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Abstract 

Nikki J. Wagner: In Vivo Regulation of Autoreactive B Cells by IL-6, CD40L and TNFα 

(Under the direction of Barbara Vilen) 

 

Polyclonal B cell activation is essential to an effective innate immune response.  However, 

autoreactive B cells must not be included in the polyclonal response to avoid autoimmunity.  

We have shown that IL-6 and CD40L secreted by TLR-stimulated dendritic cells (DCs) and 

macrophages (MΦs) selectively repress LPS-induced Ig secretion by autoreactive B cells.  

Here we introduce a third soluble factor involved in DC/MΦ-mediated B cell repression, 

TNFα.  Like IL-6 and CD40L, DCs and MΦs derived from lupus-prone MRL/lpr mice 

secrete less TNFα in response to TLR stimulation than DCs and MΦs from C57BL/6 mice, 

suggesting secretion of TNFα by DCs/MΦs may have a role in autoimmune disease.  We 

further demonstrate in an in vivo model that IL-6, CD40L and TNFα regulate LPS-stimulated 

autoreactive B cells, while mice lacking these factors do not.   Our data indicate that IL-6, 

CD40L and TNFα mediate in vitro and in vivo autoreactive B cell repression during innate 

immune responses.  
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Chapter 1 
Introduction 

  



 1.1 B Cell Tolerance 

To protect from invading pathogens, the B cell receptor (BCR) is assembled by 

variable-(diversity)-joining (V(D)J) recombination to produce a repertoire of antibodies that 

recognize a wide range of antigens.  This random process inadvertently results in the 

generation of autoreactive immunoglobulins (Ig).  It is estimated that up to 50% of emergent 

B cells in the bone marrow are autoreactive [1-3].  However the number of autoreactive B 

cells in the periphery is much lower due to central tolerance mechanisms [4-13].  

Autoreactive B cells that escape deletion or receptor editing in the bone marrow are subject 

to further mechanisms of tolerance, including peripheral deletion and receptor revision [12, 

14-19].  Peripheral B cells that have avoided deletion or receptor rearrangement are 

maintained in an unresponsive state referred to as anergy.  Anergic B cells do not secrete Ig 

in response to antigenic or mitogenic stimulus [20-23].  Lack of plasmablast formation and Ig 

secretion is common to all anergic B cells; however proliferation in response to either Ig or 

TLR stimulation and the ability of anergic B cells to transduce BCR signals vary depending 

antigen specificity [1, 24-29].  The avidity of the BCR for the autoantigen determines if an 

autoreactive B cell is deleted, its receptor is edited or it enters an anergic state.  Stronger 

BCR signals invoke deletion or receptor editing, while weaker signals induce anergy [30].  

The tolerization of autoreactive B cells is critical since their potential activation produces 

autoantibodies that can lead to autoimmune diseases.  

 

1.2 Loss of B Cell Tolerance and Disease 

Systemic Lupus Erythematosus (SLE) is an autoimmune disease where B cells play a 

critical pathogenic role [31].  In SLE, autoreactive B cells become activated and produce 
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autoantibody against nuclear components including DNA, RNA, ribonuclear proteins (RNPs) 

and histones [32-34].  While the exact etiology of SLE remains unclear, nucleic acids and 

antibodies form immune complexes (ICs) that contribute to disease pathogenesis [31, 35].  IC 

deposition in small blood vessels produces inflammation and tissue damage, leading to 

dermatitis, vasculitis, pneumonitis, nephritis, arthritis and/or cerebritis [36, 37].  ICs serve as 

potent immune stimuli since they coligate BCR and TLR, which can overcome B cell 

tolerance [38-46].  The loss of B cell tolerance in SLE results in autoreactive B cell 

activation and production of autoantibodies that leads to tissue damage.  

Murine models of SLE have proven useful in studying diseases resulting from a loss 

of B cell tolerance.  Mice of the autoimmune-prone strain MRL develop lupus-like symptoms 

and die by about 24 months of age [47].  Further, the spontaneous lpr mutation of Fas on the 

MRL background results in an accelerated disease process that produces SLE-like disease 

and death by 3-6 months [47, 48].  MRL/lpr mice have measurable serum autoantibody 

specific for single- and double-stranded DNA, and RNPs [32, 47, 49, 50].  These mice 

develop symptoms that mimic human SLE, including skin lesions, joint inflammation and 

glomerulonephritis [47], thus providing a model disease similar to human SLE.  When 

autoreactive transgenic (Tg) B cells are expressed on the MRL/lpr background, they break 

tolerance, become activated and produce autoreactive antibodies [51-53].  Thus, in both mice 

and humans, loss of B cell tolerance leads to autoantibody production, and potentially 

autoimmune disease. 

Deletion and receptor editing eliminate the possibility of autoreactive B cells 

becoming activated; however anergy has been shown to be reversible [54, 55].  The anergic 

state of autoreactive B cells is maintained by chronic antigen binding to the BCR [54].  Once 
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purified away from the source of antigen, anergic B cells regain the ability to respond to 

BCR/TLR stimulation [54, 55].  We have recently shown that dendritic cells (DCs) and 

macrophages (MΦs) are capable of regulating autoreactive B cells by secreting soluble 

factors, identified as IL-6, sCD40L [56, 57] and TNFα (Chapter 2).  If DCs and MΦs are 

removed from autoreactive B cells, TLR stimulation results in Ig secretion [56, 57].  These 

data prove that regulation of anergic B cells via receptor occupancy or soluble factors must 

be constantly maintained to prevent autoantibody production.   

 

1.3 2-12H Tg Model of B Cell Tolerance 

Smith antigen (Sm) is an essential RNP involved in RNA splicing.  Anti-Sm 

antibodies are present in the serum of 25-30% of SLE patients and correlate with more severe 

disease [32, 33, 58, 59].  To study tolerance mechanisms that regulate Sm-specific B cells, 

Ig-transgenic mice were developed that express a heavy chain (2-12H) isolated from 

MRL/lpr mice [24].  When the 2-12H Tg heavy chain pairs with endogenous light chains, the 

B cells produced have Sm-specific BCRs of varying affinities.  It was initially reported that 

~30% of the B cells in 2-12H Tg mice bound Sm; however recent functional analysis 

indicates the majority of B cells bind Sm, although some bind with low affinity [24, 60].  The 

2-12H Tg mice have a B cell repertoire that is primarily autoreactive; however, on a non-

autoimmune background they maintain tolerance [24].   

To examine the role of different BCR affinities on tolerance, the 2-12H Tg mice were 

crossed with mice expressing restricted light chains [29, 60].  Pairing of 2-12H with the Vκ4 

light chain produces Sm-specific B cells of moderate affinity [60].  In the presence of innate 

stimuli, B cells from these mice are repressed by IL-6 and sCD40L.  The marginal zone (MZ) 
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population in 2-12H/Vκ4 mice exhibit a block in BCR-mediated signal transduction that may 

contribute to unresponsiveness [60].  Further, since this block is not present in 2-12H/Vκ4 

follicular (FO) B cells, it appears  that different affinities regulate MZ and FO B cell 

activation [60].  

Low affinity autoreactive B cell can respond to stimuli differently than high and 

moderate affinity B cells.  Therefore, the 2-12H Tg was paired with the Vκ8 light chain to 

produce 2-12H/Vκ8 B cells that bind Sm with low affinity [29].  Interestingly, 2-12H/Vκ8 

mice have a limited MZ population with only ~1.5% of splenic B cells exhibiting MZ 

characteristics [29, 60].  Like 2-12H Tg B cells, 2-12H/Vκ8 B cells are repressed by IL-6 and 

sCD40L [56, 57], but Ig secretion by 2-12H/Vκ8 B cells is also repressed by TNFα (Chapter 

2).  The repression of 2-12H/Vκ8 B cells by TNFα may be due to the lower affinity of the 

BCR or to the lack of MZ B cells in the 2-12H/Vκ8 mice [29].  While the 2-12H Tg mice can 

be induced to break tolerance when injected with snRNPs [24], the low affinity 2-12Vκ8 

mice do not produce antibody in response to snRNPs (M.A.Kilmon and B.J.Vilen, 

unpublished observations), indicating that the affinity of the BCR and/or B cell subsets play a 

critical role in maintaining B cell tolerance.  

