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ABSTRACT

INDRANI RAO: Stability of noncharacteristic boundary-layers for the compressible

nonisentropic Navier-Stokes equations

(Under the direction of Professor Mark Williams)

In this dissertation, we prove the stability of noncharacteristic viscous boundary layers for

the compressible nonisentropic Navier-Stokes equations subject to no-slip suction-type

boundary conditions.

These boundary conditions correspond to the situation of an airfoil with microscopic

holes through which gas is pumped from the surrounding flow, the microscopic suction

imposing a fixed normal velocity while the macroscopic suface imposes standard temper-

ature conditions as in flow past a (nonporous) plate. This configuration was suggested by

Prandtl and tested experimentally by G. I. Taylor as a means to reduce drag by stablizing

laminar flow. It was implemented in the NASA F-16XL experimental aircraft program

in the 1990’s with reported 25% reduction in drag at supersonic speeds.

In [8], existence and stability of noncharacterisitic viscous boundary layers for the com-

pressible Navier-Stokes equations has been proved for pure Dirichlet and pure Neumann

boundary conditions.

In this dissertation, our boundary conditions are mixed Dirichlet-Neumann and we es-

tablish stability in this case.
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CHAPTER 1

Introduction



Our goal in this thesis is to establish the stability of noncharacteristic boundary layers

for the following compressible, nonisentropic Navier-Stokes equations:

(1.0.1) A0(U)Ut +
2∑
j=1

Aj(U)∂j(U)− ε
2∑

j,k=1

∂j(Bjk(U)∂kU) = 0,

where U = (ρ, u, v, T ), where ρ is density, u and v are velocities in the x and y directions

and T is the temperature,

subject to the no-slip suction-type boundary conditions:

u|y=0 = g1(t, x)

v|y=0 = g2(t, x) < 0(outflow)

∂T|y=0 = 0

and separately to the boundary conditions

ρ|y=0 = h1(t, x)

u|y=0 = h2(t, x)

v|y=0 = h3(t, x) > 0(inflow)

∂T|y=0 = 0

converging to the hyperbolic problem:
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(1.0.2) A0(U)Ut +
2∑
j=1

Aj(U)∂j(U) = 0,

as viscosity goes to 0, with boundary conditions to be determined.

It turns out that these boundary conditions are given in terms of C-manifolds which exist

if profiles are transversal.

These boundary conditions correspond to the situation of an airfoil with microscopic

holes through which gas is pumped from the surrounding flow, the microscopic suction

imposing a fixed normal velocity while the macroscopic suface imposes standard temper-

ature conditions as in flow past a (nonporous) plate. This configuration was suggested by

Prandtl and tested experimentally by G. I. Taylor as a means to reduce drag by stablizing

laminar flow. It was implemented in the NASA F-16XL experimental aircraft program

in the 1990’s with reported 25% reduction in drag at supersonic speeds.

Here v corresponds to the component of the velocity of the air that is being sucked

into the microscopic holes normal to the boundary of the airfoil and u is the component

tangential to the boundary.

It has been verified in that the NS equations satisfy the hypotheses (H1) - (H5) (Assump-

tion 3.0.1) provided the normal velocity of the fluid is nonvanishing on U and the normal

characteristic speeds (eigenvalues of Ā(u, ν)) are nonvanishing on U as in Chapter 2.

These hypotheses are required in the following main results from [7]:

(i) Assuming the uniform Lopatinski condition and transversality of layer profiles(Definitions

1 and 11), arbitrarily high-order approximate boundary-layer solutions matching an inner

boundary-layer profile to an outer hyperbolic solution have been constructed.
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(ii) Assuming uniform Evans stability and using results of [2] [10] the existence and

stability of exact boundary-layer solutions close to the approximate solutions has been

shown and consequently the convergence of viscous solutions to solutions of the residual

hyperbolic problem in the small viscosity limit has been shown.

(iii) Uniform Evans stability of small-amplitude boundary layers is equivalent to uniform

Evans stability of the associated limiting constant layer.

Chapters 2 through 5 review these results in detail.

The spectral stability condition on layer profiles is expressible in terms of an Evans

function(Definition 5.0.13). In this thesis we focus on determining the Evans stability

condition for the following four cases:

(a) Subsonic, outflow, (b) Subsonic, inflow, (c) Supersonic, outflow and (d) Supersonic,

inflow.

We obtain stability in cases (a) and (c) as has been verified experimentally. Stability

fails in (d) and is still undetermined in (b).

Before we verify the stability of boundary layers we need to make sure that C-manifolds

exist and that the inviscid problem is well-posed. The first follows from [8] by checking

that the profiles are transversal and the second follows from Lopatinski condition.

We explicitly do the calculations for (a). For this purpose, we divide frequencies into

three ranges: Low frequency

Medium frequency and

High frequency.

The low frequency Evans condition is obtained using Rousset’s theorem.
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In [8], it has been proved that high frequency Evans condition holds for NS equations

under hypotheses* either for full Dirichlet or full Neumann conditions. Since our bound-

ary conditions are mixed Dirichlet-Neumann conditions, we modified the proof by noting

the following:

By [8], we know that the uniform Evans condition holds for profiles of (1.0.1) if and only

if they hold for profiles of

(1.0.3) λU − B̃22
22U

′′ − i(B̃22
21 + B̃22

12)η1U
′ + η2

1B̃
22
11U = 0

We then observe that these equations can be decoupled as follows:

(a) λu− µu′′

ρ
− iη1(µ+η)v′

ρ
+

η2
1(2µ+η)u

ρ
= 0

(b) λv − (2µ+η)v′′

ρ
− iη1(µ+η)u′

ρ
+

η2
1µv

ρ
= 0

(c) λT − κT ′′

ρcv
+

η2
1κT

ρcv
= 0

We then apply the method for pure Dirichlet conditions in [8] separately to (a) and (b)

and that for pure Neumann conditions to (c).

For the medium frequencies we can’t do any such decoupling as we cannot use (6.3.7)

here. We also observe that our proof for the Evans condition works for low frequencies

as well and thus we don’t really need to use Rousset’s theorem here.
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CHAPTER 2

Overview



The aim in this thesis is to establish the stability of non-characteristic boundary layers

of the full Navier-Stokes equation.

2.1. The Navier Stokes equations

Consider the equation

(a) ρt + (ρu)x + (ρv)y = 0

(b) (ρu)t + (ρu2)x + (ρuv)y + px = (2µ+ η)uxx + µuyy + (µ+ η)vxy

(c) (ρv)t + (ρuv)x + (ρv2)y + py = µvxx + (2µ+ η)vyy + (µ+ η)uyx

(d) (ρE)t + (uρE)x + (vρE)y + (pu)x + (pv)y = κTxx + κTyy +

((2µ+ η)uux + µv(vx + uy) + ηuvy)x +

((2µ+ η)vvy + µu(vx + uy) + ηvux)y

on [−T, T ]× Ω where Ω = {(x, y)|y ≥ 0},

subject to the boundary conditions

u|y=0 = g1(t, x)

v|y=0 = g2(t, x) < 0(outflow)

∂T|y=0 = 0

and separately to the boundary conditions
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ρ|y=0 = h1(t, x)

u|y=0 = h2(t, x)

v|y=0 = h3(t, x) > 0(inflow)

∂T|y=0 = 0

where ρ is density, u and v are velocities in the x and y directions, p is pressure, and e

and E = e + u2

2
+ v2

2
are specific internal and total energy respectively. The constants

µ > |η| ≥ 0 and κ > 0 are coefficients of first and second viscosity and heat conductivity.

More specifically, ∃ constants, µ̃, η̃ and κ̃ such that µ = εµ̃, η = εη̃ and κ = εκ̃.

Finally T is the temperature and we assume that the internal energy e and the pressure

p are known functions of density and temperature: p = p(ρ, T ), e = e(ρ, T ). Also here,

uxy = ∂y (∂x(u)).

The boundary conditions on the velocities correspond to an airfoil with microscopic

holes through which gas is pumped from the surrounding flow, the microscopic suction

imposing a fixed normal velocity while the condition on the temperature corresponds to

an insulative condition.

The above equations can be written in the form:

(2.1.1) A0(U)Ut +
2∑
j=1

Aj(U)∂j(U)− ε
2∑

j,k=1

∂j(Bjk(U)∂kU) = 0,

8



where U = (ρ, u, v, T ). We assume the splitting U = (U1, U2) ∈ R× R3 and as observed

in Chapter 5, we obtain the block structure:

(2.1.2) A0(U) =

 A11
0 0

A21
0 A22

0



(2.1.3) Bjk(U) =

 0 0

0 B22
jk


where we have suppressed U in the entries on the right hand side for convenience.

