.1 Multiple trajectories that arise in the optimization-based motion planning.
The coordinate system shows how the configuration space changes over time
as the dynamic obstacles move over time: each plane slice represents the
configuration space at time t. In the environment, there are three C-obstacles:
the two static obstacles COs1, COs2 and the dynamic obstacle COd. The
planned trajectories start at time 0, stop at time T , and are represented by a set
of way points qstart, q1, ..., qk, ..., qN , qend. The three trajectories for the time
interval I = [t0, t1] are generated with different random seeds and represent
different solutions to the planner in these configurations corresponding to the
dynamic obstacles. 71

xv

5.2 The overall architecture of our parallel replanning algorithm. The planner
consists of four individual modules (scheduler, motion planner, robot controller,
sensor data collection), each of which runs as a separate thread. When the
motion planning module receives a planning request from the scheduler, it
launches optimization of multiple trajectories in parallel. 73

5.3 The timeline of interleaving planning and execution in parallel replanning.
In this figure, we assume the number of trajectories computed by parallel
optimization algorithm as four. At time t0, the planner starts planning for time
interval [t1, t2], during the time budget [t0, t1]. It finds a solution by trying
to optimize four trajectories in parallel. At time t1, the planner is interrupted
and returns the result corresponding to the best trajectory to scheduler module.
Then the scheduler module executes the trajectory. 74

5.4 The detailed breakdown of GPU trajectory optimization. It starts with the
generation of k initial trajectories. From these initial trajectories, the algo-
rithm iterates over stochastic optimization steps. The waypoint costs include
collision cost, end effector orientation cost, etc. We also compute joint cost,
which might include smoothness costs or the cost of computing the torque
constraints. The current trajectory cost is repeatedly improved until the time
budget runs out. 75

5.5 The distribution of the distance to the solution in configuration space. The
robot has four revolute joints. We discretize the 4-DOF space and measure
the distances to the collision-free space from the trajectories generated from
all the discretized points. Environment 1 has 12 small obstacles, and the
environment 2 has 3 obstacles in the scene. 78

5.6 Benefits of a parallel, multi-threaded algorithm in terms of the responsiveness
improvement. We assume that the time costs of different trajectories for
optimization are proportional to the distance to the feasible solution. We show
the acceleration by varying the number of trajectories on the two distributions
from Fig. 5.5. 79

5.7 Benefits of the parallel algorithm in terms of the performance of the optimiza-
tion algorithm. The graph shows the number of optimization iterations that
can be performed per second. When multiple trajectories are used on a multi-
core CPU (by varying the number of cores), each core is used to compute one
single trajectory. The number of iterations performed per second increases
as a linear function of the number of cores. In the case of many-core GPU
optimization, increasing the number of trajectories results in sharing of GPU
resources among different trajectory computations, and the relationship is
non-linear. Overall, we see a better utilization of GPU resources if we optimize
a higher number of trajectories in parallel. 80

xvi

5.8 Planning environment used to evaluate the performance of our planner. The
planner computes a trajectory of robot arm which avoids dynamic obstacles
and moves horizontally from right to left. Green spheres are static, and
red spheres are dynamic obstacles. Figure (a), (b) Show the start and goal
configurations of the right arm of the robot. 81

5.9 Parallel replanning in dynamic environments with a human obstacle. The
planner optimizes multiple paths which are smooth and avoid collision with
the obstacle. Each colored path corresponds to a different search in the
configuration space. The optimal path for each case is shown in purple. 82

5.10 Success rate and trajectory cost results obtained from the replanning in dy-
namic environments on a multi-core CPU and a many-core GPU. The success
rate and trajectory cost is measured for each planner. The use of multiple
trajectories in our replanning algorithm results in higher success rates and
trajectories with lower costs and thereby, improved quality. 83

6.1 An overview of our planning algorithm. The roadmap precomputation takes
into account static obstacles and singularity constraints. For a given planning
request, M paths P 1, ..., PM are computed using graph search. The com-
puted paths are converted to trajectories, and then refined using trajectory
optimization. 89

6.2 (a) Classification of the Configuration space. The obstacle space Cobs consists
of disconnected regions, and the near-singular space Csingular+ is a region
that the distance to the closest singular configuration is smaller than a value ε.
(b) A roadmap graph built on Fig. 6.2(a) and multiple paths are shown. The
nodes and edges on the graph are collision-free and correspond to non-singular
configurations. For a path query from an initial configuration Qinit to the goal
region qgoal (shown in dark gray region), different non-deformable paths P1,
P2, and P3 are shown in the graph. 90

6.3 Benchmark 1 computes a trajectory for end-effector constraints for X- and Y-
axis rotations. (a) The start (green) and goal (blue) poses are shown. (b) The
computed trajectory is shown. 97

6.4 Plots of joint values for the computed trajectory of Benchmark 1. (a) All joint
values in the trajectory are smooth. (b) There are points that the joint values
suddenly change. 97

6.5 Benchmark 2 is following a trajectory defined for end-effector positions. (a)
The environment and the constraint trajectory (blue path) are shown. (b) The
computed trajectory is shown. 97

6.6 Dynamic environments: (a) We capture the depth map of a scene with a human
arm approaching the arm using a Kinect. (b) 3D octomap is constructed from
the depth-map, which is used as obstacle in the trajectory optimization. 99

xvii

6.7 Demonstration of our constrained planning algorithm in a static environment
with KUKA LBR4+ robot. 100

7.1 Approximation of probabilistic collision detection between a sphere obstacle of
radius r2 with a probability distributionN (plm,Σlm) and a rigid sphere robot
Bjk(qi) centered at ojk(qi) with radius r1. It is approximated as V · xmax,
where V is the volume of the sphere with the radius computed as the sum of
two radii, V = 4π

3 (r1+r2)3, and xmax is the position which has the maximum
probability of N (plm,Σlm). 106

7.2 Comparison of approximated collision probabilities for feasible (P (x) ≤
1 − δCL) and infeasible (P (x) > 1 − δCL) scenarios for δCL = 0.99: We
compare the exact collision probability (computed using numerical integra-
tion) with approximated probabilities of 1) enlarged bounding volumes (blue
contour) (Van den Berg et al., 2012), 2) approximation using object center
point (in green) (Du Toit and Burdick, 2011), and 3) our approach that uses
the maximum probability point (in red). Our approach guarantees that we do
not underestimate the probability, while our approximated probability is close
to the exact probability. 109

7.3 Environment belief state estimation for a human obstacle: We approxi-
mate the point cloud from the sensor data using bounding volumes. The
shapes of bounding volumes are pre-known in the database, and belief states
are defined on the probability distributions of bounding volume poses: (a)
input point clouds (blue dots). (b) the bounding volumes (red spheres)with
their mean positions (black dots). (c) the probabilistic distribution of mean
positions. 0% confidence level (black) to 100% confidence level (white). 110

7.4 Spatial uncertainty: (a) Sphere obstacle and its point cloud samples from a
depth sensor. (b) Probability distribution of a sphere center state p for a single
point cloud dk. (c) Probability distribution of p for a partially visible obstacle.
(d) Probability distribution of p for a fully visible obstacle. 113

7.5 Trajectory Planning: We highlight various components of our algorithm.
These include belief space estimation of environment (described in Sec-
tion 7.4), probabilistic collision checking (described in Section 7.3), and
trajectory optimization. 115

7.6 Robot Trajectory with Dynamic Human Obstacles: Static obstacles are
shown in green, the estimated current and future human bounding volumes
are shown in blue and red, respectively. Our planner uses the probabilistic
collision detection to compute the collision probability between the robot and
the uncertain future human motion. (a) When a human is approaching the
robot, our planner changes its trajectory to avoid potential future collisions. (b)
When a standing human only stretches out an arm, our model-based prediction
prevents unnecessary reactive motions, which results in a better robot trajectory
than the prediction using simple extrapolations. 119

xviii

7.7 Robot trajectory with different confidence and noise levels: Static obsta-
cles are shown in green, the estimated current and future human bounding
volumes are shown in blue and red, respectively. 120

7.8 Real Robot Experiment: 7-DOF Fetch robot arm repeatedly moves between
two points while avoiding collisions with the human. It is noticeable that the
robot trajectory deviates more as the human motion becomes faster, in order
to deal with the increased uncertainties in the human motion prediction. 121

7.9 Real Robot Experiment: The 7-DOF Fetch robot arm is serving a soda can
on a table, while the robot avoids collisions with the human arm that may
takes soda cans. 122

xix

LIST OF ABBREVIATIONS

CIO Contact-Invariant Optimization

DOF Degree of Freedom

EDT Euclidean Distance Transform

FLOPS FLoating-point Operations Per Second

GPU Graphics Processing Unit

ITOMP Incremental Trajectory Optimization for Motion Planning

ORCA Optimal Reciprocal Collision Avoidance

PDF Probability Distribution Function

POMDP Partially-Observable Markov Decision Process

PRM Probabilistic Roadmap Method

RB-PRM Reachability-Based Probabilistic Roadmap Method

ROS Robot Operating System

RRT Rapidly-exploring Random Tree

ZMP Zero Moment Point

xx

CHAPTER 1

Introduction

Physical robots have been used for different applications since the 1960’s. Traditionally, robots

were mainly limited to industrial applications such as welding, cutting, or painting. In these cases,

robots are operated in confined and static spaces, and they repeat predefined tasks. Given the

recent advancements in hardware and sensor technology, robots are increasingly being used in all

environments, including homes, malls, restaurants, factories, and outdoor scenes. These environments

consist of moving or time-varying obstacles, the motions of which are not known a priori. One

driving application is autonomous cars, which are expected to automatically drive in all kinds of

conditions and avoid collisions with pedestrians and other vehicles (Katrakazas et al., 2015).

Over the last few decades, high-degree of freedom (DOF) robot systems have been widely used

for different applications. These include the use of industrial manipulators for manufacturing and

assembly tasks. Most high-DOF robot systems consist of arms or manipulators with redundant

DOF, i.e. the system has more than six DOF, which allows the robots to perform dexterous tasks

with collision avoidance using their redundancy. In the recent DARPA DRC challenge (Iagnemma

and Overholt, 2015), humanoid robots with 30-40 DOF had to perform dexterous tasks such as

drilling a hole or rotating a valve. In the future, high-DOF autonomous robot systems are expected

to be used for other applications, including: 1) robots for cleaning (not only limited to floors) and

cooking/serving in households; 2) entertainment robots that interact with humans in parks and

amusement areas; 3) industrial robots that are working next to humans on the factory floors; 4) robots

used for search and rescue in disaster areas.

The complexity of a robot task depends on the objects that have to be considered and constraints

that have to be satisfied, and can be too complex to be planned or performed by autonomous robot

systems. However, such complex tasks can be decomposed into multiple subtasks, which can then be

solved with reduced complexity (Guitton and Farges, 2009; Hauser and Latombe, 2009). In general,

many such subtasks are reduced to motion planning problems. Motion planning is defined as the

1

finding of a feasible robot motion in terms of the given constraints that can be efficiently solved in

the configuration space (Lozano-Perez, 1983). A robot pose in a 3D workspace is mapped to a point

in the configuration space, and the motion planning problem is reduced to a path finding problem

in the configuration space. A simple motion planning problem may correspond to the computation

of a collision-free path from an initial configuration to the goal configuration. Some tasks such as

welding or cutting may have additional Cartesian constraints for the motion planning, i.e. the end

effector of the arm will need to follow a certain path in the resulting motion.

There is considerable work on motion planning for high-DOF robots. At a broad level, the previ-

ous work can be classified into sampling-based planners and optimization-based planners (LaValle,

2006). Most of the earlier work on practical motion planning algorithms is based on sampling-based

algorithms (Kavraki et al., 1996; Kuffner and LaValle, 2000; Jaillet and Siméon, 2008; Karaman

and Frazzoli, 2011). The key idea in sampling-based approaches is to generate samples in the free

configuration space where the robot is collision-free, and connect them with collision-free edges to

construct a graph until a collision-free path from the initial configuration to the goal configuration

is found. These planners are probabilistically complete (i.e. the probability that they will find a

solution approaches one as more samples are added). However, it is relatively difficult to handle many

constraints (e.g., trajectory smoothness or dynamic constraints) on the collision-free trajectories

computed by sampling-based planners. Non-smooth and jerky paths can cause actuator damages,

and balancing constraints are important for humanoid robots.

On the other hand, optimization-based planners pose the motion planning problem in a continuous

setting and use optimization techniques to compute the trajectory (Ratliff et al., 2009; Kalakrishnan

et al., 2011; Schulman et al., 2014). They generate motion trajectories that can satisfy various

constraints simultaneously. Different constraints can be formulated as part of the optimization

function for trajectory computation. However, most optimization-based approaches are limited to

computing local optimal solutions due to the computational complexities of the global optimization.

Furthermore, even the state-of-the-art applications of optimization-based motion planning for high-

DOF robots (El Khoury et al., 2013; Lengagne et al., 2013) require a large amount of computation

time, which makes them unsuitable for dynamic environments.

Motion planning is not limited to physical robots. Digital models of humans or mannequins

are frequently used in assembly and virtual prototyping applications for design, assembly, and

2

Sense Plan Move

Figure 1.1: The task planning repeatedly performs sensing, motion planning and execution steps in a
closed loop.

maintenance (for example, evacuation planning for a building or an airplane). Automatically

synthesizing plausible motion animations for human-like characters is one of the major challenges in

computer graphics in fields such as computer games, virtual reality, and computer animation. This

problem of generating dynamically balanced trajectories has also been studied in robotics, and many

solutions have been proposed based on optimization-based planning (Mordatch et al., 2012; Al Borno

et al., 2013; Wampler et al., 2014) or tree-based search (Bouyarmane and Kheddar, 2011; Escande

et al., 2013). However, the complexity and running time of such algorithms can be high, especially

as we consider multiple constraints, and resulting motions may not look plausible or are not fast

enough for interactive applications.

1.1 Motion Planning in Dynamic Environments

Most of the earlier work on practical motion planning algorithms is limited to static environments.

However, robots must work reliably in dynamic environments with humans and other moving objects.

As shown in Fig. 1.1, the robot system first uses sensors to perceive the dynamic environment,

and that information is passed as an input to the motion planning step. Some prior approaches

assume that the future trajectories of dynamic obstacles are known a priori during the planning

computation (Fiorini and Shiller, 1998; Likhachev and Ferguson, 2009). However, this assumption

may not hold in many real world applications. The motion of the obstacles can be unpredictable and

new obstacles may be introduced into the environment. In these scenarios, robots need to deal with

the uncertainty of the environment as well as avoid collisions with such obstacles. The future state of

the environment is not accurately predictable, and can only be approximated over a small or local

3

time interval. Such uncertainty about moving objects makes it hard to plan a safe trajectory for the

robot. One solution to overcome this problem is to perform sensing and planning repeatedly (Bowen

and Alterovitz, 2014; Sun et al., 2015a). As shown in Fig. 1.1, the robot system works as a closed

loop that goes back to the sensing step again to update the environment representation with the latest

sensor information after the previously computed planning result is executed.

However, if the planning step takes a long time, it can lead to long delays during the robot’s

movement and may cause collisions for robots operating in environments with fast dynamic obstacles.

Therefore, instead of computing the complete and optimal plan for the given task, many real-time

replanning approaches compute partial or sub-optimal plans for execution that avoid collisions in

a limited time step. Different algorithms can be used as the underlying planners in this real-time

replanning framework, including sample-based planners (Hauser, 2012; Hsu et al., 2002; Petti and

Fraichard, 2005) or search-based methods (Koenig et al., 2003; Likhachev et al., 2005). Most

replanning algorithms use fixed time steps (Petti and Fraichard, 2005). Some recent work (Hauser,

2012) computes the timing step in an adaptive manner to balance between safety, responsiveness,

and completeness of the overall system.

Control-based approaches (Haschke et al., 2008; Kroger and Wahl, 2010), which can compute

trajectories in realtime, are used in many applications that require high responsiveness. They compute

the robot trajectory in the Cartesian space, i.e. the workspace of the robot, according to the sensor data.

However, the mapping from the Cartesian trajectory to the trajectory in the configuration space of

high-DOF robots can be problematic as there can be multiple configurations for a single pose defined

in the Cartesian space. Furthermore, control-based approaches tend to compute robot trajectories

that are less smooth as compared to the planning approaches that incorporate the estimation of the

future obstacle poses. Planning algorithms can compute better robot trajectories in applications in

which a good prediction about obstacle motions in a short horizon can be provided.

1.2 Optimization-based Motion Planning

Optimization techniques can be used to compute a robot trajectory that is optimal under some

specific metrics (e.g., smoothness or length) and that also satisfies various constraints (e.g., collision-

free and dynamics constraints). Some algorithms assume that a collision-free trajectory is given

4

and it can be refined or smoothed using optimization techniques. The most widely-used method of

path optimization is the so-called ‘shortcut’ heuristic, which selects pairs of configurations along

a collision-free path and invokes a local planner to replace the intervening sub-path with a shorter

one (Chen and Hwang, 1998; Pan et al., 2012). Other approaches are based on elastic bands or elastic

strips, which use a combination of mass-spring systems and gradient-based methods to compute

minimum-energy paths (Brock and Khatib, 2002; Quinlan and Khatib, 1993).

Other algorithms relax the assumptions about the initial path and may start with an in-collision

path. Some recent approaches, such as (Ratliff et al., 2009; Kalakrishnan et al., 2011; Schulman

et al., 2014), directly encode the collision-free constraints using a global potential field and compute

a collision-free trajectory for robot execution. These methods typically represent various constraints

(smoothness, torque, etc.) as soft constraints in terms of additional penalty terms to the objective

function. Although these planners do not guarantee planning completeness, they efficiently compute

trajectories that optimize over a variety of criteria in many real-world planning scenarios.

In terms of motion planning for high-DOF robots, satisfying dynamic constraints is an important

criterion of motion planning. There is considerable work on the maintenance of balance of bipedal

robots, which includes techniques based on the inverse pendulum (Kajita and Tani, 1991) or the zero

moment point (Huang et al., 2001). However, these approaches are limited to planar ground (i.e. flat

surfaces). Recently, many optimization-based approaches have integrated stability constraints directly

into trajectory optimization (Lee et al., 2005; Lengagne et al., 2010; Schultz and Mombaur, 2010).

Mordatch et al. (2012) use a contact-invariant optimization formulation, along with a simplified

physics model, to generate various motions for animated characters. Posa et al. (2013) directly

optimize the contact forces along with the state of the robot and the user input.

The search space of motion planning tends to increase exponentially as the number of DOF

increases (Canny, 1988), and therefore it tends to be expensive for realtime applications. Toussaint et

al. (2007) reformulate the high-DOF robot planning problem in low-dimensional task spaces to lower

the planning DOF on a per-task basis. Another strategy to reduce the planning complexity is to first

compute a kinematic-stable trajectory and refine it into a dynamically feasible trajectory (Kuffner

et al., 2002). However, these approaches tend to be more constrained and may not work well in

complex scenarios.

5

1.3 Motion Planning of High-DOF Robots

One of the main challenges in terms of planning in dynamic environments is that the planning

algorithm must be responsive to unpredictable situations, which requires realtime planning capability

in terms of computing or updating the trajectory. Due to the rapid advances in multi-core and

many-core commodity processors, designing efficient parallel planning algorithms that can benefit

from their computational capabilities is an important topic in robotics. Many parallel algorithms

have been proposed for motion planning by utilizing the properties of configuration space (Lozano-

Pérez and O’Donnell, 1991) that exploit distributed clusters, shared-memory systems, or commodity

parallel processors. Distributed clusters have been widely used for solving compute-intensive

problems. Clusters are defined as a large number of connected machines or nodes, each of which has

local memory. A big computational problem is divided into small pieces and assigned to different

processors in the cluster for parallel computation. Many parallel techniques have been proposed

to improve the performance of planning using distributed clusters. Pérez and O’Donnell (1991)

compute the primitive map of a 3D configuration space using parallel computation. Amato et

al. (1999) propose a parallel PRM planning approach that has scalable speedups. Jacobs et al. (2012)

propose an algorithm based on subdividing the configuration space (Brooks and Lozano-Pérez,

1985) and use clusters to expand the tree in a different region of the configuration space. Some

approaches combine PRM and RRT in order to use the massive parallelism (Plaku and Kavraki,

2005). Nowadays, commodity processors in a single machine have multiple cores. Although these

systems have fewer cores and less overall processing power than large distributed clusters, multiple

threads running on such shared-memory processors have access to the same memory and there

is no major overhead of transferring the data between the nodes in a cluster. Many parallel RRT

algorithms have been proposed for shared-memory systems (Carpin and Pagello, 2002; Aguinaga

et al., 2008). Parallel algorithms on shared-memory systems have better efficiency than clusters

because the multiple threads can share the same tree data structure on shared memory (Sucan and

Kavraki, 2012). Updates of the shared tree require synchronization, and the performance can be

improved using lock-free data structures (Ichnowski and Alterovitz, 2014).

The rasterization capabilities of a GPU can be used for real-time motion planning of low-DOF

robots (Hoff et al., 2000) or for improving the sample generation in narrow passages (Pisula et al.,

6

2000). Recently, the general purpose GPU technology allows efficient use of the GPUs using

appropriate interfaces (e.g., CUDA, OpenCL). g-Planner (Pan et al., 2010a) uses many-core GPU

processors to parallelize and accelerate PRM approach. Kider et al. (2010) propose a GPU-based

R* algorithm for 6-DOF problems. Bialkowski et al. (2011) use multiple cores on GPUs to perform

parallel collision checking along different edges of RRT.

For the planning of high-DOF robots, hierarchical approaches have been used to decompose

a higher-dimensional planning problem into several lower-dimensional planning problems. This

divide-and-conquer method can substantially reduce the complexity of the planning problem (Brock

and Kavraki, 2001), and the incompleteness of the resulting planning algorithms can be improved

by greedy techniques based on back-tracing (Alami et al., 1995). Hierarchical methods have been

used to improve performance for articulated robots (Brock and Kavraki, 2001) or for multi-robot

systems (Isto and Saha, 2006). Different coordination schemes (Erdmann and Lozano-Pérez, 1986;

Saha and Isto, 2008) have been proposed to guarantee that the decomposed planner finds solutions for

the robots’ whole bodies. Simple decomposition into lower- and upper-body has been used to plan

the motion for human-like robots (Arechavaleta et al., 2004); a more detailed decomposition has been

used to accelerate whole-body planning for high-DOF robots using sampling-based planners (Zhang

et al., 2009; Pan et al., 2010b). Recently, hierarchical mechanisms have also been used to accelerate

the Markov Decision Process (Barry et al., 2011) and task planning (Kaelbling and Lozano-Pérez,

2011a,b).

1.4 Modeling Uncertainties in Dynamic Environments

The problem of motion planning under uncertainty, or belief space planning, has been an active

area of research for the last few decades. The main goal is to plan a path for a robot in spaces

that the robot cannot directly observe the perfect and complete state. The underlying problem is

formally defined using POMDPs (partially-observable Markov decision processes), which provide

a mathematically rigorous and general approach for planning under uncertainty (Kaelbling et al.,

1998). The resulting POMDP planners handle the uncertainty by reasoning over the belief space. A

belief corresponds to the probability distribution over all possible states. However, The POMDP

formulation is regarded as computationally intractable (Papadimitriou and Tsitsiklis, 1987) for

7

problems that are high-dimensional. Therefore, many efficient approximations (Silver and Veness,

2010; Kurniawati and Yadav, 2013; Somani et al., 2013) and parallel techniques (Shani, 2010; Lee and

Kim, 2013) have been proposed to provide a better estimation of the belief space. Most approaches

for continuous state spaces use Gaussian belief spaces, which are estimated using Bayesian filters

(e.g., Kalman filters) (Leung et al., 2006; Platt Jr et al., 2010). Algorithms using Gaussian belief

spaces have also been proposed for the motion planning of high-DOF robots (Van den Berg et al.,

2012; Sun et al., 2015b), but they do not account for environment uncertainty or imperfect obstacle

information. Instead, most planning algorithms handling environment uncertainty deal with issues

arising from visual occlusions from the cameras (Missiuro and Roy, 2006; Guibas et al., 2010;

Kahn et al., 2015; Charrow et al., 2015). In terms of dynamic environments, motion planning with

uncertainty algorithms is mainly limited to simple robot shapes (Du Toit and Burdick, 2012; Bai

et al., 2015), where the robots are modeled as circles, or to specialized applications such as people

tracking (Bandyopadhyay et al., 2009).

Collision checking is an integral part of any motion planning algorithm and most prior techniques

assume an exact representation of the robot and obstacles. Prior collision detection approaches that

ignore the uncertainties compute an exact answer, like 0 or 1, in terms of collision. Given uncertain

and imperfect representation of the obstacles, probabilistic collision detection is used in motion

planning. These probabilistic collision algorithms compute the probability of collision, based on the

uncertainties associated with the collision objects. Stochastic Monte Carlo algorithms are used to

approximate the collision probability (Blackmore, 2006; Lambert et al., 2008), which requires a large

number of sample evaluations to compute an accurate approximation of the collision probability. If

it can be assumed that the sizes of the objects are relatively small, the collision probability can be

approximated using the collision probability at a single configuration corresponding to the mean of

the probability distribution for the object positions, which provides a closed-form solution (Du Toit

and Burdick, 2011). This approximation is fast, but the computed probability cannot provide a

bound, and can be either higher or lower than the actual probability, where the error increases as the

object is bigger and has higher-DOF. For high-dimensional spaces, a common approach for checking

collisions under uncertainties is to perform the exact collision checking with scaled objects that

enclose the potential object volumes (Van den Berg et al., 2012). Prior approaches generally enlarge

an object shape, which may correspond to a robot or an obstacle, to compute the space occupied by

8

the object for a given standard deviation. This may correspond to an ellipsoid (Bry and Roy, 2011)

or a sigma hull (Lee et al., 2013). These approaches provide an upper bound for the given confidence

level. However, the computed volume overestimates the probability and can be much bigger than the

actual volume corresponding to the confidence level, which can cause failure to find existing feasible

trajectories in motion planning. Many other approaches have been proposed to perform probabilistic

collision detection on point cloud data. Bae et al. (2009) presented a closed-form expression for

the positional uncertainty of point clouds. Pan et al. (2011) reformulate the probabilistic collision

detection problem as a classification problem and compute per point collision probability. However,

these approaches assume that the environment is static. Other techniques are based on broad phase

data structures that handle large point clouds for realtime collision detection (Pan et al., 2013).

1.5 Thesis Statement

Motion planning of high-DOF robots in dynamic and uncertain environments can be formulated

as a trajectory optimization problem, and the performance and reliability of the planning can be

improved using incremental optimization, parallel computation, and efficient cost approximation.

1.6 Main Results

The goal of our research is to develop motion planning algorithms for high-DOF robots in

dynamic environments. We present new techniques using incremental optimization, parallel compu-

tation, and efficient modeling of constraints to improve the performance and reliability of the motion

planning. First, we propose a motion planning algorithm to use an incremental optimization scheme

to compute collision-free and smooth trajectories in dynamic environments. We also discuss how var-

ious constraints of high-DOF robots are taken into account in our optimization formulation. Second,

we demonstrate how parallel algorithms can accelerate the performance of our optimization-based

algorithm, and our approach can be mapped to GPUs and utilize their massively parallel capabilities

to compute a feasible solution in almost real-time. Finally, we provide a method to deal with the

uncertainties of dynamic environments using an efficient collision probability approximation between

the robot and the obstacles. Moreover this formulation is used for obstacle motion prediction in our

optimization formulation.

9

1.6.1 Incremental Trajectory Optimization

In order to deal with unpredictable dynamic environments, we present a novel optimization-based

motion planning algorithm using replanning, which interleaves planning with execution. We compute

a conservative local bound on the trajectory of each obstacle over a short time and use the bound to

compute a collision-free trajectory for the robot using the geometric collision detection. We model

the collision constraint between the robot and moving obstacles as a cost function, and stochastically

optimize the trajectory with the trajectory smoothness cost. The trajectory is repeatedly updated

while it is executed in order to minimize the error between the estimation and the actual trajectory of

the moving obstacles. Our approach efficiently computes collision-free and also smooth trajectories.

We also provide a cost function corresponding to various task constraints for high-DOF robots

that are integrated into our optimization formulation. We demonstrate how our motion planning

approach can efficiently compute trajectories for various applications including Cartesian planning

of industrial manipulators, humanoid robot planning with dynamic stability constraints, high-DOF

multi-agent simulation, and virtual human motion synthesis in crowded scenes.

1.6.2 Efficient Motion Planning of High-DOF Robots

In order to handle dynamic and uncertain environment changes, it is important that the trajectory

optimization algorithm should be able to find a feasible solution in a rather short time window. In order

to accelerate the computation, we present a multi-level parallel trajectory optimization approach

which reduces the computation time. Our planning algorithm optimizes multiple trajectories in

parallel to explore a broader subset of the configuration space until they can find a feasible trajectory.

We also parallelize the collision and smoothness cost evaluations of multiple waypoints on each

trajectory, in order to accelerate the computation. We map our parallel trajectory optimization

algorithm to multi-core CPUs or many-core GPUs (graphics processing units) and utilize their

parallel capabilities. We provide proofs and analysis of our multiple trajectory optimization approach

which explores a broader subset of the configuration space and improves the performance and the

probability to find a feasible solution. This algorithm is used to motion planning of robots with

redundant DOFs (> 6) in real-time.

10

Second, we propose a roadmap precomputation approach to compute initial trajectories of

multiple trajectory optimization. We precompute a sparse roadmap using visibility tests, that takes

into account static obstacles in the environment as well as singular configurations. At runtime,

multiple non-redundant paths in the roadmap are used as initial trajectories for the runtime trajectory

optimization. The precomputation improves the multiple trajectory optimization in complex static

environments with dynamic obstacles.

Third, we present a novel hierarchical planning algorithm for high-DOF robots. The high-DOF

robot is treated as a tightly coupled system, and we incrementally use constrained coordination to

plan its motion. We decomposes the high-dimensional motion planning problem into a sequence

of low-dimensional sub-problems. Then we compute feasible trajectories using optimization-based

planning and trajectory perturbation for each sub-problem. The resulting algorithm computes feasible

trajectories of 20-40 DOF robots in almost real-time.

1.6.3 Efficient Approximation of Environment Uncertainties

In order to deal with the uncertainties of obstacle motions in dynamic environments, we first

present a novel approach to perform probabilistic collision detection between a robot and imperfect

obstacle representations in dynamic environments. Next, we present a prediction algorithm for

obstacle motion using a motion model that accounts for both spatial and temporal uncertainties.

We model these uncertainties using Gaussian distributions and use the Kalman filter to predict the

future obstacle motions. We present an efficient algorithm for approximating the collision probability

between the robot and the predicted future obstacle positions. Our approach computes more accurate

probabilities as compared to prior approaches that perform exact collision checking with enlarged

obstacle shapes. Moreover, we can guarantee that our computed probability is an upper bound on the

actual collision probability.

We also present a trajectory optimization algorithm for high-DOF robots in dynamic environ-

ments based on our probabilistic collision detection. Our planning algorithm computes efficient

trajectories of 7-DOF robots in real-time, which are collision-free with a high confidence level.

11

1.7 Organization

The rest of this thesis is organized as follows.

Chapter 2 presents a motion planning algorithm for dynamic environments using trajectory

optimization. We describe how our approach incrementally improves the robot trajectory using

trajectory optimization in a replanning framework. We provide the formulation of the obstacle cost

in the optimization which is used to avoid collision between the robot and dynamic obstacles in

the environment. We demonstrate the performance of our approach using 7-DOF PR-2 robot in a

simulated environment with moving obstacles.

Chapter 3 describes the hierarchical planning framework for high-DOF robots. We present our

multi-stage trajectory optimization algorithm based on hierarchical decomposition, and describe our

decomposition scheme and trajectory optimization approach for sub-problems using the constrained

coordination and the local refinement. We validate our hierarchical planning algorithm with 20- and

34-DOF robots in environments with moving obstacles.