 

1.4 The Innate Immune Response 

The innate immune system provides the first line of defense against invading 

pathogens through constitutively expressed, germline-encoded receptors called pattern-

recognition receptors (PRRs).  The innate system responds to conserved molecular motifs 

that are components of pathogens, called pathogen-associated molecular patterns (PAMPs).  

PAMPs are essential for the survival and/or function of the pathogen, therefore they make 
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excellent targets for innate immune recognition [61].  The conserved nature of PAMPs within 

a class of pathogens allows the innate immune system to recognize a wide variety of 

pathogens with a limited number of receptors.  PAMPs include essential bacterial cell wall 

components, such as lipopeptides, peptidoglycan, glycolipids, flagellin, and 

lipopolysaccharide (LPS), and nucleic acids specific for bacteria and viruses [61].   

PRRs are highly conserved between species (from plants to humans) [61].  The best 

studied PRRs are the Toll-like receptors (TLRs).  Mammals have at least 12 TLRs to protect 

them from pathogens. TLRs 1-9 are expressed in both mice and humans; however TLR8 is 

non-functioning in mice [62-64].  TLRs 1, 2, 4, 5, and 6 are expressed on the cell surface 

[64-66].  In general, TLR2 binds components of Gram positive bacteria and mycobacteria 

while TLR4 recognizes Gram negative bacteria.  TLRs 1 and 6 dimerize with TLR2 for 

selective binding to different lipid portions of lipoproteins [67-71].  TLRs 3, 7, 8 and 9 are 

located intracellularly, and all the intracellular TLRs target nucleic acids, such as 

hypomethylated CpG DNA, and double and single stranded RNA [72-75].  TLRs 7 and 8 are 

highly homologous and both bind single stranded RNA [73].  TLRs 7 and 9 are sequestered 

in the endoplasmic reticulum (ER) until ligand binding upon which they move to endosomes 

[76-78].  Binding of PAMPs to TLRs induces a signaling pathways involving myeloid 

differentiation factor 88 (MyD88) dependent (for all TLRs except 3) and independent (for 

TLRs 3 and 4) pathways.  MyD88-independent pathways induce activation of the 

transcription factor IRF3 and the expression of interferon-β [64, 79].  MyD88-dependant 

signaling activates the transcription factor NFκB and induces inflammatory cytokine 

secretion and the expression of co-stimulatory molecules [64].  The final outcome of TLR 

 6 
  



ligand binding, however, depends on which TLR is bound and the type of cell on which the 

TLR is located. 

 

1.5 Dendritic Cell and Macrophage Responses to TLR Stimuli 

DCs and MΦs express the widest range of TLRs of any cell type [65], since their 

functions of clearing cellular debris and pathogens put them in constant contact with innate 

stimuli.  LPS binding to TLR4 on MΦs induces NFκB activation that results in transcription 

of many genes, including those responsible for the production of the inflammatory cytokines 

IL-1, IL-6, IL-12 and TNFα and the chemokine IL-8 [61, 64].  The secretion of IL-1, IL-6, 

IL-12 and TNFα causes localized inflammation while IL-8 attracts neutrophils to the site.  

The binding of TLR ligands to DCs induces maturation and increases the ability of DCs to 

prime antigen-specific T cells.  TLR-mediated NFκB activation in DCs and MΦs also 

induces the expression of molecules involved in T cell activation such as the costimulatory 

molecules CD80 and CD86 and upregulates the expression of MHCII [61], thus linking the 

innate and adaptive immune systems.  Activated DCs and MΦ activate naïve B cells by 

secreting B lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) [80-

82].  Since BLyS and APRIL promote Ig class switching and plasma cell differentiation in 

naïve B cells [82], DCs and MΦs can induce T-independent B cell activation.  TLR-mediated 

stimulation of DCs and MΦs results in the activation of both innate and adaptive immune 

responses.   

Defects in DCs and MΦs are linked to SLE.  MΦs from several strains of lupus-prone 

mice are defective in secreting inflammatory cytokines in response to TLR stimulation [83-

85], suggesting that MΦ-mediated regulation of B cells is involved in disease development.  
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Monocyte-derived DCs from lupus patients may contribute to disease due to their 

overexpression of CD86 [86], potentially leading to excessive antigen presentation.  DCs and 

MΦs from lupus-prone mice also display an excess of autoantigen on their surfaces, possibly 

providing a pool of high avidity antigen to activate autoreactive B cells (D.G.Carnathan, 

C.E.Hilliard, B.J.Vilen, unpublished observations).  While myeloid DCs (myDCs) and MΦs 

are able to selectively repress autoreactive B cells through the soluble mediators IL-6, 

sCD40L [56, 57] and TNFα (Chapter 2), myDCs and MΦs from lupus-prone mice secrete 

less of these repressive factors [57, 87] (Chapter 2).  Thus, in lupus-prone mice the response 

of MΦs and myDCs to innate stimuli is defective. 

Plasmacytoid DCs (pDC) are specialized DCs that secrete large amounts of type I 

interferon (IFN-I) upon stimulation [88-90].  pDCs express TLRs 7 and 9 in humans and 

mice.  Ligation of these receptors induces IFN-I production that promotes maturation of 

immature DCs (allowing priming and activation of antigen-specific T cells) and stimulation 

of B cells [91-94].  SLE patients have aberrantly high IFN-I levels and disruption of the IFN-

I receptor reduces pathology in two lupus-prone mouse models [95, 96].  These data are 

likely due to the stimulatory effect type I IFN has on B cells.  Therefore innate immune 

stimulation of pDCs is likely critical to the development and/or maintenance of autoreactive 

B cell activation and Ig production.  Together these data indicate that DCs and MΦs regulate 

autoreactive antibody production and autoimmune disease process. 

 

1.6 B Cell Responses to TLR Stimuli  

B cells proliferate, differentiate to antibody secreting cells (ASCs), increase antigen 

presentation and secrete cytokines in response to TLR ligand binding [97, 98].  LPS binding 
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to TLR4 in murine B cells induces NFκB activation that upregulates transcription of B cell 

survival genes [99-101], leading to proliferation and differentiation to ASCs [102, 103].  

Murine B cells express TLRs 4, 7 and 9 while human B cells express TLRs 7, 9 and 10 [104, 

105].  Although human B cells do not respond to LPS, TLR9 signaling is functional in both 

human and murine B cells and both produce Ig in response to CpG DNA [104, 105].  While 

some effects of TLR stimulation on B cells may be indirect (the result of other colocalized 

cells responding to TLR stimulation), others are B cell-intrinsic [106, 107].  Further tying B 

cells to innate immune responses, a recent study [108] suggests that TLR-activated naïve B 

cells repress autoreactive T cells through the secretion of IL-10.  This provides a mechanism 

by which naïve B cells prevent autoimmunity during an innate immune response.  Thus, B 

cells’ involvement in immune responses is not limited to the adaptive responses, but they 

also have a critical role in the innate immune responses.  

Innate immune stimulation of B cells, however, can lead to autoantibody production.  

Concurrent BCR and TLR signaling causes some autoreactive B cells to break tolerance and 

become ASCs [38-46], linking TLR ligation to autoreactive B cell activation.  In lupus-prone 

MRL/lpr mice, despite BCR stimulation by autoantigens, deletion of the TLR signaling 

protein MyD88 prevents the development of serum antinuclear antibodies or nephritis [109], 

implicating TLRs in murine lupus.  Further, in rheumatoid arthritis models, anti-IgG 

antibodies combine with RNA and/or DNA in immune complexes (ICs) that bind the BCR 

and TLR of rheumatoid factor (RF)-specific B cells, resulting in their activation [38-46].  The 

requirement of either TLR binding or MyD88 signaling to generate anti-nuclear antibody 

production in the RF models [38-46] demonstrates the necessity of TLR signaling for 

autoantibody production.  While the majority of work has focused on TLRs 7 and 9, LPS-
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stimulation induces autoantibody production in an arthritis model [110] indicating that the 

TLR 4 also contributes to the break in tolerance.  These data implicate TLR signaling as 

essential for the break in B cell tolerance and the development of autoreactive antibody that 

can lead to autoimmune disease. 