Later we will be using the following notation:

We set,

(2.1.4) Āj = A−1
0 Aj, B̄jk = A−1

0 Bjk,

(2.1.5) Ā(u, ξ) =
2∑
j=1

ξjĀj(U) and B̄(u, ξ) =
2∑

j,k=1

ξjξkB̄jk(U).

Let

(2.1.6)

H(U) := A0(U)Ut +
2∑
j=1

Aj(U)∂j(U) and

E(U) :=
2∑

j,k=1

∂j(Bjk(U)∂kU) = 0

We want to find exact solutions U ε ofH(U)−εE(U) = 0 which: (i) converge to solutions of

the hyperbolic problem H(U) = 0 with suitable boundary conditions (to be determined)
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as ε→ 0 and (ii) exhibit boundary layers satisfying (i). The first step in constructing such

exact solutions is to construct high order approximate solutions with the same property.

2.2. Approximate solutions

In particular, we look for an approximate solution of the form

(2.2.1) ua(t, x, y) =
∑

0≤j≤M

εjUj(t, x,
y

ε
) + εM+1UM+1(t, x, y).

where

(2.2.2) Uj(t, x,
y

ε
) = V j(t, x,

y

ε
) + U j(t, x, y)

and the V j(t, x, z) are boundary layer profiles constructed to be exponentially decreasing

to 0 as z →∞, where z = y
ε
.

We will from now on until later in Chapter 5 focus only on the outflow case.

Define W (t, x, z) = U0(t, x, 0) + V 0(t, x, z). Denoting W = (ρW , uW , vW , TW ), we then

expect the boundary condition on W to be:

(uW )|y=0 = g1(t, x)

(vW )|y = 0 = g2(t, x) < 0(outflow)

∂(TW )|y=0 = 0

and observe that W (t, x, z)→ U0(t, x, 0) as z →∞.

Substituting ua in equation (2.1.1), we obtain the left hand side as:

10



(2.2.3)
M∑

j=−1

εjF j(t, x, z) + εMRε,M(t, x)

where we separate F j into slow and fast parts

(2.2.4) F j(t, x, z) = F j(t, x) +Gj(t, x, z)

and the Gj decrease exponentially to 0 as z →∞.

We then set F j and Gj to 0. In particular, setting G−1 and F 0 to 0 gives

(2.2.5) A2(W )Wz −
d

dz
(B22(W )Wz) = 0

and

(2.2.6) H(u0) = 0

respectively.

2.3. Profiles and C - manifolds

The equation (2.2.5) is referred to as a profile equation.

This motivates the following definition.

Definition 2.3.1. A solution of (2.2.5) satisfying

(2.3.1) lim
z→∞

W (z) = u

11



is called a layer profile.

Let

(2.3.2) Cg(t, x) = {u | ∃ a layer profile W satisfying 2.2.5 and 2.3.1}.

In certain cases, Cg(t, x) turns out to be a manifold.

This gives the boundary condition for the aforementioned inviscid problem which can

now be stated as:

(2.3.3)

H(U) = 0 on [−T0, T0]× Ω

U(t, x, 0) ∈ C(t, x) on [−T0, T0]× ∂Ω

For (t, x, 0) ∈ [−T0, T0]× ∂Ω, we freeze a state p := U0(t, x, 0) and define

(2.3.4) H(p, ζ) := −A2(p)−1 ((iτ + γ)A0(p) + iη1A1(p))

We assume here that C(t, x) is a manifold. So let

(2.3.5) ψ : R4 → RN+

be a defining function for C(t, x) near p, i.e., C(t, x) = {u : ψ(U) = 0}, with ∇ψ of

full rank N+. Then the residual boundary condition may be expressed, locally to p, as

Υres(U) := ψ(U), hence the linearized residual boundary condition at p takes the form

12



(2.3.6) Γres(p)U̇ = 0⇔ ψ′(p)U̇ = 0⇔ U̇ ∈ TpC(t, x).

Remark 2.3.2. Suppose W (z) is a solution of the profile (2.2.5) converging to p =

U0(t, x, 0) ∈ C(t, x) as z → ∞. Let us write the linearized equation of (2.2.5) around

W (z) as

(2.3.7) L(t, x, z, ∂z)Ẇ = 0,Γ2(Ẇ , Ẇ 2) = 0.

The fact that the tangent space TpC(t, x) may be characterized as the set of limits at

z →∞ of solutions to (2.3.7) follows readily from the definition of C(t, x); see [15], Prop.

5.5.5.

Definition 2.3.3. 1) The inviscid problem (2.3.3) satisfies the uniform Lopatinski

condition at p = u(t, x, 0) provided there exists C > 0 such that for all ζ with γ > 0

(2.3.8) |DLop(p, ζ)| := | det(E−(H(p, ζ)), ker Γres(p))| ≥ C.

where for a matrix A, E−(A) is the stable space of A, that is the generalized eigenspace

of A corresponding to eigenvalues with negative real part.

2) The inviscid problem (2.3.3) satisfies the uniform Lopatinski condition provided

(2.3.8) holds with a constant that can be chosen independently of (t, x, 0) ∈ [−T0, T0]×∂Ω.

Here by a determinant of subspaces we mean the determinant of the matrix with sub-

spaces replaced by smoothly chosen bases of column vectors, specifying DLop up to a

smooth nonvanishing factor.

The following theorem ([8], Theorem 1.17) gives well-posedness of the inviscid problem.

13



Theorem 2.3.4. Given a smooth manifold C as in Assumption 12, consider the hy-

perbolic problem (2.3.3)

under hypotheses (H1) - (H5).

Let s > 3
2

+ 1 and suppose that we are given initial data v0(x) ∈ Hs+1(Ω) at t = 0

satisfying corner compatibility conditions to order s−1 for (2.3.3). Suppose also that the

uniform Lopatinski condition is satified at all points x0 ∈ ∂Ω, t = 0. Then there exists a

T0 > 0 and a function U0(t, x, 0) ∈ Hs([0, T0]× Ω) satisfying (2.3.3) with

(2.3.9) U0
|t=0 = v0,

and so that the uniform Lopatinski condition holds on [0, T0]× ∂Ω.

The hypotheses (Hn) are given in the next Chapter.
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CHAPTER 3

Layer profiles and transversality



The results from the GMWZ literature used throughout this treatise uses the following

assumptions in their hypotheses. By inspection, we know that our system of equations

actually satisfies these assumptions.

We first define the high-frequency principal part of (2.1.1) by

(3.0.1)

∂tU
1 + Ā11(U, ∂)U1 = 0,

∂tU
2 − εB̄22(U, ∂)U2 = 0

We assume the existence of an open set U in the state space such that the following

hypotheses hold for all U ∈ U.

Assumption 3.0.1. (H1) The matrices Aj and Bjk are C∞4 × 4 real matrix-valued

functions of the variable U ∈ U. Moreover, for all U ∈ U, detA0(U) 6= 0.

(H2) There is c > 0 such that for all U ∈ U and ξ ∈ R2, the eigenvalues of B̄22(U, ξ)

satisfy Reµ ≥ c|ξ|2.

(H3) For all U ∈ U and ξ ∈ R2\{0}, the eigenvalues of Ā11(U, ξ) are real, semi-simple and

of constant multiplicity. Moreover, for all U ∈ U, det Ā11(u, ν) 6= 0, all positive (inflow)

or all negative (outflow), where ν = (0, 1).

(H4) For all U ∈ U and ξ ∈ R2 \ {0}, the eigenvalues of Ā(U, ξ) are real, semisimple, and

of constant multiplicity. Moreover, for U ∈ U, det Ā(u, ν) 6= 0, with number of positive

(negative) eigenvalues of Ā(u, ν) independent of U ∈ U.

(H5) There is c > 0 such that for U ∈ U and ξ ∈ R2, the eigenvalues of iĀ(U, ξ)+ B̄(U, ξ)

satisfy Reµ ≥ c |ξ|
2

1+|ξ|2 .
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Remark 3.0.2. Hypothesis (H4) is a hyperbolicity condition on the inviscid equa-

tion L0(U) = 0, while (H2), (H4) implies hyperbolic-parabolicity of the viscous equation

Lε(U) = 0 when ε > 0. (H3) is a hyperbolicity condition on the first equation in

(3.0.1). The conditions on the normal matrices in (H3)-(H4) mean that the boundary is

noncharacteristic for both the inviscid and the viscous equations. Hypothesis (H5) is a

dissipativity condition reflecting genuine coupling of hyperbolic and parabolic parts for

U ∈ U.