Chapter 4 presents how to model constraints of high-DOF robots in trajectory optimization.

We provide the formulation of the stability and contact constraints in the trajectory optimization,

and describe our strategy for the efficient optimization. We demonstrate the performance of our

high-DOF robot planning approach, and applications that extend our approach to the multi-agent

simulation and virtual human motion synthesis scenarios.

Chapter 5 presents a GPU-based parallel multi-trajectory optimization. We describe how our

parallel algorithm is efficiently mapped to GPUs in order to utilize their parallel capabilities. We

prove that our multiple trajectory optimization approach accelerates the planning and improves the

probability to find a feasible solution, and analyze the improvements in environments with different

complexities. We demonstrate the real-time performance of our approach in a simulated environment

with human-like obstacles.

Chapter 6 presents how to efficiently compute task-constrained trajectories using roadmap

precomputation. We provide the formulation of task constraints, which includes the Cartesian end-

effector path and avoids singular configurations. We describe our roadmap precomputation approach

that can improve the performance of the runtime optimization, and how the non-redundant initial

trajectories for the multiple trajectory optimization can be computed from the roadmap. We validate

12

our approach using a 7-DOF KUKA robot arm in environments with moving obstacles captured

using depth sensors.

Chapter 7 describes our probabilistic collision detection algorithm for high-DOF robots under

environment uncertainties. We present a prediction algorithm for human obstacles using Kalman

filters. We provide the formulation of the collision probability approximation which is efficient and

provides an upper bound on the actual collision probability. We present a motion planning algorithm

for high-DOF robots based on our probabilistic collision detection. We highlight our approach

computes efficient and reliable trajectories in simulated environments as well as with a 7-DOF Fetch

robot arm in real-time.

Chapter 8 concludes with a summary of key contributions and future works.

13

CHAPTER 2

Incremental Trajectory Optimization

2.1 Introduction

Planning collision-free motion in a dynamic environment is an important problem in many

robotics applications, including autonomous navigation and task planning. There has been extensive

literature on motion planning and navigation of robots in dynamic environments (Fiorini and Shiller,

1998; Chakravarthy and Ghose, 1998). However, practical use of high-DOF robots has been limited

to static environments due to the high computational complexity.

Some recent work use replanning framework with random sampling-based planning (Kavraki

et al., 1996; Kuffner and LaValle, 2000) to efficiently compute partial or sub-optimal plans to avoid

delays in its handling of moving obstacles (Petti and Fraichard, 2005; Bekris and Kavraki, 2007;

Hauser, 2012). However, these sampling-based approaches tend to compute non-smooth jerky

motions, and it is difficult to incorporate dynamic constraints which can be required for high-DOF

robots.

2.1.1 Main Results

In order to overcome the limitations of prior approaches, we present an efficient replanning

framework based on optimization-based motion planning. Our work is based on recent developments

in optimization-based planning that can also handle dynamic constraints efficiently (Ratliff et al.,

2009; Kalakrishnan et al., 2011). In order to handle dynamic obstacles and perform realtime planning,

our approach uses an incremental approach. First, we estimate the trajectory of the moving obstacles

over a short time horizon using simple estimation techniques. Next, we compute a conservative

bound on the position of the moving obstacles based on the predicted motion. We then calculate

a trajectory connecting robot’s initial and goal configurations by solving an optimization problem

that avoids collisions with the obstacles and satisfies smoothness constraints. In order to make the

14

robot respond quickly to the dynamic environments, we interleave planning with task execution: that

is, instead of solving the optimization problem completely, we assign a time budget for planning

and interrupt the optimization solver when the time runs out. The computed trajectory may be

sub-optimal, which means that 1) its objective cost may not be minimized; 2) the collision-free

constraints or other additional constraints may not be completely satisfied. The robot then executes

over the short time interval based on this sub-optimal path computation. We repeat these steps until

the robot reaches the goal position. During each iterative step, we update the conservative bound

on the object’s position and also account for any new objects that may have entered the robot’s

workspace. The updated environment information is incorporated into the optimization formulation,

which uses the sub-optimal result from the last step as the initial solution and tries to improve it

incrementally within the given timing budget. We demonstrate the performance of our replanning

algorithm in the ROS simulation environment where the PR2 robot tries to perform manipulation

task with its 7-DOF robot arm.

2.1.2 Organization

The rest of this chapter is organized as follows. We survey related work on planning for dynamic

environments and replanning in Section 2.2. Section 2.3 introduces the notation used in the chapter

and gives an overview of our approach. We present our optimization-based replanning algorithm

(ITOMP) in Section 2.4. We highlight its performance on simulated dynamic environments in

Section 2.5. We direct the readers to the project webpage (http://gamma.cs.unc.edu/

ITOMP/) for the videos as well as the related publication (Park et al., 2012).

2.2 Related Work

In this section, we give a brief overview of prior work on motion planning in dynamic environ-

ments, realtime replanning and optimization-based planning.

2.2.1 Planning in Dynamic Environments

Most of the approaches for motion planning in dynamic environments assume that the trajectories

of moving objects are known a priori. Some of them model dynamic obstacles as static obstacles with

15

http://gamma.cs.unc.edu/ITOMP/
http://gamma.cs.unc.edu/ITOMP/

a short horizon and set a high cost around the obstacles (Likhachev and Ferguson, 2009). Another

common approach is to use velocity obstacles, which are used to compute appropriate velocities to

avoid collisions with dynamic obstacles (Fiorini and Shiller, 1998; Wilkie et al., 2009). However,

these methods cannot give any guarantees on the optimality of the resulting trajectory.

Some of the planning methods handle the continuous state space directly, e.g., RRT variants

have been proposed for planning in dynamic environments (Petti and Fraichard, 2005). For discrete

state spaces, efficient planning algorithms for dynamic environment include variants of A* algorithm,

which are based on classic heuristic searches (Phillips and Likhachev, 2011b,a) and roadmap-based

algorithms (van den Berg and Overmars, 2005).

Most planning algorithms for dynamic environments (van den Berg and Overmars, 2005; Phillips

and Likhachev, 2011b) assume that the inertial constraints, such as acceleration and torque limit,

are negligible for the robot. Such an assumption implies that the robot can stop and accelerate

instantaneously, which may not be the case for a physical robot.

2.2.2 Real-time Replanning

Since path planning can be computationally expensive, planning before execution can lead to

long delays during a robot’s movement. To handle such scenarios, real-time replanning interleaves

planning with execution so that the robot may decide to compute only partial or sub-optimal plans in

order to avoid delays in the movement. Real-time replanning methods differ in many aspects; one

key difference is the underlying planner used. Sample-based motion planning algorithms such as

RRT have been applied to real-time replanning for dynamic continuous systems (Hsu et al., 2002;

Hauser, 2012; Petti and Fraichard, 2005). These methods can handle high-dimensional configuration

spaces but usually cannot generate optimal solutions. A* variants such as D* (Koenig et al., 2003)

and anytime A* (Likhachev et al., 2005) can efficiently perform replanning on discrete state spaces

and provide optimal guarantees, but are mostly limited to low dimensional spaces. Most replanning

algorithms that interleave planning and execution use fixed time steps (Petti and Fraichard, 2005),

although some recent work (Hauser, 2012) computes the interleaving timing step in an adaptive

manner so as to maintain a balance between the safety, responsiveness, and completeness of the

overall system.

16

2.2.3 Optimization-based Planning Algorithms

Optimization techniques can be used to compute a robot trajectory that is optimal under some

specific metrics (e.g., smoothness or length) and that also satisfies various constraints (e.g., collision-

free and dynamics constraints). Some algorithms assume that a collision-free trajectory is given and it

can be refined or smoothened using optimization techniques. These include ’shortcut’ heuristic (Chen

and Hwang, 1998), elastic bands or elastic strips planning (Brock and Khatib, 2002; Quinlan and

Khatib, 1993). Other algorithms relax the assumptions about the initial path and may start with

an in-collision path. Some recent approaches, such as (Ratliff et al., 2009; Kalakrishnan et al.,

2011), directly encode the collision-free constraints using a global potential field and compute a

collision-free trajectory for robot execution. These methods typically represent various constraints

(smoothness, torque, etc.) as soft constraints in terms of additional penalty terms to the objective

function.

2.3 Overview

In this section, we introduce the notation used in the rest of the chapter and give an overview of

our approach.

We use the symbol C to represent the configuration space of a robot, including several C-obstacles

and the free space Cfree. Let the dimension of C be D. Each element in the configuration space, i.e.,

a configuration, is represented as a dim-D vector q.

For a single planning step, suppose there are Ns static obstacles and Nd dynamic obstacles

in the environment. The number of dynamic obstacles is changed between the steps as the sensor

introduces new obstacles and removes out of range obstacles and the information is kept for a

planning interval. We assume that these obstacles are all rigid bodies. For static obstacles, we denote

them as Osj , j = 1, ..., Ns. For dynamic obstacles, as their positions vary with time, we denote them

as Odj (t), j = 1, ..., Nd. Osj and Odj (t) correspond to the objects in the workspace, and we denote

their corresponding C-obstacles in the configuration space as COsj and COdj (t), respectively.

In the ideal case, we assume that we have complete knowledge about the motion and trajectory

of dynamic obstacles, i.e., we know the functions Odj (t) and COdj (t) exactly. However, in real-world

applications, we may only have local estimates of the future movement of the dynamic obstacles.

17

Moreover, the recent position and velocity of obstacles computed from the sensors may not be

accurate due to the sensing error. In order to guarantee safety of the planning trajectory, we compute

a conservative local bound on the trajectories of dynamic obstacles during planning. Given the time

instance tcur, the conservative bound for the moving object Odj at time t > tcur bounds the shape

corresponding to Odj (t), and is computed as:

O
d
j (t) = c(1 + es · t)Odj (t) (2.1)

where es is the maximum allowed sensing error. As the sensing error increases the conservative

bound becomes larger. When an obstacle has a constant velocity, it is guaranteed that the conservative

bound includes the obstacle during the time period corresponding to t > tcur with c = 1. However,

if an obstacle changes its velocity, we have to use a larger value of c in our conservative bound, and it

would be valid for a shorter time interval. We can define the conservative bound for a moving object

Odj during a given time interval I = [t0, t1] as follows:

Odj (I) =
⋃
t∈I
Odj (t), ∀t ∈ I, t > tcur. (2.2)

Similarly, we can define conservative bounds in the configuration space, which are denoted as COdj (t)

and COdj (I), respectively.

We treat motion planning in dynamic environments as an optimization problem in the con-

figuration space, i.e., we search for a smooth trajectory that minimizes the cost corresponding to

collisions with moving objects and some additional constraints, such as joint limit or acceleration

limit. Specifically, we consider trajectories corresponding to a fixed time duration T , discretized into

N waypoints equally spaced in time. In other words, the discretized trajectory is composed of N

configurations q1, ...,qN , where qi is a trajectory waypoint at time i−1
N−1T . We can also represent

the trajectory as a vector Q ∈ RD·N :

Q = [qT1 ,q
T
2 , ...,q

T
N]T . (2.3)

We assume that the start and goal configurations of the trajectory, i.e., qs and qg, are given, and are

fixed during optimization. Figure 2.1 illustrates the symbols used by our optimization-based planner.

18

Similarly to previous work (Ratliff et al., 2009; Kalakrishnan et al., 2011), our optimization

problem is formalized as:

min
q1,...,qN

N∑
i=1

c(qi) +
1

2
‖AQ‖2, (2.4)

where c(·) is an arbitrary state-dependent cost function, which can include obstacle costs for static

and dynamic objects, and additional constraints such as joint limit and torque limit. That is, the cost

function can be divided into three parts:

c(q) = cs(q) + cd(q) + co(q), (2.5)

where cs(·) is the obstacle cost for static objects, cd(·) is the obstacle cost for moving objects and

co(·) is the cost for additional constraints. As cd(·) changes along with time due to movement of

dynamic obstacles, we sometimes denote it as ctd(·) to show the dependency on time explicitly. A is

a matrix that is used to represent the smoothness costs. We choose A such that ‖AQ‖2 represents

the sum of squared accelerations along the trajectory. Specifically, A is of the form

A =



1 0 0 0 0 0

−2 1 0 · · · 0 0 0

1 −2 1 0 0 0

...
. . .

...

0 0 0 1 −2 1

0 0 0 · · · 0 1 −2

0 0 0 0 0 1



⊗ ID×D, (2.6)

where ⊗ denotes the Kronecker tensor product and ID×D is a square matrix of size D. It follows

that Q̈ = AQ, where Q̈ represents the second order derivative of the trajectory Q.

The solution to the optimization problem in Equation (2.4) corresponds to the optimal trajectory

for the robot:

Q∗ = {q∗1 = qs,q
∗
2, ...,q

∗
N−1,q

∗
N = qg}. (2.7)

However, notice that Q∗ is guaranteed to be collision-free with dynamic obstacles only during

a short time horizon. Because we only have a rough estimation based on the extrapolation of the

19

motion of the moving objects, rather than an exact model of the moving objects’ motion, the cost

function ctd(·) is only valid within a short time interval. In order to associate a period of validity

with the result of our optimization algorithm, we use Q∗I to represent the planning result that is valid

during the interval I = [t0, t1] ⊆ [0, T].

In order to improve robot’s responsiveness and safety, we interleave planning and execution

threads, in which the robot executes a partial or suboptimal trajectory (based on a high-rate feedback

controller) that is intermittently updated by the replanning thread (at a lower rate) without interrupting

the execution. We assign a time budget ∆k to the k-th step of replanning, which is also the maximum

allowed time for execution of the planning result from last step. We use a constant timing budget

∆t = ∆, but our approach can be easily extended to use a dynamic timing budget that is adaptive

to replanning performance (Hauser, 2012). The interleaving strategy is subject to the constraint

that the current trajectory being executed cannot be modified. Therefore, if the replanning result

is sent to the robot for execution at time t, it is allowed to run for time ∆, and no portion of the

computed trajectory before t+ ∆ may be modified. In other words, the planner should start planning

from t + ∆. Due to limited time budget, the planner may not be able to compute an optimal

solution of the optimization function shown in Equation (2.4) and the resulting trajectory may be,

and usually is, sub-optimal. Its cost may be greater than or equal to the cost of the optimal trajectory

Q∗. i.e., f(Q∗I) ≤ f(Q
∗
I), where we denote the resulting trajectory from the planner as Q

∗
I , and

f(Q) =
∑N

i=1 c(qi) + 1
2‖AQ‖2.

2.4 ITOMP : Incremental Trajectory Optimization for Motion Planning in Dynamic Envi-
ronments

In this section, we present our ITOMP algorithm for planning in dynamic environments, i.e.,

how to solve the optimization problem corresponding to Equation (2.4). We first introduce the cost

metric for static obstacles and dynamic obstacles. Next, we present our incremental optimization

algorithm.

20

dynamic obstacle COd

static obstacle COs

q1

qk

qN0

t
T

C-Space at different time

I
=

[t 0
, t 1

]

COd
([t0, t1])

Figure 2.1: Optimization-based motion planning for dynamic environments. We show how the
configuration space changes over time: each plane slice represents the configuration space at time t.
In the environment, there are two C-obstacles: the static obstacle COs and the dynamic obstacle COd.
We need to plan a trajectory to avoid these obstacles. The trajectory starts at time 0, stops at time T ,
and is represented by a set of way points q1, ..., qk, ..., qN . Supposing that the trajectory is to be
executed by the robot during time interval I = [t0, t1], we only need to consider the conservative
bound COd([t0, t1]) for the dynamic obstacle during the time interval. The C-obstacles shown in the
red color correspond to the obstacles at time t ∈ I .

21

2.4.1 Obstacle Costs

Similarly to prior work (Kalakrishnan et al., 2011; Ratliff et al., 2009), we model the cost of

static obstacles using signed Euclidean Distance Transform (EDT). We start with a boolean voxel

representation of the static environment, obtained either from a laser scanner or from a triangle mesh

model. Next, the signed EDT d(x) for a 3D point x is computed throughout the voxel map. This

provides information about the distance from x to the boundary of the closest static obstacle, which

is negative, zero or positive when x is inside, on the boundary or outside the obstacles, respectively.

One advantage of EDT is that it can encode the discretized information about penetration depth,

contact and proximity in a uniform manner and can make the optimization algorithm more robust.

After the signed EDT is computed, the planning algorithm can efficiently check for collisions by

table lookup in the voxel map. In order to compute the obstacle cost, we approximate the robot shape

B by a set of overlapping spheres b ∈ B. The static obstacle cost is as follows:

cs(qi) =
∑
b∈B

max(ε+ rb − d(xb), 0)‖ẋb‖, (2.8)

where rb is the radius of one sphere b, xb is the 3D point of sphere b computed from the kinematic

model of the robot in configuration qi, and ε is a small safety margin between robot and the obstacles.

The speed of sphere b, ‖ẋb‖, is multiplied to penalize the robot when it tries to traverse a high-cost

region quickly. The static obstacle cost is zero when all the sphere are at least ε distance away from

the closest obstacle.

EDT computation is efficient for static obstacles but cannot be applied to dynamic obstacles,

though a GPU-based parallel EDT computation algorithm could be used (Sud et al., 2004). The

reason is that the movement of dynamic obstacles implies that EDT needs to be recomputed during

each time step and it is hard to perform such computation in real-time on current CPUs. Instead, we

perform geometric collision detection between the robot and moving obstacles and use the collision

result to formalize the dynamic obstacle cost. Given a configuration qi on the trajectory and the

geometric representation of moving obstaclesOsj at the corresponding time (i.e., i−1
N−1T), the obstacle

22

Ready

Monitor

Finish

Goal Motion Planner

Robot
Controller

Sensor

Setting

Scheduling Module

Data

Figure 2.2: The overall pipeline of ITOMP: the scheduling module runs the main algorithm. It
gets input from the user and interleaves the planning and execution threads. The Motion Planner
module computes the trajectory for the robot and the Robot Controller module is used to execute the
trajectory. The planner also receives updated environment information frequently from sensors.

cost corresponding to configuration qi is given as:

cd(qi) =
∑
j

is collide(Osj(
i− 1

N − 1
T),B), (2.9)

where is collide(·, ·) returns one when there is a collision and zero otherwise. The is collide

function can be performed efficiently using object-space collision detection algorithms, such

as (Gottschalk et al., 1996). This obstacle cost function is only used during a short or local time

interval, i.e. from replanning’s start time t to its end time t + ∆, since the predicted positions of

dynamic obstacles can have high uncertainty during a long time horizon.

2.4.2 Dynamic Environment and Replanning

ITOMP makes no assumption about the global motion or trajectory of each moving obstacle.

Instead, we predict the future position and the velocity of moving obstacles based on their recent

positions, which are generated from noisy sensors. This prediction and maximum error bound

are used to compute a conservative bound on the moving obstacles during the local time interval.

Therefore, the planning result is guaranteed to be safe only during a short time period. In order to

offer quick response during unpredictable cases (e.g., the trajectory prediction about some of the

objects is not correct or new moving obstacles enter the robot’s workspace), the robot must sense

23

PLANNING PLANNING PLANNING PLANNING

EXECUTION

EXEC.

EXECUTION

EXECUTION

step 0 step 1 step 2 step n− 1 step n

t0 t1 t2 tn−1 tn tn+1t3

∆0 ∆1 ∆2 ∆n−1 ∆n tf

goal

time

predict model in [t1, t2] predict model in [t2, t3] predict model in [t3, t4] predict model in [tn,∞]

Figure 2.3: Interleaving of planning and execution. The planner starts at time t0. During the first
planning time budget [t0, t1], it plans a safe trajectory for the first execution interval [t1, t2], which is
also the next planning interval. In order to compute the safe trajectory, the planner needs to compute
a conservative bound for each moving obstacle during [t1, t2]. The planner is interrupted at time
t1 and the ITOMP scheduling module notifies the controller to start execution. Meanwhile, the
planner starts the planning computation for the next interval [t2, t3], after updating the bounds on the
trajectory of the moving obstacles. Such interleaving of planning and execution is repeated until the
robot reaches the goal position. In this example, n interleaving steps are used, and the time budget
allocated to each step is ∆i, which can be fixed or changed adaptively. Notice that if the robot is
currently is an open space, the planner may compute an optimal solution before the time budget runs
out (e.g., during [t2, t3]).

the environment frequently and the planner needs to be interrupted to update the description of the

environment.

In order to handle uncertainty from moving obstacles and provide high responsiveness, ITOMP

interleaves planning and execution of the robot. As illustrated in Figure 2.2, ITOMP consists of

several parts: the scheduling module, the motion planner, the robot controller and the data-collecting

sensor. The scheduling module gets the goal information as input and controls the other modules.

When a new goal position is set, the scheduling module sends a new trajectory computation request

to the motion planner. When the motion planner computes a new trajectory that is safe within a short

horizon, the scheduling module notifies the robot controller to execute the trajectory. Meanwhile, it

also sends a new request to the motion planner to compute a safe trajectory for the next execution

interval. The planner also needs to incorporate the updated environment description from the sensor

data. Since the motion planner runs in a separate thread, the scheduling module does not need to

wait for the planner to terminate. Instead, it checks whether the robot reaches the goal, updates the

dynamic environment description, and checks whether the planner has computed a new trajectory.

The details about the interleaved planning and execution method are shown in Figure 2.3. The

i-th time step of short-horizon planning has a time budget ∆i = ti+1 − ti, which is also the time

24

budget for the current step of execution. During the i-th time step, the planner tries to generate a

trajectory by solving the optimization problem in Equation 2.4. The trajectory should be valid during

the next step of execution, i.e., during the time interval [ti+1, ti+2].

Due to the limited time budget, the planner may only be able to compute a sub-optimal solution

before it is interrupted. The sub-optimal solution may not be collision-free or may violate some

other constraints during the next execution interval [ti+1, ti+2]. To handle such cases, we use two

techniques. First, we assign higher weights to the obstacle costs related to the trajectory waypoints

during the interval [ti+1, ti+2], which biases the optimization solver to reduce the cost during the

execution interval. If the optimization result is not valid during the execution interval, ITOMP’s

scheduling module chooses not to execute during the following execution interval. This approach

keeps the planner from violating hard constraints(e.g. torque, end effector orientation, etc.) and

allocates more time to the planner to improve the result. If the optimization result is valid but not

optimal, i.e., the cost is not minimized during time interval [ti+2,∞], the planner can also improve

it incrementally during following time intervals. The time budget for each step of short-horizon

planning can be changed adaptively according to the quality of the resulting trajectory, which tries to

balance the robot’s responsiveness and safety (Hauser, 2012).

Notice that usually the optimization can converge to local optima quickly because during the

i-th step planning we use the result of (i − 1)-th step as the initial value. On the other hand, the

optimization algorithm tends to compute a sub-optimal solution when the robot is near a region with

multiple minima in the configuration space or a narrow passage.

2.5 Results

In this section, we highlight the performance of our planning algorithm in dynamic environments.

We have implemented our algorithm in a simulator that uses the geometric and kinematic model

of Willow Garage’s PR2 robot in the ROS environment. All the experiments are performed on a

PC equipped with an Intel i7-2600 8-core CPU 3.4GHz with 8GB of memory. Our experiments

are based on the accuracy of the PR2 robot’s LIDAR sensor (i.e. 30mm), and the planning routines

obtain information about dynamic obstacles (positions and velocities) every 200 ms.

25

The first experiment is designed to to evaluate the performance of our planner with various levels

of sensor error. We use a simulation environment with moving obstacles as shown in Figure 2.4.

There are two static (green) and two moving (red) obstacles. We plan a trajectory for the right arm of

the PR2, which has 7 degrees of freedom, from a start configuration to a goal configuration. The

obstacles move along a pre-determined trajectory, which is unknown to the planner. The planner uses

replanning to compute a collision-free trajectory in this environment. During each planning step,

the planner computes the conservative bound for each moving obstacle using Equation 2.2 and uses

that bound to compute a trajectory. If the planner computes a collision-free trajectory for a given

time step, ITOMP allows the robot to execute the planned motion during the next time step. This

replanning step is repeated until the robot reaches the goal configuration. If the robot collides with

an obstacle during the execution, we count it as a failure. We measure the success rate of planning

and the cost of trajectory with different values of sensor noise. We repeat the test 10 times for each

value of the sensor noise, and result is shown in Table 2.1. The costs of trajectories are the average

costs corresponding to successful plans. It is shown that as the maximum sensor error increases,

the success rate of the planner decreases and the cost (as shown in Equation 2.5) of the computed

trajectory increases. For a successful planning instance with no collisions with the obstacles, this

cost corresponds to the smoothness cost (1
2‖AQ‖2 in Equation 2.4): i.e. trajectories associated with

higher cost values are less smooth than trajectories with lower costs.

For a succeeded planning result which has no collision, the cost mostly corresponds to the

smoothness cost, i.e., trajectories with high costs are less smooth than other trajectories which have

low costs. A large error value results in large conservative bounds for the moving obstacles, which

reduces the search space for the planner to explore, and thereby it is harder to compute a feasible or

optimal solution. However, we observe that at the maximum error of 30mm corresponding to PR2

robot sensors, our planner demonstrates good performance. We use this error value (30mm) in the

following experiments.

In the second experiment, we test the responsiveness of our parallel replanning algorithm in

dynamic environments with a high number of moving obstacles (Figure 2.5). In this environment,

there are several moving obstacles which have the same speed and direction and some of them

may collide with the arm of PR2 robot if the arm remains in the initial position. As in the first

experiment, the planner uses the replanning approach to reach the goal position and avoid collisions

26

Figure 2.4: The planning environment used in experiments related to sensor noise. The planner
computes a trajectory for the right arm of PR2 robot, moving it from the start configuration to the
goal configuration while avoiding both static and dynamic obstacles. In the figure, green spheres
correspond to static obstacles and the red spheres are dynamic obstacles.

sensor noise (mm)
of successful

plans
trajectory cost

0 10/10 1.373
30 10/10 1.400
60 10/10 1.417
120 10/10 1.480
180 4/10 1.541

Table 2.1: Results obtained from sensor noise experiments. Success rate of planning and trajectory
cost are measured with different sensor noise values. As the noise increases, the trajectory cost
increases.

27

(a) Planning environment with fast-moving obsta-
cles

(b) Planning environment with slow-moving ob-
stacles

Figure 2.5: Planning environments used to evaluate the performance of our planner with moving
obstacles with varying speeds. The planner uses the latest obstacle position and velocity to estimate
the local trajectory. (a)(b) The obstacles (corresponding to red spheres) in the environment have
varying (high or low) speeds. The size of each arrow corresponds to the magnitude of each’s speed.

obstacle speed(m/s)
of successful

plans
trajectory cost

1 10/10 0.694
2 10/10 0.748
3 8/10 0.714
4 3/10 0.816

Table 2.2: Results obtained from experiments corresponding to varying obstacle speeds. The higher
speed of obstacles lowers the success rate of planning and increases the trajectory cost.

with the moving obstacles. Figure 2.6 shows a planned trajectory and conservative bounds of moving

obstacles. In this environment, we vary the speed of the obstacles, and measure the resulting success

rates of the planning computations, as well as the cost functions corresponding to each computed

trajectory. The performance data for each scenario (run for 10 trials per scenario) is laid out in

Table 2.2. In this experiment, the planner successfully compute collision-free trajectory when the

obstacles are moving at a slow speed. However, if the speed of obstacles is too high for the planner

to avoid, the planner frequently fails to find a collision-free path. In each planning step, the planner

finds a trajectory which avoids collision with the conservative bounds of the obstacles for the next

time step (Equation 2.2). As the obstacle speed increases, the distance that an obstacle moves during

a given time step is larger, and the resulting conservative bound for the rapidly-moving object covers

a large area of the configuration space.

28

Figure 2.6: A collision-free trajectory and conservative bounds of moving obstacles. (a) There are
five moving obstacles. The arrows shows the direction of obstacles. (b)(c) During each step, the
planner computes conservative local bounds on obstacle trajectory for the given time step. (b)(c)(d)
The robot moves to the goal position while avoiding collisions with the obstacle local trajectory
computed using the bounds. (d) The robot reaches the goal position.

of obstacles
of successful

plans
trajectory cost

3 10/10 1.382
5 9/10 1.404
8 6/10 2.876

Table 2.3: Results obtained from the experiments with different number of moving obstacles. Success
rate of planning and trajectory cost are measured. The success rate of the planner decreases when
there are more obstacles in the environment.

We also measure the performance of ITOMP with sets of different number of moving obstacles

(Figure 2.7). We fix the size and speed of obstacles, varying only change the number of obstacles

in each scenario. In this environment, a higher number of obstacles result in reducing the size of

collision-free space. The results are shown in Table 2.3. We observe that that a higher number of

obstacles result in lower planning success rates and higher-cost trajectories.

2.6 Conclusion

We present ITOMP, an optimization-based algorithm for motion planning in dynamic environ-

ments. ITOMP does not require a priori knowledge about global movement of moving obstacles

29

(a) Planning environment with 3 moving obstacles (b) Planning environment with 8 moving obstacles

Figure 2.7: Planning environments used to evaluate the performance of our planner with different
numbers of moving obstacles.

and tries to compute a trajectory that is collision-free and also satisfies smoothness and dynamics

constraints. In order to respond to unpredicted cases in dynamic scenes, ITOMP interleaves planning

optimization and task execution. This strategy can improve the responsiveness and safety of the robot.

We highlight the performance of the planning algorithm at guiding a model 7-DOF PR2 robot arm

through various environments containing dynamic obstacles. We measured the algorithm’s changing

performance at differing levels of sensing error; in environments with dynamic obstacles moving at

varying speeds; and in environments with varying numbers of dynamic obstacles.

In the following chapters, we present techniques to improve the responsiveness and performance

of the planning approach proposed in this chapter using hierarchical planning (Chapter 3), GPU

parallel computation (Chapter 5), and roadmap precomputation (Chapter 6). We also extend the

proposed ITOMP algorithm to different applications with additional constraints, such as, human-

like robot planning (Chapter 4), Cartesian trajectory planning (Chapter 6), and planning under

environment uncertainties (Chapter 7).

30

CHAPTER 3

Hierarchical Trajectory Optimization of High-DOF Robots

3.1 Introduction

In this chapter, we focus on the problem of motion planning for robots with high degrees-

of-freedom (DOF), which include articulated robots with tens of joints. Many applications use

articulated models for task planning, virtual prototyping or computer animation; since the models

must perform different tasks and model various motions, they are represented using high-DOF

articulated models.

Optimization-based approaches pose the motion planning problem in a continuous setting and

use optimization techniques to compute the trajectory (Ratliff et al., 2009; Kalakrishnan et al., 2011).

Optimization-based approaches generate motion trajectories that can satisfy various constraints

simultaneously (such as collision avoidance, smoothness, and dynamics constraints). Such trajectories

are computed by posing the constraints in terms of appropriate cost functions. However, even the

state-of-art applications of optimization-based motion planning for high-DOF robots (El Khoury

et al., 2013; Lengagne et al., 2013) require a large amount of computation time, which makes them

unsuitable for dynamic environments. Moreover, the convergence rate of the underlying numerical

optimization techniques tends to decrease as the number of DOF increases.

3.1.1 Main Results

In order to overcome these challenges, we present a hierarchical planner which extends the

ITOMP planner presented in Chapter 2. Our formulation is based on the assumption that the optimal

path lies in a lower-dimensional subspace, though the robot itself corresponds to a tightly coupled

high-DOF system (Vernaza and Lee, 2011). Our approach first decomposes a high-DOF robot into a

hierarchical tree structure where each node represents one component of the robot (i.e., a set of joints

and the related links). Based on this decomposition, we compute a trajectory for each component

31

using an efficient replanning framework based on optimization techniques. We incrementally compute

the trajectory corresponding to each of the nodes that represents a sub-tree of the hierarchy. We

demonstrate the performance of our replanning algorithm in simulation environments, where 20-40

DOF robots are used to perform manipulation tasks.