 

1.7 Cytokine Regulation of Autoreactive B Cells 

Autoreactive B cells continually exposed to self antigen lose the ability to respond to 

TLR stimulation due to constant BCR signaling and soluble factors produced by DCs/MΦs.  

However, these B cells regain the ability to respond to TLR ligands when antigen and soluble 

factors produced by myDCs and MΦs are removed [56].  The factors responsible for 

repressing Ig secretion have been identified as IL-6, sCD40L [56, 57] and TNFα (Chapter 2).  

The repressive action of IL-6, CD40L and TNFα on autoreactive B cells challenges our 

current understanding of the function of these cytokines.  Previous studies show that IL-6, 

sCD40L and TNFα promote B cell activity [92, 111-117]; however these studies were 

performed in non-transgenic models, so the majority of the B cells were naïve.  Since the 

same cytokines promote Ig secretion by naïve B cells and repress Ig secretion of autoreactive 

B cells, the history of BCR antigen exposure determines the response to IL-6, sCD40L and 

TNFα.  

Chronic stimulation of the BCR reprograms the B cell to respond differently to 

cytokine and/or TLR signaling.  Only B cells chronically exposed to antigen repress Ig 

secretion in response to IL-6, sCD40L [56, 57] and TNFα (Chapter 2).  These cells exhibit 

constitutively elevated basal phospho-ERK [54, 118] and our studies show that inhibiting 

MEK abrogates the repressive affects of IL-6 and sCD40L on autoreactive B cells (J.A.Rutan 
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and B.J.Vilen, manuscript in preparation).  Thus the ability of IL-6 and sCD40L to repress 

TLR4-mediated Ig secretion in autoreactive B cells is dependant on the MEK/ERK pathway, 

consistent with the idea that chronic antigen stimulation reprograms B cell signaling.   

DCs and MΦs from lupus-prone mice show defects in the LPS-induced production of 

the cytokines that regulate autoreactive B cells [57, 87] (Chapter 2).  Because of these defects, 

DCs and MΦs from lupus-prone MRL/lpr mice are unable to repress anti-Sm 2-12Vκ8 B 

cells [57, 87].  The decrease in IL-6, sCD40L and TNFα produced by MΦs and DCs in 

MRL/lpr mice together with our in vitro data suggests a role for cytokine-mediated 

regulation of autoreactive B cells in disease. 

 

1.8 Model of B Cell Tolerance During Innate Immune Responses 

In non-autoimmune mice, the presence of TLR ligands from viruses and bacteria 

stimulate DCs and MΦ to secrete IL-6, TNFα and sCD40L.  While naïve B cells are 

initiating polyclonal Ig responses, Ig secretion by autoreactive B cells is repressed.  This 

tolerance mechanism allows the host to attack infecting pathogens yet maintain 

unresponsiveness among the autoreactive B cell population.  Mechanistically, autoreactive B 

cells repress Ig secretion by decreasing BLIMP-1 and XBP-1 levels in a MEK/ERK 

dependent manner (J.A.Rutan, and B.J.Vilen, manuscript in preparation).  However, if 

genetic or environmental predisposition to autoimmune disease results in decreased 

production of IL-6, sCD40L and TNFα by DCs and MΦs, both naïve and chronically 

antigen-experienced B cells are activated by TLR ligand binding.  This results in autoreactive 

antibody production that may lead to autoimmune disease.  Alternatively (or additionally), 

genetic and/or environmental elements may alter the response of autoreactive B cells to 
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secreted repressive factors, such that they fail to be susceptible to IL-6, sCD40L and/or 

TNFα-mediated repression and are allowed to become activated like naïve cells.  Preliminary 

data indicate that defective B cell responses are involved in murine MRL/lpr lupus 

(N.J.Wagner and B.J.Vilen, unpublished observations).  This model suggests that chronic 

BCR stimulation reprograms receptors so that responses to IL-6R, CD40 and TNFR1/2 are 

altered, offering an explanation for the selective repression of autoreactive B during innate 

immune stimulation.  
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2.1 Introduction 

Innate immune stimuli, such as bacterial LPS, viral nucleic acids or hypomethylated CpG 

DNA motifs, activate B cells through Toll-like receptors (TLRs) to generate polyclonal B cell 

responses that facilitate the clearance of pathogens.  Innate immune responses induce the 

secretion of autoantibody, although these responses are normally transient [1-4].  However, if 

autoreactive B cells persist in producing antibody, autoimmune disease may develop [1-4].  We 

have previously shown that dendritic cells (DCs) and macrophages (MΦs) regulate autoreactive 

B cells during innate immune responses [5, 6].  TLR ligands stimulate DCs and MΦs to secrete 

cytokines, including TNFα, that have pleiotropic effects on immune responses.   

The role of TNFα in autoimmunity is ambiguous.  In human systemic lupus 

erythematosus (SLE) and murine models of lupus, TNFα has been implicated inflammation and 

organ damage [7-11].  However, other data suggest that TNFα may protect from SLE.  Lupus-

prone NZBxNZW mice have reduced disease and increased lifespan when treated with 

recombinant TNFα (rTNFα) at a young age [12].  Additionally, NZW mice, which are not lupus-

prone, develop lupus-like disease when TNFα is reduced by genetic alteration [13].  In both 

cases, development of SLE is dependent on early TNFα levels.  This suggests TNFα plays a role 

in establishing B cell tolerance.  TNFα also influences anti-histone and anti-chromatin antibody 

production in humans and some patients receiving anti-TNFα therapy develop symptoms of SLE 

that resolve once anti-TNFα drugs are discontinued [14-19].  This implies that TNFα prevents 

SLE in mice and humans.  The data indicate the timing and concentration of TNFα during 

disease progression determines the affect TNFα has on autoantibody production.   

 We have previously described IL-6 and soluble CD40L (sCD40L) as factors that 

selectively repress antibody secretion by autoreactive B cells [5, 6].  In this study we describe 
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TNFα as the third factor produced by DCs and MΦs that represses autoantibody secretion.  

TLR4-stimulated DCs and MΦs from lupus-prone MRL/lpr mice produce less TNFα than 

wildtype, suggesting that TNFα is important in B cell tolerance.  Removal of IL-6, CD40L and 

TNFα affects the activation of TLR-stimulated autoreactive B cells in vivo, corroborating our in 

vitro data that these cytokines regulate autoantibody secretion.  Further, Sm-specific B cells 

adoptively transferred into IL-6-/-xCD40L-/-xTNFα-/- mice become activated following TLR4 

stimulation.  The data support previous in vitro findings that DCs, MΦs, and their secreted 

products regulate autoreactive B cells during innate immune responses.   

 

2.2 Materials and Methods 

Mice. C57BL/6 (B6) non-transgenic, MRL/MpJ-Faslpr/J (MRL/lpr), IL-6-/-, CD40L-/- and TNFα-/- 

mice were purchased from the Jackson Laboratory (Bar Harbor, ME). IL-6-/-, CD40L-/- and 

TNFα-/ mice were crossed to generate IL-6-/-xCD40L-/-xTNFα-/- mice (3XKO).  PCR was 

performed to determine if the mice inherited the disrupted genes, as previously described [20-22].  