Definition 3.0.3. The system (2.1.1) is said to be symmetric dissipative if there

exists a real matrix S(U), which depends smoothly on U ∈ U, such that for all U ∈ U and

all ξ ∈ R2\{0}, the matrix S(U)A0(U) is symmetric definite positive and block-diagonal,

S(U)A(U, ξ) is symmetric, and the symmetric matrix ReS(U)B(U, ξ) is nonnegative with

kernel of dimension 1.

Definition 3.0.4. A symmetric-dissipative system satisfies the genuine coupling con-

dition if for all U ∈ U and ξ ∈ R2 \ {0}, no eigenvector of
∑

j Ājξj lies in the kernel of∑
j,k B̄jkξjξk.

Hypothesis H4′. For all ξ ∈ R2 \ {0}, the eigenvalues of Ā(U, ξ)are real and are

either semisimple and of constant multiplicity or are totally nonglancing in the sense of

[10], Definition 4.3. Moreover, for all U ∈ U we have det Ā(U) 6= 0, with the number of

positive (negative) eigenvalues of Ā(U) independent of U ∈ U.

Notations. With assumptions as above, N+ (constant) denotes the number of

positive eigenvalues of Ā2(U) := Ā(U) and N1
+ the number of positive eigenvalues of

17



Ā11
2 (U) := Ā11(U). We also set Nb = 3 + N1

+ is the correct number of boundary condi-

tions for the well posedness of (2.1.1).

Assumption 3.0.5. (H6) Υ1, Υ2 and Υ3 are smooth functions of their arguments

with values in RN1
+ , R3−N ′′

and RN ′′
respectively, where N ′′ ∈ {0, 1, 2, 3}. Moreover

the equation for a layer profile w reads

(3.0.2)

A2(w)∂zw − ∂z(B22(w)∂zw) = 0, z ≥ 0,

Υ(w, 0, ∂zw
2)|z=0 = (g1(t, x), g2(t, x), 0).

The profile equation (3.0.2) can be written as a first order system for U = (w, ∂zw
2),

which is nonsingular if and only if A11
2 is invertible, (H3):

(3.0.3)

∂zw
1 = −(A11

2 )−1A12
2 w

3,

∂zw
2 = w3,

∂z(B2222w3) = (A22
2 − A21

2 (A11
2 )−1A12

2 )w3,

and the matrices are evaluated at w = (w1, w2).

Consider now the linearized equation of (3.0.2) about w(z), written as a first-order system

(3.0.4) ∂ZẆ − G2(z)Ẇ = 0, z ≥ 0,

(3.0.5) Γ2Ẇ|z=0 = 0

18



in Ẇ = (ẇ1, ẇ2, ẇ3), where

(3.0.6) G2(∞) := lim
z→∞
G2(z) =


0 0 −(A11

2 )−1A12
2

0 0 I

0 0 (B22
22)−6(A22

2 − A21
2 (A11

2 )−1A12
2 )

 (U)

Lemma 3.0.6. ([10], [14]). Let N2
− denote the number of stable eigenvalues Reµ < 0

of G2(∞), N2
+ the number of unstable eigenvalues Reµ > 0, S the subspace of solutions of

(3.0.4) that approach finite limits as z →∞, and S0 the subspace of solutions of (3.0.4)

that decay to 0. Then, (i) N2
− +N2

+ = N ′ and

(3.0.7) N+ +N2
− = Nb := N ′ +N1

+,

(ii) profile w(.) decays exponentially to its limit U as z →∞ in all derivatives, and

(iii) dimS = N +N2
+ and dimS = N2

−.

Definition 3.0.7. The profile w is said to be transversal if

i) there is no nontrivial solution ẇ ∈ S0 which satisfies the boundary conditions

Γ2(ẇ, ∂zẇ
2)|z=0 = 0,

ii) the mapping ẇ 7→ Γ2(ẇ, ∂zẇ
2)|z=0 from S to CNb has rank Nb.

The following assumption is the starting point for our construction of exact boundary

layer solutions to (2.1.1).

Assumption 3.0.8. Fix a choice of (g1, g2) as in the boundary conditions. We are

given a smooth manifold C defined as the graph

(3.0.8) C = {(t, x, C(t, x)) : (t, x, 0) ∈ [−T, T ]× ∂Ω},
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where each C(t, x) defined in Chapter 1, is now assumed to be a smooth manifold of

dimension N −N+. In addition we are given a smooth function

(3.0.9) W : [0,∞)× C → R4

such that for all (t, x, q) ∈ C, W(z, t, x, q) is a transversal layer profile satisfying (3.0.2)

and converging to q as z → ∞ at an exponential rate that can be taken uniform on

compact subsets of C.

This assumption is hard to check in general. We will later use a proposition which

gives necessary and sufficient conditions on boundary operator in order for the above

assumption to hold in the small-amplitude case.
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CHAPTER 4

Construction of Approximate Solutions



In this chapter, we give the construction of approximate solutions, following the

method used in [8]. Here we obtain approximate solutions on the half space Ω = {(x, y) ∈

R2|y ≥ 0}.

We seek high-order approximate solutions to

(4.0.1) Lε(U) := A0(U)Ut +
2∑
j=1

Aj(U)∂j(U)− ε
2∑

j,k=1

∂j(Bjk(U)∂kU) = 0,

subject to the boundary conditions

u|y=0 = g1

v|y=0 = g2

T ′|y=0 = 0

as mentioned in the previous chapter,

which converge to a given solution U0(t, x, y) of the inviscid hyperbolic problem:

(4.0.2)

H(U) = 0 on [−T0, T0]×ΩU(t, x, 0) ∈ C(t, x) on [−T0, T0]×∂Ω

where C(t, x) is the endstate manifold defined in Chapter 1.

As mentioned in Chapter 1, we look for an approximate solution of the form

(4.0.3) ua(t, x, y) =
∑

0≤j≤M

εjUj(t, x,
y

ε
) + εM+1UM+1(t, x, y).
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where

(4.0.4) Uj(t, x,
y

ε
) = V j(t, x,

y

ε
) + U j(t, x, y)

Here U0 satisfies (4.0.2) and V 0 is given by

(4.0.5) V 0(t, x, z) = W (z, t, x, U0(t, x, 0))− U0(t, x, 0),

for a profile W (z, t, x, U0(t, x0)) as in Assumption 11.

The V j(z, x, t) are boundary layer profiles constructed to be exponentially decreasing to

0 as z →∞. For the moment we just assume enough regularity so that all the operations

involved in the construction make sense. A precise statement is given in Proposition 13

below.

4.1. Profile equations

We substitute (4.0.3) into (4.0.1) and write the result as

(4.1.1)
M∑
−1

εjF j(t, x, z)|z= y
ε

+ εMRε,M(t, x),

where we separate F j into slow and fast parts

(4.1.2) F j(t, x, z) = F j(t, x) +Gj(t, x, z),

and the Gj decrease exponentially to 0 as z → ±∞.
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The interior profile equations are obtained by setting the F j, Gj equal to zero. In

the following expressions for Gj(t, x, z), the functions U j(t, x) and their derivatives are

evaluated at (t, x). With W = (W (z, t, x, U0(t, x, 0))) set

(4.1.3)

L(t, x, z, ∂z)v := A2(W )vz + (duA2(W ) · v)Wz −
d

dz
(B22(W )vz)

− d

dz
((v · duB22(W ))Wz),

the operator determined by linearizing the profile equations about W , and

(4.1.4) L0v := A0(U0)vt +
2∑
j=1

Aj(U
0)∂jv.

We have

(4.1.5)

F−1(t, x) = 0

G−1(t, x, z) = A2(W )Wz −
d

dz
(B22(W )Wz),

(4.1.6)

F 0(t, x) = HU0

G0(t, x, z) = L(t, x, z, ∂z)U1 −Q0(t, x, z),

where Q0 decays exponentially as z → +∞ and depends only on (U0, V 0). For j ≥ 1 we

have

(4.1.7)

F j(t, x) = LU j − P j−1(t, x)

Gj(t, x, z) = L(t, x, z, ∂z)U j+1 −Qj(t, x, z),
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where Qj decays exponentially as z → +∞ and P j, Qj depend only on

(Uk, V k) for k ≤ j.

In writing out the boundary profile equations, we note first that the boundary conditions

are equivalent for ε > 0 to

u|y=0 = g1

v|y=0 = g2

εT ′|y=0 = 0

With U j(t, x, y, z) = (ρj, uj, vj, T j) and their derivatives always evaluated at (t, x, 0), the

boundary profile equations at order εj take the form:

u0
|y=0 = g1

v0
|y=0 = g2

∂zT
0
|y=0 = 0 (order ε0)

u1
|y=0 = 0

v1
|y=0 = 0

∂zT
1
|y=0 = 0 (order ε1)
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u1
|y=0 = 0

v1
|y=0 = 0

∂zT
1
|y=0 = 0 (order εj, j ≥ 2),

4.2. Solution of the profile equations

The solution of the profile equations given below assumes transversality ofW (z, U0(t, x, 0))

and the uniform Lopatinski condition, as well as the existence of a K-family of smooth

inviscid symmetrizers.