3.1.2 Organization

The rest of this chapter is organized as follows. In Section 3.2, we survey related work in

hierarchical motion planning. We give an overview of our hierarchical motion planning approach in

Section 3.3. We present our algorithm for high-DOF robots in Section 3.4 and analyze its planning

performance in Section 3.5. We highlight the performance of our algorithm in dynamic environments

in Section 3.6. We direct the readers to the project webpage (http://gamma.cs.unc.edu/

ITOMP/) for the videos as well as the related publication (Park et al., 2014a).

3.2 Related Work

In this section, we give a brief overview of prior work on hierarchical motion planning. The

hierarchical mechanism decomposes a higher-dimensional planning problem into several lower-

dimensional planning problems. This decomposition technique can substantially reduce the com-

plexity of the planning problem (Brock and Kavraki, 2001), and the incompleteness of the resulting

planning algorithms can be improved by greedy techniques based on back-tracing (Alami et al., 1995).

Hierarchical mechanisms have been used to improve performance for articulated robots (Brock and

Kavraki, 2001) or for multi-robot systems (Isto and Saha, 2006). Different coordination schemes (Erd-

mann and Lozano-Pérez, 1986; Saha and Isto, 2008) have been proposed to guarantee that the

decomposed planning finds solutions for the robots’ whole bodies. Simple decomposition into lower-

and upper-body has been used to plan the motion for human-like robots (Arechavaleta et al., 2004); a

more detailed decomposition has been used to accelerate whole-body planning for high-DOF robots

using sampling-based planners (Zhang et al., 2009; Pan et al., 2010b).

32

http://gamma.cs.unc.edu/ITOMP/
http://gamma.cs.unc.edu/ITOMP/

3.3 Overview

In this section, we introduce the notation used in the rest of the chapter and give an overview of

our approach.

3.3.1 Assumptions and Notations

We use the symbol C to represent the configuration space of a robot, which includes C-obstacles

and the free space Cfree. Let the dimension of C be D. Each element in the configuration space, i.e.,

a configuration, is represented as a dim-D vector q.

A configuration of a robot q is determined by all the actuated joints of the robot, as well as by

the position and orientation of the robot in the workspace. The high-DOF robot is hierarchically

decomposed into n different components {A1, A2, ..., An}. Accordingly, the configuration q can

also be represented as the concatenation of the configuration qi for each body component: i.e.,

q = [(q1)T , (q2)T , ..., (qn)T]T , where qi corresponds to the configuration of Ai. Moreover, qi is

determined by all Ai’s actuated joints, including the joint through which Ai is connected to its parent

component. q1 includes the position and orientation of A1 component, which has the base link of

the robot. We denote the trajectory with a fixed time duration T for a robot as M(t), which is a

discretized trajectory composed of N + 2 waypoint configurations: M(t) = {qI ,q1, ...,qN ,qG},

where qk is a trajectory waypoint at time k
N+1T . qI and qG represent the given initial and goal

configurations, respectively. The trajectory for each component Ai is represented as M i(t), which

also contains N + 2 waypoints, i.e., M i(t) = {qiI ,qi1, ...,qiN ,qiG}. We use symbol q̄ik to represent

the k-th waypoint corresponding to component Ai and all its previous components, i.e., q̄ik =

[(q1
k)
T , ..., (qi−1

k)T , (qik)
T]T . Similarly, M̄ i(t) corresponds to the trajectory of q̄i.

The optimization problem of ITOMP planning algorithm is formalized as :

min
q1,...,qN

N∑
k=1

(cs(qk) + cd(qk)) +
1

2
‖AQ‖2, (3.1)

where cs(·) is the obstacle cost for static objects, cd(·) is the obstacle cost for moving objects.

Q is the serialized vector of a trajectory M(t), which is defined as [qTI ,q
T
1 , ...,q

T
N ,q

T
G]T . A

is a matrix that is used to represent the smoothness cost, i.e., Q̈ = AQ. The solution to the

33

A3: 3 DOF

A2: 3 DOF

A5: 7 DOFA4: 7 DOF

A1: 14 DOF

Lower body

Torso

HeadLArm RArm

A3 A5A4

A2

A1

(a) A human-like model (34
DOFs)

Lower body

Torso

Head LArm RArm

A3 A5 A4

A2

A1

A3: 2 DOF

A2: 2 DOF

A5: 9 DOF A4: 9 DOF

A1: 12 DOF

(b) HRP-4 (34 DOFs)

Base

Torso

HeadLArm RArm

A3 A5A4

A2

A1

A3: 2 DOF

A2: 1 DOF

A5: 7 DOF

A4: 7 DOF

A1: 3 DOF

(c) PR-2 (20 DOFs)

Figure 3.1: An example of hierarchical decomposition for various robots. These hierarchical
decompositions are used to divide a high-dimensional problem into a sequence of low-dimensional
problems.

optimization problem in Equation (3.1) corresponds to the optimal trajectory for the robot Q∗ =

{qTI , (q∗1)T , ..., (q∗N)T ,qTG}T .

3.3.2 Hierarchical Planning

The optimal path tends to lie in a subspace which has a larger cost variation. For high-DOF

robots shown in Fig. 3.1, we determine which degree-of-freedom has the largest impact on the

cost function when changed. Changes in some components influence the configuration of a large

portion of the robot; for example, changing the pose of the legs affects the configuration of the whole

upper body. Based on this observation, we decompose the robot body into a hierarchy of planning

components. Fig. 3.1 shows a decomposition scheme for different robots. The high-DOF system

is divided into several parts: a lower body (including legs and pelvis for human-like model, or a

3-DOF base for the PR2 robot), a torso, a head, a left arm and a right arm. For the same levels

in the hierarchy, the physical volumes of the components are used to determine the order of the

components.

We can incrementally plan the trajectory of a high-DOF robot based on this decomposition.

First, we compute a trajectory M1(t) for the root component A1. Then we fix the trajectory for A1

and compute a trajectory for its child component A2 by considering A1 as a moving obstacle in

the optimization formulation for A2. However, there may be no feasible trajectory for A2 because

A1 blocks it as an obstacle. In such cases, we first slightly modify the trajectory of A1 based on

workspace heuristics and search whether it is possible to compute a collision-free trajectory for A2.

If such local trajectory refinement does not result in a feasible solution, we perform back-tracing: we

34

merge A1 and A2 into a larger component A1,2 and then try to compute a collision-free path for this

larger component using optimization-based planning. After the trajectory for A2 is computed, we

extend the approach in an incremental manner to compute a collision-free path for A3, now treating

A1 and A2 as moving obstacles. This process is repeated for all n components, and a trajectory for

the overall robot is computed.

The hierarchical planner is implemented by decomposing the equation (3.1) into n optimization

problems, one for each component Ai:

min
qi
1,...,q

i
N

N∑
k=1

(cs(q̄
i
k) + cd(q̄

i
k)) +

1

2
‖ĀiQ̄i‖2, (3.2)

where we compute the optimal waypoints qik for components Ai while fixing the waypoints qpk for all

the previous components A1≤p≤i−1. Āi is the smoothness matrix; it is similar to A in Equation (3.1),

but it is resized to the length of q̄ik. Q̄i is defined as Q̄i = [(q̄iI)
T , (q̄i1)T , ..., (q̄iN)T , (q̄iG)T]T .

3.4 Hierarchical Optimization-based Planning

In this section, we present our hierarchical optimization-based planning algorithm. We first

introduce our multi-stage trajectory optimization method. Next, we present the local refinement

method, which uses the incremental coordination algorithm.

3.4.1 Multi-stage Planning using Constrained Coordination

Our algorithm traverses the entire hierarchy of the robot {A1, A2, ..., An} sequentially in a

breadth-first order using n planning stages. Stage i computes the trajectory for Ai and improves the

trajectories of {A1, ..., Ai−1}, which were computed during the prior stages. We use the incremental

coordination approach (Isto and Saha, 2006; Zhang et al., 2009) in our planning algorithm. During

each planning stage, the algorithm computes the trajectory for a subset of robot components in order

to compute the whole-body motion trajectory incrementally. According to our notation, we denote

{M1(t),M2(t), ...M i(t)} as M̄ i(t). Given the input M̄ i−1(t), the planning algorithm during stage

i computes M̄ i(t).

35

A1

q1I q1G

M 1(t)
A2

(a) Planning of trajectory M1(t) for A1 in stage
1.

M 2(t)
A2

q2I q2G

M 1(t)A1

(b) Planning of trajectory M2(t) for A2 in stage
2.

Figure 3.2: Incremental trajectory planning. The robot model consists of {A1 (3 DOFs), A2 (1
DOF)}. (a) During stage 1, the algorithm computes trajectoryM1(t) forA1 while avoiding collisions
between A1 and the obstacle shown in the black region. (b) During stage 2 of the planning algorithm,
the trajectory M2(t) for A2 is computed while A1 is assumed to move along the trajectory M1(t).

The trajectory for a new component is computed by treating the trajectories during the previous

stages as constraints. In Fig. 3.2, the 2D robot has two components, A1 and A2. Each component has

only one link. A1 has 3 DOFs corresponding to the position and orientation of the robot in 2D space.

A2 has 1 DOF corresponding to the angle that connects A1 and A2. Therefore, the configuration

vectors q1
k and q2

k have dimensions 3 and 1, respectively. The trajectory M(t) is a sequence of

N configurations at discretized time steps. During planning stage 1, the algorithm computes the

trajectory M1 for A1, which connects the initial configuration q1
I of A1 with its goal configuration

q1
G. During planning stage 2, the trajectory M2(t) for A2 is computed, while A1 is assumed to move

along the trajectory M1(t).

3.4.2 Trajectory Optimization with Local Refinement

In this section we present the local refinement scheme used as part of trajectory optimization.

In our incremental planning algorithm, the trajectory of a robot component is computed using an

optimization formulation such that the trajectories of prior components are constrained to lie on

the paths computed during previous stages. However, the optimization-based planner may fail to

find a solution that satisfies all the constraints. Fig. 3.3(a) shows such an example for a simple

2D robot, which consists of two components, A1 and A2. The trajectory M1(t) for A1, which is

computed during planning stage 1, is collision-free. However, when computing a solution for A2,

36

A1

q1I q1G

A2

M 1(t)

M 2(t)
q2I q2

qk

(a) There is no collision-free configuration q2
k for

A2 at time k if A1 moves along the trajectory
M1(t), which is computed in the prior stages.

A2

M 1(t)

M 2(t)
j1

A1

(b) With local refinement, the planner finds a fea-
sible solution. The trajectory M1(t) is updated to
find a feasible trajectory M2(t).

Figure 3.3: Planning with local refinement. By adjusting the configuration of the joint j1 connecting
A1 and A2, we can move A1 away from the obstacle and leave more space for A2 to pass through.
As a result, the planner can compute a collision-free solution M̄2(t) = {M1(t),M2(t)}.

A1 is constrained to move along M1(t). This may result in no feasible solution for A2 that avoids

collisions with the environment. The back-tracing approach, which replans the trajectory with merged

component A1,2, can find a solution in such a case, but can be expensive for higher-dimensional

problems. As shown in Fig. 3.3(b), we refine the trajectory M1(t) by adjusting the configuration of

the joint connecting A1 and A2, then move A1 away from the obstacles by a displacement r. For

the k-th waypoint, the vector rk represents the position displacement of the first joint of the current

component (component i for stage i), so the joint position is changed by rk and the refined trajectory

for A1 is computed using inverse kinematics.

The trajectory optimization algorithm (Algorithm 1) uses a stochastic approach (Kalakrishnan

et al., 2011), which computes the gradient of the cost for a trajectory waypoint by evaluating

the costs of randomly generated configuration points. Instead of optimizing qi and r separately,

we define a new term pi (the concatenation of qi and r) and we optimize M ′ (the trajectory of

N waypoints pi). At stage i, M ′ is initialized as a line connecting piI = [(qiI)
T , (0, 0, 0)]T and

piG = [(qiG)T , (0, 0, 0)]T , in order to ensure that the resulting trajectoryM will connect the initial and

the goal configurations. For the given planning interval ∆ti the algorithm explores the configuration

space of pi to improve the trajectory M ′ using Equation (3.2). During each iteration, the algorithm

computes q̄i−1 from the value of r. This new q̄i−1
k value is used for trajectory cost computation.

When the planning time interval ends, M ′ is decomposed to two trajectories: M i and the trajectory

for r. The refined trajectories of {A1, ..., An−1} are evaluated from the trajectory of r.

37

Algorithm 1 Hierarchical Trajectory Optimization in Planning Stage i

Input: Robot components {A1, ...Ai}
Trajectory M̄ i−1(t) which is computed in stage i− 1
Start and goal configurations qiI and qiG for Ai

Planning time limit ∆ti
Output: Trajectory M̄ i

i (t)
1: Generate an initial trajectory M ′(t) which connects (piI) = [(qiI)

T , (0, 0, 0)]T and (piG) =
[(qiG)T , (0, 0, 0)]T .

2: tstart ← getT ime()
3: while getT ime()− tstart < ∆ti do
4: Evaluate q̄i−1 from M ′(t)
5: Compute the trajectory cost of M ′(t)
6: Compute the gradient of the cost
7: Update trajectory M ′(t) using the gradient
8: end while
9: Extract M i from M ′(t)

10: Compute M̄ i−1 from M ′(t)

3.5 Performance Analysis

In this section, we show that hierarchical decomposition can improve the performance of the

ITOMP algorithm, which solves an optimization problem expressed in the form of Equation (3.1)

using steepest descent methods. The convergence rate of steepest descent is related to the covariance

matrix of the cost field based on the following theorem:

Theorem 3.1. (Boyd and Vandenberghe, 2004) Suppose we have a D-dimensional cost field f(x),

x ∈ RD. For steepest descent search on the cost field starting with point x0, the error between k-th

and (k + 1)-th step is:
f(xk+1)− f(x∗)

f(xk)− f(x∗)
≤ c = 1− m

M
, (3.3)

where 0 < m ≤ λD ≤ λ1 ≤ M . λ1 and λD are the minimum and maximum eigenvalues of the

cost field’s covariance matrix∇2f(x), respectively. x∗ is the optimal solution point corresponding

to the minimum cost of f(x). In particular, we must have f(xk) − f(x∗) ≤ ε after at most

log((f(x0)−f(x∗)))/ε)
log(1/c) iterations.

In Equation (3.1), the dimension of the cost field is D′ = N · D, where N is the number of

waypoints and D corresponds to the overall DOF. The time complexity to evaluate the cost for

each point in the cost field is a constant proportional to the number of dynamic obstacles in the

38

environment. According to the above theorem, we need log(∆/ε)
log(1/c) steps to converge to a local minima,

where ∆ is the error in the initial guess. As a result, the overall complexity for an optimization-based

planner is

O(
log(∆/ε)

log(1/c)
Nd) = O(1/ log(1/c)). (3.4)

If c is very small, then we can approximate 1/ log(1/c) ≈ M
m , i.e., the complexity is decided

by the ratio between the maximum and minimum variations along different directions of the cost

field. Equation (3.4) implies that the optimization-based planners are most efficient on cost fields

with similar variations along different directions; in other circumstances, the optimization procedure

may instead follow a zigzagging curve and perform more iterations to converge to a local minima.

Even in a 2D space, if an eigenvalue of ∇2f(x) is very small, the direction of the corresponding

eigenvector has a weak correlation with the cost, in which case many areas of the cost field have

local gradients which do not contribute toward the global solution. In this case, because of the

large differences between the direction of the local gradient and the direction which leads toward

the global solution, the optimization procedure may require many steps. On the other hand, in a

high-dimensional space (say D-dimensions), if all D eigenvectors are related to the cost, the gradient

descent methods can find a correct direction and can converge rapidly. Usually the time complexity of

optimization-based planning algorithms grows as the DOFs of the robot increase (Basu et al., 2000),

because the configuration space of a high-DOF robot is more complex in the number of components

and in the topology as the DOFs increase. This also increases the variance in eigenvalues of the cost

field’s covariance matrix; the eigenvectors therefore are only weakly correlated with cost in the cost

fields of high-DOF robots.

We now use Equation (3.4) to explain the benefit of hierarchical decomposition. Suppose the

eigenvalues for the cost field’s covariance matrix are λD ≤ λD−1 ≤ ... ≤ λ2 ≤ λ1, and that we

decompose the robot into two components A1 and A2. First we assume that no back-tracing occurs,

i.e., the trajectory for A1 does not block the collision-free motion for A2. Then the complexity

for the decomposed planner is O(λ1λm + λm+1

λD
), which can be much smaller than the complexity

of the original planner O(λ1λD), if λD � λm+1 ≈ λm ≤ λ1. When back-tracing does occur, the

decomposed planner may be less efficient than the original planner, as we are trying to compute

39

the motion trajectory of a tightly-coupled system. However, such cases are not common in practice

(also refer to Table 3.2 in Section 3.6). The components follow the hierarchy and volume order:

components which influence the configuration of a large portion of the body are planned first, then

components which influence smaller portions. A1 affects the motion of a larger portion of the body

than A2, and therefore usually dominates the variation in the cost function. Let’s take collision cost,

which is measured by the intersected volume between the robot and the environment, as an example.

Suppose A1’s cost value is a random variable C1 within the range [0, Cmax1] and A2’s cost value

is a random variable C2 within the range [0, Cmax2], where 0 means collision-free, and Cmax1 and

Cmax2 mean that the components are completely inside the obstacles. As A1 is larger than A2, we

have Cmax1 > Cmax2 . We also assume that C1 and C2 are symmetric random unimodal variables.

Moreover, we have the following properties for the symmetric unimodal random variable:

Theorem 3.2. For a symmetric unimodal random variable X defined on an interval [a, b], there is

(d− c)2 Pr[X 6∈ [c, d]]

4
≤ Var[X] ≤ (b− a)2

12
,

where [c, d] ⊆ [a, b] is a subset of [a, b].

As a result, if Cmax1 is larger enough than Cmax2 , we have

Var[C1] ≥ (Cmax1)2 Pr[X 6∈ [
3Cmax

1
4 ,

Cmax
1
4]]

16
≥ (Cmax2)2

12
≥ Var[C2];

that is, the variance in A1’s cost is larger than A2’s cost. In practice, the conclusion usually holds

even when the assumption in Theorem 2 does not hold.

In other words, the decomposed planner first searches in the subspace with the larger cost

variation and then in the subspace with the smaller variation. According to Vernaza and Lee (2011),

the optimal path usually lies in the subspace with the larger cost variation; therefore A1’s trajectory is

usually optimal even though we do not consider A2 during its computation. As a result, it is unlikely

to block A2, and the decomposed planner tends to be faster than the original planner.

40

Non-hierarchical Planning Hierarchical Planning

Iterations
Planning
Time(s)

Cost Success
Rate

Iterations
Planning
Time(s)

Cost Success
Rate

Mean (Std. Dev.) Mean (Std. Dev.)

Human
-like

Robot

Static
Environment 1

418.25 (344.90) 20.93 (16.24) 0.032 (0.011) 100/100 84.74 (18.00) 2.81 (0.50) 0.036 (0.000) 100/100

Static
Environment 2

461.26 (539.66) 30.78 (35.63) 0.017 (0.000) 100/100 54.02 (15.62) 2.21 (0.53) 0.025 (0.000) 100/100

Dynamic
Environment 1

13.99 (2.30) 1.71 (0.17) 0.058 (0.000) 89/100 18.89 (3.35) 1.33 (0.12) 0.101 (0.000) 95/100

Dynamic
Environment 2

20.15 (3.53) 2.80 (0.17) 0.163 (0.010) 76/100 26.48 (5.52) 1.79 (0.40) 0.201 (0.035) 93/100

PR2

Static
Environment 1

102.06 (33.11) 8.20 (2.35) 0.033 (0.000) 100/100 90.75 (22.53) 5.11 (1.09) 0.032 (0.000) 100/100

Static
Environment 2

167.26 (239.65) 16.00 (22.42) 0.033 (0.000) 100/100 104.13 (73.08) 6.09 (4.11) 0.032 (0.000) 100/100

Dynamic
Environment 1

8.81 (3.90) 1.54 (0.42) 0.051 (0.000) 96/100 16.51 (12.12) 1.66 (0.66) 0.051 (0.004) 99/100

Dynamic
Environment 2

14.16 (3.67) 2.42 (0.51) 0.095 (0.002) 94/100 19.95 (6.40) 2.32 (0.49) 0.106 (0.006) 100/100

Table 3.1: The performance of our hierarchical planning algorithm is compared with the non-
hierarchical ITOMP algorithm. We compute collision-free trajectories in static and dynamic environ-
ments. We measure the number of iterations used in the numerical optimization procedure; planning
time to find the first collision-free solution; trajectory cost based on Equation (3.1); and the success
rate of our planner, i.e., the total number of trials that found a collision-free trajectory. In the static
scenes, our hierarchical planner results in up to 14X speedup over the non-hierarchical algorithm. The
trajectory costs for the hierarchical and non-hierarchical algorithms are small (less than 0.1), which
means the quality of the solution with the hierarchical planner is close to the trajectory computed by
the non-hierarchical planner.

3.6 Results

In this section, we highlight the performance of our hierarchical planning algorithm in static

and dynamic environments. We have implemented our algorithm in the ROS simulator with both

a human-like robot model and Willow Garage’s PR2 robot model. We decompose the models into

five components each (shown in Fig. 3.1). For the PR2 robot, we compute a trajectory of 20 DOFs,

which are shown in Fig. 3.1(c). The human-like model has 34 DOFs, which are shown in Fig. 3.1(a).

In this chapter, we are focusing on efficient planning for high-DOF robots. The walking motions

of human-like robots can be efficiently computed using motion generators (Huang et al., 2001;

Kajita et al., 2003). Therefore, we compute a trajectory for the 3 DOFs lower body component

using our motion planning algorithm; after that we use the motion generator to generate the walking

motion, which is constrained by the trajectory of A1. This reduces the DOFs for motion planning

computations from 34 to 23. The constraints for legged robots, such as stability constraints or contact

generation constraints, are discussed in Section 3.7.

41

We highlight all the results of motion planning in different environments in Table 3.1. We

compute the trajectories for the PR2 and the human-like robot in two static environments and two

environments with dynamic obstacles. We compute the motion trajectory using our hierarchical

planning algorithm and compare its performance with the motion trajectory computed using the

non-hierarchical ITOMP algorithm. We measure the number of iterations in the optimization routines

and the amount of planning time required to find the first collision-free solution. We also evaluate

the quality of the computed trajectory by evaluating the cost functions and the success rate of the

optimization-based planner. The results are shown in Table 3.1 and correspond to the means and

standard deviations of 100 trials for each scenario. In most cases, hierarchical planning outperforms

non-hierarchical planning. The only exception is the PR2 in dynamic environment benchmark in

Table 3.1, where the planning time’s mean and variance are larger for hierarchical planning than

for non-hierarchical planning. This is because hierarchical planning has a higher success rate; non-

hierarchical planning has many failed planning queries, whose time consumptions are not counted in

the planning time statistics.

Static Environment 1 Dynamic Environment 2

Stage Iterations
Planning

Time
Cost

Back
-tracing

Iterations
Planning

Time
Cost

Back
-tracing

Human
-like

Robot

A1 (3 DOFs) 7.33 0.25 0.009 0/100 6.98 0.37 0.051 0/100
A2 (3 DOFs) 15.18 0.53 0.009 0/100 7.12 0.39 0.125 2/100
A3 (3 DOFs) 24.10 0.65 0.000 0/100 1.52 0.07 0.000 0/100
A4 (7 DOFs) 18.81 0.69 0.012 0/100 4.26 0.39 0.021 1/100
A5 (7 DOFs) 19.32 0.69 0.005 0/100 6.60 0.57 0.004 2/100

Overall Planning 84.74 2.81 0.036 0/100 26.48 1.79 0.201 5/100

PR2

A1 (3 DOFs) 43.32 32.31 0.019 0/100 9.70 0.88 0.093 0/100
A2 (1 DOFs) 1.00 0.12 0.000 0/100 1.00 0.01 0.000 0/100
A3 (2 DOFs) 1.00 0.12 0.000 0/100 1.00 0.01 0.000 0/100
A4 (7 DOFs) 9.26 0.60 0.008 0/100 3.21 0.50 0.011 1/100
A5 (7 DOFs) 36.17 1.96 0.005 1/100 5.04 0.75 0.002 1/100

Overall Planning 90.75 5.11 0.032 1/100 19.95 2.32 0.106 2/100

Table 3.2: We highlight the runtime performance of our planning algorithm in static and dynamic
environments. We show the number of iterations; the planning time to find the first collision-free
solution; the trajectory costs; and the number of trials in which back-tracings occur for each stage
of our hierarchical planning algorithm, i.e., when a stage fails to find a collision-free trajectory for
the corresponding component, the planner merges the component and its parent, then computes the
trajectory of the merged component.

Fig. 3.4(a) and 3.4(b) show our first benchmark for a static environment. The environment

has several static obstacles that prevent the initial trajectory from being collision-free; the robot

42

(a) The planned trajectory for PR2 robot. (b) The planned trajectory for a human-like model.

(c) The planned trajectory for PR2 robot in dynamic
environment 1.

(d) The planned trajectory for a human-like model in
dynamic environment 2.

Figure 3.4: (a)(b) Hierarchical planning of a PR2 robot and a human-like robot in a static environment.
The planned trajectory for different components is marked using different colors. (c)(d) Planning
in dynamic environments. With the static obstacles, we also use human-like obstacles (shown in
cyan) that follow a path generated from motion-capture data. The robot does not have any a priori
information about the trajectory of this obstacle, which is designed to interrupt the robot’s trajectory.

must bend its two arms and its head to pass through a collision-free space, which is surrounded

by obstacles. Using hierarchical planning, we incrementally compute the trajectory of the robot

from components A1 to A5, with no planning time limit. In Fig. 3.4, the trajectories of different

components have different colors. In Table 3.2, we show the timings and the trajectory costs of

each stage of hierarchical planning. Since the volume of the base of PR2 is much larger than the

lower body of the human-like robot, the collision-free space is very tight for PR2. As a result, most

of the planning time in this scenario is spent in the stage corresponding to A1. Because PR2 is

shorter than the human-like robot, the overhead obstacle has no effect on PR2; the components A2

and A3 are therefore collision-free on the computed trajectory of A1, and the components require

only a single iteration of the optimization algorithm for all trials. In the two other stages, which

43

compute trajectories for the arm components A4 and A5, the planner runs tens of iterations to

improve the trajectory to ensure that A4 and A5 have no collisions. In the decomposition of the

human-like model, each of the stages takes a similar amount of time and no one stage dominates

the overall computation. This demonstrates that the decomposition used for the human-like robot

divides the high-DOF planning problem into almost equal-sized low-dimensional sub-problems,

which results in an overall performance improvement as compared to high-DOF planning. We

observe that the speedup due to hierarchical planning is about 7X for the human-like model, with its

equally decomposed sub-problems; it is about 1.6X for the PR2 model, which has a larger variance

in the complexities of its sub-problems. In both cases, the trajectory cost corresponding to the

optimization function with our hierarchical algorithm is close to the trajectory cost calculated by the

non-hierarchical algorithm. This implies that the trajectories computed by both these algorithms are

quite similar. In the second static environment benchmark, we use the same number of obstacles but

the collision-free space is narrower than the first benchmark. This makes the motion planning more

challenging, but still shows improvement using hierarchical planning: we observed 14X speedup for

the human-like model and 2.6X for the PR2 model.

We also evaluated the performance of our algorithm in two dynamic scenes (Fig. 3.4(c) and

Fig. 3.4(d)). We use a human-like obstacle that follows a path from motion-captured data, though

the robots have no information about the global path of the obstacle. The path of the obstacles is

designed to interrupt the path of the robot during execution. We set the replanning time step interval

as 3 seconds; the planner fails if it cannot find a collision-free trajectory within that time interval. In

such dynamic scenes, the planner tends to improve trajectory computation during a given time step,

but not for the overall duration. As a result, it is more important to measure the success rate of each

planner rather than the overall planning time or the number of iterations. With the same replanning

time step interval, our hierarchical planner has a higher success rate in dynamic environments than

the non-hierarchical planner.

3.7 Conclusions and Limitations

We present an optimization-based motion planning algorithm for high-DOF robots. Our algo-

rithm decomposes the high-dimensional motion planning problem into a sequence of low-dimensional

44

Figure 3.5: Hierarchical planning of HRP-4 robot. Using stability constraints, the optimization-based
planner computes physically plausible walking motion.

sub-problems and computes the solution for each sub-problem in an incremental manner. We use

constrained coordination and local refinement to incrementally compute the motion. We highlight

the performance on a 20 DOF PR-2 robot simulation and on a human-like robot with 34 DOFs,

with which we also use a walking generator. In static environments, our algorithm offers up to

14X speedup while still generating smooth trajectories. In dynamic environments, we show that the

algorithm can increase the success rate of the planning.

Our algorithm has some limitations. The performance of the hierarchical planner depends on

the decomposition scheme and the motion trajectories computed for the previous stages. Since

the underlying planner uses a stochastic optimization approach, the trajectories from the previous

stages may not provide a good initial guess for local refinement. As a result, we cannot provide the

completeness guarantee with our approach that it will always be able to compute a collision-free path

within the given time interval.

In Chapter 4, we extended the approach proposed in this chapter to compute whole-body

trajectories for high-DOF human-like models, which handle dynamic stability constraints (See

Fig. 3.5).

45

CHAPTER 4

Planning Dynamically Stable Motion for Human-like Robots

4.1 Introduction

Over the last few years, robots with complex shapes and a high number of controllable joints

have been increasingly used for various applications. These include highly articulated bipedal

humanoid robots (e.g. HRP-41 robot with 34 DOFs, and Hubo II2, with 40 DOFs). This increased

complexity of the robots results in two major challenges for motion planning: (1) the high number of

degrees-of-freedom (DOFs) increases the dimensionality of both the configuration and the search

spaces, thereby increasing the cost of path computation; and (2) only a subset of possible motion are

dynamically stable due to the robot’s kinematics and shape. As a result, it is a major challenge to

efficiently compute a collision-free trajectory for the robot that can satisfy all stability and smoothness

constraints.

In the general case, a robot is dynamically stable when the forces and torques acting on the

robot maintain an equilibrium; Newton-Euler equations can be used to compute those forces and

torques (Trinkle et al., 1997). Since the contacts between the robot and the obstacles exert forces on

the robot, we need to compute the appropriate forces (including their duration) from the contacts as

part of overall motion planning.

4.1.1 Main Results

The ITOMP planning algorithm described in Chapter 2 only computes kinematically feasible

robot trajectories, which are collision-free and smooth. In this chapter, we present an approach to

compute dynamically stable robot motions for high-DOF robots. We model the the trajectory cost

function for the dynamic stability and also optimize the durations of the contacts along with the

1http://global.kawada.jp/mechatronics/hrp4.html
2http://hubolab.kaist.ac.kr/

46

configuration of the robot, which allows our algorithm to compute a stable motion with multiple

contacts.

We highlight the performance of this model on robots with 20-40 DOFs on non-planar surfaces

with multiple contacts. Moreover, we demonstrate our algorithm can be used for planning of multiple

robots, and natural-looking motion generation of virtual characters.

4.1.2 Organization

The rest of this chapter is organized as follows. In Section 4.2, we survey related work in motion

planning with motion stability constraints. We give an overview of the background algorithms in

Section 4.3. In Section 4.4, we present our planning algorithm, based on dynamic stability constraints.

Finally, we highlight our algorithm’s performance in simulated environments in Section 4.5. We direct

the readers to the project webpage (http://gamma.cs.unc.edu/ITOMP/) for the videos as

well as the related publication (Park and Manocha, 2014).

4.2 Related Work

In this section, we give a brief overview of prior work on motion stability constraints. Ensuring

that the computed motion is stable is an important criterion in motion planning for high-DOF robots.