C57BL/Ly5.2 (B6/Ly5.2) mice were purchased from the National Cancer Institute (Frederick, 

MD).  2-12H Tg and 2-12H/Vκ8/Ck-/- (2-12H/Vκ8) have been described [23, 24].  2-12H Tg 

mice were crossed to B6 10 generations to generate 2-12H/B6 Tg.  Mice were housed in 

microisolater cages with free access to food and water.  All animal experiments were approved 

by the Institutional Animal Care and Use Committee. 

 

Bone marrow-derived DC (BMDC) and MΦ (BMMΦ) Culture.  Bone marrow-derived DCs 

(BMDCs) (95% pure) and bone marrow-derived MΦs (BMMΦs) (98% pure) were generated as 
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previously described [5].  Conditioned medium (CM) was made from 1x104 BMDCs and 

BMMΦs (0.2 ml) cultured 4 days with LPS (30 μg/ml). 

 

B Cell Purification.  Splenic B cells were negatively selected using the StemSep B cell 

enrichment kit (StemCell Technologies, Vancouver, BC).  2-12H/Vκ8 B cells were 85-97% as 

determined by flow cytometry.  2-12H/B6 Tg B cells isolated for adoptive transfer were 85-95 % 

pure and B cells isolated from 3XKO or B6 mice were 73-99 % pure. 

 

Reagents and Antibodies. Recombinant IL-6 (rIL-6) and antibodies to IL-6, CD40L, and 

hamster IgG3 (isotype control for anti-CD40L) were purchased from BD Biosciences (San Jose, 

CA), TEPC 183, rabbit IgG (isotype control for anti-TNFα) and Escherichia coli 055:B5 LPS 

from Sigma-Aldrich (St. Louis, MO), mouse GM-CSF, IL-4, and M-CSF from PeproTech 

(Rocky Hill, NJ), and CFSE from Invitrogen (Carlsbad, CA).  54.1 (3-83 idiotype, isotype 

control for anti-IL-6), 187.1 (anti-κ), HB100 (anti-IgMa), and B7.6 (anti-IgM) were purified 

from hybridoma culture supernatants.  Recombinant TNFα (rTNFα) and recombinant sCD40L 

(rsCD40L) were purchased from R&D Systems (Minneapolis, MN).  Rabbit polyclonal anti-

TNFα was obtained from Vic Johnson (CDC/NIOSH/HELD, West Virginia) and purified by 

Protein A affinity.  

 

B Cell Culture.  Purified B cells (1x105 per well in a 96-well plate) were cultured with 30 μg/ml 

LPS for 4 days.  rIL-6, rsCD40L, rTNFα, BMDC or BMMΦ CM (25% of final volume) were 

added to B cell cultures on day 0.  The IL-6 in CM was neutralized with either anti-IL-6 antibody 

or a control rat IgG1 antibody (54.1).  Soluble CD40L in CM was neutralized with either anti-
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CD40L or control hamster IgG3 antibody.  TNFα in CM was neutralized with either anti-TNFα 

or control rabbit IgG. 

 

CFSE-based Proliferation Assay.  Purified B cells (1x106 cells/ml) in pre-warmed 0.1% 

BSA/PBS were labeled with CFSE at a final concentration of 0.4 μM for 10 minutes at 37oC.  

The cells were washed with IMDM containing 5% FCS.  CFSE-labeled cells were stimulated 

with LPS (30 μg/ml) in the presence or absence of rTNFα (50 ng/ml) as described above.  After 

3 days, the cells were harvested and CFSE fluorescence intensity was analyzed by flow 

cytometry. 

 

ELISAs.  IgMa/κ (encoded by 2-12H/Vκ8) was captured with anti-κ (187.1) and detected with 

biotinylated anti-IgMa (HB100) and Streptavidin-AP as previously described [24].  IgM 

(encoded by B6) was captured with anti-IgM (clone 33-60) and detected with biotinylated anti-

IgM (B7.6) and Streptavidin-AP.  Purified mouse IgMa/κ (TEPC 183) served as the standard 

control.  TNFα was quantitated by capturing with anti-TNFα (clone TN3-19, eBioscience, San 

Diego, CA) and detecting with biotinylated polyclonal anti-TNFα (eBioscience) and 

Streptavidin-AP.  rTNFα served as the standard control. 

 

Antinuclear Antibody Test.  Antinuclear antibodies in serum were diluted 1:50 in PBS with 2% 

FCS and detected by indirect immunofluorescence using Hep-2 substrate slides (Antibodies Inc., 

Davis, CA), anti-mouse IgG-Alexa647 and anti-mouse IgM-Alexa488 (Invitrogen). 
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Histology.  Kidneys were fixed in 4% paraformaldehyde, paraffin-embedded, sectioned and 

hematoxylin and eosin (H&E) stained.  Sections were examined for glomerular and interstitial 

disease by pathologist Volker Nikeleit via light microscopy.  

 

Bone Marrow Transplants.  Six- to eight-week-old B6/Ly5.2 mice were lethally irradiated with 

900 rads.  Femurs and tibias were removed from donor mice and the marrow was flushed into 

PBS+0.5% BSA.  Red blood cells were lysed with TAC.  Bone marrow cells (5-8x106) in PBS 

were injected intravenously into the recipient mice 24 hours after irradiation.  Recipient mice 

were checked after eight weeks for reconstitution by FACS analysis on blood cells, staining for 

Ly5.1 or Ly5.2 on B cells (B220), T cells (CD3) dendritic cells (CD11c) and macrophages 

(CD11b).  

 

In vivo stimulation.  An innate immune response was simulated by injecting 25 μg 

lipopolysaccharide (LPS) (E.coli O55:B5, Sigma-Aldrich) intraperitoneally (i.p.) once a week for 

the specified time(s). 

 

ELISpots.  ELISpots were preformed using plates (Millipore, Billerica, MA) coated with 10U/ml 

Sm (Immunovision, Springdale, AR), 5µg/ml ssDNA, (Sigma-Aldrich), anti-IgMa (to detect 

antibody from transgenic B cells) or 40µg/ml histones (Immunovision) with 10µg/ml dsDNA 

(Sigma-Aldrich) (to detect anti-nucleosome antibody).  Cells were plated at 2.5-5x106cells per 

well, depending on the number of cells recovered from the preparation.  After 24 hour incubation 

on coated plates, cells were washed off the plates and antibody remaining on the plates was 

detected using biotin-labeled anti-IgM, followed by Streptavidin -HPR (BD Biosciences).   Spots 
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were developed using the substrate 3-amino-9-ethylcarbazole (Sigma-Aldrich).  Plates were 

scanned and analyzed using the Immunospot ELISpot analyzer (Cellular Technology Ltd., 

Cleveland, OH).   

 

Statistical analysis.  Data was analyzed using the Student’s t test.  Significant p values ( < 0.05)  

are denoted by *. 

 

2.3 Results 

TNFα represses Ig secretion from Sm-specific B cells 

Maintaining B cell tolerance during innate immune responses is critical in preventing 

autoimmunity.  We previously showed that IL-6 and sCD40L secreted by LPS-stimulated 

myeloid DCs (myDCs) and MΦs repress Ig secretion by autoreactive B cells, but not naïve B 

cells [5, 6].  However, when IL-6 is neutralized in B6 DC conditioned media (CM), 25% of Ig 

repression remains [5].  This suggests another repressive factor is secreted by DCs.  To identify 

the third repressive factor, we neutralized CM from IL-6-/- DCs with a panel of antibodies to 

cytokines and chemokines.  We found that anti-TNFα restored Ig secretion of LPS-stimulated 2-

12H/Vκ8 B cells to 76% of control, while addition of an unrelated antibody had no effect on Ig 

secretion (Figure 2.1A).  This indicates that TNFα is the second repressive factor secreted by 

DCs. 