1. The interior equations G−1 = 0 and F 0 = 0 and the boundary equation for order ε0

are satisfied because of our assumptions about U0 and

W (z, t, x, U0(t, x, 0)).

2. Construction of (U1, U1). We construct the functions U1(t, x, z) and U1(t, x) from

the equations G0 = 0, F 1 = 0, and the boundary equation for order ε1. U1 will be a sum

of three parts

(4.2.1) U1(t, x, z) = U1
a + U1

b + U1
c , where U1

k (t, x, z) = U1
k (t, x) + V 1

k (t, x, z), k = a, b, c.

First use the exponential decay of Q0 to find an exponentially decaying solution V 1
a (t, x, z)

to

(4.2.2)

L(t, x, z, ∂z)V
1
a = Q0(t, x, z) on ± z ≥ 0

V 1
a → 0 as z → +∞,
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and define U1
a (t, x) ≡ 0. This problem is easily solved after first conjugating to a constant

coefficient ODE using the operators W defined in Lemma 14.

Next, for U1
a fixed as above, use part (ii) of the definition of transversality (Definition

10) to see that we can solve for U1
b (t, x, z) ∈ S satisfying

(4.2.3)

L(t, x, z, ∂z)U1
b = 0 on z ≥ 0

(u1
a + u1

b)|y=0 = 0

(v1
a + v1

b )|y=0 = 0

∂z((T
1
a + T 1

b ))|y=0 = 0(order εj, j ≥ 2),

Recalling the definition of S from Lemma 9, we see that U1
b has limits as z →∞.

Define

(4.2.4)

U1
b (t, x, 0) := lim

z→∞
U1
b (t, x, z),

V 1
b (t, x, z) := U1

b (t, x, z)− U1
b (t, x, 0),

and let U1
b (t, x) be any smooth extension of U1

b (t, x, 0) to [−T0, T0]× Ω.

Finally, for an appropriate choice of U1
c (t, x, 0) we need U1

c (t, x, z) to satisfy
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(4.2.5)

L(t, x, z, ∂z)U1
c = 0

(u1
c)|y=0 = 0

(v1
c )|y=0 = 0

∂z(T
1
c )|y=0 = 0

lim
z→+∞

U1
c (t, x, z) = U1

c (t, x, 0).

According to the characterization of TqC(t, x) given in Remark 2, this is possible if and

only if U1
c (t, x, 0) ∈ TU0(t,x,0)C(t, x). Thus, we first solve for U1

c (t, x) satisfying the lin-

earized inviscid problem

(4.2.6)

L0U
1
c = P 0 − L0U

1
b

U1
c (t, x) ∈ TU0(t,x,0)C(t, x).

This problem requires an initial condition in order to be well-posed. The right side in

the interior equation of (4.2.6) is initially defined just for t ∈ [−T0, T0]. With a C∞

cutoff that is identically one in t ≥ −T0/2, we can modify the right side to be zero in

t ≤ −T0 + δ, say. Requiring U1
c to be identically zero in t ≤ −T0 + δ, we thereby obtain

a problem for U1
c that is forward well-posed since U0 satisfies the uniform Lopatinski

condition. Thus, there exists a solution to (4.2.6) on [−T0

2
, T0]. This allows us to obtain

U1
c (t, x, z) satisfying (4.2.5) and to define

(4.2.7) V 1
c (t, x, z) := U1

c (t, x, z)− U1
c (t, x, 0).
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By construction, the functions (U1, U1) satisfy the equations G0 = 0, F 1 = 0, and the

boundary conditions for order ε1.

3. Construction of (U j, U j), j ≥ 2. In the same way, for j ≥ 2, we use the

equations Gj−1 = 0, F j = 0, and the boundary conditions for the order εj to determine

the functions (U j, U j). The corrector εM+1UM+1 is chosen simply to solve away an

O(εM+1) error that remains in the boundary conditions after the construction of UM .

In the next Proposition we formulate a precise statement summarizing the construction

of this section. The regularity assertions in the Proposition are justified as in [2], Prop.

5.7. Regularity is expressed in terms of the following spaces:

Definition 4.2.1. 1. Let Hs (resp. Hs
b ) be the standard Sobolev space on [−T0, T0]×

Ω (resp. [−T0, T0]× ∂Ω).

2. Let H̃s be the set of functions V (t, x, z) on [−T0, T0] × ∂Ω × R̄+ such that V ∈

C∞(R̄+, H
s([−T0, T0]× ∂Ω)) and satisfies

(4.2.8) |∂kzV (t, x, z)|Hs
b
≤ Ck,xe

−δ|z| for all k

for some δ > 0.

Proposition 4.2.2. (Approximate solutions.) Assume (H1)-(H6) (with (H4’)

replacing (H4) in the symmetric-dissipative case). for given integers m ≥ 0 and M ≥ 1

let

(4.2.9) s0 > m+
7

2
+ 2M +

d+ 1

2
.
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Suppose that the inviscid solution U0 as in (4.0.2) satisfies the uniform Lopatinski

condition and that the profiles W (z, U0(t, x, 0)) are transversal. Assume U0 ∈ Hs0 and

U0|∂Ω ∈ Hs0
b .

Then one can construct ua as in (4.0.3) satisfying:

(4.2.10) Lεua = εMRM(t, x) on [−T0

2
, T0]× Ω

We have

(4.2.11) U j(t, x) ∈ Hs0−2j, V j(t, x, z) ∈ H̃s0−2j,

and RM(t, x) satisfies

(a) |(∂t, ∂x, ε∂z)αRM |L2 ≤ Cα for |α| ≤ m+ d+1
2

(b) |(∂t, ∂x, ε∂z)αRM |L∞ ≤ Cα for |α| ≤ m.
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CHAPTER 5

Evans function



Fix a point (t, x) and consider again the viscous problem (4.0.1). Consider a planar

layer profile

(5.0.1) U ε(t, x, y) = w(y/ε)

as in Definition 1, which is an exact solution to (2.1.1) on y ≥ 0 when the coefficients

and boundary data (g1, g2, 0) are frozen at (t, x, 0).

Taking z = y
ε
, we see that ∂y = 1

ε
∂z. So equation (2.1.1) becomes

(5.0.2)

εA0(U)∂tU + εA1(U)∂xU + A2(U)∂yU − ε2∂x(B11(U)∂xU)

−ε∂x(B12(U)∂zU)− ε∂z(B21(U)∂xU)− ∂z(B22(U)∂zU) = 0.

Write the linearized equations of (2.1.1) about w:

(5.0.3) L′w(U̇) = ḟ , Υ′(U̇ , ∂xU̇
2, ∂zU̇

2)|y=0 = ġ.

Performing a Fourier-Laplace transform of (5.0.3) in (t, x), with frequency variables de-

noted by γ + iτ and η respectively, yields the family of ordinary differential systems

(5.0.4) L(z, γ + iτ, iη, ∂z)U = f,


u

v

∂ZT


|z=0

= g

where,
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(5.0.5) L = −B(z)∂2
z +A(z, ζ)∂z +M(z, ζ),

with coefficients given by

(5.0.6) B(z) = B22(w(z))

(5.0.7) A(z, ζ) = A2(w(z))− iη(B12 +B21)(w(z)) + E2(z)

(5.0.8) M(z, ζ) = (iτ + γ)A0(w(z)) + iη(A1(w(z)) + E1(z)) + η2B11(w(z)) + E0(z).

The Ek are functions independent of ζ which involve derivatives of w and thus converge

to 0 at an exponential rate when z tends to infinity. Moreover, we note that

(5.0.9) E11
k = 0, E12

k = 0 for k > 0.

From the given NS equations, we also remark that M12 does not depend on τ and γ.

The problem (5.0.4) may be written as a first order system

(5.0.10) ∂zŨ − G(z, ζ)Ũ = F, Γ(ζ)Ũ|z=0 = G,

where Ũ = (U, ∂zU
2) = (U1, U2, U3) ∈ C7 and ζ = (τ, γ, η). The components of G(z, ζ)

are given below.
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(5.0.11) G =


G11 G12 G13

0 0 Id

G31 G32 G33

 ,

where,

(5.0.12)

G11 = −(A11)−1M11, G31 = (B22)−1(A21G11 +M21),

G12 = −(A11)−1M12, G32 = (B22)−1(A21G12 +M22),

G13 = −(A11)−1A12, G33 = (B22)−1(A21G13 +A22).