There is considerable work on the walking motion of bipedal robots (Xiang et al., 2010); proper,

stable walking motion is essential for humanoid robots. In order to handle motion dynamics, the

stability constraint is formulated to maintain the equilibrium among the forces and torques acting on

the robot: inertia, Coriolis, gravity, ground-reaction forces from contacts, etc. In this section, we

give an overview of the previous motion planning approaches that achieve dynamic stability in their

computed motions and compare our algorithm with them.

The zero moment point (ZMP)-based methods compute the projected ZMP in the support

polygon based on the assumption that contacts between the robot and the environment happen only

on a planar terrain. Furthermore, the standard ZMP-based methods (Huang et al., 2001; Kajita et al.,

2003; Saab et al., 2013) first plan the ZMP trajectory, then (in the case of humanoids) derive the

hip or torso motion that will satisfy that trajectory. However, adjusting only hip or torso motion

may not be enough to achieve the desired ZMP trajectory, and it may generate jerky motion (Xiang

47

http://gamma.cs.unc.edu/ITOMP/

et al., 2010). The ZMP concept has been extended to wrench space in order to compute motions

on non-planar terrains (Hirukawa et al., 2006; Zheng et al., 2010). The wrench-space approaches

check whether the sum of wrenches applied on the robot is within the polyhedral convex cone of

the convex wrench. The wrenches can be computed even if contacts are placed on different heights.

This approach is limited: it can generate motions only when the height of the center of mass (CoM)

is constant (due to the assumption used in the algorithm), and it can generate jerky motion under

certain circumstances.

Dalibard et al. (2013) suggested an approach that first computes a collision-free statically

balanced path using sample-based planning algorithms, then transforms the path using small-space

controllability of the robot based ZMP. It is a general method for collision-free motions, but still has

the limitations of ZMP.

Recently, many approaches have been proposed to include contacts in their optimization formula-

tion (Schultz and Mombaur, 2010; Dai and Tedrake, 2012). The optimization algorithm directly uses

the contact forces and the robot state as variables (Posa and Tedrake, 2013). This direct optimization

generates smooth paths and does not have the limitations of the prior approaches; however, the

increased number of optimization variables increases the complexity of the computation and affects

planning performance.

Contact-Invariant Optimization (CIO) (Mordatch et al., 2012) has been used to generate visually-

natural motion for character animation using a simplified physics formulation. This approach

optimizes contact variables using contact phases rather than directly optimizing the individual contact

forces. It reduces the search space and accelerates the overall performance. Later, CIO is applied to a

compute physical lower-limb motions of a humanoid model (Mordatch et al., 2013).

4.3 Background

Our motion planner is built on the ITOMP algorithm (see Chapter 2) and use Contact-Invariant

Optimization (CIO) (Mordatch et al., 2012) to find a dynamically stable motion. In this section, we

give a brief overview of ITOMP and CIO, and introduce the notation used in the rest of the chapter.

48

4.3.1 ITOMP : Incremental Trajectory Optimization

ITOMP is a motion planning algorithm that computes smooth, collision-free paths using opti-

mization techniques. A configuration of a robot q is determined by all the actuated joints of the robot,

as well as by the position and orientation of the robot in the workspace. We denote the trajectory

for a robot as a function M(t) for t ∈ [0, T].M(t) is a discretized trajectory composed of N + 2

waypoint configurations: M(t) = {qI ,q1, ...,qN ,qG}, where qk is a trajectory waypoint at time

k
N+1T . qI and qG represent the given initial and goal configurations, respectively.

ITOMP computes a smooth trajectory M(t) that connects the initial and goal configurations of

the robot by solving an optimization problem. ITOMP optimizes the positions of internal waypoints

{q1, ...,qN} by optimizing the following cost function:

min
q1,...,qN

N∑
k=1

(CObs(qk) + CSmooth(qk) + CSpec(qk)), (4.1)

where the cost terms CObs(·), CSmooth(·), and CSpec(·) represent the obstacle cost, the trajectory

smoothness cost, and the problem-specific additional constraints, respectively.

4.3.2 Contact-Invariant Optimization

In order to compute a physically correct, stable motion, the intermittent contacts between the

robot and the environment during the motion trajectory should be planned. For example, a simple

walking motion for a humanoid robot requires planning both when a foot is on the ground and when it

is not in contact with the ground, and this computation must be performed for each foot. Some earlier

approaches (Huang et al., 2001) use pre-defined positions for footsteps to simplify the problem, but

this works only in limited cases where the footsteps are uniform and symmetric.

We use the Contact-Invariant Optimization (CIO) approach. In this formulation, the robot has

several potential contact points (e.g. feet or hands), that can make contacts with the obstacles in the

environment. It is assumed that both the robot links and obstacles are rigid, and that each contact

point has dry friction. In optimization-based planning, additional contact-related variables for the

potential contact points need to be optimized along with the trajectory waypoints to determine when

the corresponding contacts exist in the computed trajectory.

49

The CIO approach introduces contact phases. Instead of defining the contact-related variables

as a trajectory with N waypoint values, we can approximate the trajectory with fewer P values,

where P is the number of contact phases and P < N . The trajectory of contact-related variables is

defined as al = {al1, ..., alP } for l-th potential contact point, and a map ρ(k) = p is used to retrieve

the corresponding contact variable alp for a waypoint qk. This approach assumes that the contacts

are invariant in a contact phase. It reduces the number of variables, alp, that are used during the

optimization algorithm. A large value of alp implies that the contact l must be active during the phase

p; for a small alp, the contact l can be ignored.

For a waypoint qk, the CIO approach computes the stability cost by using two sub-cost functions:

CStability(qk) = CPhysics(qk) + CContact(qk). (4.2)

CPhysics(·) represents the cost due to the violation of the balance, and CContact(·) represents

the cost of the violation of contacts. The contact invariant cost CContact(·) is defined as

CContact(qk) =
L∑
l=1

N∑
k=1

alρ(k)(‖elk(qk)‖2 + ‖ċlk(qk)‖2), (4.3)

where L is the total number of potential contact points, and elk and ċlk are the contact-violation

vector and the velocity of the l-th contact point at a waypoint qk, respectively. elk is a 4D vector that

concatenates the 3D position and normal angle differences between the l-th contact point and the

nearest point on an obstacle. Therefore, elk represents the misalignment between the l-th potential

contact point on the robot and the nearest point on the environment in both position and orientation.

If alρ(k) is large, the misalignment of the l-th contact makes the cost function very high, while

the misalignment of small alρ(k) does not result in significant cost. ċlk for a large value of alρ(k)

corresponds to slip of the contact point.

The cost of CContact(qk) corresponds to the global minimum when all aρ(k) are zero. However,

these cases are prevented by the second cost term CPhysics(qk), which represents the cost that

penalizes for the violation of the equilibrium of forces and torques. If the contact variables aρ(k)

have small values, it increases the cost of CPhysics(qk) as described in Section 4.4.3.

50

4.4 Motion Planning with Dynamic Stability

In this section, we present the details of our approach that computes a collision-free, smooth

trajectory that maintains the robot’s dynamic stability. We first present the trajectory optimization

function. Next, we introduce the underlying physics-based formulation of the cost computation and

describe the overall algorithm.

4.4.1 Optimization with Stability Cost

Based on the ITOMP cost function (4.1), our planning algorithm uses CIO to compute a

dynamically stable trajectory for robots. Based on CIO, our new optimization formulation is:

min
q1,...,qN ,
a1,...aP

N∑
k=1

(CObs(qk) + CSmooth(qk) + CStability(qk,aρ(k))), (4.4)

where 1 ≤ ρ(k) ≤ P , and ai =
[
a1
i , ..., a

L
i

]
, the vector of contact variables of L potential contact

points for phase i. In our objective function (4.4), CStability(qk) is the stability cost for the waypoint

qk, which is defined in Equation (4.2). Though Mordatch et al. (2012) uses a simplified physics

model to make animated characters move naturally, we compute CPhysics(qk) accurately based on

Newton-Euler equations.

4.4.2 Dynamic Stability Computation

A key issue in our formulation is computation of physics-violation cost CPhysics(qk) for main-

taining dynamic stability (as shown in Equation (4.2)). We first describe our physics-based formula-

tion. Fig. 4.1(a) illustrates a high-DOF human-like robot, which makes contacts with the ground

plane using its feet. Let ΣR be the global coordinate frame, J be the number of links in the robot,

and c1, ..., cL be the positions of L contact points. There are several wrenches (forces and torques)

exerted on the robot. The robot is dynamically stable when all wrenches on the robot constitute an

equilibrium (Trinkle et al., 1997).

51

x

z

y

ΣR

w1
c

w2
c

wi

wg

pg

c1

c2

(a) Wrenches exert on the robot.

nl

cl

ol

tl

(b) Friction cone and approximat-
ing pyramid.

Figure 4.1: A humanoid robot makes contacts c1 and c2 with the ground plane. The gravity wrench
wg and the inertia wrench wi are applied to the robot. The contact wrenches w1

c and w2
c can have

values in their friction cone. The robot is stable when w1
c + w2

c + wg + wi = 0.

1. Contact wrench : The sum of contact wrenches wl
c applied to the robot from contact points cl

with respect to ΣR is given by

wc =
L∑
l=1

wl
c =

L∑
l=1

 fl

rl × fl

 , (4.5)

where fl is the contact force of cl and rl is the position vector of cl in the frame ΣR. Coulomb’s

friction law stipulates that fl should be constrained in its friction cone Fl to avoid any slipping

motion. This constraint can be formulated as:

f2
lt + f2

lo ≤ µf2
ln, (4.6)

where
[
fln flt flo

]T
corresponds to fl, with respect to the frame of cl, which is defined by

the axes of the contact normal nl, tl and ol that satisfy nl × tl = ol. Our formulation of wc

considers the contact normal and the friction coefficient. This makes it general enough for

uneven ground surface, unlike prior approaches based on ZMP.

52

2. Gravity wrench : The gravity wrench wg is

wg =

 Mg

pg ×Mg

 , (4.7)

where pg is the center of mass (CoM) of the robot. pg can be computed by
∑J

j=1mjpj/
∑J

j=1mj ,

where mj and pj are the mass and the position of j-th link of the robot in ΣR, respectively.

Here g is
[
0 0 −g

]T
.

3. Inertia wrench : The inertia wrench wi can be written as

wi =

 M p̈g

pg ×M p̈g − L̇

 , (4.8)

where L is the angular momentum of the robot with respect to pg is defined as

L =
J∑
j=1

[mj(pj − pg)× ṗj + Ijωj] , (4.9)

where Ij and ωj are the inertia tensor and the angular velocity of the j-th link of the robot,

respectively.

The robot is dynamically stable when it satisfies

wc + wg + wi = 0. (4.10)

4.4.3 Computation of Physics Violation Cost

Next we describe the computation of the physics-violation cost CPhysics(qk) in (4.2). First we

formulate the combination of contact forces, which can be defined as:

f = [fT1 , ..., f
T
L]T . (4.11)

Equation (4.5) can be represented as wc = Bf , where B is the corresponding 6× 3L matrix. Using

this formulation, we solve an inverse dynamics computation problem, which computes f such that it

53

satisfies the Coulomb friction constraints of Equation (4.6):

f = arg min
f∗

(‖Bf∗ + wg + wi‖+ f∗TRf∗). (4.12)

The Coulomb friction constraint is usually converted to an inequality constraints, using a pyramid to

approximate a friction cone Fi (shown in Fig. 4.1(b). The constraint for fi is reduced to

− µfln ≤ flt ≤ µfln

− µfln ≤ flo ≤ µfln. (4.13)

In (4.12), we add the contact variable penalty term f∗TRf∗ as it is used in (Mordatch et al., 2012).

It increases the difference between f from (4.12) and the actual optimal force that satisfies (4.10),

when contact variable al is small for a large contact force fi. The matrix R is a 3L× 3L diagonal

matrix, and its diagonal elements correspond to

Rjj =
k0

(alρ(k))
2 + k1

, (4.14)

where 3l − 2 < j < 3l. k0 and k1 are constants that control the weight of the penalty cost.

The quadratic programming (QP) problem (4.12) can be solved using a QP solver; the result

value of f is used to compute the CPhysics(qk), which is evaluated as

CPhysics(qk) = ‖B(qk)f + wg(qk) + wi(qk)‖. (4.15)

If there are more potential contact points on the robot (e.g. hips), Equation (4.12) can compute

the contact reaction forces of all contact points, while Equation (4.3) generates penalty forces for

violation of contacts.

4.5 Results

In this section, we highlight the performance of our planning algorithm on different benchmark

scenarios.

54

Robot DOFs
(# of Contact Points)

Iterations
Planning
Time(s)

Trajectory
Smoothness

Benchmarks Mean (Std. Dev.)
Steps

(Fig. 4.2)
34
(2)

140.27
(22.667)

17.467
(3.325)

10.315
(2.975)

Obstacles
(Fig. 4.3)

34
(2)

68.11
(162.749)

10.213
(24.863)

5.626
(4.021)

Door
(Fig. 4.4)

34
(3)

35.64
(15.272)

4.404
(1.419)

4.419
(1.789)

Drawer
(Fig. 4.5)

34
(3)

73.954
(143.026)

13.054
(19.868)

0.579
(0.097)

Table 4.1: Planning results for different benchmarks on a single CPU core. We highlight the robot
DOFs and the number of potential contact points with the environment. We measure the means
and the standard deviations for the number of iterations in the numerical optimization process;
the planning time needed to compute the first collision-free solution; and the smoothness of the
trajectory for different benchmarks. The smoothness is computed by the sum of joint accelerations
at the trajectory waypoints for all active joints, which means that trajectories with lower values are
smoother.

4.5.1 Planning of Dynamically Stable Motion

We highlight the results for task planning of a 34-DOF human-like robot in Table 4.1. We

compute the trajectories of the robot in two environments, where the robot must move by walking

from the initial configuration to the goal configuration. We also evaluate the performance in two

other scenarios, where the robot needs to make contacts using its hand with the environments. We

measure three components to evaluate the performance: the number of iterations in the optimization

routines; the planning time to find the first collision-free and stable solution; and the smoothness of

the trajectory. The results, shown in Table 4.1, are the averages and standard deviations of 100 trials

for each scenario.

The hierarchical planning (see Chapter 3) is used in our benchmarks to improve the planning

performance. We decompose a robot into 5 different components: a lower body, which includes

legs and pelvis; a torso; a head; a left arm; and a right arm, then incrementally plan the trajectory of

the robot using this decomposition. In Fig. 4.2-4.5, different robot components used in hierarchical

planning are marked with different colors.

Parameter values used our experiments are: N (number of waypoints) = 100, P (number of

contact phases) = 5, k0, k1 (contact variable penalty terms) = 0.01, 0.001, r (local displacement

vector) = 0.1, T (length of the motion)=5.

55

Figure 4.2: Snapshots of the computed trajectory planned across uneven terrain of varying heights.
The proper footstep points are computed during the optimization, and the entire walking motion
trajectory is dynamically stable.

Figure 4.3: Snapshots of the computed trajectory for the environment with obstacles. There is an
obstacle between the initial position and the goal position that the robot cannot detour around. The
computed trajectory passes over the obstacle.

Our first benchmark is planning a trajectory on an uneven terrain. The height of the terrain

varies such that the ZMP-based methods may not be able to compute a dynamically stable solution.

The planners with stability constraints compute the contact points between the robot’s feet and the

terrain, and place the robot feet on these points. This generates a walking motion towards the goal

configuration while satisfying the stability requirements. Fig. 4.2 shows the trajectory computed by

the dynamic stability constraint.

In our second benchmark, the environment consists of several obstacles that the robot needs to

avoid. We place an obstacle on the ground that the robot cannot go around, forcing it to pass over the

obstacle. The trajectory computed with the stability constraint is shown in Fig. 4.3. In the computed

trajectory, the robot does not collide with the obstacles and passes over the obstacles on the ground.

Figure 4.4: We highlight the smooth and dynamic stable trajectory computed by our planner to
perform the specific tasks. The robot uses multiple degrees of freedom, including 14 DOF on the
legs to move and 7 DOF on the arm to open the door.

56

Figure 4.5: We highlight the high-DOF trajectory for the robot to perform the tasks for opening the
drawer by our algorithm.

13.29%

23.25%

23.76%

39.70%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Trajectory Update

Collision Cost Computation

Stability Cost Computation

Others

Figure 4.6: Timing breakdown of an iteration of the trajectory optimization.

In the next two benchmarks, we test our algorithm with with scenarios where the robot makes

additional contacts with its right hand, while satisfying the stability constraints. The robot exerts

force on the objects in the environment to perform manipulation tasks. In the third benchmark, the

robot pushes a door (Fig. 4.4) to reach a goal. The robot pulls a drawer (Fig. 4.5) to move it to the

desired position in the last benchmark.

Fig. 4.6 highlights the timing breakdown of an iteration of the trajectory computation. The

percentage of time spent in stability cost computation takes 23.2% of the total computation time.

4.5.1.1 Comparisons with Related Approaches

Our algorithm combines the CIO approach and the wrench-space stability computation, in-

tegrating them into a hierarchical optimization framework. Our approach can compute smooth,

physically-correct motions while efficiently computing the motions and reactions resulting from

various contacts. Our approach is more than an order of magnitude faster than the other planning

algorithms described above ((Dalibard et al., 2013; Mordatch et al., 2012; Posa and Tedrake, 2013)).

At the same time, other planners with close to real-time performance either do not perform obstacle-

57

Algorithms
Collision
-aware

Dynamic
Stability

Uneven
Terrain

Smooth
Motion

Vertical
movement

of CoM

Physically
Correct
Model

ZMP-based
(Huang et al., 2001; Kajita et al., 2003)

7 3 7 7 3 3

Stability Computation in Wrench Space
(Hirukawa et al., 2006)

7 3 3 7 7 3

Transform from Statically Balanced Path
(Dalibard et al., 2013)

3 3 7 3 3 3

Contact-Invariant Optimization
(Mordatch et al., 2012)

3 3 3 3 3 7

Direct Contact Force Optimization
(Posa and Tedrake, 2013)

3 3 3 3 3 3

Our Approach 3 3 3 3 3 3

Table 4.2: This table compares the feature of our motion planning with dynamic stability algorithm
with other approaches. Our approach can handle all the constraints, similar to the direct contact force
optimization algorithm (Posa and Tedrake, 2013), but is an order of magnitude faster.

aware motion planning or do not provide similar guarantees on dynamic stability. Table 4.2 shows a

summary of the capabilities of the different algorithms.

4.5.2 Planning of Multiple Robots

In this section, we describe the implementation of our multi-robot planning algorithm and

present the results in different scenarios. Videos of these benchmarks can be found at http:

//gamma.cs.unc.edu/MultiRobot/.

4.5.2.1 Implementation of Multi-robot Motion Planning

The motion planner used in our multi-robot motion planning is decomposed into two levels.

For each robot A, the first level computes a collision-avoiding velocity vA that ensures that A does

not collide with other robots during that interval, using the optimal reciprocal collision avoidance

(ORCA) algorithm (van den Berg et al., 2011a). In the computation of the collision-avoiding velocity,

we model each robot A as a 2D disk, which can be defined using a point pA and a radius rA that

can cover the actual robot. We use the 2D position of the root link of the model hierarchy, which

usually corresponds to waist or pelvis link of a human-like robot, as pA and denote it as the root of

the robot A. We constrain the computed velocity vA to satisfy the kinematic constraints of the given

human-like robot model. vA is used to generate a collision-free initial trajectory for the second level,

58

http://gamma.cs.unc.edu/MultiRobot/
http://gamma.cs.unc.edu/MultiRobot/

which then computes a trajectory for the robot using the trajectory optimization of (4.4). Further

details of the multi-robot motion planning algorithm can be found in (Park and Manocha, 2015).

4.5.2.2 Experimental Results

Benchmark
Number of

Robots
(DOFs)

Trajectory
Length (s)

Collision
Avoidance
Time (ms)

Trajectory
Optimization

Time (ms)

Features

Position
Exchange

2(68) 40s 0.007ms 617ms
Collision avoidance
on a non-planar ground

Dynamic
Obstacles

8(272) 48s 0.023ms 476ms
Real-time dynamic
obstacle handling

Circle 8(272) 76s 0.030ms 670ms
Kinematic constraints
(w/ Side-stepping)

Circle w/o
Side-stepping

8(272) 96s 0.031ms 656ms
Kinematic constraints
(w/o Side-stepping)

Narrow
Passage

8(272) 100s 0.045ms 1108ms
Hierarchical planning
for narrow passage

Table 4.3: Planning results for different benchmarks. We show the number of robots; the trajectory
length that corresponds to the total time that the robots took to reach their goals; the average
computation times for the collision avoidance and the trajectory optimization for each planning step.

We test our approach in several benchmark scenarios to demonstrate the collision avoidance be-

havior and dynamically stable motions. We highlight the results for planning in different benchmarks

in Table 4.3.

• Position Exchange (Fig. 4.7(a)) : Two robots exchange their positions by passing each other.

• Dynamic Obstacles (Fig. 4.7(b)) : The benchmark has moving obstacles, and 8 robots have to

cross obstacle’s path to navigate to their goals.

• Circle (Fig. 4.7(c)) : We initialize 8 robots on a circle. Each robot moves through the center of

the circle to the goal position opposite its initial position.

• Narrow Passage (Fig. 4.7(d)) : Static obstacles make narrow passages, which is like a building

entrance. 8 robots move through the narrow passage.

59

(a) Position Exchange benchmark

(b) Dynamic Obstacles benchmark (c) Circle benchmark

(d) Narrow Passage benchmark

0.0E+0

5.0E-5

1.0E-4

1.5E-4

2.0E-4

1

2

3

4

5

0 10 20 30 40

P
la

n
n

in
g

Ti
m

e
 (

s)

Planning Steps

Average Planning Time of
Partial Planning Steps

Trajectory Optimization

Collision Avoidance

(e) Planning time of each planning step in Narrow
Passage benchmark.

Figure 4.7: (a)(b)(c)(d) Multi-robot planning benchmarks. (e) Plot of the the planning time of the
collision avoidance and the trajectory optimization along the trajectory for a robot.

Position Exchange scenario is used as a benchmark for many ORCA-based approaches (van den

Berg et al., 2011a,b). In this benchmark, two robots are initialized to exchange their positions by

passing each other. They move directly toward their goals at beginning, but when the robots notice

that a collision will happen within τ , they change their directions to avoid the collision. Furthermore,

60

we consider an uneven group with steps. Our planner compute the walking motion on uneven ground

using the contact and stability constraints (4.2).

Dynamic Obstacles benchmark has three dynamic obstacles that move using constant velocities,

and are not reactive to the robots. Robots know the velocities and positions of the obstacles, and

move while avoiding collisions with the dynamic obstacles. This benchmark shows that our approach

can naturally deal with the presence of obstacles that do not adapt its motion to the other robots,

using human-like robots with forward walking and side-stepping motions.

Our third benchmark is Circle, where the robots are placed along the circumference of a circle

and their corresponding goal are at the anti-podal positions. The ground is not planar, but the

computed trajectories are smooth and dynamically stable, with no oscillations or collisions.

Finally, we highlight some narrow passages due to static obstacles in the Narrow Passage

benchmark. In this benchmark, the width of the passage is shorter than the radius rA = 1.0 used in

the 2D multi-robot planning level. Moreover, there are obstacles at a height that is the same as that

of the robot. Fig. 4.7(d) shows that the robots move their arms and heads to avoid collisions with

the obstacles in the computed trajectories. In Fig. 4.7(e), we show the planning time of the collision

avoidance and the trajectory optimization for each planning step for a robot. It shows that the 2D

collision avoidance computation takes less than 0.01ms, during the entire trajectory. Most of the time

is spent in trajectory optimization.

4.5.3 Natural-Looking Motion Generation of Virtual Characters

In this section, we demonstrate our motion planning algorithm can be used to generate natural-

looking motion of virtual characters.

4.5.3.1 Plausible Motion Constraints

We use the torque minimization (Lo et al., 2002) constraint to compute the plausible motions.

We use the inverse dynamics to compute the joint torque for the configuration qk and the contact

forces fk, and formulate the constraint cost as the squared sum:

CPlausible(qk) =
∑
j

‖τj(qk)‖2, (4.16)

61

Benchmark
Data
Source

of
joints

of discrete
poses

of
frames

Average trajectory
planning time / frame

Construction Site - 42 2 7200 0.550 sec
Climbing Blocks RB-PRM 34 16 481 0.308 sec
Escaping from a Truck RB-PRM 34 12 353 0.289 sec
Crawling on Obstacles RB-PRM 34 20 609 0.459 sec
Walking MoCap Data 58 2 64 0.413 sec
Iron Beam MoCap Data 58 2 64 0.532 sec
Pushing MoCap Data 58 2 64 0.471 sec

Table 4.4: Model complexity and the performance of trajectory planning: We highlight the complexity
of each benchmark in terms of number of joints, the number of input discrete poses, and the number
of frames that is governed by the length of the motion. We compute the average trajectory planning
time per frame for each benchmark on a multi-core PC.

where τj(qk) is the joint torque of the j-th joint. We add CPlausible(qk) into (4.4) to compute

natural-looking plausible motions. Further details can be found in (Park et al., 2016b).

4.5.3.2 Experimental Results

We highlight the performance of our algorithm on different benchmarks. Our motion planner

enables us to compute dynamically balanced and plausible motion for different models. Table 4.4

presents the complexity of the benchmarks and the performance of our planning results.

Construction Site benchmark is a complex scenario with varying behaviors. The environment

comprises of several obstacle courses that the agents must navigate through (Fig. 4.8). In one case,

the character is required to duck under a scaffold (Fig 4.9). This requires considerable upper and

lower body motion at the same time. In another case, the character is required to step over a beam

placed on the ground (Fig 4.10). The planner creates a contact point on the beam, and computes

a collision-free and physically plausible trajectory. Finally, there is a uneven solid mound placed

on the terrain (Fig 4.11). It is especially difficult to compute stable foot positions given the highly

irregular and uneven terrain. However, our planner computes dynamically stable trajectories to guide

the character over the mound.

In the remaining benchmarks, we use pre-generated configuration sequences to generate the

initial trajectory of the trajectory optimization for complex benchmarks. The input configuration

sequences for three benchmarks are computed using a reachability-based PRM (RB-PRM) (Tonneau

et al., 2015). RB-PRM computes acyclic balanced discrete poses using a random sampling to search

62

Figure 4.8: Construction site benchmark scenario. A human-like virtual character navigates through
various obstacles in 3D space such as scaffolding, metal beams, uneven solid mound etc.

Figure 4.9: A virtual character passes under a scaffold.

in a low dimensional subset of the entire configuration space, which is chosen such that the character

is close enough to the environment and maintains a contact with the environment.

Climbing Blocks: The input configuration is climbing on a wall using several blocks on the

wall. We compute the trajectory with the collision, stability, and plausibility constraints. Fig. 4.12(a)

highlights the computed trajectory with dynamic stability and the plausible motion constraints.

Crawling on Obstacles: The character goes from a standing to a crouching position to pass under

an obstacle (i.e. collision-free motion). The space between the obstacle and the ground is narrow,

which makes it difficult to find a collision-free trajectory (see Fig.4.12(b)). Many prior methods

would not work well in such environments.

63

Figure 4.10: A virtual character steps over a beam placed on the ground.

Figure 4.11: A virtual character is walking over a uneven solid mound.

Escaping from a Truck: The character crawls through the front window of a truck (see Fig.4.12(c)).

We demonstrate the trajectory computed using our trajectory optimization approach.

Our other three benchmarks use sampled pose sequences from MoCap data. We extract only

two configurations for walking and pushing motions from motion capture data for the model, which

have contacts with both feet. The computed walking and pushing motion for the human-model are

shown in Fig. 4.13(a) and (b), which are similar to the original MoCap data. In order to validate

the dynamic stability and the plausibility constraints of our approach, we computed the continuous

trajectories from the poses for the character with a different mass. As we add more mass to the right

arm by adding a suitcase or a heavy iron beam (Fig. 4.13(c)), the walking motion lowers the right

arm down more or produces bigger upper body movements, respectively.

4.5.3.3 Comparisons with Related Approaches

Computing human-like motion using trajectory optimization can be time consuming, even with

relaxed dynamics constraints (Mordatch et al., 2012). Data-driven motion synthesis approaches

use precomputation of MoCap data to compute physics-based motion (Liu et al., 2005) or a variety

of motions (Ma et al., 2010) that have the same style as the input motion. This can take long

computation time or has limited motion applicability (e.g. only applicable for walking or running

motions). Furthermore, these approaches only consider ground contacts, and collision-free geometric

constraints, which can be expensive to compute, are not taken into account.

64

Figure 4.12: The computed trajectories for the (a) Climbing, (b) Crawling and (c) Truck benchmarks.

65

Figure 4.13: The computed trajectories for the (a) Walking, (b) Pushing and (c) Holding benchmarks.

66

MoCap-based humanoid robot planning methods (Pan et al., 2010b; Liu et al., 2015) focus on

computing collision-free and balanced motions for human-like robots or characters that tends to look

natural. However, they use a manual setup of contact poses, which can be limiting. In contrast to

these approaches, our approach can compute plausible human-like motions that can adapt to e new

characters or environments at interactive rates, and does not have a large precomputation overhead.

4.6 Conclusions and Limitations

We present a fast, dynamically stable, optimization-based motion planning algorithm for high-

DOF robots. We use contact variables to compute dynamically stable motions. The stability of the

motion is computed in a wrench space, and we compute the friction force that creates an equilibrium

between the forces exerted on the robot. Our formulation of contacts is general and can handle

multiple contacts simultaneously. We highlight the performance of our algorithm using a human-like

robot with 34 DOFs. We also demonstrate the applications of our approach in multi-robot planning

and natural-looking motion generation of virtual characters.

There are some limitations to our approach. Our formulation uses discretized waypoints on the

continuous trajectory and the computation is only performed on the waypoints. However, the error

due to the small interval is small and can be easily corrected with real-time control approaches (Xiang

et al., 2010; Saab et al., 2013). For a feasible trajectory computed by optimization-based planner, a

controller can be used to provide a feedback according to the measured executed trajectory.

67

CHAPTER 5

Parallel Trajectory Optimization using GPUs

5.1 Introduction

In order to allow robots to work reliably in dynamic environments with humans and other

moving objects, the robot needs to acquire the ability to safely navigate in the environment and

perform tasks in the presence of moving obstacles. The real-time replanning approaches (Petti and

Fraichard, 2005; Bekris and Kavraki, 2007; Hauser, 2012) handle such scenarios by interleaving

planning with execution; computing partial or sub-optimal plans to avoid collisions. The replanning

framework assumes that the planner is responsive enough to the unpredictable environment changes

that the sub-optimal plan computed in a limited time step can avoid collisions and improves the

remaining trajectory. However, it is a challenge to compute the high-DOF robot motion in dynamic

environments within a limited planning time.

Another challenge of the ITOMP motion planning approach presented in Chapter 2 is that it

computes a local optimal solution. The approach has several advantages compared to prior sampling-

based replanning approaches that it can generate smooth paths or handle dynamic constraints.

However, unlike the sampling-based planners that guarantee probabilistic completeness of the

planning, the performance and the quality of the optimization-based planning is highly dependent on

the initial trajectory.

5.1.1 Main Results

In this chapter, we present a parallel optimization-based motion planning algorithm for dynamic

scenes. Our planning algorithm optimizes multiple trajectories in parallel to explore a broader subset

of the configuration space and computes a high-quality trajectory. The parallelization improves the

optimality of the solution and makes it possible to compute a safe solution for the robot in a shorter

time interval. We map our multiple trajectory optimization algorithm to many-core GPUs (graphics

68

processing units) and utilize their massively parallel capabilities to achieve 20-30X speedup over a

serial optimization-based planner. Furthermore, we derive bounds on how parallelization improves

the responsiveness and the quality of the trajectory computed by our planner. We highlight the

performance of our parallel replanning algorithm in the ROS simulation environment with a 7-DOF

robot and and human-like dynamic obstacles.