To corroborate the idea that TNFα regulates autoreactive B cells, we assessed if 

recombinant TNFα (rTNFα) repressed LPS-induced Ig secretion from 2-12H/Vκ8 B cells.   We 

found that 50 ng/ml of rTNFα repressed 29% Ig secretion (Figure 2.1B, lane 4, p=.000008).  In 

contrast, rIL-6 repressed 67% and rsCD40L repressed 70% (Figure 2.1B).  Although rTNFα 
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repressed Ig secretion, it was considerably less than rIL-6 or rsCD40L (Figure 2.1B, [5, 6]).  To 

assess if IL-6 enhanced the ability of TNFα to regulate Ig secretion, we cultured Sm-specific B 

cells with optimal levels of TNFα and suboptimal levels of IL-6 then assessed IgMa/κ secretion.  

We chose to use IL-6 at 5 ng/ml because this amount repressed 32% of secretion, approximately 

the same amount as rTNFα.  IL-6 did not significantly enhance the ability of TNFα to repress Ig 

secretion by 2-12H/Vκ8 B cells (data not shown).  Thus, TNFα is capable of regulating 

autoreactive B cells however it is a less potent repressor than IL-6 and CD40L. 

 

Neutralization of IL-6 and TNFα restores LPS-induced Ig secretion from Sm-specific B cells 

Multiple factors secreted by DCs and MΦs repress autoreactive B cells.  To determine if 

DCs produced additional factors, we neutralized CM from C57BL/6 DCs with anti-TNFα and 

anti-IL-6 (Figure 2.2).  Removal of both IL-6 and TNFα restored Ig secretion (Figure 2.2, lane 6) 

indicating DCs utilize IL-6 and TNFα to repress autoantibody production.  In addition to IL-6 

and TNFα, MΦ secrete CD40L that is repressive to autoreactive B cells.  We have previously 

shown that neutralization of IL-6 and CD40L from B6 MΦ CM restores Ig secretion of 2-12/Vκ8 

B cells [6].  However the TNFα produced by activated MΦs also contributes to MΦ-mediated B 

cell repression, since  IL-6 and CD40L-deficient MΦ CM neutralized with anti-TNFα is less 

repressive than IL-6-/- x CD40L-/- MΦ CM alone (data not shown).  Therefore, DC/MΦ-secreted 

TNFα, CD40L and IL-6 are the repressive factors of chronically antigen-experienced B cells. 

 

TNFα does not regulate Ig secretion by repressing B cell proliferation 

Plasma cell differentiation requires B cell proliferation and the upregulation of BLIMP-1 

and XBP-1.  To determine whether TNFα regulates Ig secretion by diminishing proliferation, we 
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labeled cells with CFSE and measured proliferation by CFSE dilution.  TNFα did not affect 

proliferation of B cells from 2-12H/Vκ8 or HEL-Ig x sHEL mice, nor did it affect naïve B cells 

from B6 or HEL-Ig mice (Figure 2.3).  The data show that LPS-stimulated B cells incubated with 

or without rTNFα had overlapping CFSE histogram plots, indicating that similar numbers of 

cells existed in each generation, regardless of the presence of rTNFα (Figure 2.3).  Thus, 

repression of Sm-specific B cells by TNFα is not due to decreased proliferation.   

 

DCs and MΦs from lupus-prone mice are defective in secreting TNFα in response to TLR 

stimulation 

Defects in DCs and MΦs are implicated in SLE, and we have shown that DCs and MΦs 

from lupus-prone mice are defective in repressing Ig secretion, coincident with defects in TLR4-

stimulated secretion of IL-6 and sCD40L [5, 6, 25].  This suggests that repression of autoreactive 

B cells by DCs and MΦs is an important regulatory mechanism in maintaining tolerance.  To 

determine if DCs and MΦs from lupus-prone mice were defective in secreting TNFα, we 

quantified TNFα by ELISA.  LPS-stimulated bone marrow-derived DCs (BMDCs) from lupus-

prone MRL/lpr mice secreted significantly less TNFα than B6 (p value = 0.00002, Figure 

2.4A).  Bone marrow-derived ΜΦs (BMMΦs) from MRL/lpr mice secreted less TNFα 

compared to B6 (Figure 2.4B), however two of the mice tested failed to show a defect.  Thus, 

MRL/lpr mice exhibit defects in secretion of TNFα.  Collectively, the data show that the 

regulation of autoantibody secretion by DCs and MΦs is defective in lupus-prone mice 

coincident with diminished secretion of three repressive factors.  
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Lack of IL-6, CD40L and TNFα expression does not result in spontaneous autoimmunity in 

vivo 

Since DCs and MΦs from lupus-prone mice are defective in the secretion of soluble 

repressive factors [6, 25], we wanted to determine if loss of DC/MΦ-mediated tolerance leads to 

autoimmunity in vivo.  Therefore we generated mice in which the IL-6, CD40L and TNFα genes 

were disrupted.  Mice containing the single mutations [20-22] were mated to make double (IL-6-

/-xTNFα-/- and IL-6-/-xCD40L-/-) and triple mutant (IL-6-/-xCD40L-/-xTNFα-/-) (3XKO) mice.   

 Knockout mice (double and triple knockouts) up to 12 months of age did not 

spontaneously produce serum antinuclear antibody (Table 2.1).  Further, kidneys from knockout 

mice did not show significant pathology compared to wildtype B6 mice of similar age (Table 

2.1).  Similarly, the levels of anti-single stranded DNA (ssDNA), -nucleosome, or -Sm splenic 

antibody secreting cells (ASCs) were undetectable (Figure 2.5A). Together, these data suggest 

that in the absence of innate stimulation autoreactive B cells in 3XKO mice do not spontaneously 

develop into ASCs.  This is consistent with our model that DCs, MΦs, and their secreted 

products regulate innate immune responses.   

 Defects intrinsic to the knockout mice could obscure antibody responses.  CD40L 

knockout mice fail to form germinal centers and exhibit abnormal class switch recombination 

[20, 26].  TNFα knockout mice also lack a germinal center response and exhibit poorly defined 

splenic B and T cell regions [22, 27].  Thus the contributions of IL-6, CD40L and TNFα could be 

masked due to splenic abnormalities that preclude the production of antibody.  To address this 

we generated chimeric mice by lethally irradiating B6/Ly5.2 mice and transplanting them with 

3XKO (Ly5.1) bone marrow.  Despite a more normal splenic architecture, chimeric 3XKO also 
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mice failed to spontaneously activate endogenous (Figure 2.5B) or adoptively transferred Sm-

specific B cells (Figure 2.5D). 

 

Autoreactive B cells overcome tolerance during innate immune responses 

Our model proposes that during innate immune responses DCs and MΦs repress Ig 

secretion by autoreactive B cells [5, 6, 25].  Therefore, the lack of IL-6, CD40L and TNFα may 

be inconsequential to autoantibody production unless autoreactive B cells are challenged by 

innate stimuli.  To test this, we injected B6 and 3XKO mice with LPS at doses reported to cause 

autoantibody production [28-30].  By 35 days after the first LPS injection, the ANA levels of B6 

mice returned to baseline, but 50% (n=2) of the 3XKO mice remained ANA positive (Figure 

2.6B).  Further, the 3XKO mice had sustained serum antinuclear antibodies 42 post LPS 

injection (data not shown).  Thus, while IL-6, CD40L and TNFα regulate tolerance of 

autoreactive B cells in vitro, they also play a role in restoring tolerance after innate stimuli. 

 To track a specific population of autoreactive B cells, we transferred Sm-specific B cells 

into chimeric B6 and 3XKO mice.  The injected B cells were differentiated from native cells 

based on their Sm specificity and their IgMa allotype.  Since follicular (FO) and marginal zone 

(MZ) B cells become activated at different times post stimulation, we looked for activated Sm-

specific B cells at days three and twelve post transfer.  We found that 2-12H/B6 Tg B cells 

transferred into chimeric 3XKO mice became ASCs within three days, while cells transferred 

into mice with wildtype bone marrow did not produce antibody (Figure 2.7B and 2.C).  However, 

twelve days post transfer the number of 2-12H/B6 ASCs were undetectable by Sm (Figure 2.7D) 

and anti-IgMa ELISpot (Figure 2.7E).  Additionally, there were no Sm-specific ASCs present in 

the bone marrow of the chimeric mice at any of the time points (data not shown), indicating 
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memory B cells had not developed and migrated to the bone marrow.  Thus, transferred Sm-

specific B cells become activated in LPS-stimulated chimeric 3XKO mice three days post 

transfer, but their activity has waned by day twelve post transfer.  These data indicate that IL-6, 

CD40L and TNFα act on autoreactive B cells to prevent them from becoming activated during 

innate immune stimulation. 