A necessary condition for stability of the inhomogeneous equations (5.0.10) is stability

of the homogeneous case F = 0, G = 0, i.e., nonexistence for γ ≥ 0, ζ 6= 0 of solutions U

decaying as z → ∞ and satisfying Γ(ζ)U(0) = 0. These may be detected by vanishing

of the Evans function

(5.0.13) D(ζ) := det
7×7

(E−(ζ), ker Γ(ζ)),

where E = {U(0)|∂zŨ − G(z, ζ)Ũ = 0 and U decays at z =∞}.

Let G(z, ζ, p) be as in (5.0.10), a frequency-dependent matrix arising from linearization

around a profile w(z) such that for some positive constants C, β, uniform with respect

to model parameters p,

(5.0.14) |w(z)− w(∞)| ≤ Ce−βz,
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and also p 7→ (w, ∂zw2)(., p) is continuous as a function from p to L∞(0,∞). Thus also,

(5.0.15) |G(z, .)− G(∞, .)| ≤ Ce−βz,

and G(., ζ, p) is continuous as a function from p to L∞(0,∞).

The following lemma which is called the conjugation lemma is useful in converting a

first-order system like (5.0.10) to one where G(z) is replaced by the constant coefficient

matrix G(∞).

Lemma 5.0.1. [13], Lemma 2.6. For all ζ ∈ R3 with γ ≥ 0, there is a neighborhood

ω of (p, ζ) and there is a matrix W defined and C∞ on [0,∞)× ω such that

i) W−1 is uniformly bounded and there is θ > 0 such that

(5.0.16) |W(z, p, ζ)− Id| ≤ Ce−θz

ii) W satisfies

(5.0.17) ∂zW = G(z)W(z)−W(z)G∞.

Observe that U satisfies (5.0.10) on z ≥ 0 if and only if V defined by U = PV satisfies

(5.0.18) ∂zV = G(∞)V + P−1F,ΓP (0)V|z=0 = G

This implies that the decaying space E−(ζ, p) as in (5.0.13) is exactly the image under

P (0, ζ, p) of the stable subspace of G(∞, ζ, p), denoted E−∞(ζ, p). Thus, by the calculation

of [10], Lemma 2.12, E−(ζ, p) has dimension Nb = rankΓ for γ ≥ 0, ζ 6= 0. The Evans

determinant (5.0.13)
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(5.0.19) Dp(ζ) = det(E−(ζ, p), ker Γ(ζ, p)),

now denoted with additional dependence on model parameters p, is then well-defined on

γ ≥ 0, ζ 6= 0 and depends smoothly on ζ and continuously (in all ζ derivatives) on p.

For high frequencies |ζ| ≥ R > 0, we also define a rescaled Evans function Dsc(ζ).

By [10], the maximal stability estimate for (5.0.10) for high frequencies is

(5.0.20)

(1 + γ)‖U1‖L2(R+) + Λ‖U2‖L2(R+) + ‖∂zU2‖L2(R+) + (1 + γ)
1
2 |U1(0)|

+Λ
1
2 |U2(0)|+ Λ−

1
2 |∂zU2(0)| ≤ C(‖f 1‖L2(R+) + Λ−1‖f 2‖L2(R+))

+C((1 + γ)
1
2 |g1|+ Λ

1
2 |g2|+ Λ−

1
2 |g3|),

where C is an independent constant and Λ is the natural parabolic weight

(5.0.21) Λ(ζ) = (τ 2 + γ2 + |η|4)1/4.

Taking f = 0 in (5.0.20) yields the necessary condition

(5.0.22)

(1 + γ)
1
2 |u1|+ Λ

1
2 |u2|+ Λ−

1
2 |u3| ≤ C((1 + γ)

1
2 |Γ1u

1|

+Λ
1
2 |Γ2u

2|+ Λ−
1
2 |Γ3(ζ)(u2, u3)|)

∀ζ ∈ R̄d+1
+ , |ζ| ≥ R, ∀U = (u1, u2, u3) ∈ E−(ζ). This can be reformulated in terms of

a rescaled Evans function. Introduce maps defined on C7 and C3 respectively by

36



(5.0.23)

Jζ(u
1, u2, u3) := ((1 + γ)

1
2u1,Λ

1
2u2,Λ−

1
2u3)

Jζ(g
1, g2, g3) := ((1 + γ)

1
2 g1,Λ

1
2 g2,Λ−

1
2 g3)

Note that JζΓ(ζ)U = ΓscJζU with

(5.0.24) ΓscU = (Γ1u
1,Γ2u

2, K2u
3).

Thus (5.0.22) reads

(5.0.25) ∀U ∈ JζE−(ζ) : |U | ≤ C|JzetaΓ(ζ)J−1
ζ U | = C|ΓscU |.

Introducing the rescaled Evans function

(5.0.26) Dsc(ζ) := | det(JζE−(ζ), Jζ ker Γ(ζ))| = | det(JζE−(ζ), ker Γsc(ζ))|,

and using Lemma 15 below, we see that this stability condition is equivalent to the

following definition.

Lemma 5.0.2. ([10], Lemma 2.19). Suppose that E ⊂ Cn and Γ : Cn → Cm, with

rankΓ = dim E = m. If | det(E, ker Γ)| ≥ c > 0, then there is C, which depends only on

c and |Γ∗(ΓΓ∗)−1| such that

(5.0.27) |U | ≤ C|ΓU | for all U ∈ E.
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Conversely, if this estimate is satisfied then | det(E, ker Γ)| ≥ c > 0, where c > 0

depends only on C and |Γ|.

Remark 5.0.3. By Lemma 15, the uniform Evans condition |D(ζ)| ≥ C > 0 on some

subset S of frequencies is equivalent to

(5.0.28) |U | ≤ C|ΓU | for all U ∈ E−(ζ)

for some constant C > 0 independent of ζ ∈ S.

Definition 5.0.4. (a) Given a profile w, the linearized equation (5.0.3) satisfies the

uniform Evans condition for high frequencies when there are c > 0 and R > 0 such that

|Dsc(ζ)| ≥ c for all ζ ∈ R̄d+1
+ ≥ R.

(b) The linearized equation (5.0.3) satisfies the uniform Evans condition when there are

c > 0 and R > 0 such that

(5.0.29) |D(ζ)| ≥ c for |ζ| ≤ R and |Dsc(ζ)| ≥ c for |ζ| ≥ R.

We use the Evans condition to establish a version of Theorem 1.30 from [8]
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CHAPTER 6

Stability of the non-characteristic boundary layers



Our aim in this chapter is to establish the stability of non-characteristic boundary

layers of the full Navier-Stokes equation.

6.1. The Navier Stokes equations

Consider the equation

(a) ρt + (ρu)x + (ρv)y = 0

(b) (ρu)t + (ρu2)x + (ρuv)y + px = (2µ+ η)uxx + µuyy + (µ+ η)vxy

(c) (ρv)t + (ρuv)x + (ρv2)y + py = µvxx + (2µ+ η)vyy + (µ+ η)uyx

(d) (ρE)t + (uρE)x + (vρE)y + (pu)x + (pv)y = κTxx + κTyy +

((2µ+ η)uux + µv(vx + uy) + ηuvy)x +

((2µ+ η)vvy + µu(vx + uy) + ηvux)y

subject to the boundary conditions

u|y=0 = g1

v|y=0 = g2

T ′| y = 0 = 0

where ρ is density, u and v are velocities in the x and y directions, p is pressure, and e

and E = e + u2

2
+ v2

2
are specific internal and total energy respectively. The constants

µ > |η| ≥ 0 and κ > 0 are coefficients of first and second viscosity and heat conductivity.

Finally T is the temperature and we assume that the internal energy e and the pressure

p are known functions of density and temperature: p = p(ρ, T ), e = e(ρ, T ). Also here,

uxy = ∂y (∂x(u)).
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We want to write it in a matrix format to assist in our calculations. The above equations

can be written in the form:

(6.1.1) A0(U)Ut +
2∑
j=1

Aj(U)∂j(U)− ε
2∑

j,k=1

∂j(Bjk(U)∂kU) = 0,

where U = (ρ, u, v, T ). We follow the notations established in the first two chapters.

Below, we evaluate all the matrices.

