
Figure S1. Application of Model 1 to simulation results where there is a negative 
association of G/C-content with simulated enrichment corresponding to Figure 2.  

Heat maps of ZINBA-assigned enrichment posterior probabilities from Model 1 are laid over the 
simulated data to illustrate the pattern in enrichment classification when covariates are not 
utilized to model each component of the data. Pink colors pertain to highly significant windows 
called by the model and dark blue pertains to the least significant windows.  Enrichment 
classification in this model ignores informative trends in background and enrichment with G/C-
content, and classifies windows simply by signal.  As a result, Figure 2C,D shows the decreased 
performance of this model relative to Model 3, which correctly incorporates the simulated 
relationships of G/C-content in each component.  Results are shown for (A) High signal-to-noise 
simulated data and (B) low signal-to-noise simulated data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2. Simulation results where there is no association between signal in the 
enrichment component and G/C-content over a variety of conditions.  

Simulated data corresponding to (A-B) high signal-to-noise ratio and small proportion of 
enriched windows, (C-D) moderate signal-to-noise ratio and moderate proportion of enriched 
windows, and (E-F) low signal-to-noise ratio and high proportion of enriched windows. The raw 
data for each simulation is shown in the left column, where the y-axis is the simulated count in a 
window and the x-axis is the corresponding G/C-content in the window. The set of enriched sites 
are represented as black circles while the density of background windows are shown in blue. The 
right column shows ROC curves of different model formulations, including no covariates used 
for the components (Model 1), G/C-content only used as a covariate with the background and 
zero-inflated component (Model 2) and G/C-content used for the background, zero-inflated and 
enrichment components (Model 3). All models perform similarly, although we see a slight 
advantage of Model 3 and Model 2 because it still models G/C-content’s simulated associations 
in background and zero-inflated regions.   

 
 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



Figure S3. Simulation results where there is a positive association between signal in the 
enrichment component and G/C-content over a variety of signal conditions.  

Simulated data corresponding to (A-B) high signal-to-noise ratio and small proportion of 
enriched windows, (C-D) moderate signal-to-noise ratio and moderate proportion of enriched 
windows, and (E-F) low signal-to-noise ratio and high proportion of enriched windows. The raw 
data for each simulation is shown in the left column, where the y-axis is the simulated count in a 
window and the x-axis is the corresponding G/C-content in the window. The set of enriched sites 
are represented as black circles while the density of background windows are shown in blue. The 
right column shows ROC curves of different model formulations, including no covariates used 
for the components (Model 1), G/C-content only used as a covariate with the background and 
zero-inflated component (Model 2) and G/C-content used for the background, zero-inflated and 
enrichment components (Model 3). As the signal-to-noise ratio decreases, Model 3 has an 
increasing advantage over Model 2 and Model 1. In the lower signal-to-noise ratio condition, not 
modeling the relation between G/C-content and enriched windows causes Model 2 to perform 
worse than Model 1.  This is because differences in the effect of G/C-content between the 
enriched and background components interferes with Model 2’s ability to accurately model 
background and results in poorer classification. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S4. Scatter plots of window read counts versus G/C-content in 250 bp windows 
(chromosome 22)  
The natural log of window read counts from (A) K562 RNA Pol II input control sample, (B) 
K562 RNA Pol II ChIP-seq, (C) GM12878 CTCF input control sample, (D) GM12878 CTCF 
ChIP-seq, (E) K562 H3k36me3 input control sample, and (F) K562 H3K36me3 ChIP-seq are 
plotted against their window G/C-content.  The model-estimated background effect of G/C 
content is plotted for each (with all other covariates fixed at their median values). The 
relationship of G/C is generally inconsistent between input control and ChIP samples except in 
the case of H3K36me3, where the effect of G/C content is relatively small in H3K36me3 ChIP-
seq background signal.  
 

 

 
 
 
 



Figure S5. Example of RNA Pol II ChIP
MACS, and ZINBA. (A) ZINBA’s unrefined region is able to capture the broader region of 
signal, and the refined estimate is able to capture s
punctate peak. (B) Venn diagram showing mutual overlap between RNA Pol II peak calls from 
ZINBA, MACS, and F-seq.  A much lower degree of overlap is observed for peak calls from 
each method compared to the CTCF datas
 

 
 
 
 
 
 

Figure S5. Example of RNA Pol II ChIP-seq region comparing peak calls from F
ZINBA’s unrefined region is able to capture the broader region of 

signal, and the refined estimate is able to capture signal specifically localized around the 
Venn diagram showing mutual overlap between RNA Pol II peak calls from 

seq.  A much lower degree of overlap is observed for peak calls from 
each method compared to the CTCF dataset.  