 
2.4 Discussion 
 
 During innate immune responses TLR ligands activate naïve B cells to promote 

polyclonal antibody secretion, while simultaneously repressing autoantibody secretion.  TLR 

ligands also stimulate MΦs and DCs to regulate autoreactive B cells through their secretion of 

soluble factors [5, 6].  Here we identify a third factor, TNFα, which selectively represses 

autoreactive B cells.  Neutralization studies show that loss of any single repressive factor has 

little impact on Ig secretion.  However, neutralizing B6 DC CM with both anti-IL-6 and anti-

TNFα restores Ig secretion following TLR4 ligation (Figure 2.2).  This, combined with the 

repressive effects of MΦ-secreted CD40L [6], indicates that IL-6, CD40L and TNFα are the 

primary soluble factors that regulate autoreactive B cells.  However, other factors may play 

minor role(s) in repressing innate immune responses.  We propose this because CM from IL-6-/-

DC neutralized with anti-TNFα remain repressive (Figure 2.1A), and DC/MΦ CM isolated from 

3XKO mice represses about 40% of Ig secretion (data not shown).  Our in vivo data support that 

we have identified the major repressive factors since lack of IL-6, CD40L and TNFα is sufficient 

to allow activation of autoreactive B cells (Figures 2.6 and 2.7). 

 The data show that although Ig secretion by 2-12H/Vκ8 B cells is repressed by TNFα, 

the magnitude of repression is less than IL-6 or CD40L.  One possible explanation is that TNFα 

only represses a subset of B cells.  We have found that TNFα is unable to repress 2-12H Tg B 
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cells (N.J.Wagner, S.-R. Lee, and B.J.Vilen, unpublished observations).  2-12H Tg mice have a 

fully populated marginal zone (MZ), while only ~1.5% of the splenic B cells of 2-12H/Vκ8 are 

MZ [23, 24, 31].  The difference in regulation by TNFα may be due to the presence or absence of 

MZ B cells.  MZ B cells respond to antigen more quickly than FO cells; an IgM response from 

MZ cells occurs within 24 hours versus 2-3 days for follicular (FO) B cells [32].  TNFα may not 

be able to regulate the more reactive MZ B cells, while less reactive FO B cells respond to TNFα 

repression.  Alternatively, TNFα may be able to repress autoreactive B cells of low affinity while 

those of higher affinity escape TNFα regulation.  To test these possibilities, we are currently 

sorting FO and MZ B cells from 2-12H Tg mice to determine if TNFα represses various B cells 

subsets. 

TNFα might contribute to the regulation of autoreactive B cells by influencing the 

amount of IL-6 produced by DCs and MΦs.  We have shown that DCs from lupus-prone 

MRL/lpr mice fail to sustain IκBα phosphorylation following TLR ligand binding, leading to 

reduced activation of NFκB [25].  Sustained NFκB activation is required for IL-6 secretion [25]; 

along with LPS, TNFα also stimulates the NFκB pathway [33].  Therefore the reduced level of 

TNFα produced by lupus-prone DCs and MΦs may further contribute to diminished IL-6 

production.  Since IL-6 is a more repressive factor of autoreactive B cells (Figure 2.1), the role of 

TNFα may be to modulate IL-6 production by DCs and MΦs. 

Our finding that IL-6, CD40L and TNFα are not involved in spontaneous differentiation 

of autoreactive B cells to ASCs supports our previous data that these factors regulate innate 

immune responses [5, 6, 25].  Without innate immune stimuli, peripheral autoreactive B cells are 

not activated; therefore DC/MΦ-mediated regulation is not required.  We believe that IL-6, 

CD40L and TNFα are critical in regulating autoreactive B cells both in vitro and in vivo during 
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innate immune responses.  Since it is proposed that TLR ligation of autoreactive B cells can 

overcome tolerance [34-43], DC/MΦ-mediated regulation of autoreactive B cells through 

secreted factors provides a mechanism by which tolerance is maintained in the presence of TLR 

ligands.  In light of these data, we propose the regulation of autoreactive B cells by IL-6, CD40L 

and TNFα is relevant only during innate immune responses. 

Transferred autoreactive 2-12H/B6 Tg B cells become activated with LPS stimulation in 

chimeric 3XKO mice, however the response is short lived (Figure 2.7).  Since MZ B cells 

respond quickly, these data implicate a MZ response.  MZ B cells are activated to become ASCs 

in 3-4 days when transferred into lpr mice, while FO B cells take 10-12 days to become ASCs 

(K.L.Conway and S.H.Clarke, personal communication).  Additionally, the chimeric 3XKO mice 

may have residual follicular defects [27], that would lead to extrafollicular B cell responses that 

generally involve MZ B cells [44].  Therefore, it is likely that the response we see in the chimeric 

mice is due to transferred 2-12H/B6 MZ B cells.   

 Our data indicate that cytokines traditionally thought of as stimulatory to B cells may 

have an opposite effect, depending on the history of the BCR stimulation.  We propose that 

chronic antigen stimulation through the BCR reprograms cytokine signaling.  Thus, when TLR 

ligands bind antigen-experienced B cells, these cells do not respond by secreting Ig.  This 

prevents an autoantibody response during infection.  Conversely, removal of IL-6, CD40L or 

TNFα allows the activation of autoreactive B cells upon TLR4 ligation.  In light of our data, we 

would urge caution in the use of cytokine-blocking treatments for autoimmune diseases.  While 

short-term reduction in inflammation will be achieved, and may be sufficient for relief in some 

cases [14-18], the disease process may be initiated in patients with a predisposition to 

autoimmune disease.  Data from our lab indicates that DCs and MΦs from lupus-prone mice 
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have defects in the production of IL-6, sCD40L and TNFα in response to LPS [25] (Figure 2.4).  

If DCs and MΦs from SLE patients show similar defects, an alternative to cytokine blocking 

treatments may be to restore B cell tolerance by transferring functional MΦs and DCs into 

patients to re-establish regulation of autoreactive B cells.  This method of treatment would most 

likely be effective on emerging autoreactive B cells that have not become activated ACSs.  

Therefore the transfer of functional DCs and MΦs may need to be combined with B cell 

depletion therapy to start with tolerant, responsive B cells.  
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Figure 2.1.  TNFα represses Ig secretion by Sm-specific B cells. Sm-specific (2-12H/Vκ8) B 
cells (1 x 105) were stimulated with 30 μg/ml LPS and co-cultured with (A) CM from LPS-
activated B6 DCs, LPS-activated IL-6-/- DCs,  IL-6-/-DC CM neutralized with anti-TNFα (324 μg) 
or isotype-matched control antibody or (B) rIL-6 (20ng/ml), rsCD40L (100ng/ml) or rTNFα 
(50ng/ml).  IgMa/κ levels were quantitated on day 4 by ELISA. LPS-stimulated B cells (100%) 
secreted 1-31 μg/ml. Data represent at least three independent experiments.  Error bars represent 
SEM.  (*p≤0.05) 
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Figure 2.2.  IL-6 and TNFα are the only factors secreted by DCs that repress anti-Sm Ig 
secretion.  Purified anti-Sm (2-12H/Vκ8) B cells (1x105) from mice were stimulated with 30 
μg/ml LPS in the presence LPS-activated B6 DC CM or B6 DC CM neutralized with anti-IL-6 
(50 μg/ml), anti-TNFα (324 μg), both, or isotype-matched control antibodies.  Secreted IgMa/κ 
levels were quantitated by ELISA from day 4 culture supernatant.  LPS-stimulated purified B 
cells (100%) secreted 1-10 μg/ml IgMa/κ.  Data represent triplicate samples in each of at least 3 
independent experiments.  Error bars represent SEM. (*p<0.05) 
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Figure 2.3.  TNFα does not affect proliferation of B cells.  Proliferation of LPS-stimulated 
(30μg/ml), CFSE-labeled B cells from 2-12H/Vκ8, HEL-Ig x sHEL, B6 and HEL-Ig mice was 
determined by FACS on day three.  Cells were incubated in the presence (black line) or absence 
(gray fill) of rTNFα (50ng/ml).  Data is representative of three experiments. 
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Figure 2.4.  DCs and MΦs from lupus-prone MRL/lpr mice are defective in TNFα secretion.  
(A) BMDCs or (B) BMMΦs (1x104) from B6 ( ) or MRL/lpr ( ) were stimulated with LPS 
(30 μg/ml).  TNFα was quantitated by ELISA from day 4 culture supernatants.  Data represent at 
least 9 mice per group. (*p < 0.05)