5.1.2 Organization

The rest of this chapter is organized as follows. In Section 2, we give a brief overview of prior

work on real-time motion planning and GPU-based parallel planning algorithms. We present an

overview of our approach in Section 3. In Section 4, we describe the parallel replanning algorithm

and analyze its responsiveness and quality in Section 5. We highlight its performance in Section 6.

We direct the readers to the project webpage (http://gamma.cs.unc.edu/ITOMP/) for the

videos as well as the related publication (Park et al., 2013).

5.2 Related Work

In this section, we give a brief overview of prior work on real-time and GPU-based parallel

algorithms for motion planning.

5.2.1 Real-time Motion Planning

The performance of motion planning can be improved using the parallel computation. There are

many planning approaches that exploit distributed clusters or shared-memory systems or commodity

parallel processors.

Many parallel techniques have been proposed to improve the performance of planning using

distributed clusters. Pérez and O’Donnell (1991) compute the primitive map of a 3D configuration

space using parallel computation. Amato et al. (1999) propose a parallel PRM planning approach

which has scalable speedups.

Many planning algorithms exploit parallelism based on subdividing the configuration space (Brooks

and Lozano-Pérez, 1985) and use clusters to expand the tree in a different region of the configuration

69

http://gamma.cs.unc.edu/ITOMP/

space. Different subdivision techniques have been proposed for roadmap-based planning (Jacobs

et al., 2012) or tree-based planning algorithms (Jacobs et al., 2013; Rodriguez et al., 2013).

Nowadays, commodity processors in a single machine have multiple cores. Although these

systems have fewer cores and overall processing power as compared to large distributed clusters,

multiple threads running on such shared-memory processors have access to the same memory and

there is no major overhead of transferring the data between the nodes in a cluster. It is especially

useful for parallel algorithms of RRT (Carpin and Pagello, 2002; Aguinaga et al., 2008), which

does not have the massive parallelism like the graph construction step of PRM. Parallel approaches

on shared-memory systems have better efficiency than clusters because the multiple threads can

share the same tree data structure on shared memory (Sucan and Kavraki, 2012). Updates of the

shared tree requires synchronization, and the performance can be improved using lock-free data

structures (Ichnowski and Alterovitz, 2014).

5.2.2 Parallel Planning Algorithms using GPUs

Many approaches exploit many-core GPUs for accelerating the planning algorithms. Pisula et

al. (2000) use the rasterization hardware for improving the sample generation in narrow passages. Re-

cently, GPUs have been exploited to accelerate sampling-based motion planners in high-dimensional

spaces, including PRM algorithm (Pan et al., 2010a), RRT algorithms (Bialkowski et al., 2011), and

search-based planning (Kider et al., 2010). Many recent techniques exploit multiple CPU and GPU

cores to parallelize collision checking (Bialkowski et al., 2011), tree expansion (Park et al., 2014b),

or subdividing the configuration space (Jacobs et al., 2012).

5.3 Overview

Our real-time replanning algorithm is based on the incremental trajectory optimization (ITOMP)

(see Chapter 2) and uses parallel techniques to handle arbitrary dynamic environments. In this section,

we describe the underlying framework for optimization-based planning and give an overview of our

planning and execution framework.

In order to improve the responsiveness of the robot in dynamic environments, ITOMP uses a

replanning approach that was previously used for sampling-based motion planning (Hsu et al., 2002;

70

qstart

qk

qend
0

t0

T
C-Space at different time

I
=

[t 0
, t 1

]

t1

COs
1

COs
2

Q1

Q2

Q3

COd([t0, t1])

Figure 5.1: Multiple trajectories that arise in the optimization-based motion planning. The coordinate
system shows how the configuration space changes over time as the dynamic obstacles move over
time: each plane slice represents the configuration space at time t. In the environment, there are
three C-obstacles: the two static obstacles COs1, COs2 and the dynamic obstacle COd. The planned
trajectories start at time 0, stop at time T , and are represented by a set of way points qstart, q1, ...,
qk, ..., qN , qend. The three trajectories for the time interval I = [t0, t1] are generated with different
random seeds and represent different solutions to the planner in these configurations corresponding
to the dynamic obstacles.

71

Hauser, 2012). Instead of planning and executing the entire trajectory at once, this formulation

interleaves the planning and execution threads within a small time interval ∆t. This approach allows

us to compute new estimates on the local trajectory of the obstacles based on the most current sensor

information. During each planning step, we compute an estimate of the position and velocity of

dynamic obstacles using the senor data. Next, a conservative bound on dynamic obstacles during

the local time interval is computed using these values, and the planner uses this bound to compute

the cost for dynamic obstacles. This cost is only used during the time interval ∆t, as the predicted

positions of dynamic obstacles may not be valid over a long time horizon. This bound guarantees the

safety of the trajectory during the planning interval; however the size of the bound increases as the

planning interval increases. Large conservative bounds make it hard for the planner to compute a

solution in the given time or they result in a less optimal solution because of the time constraints.

Hence, it is important to choose a short time interval to improve the responsiveness of the robot.

Our goal is to exploit the parallelism in commodity processors to improve the efficiency of the

optimization-based planner. This parallelism results in two benefits:

• The faster computation allows us to use shorter time intervals, which can improve the respon-

siveness and safety for robots working in fast changing environments.

• Based on parallel threads, we can try to compute multiple trajectories corresponding to different

seed values, and thereby explore a broader configuration space to compute a more optimal

solution, as illustrated in Fig. 5.1.

5.4 Parallel Multi-trajectory Optimization

Nowadays, all commodity processors have multiple cores. Even some of the robot systems

are equipped with multi-core CPU processors (e.g. Quad-Core i7 Xeon Processors in PR2 robot).

Furthermore, these robot systems provide expansibility in terms of using many-core accelerators,

such as graphics processing units (GPUs). These many-core accelerators are massively parallel

processors, which offer a very high peak performance (e.g. up to 3 TFLOP/s on NVIDIA Kepler

GPU). Our goal is to exploit the computational capabilities of these commodity parallel processors

for optimization-based planners and real-time replanning in dynamic scenes.

72

Goal

Setting

CPU GPU

Scheduler
Motion

Planner

Robot

Controller

Sensor

Data

Collection

Environment

Robot

Motors

Parallel Trajectory

Optimization

Figure 5.2: The overall architecture of our parallel replanning algorithm. The planner consists of
four individual modules (scheduler, motion planner, robot controller, sensor data collection), each of
which runs as a separate thread. When the motion planning module receives a planning request from
the scheduler, it launches optimization of multiple trajectories in parallel.

We parallelize our algorithm in two ways. First, we parallelize the optimization of a single

trajectory by parallelizing each step of optimization using multiple threads on a GPU (Fig. 5.4).

Second, we parallelize the optimization of multiple trajectories by using different initial seed values.

Since it is a randomized algorithm, the solver may converge to different local minima, and the

running time of the solver also varies based on the initial seed values. In practice, such parallelization

can improve the responsiveness and the quality of the resulting trajectory.

In this section, we describe our parallel replanning algorithm, which exploits multiple cores.

First we present the framework of the parallel replanning pipeline with multiple trajectories. We also

present the GPU-based algorithm for single trajectory optimization.

5.4.1 Parallelized Replanning with Multiple Trajectories

As shown in Fig. 5.2, our algorithm consists of several modules: scheduler, motion planner,

robot controller and sensor data collection. The scheduler sends a planning request to the motion

planner when it gets new goal information. The motion planner starts optimizing multiple trajectories

in parallel. When the motion planner computes a new trajectory which is safe for the given time

interval ∆t, the scheduler sends the trajectory to the robot controller to execute the trajectory. While

73

PLANNING T1

PLANNING T2

PLANNING T3

PLANNING T4

PLANNING T1

PLANNING T2

PLANNING T3

PLANNING T4

PLANNING T1

PLANNING T2

PLANNING T3

PLANNING T4

PLANNING T1

PLANNING T2

PLANNING T3

PLANNING T4

EXECUTION

EXECUTION

EXEC.

EXECUTION

goal

time

𝑡0 𝑡1 𝑡2 𝑡3 𝑡𝑛−1 𝑡𝑛 𝑡𝑛+1

step 0 step 1 step 2 step n-1 step n
∆0 ∆1 ∆2 ∆𝑛−1 ∆𝑛

Figure 5.3: The timeline of interleaving planning and execution in parallel replanning. In this figure,
we assume the number of trajectories computed by parallel optimization algorithm as four. At time
t0, the planner starts planning for time interval [t1, t2], during the time budget [t0, t1]. It finds a
solution by trying to optimize four trajectories in parallel. At time t1, the planner is interrupted
and returns the result corresponding to the best trajectory to scheduler module. Then the scheduler
module executes the trajectory.

the robot controller executes the trajectory, the scheduler requests planning of the next execution

interval from the motion planner. The motion planner also gets updated environment descriptions

from the sensors and utilizes them to derive bounds on the trajectories of dynamic obstacles during

the next time interval. Since all modules run in separate threads, each module does not need to wait

on other modules and can work concurrently.

Fig. 5.3 illustrates interleaved planning and execution with multiple trajectory planning. During

step i, the planner has a time budget ∆i = ti+1 − ti, and it is also the time budget available for

execution during step i. During the planning computation in step i, the planner generates trajectories

corresponding to the next execution step, i.e, the time interval [ti+1, ti+2]. The sensor information at

ti is used to estimate conservative bounds for the dynamic obstacles during the interval [ti+1, ti+2].

Within the time budget, multiple initial trajectories are refined by the optimization algorithm to

generate multiple solutions which are sub-optimal and have different costs. Some of the solutions

may not be collision-free for the execution interval, which could be due to the limited time budget, or

74

Generate Initial
Trajectories

Generate Noise

Compute
Waypoint Cost

Compute Joint Cost

Compute Probability
Weights of Noise

Update Trajectories

Termination Check

Number of parallel GPU threads

during each step of trajectory optimization

k threads

k ∙ m threads

k ∙ m ∙ n threads

k ∙ m ∙ n ∙ d threads

k ∙ m threads

k threads

k threads

(k : number of trajectories)

(m : number of noise vectors)

(n : number of waypoints

 in a trajectory)

(d : number of robot joints)

Figure 5.4: The detailed breakdown of GPU trajectory optimization. It starts with the generation of k
initial trajectories. From these initial trajectories, the algorithm iterates over stochastic optimization
steps. The waypoint costs include collision cost, end effector orientation cost, etc. We also compute
joint cost, which might include smoothness costs or the cost of computing the torque constraints. The
current trajectory cost is repeatedly improved until the time budget runs out.

the local optima corresponding to that particular solution. However, the parallelization using multiple

trajectories increases the probability that a collision-free trajectory will be found. It also usually

yields a higher-quality solution, as we discussed in Section 5.3.

5.4.2 Highly Parallel Trajectory Optimization using GPUs

Because we parallelize the computation of multiple trajectories, our approach improves the

responsiveness of the planner. We parallelize various aspects of the stochastic solver on the GPUs by

using random noise vectors.

The trajectory optimization process and the number of threads used during each step are illus-

trated in Fig. 5.4. The algorithm uses (k ·m · n · d) threads in parallel according to these steps and

exploits the computational power of GPUs.

The algorithm starts with the generation of k initial trajectories. As defined in Section 5.3, each

trajectory is generated in the configuration space C(which has dimension d), which has n waypoints

from qstart to qend. Then the algorithm generates m random noise vectors (with dimension d) for all

75

the n waypoints on the trajectory. These noise vectors are used to perform stochastic update of the

trajectory. Adding these m noise vectors to the current trajectory results in m noise trajectories. The

cost for a waypoint, such as costs for static and dynamic obstacles, are computed for each waypoint in

the noise trajectories. As described in Chapter 2, the static obstacle cost is computed by precomputed

signed EDT. The 3D space positions of the overlapping spheres b ∈ B of the robot are computed by

the kinematic model of the robot in the configuration of each waypoint. Collision detection for the

cost of dynamic obstacles is computed by the GPU collision detection algorithm (Pan et al., 2010a).

Smoothness cost, computed by a matrix multiplication for each joint, can be computed efficiently

using the parallel capabilities of a GPU. When the costs of all noise trajectories are computed, the

current trajectory is updated by moving it towards a direction which reduces the cost. The update

vector is computed by the weighted sum of noise vectors, which are inversely proportional to their

costs. If the given time budget is expired, the optimization of all trajectories are interrupted and the

best solution is returned.

5.5 Analysis

In this section, we analyze the benefits of parallelization on the improvement in responsiveness

and the quality of the trajectory computed by the planner.

5.5.1 Responsiveness

The use of multiple trajectories improves the responsiveness of our planner. The optimization

function used in the trajectory optimization typically has multiple local minima. In general, any

trajectory that is collision-free, satisfies all constraints, and is smooth can be regarded as an acceptable

solution. In this section, we show that the optimization of multiple trajectories by our GPU-based

algorithm improves the performance of our planner.

The trajectory optimization uses the random number-based algorithm in two stages. First, it

generates initial trajectories using randomly generated seeds. Then the algorithm uses stochastic

optimization to improve the trajectories. Both of these steps have similar statistical characteristics

and their performance is improved by parallelization. In this section, we mainly focus on analyzing

initial trajectory generation.

76

In terms of generating initial trajectories, we assume that the different random seeds used by

the algorithm are uniformly distributed. Each trajectory has a different distance to collision-free

solutions, and the expected time cost of the trajectory is proportional to the distance. We define the

distance from a trajectory Q to collision-free solutions as:

d(Q) = max
i

(inf{‖qi − p‖|p ∈ Cfree}) , (5.1)

where Cfree represents the collision-free space in the configuration space. Let the mean of the

trajectory distances be µ and their variation be σ2. Note that parameters µ and σ2 reflect the problem

space: large µ implies that the environment is challenging and the solver needs more time to compute

an acceptable result; large σ2 means that the result is sensitive to the choice of initial values.

Suppose the planner optimizes n trajectories and we denote the time costs of different trajectories

by X1, ..., Xn, respectively. Then the time cost for the parallelized solver is X = min(X1, ..., Xn),

which is called the first order statistic of {Xi}. We measure the theoretical acceleration due to

parallelization by computing the expected time costs without and with parallelization:

Definition 5.1. The theoretical acceleration of an optimization-based planner with n trajectories is

τ = E(Xi)
E(X) = µ

E(X) , where X = min(X1, ..., Xn).

If Xi follows the uniform distribution, then the acceleration ratio can be simply represented as

τ = n+1
2 . For general distributions, we can get the expected time costs for n trajectories from the

probability density function of the distribution of Xi. Since all the trajectories are generated for the

same configuration space, they share the same probability density function. The probability of the

first order statistics falling in the interval [u+ du] is

(
1−

(∫ ∞
u+du

pXi(u)du

)n)
−
(

1−
(∫ ∞

u
pXi(u)du

)n)
=

(∫ ∞
u

pXi(u)du

)n
−
(∫ ∞

u+du
pXi(u)du

)n (5.2)

where pXi(u) is the probability density function of Xi.

With this probability density function for the first order statistics pX(u), the expected time cost

can be evaluated as:

77

0%

5%

10%

15%

20%

25%

30%

0 0.1 0.2 0.3 0.4

P
ro

b
ab

ili
ty

 D
e

n
si

ty

Distance to Feasible Space

Distance Distribution in Configuration Space

Environment 1

Environment 2

Figure 5.5: The distribution of the distance to the solution in configuration space. The robot has four
revolute joints. We discretize the 4-DOF space and measure the distances to the collision-free space
from the trajectories generated from all the discretized points. Environment 1 has 12 small obstacles,
and the environment 2 has 3 obstacles in the scene.

E(X) =

∫ ∞
0

u · pX(u)du (5.3)

We evaluate the trajectory distance distribution of the configuration space from some experiments

(Fig. 5.5). We measure the Euclidean distances to the nearest collision-free points from the waypoints

of the all possible initial trajectories in the configuration space, then evaluate the distribution. With

this distribution, we evaluate the expected time cost with varying number of trajectories using (5.3).

Fig. 5.6 shows the acceleration ratio. This graph shows that the higher the number of trajectories,

we obtain a higher speedup based on parallelization.. Additionally, the acceleration is larger in the

second environment, which has a bigger mean; this indicates that the benefit is greater when the

environment is more challenging.

We also analyze the responsiveness of the planner based on GPU parallelization. The computation

of each waypoint and each joint are processed in parallel using multiple threads on a GPU, which

improves the performance of the optimization algorithm. Fig. 5.7 shows the performance of the

GPU-based parallel optimization algorithm. The environment of the first benchmark in Section 5.6

is used for this measurement. The GPU-based algorithm utilizes various cores to improve the

performance of a single-trajectory computation, as shown in Fig. 5.4. Increasing the number of

78

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

A
cc

le
ra

ti
o

n
 R

at
io

of Trajectories

Accleration from Parallel Trajectory Optimization

Environment 1

Environment 2

Figure 5.6: Benefits of a parallel, multi-threaded algorithm in terms of the responsiveness improve-
ment. We assume that the time costs of different trajectories for optimization are proportional to the
distance to the feasible solution. We show the acceleration by varying the number of trajectories on
the two distributions from Fig. 5.5.

trajectories causes the system to share the resources for multiple trajectories. Overall, we observe

that by simultaneously optimizing multiple trajectories, we obtain a higher throughput using GPUs.

5.5.2 Quality

The parallel algorithm also improves the quality of the solution that the planner computes. The

optimization problem in trajectory optimization hasD ·N degrees of freedom, whereD is the number

of free joints in the robot andN is the number of waypoints in the trajectory, which tends to be a large

number (often several hundreds). The space has a number of global optima, acceptable local optima,

and many other local optima which are not acceptable (not collision-free or not smooth). It is difficult

to find the global optimal solution when searching in such a high-dimensional space. However, we

can show that the use of multiple initializations can increase the probability of computing the the

global optima or a solution that is close to the global optima. According to Kan and Timmer (1987),

the probability for a pure random search to find the global optima using n uniform samples is defined

as Lemma 5.1.

79

0 200 400 600 800 1000 1200

10 trajectories

1 trajectory

4 cores

2 cores

1 core

1,012.881

522.739

97.473

51.463

26.357

Iteration / sec

Multi-core CPU

Many-core GPU
(NVIDIA GTX580)

Figure 5.7: Benefits of the parallel algorithm in terms of the performance of the optimization
algorithm. The graph shows the number of optimization iterations that can be performed per second.
When multiple trajectories are used on a multicore CPU (by varying the number of cores), each core
is used to compute one single trajectory. The number of iterations performed per second increases as
a linear function of the number of cores. In the case of many-core GPU optimization, increasing the
number of trajectories results in sharing of GPU resources among different trajectory computations,
and the relationship is non-linear. Overall, we see a better utilization of GPU resources if we optimize
a higher number of trajectories in parallel.

Lemma 5.1. An optimization-based planner with n threads will compute the global optima with the

probability 1− (1− |A||S|)n, where S is the entire search space. A is the neighborhood around the

local optimal solutions where the local optimization converges to one of the global optima. | · | is the

measurement of the search space.

Here |A||S| measures the probability that one random sample lies in the neighborhood of the global

optima. Although it is hard to measure the exact value of |A| in a high-dimensional space, it can

be expected that |A| will be smaller as the environment becomes more complex and has more local

optima. Each initial random value converges at one of the local optima. If it is a global optimum, the

planner finds a global optimal solution. Using more trajectories increases the probability that one of

the initial values is placed in A. As a result, Lemma 5.1 provides a lower bound on the probability

that an optimization-based planner with n threads will compute the global optima. When the number

of threads increases, we have a higher chance of computing the global optimal trajectory. In the

same manner, the increasing number of threads improves the probability that the planner computes

an acceptable solution.

80

(a) Start configuration used in the performance
measurement

(b) Goal configuration used in the performance
measurement

Figure 5.8: Planning environment used to evaluate the performance of our planner. The planner
computes a trajectory of robot arm which avoids dynamic obstacles and moves horizontally from
right to left. Green spheres are static, and red spheres are dynamic obstacles. Figure (a), (b) Show
the start and goal configurations of the right arm of the robot.

Scenario
Average

planning time (ms)
Std. dev.

planning time(ms)
CPU 1 core 810 0.339
CPU 2 core 663 0.284
CPU 4 core 622 0.180

GPU 1 trajectory 337 0.204
GPU 4 trajectory 203 0.326
GPU 10 trajectory 60 0.071

Table 5.1: Results obtained from our trajectory computation algorithm based on different levels of
parallelization and number of trajectories (for the benchmarks shown in Fig. 5.8). The planning time
decreases when the planner uses more trajectories.

5.6 Results

In this section, we highlight the performance of our parallel planning algorithm in dynamic

environments. All experiments are performed on a PC equipped with an Intel i7-2600 8-core CPU

3.4GHz with 8GB of memory. Our experiments are based on the accuracy of the PR2 robot’s LIDAR

sensor (i.e. 30mm), and the planning routines obtain information about dynamic obstacles (positions

and velocities) every 200 ms. Our GPU algorithm is implemented on an NVIDIA Geforce GTX580

graphics card, which supports 512 CUDA cores.

Our first experiment is designed to estimate the responsiveness of the planner. We plan a

trajectory of the 7 degree-of-freedom right arm of PR2 in a simulation environment. We measure

the time needed to compute a collision-free solution by varying the number of trajectories using

81

Figure 5.9: Parallel replanning in dynamic environments with a human obstacle. The planner
optimizes multiple paths which are smooth and avoid collision with the obstacle. Each colored path
corresponds to a different search in the configuration space. The optimal path for each case is shown
in purple.

both CPU- and GPU-based planners. We perform this experiment to compute the appropriate time

interval for a single planning time step during replanning; a shorter planning time means the planner

is more responsive. We repeat the test 10 times for each scenario, and compute the average and

standard deviation of the overall planning time. This result is shown in Table 5.1. We observe that the

GPU-based planner demonstrates better performance than a CPU-based planner. In both cases, it is

shown that the performance of the planner increases as more trajectories are optimized in parallel. We

restrict the maximum number of iterations to 500. The planner failed to compute the collision-free

solution only once in our benchmarks, for a single-trajectory case on a GPU. This happens because

the single-trajectory instance gets stuck in a local minimum and is unable to compute an acceptable

solution.

In the next experiment, we test our parallel replanning algorithm in dynamic environments with

human-like obstacles (Fig. 5.9); these human-like obstacles follow the paths computed by motion-

captured data, which is not known to the robot or the planner. The planner uses the replanning

technique to reach the goal while avoiding collisions with the obstacles. During each step, the planner

uses conservative local bounds that are based on positions and velocities of the obstacles. For this

experiment, the CPU-based planner is too slow to handle the dynamic human motion used in this

environment; As a result, we reduced the moving speed of the human obstacle by 3X, so that the

CPU-based planner could handle it. We measure the success rate of the planner and the trajectory

82

0.00% 50.00% 100.00%

10 Trajectories

4 Trajectories

1 Trajectory

4 Trajectories

99.33%

89.00%

45.67%

27.67%

0 0.1 0.2 0.3

10 Trajectories

4 Trajectories

1 Trajectory

4 Trajectories

0.015802

0.061907

0.153425

0.2686539

Multi-core
CPU

Many-core
GPU
(NVIDIA GTX580)

Multi-core
CPU

Many-core
GPU
(NVIDIA GTX580)

Success Rate

Average cost of planned trajectories

Figure 5.10: Success rate and trajectory cost results obtained from the replanning in dynamic
environments on a multi-core CPU and a many-core GPU. The success rate and trajectory cost is
measured for each planner. The use of multiple trajectories in our replanning algorithm results in
higher success rates and trajectories with lower costs and thereby, improved quality.

cost corresponding to the collision-free trajectory to the goal position. The total cost function used in

the optimization algorithm is the sum of the obstacle cost and the smoothness cost. However the

solution trajectories have only smoothness cost since they have no collisions. We measure the cost

by varying the number of optimized trajectories in order to measure the effect of parallelization. We

run 300 trials on the planning problem shown in Fig. 5.9; Fig. 5.10 highlights the performance. As

the number of optimized trajectories increases, the success rate increases and the cost of the solution

trajectory decreases. This result validates that the multiple trajectory optimization improves the

quality of the solution, as shown in Section 5.5.2.

5.7 Conclusions

We present a novel parallel algorithm for real-time replanning in dynamic environments. The

underlying planner uses an optimization-based formulation, and we parallelize the computation on

many-core GPUs. Moreover, we derive bounds on how parallelization improves the responsiveness

and the quality of the trajectory computed by our planner.

83

The initial trajectories of the multi-trajectory optimization presented in this chapter are generated

using randomly chosen configurations. In the benchmarks in this chapter that the planner mainly

deals with dynamic obstacles, we demonstrate that the randomly chosen initial trajectories efficiently

improve the performance and success rate of the planning. However, if the feasible subset of the

configuration space is limited by additional constraints or complex environments, randomly choosing

the initial trajectories can be inefficient. In Chapter 6, we describe an efficient planning approach for

constrained motion planning using the roadmap precomputation.

84

CHAPTER 6

Constrained Trajectory Planning using Precomputed Roadmaps

6.1 Introduction

Robot manipulators are widely used in industrial applications. These include performing repeated

tasks such as spray painting, material removal, cutting, welding, gluing, etc. A key problem in these

applications is to ensure that the manipulator’s end-effector reaches some target position or follows

a given trajectory in its Cartesian coordinate frame. At the same time, the manipulator needs to

avoid collisions with the static and dynamic obstacles in the scene (i.e. collision avoidance) and also

avoid singular configurations (i.e. singularity avoidance). In addition, we need to ensure that the

resulting manipulator trajectory in the configuration space is smooth and satisfy other constraints

corresponding to limits on joint angles, velocities and accelerations. This is also referred to as

goal-seeking path planning with constraints (Ojdanić, 2009).

In this chapter, we address the problem of Cartesian planning for such redundant arms or

manipulators that can take into account various constraints highlighted above. We assume that there

is a gripper or end-effector attached to the robot and the Cartesian trajectory planning problem is

specified in terms of the position and the orientation of the end-effector. The underlying path planning

problem is specified as a trajectory in the workspace that the end-effector needs to follow (Guo and

Hsia, 1993). This constrains the position or orientation of the end-effector in the task space of the

robot, which corresponds to the Cartesian space.

Along with the Cartesian trajectory constraint, it is also important for high-DOF manipulators to

avoid kinematic singular configurations along the computed trajectory, which allows stable use of

control approaches to handle errors during the planned trajectory execution.

85

6.1.1 Main Results

In this chapter, we present a motion planning algorithm to compute smooth, collision-free, and

non-singular motions in challenging environments, while taking into account Cartesian trajectory

constraints of the end-effector. Our work builds on the parallel trajectory optimization algorithm

presented in Chapter 5. Instead of generating randomly chosen trajectories, we use a roadmap

precomputation step which computes multiple feasible and non-redundant initial trajectories for

the trajectory optimization. Our planner tries to minimize the trajectory cost function, which is

composed of the cost functions for the Cartesian trajectory constraints, kinematic singularity, and the

calculation of a collision-free path by taking into account static and dynamic obstacles. We have

evaluated our algorithm in static and dynamic environments with a 7-DOF KUKA LBR4+ robot.

6.1.2 Organization

The rest of this chapter is organized as follows. In Section 6.2, we give a brief overview of prior

work on motion planning with end-effector constraints. We present an overview of our planning

algorithm in Section 6.3. We describe the details of the precomputation of trajectories and the

trajectory optimization in Section 6.4 and 6.5, respectively. We highlight our algorithm’s performance

in different scenarios in Section 6.7 and provide the analysis of our algorithm in Section 6.6. We

direct the readers to the project webpage (http://gamma.cs.unc.edu/CaPlan/) for the

videos as well as the related publication (Park et al., 2015).

6.2 Related Work

The problem of path planning with Cartesian constraints can be specified with a Cartesian

trajectory that the end-effector must follow (Guo and Hsia, 1993; Oriolo and Mongillo, 2005; Torres

et al., 2014).

There are algorithms that try to directly compute motions in the task space of the robot. These

approaches use potential fields (Olabi et al., 2010), cell decomposition (Scheurer and Zimmermann,

2011), sampling-based planning (Bertram et al., 2006), or a reachable volume (McMahon et al.,

2015) in the task space of the robot, which is represented using Cartesian coordinates.

86

http://gamma.cs.unc.edu/CaPlan/

However, most of the approaches compute motion trajectories in the configuration space (Beren-

son et al., 2009; Stilman, 2007). Inverse kinematics solvers are used to convert an end-effector pose

to a corresponding configuration. For redundant robots, numerical solvers can be used to find a

solution (Baker and Wampler, 1988), while robot-specific closed-from solvers are used for improved

performance (Sharma et al., 2012).

Many techniques are based on Rapidly-exploring Random Trees (RRT) (Kuffner and LaValle,

2000). IKBiRRT (Berenson et al., 2009) generates bi-directional trees from multiple goal configu-

rations that satisfy the end-effector goal pose. Some approaches (Stilman, 2007; Jaillet and Porta,

2012; Kaiser et al., 2012) use a projection from a configuration to the nearest configuration which

satisfies the trajectory constraints, based on expanding the RRT tree.

6.3 Planning Algorithm

In this section, we introduce the notation and terminology used in the rest of the chapter and

give an overview of our planning algorithm.

6.3.1 Assumptions and Notations

In this chapter, we restrict ourselves to computing appropriate trajectories for high-DOF manipu-

lators, though it can also be used for human-like robots as well. For an articulated robot with n joints,

each configuration of the robot is defined by the joint angles. The n-dimensional vector space defined

by these parameters is used to define the configuration space C of the robot. We denote the subset

of C which is collision-free as Cfree, and the other configurations belong to the C-obstacle space,

Cobs. A pose of the end-effector is represented as a point in the end-effector coordinate frame, which

corresponds to a SE(3) Cartesian space, the six-dimensional space of rigid spatial transformations

in the 3D workspace W of the robot. In our constrained planning approach, it is required that

the end-effector follows a constraint trajectory c(t) in the task space frame T, which can be the

workspace or the end-effector coordinate frame. c(t) is defined with the all six-dimensions of T, or

with a lower-dimensional subspace of T. In this chapter, we denote a point in C using uppercase

letters such as Q, and a point inW with the task coordinate frame T as q. Their trajectories, which

are functions of time, are denoted as Q(t) and q(t), respectively.

87

We assume the robot has kinematic redundancy, which means n = dim(C) > dim(W) = 6.

Here dim() represents the dimensionality of the space. The redundancy allows that there are multiple

robot configurations that satisfy the Cartesian trajectory constraint.

Kinematic singularities of a manipulator correspond to the configurations when there is a change

in the number of instantaneous degrees of freedom. In our approach, we mainly deal with inverse

singularities (Bohigas et al., 2013a), which cause the end-effector to lose one or more instantaneous

DOFs. A robot configuration Q has inverse singularity if the rank of the 6 × n Jacobian matrix

J = ∂q
∂Q is less than 6. We represent the subset corresponding to the singular configurations in C as

Csingular. In other words Qsingular ∈ Csingular, if Qsingular corresponds to an inverse singularity.

In practice, Csingular is a manifold of lower dimensional in C (Bohigas et al., 2013b), and we avoid

configurations which are not only exactly in Csingular, but also close to Csingular. If a configuration

is close to a singular configuration, the corresponding Jacobian matrix J becomes ill-conditioned,

which is not a desired configuration. We define the near-singular space Csingular+ , which is a subset

of C that the distance to the closest singular configuration is smaller than a value ε. We can determine

a configuration Q is near-singular if the smallest singular value is less than a threshold ε. i.e.,

J(Q) = USVT (6.1)

S6,6 < ε, (6.2)

where USVT is a singular value decomposition of J(Q), and U, S, and V are a n× 6 orthonormal

matrix, a 6 × 6 diagonal matrix, and a 6 × 6 matrix, respectively. S6,6 represents the value in the

sixth row and the sixth column of S, i.e., the smallest singular value.

Our goal is to find a continuous, collision-free, and non-singular trajectory Q∗(t) that the end-

effector follows the given trajectory constraint c(t). Q∗(t) tends to be smooth, minimizes the joint

acceleration along the trajectory and satisfies constraints corresponding to the joint position, velocity,

and acceleration limits.