A0(U) =



1 0 0 0

u ρ 0 0

v 0 ρ 0

E ρu ρv ρcv



A1(U) =



u ρ 0 0

u2 + pρ 2ρu 0 pT

uv ρv ρu 0

uE + upρ ρE + u2ρ+ p uρv uρcv + upT



A2(U) =



v 0 ρ 0

uv ρv ρu 0

v2 + pρ 0 2ρv pT

vE + pρv vρu ρE + v2ρ+ p vρcv + pTv



B11(U) =



0 0 0 0

0 2µ+ η 0 0

0 0 µ 0

0 (2µ+ η)u µv κ
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B21(U) =



0 0 0 0

0 0 µ+ η 0

0 0 0 0

0 ηv µu 0



B12(U) =



0 0 0 0

0 0 0 0

0 µ+ η 0 0

0 µv ηu 0



B22(U) =



0 0 0 0

0 µ 0 0

0 0 2µ+ η 0

0 µu (2µ+ η)v κ


The following result from [7] reduces the problem of proving existence and nonlinear

stability of boundary-layer solutions to verification of the uniform evans condition.

We rewrite our NS equations with our boundary conditions in a compact form below:

(6.1.2)

A0(U)Ut +
2∑
j=1

Aj(U)∂j(U)− ε
2∑

j,k=1

∂j(Bjk(U)∂kU) = 0,

Υ(U, ∂x, ∂z) = (g1, g2, 0) on [0, T0]× ∂Ω

where Ω = {(x, y) ∈ R2|y ≥ 0}.

It turns out that our system is symmetric dissipative.
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Theorem 6.1.1. ([7], Theorem 1.25).Consider the viscous problem (6.1.2) under

assumptions (H1) - (H6)(with (H4’) replacing (H4) in the symmetric-dissipative case).

Given an inviscid solution U0 ∈ Hs0([0, T0] × Ω) as in Theorem 4, suppose that the

uniform Evans condition holds on [0, T0 × ∂Ω]. Suppose the constants k, M , and s0

satisfy

(6.1.3) k >
3

2
+ 4,M > k + 2, s0 > k +

7

2
+ 2M +

d+ 1

2
.

Then there exists ε0 > 0, an approximate solution uεa as in Chapter 3 satisfying

(6.1.4)

‖Lε(uεa)‖Hs([0,T0]×Ω) ≤ CεM

Υ(uεa, ∂xu
ε
a, ∂zu

ε
a) = (g1, g2, 0) on [0, T0]× ∂Ω,

and an exact solution U ε of (6.1.2) such that for 0 < ε ≤ ε0:

(6.1.5)

‖U ε − uεa‖W 1,∞([0,T0]×Ω) ≤ CεM−k,

‖U − U0‖L2([0,T0]×Ω) ≤ Cε1/2,

U ε − U0 = O(ε) in L∞loc([0, T0]× Ω0)

where Ω0 denotes the interior of Ω. Moreover, the linearized equations about either

uεa or uε satisfy maximal stability estimates.

6.2. The four cases of the problem

The following result from [7] reduces the problem of proving existence and nonlinear

stability of boundary-layer solutions to verification of the uniform Evans condition.

43



We divide the problem into the following four cases and attempt to verify the Evans

condition in each of the cases:

(1) Subsonic, outflow,

(2) Subsonic, inflow,

(3) Supersonic, outflow,

(4) Supersonic, inflow.

Definition 6.2.1. (Small amplitude profiles). Let U be as defined in Chapter 1.

For ε > 0 and any compact set D ⊂ U, the set of ε-amplitude profiles associated to D is

the set of functions w(z) = w(z, u) for which there exist u ∈ D such that:

a) A2(w)∂zw − ∂z(B22(w)∂zw) = 0 on z ≥ 0,

b) w(z, u)→ u as z →∞,

c) ‖(w,w2
z)− (u, 0)‖L∞(0,∞) ≤ ε.

When ε is small we refer to such profiles as small amplitude profiles.

Thanks to the following theorem from [7], our job of verification of Evans condition is

greatly simplified.

Theorem 6.2.2. ([7], Theorem 1.28). For any compact subset D ⊂ U, there exists

an ε > 0 such that the uniform Evans condition is satisfied for the set of ε-amplitude

profiles associated to D if and only if it is satisfied for the set of constant layers {w(z, u) :

w = u for all z ≥ 0 and u ∈ D}.

First we fix some notation :

A11
2 = (v)
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A12
2 =

(
0 ρ 0

)

A21
2 =


uv

v2 + pρ

vE + vρeρ + pρv



A22
2 =


ρv ρu 0

0 2ρv pT

ρuv ρE + ρv2 + p ρvcv + vpT



B22
22 =


µ 0 0

0 2µ+ η 0

µu (2µ+ η)v κ


By our assumption on µ, η and κ, we see that B22

22 is invertible and

(B22
22)−1 =


1
µ

0 0

0 1
2µ+η

0

−u
κ

−v
κ

1
κ



A22
2 − A21

2 (A11
2 )−1A12

2 =


ρv 0 0

0 ρv − ρpρ
v

pT

ρuv ρv2 + p− ρpρ ρvcv + vpT


We now turn our attention to verifying the uniform Evans condition for constant profiles

for all frequencies which we divide into:
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i) Small frequencies: i.e. ζ such that |ζ| ≤ r for a sufficiently small r > 0

ii) Medium frequencies: i.e. ζ such that r ≤ |ζ| ≤ R for r as above and R > 0

iii) Large frequencies: i.e. ζ such that |ζ| ≥ R for R > 0.

6.3. Subsonic, outflow

Subsonic means |v| < speed of sound through the respective fluid. Outflow means

v < 0. For our boundary conditions N ′′ = 1

We will first establish the uniform Evans condition for low frequencies. For this purpose,

we use Rousset’s theorem from [10].

Lemma 6.3.1. ([10] Theorem. 2.28). Assume (H1) - (H6) (with (H4’) replacing

(H4) in the symmetric dissipative case), and consider a layer profile w(z) → p as z →

∞. The uniform Evans condition holds for low frequencies, that is, there exist positive

constants r, c such that

(6.3.1) |D(ζ)| ≥ c for |ζ| ≤ r,

if and only if w is transversal and the uniform Lopatinski condition holds at p for the

residual hyperbolic problem.

Since we intend to verify the uniform Evans condition at constant profiles, in the above

lemma, we have w = p and we have to verify transversality and the uniform Lopatinski

condition at p.

6.3.1. Low frequency.
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6.3.1.1. Transversality at p. Recalling that N1
+ is the number of positive eigenvalues of

A11
2 and that A11

2 = (v), we see in this case that N1
+ = 0.

So Nb = 3 is the correct number of boundary conditions in this case.

Let G2 = (B22
22)−1(A22

2 − A21
2 (A11

2 )−1A12
2 ).

We use the following proposition which gives an equivalent condition for transverality of

a constant layer p.

Proposition 6.3.2. ([7], Proposition 2.4.(a)). The constant layer p is transver-

sal if and only if (i) the 3× 3 matrix

Υ
′
2G
−1
2

K2

 is injective on E−(G2(p)), and

(ii) K2 is of full rank = 1 on E−(G2(p)).

G2 =


vρ
µ

0 0

0 ρv2−ρpρ
(2µ+η)v

pT
2µ+η

0 p
κ

vρcv
κ


We first verify that G2 is indeed invertible.

Suppose we have a 4× 4 matrix A, of the form



λ X

a1 Y

a2 Z

a3 W



where X, Y, Z,W each are row vectors in R3 and λ 6= 0, a1, a2, a3 are scalars.
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Claim 6.3.3. If we assume that A is invertible then the 3× 3 matrix, say

B =


Y − a1

λ
X

Z − a2

λ
X

W − a3

λ
X


is also invertible.

Proof. Assume the contrary. Then we have three scalars, a, b, c not all zero s.t. a(Y −

a1

λ
X) + b(Z − a2

λ
X) + c(W − a3

λ
X) = 0. This implies that the 1× 4 matrix

a

(
a1 − λa1

λ
Y − a1

λ
X

)
+ b

(
a2 − λa2

λ
Z − a2

λ
X

)
+ c

(
a3 − λa3

λ
W − a3

λ
X

)
= 0

i.e.

a

(
a1 Y

)
+ b

(
a2 Z

)
+ c

(
a3 W

)
− (

aa1 + ba2 + ca3

λ
)

(
λ X

)
= 0.

But

a

(
a1 Y

)
+ b

(
a2 Z

)
+ c

(
a3 W

)
− (

aa1 + ba2 + ca3

λ
)

(
λ X

)
is a linear combination of the four rows of A which we have assumed to be linearly

independent (A is assumed to be invertible). Therefore, a = 0, b = 0, c = 0. This proves

the claim. �

Since A22
2 − A21

2 (A11
2 )−1A12

2 is of the same form as B above, and

G2 = (B22
22)−1(A22

2 − A21
2 (A11

2 )−1A12
2 ),

we conclude that G2 is invertible.