 40   



   
Mouse Type ANA Histology 

C57BL/6 0/5 0/4 
IL-6-/- 0 0/4 

C40L-/- 0 0/3 
TNFα-/- 0 0/4 

IL-6-/-xCD40L-/- 0/8 0/4 
IL-6-/-xTNFα-/- 0/8 0/4 

3XKO 0/9 0/5 
 

Table 2.1.  Summary of mice monitored for spontaneous development of autoantibody or 
kidney pathology.  Mice (6-13 of each type) were bled every 4 weeks to check serum antibody 
levels.  Serum (1:50 dilution) ANA was detected using Hep-2 substrate slides, anti-mouse IgG 
and anti-mouse IgM.  At 52 weeks kidneys were fixed, paraffin-embedded, sectioned, H&E 
stained and examined via light microscopy for pathology.  
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Figure 2.5.  Mice lacking IL-6, CD40L and TNFα do not spontaneously develop 
autoreactive antibodies.  Splenic cells from (A) non-chimeric or (B) chimeric B6 (black bars) 
and 3XKO (gray bars) mice were assayed for the presence of anti-Sm, -nucleosome, or –ssDNA 
ASCs by ELISpot.  (C) Purified Sm-specific (2-12H/B6) B cells (1x106) were injected into 
chimeric mice reconstituted with B6 or 3XKO BM (that had not received LPS injections).  
Spleens were harvested three days post 2-12H/B6 B cell transfer. (D) Anti-Sm ASCs were 
detected by ELISpot three days post transfer. In panels A, B and D, secreted IgM was detected 
after cells were cultured on coated ELISpot plates 24 hours.  Data represent at least three 
individual experiments.  Error bars represent SEM. (NS= not significant, p>0.05) 
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Figure 2.6.  LPS-stimulated 3XKO mice generate autoreactive antibodies.  (A) Non-
chimeric 3XKO and B6 mice were injected with 25μg LPS/week for three weeks and bled to 
monitor serum autoantibodies.  (B) Representative serum ANA (1:50 dilution) from B6 (top 2 
rows) and 3XKO (bottom 2 rows), with and without LPS.  Anti-nuclear IgM was detected with 
Hep-2 substrate slides, anti-mouse IgM-Alexa 488 (red) and anti-nuclear IgG was detected with 
anti-mouse IgG-Alexa 647 (green).  Images were captured at a magnification of 60X.   
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Figure 2.7.  Sm-specific B cells transferred into LPS-stimulated mice lacking IL-6, CD40L 
and TNFα become short-lived ASCs.  (A) Chimeric mice reconstituted with either B6 or 
3XKO BM were injected with LPS to simulate an innate immune response.  On day 0, 1.5x106 
purified Sm-specific B cells (2-12H/B6) were adoptively transferred into the mice.  Three and 
twelve days later spleens were harvested to quantitate the number of transferred cells that had 
become ASCs. Three days post transfer (B) anti-Sm and (C) IgMa ASCs were detected by 
ELISpot. Similarly, twelve days post transfer (D) anti-Sm and (E) IgMa ASCs were detected.  
ASCs were detected following 24 hour incubation on coated ELISpot plates.  Data is 
representative of at least three individual experiments.  Error bars represent SEM.  (*p≤0.05, 
NS= not significant, p>0.05) 
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During innate immune responses naïve B cells are activated to produce a polyclonal 

Ig response while autoreactive B cells remain quiescent.  We have established that IL-6, 

CD40L and TNFα secreted by TLR-stimulated DCs and MΦs act on autoreactive B cells to 

repress Ig secretion [1-3] (Chapter 2).  Importantly, our latest studies reinforce our in vitro 

data, proving in vivo that in the presence of innate immune stimuli, IL-6, CD40L and TNFα 

regulate autoreactive B cells (Chapter 2).  We show that without TLR ligation, the absence of 

IL-6, CD40L and TNFα does not result in spontaneous autoantibody production (Figure 2.5).  

However, with LPS stimulation, autoreactive B cell break tolerance in mice lacking IL-6, 

CD40L and TNFα (3XKO mice) while they remain inactive in wildtype mice (Figures 2.6 

and 2.7).  Thus, IL-6, CD40L and TNFα play a role in regulating autoreactive B cells, both in 

vitro and in vivo.   

The model system introduced in Chapter 2, using 3XKO mice, is valuable to confirm 

that IL-6, CD40L and TNFα regulate autoreactive B cells, but this model system does not 

address which of the factors play the primary role(s) or the order in which the factors act to 

repress B cell activation.  Since MΦ-produced CD40L is able to repress marginal zone (MZ) 

B cells, while IL-6 is not [3], we predict that during an innate immune response CD40L 

would act first to repress autoreactive Ig secretion, followed by IL-6 that, with CD40L, 

represses follicular (FO) B cells [3].  TNFα appears to be a less potent repressive factor, 

compared to IL-6 and CD40L (Chapter 2), so its repressive function may be to reprogram an 

autoreactive B cell during development to be “repressible” [4, 5] or to affect IL-6 secretion 

by DCs and MΦs, and thereby repress Ig secretion (Chapter 2).  The system of chimeric 

3XKO mice can be adapted to use mice lacking one or two of the repressive factors to 

determine the individual roles each play in maintaining B cell tolerance.   
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This model system will be useful in determining how autoreactive B cell break 

tolerance, especially if future data reveal (as data in Chapter 2 suggest) that these mice 

develop autoreactive Ig, but no autoimmune disease.  Thus, this model has a genetic 

predisposition to autoantibody production, but requires other genetic or environmental 

factors to develop disease.  Such a model can be used to introduce other conditions known to 

induce to autoimmune disease, such as autoantigen burden, to determine what combination of 

circumstances push a mouse from autoantibody production to autoimmune disease.  This is 

an exciting prospect since current model systems emulate systemic lupus erythematosus 

(SLE), but have not broken the process of disease development into discrete check points 

within a model system.   