seq region comparing peak calls from F-seq, 
ZINBA’s unrefined region is able to capture the broader region of 

ignal specifically localized around the 
Venn diagram showing mutual overlap between RNA Pol II peak calls from 

seq.  A much lower degree of overlap is observed for peak calls from 

 



Figure S6. Plot of calculated RNA Pol II “stalling” scores for ZINBA RNA Pol II ChIP-seq 
peak regions within 1 kb of active genes, versus measured gene expression within the 
nearby gene body.  
(A)  Scatter plot of gene expression versus stalling score, considering a stalling metric based only 
on the height ratio between the punctate peak and the broader region.   A median regression line 
modeling the natural log of nearby gene expression as a function of this stalling score is overlain. 
(B) Scatter plot of gene expression versus the ZINBA stalling score additionally accounting for 
the ratio of RNA Pol II punctate peak length to broad peak length (Methods).  A strong negative 
association can be seen between our stalling score and corresponding expression (p-value < 10^-

10), where genes having likely stalled polymerase (higher scores) have much lower levels of gene 
expression.  Higher scores are indicative of regions with less elongation but contain a punctate 
peak near the transcription start site.   The score considering only the height ratios of punctate to 
broad regions explained much less of the variance in measured gene expression (R2 = 0.04%) 
versus the ZINBA stalling score (R2 = 3.5%), suggesting that the incorporation of punctate to 
broad peak lengths ratios into the ZINBA score represents a marked improvement.   
 

 
 
 
 
 
 
 
 
 
 
 
 



Figure S7. Example of K562 FAIRE-seq signal in an amplified CNV region.  
(A) Because input control is not available, the ZINBA BIC-selected model includes our estimate 
for local background as a starting covariate. ZINBA is able to call regions that are specific to 
punctate peaks within broader regions of FAIRE signal, while other methods call broader regions 
in the surrounding regions. FAIRE signal characteristically has greater levels of background that 
tend to be more pronounced in CNV regions.  (B)  Overlap between peak calls from each method 
are more disparate compared to results from the CTCF ChIP-seq dataset, indicative of the 
challenging conditions for peak calling in FAIRE-seq data.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S8. Comparing the distribution of peak lengths corresponding to ZINBA H3k36me3 
called regions. Box plot of the distribution of peak lengths from ZINBA H3K36me3 regions 
reveal broader regions of signal being recovered.  In addition to specificity to gene bodies, these 
regions have a high degree of coverage with active gene bodies (Figure 6B) and contain higher 
levels of gene expression when overlapping a RNA Pol II broad peak (Figure 6C)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S9.  Performance comparison of ZINBA models under different model formulations 
(A) In CTCF ChIP-seq data, BIC selected models not considering input control as a starting 
covariate (using G/C-content, mappability score, local background estimate) perform similarly to 
BIC selected models considering input control (using input control, G/C-content, mappability 
score).  In addition, we find that not modeling enrichment covariates has little impact on eventual 
classification performance (light blue). (B) In contrast, not modeling enrichment in low signal-
to-noise H3K36me3 ChIP-seq data has a large impact on ZINBA’s ability to recover enriched 
regions spanning gene bodies (light blue).  Similar to CTCF, not considering input control (G/C-
content, mappability score) results in similar performance as when input control is considered 
(yellow).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S10. Scatter plots of enrichment classification of BIC selected models vs. BIC 
selected models lacking enrichment covariates in human chromosome 22.   

(A) FAIRE-seq and (B) H3K36me3 ChIP-seq represent low signal-to-noise datasets where 
enrichment is often difficult to distinguish from background.  In these datasets a strong decrease 
in the number of windows classified as enriched is observed when enrichment covariates are 
ignored in the BIC models from Table S1 in Additional File 1. This is in contrast to high signal-
to-noise (C) GM12878 ChIP-seq, where a much smaller decrease in enrichment classification is 
observed when enrichment covariates are ignored, as signal alone is sufficient in classification.  
The red line indicates absolute agreement in posterior probabilities of enrichment from BIC 
selected models and a corresponding model lacking enrichment covariates.   
 