Next we verify (i) of Proposition 23.
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Since G2 is invertible, det(G2) 6= 0. We observe that

(G2)−1 =
1

det(G2)


µ
vρ

0 0

0 ∗1 ∗2

0 ∗3 ∗4


for some values of ∗1, ∗2, ∗3, ∗4.

In our case Υ2(u, v, T ) = (u, v). So

Υ
′

2 =

1 0 0

0 1 0


and

K2 =

(
0 0 1

)
Let α = det(G2). Now note that the 3× 3 matrix

Υ
′
2G
−1
2

K2

 =


µ
vρα

0 0

0 ∗1
α

∗2
α

0 0 1

 .

Also observe that ∗1 = v2ρ2cv
µκ

which is clearly nonzero owing to the assumption that

v, ρ, cv are all nonzero.

Thus

Υ
′
2G
−1
2

K2
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is injective as an operator on R3 and hence is injective on E−(G2). This shows that our

profile satisfies (i) of Proposition 23.

A−1
0 (U) =



1 0 0 0

−u
ρ

1
ρ

0 0

−v
ρ

0 1
ρ

0

− E
ρcv

+ u2

ρcv
+ v2

ρcv
− u
ρcv
− v
ρcv

1
ρcv



Thus,

Ā1(U) =



u ρ 0 0

pρ
ρ

u 0 pT
ρ

0 0 u 0

0 p
ρcv

0 u



Ā2(U) =



v 0 ρ 0

0 v 0 0

pρ
ρ

0 v pT
ρ

0 0 p
ρcv

v



The characteristic polynomial f(λ) of the matrix Ā2 is given by
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det(λI − Ā2) =



λ− v 0 −ρ 0

0 λ− v 0 0

−pρ
ρ

0 λ− v −pT
ρ

0 0 − p
ρcv

λ− v


= (λ− v)2[(λ− v)2 − ppT

ρ2cv
− pρ]

Thus the eigenvalues of Ā2, counted with multiplicities are: v, v, v +
√

ppT
ρ2cv

+ pρ and

v −
√

ppT
ρ2cv

+ pρ.

Since we are assuming that v < 0 and by subsonicity we have that |v| <
√

ppt
ρ2cv

+ pρ,

we see that Ā2 has only one positive eigenvalue, viz., v +
√

ppT
ρ2cv

+ pρ and three negative

eigenvalues.∴ N+ = 1. Also we have Ā2
11

has no positive eigenvalues ⇒ N1
+ = 0.

∴ N2
− = Nb −N+ = N

′
+N1

+ −N+ = 3 + 0− 1 = 2. Thus dim E−(G2) = 2.

Next we verify (ii) of Proposition 23.

Claim 6.3.4. K2 is injective on E−(G2).

Proof. Suppose not. That would mean that every element in E−(G2) ⊂ R3 is of the form

(x, y, 0). Now for (x, y, 0) ∈ E−(G2), G2


x

y

0

 =


(vρ
µ

)x

(ρv
2−ρpρ

(2µ+η)v
)y

( p
κ
)y

.

But E−(G2) is invariant under G2. Hence ( p
κ
)y = 0 =⇒ y = 0 =⇒ E−(G2) is at most

one dimensional which is a contradiction. This proves the claim. �
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This shows that our profile satisfies condition (ii) of Proposition 23. Thus constant

profiles in this case are transversal.

6.3.1.2. Lopatinski condition. Next we want to establish the Lopatinski condition. We

use the result from [7] that says that maximal dissipativity of Γres implies the Lopatinski

condition. Thus in order to verify Lopatinski condition, we first check for maximal

dissipativity of Γres defined later.

We first note that our system is symmetric dissipative with the corresponding sym-

metrizer S given by

S =



pρ
ρ2

0 0 0

0 1 0 0

0 0 1 0

0 0 0 pT cv
p


Definition 6.3.5. Γres is said to be maximally dissipative, if SĀ2 is negative definite

on the kernel of Γres.

By Remark 2, the tangent space to the C-manifold of states q near a constant layer p,

Cp is Ċp = {(q̇1, q̇2) : Ẇ (z, (q̇1, q̇2)) is a solution of the linearized profile problem (3.0.4),

(3.0.5) with (ẇ1(z), ẇ2(z))→ (q̇1, q̇2) as z →∞}.

By Prop. 5.5.5 of [15], we know that Cp = ker Γres.

Consider the linearized profile equation (3.0.4) at p with

Ẇ = (ẇ1, ẇ2, ẇ3).
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By part 2. of Lemma 4.6 of [7], for any (q1, q2) ∈ R4, equation 3.0.4 is integrated to yield

a solution with (ẇ1(z), ẇ2(z))→ (q1, q2) as z →∞:

ẇ1(z) = −(A11
2 )−1A12

2 e
zG2(p)(G2(p))−1r2 + q̇1

ẇ2(z) = ezG2(p)(G2(p))−1r2 + q̇2

ẇ3(z) = ezG2(p)r2, where r2 ∈ E−(G2(p)).

In particular take an arbitrary (q̇1, q̇2)

Also we have Υ1(ρ̇) = 0 and Υ2(u̇, v̇, Ṫ ) = (u̇, v̇).

Setting Υ′1(p1)ẇ1(0) = 0, Υ′2(p2)ẇ2(0) = 0 and Υ′3(p2)ẇ3(0) = 0, we get the following.

By the definition of Υ1 and Υ2, we see that q̇1 and the last coordinate of q̇2 could

be arbitrary whereas the first two components of (G2(p)−1)r2 + q̇2 should be 0 where

r2 ∈ E−(G2(p)). This implies that the first two components of q̇2 should be equal to

−Υ′2(p2)(G2(p))−1r2.

We know that E−(G2(p)) has a basis of the form {(1, 0, 0), (0, y, z)} where z 6= 0. So for

a typical r2 ∈ E−(G2(p)), we would have r2 = (a, by, bz) for some real constants a and b.

Since Υ′3(p2)ẇ3(0) = 0, we have Υ′3(p2)r2 = 0.

=⇒ bz = 0. But z 6= 0 =⇒ b = 0.

=⇒ r2 = (a, 0, 0).

=⇒ that the second coordinate of q̇2 is 0.

In conclusion, we have

Ċp = {(x, y, 0, z) : x, y, z ∈ R}.

Thus, ker Γres = {(x, y, 0, z) : x, y, z ∈ R}
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SĀ2 =



vpρ
ρ2

0 pρ
ρ

0

0 v 0 0

pρ
ρ

0 v pT
ρ

0 0 pT
ρ

vpT cv
p


Let (a, b, 0, c) ∈ Cp.

Then,

(6.3.2) SĀ2



a

b

0

c


=



avpρ
ρ2

bv

apρ
ρ

+ zpT
ρ

cvpT cv
p


Then

〈
SĀ2(ρ, u, 0, T ), (ρ, u, 0, T )

〉
= a2 vpρ

ρ2
+ b2v + c2 vpT cv

p
.

Since v < 0, the coefficients of a2, b2 and c2 are all negative. Let C = max{vpρ
ρ2
, v, vpT cv

p
}.

So C < 0.

Thus
〈
SĀ2(a, b, 0, c), (a, b, 0, c)

〉
≤ C 〈(a, b, 0, c), (a, b, 0, c)〉 for all (a, b, 0, c) ∈ Cp. Thus

Γres is maximally dissipative.

This establishes the uniform Evans condition for low frequencies.

6.3.2. High frequencies.

SĀ1 =



upρ
ρ2

pρ
ρ

0 0

pρ
ρ

u 0 pT
ρ

0 0 u 0

0 pT
ρ

0 upT cv
p
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With λ = iτ + γ we consider the Fourier-Laplace transformed problem with coefficients

evaluated at the constant layer p:

(6.3.3) λA0u+ A2u
′ + iA1η1u−B22u

′′ − i(B21 +B12)η1u
′ + η2

1B11u = 0

To make the system (6.3.3) symmetric-dissipative, we shall multiply (6.3.3) by the sym-

metrizer SA−1
0 . We’ll first compute B̄jk’s.