88

Trajectory

Optimization

Planner

Scheduler

Robot

Controller

Static

Obstacles

Final

Trajectory

Dynamic

Obstacles

Planning

Request

Robot

Kinematic

Constraints

Precomputation Runtime Trajectory Refinement

c(t)

Q*(t)
P1

P2

PM

Qgoal

Compact

Roadmap

Figure 6.1: An overview of our planning algorithm. The roadmap precomputation takes into account
static obstacles and singularity constraints. For a given planning request, M paths P 1, ..., PM are
computed using graph search. The computed paths are converted to trajectories, and then refined
using trajectory optimization.

6.3.2 Algorithm Overview

Fig. 6.1 gives an overview of our planning algorithm. The algorithm is decomposed into the

roadmap precomputation step and the runtime trajectory refinement step.

In the precomputation step, we only take into account the static obstacles in the scene. The

one-time precomputation of a roadmap is used to make the runtime planning efficient. In order

to handle multiple queries, we use a Probabilistic Roadmap (PRM) (Kavraki et al., 1996)-based

approach to construct a roadmap graph G on the configuration space C. However, the probabilistic

approach of the original PRM generates a redundant dense graph, as many paths converge to the

same solution with the trajectory optimization. Therefore, we compute a compact, and non-redundant

roadmap G in the configuration space C using visibility checks to discard redundant nodes and

edges, and using redundancy checks to discard redundant paths (Jaillet and Siméon, 2008). When we

construct the roadmap G, we only consider configurations that belong to Cfree and do not belong to

Csingular+ . Furthermore, we also ensure that the edges of G satisfy these properties with respect to

the free space and the singular space. This can be performed using discrete algorithms (Gottschalk

et al., 1996) with a certain resolution or continuous algorithms (Redon et al., 2002), depending on

the required accuracy. Therefore, any path in the roadmap has no near-singular configuration and

provides full dexterity or degrees-of-freedom motion for the end-effector along the path.

89

Csingular+

Csingular+

Cobs

Cobs

Cobs

Cobs

(a) A configuration space

Qinit

P1

P2

P3

qgoal

(b) Multiple path selection

Figure 6.2: (a) Classification of the Configuration space. The obstacle space Cobs consists of
disconnected regions, and the near-singular space Csingular+ is a region that the distance to the
closest singular configuration is smaller than a value ε. (b) A roadmap graph built on Fig. 6.2(a) and
multiple paths are shown. The nodes and edges on the graph are collision-free and correspond to
non-singular configurations. For a path query from an initial configuration Qinit to the goal region
qgoal (shown in dark gray region), different non-deformable paths P1, P2, and P3 are shown in the
graph.

At runtime, we compute trajectories for constrained planning queries by refinement of selected

initial trajectories from the precomputed roadmap G. The selection of multiple non-redundant paths

increases the coverage of the planning algorithm. Each planning request has a workspace goal region

qgoal, which can be a single end-effector pose or a set of poses, and the end-effector constraint c(t).

The current configuration is used as the initial configuration Qinit to compute the trajectory. Also,

there can be dynamic obstacles which are not considered in the precomputation step, but the robot

can avoid collisions with its redundant DOFs while satisfying the end-effector Cartesian trajectory

constraint.

6.4 Roadmap Precomputation and Multiple Path Selection

In this section, we describe the roadmap precomputation and our novel multiple path selection

algorithm.

90

6.4.1 Roadmap Precomputation

In the precomputation step, we build a roadmap graph G by adding nodes, which are configura-

tions that lie in C. We use nodes and edges which have no collisions, and we also want they are not

near-singular configurations. Fig. 6.2(a) illustrates the configuration space. Given these criteria, we

compute a roadmap G based on Path Deformation Roadmap algorithm (Jaillet and Siméon, 2008).

The algorithm first computes a compact tree-like roadmap, then adds additional nodes and edges

that correspond for paths which are difficult to be deformed from the existing paths in the tree-like

roadmap. Fig. 6.2(b) shows an example of the generated compact roadmap which is collision-free

and non-singular. The computed roadmap has the smallest number of nodes which are necessary to

keep the coverage of the roadmap.

Algorithm 2 {P 1,P 2,...,PM}=MulPath(G, Qinit, qgoal)
: Extract M non-redundant paths from a roadmap graph G

Input: roadmap graph G={V,E}, the start configuration Qinit, the goal region qgoal
Output: M non-redundant paths P 1, ..., PM that start from Qinit to a configuration Qgoal which

corresponds to the goal region qgoal
1: Einit = ∅, Vgoal = ∅, Egoal = ∅
2: for all node n ∈ V do
3: if visibleNode(n,Qinit) then
4: Einit.insert(n,Qinit)
5: end if
6: end for
7: E′ = E ∪Einit, V′ = V ∪Qinit, ntry = 0
8: while ntry < ntrymax do
9: Qgoal = randomIK(qgoal)

10: ntry = ntry + 1
11: // Do not add redundant nodes
12: if Vgoal.hasV isibleNode(Qgoal) then
13: continue
14: end if
15: for all node n ∈ V′ do
16: if visibleNode(n,Qgoal) then
17: if Qgoal /∈ Vgoal then Vgoal.insert(Qgoal)
18: end if
19: Egoal.insert(n,Qgoal)
20: end if
21: end for
22: end while
23: E′ = E ∪Egoal, V′ = V ∪Vgoal

24: {P 1, ..., PM} = shortestPaths(M,V′,E′,Qinit,Vgoal}

91

6.4.2 Multiple Path Selection

When a roadmap is used to compute a path between the initial and goal positions, typically

the shortest path in the roadmap graph between Qinit and Qgoal is returned as a single solution

path. However, as we compute roadmap with collision-free and non-singular constraints which

are invariant with multiple planning requests, this shortest path in the graph may not converge to a

feasible solution in terms of trajectory optimization, due to the additional constraints. Moreover, the

goal position is specified as a workspace goal region qgoal, rather than a single configuration Qgoal

in C-space. Therefore, we extract M different paths from the precomputed roadmap G, which can

cover different goal configurations. Fig. 6.2(b) illustrates the multiple path selection.

The resulting our novel algorithm for computing non-redundant multiple paths is given in

Algorithm 2. We first add edges between Qinit and visible nodes in the roadmap G (line 4). For the

given goal region qgoal, we choose a random pose and compute a random IK solution Qgoal for that

pose (line 9). Note that the mapping from a pose to a configuration is one to many for redundant

robots. If there is a goal configuration in the graph which is visible from Qgoal, Qgoal is redundant

and therefore not added to the graph (line 12). If there are no other goal configurations visible from

Qgoal, Qgoal is added as a node and all possible edges from Qgoal to nodes in G are added. For the

nodes and edges in G and Qinit, Vgoal, Einit and Egoal, we compute M shortest paths {P 1, ..., PM}

from Qinit to any of the goal configurations using graph search algorithms (Eppstein, 1998). These

paths are used to generate multiple initial trajectories for the trajectory refinement computation as

described in Section 6.5.

6.5 Parallel Trajectory Refinement

In this section, we give the details of the runtime trajectory refinement, which include initial

trajectory generation and the trajectory optimization with the Cartesian planning constraints.

6.5.1 Initial Trajectory Generation

At runtime, the planner computes M paths P 1, ..., PM from the precomputed roadmap as

described in 6.4.2 and generates trajectories Q1(t), ..., QM (t) from the paths. For each P i, we

discretize the path by adding N internal waypoints, based on uniform time intervals and distances

92

along P i. the trajectory Qi(t) is computed using the cubic interpolation of N + 2 (including the

two end points) waypoints. The interpolation step allows the trajectory optimization to start from a

smooth trajectory. The trajectories are used as initial trajectories in the trajectory refinement step,

and by optimizating M trajectories in parallel, we increase the probability of success in terms of

finding a feasible or optimal solution to all the constraints.

6.5.2 Trajectory Optimization with Cartesian Planning Constraints

We use the parallel trajectory optimization algorithm proposed in Chapter 5 as the underlying

planning algorithm. The approach refines the positions of internal waypoints {Q1, ...,QN} of each

trajectory Qi(t) by minimizing the cost function to compute the optimal trajectory:

Q∗(t) = arg min
Q1,...,QN

N∑
k=1

(C(Qk) + ‖Qk−1 − 2Qk + Qk+1‖2), (6.3)

where the term C(Qk) represents the cost function for a waypoint configuration Qk, and the second

term ‖Qk−1 − 2Qk + Qk+1‖2 represents the smoothness of the entire trajectory. The waypoint

smoothness is computed based on the finite-difference accelerations on the joint trajectories. The two

end-point configurations Qinit and Qgoal are used as Q0 and QN+1, respectively in the smoothness

computation.

We formulate the waypoint cost functionC(Qk) of our Cartesian planning problem to include the

costs for the collision constraint, the singularity constraint, and the end-effector Cartesian trajectory

constraint for a waypoint Qk. These costs can be expressed as

C(Qk) =wCollision · CCollision(Qk) + wSingularity · CSingularity(Qk)

+wCartesian · CCartesian(Qk),

(6.4)

where wi represents the weight of each cost. The weights can be optimized to find the best values.

1. Collision cost: CCollision(Qk) represents collision cost for both static and dynamic obstacles.

A feasible solution should satisfy CCollision(Qk) = 0 for all Qk, which means the trajectory

has no collisions. Euclidean Distance Transform and the squared sum of the penetration depths

93

between the robot and the environment obstacles are used to compute the costs correspond to

static and dynamic obstacles, respectively (see Chapter 5).

2. Singularity cost: CSingularity(Qk) represents the cost for near-singular configurations. It

allows the robot to have the full dexterity of the end-effector. As we discussed in Section 6.3,

it can be evaluated using the singular values of the Jacobian matrix J(Qk). From the singular

value decomposition of (6.1),

CSingularity(Qk) = max(0,
1

S6,6
− 1

ε
)2 (6.5)

adds a penalty cost for near-singular configurations, i.e., S6,6 < ε.

3. Cartesian trajectory cost: CCartesian(Qk) represents the cost from the violation of the Carte-

sian trajectory constraint, which is specified by the end-effector trajectory c(t). The error ∆x

is computed from the poses of c(t) and Qk at the time of waypoint qk,

∆x(Qk) = c(tk)−Cqk, (6.6)

where tk represents the time at qk, and qk represents the end-effector pose that corresponds to

Qk. C is a d× 6 selection matrix, where d = dim(c(t)) which selects only the constrained

elements of Qk. In many problems, there is a tolerance vector tol defined in the same

dimension with c(t). Therefore the cost function is defined as,

CCartesian(Qk) =
∑
d

max(0, |∆x(Qk)d| − told)
2, (6.7)

where ∆x(Qk)d and told represents the d-th element of each vector.

The joint limit constraints can be formulated as an additional cost function. However, in our

optimization formulation, we use the smooth projection method to remove the joint violations. We

rescale the trajectory update of each iteration to ensure that each joint value in the trajectory is within

the joint limits.

94

6.6 Benefits of Parallelization

The runtime optimization problem in (6.3) has n ·N degrees of freedom (7 · 100 in our experi-

ments). Extending the analysis in Chapter 5, we can show that the use of multiple non-redundant

trajectories increases the success rate of planning using the following theorem.

Theorem 6.1. With a precomputed roadmap which has K different paths from Qinit to Qgoal, the

parallel optimization of M non-redundant initial trajectories will compute a feasible solution with

the probability (1 −
K∑
i1

K∑
i2

...
K∑
iM

|Ai1
||Ai2

|...|AiM
|

|S|M), where S is the entire search space, Ai is the

neighborhood around a solution where the optimization converges to unfeasible local optima, and i

are unique, i.e., ij 6= ik if j 6= k. | · | is the measurement of the search space.

Proof. In our planner, initial trajectories lie in the neighborhoods of different local optima and do not

converge to the same solution, as they are chosen from the non-redundant roadmap. The probability

that one of M trajectories lies in the neighborhood of a feasible solution is 1− (the probability that

all M trajectories lie in the neighborhood of unfeasible solutions).

The probability that a trajectory lies in the neighborhood ofK unfeasible local optima is
K∑
i1

|Ai1
|

|S| ,

where Ai1 is the neighborhood of i1-th local optimum. We choose a path different from the previous

one for the second trajectory, and the probability that it is also lie in the neighborhood of unfeasible

solutions is
K∑
i1

K∑
i2

|Ai1
||Ai2

|
|S|2 , i1 6= i2. Similarly, (

K∑
i1

K∑
i2

...
K∑
iM

|Ai1
||Ai2

|...|AiM
|

|S|M , ij 6= ik if j 6= k)

measures the probability that M trajectories lie in the neighborhood of each unfeasible local optima

Ai1 , Ai2 , ..., AiM . If the number of unfeasible local optima is less than M , the probability becomes

0 as one of the non-redundant trajectories should be in a neighborhood of feasible local optima.

It is not possible to measure the exact value of each |Ai| in the configuration space C, but it

can be expected that |Ai| will be smaller as the environment becomes more complex. Since |Ai|
|S| is

always less than 1, the increasing number of optimized trajectories M increases the probability that

the planner computes a feasible solution.

6.7 Results

In this section, we describe the implementation of our planning algorithm and present the results

for different scenarios. We have used our algorithm for the KUKA LBR4+ robot (Fig. 6.7). The

95

M : Number of Trajectories
Benchmarks 1 2 4 8

Benchmark 1

Iterations 1498.35 1354.71 1023.65 1040.28
Planning

time
23.80s 20.75s 15.48s 15.02s

Success
rate

70.00% 90.00% 90.00% 100%

Benchmark 2

Iterations 1635.95 1245.84 1141.41 943.73
Planning

time
25.84s 18.02s 15.54s 14.13s

Success
rate

80.00% 90.00% 100.00% 100.00%

Table 6.1: Planning results for our benchmarks. We measure the number of iterations for the trajectory
optimization; planning time; success rate of the planning. We classify the planner as a success if it
can find a solution in the maximum iteration limit (2000). As we increase M, the reliability of the
planner improves with respect to various constraints.

robot has redundant DOFs (7 joints), and each joint has minimum and maximum angle limits. We

use MoveIt (Sucan and Chitta, 2013) for both the simulation environment and the interface to the

real robot. We set the variables for planning: the number of internal waypoints in a trajectory

N = 100, the singular value threshold ε = 10−3. The weights for the cost functions in (6.4) are

set as wCollision = 100.0, wSingularity = 1.0, wCartesian = 1.0. We evaluate the performance of

our planning algorithm on two sets of static benchmarks. Timing results were generated on a PC

equipped with an Intel i7-2600 8-core CPU 3.4GHz. We use discretized collision and singularity

checking at a fixed resolution for all experiments, but they can be replaced by continuous checking

algorithms. For static benchmarks, the optimization terminates when one of the trajectories becomes

feasible, which means the trajectory is collision-free, non-singular, and satisfies the end-effector

constraints.

6.7.1 Planning with Orientation Constraints

Our first benchmark (Fig. 6.3) corresponds to planning a trajectory with an orientation trajectory

constraint on the end-effector. There are several static obstacles near the robot that restrict the pose

of the robot. There is a tool attached to the robot, and the tool is only allowed to rotate along the

Z-axis during the trajectory optimization. The X- and Y- axis of rotations of the end-effector are

96

(a) The benchmark environment and the start
(green) and goal (blue) poses

(b) The computed trajectory of the robot

Figure 6.3: Benchmark 1 computes a trajectory for end-effector constraints for X- and Y- axis
rotations. (a) The start (green) and goal (blue) poses are shown. (b) The computed trajectory is
shown.

(a) Plot of joint values computed using our ap-
proach

(b) Plot of joint values computed using Moveit
and RRT*

Figure 6.4: Plots of joint values for the computed trajectory of Benchmark 1. (a) All joint values in
the trajectory are smooth. (b) There are points that the joint values suddenly change.

(a) The end-effector position trajectory constraint (b) The computed trajectory of the robot

Figure 6.5: Benchmark 2 is following a trajectory defined for end-effector positions. (a) The
environment and the constraint trajectory (blue path) are shown. (b) The computed trajectory is
shown.

97

constrained to be less than the tolerance = 5°. The planning seems to be an easy problem, however

the C-space has many narrow passages due to the robot joint limits and the static obstacle positions.

We compute the constrained trajectories for six planning queries with different start and goal

pairs. Table 6.1 summarizes the planning results that each value is averaged with 10 trials. We

measure the number of iterations, the planning time, and the success rate of the planner for the

number of trajectories M = 1 to 8. We assume that a planner fails if the number of iterations

reach the max iteration limit, set as 2000. It shows that increasing M reduces the planning time

and increases the success rate of the planner. But when M becomes greater than 8, the maximum

number of CPU cores, the planner can take more time. Because the parallel computations share the

computational resources, increasing the number of trajectories beyond 8 may slow down the overall

approach. Fig. 6.7 shows the execution of this benchmark on a real KUKA LBR4+ robot.

Comparison with Sample-based Planners: We also compute a solution to the same con-

strained planning problem with the constraint planner available as part of MoveIt. We use RRT and

RRT* as the base planner for the constrained planning. RRT takes 274.399 seconds to compute

a solution with the end-effector constraint. RRT* tends to spend the maximum planning time to

improve the solution after a solution is found, and we set the maximum planning time of RRT* as

600 seconds. Fig. 6.4 shows the comparison of the the computed trajectories. RRT* computes shorter

solution than RRT, but while our approach computes a smooth trajectory, the trajectories computed

from constrained planning of Moveit framework have discontinuous points due to the redundant IK

solutions.

6.7.2 Planning with Position Constraints

Our second benchmark (Fig. 6.5) corresponds to planning a trajectory with a position that

trajectory that the end-effector needs to follow. The orientation of the end-effector is not constrained.

We compute constrained trajectories for three planning queries with different start and goal pairs.

The planning results are shown in Table 6.1. Like the benchmark 1, the planning result shows 100%

success rate with 8 trajectories.

98

(a) Depth map images captured using Kinect for
a human obstacle

(b) 3D octomap obstacles constructed from the
depth map

Figure 6.6: Dynamic environments: (a) We capture the depth map of a scene with a human arm
approaching the arm using a Kinect. (b) 3D octomap is constructed from the depth-map, which is
used as obstacle in the trajectory optimization.

M : Number of Trajectories
Benchmarks 1 2 4 8

Benchmark 1
Success

rate
20.00% 50.00% 60.00% 80.00%

Benchmark 2
Success

rate
30.00% 40.00% 80.00% 90.00%

Table 6.2: Planning results for the benchmarks with dynamic obstacles. As we increase M, the
success rate of the planner improves.

99

Figure 6.7: Demonstration of our constrained planning algorithm in a static environment with KUKA
LBR4+ robot.

6.7.3 Constrained Planning in Dynamic Environments

In order to test the planner with dynamic obstacles, we captured depth map images of human

obstacles in the scene using the Kinect (Fig. 6.6(a)) and construct the 3D octomap (see Fig. 6.6(b)).

We use the octomap data with runtime trajectory optimization as dynamic obstacles. In the dynamic

benchmark, the planner repeatedly updates the trajectory until the robot end-effector reaches the

workspace goal region. We highlight the performance of the previous two benchmark scenes where a

human moves his arms near the robot arm at a slow pace. As shown in Table 6.2, the success rate of

the planner increases as we increase the number of trajectories.

6.8 Conclusions

In this chapter we present a parallel constrained planning algorithm for end-effector trajectory

constraints. We use a two step approach : the precomputation step and the trajectory refinement

step. In the precomputation step, we compute multiple trajectories that satisfy the collision-free and

non-singular constraints from static obstacles. The trajectories are used as initial trajectories for the

trajectory refinement step. Our planner optimizes the trajectories in the dynamic environment, using

cost functions of the constraints. Therefore, our parallel planning algorithm tends to compute the

trajectories that are smooth, collision-free, non-singular, and follow the given Cartesian trajectory

of the end-effector. We validate our algorithm with several benchmark scenarios using a redundant

KUKA manipulator. The results have been tested on the robot hardware (Fig. 6.7).

100

CHAPTER 7

Handling Environment Uncertainty using Probabilistic Collision Detection

7.1 Introduction

Robots are increasingly being used in living spaces, factories, and outdoor environments. In

such environments, parts of the robot tend to be in close proximity to humans or other moving

objects. This proximity gives rise to two kinds of challenges in terms of motion planning. First, we

have to predict the future actions and reactions of moving obstacles or agents in the environment to

avoid collisions with the obstacles. Therefore, the collision avoidance algorithm needs to deal with

uncertain and imperfect representations of obstacle motions. Second, the computed robot motion still

needs to be reasonably efficient and all such collision computations have to be performed at almost

realtime rates.

Various uncertainties arise from control errors, sensing errors, or environmental errors (i.e.

imperfect environment representation) in the estimation and prediction of environment obstacles.

Current motion planning algorithms use probabilistic collision detection algorithms to compute

appropriate trajectories with imperfect obstacle representations.

Many of the stochastic algorithms used to approximate the collision probability (Blackmore,

2006; Lambert et al., 2008) tend to be computationally expensive or limited to 2D workspaces.

Therefore, most prior planning approaches for high-DOF robots perform exact collision checking

or distance computation with scaled objects that enclose the potential object volumes, based on the

probability distribution of the object pose (Bry and Roy, 2011; Van den Berg et al., 2012; Lee et al.,

2013; Sun et al., 2015b). Although these planning approaches can guarantee probabilistic safety

bounds, they tend to overestimate the collision probability. This overestimation can either result in

less optimal trajectories or may fail to compute a feasible trajectory in the limited planning time in

dynamic scenes (Patil et al., 2012). Therefore, it is desirable to balance the safety and efficiency in

terms of the planned trajectory.

101

7.1.1 Main Results

In this chapter, we present a novel approach to perform probabilistic collision detection with

the imperfect information about the moving obstacles. Our approach has two novel contributions.

First, we present an algorithm for fast approximation of collision probability between the high-DOF

robot and obstacles. Our approximation computes more accurate probabilities as compared to prior

approaches that perform exact collision checking with enlarged obstacle shapes. Moreover, we can

guarantee that our computed probability is an upper bound on the actual probability. Second, we

describe a practical belief space estimation algorithm that accounts for both spatial and temporal

uncertainties in the position and motion of each obstacle in dynamic environments with moving

obstacles. Moreover, we present a trajectory optimization algorithm for high-DOF robots in dynamic,

uncertain environments, which integrates the probabilistic collision detection with ITOMP planning

algorithm (see Chapter 2). We have evaluated our planner using 7-DOF robot arms operating in a

simulation and a real workspace environment with high-resolution point cloud data corresponding to

moving human obstacles, captured using a Kinect.

7.1.2 Organization

This chapter is organized as follows. Section 7.2 gives a brief overview of prior work on

probabilistic collision detection and motion planning under uncertainties. We introduce the notation

and describe our probabilistic collision detection algorithm in Section 7.3. We describe the belief

space estimation and trajectory planning algorithm in Section 7.4 and Section 7.5, respectively.

We highlight planning performance in challenging human environment scenarios in Section 7.6.

We direct the readers to the project webpage (http://gamma.cs.unc.edu/ITOMP/) for the

videos as well as the related publication (Park et al., 2016a).

7.2 Related Work

In this section, we give a brief overview of prior work on probabilistic collision detection and

motion planning under uncertainties.

102

http://gamma.cs.unc.edu/ITOMP/

7.2.1 Probabilistic Collision Detection

Collision detection is an integral part of any motion planning algorithm and most prior techniques

assume an exact representation of the robot and obstacles. Given some uncertainty or imperfect

representation of the obstacles, the resulting algorithms perform probabilistic collision detection.

Typically, these uncertainties are modeled using Gaussian distributions and stochastic techniques are

used to approximate the collision probability (Blackmore, 2006; Lambert et al., 2008). In stochastic

algorithms, a large number of sample evaluations is required to compute an accurate collision

probability.

If it can be assumed that the sizes of the objects are relatively small, the collision probability

between objects can be approximated using the probability at a single configuration and corre-

sponds to the mean of the probability distribution function (PDF), which provides a closed-form

solution (Du Toit and Burdick, 2011). This approximation is fast, but the computed probability

cannot provide a bound; i.e. it can be higher or lower than the actual collision probability, and the

error increases as the object becomes larger.

For high-dimensional spaces, a common approach to check collisions for imperfect or noisy ob-

jects is to perform exact collision checking with a large volume that encloses the object poses (Van den

Berg et al., 2012). Prior approaches generally enlarge an object shape, which may correspond to a

robot or an obstacle, to compute the space occupied by the object for a given standard deviation.

This may correspond to an ellipsoid (Bry and Roy, 2011) or a sigma hull (Lee et al., 2013). However,

the computed volume overestimates the probability and can be much bigger than the actual volume

corresponding to the confidence level, which can result in a failure to find existing feasible trajectories

for motion planning. Patil et al. use correlations between the a priori probability distributions of the

robot states to estimate more accurate collision probabilities (Patil et al., 2012).

Other approaches have been proposed to perform probabilistic collision detection on point cloud

data. Bae et al. (2009) presented a closed-form expression for the positional uncertainty of point

clouds. Pan et al. (2011) reformulated the probabilistic collision detection problem as a classification

problem and computed per point collision probability. However, these approaches assume that the

environment is mostly static. Other techniques are based on broad phase data structures that handle

large point clouds for realtime collision detection (Pan et al., 2013).

103

7.2.2 Planning in Dynamic and Uncertain Environments

The unknown future obstacle positions are one of the source of uncertainties. POMDPs (partially-

observable Markov decision processes) provide a mathematically rigorous and general approach for

planning under uncertainty (Kaelbling et al., 1998). They handle the uncertainty by reasoning over

the belief space. However, The POMDP formulation is regarded as computationally intractable (Pa-

padimitriou and Tsitsiklis, 1987) for problems that are high-dimensional or have a large number

of actions. Many efficient approximations use Gaussian belief spaces, which are estimated using

Bayesian filters (e.g., Kalman filters) (Leung et al., 2006; Platt Jr et al., 2010). Gaussian belief spaces

have also been used for the motion planning of high-DOF robots (Van den Berg et al., 2012; Sun

et al., 2015b), but most planning algorithms do not account for environment uncertainty or imperfect

obstacle information. In terms of dynamic environments, planning with uncertainty algorithms are

mainly limited to 2D spaces (Du Toit and Burdick, 2012; Bai et al., 2015).

7.3 Probabilistic Collision Detection for High-DOF Robots

In this section, we first introduce the notation and terminology used in this chapter, and present

our probabilistic collision detection algorithm between a high-DOF robot and the dynamic environ-

ment.

7.3.1 Notation and Assumptions

Our goal is to compute the collision probability between a high-DOF robot configuration and

a given obstacle representation of dynamic environments, where the obstacle representation is a

probability distribution that accounts for uncertainties in the obstacle motion.

For an articulated robot with D one-dimensional joints, we represent a single robot configuration

as q, which is a vector composed of the joint values. The D-dimensional vector space of q is the

configuration space C of the robot. We denote the collision-free subset of C as Cfree, and the other

configurations corresponding to collisions as Cobs.

We assume that the robot consists of J links R1, ..., RJ , where J ≤ D. Furthermore, for each

robot link Rj , we use a sequence of bounding volumes Bj1, ..., BjK to tightly enclose Rj(q), which

104

corresponds to a robot configuration q, i.e.,

∀j : Rj(q) ⊂
K⋃
k=1

Bjk(q) for (1 ≤ j ≤ J). (7.1)

We represent obstacles in the environment as Ol (1 ≤ l ≤ L), and assume that the obstacles

undergo rigid motion. The configuration of these obstacles is specified based on their poses. As is

the case for the robot, we use the bounding volumes Sl1, ..., SlM to enclose each obstacle Ol in the

environment:

∀l : Ol ⊂
M⋃
m=1

Slm for (1 ≤ l ≤ L). (7.2)

For dynamic obstacles, we assume the predicted pose of a bounding volume Slm at time t is estimated

as a Gaussian distribution N (plm,Σlm) (see Section 7.4).

7.3.2 Fast and Bounded Collision Probability Approximation

The collision probability between a robot configuration qi with the environment at time ti,

P (qi ∈ Cobs(ti)) can be evaluated by checking their bounding volumes for possible overlaps, which

can be formulated as

P (qi ∈ Cobs(ti)) = P

⋃
j

⋃
k

Bjk(qi)

⋂(⋃
l

⋃
m

Slm(ti)

)
6= ∅

 . (7.3)

We assume the robot links Rj and obstacles Ol are independent of each other, as their poses depend

on corresponding joint values or obstacle states. Then (7.3) can be computed as

P (qi ∈ Cobs(ti)) = 1−
∏
j

∏
l

Pcol(i, j, l), (7.4)

where Pcol(i, j, l) is the collision probability between Rj(qi) and Ol(ti). Because poses of bounding

volumes Bjk and Slm are determined by joint values or obstacle states of the corresponding robot

link or obstacle, bounding volumes for the same object are dependent on each other, and Pcol(i, j, l)

105

r1 + r2ojk(qi)

(plm,Σlm)
xmax

Figure 7.1: Approximation of probabilistic collision detection between a sphere obstacle of radius r2

with a probability distribution N (plm,Σlm) and a rigid sphere robot Bjk(qi) centered at ojk(qi)
with radius r1. It is approximated as V · xmax, where V is the volume of the sphere with the radius
computed as the sum of two radii, V = 4π

3 (r1 + r2)3, and xmax is the position which has the
maximum probability of N (plm,Σlm).

can be approximated as

Pcol(i, j, l) ≈ max
k,m

Pcol(i, j, k, l,m) (7.5)

Pcol(i, j, k, l,m) = P (Bjk(qi) ∩ Slm(ti) 6= ∅), (7.6)

where Pcol(i, j, k, l,m) denotes the collision probability between Bjk(qi) and Slm(ti).

Fig. 7.1 illustrates how Pcol(i, j, k, l,m) can be computed for Slm(ti) ∼ N (plm,Σlm). If we

assume that the robot’s bounding volume Bjk(qi) is a sphere centered at ojk(qi), similar to the

environment bounding volume Slm, and denote the radii of Bjk and Slm as r1 and r2, respectively,

the exact probability of collision between them is given as:

Pcol(i, j, k, l,m) =

∫
x
I(x,ojk(qi))p(x,plm,Σlm)dx, (7.7)

where the indicator function I(x,o) and the obstacle function p(x,p,Σ) are defined as,

I(x,o) =

1 if ‖x− o‖ ≤ (r1 + r2)

0 otherwise
and (7.8)

106

p(x,p,Σ) =
e−0.5(x−p)T Σ−1(x−p)√

(2π)3‖Σ‖
, (7.9)

respectively. It is known that there is no closed form solution for the integral given in (7.7).

Du Toit and Burdick (2011) approximate (7.7) as V · p(ojk(qi),plm,Σlm), where V is the

volume of the sphere, i.e., V = 4π
3 (r1 + r2)3. However, this approximated probability can be

either smaller or larger than the exact probability. If the covariance Σlm is small, the approximated

probability can be much smaller than the exact probability. Planners using this approximation may

underestimate the collision probability and may compute unsafe robot motion.

In order to avoid this problem, we compute xmax, the position that has the maximum probability

of N (plm,Σlm) in Bjk(qi), and compute the upper bound of Pcol(i, j, k, l,m) as

Papprox(i, j, k, l,m) = V · p(xmax,plm,Σlm). (7.10)

Although xmax has no closed-form solution, it can be computed efficiently using numerical tech-

niques.