 
 
 
 
 
 
 
 
 
 
 



Figure S11.   ZINBA mixture regression model fit and posterior probability distribution 
(A) Comparison of model fit between ZINBA’s mixture regression framework versus traditional 
Poisson and Negative Binomial regression models on K562 chromosome 22 FAIRE-seq data. To 
avoid bias in the fitting of background regions, some methods remove likely enriched regions 
and fit a model on the remaining counts. The drawback of such an approach is that the proportion 
of enrichment is unknown a priori, and thus it is not known how much data to remove or what 
windows are enriched to begin with. (B) Histogram of enrichment posterior probabilities applied 
to K562 FAIRE-seq chromosome 22 data. Distribution of these probabilities show that 
ambiguous assignment is rare (probabilities near 0.5) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S12.   Comparison of peak calling performance in selected ZINBA models when 
interaction is considered versus when it is not 
Recovery of relevant FAIRE peak regions from the ZINBA model using in Figure 5 D-F was 
compared to peaks selected by the ZINBA model selection procedure not considering two and 
three-way interactions.  The resulting peak calls are very similar, suggesting that ignoring 
interaction does not adversely impact peak calling performance.  Considering higher order 
interactions during the ZINBA automated model selection procedure greatly increases 
computational time, so considering main effects of three starting covariates reduces the number 
of models to consider for each component from 19 to 8.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S13.   Application of ZINBA peak refinement to MACS and F-Seq regions 
Application of peak refinements to regions called in (A) CTCF ChIP-seq (corresponding to 
Figure 5A), (B) RNA Pol II ChIP-seq (corresponding to Figure 5D)  (C) and FAIRE by each 
method (corresponding to Figure 5F).  Peak refinement is most useful in situations where on 
expects a mixture of punctate and broad regions.  As expected, peak refinement as little effect in 
punctate CTCF ChIP-seq data, and has significant impact in RNA Pol II data.  In FAIRE-seq 
data, we find that ZINBA performs favorably to other methods.  (D) The overlap between 
refined FAIRE and RNA Pol II peaks from each method; compare to Figure 6A.  Without peak 
refinement, ZINBA performs well relative to other methods (Figure 5). 
 
 

 

 

 

 

 

 

 

 



Table S1: Parameter Estimates for BIC selected models for ENCODE DNA-seq datasets 
(Human Chr 22). 

Parameter estimates  are given below for BIC-selected covariates.  Interaction terms are denoted 
by “:” in between the interacting covariates.  For the background and enrichment components, 
the estimates are given in terms of the change in log mean count for a one unit increase in that 
standardized covariate.  For the zero-inflated component, the estimate is given in terms of the 
change in log odds of being zero-inflated for each unit increase in that standardized covariate.   

 

Dataset Component Covariate Estimate 
GM12878 CTCF       
  Background (Intercept) -0.0897 
    G/C-content 0.2601 
    Mappability Score 0.3286 
    Input 0.1632 
    G/C-content:Input 0.0373 
        
  Enrichment (Intercept) 1.6229 
    G/C-content 0.8558 
    Mappability Score 0.6737 
    Input 0.5003 
        
  Zero-inflated (Intercept) -3.2968 
    G/C-content 0.7713 
    Mappability Score -0.6075 
    Input -0.0791 
    G/C-content:Mappability Score 0.1233 
        
K562 RNA Pol II       
  Background (Intercept) 0.8890 
    G/C-content 0.5758 
    Mappability Score 0.3005 
    Input 0.5048 
    G/C-content:Input 0.1071 
        
  Enrichment (Intercept) 2.0064 
    Mappability Score 0.3397 
    G/C-content 0.9187 
    Input 0.5347 
    Mappability Score:Input 0.0962 
    G/C-content:Input 0.0867 
        
  Zero-inflated (Intercept) -1.7309 
    Mappability Score -0.1419 
    G/C-content -0.7708 
    Input -0.3327 
    Mappability Score:G/C-content -0.2179 
    Mappability Score:Input -0.1686 
        
K562 FAIRE       
  Background (Intercept) -1.5322 



    G/C-content -1.4908 
    Mappability Score 1.7753 
    Local Background 0.9706 

    
Mappability Score:Local 
Background 0.1552 

        
  Enrichment (Intercept) -2.7483 
    G/C-content 2.0861 
    Mappability Score 1.4268 
    Local Background 0.5070 

    
Mappability Score:Local 
Background 0.8581 

        
  Zero-inflated (Intercept) -13.6561 
    G/C-content 15.6943 
        
        
K562 H3K36me3   (Intercept) 0.6641 
  Background Mappability Score -0.1383 
    G/C-content 0.0547 
    Input 0.4589 
    Mappability Score:G/C-content -0.0278 
    Mappability Score:Input 0.1173 
        
  Enrichment (Intercept) 1.9265 
    Mappability Score 0.2342 
    G/C-content 0.0223 
    Input 0.5233 
    Mappability Score:G/C-content 0.0578 
    Mappability Score:Input 0.0540 
    G/C-content:Input 0.0137 
        
  Zero-inflated (Intercept) -37.1736 
    Mappability Score 67.0922 
    G/C-content 0.8063 
    Input -0.4056 
 

 

 