We have concentrated on repression of autoreactive B cells by DC/MΦ-secreted 

factors; however contact-dependant mechanisms of regulation are also implicated in B cell 

tolerance.  When DCs and Sm-specific B cells are co-cultured, the level of Ig secretion is 

reduced compared to the repression by DC conditioned media (CM), suggesting that cell-cell 

mediated mechanisms, as well as soluble factors, are involved in regulation of autoreactive B 

cells [2].  Further, DC contact with B cells (autoreactive or not) seems to inhibit Ig synthesis 

(D.G.Carnathan and B.J.Vilen, unpublished observations).  Since DCs repress Ig production 

in naïve and autoreactive B cells, selective regulation of autoreactive B cells may occur by 

some mechanism that keeps autoreactive B cell in contact with DCs.  One possibility is that 

autoantigen expressed by DCs interacts with autoreactive BCRs, prolonging the DC/B cell 

interaction.  This would inhibit B cell signaling in autoreactive B cells, while naïve B cells 

that do not recognize self antigen would not have prolonged DC colocalization, and therefore 

would avoid contact-mediated Ig repression.  In fact, we have seen autoantigen on the surface 
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of DCs and MΦs (D.G.Carnathan, C.E.Hilliard, B.J.Vilen, unpublished observations).  The 

location of the DC/B cell interaction may be critical, though, as DCs loaded with apoptotic 

cells can stimulate Sm-specific B cells with T cell help (K.L.Conway, S.H.Clarke, personal 

communication).  Thus, B cells that come into contact with DCs may be repressed, unless 

they are in a location, such as a germinal center, where T cell help might overcome DC-

mediated repression.  Further, the data support our soluble mediator model since DCs pre-

exposed to TNFα are unable to activate Sm-specific B cells, even with T cell help 

(K.L.Conway, S.H.Clarke, personal communication).  This data indicates that under innate 

immune stimulation, when TNFα is secreted by DCs and MΦs, DC-mediated B cell 

activation would not occur.  Therefore, DCs act to repress B cells by both soluble and 

contact-dependant mechanisms.  T cell help can overcome contact-dependant repression, but, 

during inflammatory responses, such as innate immune responses, T cell help is 

overshadowed by the action of repressive soluble mediators. 

Type I interferons (IFN-I) are another group of cytokines implicated in modulating 

autoimmune disease.  Type I interferons include the closely related IFNα subtypes and the 

single IFNβ.  SLE patients have abnormally high levels of IFNα in their serum [6, 7] and 

show a “signature” of IFN-induced gene expression [8-10].    Most cell types can secrete 

IFN-I, but the primary producer of INFα/β are plasmacytoid DCs (pDCs) [11-13].  In 

response to TLR stimulation, pDCs induce transcription, translation and secretion of IFN-I 

[11].  IFNα/β affect both innate and adaptive immune responses through activation of DCs, T 

cells and B cells [14-16].  IFN-I promote monocytes to become mature myeloid DCs 

(myDCs), capable of antigen presentation and T cell activation [16].  INFα, with concurrent 

TLR binding, promotes B cell plasmablast differentiation and Ig class switching, generating a 
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preferential IgG antibody response [17-19].  IFN-I significantly impacts immune responses 

and plays a role in autoimmune disease.   

We have proposed a model of B cell regulation during innate immune responses such 

that soluble factors secreted by DCs and MΦs selectively repress autoreactive B cells while 

allowing a polyclonal Ig response by naïve B cells [2, 3, 20].  The data linking INF-I to 

autoimmunity suggests IFNα/β can be added to this model.  Upon TLR stimulation, pDCs 

secrete IFN-I, inducing monocytes to develop into mature myDCs [16].  TLR ligand binding 

to myDCs results in their secretion of IL-6 and TNFα, factors shown to repress autoreactive 

B cells [2] (Chapter 2); since more DCs are present due to the action of IFN-I, a greater 

amount of IL-6 and TNFα is generated.  Additionally, an IFN-I-mediated increase in DCs 

may prolong and/or increase DC/B cell contact, further inhibiting autoreactive B cell 

activation.  In addition to DC-mediated repression, MΦs respond to TLR stimulation by 

secreting IL-6, CD40L and TNFα that selectively repress autoreactive B cells [2, 3] (Chapter 

2).  This system prevents autoreactive B cells from being activated and producing 

autoantibodies in response to innate immune stimuli. 

B cell tolerance is not always maintained however, and autoimmunity does occur.  

Significant changes in the responses described above occur in an autoimmune response.  

TLR-stimulated lupus-prone DCs and MΦs secrete less IL-6, TNFα, and CD40L [1, 3] 

(Chapter 2).  Once disease is established, high levels of inflammation lead to an increase in 

tissue damage, increasing the amount of self antigen available for presentation by antigen 

presenting cells (APCs).  Additionally, in established SLE, aberrantly high serum levels of 

IFN-I are sustained [6, 7].  Therefore, the following is proposed when genetic and/or 

environmental factors lead to autoimmune disease.  TLR stimulation of pDCs occurs, as it 
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does in non-autoimmune condition, resulting in the secretion of IFN-α/β.  The increase in 

DCs from maturing monocytes however does not produce an increase in IL-6 and TNFα 

since lupus-prone DCs are defective in secreting these factors in response to TLR stimulation 

[1] (Chapter 2).  The increased burden of autoantigen, caused either by the genetic and/or 

environmental elements leading to disease, or due to systemic inflammation caused by 

disease, is more efficiently presented by the IFN-activated DCs, compounding the adaptive 

autoimmune response.  Since contact-dependent DC-mediated repression of B cells can be 

overcome with T cell help (K.L.Conway, S.H.Clarke, personal communication) the 

activation of autoreactive T cells through DCs contributes to autoantibody production.  

Additionally, IFN-I activated DCs produce the B cell survival factors BLyS and APRIL [21], 

allowing autoreactive B cells class switch to more pathogenic IgG via T-independent 

mechanisms.  Excessive levels of BLyS are known to cause autoimmune symptoms [22-24], 

thus the increased number of activated DCs due to aberrantly high IFN-I could further 

contribute to autoimmune disease through BLyS production.  Further impacting autoantibody 

secretion, lupus-prone MΦs stimulated with LPS do not secrete high levels of IL-6, CD40L 

or TNFα, and are therefore unable repress autoreactive B cells [1].  Finally, TLR stimulation 

of autoreactive B cells in conjunction with IFN-I binding (in the absence of DC/MΦ secreted 

IL-6, CD40L and TNFα) drives B cells to plasmablast differentiation [17-19].  Thus, in SLE, 

a combination of chronic high levels of serum IFN-I and defective DC/MΦ responses to TLR 

stimulation results in activation of autoreactive B cells and autoantibody production.   

 We have shown that IL-6, CD40L and TNFα are sufficient to regulate autoreactive B 

cells in vivo during innate immune stimulation (Chapter 2).  3XKO mice, while generating an 

autoantibody response, do not develop signs of autoimmune disease.  This suggests that 
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defects in DC/MΦ-mediated B cell regulation contribute to autoimmunity, but alone do not 

induce disease.  Adding INF-I to our model of autoreactive B cell regulation explains how 

elevated IFN-I contributes to established SLE.  Since IFN-I functions upstream of the 

DC/MΦ defects that allow the break in B cell tolerance in the 3XKO model, exploring 

treatment options to restore functional DCs and MΦ to patients is a valid pursuit.  The 

elevated levels of IFN-I in SLE patient serum would spur the transferred functional DC and 

MΦs to secrete repressive factors to prevent further loss of B cell tolerance.  
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	Bone marrow-derived DC (BMDC) and M (BMM) Culture.  Bone marrow-derived DCs (BMDCs) (95% pure) and bone marrow-derived Ms (BMMs) (98% pure) were generated as previously described [5].  Conditioned medium (CM) was made from 1x104 BMDCs and BMMs (0.2 ml) cultured 4 days with LPS (30 g/ml).
	ELISpots.  ELISpots were preformed using plates (Millipore, Billerica, MA) coated with 10U/ml Sm (Immunovision, Springdale, AR), 5µg/ml ssDNA, (Sigma-Aldrich), anti-IgMa (to detect antibody from transgenic B cells) or 40µg/ml histones (Immunovision) with 10µg/ml dsDNA (Sigma-Aldrich) (to detect anti-nucleosome antibody).  Cells were plated at 2.5-5x106cells per well, depending on the number of cells recovered from the preparation.  After 24 hour incubation on coated plates, cells were washed off the plates and antibody remaining on the plates was detected using biotin-labeled anti-IgM, followed by Streptavidin -HPR (BD Biosciences).   Spots were developed using the substrate 3-amino-9-ethylcarbazole (Sigma-Aldrich).  Plates were scanned and analyzed using the Immunospot ELISpot analyzer (Cellular Technology Ltd., Cleveland, OH).  