Lemma 7.1. xmax, the position has the maximum probability of N (plm,Σlm) in Bjk(qi), is

formulated as a one-dimensional search of a parameter λ,

xmax = {x|‖x− ojk(qi)‖ = (r1 + r2) and x ∈ x(λ)} ,where (7.11)

x(λ) = (Σ−1
lm + λI)−1(Σ−1

lmplm + λojk(qi)). (7.12)

Proof. The problem of finding the position with the maximum probability in a convex region can be

formulated as an optimization problem with a Lagrange multiplier λ (Groetsch, 1984),

xmax = arg min
x

{
(x− plm)TΣ−1

lm(x− plm) + λ(x− ojk)
2
}
. (7.13)

The solution of (7.13) satisfies

O
{

(x− plm)TΣ−1
lm(x− plm) + λ(x− ojk)

2
}

= 0, (7.14)

107

and can be computed as

2Σ−1
lm(x− plm) + 2λ(x− ojk) = 0 (7.15)

x = (Σ−1
lm + λI)−1)(Σ−1

lmplm + λojk). (7.16)

The approximated probability (7.10) is guaranteed as an upper bound of the exact collision

probability (7.7).

Theorem 7.1. The approximated probability Papprox(i, j, k, l,m) (7.10) is always greater than or

equal to the exact collision probability Pcol(i, j, k, l,m) (7.7).

Proof. p(xmax,plm,Σlm) ≥ p(x,plm,Σlm) for {x|‖x− ojk(qi)‖ ≤ (r1 + r2)} from Lemma 7.1.

Therefore,

Papprox(i, j, k, l,m) = V · p(xmax,plm,Σlm) (7.17)

=

∫
x
I(x,ojk(qi))dx · p(xmax,plm,Σlm) (7.18)

=

∫
x
I(x,ojk(qi)) · p(xmax,plm,Σlm)dx (7.19)

≥
∫

x
I(x,ojk(qi)) · p(x,plm,Σlm)dx (7.20)

= Pcol(i, j, k, l,m). (7.21)

7.3.3 Comparisons with Other Algorithms

In Fig. 7.2, we illustrate two cases of the collision probability computation between a circle B

(in gray), and a point (in black) with uncertainties, x ∼ (p,Σ), in 2D. We evaluate the exact collision

probabilities using the numerical integration of the PDF. The collision probability of Case I is 0.09%,

which is feasible with δCL = 0.99, while the probability of Case II is 1.72%, which is infeasible.

The contours in Fig. 7.2 represent the bounds for different confidence levels. Approaches that use

enlarged bounding volumes for a given confidence level (e.g., the blue ellipse for δCL = 0.99)

108

(a) Case I (b) Case II

Algorithms
Collision probability

(O : feasible, X : infeasible)
Case I Case II

Exact probability 0.09%(O) 1.72%(X)
Enlarged bounding volumes
(Van den Berg et al., 2012)

100.00%(X) 100.00%(X)

Approximation using the center point PDF
(Du Toit and Burdick, 2011)

0.02%(O) 0.89%(O)

Our approach 0.80%(O) 8.47%(X)

Figure 7.2: Comparison of approximated collision probabilities for feasible (P (x) ≤ 1− δCL)
and infeasible (P (x) > 1 − δCL) scenarios for δCL = 0.99: We compare the exact collision
probability (computed using numerical integration) with approximated probabilities of 1) enlarged
bounding volumes (blue contour) (Van den Berg et al., 2012), 2) approximation using object center
point (in green) (Du Toit and Burdick, 2011), and 3) our approach that uses the maximum probability
point (in red). Our approach guarantees that we do not underestimate the probability, while our
approximated probability is close to the exact probability.

determine both Case I and Case II have collisions and infeasible, i.e., the collision probability is

100%, while the collision probability for Case I is only 0.09%. For example, Van den Berg et

al. (2012) checks intersections between the robot and the transformed obstacles (LQG-obstacles) in

the configuration space of the robot.

Du Toit and Burdick (2011) used the probability of the center point (shown in green in Fig. 7.2)

to compute a collision probability that is close to the actual value. However, their approach cannot

guarantee upper bounds, and the approximated probability can be significantly smaller than the

exact probability if the covariance value is small. Case II in Fig. 7.2 shows that the approximated

probability is 0.89%, and that satisfies the safety with δCL = 0.99 and determines Case II as a

feasible configuration, which is not true for the exact probability 1.72%.

Unlike (Du Toit and Burdick, 2011), we approximate the probability of the entire volume

using the maximum probability value of a single point (shown in red in Fig. 7.2), as described in

Section 7.3.2. Our approach guarantees computation of the upper bound of collision probability,

while the approximated probability is closer to the exact probability than of the enlarged bounding

volume approaches.

7.4 Belief State Estimation

In this section, we describe our approach for computing the current state p of environment

obstacles, and use that to estimate the current belief state bt and future states bi (i > t), which are

109

represented as the probability distributions. We construct or update the belief state of the environment

b = (p,Σ) using means and covariances pij and Σij of the poses of the existing bounding volumes

Sij . That is, p =

[
pT11 ... pTlm

]T
and Σ = diag(Σ11, ...,Σlm), where Σ is a block diagonal

matrix of the covariances.

7.4.1 Environment State Model

In order to compute reliable obstacle motion trajectories in dynamic environments, first it

is important to gather the state of obstacles using sensors. There is considerable work on pose

recognition in humans (Plagemann et al., 2010; Shotton et al., 2013) or non-human objects (Lepetit

et al., 2005) in computer vision and related areas.

Figure 7.3: Environment belief state estimation for a human obstacle: We approximate the point
cloud from the sensor data using bounding volumes. The shapes of bounding volumes are pre-known
in the database, and belief states are defined on the probability distributions of bounding volume
poses: (a) input point clouds (blue dots). (b) the bounding volumes (red spheres)with their mean
positions (black dots). (c) the probabilistic distribution of mean positions. 0% confidence level
(black) to 100% confidence level (white).

We assume that a model database is given that consists of pre-defined shape models for each

moving obstacle in the environment; e.g., an obstacle may correspond to a known shape such as a

ball or a human arm. Furthermore, we are also given a bounding volume approximation of each such

model. In particular, we use spheres as the underlying bounding volumes (Fig. 7.3), as they provide

an efficient approximation for computing the collision probability (see Section 7.3.2).

We segment out the background pixels corresponding to the known static environments from the

depth map, and generate a point cloud, which is used to compute the best approximating environment

state p∗. It can be computationally inefficient to estimate and predict the states of dynamic obstacles

110

that are represented using a large number of point clouds. Therefore, we use a reduced environment

state representation that is defined in terms of the positions and velocities of the dynamic obstacles

and utilize the predefined shape models for the dynamic obstacles. Each shape model for an obstacle

in the model database is defined with multiple bounding volume shapes and their initial poses. For

the input point cloud, we perform the object recognition at the beginning frame, then optimize p∗

using the Ray-Constrained Iterative Closest Point (Ganapathi et al., 2012) algorithm.

Given the predefined shape model for each obstacle, ICP algorithm computes the best approx-

imating environment state p∗ for the input point clouds d1, ...,dn. The likelihood of dk for an

environment state p is modeled as

Ppc(dk|p) ∝ exp

(
−1

2
min
i,j
‖Sij − dk‖2

)
, (7.22)

and the optimal environment state p∗ that maximizes the likelihood of the each point cloud is

computed with two additional constraints, represented as C1 and C2:

p∗ = arg max
p

=
∏
k

Ppc(dk|p),

subject to C1 :∀(pij ,pik) : (1− ε) ≤ ||pij − pih||
cdist(ij, ih)

≤ (1 + ε)

C2 :∀Sij∀si : projsi(Sij) ⊂ projsi(d1, ...,dn),

, (7.23)

where cdist(ij, ih) is the distance between pij and pih of the predefined shape model and proj(si)

represents a projection to the 2D image space of depth sensor si. Constraint C1 corresponds to the

length preserving constraint for the bounding volumes belonging to the same object. C2 ensures that

the correct point clouds are generated for Sij in view of all sensors si.

7.4.2 Belief State Estimation and Prediction

The optimal solution p∗ computed in Section 7.4.1 can have errors due to the sensors (e.g.,

point-cloud sensors) or poor sampling. Furthermore, obstacle motion can be sudden or abrupt and

this can result in various uncertainties in the prediction of future motion.

At each time t, we use the Kalman filter to estimate the position and velocity of the bounding

volume Sij . We estimate the current belief states bt = (pt,Σt) from the history of observed

111

environment states p∗, and then also predict the future state of the environment that is used for

probabilistic collision checking. Its state at time t is represented as

(xij)t =

[
(pij)

T
t (ṗij)

T
t

]T
, (7.24)

where (pij)t is the position of Sij at time t. We will omit subscript ij when we refer to a single

obstacle. Using the Kalman filter, we estimate xt as

xt = Axt−1 + But + wt, (7.25)

zt = Cxt + vt, (7.26)

where the matrices are defined as

A =

I3×3 ∆tI3×3

0 I3×3

 ,B =

 I3×3

∆tI3×3

 ,C =

[
I3×3 0

]
, (7.27)

and wt and vt are the process noise and observation noise, respectively. zt is an observation that

corresponds to p∗.

Although we cannot directly control the environment, we compute a hypothetical input ut that

is used to preserve the distances between the bounding volumes belonging to the same object in

the predicted result. During the estimation, if the distance of an object Sij from another object

Sih exceeds the distance in the predefined shape model, we compute an appropriate value for ut to

preserve the initial distance. In order to preserve the initial distance ‖(pij)0 − (pih)0‖, we pull the

Sij’s position (pij)t toward Sih’s position (pih)t using

ut = ((pih)t − (pij)t)

(
1− ‖(pij)0 − (pih)0‖
‖(pij)t − (pih)t‖

)
. (7.28)

7.4.3 Spatial and Temporal Uncertainties in Belief State

During the environment state estimation, spatial uncertainty or errors arise from the resolution

of the sensor. It is known that the depth sensor error can be modeled as Gaussian distributions

112

Figure 7.4: Spatial uncertainty: (a) Sphere obstacle and its point cloud samples from a depth sensor.
(b) Probability distribution of a sphere center state p for a single point cloud dk. (c) Probability
distribution of p for a partially visible obstacle. (d) Probability distribution of p for a fully visible
obstacle.

around each point dk (Nguyen et al., 2012). We assume that the center of distribution is dk itself and

the covariance is isotropic and can be represented as σ2
sI3×3. Due to the sensor error, the optimal

environment state p∗ computed from (7.23) may differ from the true environment state pt.

We derive the equation for the observation noise vt in (7.26) for an environment state computed

using (7.23). For simplicity, we assume the environment has only one sphere with radius r and its

optimal state is computed from point clouds (Fig. 7.4(a)). For a single obstacle case, the optimization

equation (7.23) can be written as

P (p) ∝ max
p

∏
k

exp

(
−1

2
(||p− dk|| − r)2

)
=
∏
k

P (p|dk). (7.29)

Here, P (p|dk) corresponds to the spherical probability distribution that represents the highest value

at distance r. If r � σs, it can be approximated near pt as a Gaussian distribution as shown in

Fig. 7.4(b),

P (p|dk) ∼ N (pt, σ2
sn

t × (nt)T), (7.30)

where nk = (pt − dk)/||pt − dk||.

P (p) is a product of these spherical probability distributions (7.30) for different point cloud dk,

and it corresponds to another Gaussian distribution N (pt,Σ
∗). Therefore, the observation error vt

can be represented as:

vt ∼ P (p)− pt = N (0,Σ∗). (7.31)

113

If we are given more samples from the sensor and there is less sensor error, the error distribution

becomes more centralized.

Temporal uncertainty arises due to discretization of the time domain, which corresponds to

approximating the velocities of dynamic obstacles using forward differencing method. Let x(t) be

the obstacle position at time t. By the Taylor expansion, we obtain

x(t+ ∆t) = x(t) + ẋ(t)∆t+
1

2
ẍ(t)∆t2 +O(∆t3), (7.32)

and

ẋ(t) ≈ x(t+ ∆t)− x(t)

∆t
+

1

2
ẍ(t)∆t+O(∆t2). (7.33)

From the history of past environment states, we compute ẍ(t) of each object and its covariance Σa(t).

Based on Equation (7.33), we get the process error wt as

wt ∼ N

0,

 1
4(∆t)4Σa(t) 0

0 1
4(∆t)2Σa(t)


 , (7.34)

which is used in our estimation framework (Section 7.4.2) to compute the environment belief states.

These estimated belief states are used for collision probability computation (Section 7.3.2).

7.5 Space-Time Trajectory Optimization

In this section, we describe how the probabilistic collision detection presented in Section 7.3 can

be used in the optimization-based planning framework (see Chapter 2) to handle the environment

uncertainties in the estimated environment belief state.

We define the time-space domain X , which adds a time dimension to the configuration space,

i.e., X = C × T . The robot’s trajectory, q(t), is represented as a function of time from the start

configuration qs to the goal configuration qg. It is represented using the matrix Q,

Q =

qs q1 ... qn−1 qg

t0 t1 ... tn−1 tn

 , (7.35)

114

Model Belief State

Update /

Construction

Environment Robot

Robot Motion Planner

Trajectory Optimization Environment Belief State Estimation

Shape Model Database

Belief State

Estimation

State History

Probabilistic

Collision

Detection

Planning

Request
Space-Time Optimizer

Cost

Evaluation

Depth / Point Cloud Sensor Sensor Controller

Figure 7.5: Trajectory Planning: We highlight various components of our algorithm. These include
belief space estimation of environment (described in Section 7.4), probabilistic collision checking
(described in Section 7.3), and trajectory optimization.

Algorithm 3 Q∗ =PlanWithEnvUncertainty(Q, {dk}, ti)
: Compute the optimal robot trajectory Q∗ during the planning step ∆T for the environment point
clouds {d} at time ti
Input: initial trajectory Q, environment point clouds {d}, time ti
Output: Optimal robot trajectory Q∗ for time step ∆T

1: pi = EnvironmentStateComputation({d}) // compute the environment state
2: for k ∈ {i, ..., i+ ∆T} do
3: Bk = BeliefStateEstimation(B0, ...,Bk−1, pi) //estimate the current and future belief states
4: end for
5: while elapsed time < ∆T do
6: P=ProbCollisionChecking(Q, {Bi, ...,Bi+∆T }) // perform probabilistic collision detection
7: Q∗=Optimize(Q, P) // compute the optimal trajectory for high-DOF robot
8: end while

which corresponds to n+ 1 configurations at discretized keyframes, ti = i∆T , which have a fixed

interval ∆T . We denote the i-th column of Q as xi =

[
qTi ti

]T
.

Fig. 7.5 highlights various components of our planning algorithm. The pseudo-code description

is given in Algorithm 3 for a single planning step. As described in Section. 7.4, we estimate the

belief state of the environment Bk, which is the probability distribution of the poses of the existing

bounding volumes at time k. Given the initial and goal positions for motion planning, we use ITOMP

motion planning algorithm, which repeatedly refines a motion trajectory using an optimization

formulation (see Chapter 2). The planner initializes the robot trajectory Q as a smooth trajectory of

predefined length T between qs and qg, and refines it in every planning step ∆T .

115

We define the collision avoidance constraint based on the following probability computation

formulation:

∀xi : P (qi ∈ Cobs(ti)) < 1− δCL. (7.36)

We can compute P (qi ∈ Cobs(ti)) using (7.4) in Section 7.3. The computed trajectories that satisfy

(7.36) guarantee that the probability of collision with the obstacles is bounded by the confidence

level δCL, i.e. the probability that a computed trajectory has no collision is higher than δCL. Use

of a higher confidence level computes safer, but more conservative trajectories. The use of a lower

confidence level increases the success rate of planning, but also increases the probability of collision.

The objective function for trajectory optimization at time tk can be expressed as the sum of

trajectory smoothness cost, and collision constraint costs for dynamic uncertain obstacles and static

known obstacles,

f(Q) = min
Q

n∑
i=k+m

(
‖qi−1 − 2qi + qi+1‖2 + Cstatic(Qi)

)
+

k+2m∑
i=k+m

max(P (qi ∈ Cobs(xi))− (1− δCL), 0),

(7.37)

where m is the number of time steps in a planning time step ∆T .

Unlike the previous framework which maintains and cannot change the predefined trajectory

duration for the computed trajectory, we adjust the duration of trajectory T to avoid collisions with

the dynamic obstacles. When the trajectory planning starts from ti (ti can be different from ts due

to replanning) and if the computed trajectory Q violates the collision probability constraint (7.36)

at time tj , i.e., P (qj ∈ Cobs(tj)) ≥ δCL, we repeatedly add a new time step xnew before xj and

rescale the trajectory from [ti, ..., tj−1] to [ti, ..., tj−1, tnew], until xnew is collision-free. Then, the

next planning step starts from xnew. It allows the planner to slow the robot down when it cannot find

a safe trajectory for the previous trajectory duration due to the dynamic obstacles. If the optimization

algorithm converges, our algorithm computes the optimal trajectory,

Q∗ = arg min
Q

f(Q), (7.38)

116

Robot Robot BV Human BV Prob. Col BV Pairs Prob. Col Computation Time (ms)
IIWA 40 336 13440 (40x336) 0.147
UR5 56 336 18816 (56x336) 0.282
Fetch 76 336 25536 (76x336) 0.526

Table 7.1: Performance of our probabilistic collision detection: We measure the computation
time of the probabilistic collision detection per single robot configuration.

which provides a collision-free guarantee for the given confidence level δCL in dynamic environ-

ments.

7.6 Results

In this section, we describe our implementation and highlight the performance of our probabilistic

collision checking and trajectory planning algorithm on different benchmark scenarios. We measure

the performance of our planning algorithm in simulated environments with difference benchmark

scenarios and robot arm models, and validate our algorithm using a 7-DOF Fetch robot arm in a

real robot experiments. In our experiments, bounding spheres are automatically generated along the

medial axis of each robot link. The environments have some complex static obstacles such as tools

or furniture in a room. The dynamic obstacle is a human, and we assume that the robot operates in

close proximity to the human, however, the human does not intend to interact with the robot. We

use a Kinect as the depth sensor, which can represent a human as 25-30k point clouds. We use a

commodity PC for the planner, and use OpenMP to compute the probabilistic collision checking in

parallel using multi-core CPUs.

7.6.1 Experimental Results

Table 7.1 shows the computation time of the probabilistic collision detection per single robot

configuration. We evaluate (7.10) in Section 7.3 for each bounding volume pair correspond to a robot

and a human obstacle, and the computation time is linear to the number of pairs.

Table 7.2 describes the benchmark scenarios and the performance of the planning results for

simulated environments. We set δCL = 0.95, except the second benchmark scenarios where the

confidence levels vary.

117

Benchmarks
Scenarios

Planning Results

Name Robot
Minimum

Distance (m)
Trajectory

Duration (Sec)
Trajectory
Length (m)

Bookshelf
UR5

(6 DOFs)
Stationary obstacle 0.29 3.7 1.29
Moving obstacle 0.35 5.4 2.14

Tool
IIWA

(7 DOFs)

δCL = 0.95, vt = 0 0.06 6.0 1.60
δCL = 0.95, vt = 0.005I3×3 0.30 6.9 1.92
δCL = 0.95, vt = 0.05I3×3 0.32 7.1 2.01
δCL = 0.99, vt = 0.05I3×3 0.38 8.3 2.43

Comparisons
using

Different
Prob. Collision
Computations

IIWA
(7 DOFs)

Our Approach 0.32 7.1 2.01
Enlarged bounding volumes
(Van den Berg et al., 2012)

0.40 8.8 2.32

Approximation using the center point PDF
(Du Toit and Burdick, 2011)

-0.05 3.4 1.38

Table 7.2: Planning results in our benchmarks: We measure the planning results of the computed
trajectories: the minimum distance to the human obstacle, trajectory duration, and trajectory length,
for different benchmark scenarios.

In our first benchmark, the planner computes a motion for 6-DOF UR5 robot to move an object

on the table to a point on the bookshelf. When a human is dashing toward the robot at a fast speed,

the robot is aware of the potential collision with the predicted future human position and changes its

trajectory (Fig. 7.6(a)). However, if a standing human only stretches out an arm toward the robot, even

if the velocity of the arm is fast, the model-based prediction prevents unnecessary reactive motions,

which is different from the prediction models with constant velocity or acceleration extrapolations

(Fig. 7.6(b)).

The second benchmark shows the difference in planning results due to the different confidence

and noise levels, for the same recorded human motion. Fig. 7.7(a)-(d) shows a robot trajectory with

different confidence levels and sensor noises. If the obstacle states are assumed as exact and have

no noise, the robot can follow the shortest and smoothest trajectory that is close to the obstacle

(Fig. 7.7(a)). However, as the noise of the environment state or expected confidence level becomes

higher, the computed robot trajectories become longer and less smooth to avoid potential collision

with the obstacles (Fig. 7.7(b)-(d)).

Fig. 7.8 and 7.9 show 7-DOF Fetch robot arm motions which are computed using our algorithm

to avoid collisions with human motion captured in run-time.

118

(a) A human is approaching the robot (b) A standing human only stretches out an arm

Figure 7.6: Robot Trajectory with Dynamic Human Obstacles: Static obstacles are shown in
green, the estimated current and future human bounding volumes are shown in blue and red, respec-
tively. Our planner uses the probabilistic collision detection to compute the collision probability
between the robot and the uncertain future human motion. (a) When a human is approaching the
robot, our planner changes its trajectory to avoid potential future collisions. (b) When a standing
human only stretches out an arm, our model-based prediction prevents unnecessary reactive motions,
which results in a better robot trajectory than the prediction using simple extrapolations.

7.6.2 Probabilistic Collision Checking and Trajectory Planning

In the next benchmark, we plan trajectories using the different probabilistic collision detection

algorithms which discussed in Section 7.3.3. We measure the minimum distance between the robot

and the human obstacle along the computed trajectory as a safety metric, and the duration and length

of the end-effector trajectory as efficiency metrics. The results for the planners with three different

probabilistic collision detection algorithms are shown in Table 7.2. The enlarged bounding volumes

have the largest safety margins, but the durations and lengths of the computed trajectories are longer

than other approaches, since the overestimated collision probability makes the planner compute

trajectories that are unnecessarily far from the obstacles. On the other hand, the approximating

approach that uses the probability of the object center point underestimates the collision probability

and causes several collisions in the planned trajectories, i.e., the minimum distance between the robot

and human obstacle become negative. Our approach shows a similar level of safety with the approach

using enlarged bounding volumes, while it also computes efficient trajectories that have shorter

trajectory durations and lengths. These benchmarks demonstrate the benefits of our probabilistic

collision checking on trajectory planning.

119

(a) A trajectory for zero-noise obstacles (b) δCL = 0.95 and vt = 0.005I3×3

(c) δCL = 0.95 and vt = 0.05I3×3 (d) δCL = 0.99 and vt = 0.05I3×3

Figure 7.7: Robot trajectory with different confidence and noise levels: Static obstacles are
shown in green, the estimated current and future human bounding volumes are shown in blue and
red, respectively.

7.7 Conclusions and Limitations

We present a novel algorithm for trajectory planning for high-DOF robots in dynamic, uncertain

environments. This include new methods for belief space estimation and probabilistic collision

detection. Our approach is fast, and works well in our simulated and real robot results where it

can compute efficient collision-free paths with a high confidence level. Our probabilistic collision

detection computes tighter upper bounds of the collision probability as compared to prior approaches.

We highlight the performance of our planner on different benchmarks with human obstacles.

Our approach has some limitations. Some of the assumptions used in belief space estimation

in terms of Gaussian distribution and Kalman filter may not hold. Moreover, Our approach needs

pre-defined shape representations of the obstacles. The trajectory optimization may get stuck at a

local minima and may not converge to a global optimal solution. Furthermore, our approach assumes

that the obstacles in the scene undergo rigid motion. There are many avenues for future work. Our

120

(a) A stationary human (b) The human arm swings slow (c) The human arm swings fast

Figure 7.8: Real Robot Experiment: 7-DOF Fetch robot arm repeatedly moves between two points
while avoiding collisions with the human. It is noticeable that the robot trajectory deviates more as
the human motion becomes faster, in order to deal with the increased uncertainties in the human
motion prediction.

121

Figure 7.9: Real Robot Experiment: The 7-DOF Fetch robot arm is serving a soda can on a table,
while the robot avoids collisions with the human arm that may takes soda cans.

approach only takes into account the imperfect information about the moving obstacles. Uncertainties

from control errors or sensor errors, which are rather common with the controllers and sensors, need

to be integrated in our approach.

122

CHAPTER 8

Conclusions and Future Work

In this thesis, we have presented motion planning approaches for high-DOF robots in dynamic

environments. We use optimization-based planning to efficiently compute feasible high-DOF robot

motions. We present new techniques using incremental optimization, parallel computation, and

efficient modeling of constraints to improve the performance and reliability of the motion planning.

The work presented in this thesis addressed many of the important problems in motion planning, such

as dynamically stable human-like motion planning, task constrained motion planning, and motion

planning under uncertainties.

To summarize the main results presented in this thesis:

Incremental Trajectory Optimization: We present ITOMP, an optimization-based algorithm

for motion planning in dynamic environments. ITOMP does not require a priori knowledge about

global movement of moving obstacles and tries to compute a trajectory that is collision-free and also

satisfies smoothness and dynamics constraints. In order to respond to unpredicted cases in dynamic

scenes, ITOMP interleaves planning optimization and task execution. This strategy can improve the

responsiveness and safety of the robot.

Hierarchical Trajectory Optimization of High-DOF Robots: We present an hierarchical

planning approach for high-DOF robots. Our algorithm decomposes the high-dimensional motion

planning problem into a sequence of low-dimensional sub-problems and computes the solution for

each sub-problem in an incremental manner. We use constrained coordination and local refinement

to incrementally compute the motion. In static environments, our algorithm offers up to 14X speedup

while still generating smooth trajectories. In dynamic environments, we show that the algorithm can

increase the success rate of the planning.

Planning Dynamically Stable Motion for Human-like Robots: We present an efficient ap-

proach to compute dynamically stable motion of high-DOF robots using optimization-based motion

planning algorithm. The stability of the motion is computed in a wrench space, and we compute the

123

friction force that creates an equilibrium between the forces exerted on the robot. Our formulation of

contacts is general and can handle multiple contacts simultaneously. We highlight the performance

of our algorithm using a human-like robot, and also demonstrate the applications of our approach in

multi-robot planning and natural-looking motion generation of virtual characters.

Parallel Trajectory Optimization using GPUs: We present a novel parallel algorithm for

real-time replanning in dynamic environments. The underlying planner uses an optimization-based

formulation, and we parallelize the computation on many-core GPUs. We demonstrate the our parallel

multi-trajectory optimization on GPUs improves the performance and success rate of planning. We

derive bounds on how parallelization improves the responsiveness and the quality of the trajectory

computed by our planner.

Constrained Trajectory Planning using Precomputed Roadmaps: We present an efficient

parallel constrained planning algorithm for end-effector trajectory constraints. We use a two step

approach : the precomputation step and the trajectory refinement step. In the precomputation step,

we compute multiple trajectories that satisfy the collision-free and non-singular constraints from

static obstacles. The trajectories are used as initial trajectories for the trajectory refinement step. Our

planner optimizes the trajectories in the dynamic environment, using cost functions of the constraints.

Therefore, our parallel planning algorithm tends to compute the trajectories that follow the given

Cartesian trajectory of the end-effector in challenging environments.

Handling Environment Uncertainty using Probabilistic Collision Detection: We present a

trajectory planning algorithm for high-DOF robots in dynamic, uncertain environments. This include

new methods for belief space estimation and probabilistic collision detection. Our probabilistic

collision detection computes tighter upper bounds of the collision probability as compared to prior

approaches. We highlight the performance of trajectory optimization using the proposed probabilistic

collision detection approach on different benchmarks with human obstacles in simulated environments

as well as with a 7-DOF Fetch robot arm.

8.1 Limitations and Future Work

The work proposed in this thesis has some limitations that could be addressed by future work.

124

Hierarchical Trajectory Optimization of High-DOF Robots: The performance of the hierar-

chical planner depends on the decomposition scheme and the motion trajectories computed for the

previous stages. Since the underlying planner uses a stochastic optimization approach, the trajectories

from the previous stages may not provide a good initial guess for local refinement. As a result, we

cannot provide the completeness guarantee with our approach that it will always be able to compute

a collision-free path within the given time interval.

Planning Dynamically Stable Motion for Human-like Robots: Our formulation uses dis-

cretized waypoints on the continuous trajectory and the computation is only performed on the

waypoints. However, the error due to the small interval is small and can be easily corrected with

a real-time control approaches (Xiang et al., 2010; Saab et al., 2013). For a feasible trajectory

computed by optimization-based planner, a controller can be used to provide a feedback according to

the measured executed trajectory.

Constrained Trajectory Planning using Precomputed Roadmaps: We would like to use

closed-from IK solvers of redundant robots for replacing the numerical IK solvers in the precomputa-

tion step. In this work, we use singular value decomposition to determine a configuration is close

to singular. We expect there is more efficient way to determine it with some precomputation. The

sampling-based planning in precomputation step can use the projection techniques (Berenson et al.,

2011) to improve the performance.

Handling Environment Uncertainty using Probabilistic Collision Detection: Some of the

assumptions used in belief space estimation in terms of Gaussian distribution and Kalman filter

may not hold. Moreover, Our approach needs pre-defined shape representations of the obstacles.

Furthermore, our approach assumes that the obstacles in the scene undergo rigid motion. Our

approach only takes into account the imperfect information about the moving obstacles. Uncertainties

from control errors or sensor errors, which are rather common with the controllers and sensors, need

to be integrated in our approach. Our approach computes collision probabilities of discrete waypoints

on the trajectory. Tighter collision probability of the entire trajectory can be computed by considering

the correlations between collision probabilities of waypoints (Patil et al., 2012). The estimation of

the future motion of obstacles, especially human obstacles, can be improved using online learning

techniques (Kim et al., 2014; Trautman et al., 2015) or action recognition approaches (Nikolaidis

et al., 2013; Hawkins et al., 2013; Koppula and Saxena, 2016).

125

BIBLIOGRAPHY

Aguinaga, I., Borro, D., and Matey, L. (2008). Parallel rrt-based path planning for selective disassem-
bly planning. International Journal of Advanced Manufacturing Technology, 36(11):1221–1233.

Al Borno, M., De Lasa, M., and Hertzmann, A. (2013). Trajectory optimization for full-body
movements with complex contacts. Visualization and Computer Graphics, IEEE Transactions
on, 19(8):1405–1414.

Alami, R., Robert, F., Ingrand, F., and Suzuki, S. (1995). Multi-robot cooperation through incremental
plan-merging. In Robotics and Automation, 1995. Proceedings., 1995 IEEE International
Conference on, volume 3, pages 2573–2579. IEEE.

Amato, N. M. and Dale, L. K. (1999). Probabilistic roadmap methods are embarrassingly parallel.
In Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on,
volume 1, pages 688–694. IEEE.

Arechavaleta, G., Esteves, C., and Laumond, J.-P. (2004). Planning fine motions for a digital factotum.
In IEEE International Conference on Robotics and Automation, pages 822–827.

Bae, K.-H., Belton, D., and Lichti, D. D. (2009). A closed-form expression of the positional
uncertainty for 3d point clouds. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 31(4):577–590.

Bai, H., Cai, S., Ye, N., Hsu, D., and Lee, W. S. (2015). Intention-aware online pomdp planning for
autonomous driving in a crowd. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 454–460. IEEE.

Baker, D. R. and Wampler, C. W. (1988). On the inverse kinematics of redundant manipulators. The
International Journal of Robotics Research, 7(2):3–21.

Bandyopadhyay, T., Rong, N., Ang, M., Hsu, D., and Lee, W. S. (2009). Motion planning for
people tracking in uncertain and dynamic environments. In Workshop on People Detection and
Tracking, IEEE International Conference on Robotics and Automation.

Barry, J. L., Kaelbling, L. P., and Lozano-Pérez, T. (2011). DetH*: Approximate hierarchical solution
of large markov decision processes. In Proceedings of the International Joint Conference on
Artificial Intelligence, pages 1928–1935.

Basu, S., Pollack, R., and Roy, M.-F. (2000). Computing roadmaps of semi-algebraic sets on a
variety. Journal of the American Mathematical Society, 13(1):55–82.

Bekris, K. and Kavraki, L. (2007). Greedy but safe replanning under kinodynamic constraints. In
Robotics and Automation, 2007 IEEE International Conference on, pages 704 –710.

Berenson, D., Srinivasa, S. S., Ferguson, D., Collet, A., and Kuffner, J. J. (2009). Manipulation
planning with workspace goal regions. In Proceedings of IEEE International Conference on
Robotics and Automation, pages 618–624.

Berenson, D., Srinivasa, S. S., and Kuffner, J. (2011). Task space regions: A framework for
pose-constrained manipulation planning. The International Journal of Robotics Research.

126

Bertram, D., Kuffner, J., Dillmann, R., and Asfour, T. (2006). An integrated approach to inverse
kinematics and path planning for redundant manipulators. In Proceedings of IEEE International
Conference on Robotics and Automation, pages 1874–1879.

Bialkowski, J., Karaman, S., and Frazzoli, E. (2011). Massively parallelizing the RRT and the RRT*.
In International Conference on Intelligent Robots and Systems, pages 3513–3518.

Blackmore, L. (2006). A probabilistic particle control approach to optimal, robust predictive control.
In Proceedings of the AIAA Guidance, Navigation and Control Conference, number 10.

Bohigas, O., Manubens, M., and Ros, L. (2013a). Singularities of non-redundant manipulators: A
short account and a method for their computation in the planar case. Mechanism and Machine
Theory, 68:1–17.

Bohigas, O., Zlatanov, D., Ros, L., Manubens, M., and Porta, J. M. (2013b). A general method for
the numerical computation of manipulator singularity sets.

Bouyarmane, K. and Kheddar, A. (2011). Multi-contact stances planning for multiple agents. In
Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 5246–5253.
IEEE.

Bowen, C. and Alterovitz, R. (2014). Closed-loop global motion planning for reactive execution of
learned tasks. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1754–1760. IEEE.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, New
York, NY, USA.

Brock, O. and Kavraki, L. E. (2001). Decomposition-based motion planning: a framework for
real-time motion planning in high-dimensional configuration spaces. In IEEE International
Conference on Robotics and Automation, pages 1469–1474.

Brock, O. and Khatib, O. (2002). Elastic strips: A framework for motion generation in human
environments. International Journal of Robotics Research, 21(12):1031–1052.

Brooks, R. and Lozano-Pérez, T. (1985). A subdivision algorithm in configuration space for findpath
with rotation. Transactions on Systems, Man and Cybernetics, 15(2):224–233.

Bry, A. and Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under
uncertainty. In Robotics and Automation (ICRA), 2011 IEEE International Conference on,
pages 723–730. IEEE.

Canny, J. (1988). The complexity of robot motion planning. MIT press.

Carpin, S. and Pagello, E. (2002). On parallel rrts for multi-robot systems. In Italian Association for
Artificial Intelligence, pages 834–841.

Chakravarthy, A. and Ghose, D. (1998). Obstacle avoidance in a dynamic environment: A collision
cone approach. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, 28(5):562–574.

Charrow, B., Kahn, G., Patil, S., Liu, S., Goldberg, K., Abbeel, P., Michael, N., and Kumar, V.
(2015). Information-theoretic planning with trajectory optimization for dense 3d mapping. In
Proceedings of Robotics: Science and Systems.

127

Chen, P. and Hwang, Y. (1998). Sandros: a dynamic graph search algorithm for motion planning.
IEEE Transactions on Robotics and Automation, 14(3):390–403.

Dai, H. and Tedrake, R. (2012). Optimizing robust limit cycles for legged locomotion on unknown
terrain. In IEEE Conference on Decision and Control, pages 1207–1213.

Dalibard, S., El Khoury, A., Lamiraux, F., Nakhaei, A., Taıx, M., and Laumond, J.-P. (2013). Dynamic
walking and whole-body motion planning for humanoid robots: an integrated approach. The
International Journal of Robotics Research.

Du Toit, N. E. and Burdick, J. W. (2011). Probabilistic collision checking with chance constraints.
Robotics, IEEE Transactions on, 27(4):809–815.

Du Toit, N. E. and Burdick, J. W. (2012). Robot motion planning in dynamic, uncertain environments.
Robotics, IEEE Transactions on, 28(1):101–115.

El Khoury, A., Lamiraux, F., and Taix, M. (2013). Optimal motion planning for humanoid robots. In
Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages 3136–3141.
IEEE.

Eppstein, D. (1998). Finding the k shortest paths. SIAM Journal on computing, 28(2):652–673.

Erdmann, M. and Lozano-Pérez, T. (1986). On multiple moving objects. In Proceedings of IEEE
International Conference on Robotics and Automation, pages 1419–1424.

Escande, A., Kheddar, A., and Miossec, S. (2013). Planning contact points for humanoid robots.
Robotics and Autonomous Systems, 61(5):428–442.

Fiorini, P. and Shiller, Z. (1998). Motion planning in dynamic environments using velocity obstacles.
The International Journal of Robotics Research, 17(7):760–762.

Ganapathi, V., Plagemann, C., Koller, D., and Thrun, S. (2012). Real-time human pose tracking from
range data. Springer.

Gottschalk, S., Lin, M. C., and Manocha, D. (1996). Obbtree: A hierarchical structure for rapid
interference detection. In Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, pages 171–180. ACM.

Groetsch, C. W. (1984). The theory of tikhonov regularization for fredholm equations of the first
kind.

Guibas, L. J., Hsu, D., Kurniawati, H., and Rehman, E. (2010). Bounded uncertainty roadmaps for
path planning. In Algorithmic Foundation of Robotics VIII, pages 199–215. Springer.

Guitton, J. and Farges, J.-L. (2009). Taking into account geometric constraints for task-oriented
motion planning. In ICAPS Workshop on Bridging the Gap Between Task and Motion Planning,
pages 26–33.

Guo, Z. and Hsia, T. (1993). Joint trajectory generation for redundant robots in an environment with
obstacles. Journal of robotic systems, 10(2):199–215.

Haschke, R., Weitnauer, E., and Ritter, H. (2008). On-line planning of time-optimal, jerk-limited
trajectories. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 3248–3253. IEEE.

128

Hauser, K. (2012). On responsiveness, safety, and completeness in real-time motion planning.
Autonomous Robots, 32(1):35–48.

Hauser, K. and Latombe, J.-C. (2009). Integrating task and prm motion planning: Dealing with many
infeasible motion planning queries. In ICAPS Workshop on Bridging the Gap Between Task and
Motion Planning, pages 19–23.

Hawkins, K. P., Vo, N., Bansal, S., and Bobick, A. F. (2013). Probabilistic human action prediction
and wait-sensitive planning for responsive human-robot collaboration. In Humanoid Robots
(Humanoids), 2013 13th IEEE-RAS International Conference on, pages 499–506. IEEE.

Hirukawa, H., Hattori, S., Harada, K., Kajita, S., Kaneko, K., Kanehiro, F., Fujiwara, K., and
Morisawa, M. (2006). A universal stability criterion of the foot contact of legged robots-adios
zmp. In IEEE International Conference on Robotics and Automation, pages 1976–1983.

Hoff, K., Culver, T., Keyser, J., Lin, M., and Manocha, D. (2000). Interactive motion planning
using hardware accelerated computation of generalized voronoi diagrams. In International
Conference on Robotics and Automation, pages 2931–2937.

Hsu, D., Kindel, R., Latombe, J.-C., and Rock, S. (2002). Randomized kinodynamic motion planning
with moving obstacles. International Journal of Robotics Research, 21(3):233–255.

Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., Koyachi, N., and Tanie, K. (2001). Planning
walking patterns for a biped robot. Robotics and Automation, IEEE Transactions on, 17(3):280–
289.

Iagnemma, K. and Overholt, J. (2015). Special issue: DARPA robotics challenge (DRC) introduction.
Journal of Field Robotics, 32(2):187–188.

Ichnowski, J. and Alterovitz, R. (2014). Scalable multicore motion planning using lock-free concur-
rency. Robotics, IEEE Transactions on, 30(5):1123–1136.

Isto, P. and Saha, M. (2006). A slicing connection strategy for constructing PRMs in high-dimensional
C-spaces. In Proceedings of IEEE International Conference on Robotics and Automation, pages
1249–1254.

Jacobs, S., Manavi, K., Burgos, J., Denny, J., Thomas, S., and Amato, N. (2012). A scalable method
for parallelizing sampling-based motion planning algorithms. In International Conference on
Robotics and Automation, pages 2529–2536.

Jacobs, S. A., Stradford, N., Rodriguez, C., Thomas, S., and Amato, N. M. (2013). A scalable dis-
tributed rrt for motion planning. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 5088–5095. IEEE.

Jaillet, L. and Porta, J. (2012). Asymptotically-optimal path planning on manifolds. In Proceedings
of Robotics: Science and Systems, Sydney, Australia.

Jaillet, L. and Siméon, T. (2008). Path deformation roadmaps: Compact graphs with useful cycles
for motion planning. The International Journal of Robotics Research, 27(11-12):1175–1188.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1):99–134.

129

Kaelbling, L. P. and Lozano-Pérez, T. (2011a). Hierarchical task and motion planning in the now. In
Proceedings of IEEE International Conference on Robotics and Automation, pages 1470–1477.

Kaelbling, L. P. and Lozano-Pérez, T. (2011b). Pre-image backchaining in belief space for mobile
manipulation. In Proceedings of International Symposium on Robotics Research.

Kahn, G., Sujan, P., Patil, S., Bopardikar, S., Ryde, J., Goldberg, K., and Abbeel, P. (2015). Active
exploration using trajectory optimization for robotic grasping in the presence of occlusions. In
2015 IEEE International Conference on Robotics and Automation (ICRA), pages 4783–4790.
IEEE.

Kaiser, P., Berenson, D., Vahrenkamp, N., Asfour, T., Dillmann, R., and Srinivasa, S. (2012).
Constellation-an algorithm for finding robot configurations that satisfy multiple constraints. In
Proceedings of IEEE International Conference on Robotics and Automation, pages 436–443.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H. (2003).
Biped walking pattern generation by using preview control of zero-moment point. In IEEE
International Conference on Robotics and Automation, pages 1620–1626.

Kajita, S. and Tani, K. (1991). Study of dynamic biped locomotion on rugged terrain-derivation
and application of the linear inverted pendulum mode. In Robotics and Automation, 1991.
Proceedings., 1991 IEEE International Conference on, pages 1405–1411. IEEE.

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. (2011). STOMP: Stochastic
trajectory optimization for motion planning. In Proceedings of IEEE International Conference
on Robotics and Automation, pages 4569–4574.

Kan, A. R. and Timmer, G. T. (1987). Stochastic global optimization methods part i: Clustering
methods. Mathematical programming, 39(1):27–56.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning.
International Journal of Robotics Research, 30(7):846–894.

Katrakazas, C., Quddus, M., Chen, W.-H., and Deka, L. (2015). Real-time motion planning methods
for autonomous on-road driving: State-of-the-art and future research directions. Transportation
Research Part C: Emerging Technologies, 60:416–442.

Kavraki, L., Svestka, P., Latombe, J., and Overmars, M. (1996). Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. Transactions on Robotics and Automation,
12(4):566–580.

Kider, J., Henderson, M., Likhachev, M., and Safonova, A. (2010). High-dimensional planning on
the GPU. In Proceedings of IEEE International Conference on Robotics and Automation, pages
2515–2522.

Kim, S., Guy, S. J., Liu, W., Wilkie, D., Lau, R. W., Lin, M. C., and Manocha, D. (2014). Brvo:
Predicting pedestrian trajectories using velocity-space reasoning. The International Journal of
Robotics Research.

Koenig, S., Tovey, C., and Smirnov, Y. (2003). Performance bounds for planning in unknown terrain.
Artificial Intelligence, 147(1-2):253–279.

130

Koppula, H. S. and Saxena, A. (2016). Anticipating human activities using object affordances for
reactive robotic response. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
38(1):14–29.

Kroger, T. and Wahl, F. M. (2010). Online trajectory generation: Basic concepts for instantaneous
reactions to unforeseen events. Robotics, IEEE Transactions on, 26(1):94–111.

Kuffner, J. and LaValle, S. (2000). RRT-connect: An efficient approach to single-query path planning.
In Proceedings of IEEE International Conference on Robotics and Automation, pages 995 –
1001.

Kuffner, J. J., Kagami, S., Nishiwaki, K., Inaba, M., and Inoue, H. (2002). Dynamically-stable
motion planning for humanoid robots. Autonomous Robots, 12(1):105–118.

Kurniawati, H. and Yadav, V. (2013). An online pomdp solver for uncertainty planning in dynamic
environment. ISRR.

Lambert, A., Gruyer, D., and Pierre, G. S. (2008). A fast monte carlo algorithm for collision
probability estimation. In Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th
International Conference on, pages 406–411. IEEE.

LaValle, S. (2006). Planning Algorithms. Cambridge, Cambridge.

Lee, A., Duan, Y., Patil, S., Schulman, J., McCarthy, Z., van den Berg, J., Goldberg, K., and Abbeel,
P. (2013). Sigma hulls for gaussian belief space planning for imprecise articulated robots amid
obstacles. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, pages 5660–5667. IEEE.

Lee, S.-H., Kim, J., Park, F., Kim, M., and Bobrow, J. (2005). Newton-type algorithms for dynamics-
based robot movement optimization. Robotics, IEEE Transactions on, 21(4):657–667.

Lee, T. and Kim, Y. J. (2013). Gpu-based motion planning under uncertainties using pomdp. In
Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages 4576–4581.
IEEE.

Lengagne, S., Mathieu, P., Kheddar, A., and Yoshida, E. (2010). Generation of dynamic motions
under continuous constraints: Efficient computation using b-splines and taylor polynomials. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 698–703.

Lengagne, S., Vaillant, J., Yoshida, E., and Kheddar, A. (2013). Generation of whole-body optimal
dynamic multi-contact motions. The International Journal of Robotics Research, 32(9-10):1104–
1119.

Lepetit, V., Lagger, P., and Fua, P. (2005). Randomized trees for real-time keypoint recognition.
In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society
Conference on, volume 2, pages 775–781. IEEE.

Leung, C., Huang, S., Kwok, N., and Dissanayake, G. (2006). Planning under uncertainty using model
predictive control for information gathering. Robotics and Autonomous Systems, 54(11):898–
910.

Likhachev, M. and Ferguson, D. (2009). Planning long dynamically feasible maneuvers for au-
tonomous vehicles. The International Journal of Robotics Research, 28(8):933–945.

131

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., and Thrun, S. (2005). Anytime dynamic
A*: An anytime, replanning algorithm. In Proceedings of the International Conference on
Automated Planning and Scheduling.

Liu, C., Atkeson, C. G., Feng, S., and Xinjilefu, X. (2015). Full-body motion planning and control
for the car egress task of the darpa robotics challenge. In Humanoid Robots (Humanoids), 2015
15th IEEE-RAS International Conference on.

Liu, C. K., Hertzmann, A., and Popović, Z. (2005). Learning physics-based motion style with
nonlinear inverse optimization. In ACM Transactions on Graphics (TOG), volume 24, pages
1071–1081. ACM.

Lo, J., Huang, G., and Metaxas, D. (2002). Human motion planning based on recursive dynamics
and optimal control techniques. Multibody System Dynamics, 8(4):433–458.

Lozano-Perez, T. (1983). Spatial planning: A configuration space approach. IEEE transactions on
computers, 100(2):108–120.

Lozano-Pérez, T. and O’Donnell, P. A. (1991). Parallel robot motion planning. In Robotics and
Automation, 1991. Proceedings., 1991 IEEE International Conference on, pages 1000–1007.
IEEE.

Ma, W., Xia, S., Hodgins, J. K., Yang, X., Li, C., and Wang, Z. (2010). Modeling style and variation
in human motion. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 21–30. Eurographics Association.

McMahon, T., Thomas, S., and Amato, N. M. (2015). Reachable volume rrt. In Robotics and
Automation (ICRA), 2015 IEEE International Conference on, pages 2977–2984. IEEE.

Missiuro, P. E. and Roy, N. (2006). Adapting probabilistic roadmaps to handle uncertain maps. In
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on, pages 1261–1267. IEEE.

Mordatch, I., Todorov, E., and Popović, Z. (2012). Discovery of complex behaviors through contact-
invariant optimization. ACM Transactions on Graphics (TOG), 31(4):43.

Mordatch, I., Wang, J. M., Todorov, E., and Koltun, V. (2013). Animating human lower limbs using
contact-invariant optimization. ACM Transactions on Graphics (TOG), 32(6):203.

Nguyen, C. V., Izadi, S., and Lovell, D. (2012). Modeling kinect sensor noise for improved
3d reconstruction and tracking. In 3D Imaging, Modeling, Processing, Visualization and
Transmission (3DIMPVT), 2012 Second International Conference on, pages 524–530. IEEE.

Nikolaidis, S., Lasota, P., Rossano, G., Martinez, C., Fuhlbrigge, T., and Shah, J. (2013). Human-
robot collaboration in manufacturing: Quantitative evaluation of predictable, convergent joint
action. In Robotics (ISR), 2013 44th International Symposium on, pages 1–6. IEEE.

Ojdanić, D. (2009). Using Cartesian Space for Manipulator Motion Planning: Application in Service
Robotics. PhD thesis, University of Bremen.

Olabi, A., Béarée, R., Gibaru, O., and Damak, M. (2010). Feedrate planning for machining with
industrial six-axis robots. Control Engineering Practice, 18(5):471–482.

132

Oriolo, G. and Mongillo, C. (2005). Motion planning for mobile manipulators along given end-
effector paths. In Proceedings of IEEE International Conference on Robotics and Automation,
pages 2154–2160.

Pan, J., Chitta, S., and Manocha, D. (2011). Probabilistic collision detection between noisy point
clouds using robust classification. In International Symposium on Robotics Research (ISRR).

Pan, J., Lauterbach, C., and Manocha, D. (2010a). g-Planner: Real-time motion planning and global
navigation using GPUs. In Proceedings of AAAI Conference on Artificial Intelligence.

Pan, J., Şucan, I. A., Chitta, S., and Manocha, D. (2013). Real-time collision detection and distance
computation on point cloud sensor data. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 3593–3599. IEEE.

Pan, J., Zhang, L., Lin, M. C., and Manocha, D. (2010b). A hybrid approach for simulating human
motion in constrained environments. Computer Animation and Virtual Worlds, 21(3-4):137–149.

Pan, J., Zhang, L., and Manocha, D. (2012). Collision-free and curvature-continuous path smoothing
in cluttered environments. Robotics: Science and Systems VII, 17:233.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity of markov decision processes.
Mathematics of operations research, 12(3):441–450.

Park, C. and Manocha, D. (2014). Fast and dynamically stable optimization-based planning for high-
DOF human-like robots. In Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International
Conference on, pages 309–315. IEEE.

Park, C. and Manocha, D. (2015). Smooth and dynamically stable navigation of multiple human-like
robots. In Algorithmic Foundations of Robotics XI, pages 497–513. Springer.

Park, C., Pan, J., and Manocha, D. (2012). Itomp: Incremental trajectory optimization for real-time
replanning in dynamic environments. In Proceedings of International Conference on Automated
Planning and Scheduling (ICAPS).

Park, C., Pan, J., and Manocha, D. (2013). Real-time optimization-based planning in dynamic
environments using GPUs. In Proceedings of IEEE International Conference on Robotics and
Automation.

Park, C., Pan, J., and Manocha, D. (2014a). High-dof robots in dynamic environments using incre-
mental trajectory optimization. International Journal of Humanoid Robotics, 11(02):1441001.

Park, C., Pan, J., and Manocha, D. (2014b). Poisson-RRT. In Robotics and Automation (ICRA), 2014
IEEE International Conference on, pages 4667–4673. IEEE.

Park, C., Park, J. S., and Manocha, D. (2016a). Fast and bounded probabilistic collision detection in
dynamic environments for high-dof trajectory planning. arXiv preprint arXiv:1607.04788.

Park, C., Park, J. S., Tonneau, S., Mansard, N., Multon, F., Pettré, J., and Manocha, D. (2016b). Dy-
namically balanced and plausible trajectory planning for human-like characters. In Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, I3D ’16. ACM.

Park, C., Rabe, F., Sharma, S., Scheurer, C., Zimmermann, U. E., and Manocha, D. (2015). Cartesian
path planning in dynamic environments using trajectory optimization. In Humanoid Robots
(Humanoids), 2015 15th IEEE-RAS International Conference on. IEEE.

133

Patil, S., Van Den Berg, J., and Alterovitz, R. (2012). Estimating probability of collision for safe
motion planning under gaussian motion and sensing uncertainty. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 3238–3244. IEEE.

Petti, S. and Fraichard, T. (2005). Safe motion planning in dynamic environments. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2210–2215.

Phillips, M. and Likhachev, M. (2011a). Planning in domains with cost function dependent actions.
In Proceedings of AAAI Conference on Artificial Intelligence.

Phillips, M. and Likhachev, M. (2011b). SIPP: Safe interval path planning for dynamic environments.
In Proceedings of IEEE International Conference on Robotics and Automation, pages 5628–
5635.

Pisula, C., Hoff, K., Lin, M. C., and Manocha, D. (2000). Randomized path planning for a rigid body
based on hardware accelerated voronoi sampling. In International Workshop on Algorithmic
Foundation of Robotics, pages 279–292.

Plagemann, C., Ganapathi, V., Koller, D., and Thrun, S. (2010). Real-time identification and
localization of body parts from depth images. In Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pages 3108–3113. IEEE.

Plaku, E. and Kavraki, L. (2005). Distributed sampling-based roadmap of trees for large-scale motion
planning. In Proceedings of IEEE International Conference on Robotics and Automation, pages
3868–3873.

Platt Jr, R., Tedrake, R., Kaelbling, L., and Lozano-Perez, T. (2010). Belief space planning assuming
maximum likelihood observations.

Posa, M. and Tedrake, R. (2013). Direct trajectory optimization of rigid body dynamical systems
through contact. In Algorithmic Foundations of Robotics X, pages 527–542. Springer.

Quinlan, S. and Khatib, O. (1993). Elastic bands: connecting path planning and control. In
Proceedings of IEEE International Conference on Robotics and Automation, pages 802–807
vol.2.

Ratliff, N., Zucker, M., Bagnell, J. A. D., and Srinivasa, S. (2009). CHOMP: Gradient optimization
techniques for efficient motion planning. In Proceedings of International Conference on
Robotics and Automation, pages 489–494.

Redon, S., Kheddar, A., and Coquillart, S. (2002). Fast continuous collision detection between rigid
bodies. In Computer graphics forum, volume 21, pages 279–287. Wiley Online Library.

Rodriguez, C., Denny, J., Jacobs, S. A., Thomas, S., and Amato, N. M. (2013). Blind rrt: A
probabilistically complete distributed rrt. In Intelligent Robots and Systems (IROS), 2013
IEEE/RSJ International Conference on, pages 1758–1765. IEEE.

Saab, L., Ramos, O. E., Keith, F., Mansard, N., Soueres, P., and Fourquet, J. (2013). Dynamic
whole-body motion generation under rigid contacts and other unilateral constraints. Robotics,
IEEE Transactions on, 29(2):346–362.

Saha, M. and Isto, P. (2008). Multi-robot motion planning by incremental coordination. In Pro-
ceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5960–5963.

134

Scheurer, C. and Zimmermann, U. (2011). Path planning method for palletizing tasks using workspace
cell decomposition. In Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pages 1–4.

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S., Goldberg, K., and
Abbeel, P. (2014). Motion planning with sequential convex optimization and convex collision
checking. The International Journal of Robotics Research, 33(9):1251–1270.

Schultz, G. and Mombaur, K. (2010). Modeling and optimal control of human-like running. Mecha-
tronics, IEEE/ASME Transactions on, 15(5):783–792.

Shani, G. (2010). Evaluating point-based pomdp solvers on multicore machines. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 40(4):1062–1074.

Sharma, S., Kraetzschmar, G. K., Scheurer, C., and Bischoff, R. (2012). Unified closed form inverse
kinematics for the kuka youbot. In Robotics; Proceedings of ROBOTIK 2012; 7th German
Conference on, pages 1–6. VDE.

Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., and Moore, R.
(2013). Real-time human pose recognition in parts from single depth images. Communications
of the ACM, 56(1):116–124.

Silver, D. and Veness, J. (2010). Monte-carlo planning in large pomdps. In Advances in neural
information processing systems, pages 2164–2172.

Somani, A., Ye, N., Hsu, D., and Lee, W. S. (2013). Despot: Online pomdp planning with
regularization. In Advances In Neural Information Processing Systems, pages 1772–1780.

Stilman, M. (2007). Task constrained motion planning in robot joint space. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3074–3081.

Sucan, I. and Kavraki, L. E. (2012). A sampling-based tree planner for systems with complex
dynamics. Robotics, IEEE Transactions on, 28(1):116–131.

Sucan, I. A. and Chitta, S. (2013). Moveit! Online Available: http://moveit.ros.org.

Sud, A., Otaduy, M. A., and Manocha, D. (2004). DiFi: Fast 3d distance field computation using
graphics hardware. Computer Graphics Forum, 23(3):557–566.

Sun, W., Patil, S., and Alterovitz, R. (2015a). High-frequency replanning under uncertainty using
parallel sampling-based motion planning. IEEE Transactions on Robotics, 31(1):104–116.

Sun, W., van den Berg, J., and Alterovitz, R. (2015b). Stochastic extended LQR: Optimization-based
motion planning under uncertainty. In Algorithmic Foundations of Robotics XI, pages 609–626.
Springer.

Tonneau, S., Mansard, N., Park, C., Manocha, D., Multon, F., and Pettré, J. (2015). A reachability-
based planner for sequences of acyclic contacts in cluttered environments. In Proceedings of
International Symposium on Robotics Research.

Torres, L. G., Baykal, C., and Alterovitz, R. (2014). Interactive-rate motion planning for concentric
tube robots. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages
1915–1921. IEEE.

135

Toussaint, M., Gienger, M., and Goerick, C. (2007). Optimization of sequential attractor-based
movement for compact behaviour generation. In Humanoid Robots, 2007 7th IEEE-RAS
International Conference on, pages 122–129. IEEE.

Trautman, P., Ma, J., Murray, R. M., and Krause, A. (2015). Robot navigation in dense human crowds:
Statistical models and experimental studies of human–robot cooperation. The International
Journal of Robotics Research, 34(3):335–356.

Trinkle, J. C., Pang, J.-S., Sudarsky, S., and Lo, G. (1997). On dynamic multi-rigid-body contact
problems with coulomb friction. ZAMM-Journal of Applied Mathematics and Mechanics,
77(4):267–279.

van den Berg, J., Guy, S. J., Lin, M., and Manocha, D. (2011a). Reciprocal n-body collision
avoidance. In Robotics research, pages 3–19. Springer.

van den Berg, J. and Overmars, M. (2005). Roadmap-based motion planning in dynamic environ-
ments. IEEE Transactions on Robotics, 21(5):885–897.

van den Berg, J., Snape, J., Guy, S. J., and Manocha, D. (2011b). Reciprocal collision avoidance with
acceleration-velocity obstacles. In Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pages 3475–3482. IEEE.

Van den Berg, J., Wilkie, D., Guy, S. J., Niethammer, M., and Manocha, D. (2012). LQG-Obstacles:
Feedback control with collision avoidance for mobile robots with motion and sensing uncertainty.
In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 346–353.
IEEE.

Vernaza, P. and Lee, D. D. (2011). Learning dimensional descent for optimal motion planning in
high-dimensional spaces. In Proceedings of AAAI Conference on Artificial Intelligence, pages
1126–1132.

Wampler, K., Popović, Z., and Popović, J. (2014). Generalizing locomotion style to new animals
with inverse optimal regression. ACM Transactions on Graphics (TOG), 33(4):49.

Wilkie, D., van den Berg, J. P., and Manocha, D. (2009). Generalized velocity obstacles. In
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5573–5578.

Xiang, Y., Arora, J. S., and Abdel-Malek, K. (2010). Physics-based modeling and simulation
of human walking: a review of optimization-based and other approaches. Structural and
Multidisciplinary Optimization, 42(1):1–23.

Zhang, L., Pan, J., and Manocha, D. (2009). Motion planning of human-like robots using constrained
coordination. In IEEE-RAS International Conference on Humanoid Robots, pages 188–195.

Zheng, Y., Lin, M. C., Manocha, D., Adiwahono, A. H., and Chew, C.-M. (2010). A walking
pattern generator for biped robots on uneven terrains. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4483–4488. IEEE.

136

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motion Planning in Dynamic Environments
	Optimization-based Motion Planning
	Motion Planning of High-DOF Robots
	Modeling Uncertainties in Dynamic Environments
	Thesis Statement
	Main Results
	Incremental Trajectory Optimization
	Efficient Motion Planning of High-DOF Robots
	Efficient Approximation of Environment Uncertainties

	Organization

	Incremental Trajectory Optimization
	Introduction
	Main Results
	Organization

	Related Work
	Planning in Dynamic Environments
	Real-time Replanning
	Optimization-based Planning Algorithms

	Overview
	ITOMP : Incremental Trajectory Optimization for Motion Planning in Dynamic Environments
	Obstacle Costs
	Dynamic Environment and Replanning

	Results
	Conclusion

	Hierarchical Trajectory Optimization of High-DOF Robots
	Introduction
	Main Results
	Organization

	Related Work
	Overview
	Assumptions and Notations
	Hierarchical Planning

	Hierarchical Optimization-based Planning
	Multi-stage Planning using Constrained Coordination
	Trajectory Optimization with Local Refinement

	Performance Analysis
	Results
	Conclusions and Limitations

	Planning Dynamically Stable Motion for Human-like Robots
	Introduction
	Main Results
	Organization

	Related Work
	Background
	ITOMP : Incremental Trajectory Optimization
	Contact-Invariant Optimization

	Motion Planning with Dynamic Stability
	Optimization with Stability Cost
	Dynamic Stability Computation
	Computation of Physics Violation Cost

	Results
	Planning of Dynamically Stable Motion
	Comparisons with Related Approaches

	Planning of Multiple Robots
	Implementation of Multi-robot Motion Planning
	Experimental Results

	Natural-Looking Motion Generation of Virtual Characters
	Plausible Motion Constraints
	Experimental Results
	Comparisons with Related Approaches

	Conclusions and Limitations

	Parallel Trajectory Optimization using GPUs
	Introduction
	Main Results
	Organization

	Related Work
	Real-time Motion Planning
	Parallel Planning Algorithms using GPUs

	Overview
	Parallel Multi-trajectory Optimization
	Parallelized Replanning with Multiple Trajectories
	Highly Parallel Trajectory Optimization using GPUs

	Analysis
	Responsiveness
	Quality

	Results
	Conclusions

	Constrained Trajectory Planning using Precomputed Roadmaps
	Introduction
	Main Results
	Organization

	Related Work
	Planning Algorithm
	Assumptions and Notations
	Algorithm Overview

	Roadmap Precomputation and Multiple Path Selection
	Roadmap Precomputation
	Multiple Path Selection

	Parallel Trajectory Refinement
	Initial Trajectory Generation
	Trajectory Optimization with Cartesian Planning Constraints

	Benefits of Parallelization
	Results
	Planning with Orientation Constraints
	Planning with Position Constraints
	Constrained Planning in Dynamic Environments

	Conclusions

	Handling Environment Uncertainty using Probabilistic Collision Detection
	Introduction
	Main Results
	Organization

	Related Work
	Probabilistic Collision Detection
	Planning in Dynamic and Uncertain Environments

	Probabilistic Collision Detection for High-DOF Robots
	Notation and Assumptions
	Fast and Bounded Collision Probability Approximation
	Comparisons with Other Algorithms

	Belief State Estimation
	Environment State Model
	Belief State Estimation and Prediction
	Spatial and Temporal Uncertainties in Belief State

	Space-Time Trajectory Optimization
	Results
	Experimental Results
	Probabilistic Collision Checking and Trajectory Planning

	Conclusions and Limitations

	Conclusions and Future Work
	Limitations and Future Work

	BIBLIOGRAPHY