B̄11 =



0 0 0 0

0 2µ+η
ρ

0 0

0 0 µ
ρ

0

0 0 0 κ
ρcv



B̄12 =



0 0 0 0

0 0 µ+η
ρ

0

0 0 0 0

0 ηv
ρcv
− ηu
ρcv

0



B̄21 =



0 0 0 0

0 0 0 0

0 µ+η
ρ

0 0

0 − ηv
ρcV

ηu
ρcV

0
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B̄22 =



0 0 0 0

0 µ
ρ

0 0

0 0 2µ+η
ρ

0

0 0 0 κ
ρcv


So

SB̄11 =



0 0 0 0

0 2µ+η
ρ

0 0

0 0 µ
ρ

0

0 0 0 pT κ
ρ2



SB̄12 =



0 0 0 0

0 0 µ+η
ρ

0

0 0 0 0

0 pT ηv
ρ2

−pT ηu
ρ2

0



SB̄21 =



0 0 0 0

0 0 0 0

0 µ+η
ρ

0 0

0 −pT ηv
ρ2

pT ηu
ρ2

0



SB̄22 =



0 0 0 0

0 µ
ρ

0 0

0 0 2µ+η
ρ

0

0 0 0 pT κ
ρ2
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S
1
2 =



√
pρ
ρ

0 0 0

0 1 0 0

0 0 1 0

0 0 0
√
pT cv√
p



S−
1
2 =



ρ√
pρ

0 0 0

0 1 0 0

0 0 1 0

0 0 0
√
p

√
pT cv


Thus multiplying (6.3.3) by SA−1

0 we get

(6.3.4) λSu+ SĀ2u
′ + iSĀ1η1u− SB̄22u

′′ − i(SB̄21 + SB̄12)η1u
′ + η2

1SB̄11u = 0

where now S is symmetric, positive definite and block diagonal and SĀ1 and SĀ2 are

symmetric and the SB̄jk’s are dissipative.

We now want to keep all the properties of the coefficient matrices intact except that we

want to be able to assume that S is the identity matrix. So we multiply each of the

coefficient matrices on the left and right by S−
1
2 to obtain

(6.3.5)

λu+ S
1
2 Ā2S

− 1
2u′ + iS

1
2 Ā1S

− 1
2η1u− S

1
2 B̄22S

− 1
2u′′ − iS

1
2 B̄21S

− 1
2 + S

1
2 B̄12S

− 1
2η1u

′

+η2
1S

1
2 B̄11S

− 1
2u = 0

For convenience, let us denote S
1
2PS−

1
2 by P̃ for any 4× 4 matrix P .
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We can now rewrite (6.3.5) as

(6.3.6) λU + Ã2U
′ + iÃ1η1U − B̃22U

′′ − i(B̃21 + B̃12)η1U
′ + η2

1B̃11U = 0

Ã1 =



u
√
pρ 0 0

√
pρ u 0

√
ppT

ρ
√
cv

0 0 u 0

0
√
ppT

ρ
√
cv

0 u



Ã2 =



v 0
√
pρ 0

0 v 0 0

√
pρ 0 v

√
ppT

ρ
√
cv

0 0
√
ppT

ρ
√
cv

v



B̃11 =



0 0 0 0

0 2µ+η
ρ

0 0

0 0 µ
ρ

0

0 0 0 κ
ρcv



B̃12 =



0 0 0 0

0 0 µ+η
ρ

0

0 0 0 0

0
ηv
√
pT

ρ
√
pcv

−ηu√pT
ρ
√
pcv

0
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B̃21 =



0 0 0 0

0 0 0 0

0 µ+η
ρ

0 0

0 −ηv
√
pT

ρ
√
pcv

ηu
√
pT

ρ
√
pcv

0



B̃22 =



0 0 0 0

0 µ
ρ

0 0

0 0 2µ+η
ρ

0

0 0 0 κ
ρcv


Given (ξ1, ξ2) ∈ R such that (ξ1, ξ2) 6= (0, 0),

2∑
j,k=1

ξjξkB̃
22
jk =


ξ2

1(2µ+η
ρ

) + ξ2
2
µ
ρ

ξ1ξ2(µ+η
ρ

) 0

ξ1ξ2(µ+η
ρ

) ξ2
1
µ
ρ

+ ξ2
2(2µ+η

ρ
) 0

0 0 (ξ2
1 + ξ2

2) κ
ρcv


For later reference we record the first and second components of (6.3.6):

(a) (iτ + γ)ρ+ vρ′ +
√
pρv
′ + iη1u(ρ+

√
pρ) = 0

(b) (iτ + γ)


u

v

ρ

+ iη1ρ


√
pρ

0

0

+ iη1


u2 +

(
√
ppT )T

ρ
√
cv

uv

u
√
ppT

ρ
√
cv

+ uT

+ ρ′


0

√
pρ

0



+


vu′

vv′ +
(
√
ppT )T

ρcv

√
ppT v

′

ρ
√
cv

+ vT ′

−


µu′′

ρ

(2µ+η)v′′

ρ

κT ′′

ρcv

− iη1


(µ+η)v′

ρ

(µ+η)u′

ρ

0

+ η2


(2µ+η)u

ρ

µv
ρ

κT
ρcv

 =


0

0

0


59



For now we will consider the part of 6.3.6 that corresponds to (3.17)(b) from [8]. So we

consider:

the equation

(6.3.7) λU − B̃22
22U

′′ − i(B̃22
21 + B̃22

12)η1U
′ + η2

1B̃
22
11U = 0

Now let’s write (6.3.7) as three separate equations.

(a) λu− µu′′

ρ
− iη1(µ+η)v′

ρ
+

η2
1(2µ+η)u

ρ
= 0

(b) λv − (2µ+η)v′′

ρ
− iη1(µ+η)u′

ρ
+

η2
1µv

ρ
= 0

(c) λT − κT ′′

ρcv
+

η2
1κT

ρcv
= 0

Observe that (a) and (b) are decoupled from (c). By a modification of Proposition 3.8

from [7] we get that the uniform Evans condition holds for high frequencies.

Proposition 6.3.6. Consider a layer profile as in (5.0.1) and the linearized equations

about w(z) given by(5.0.10). The uniform high-frequency Evans condition is satisfied for

our Navier-Stokes equations with the boundary conditions:

u|y=0 = g1

v|y=0 = g2

T ′| y = 0 = 0

Proof. By Corollary 3.7 from [5] and Remark 17, the uniform high-frequency Evans

condition in the case of the given boundary conditions is equivalent to the estimate

(6.3.8) |u′(0)|+ |v′(0)|+ |T (0)| ≤ C(|u(0)|+ |v(0)|+ |T ′(0)|)
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for decaying solutions of (6.3.7) where the coefficients are evaluated at w(0) with the

boundary conditions

u|y=0 = g1

v|y=0 = g2

T ′| y = 0 = 0

where the constant C in (6.3.8) is independent of (λ, η) in the positive parabolic unit

sphere, γ ≥ 0, |λ|+ η2
1 = 1.

Taking the real part of the inner product of (u, v) with equations (a) and (b), we obtain

after integrating w.r.t z from 0 to ∞:

(6.3.9)

(γ + η2
1)(‖u‖2 + ‖v‖2) + ‖u′‖2 + ‖v′‖2 ≤ C(η1|u(0)||v(0)|+ |u(0)||u′(0)|

+|v(0)||v′(0)|)

Similarly, taking the real part of the inner product of −(u′′, v′′) with (a) and (b), we

obtain:

(6.3.10)

(γ + η2
1)(‖u′‖2 + ‖v′‖2) + ‖u′′‖2 + ‖v′′‖2 ≤ C((|λ|+ η2

1)(|u′(0)||u(0)|

+|v′(0)||v(0)|) + |η1||u′(0)||v′(0)|)
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Using the Sobolev bound, we get

(6.3.11)

|u′(0)|2 + |v′(0)|2 ≤ ‖u′‖‖u′′‖+ ‖v′‖‖v′′‖ ≤ Cδ(‖u′‖2 + ‖v′‖2)

+δ(‖u′′‖2 + ‖v′′‖2)

≤ C(Cδ(η1|u(0)||v(0)|+ |u(0)||u′(0)|+ |v(0)||v′(0)|)

+δ((|λ|+ η2
1)(|u′(0)||u(0)|+ |v′(0)||v(0)|) + |η1||u′(0)||v′(0)|)

Since (λ, η1) lie on the positive unit parabolic sphere, we can conclude that there exists

C > 0 such that

(6.3.12) |u′(0)|+ |v′(0)| ≤ C(|u(0)|+ |v(0)|).

Taking inner product of (c) with T and integrating by parts as above, but now taking

both real parts and imaginary parts separately and then combining them, we get a C > 0

such that

(6.3.13) (|λ|+ η2
1)‖T‖2 + ‖T ′‖2 ≤ C|T (0)||T ′(0)|

Similarly, pairing −T ′′ with (c), we get,

(6.3.14) (|λ|+ η2
1)‖T ′‖2 + ‖T ′′‖2 ≤ C|T (0)||T ′(0)|.

As above, using the Sobolev embedding,

(6.3.15) |T (0)|2 ≤ ‖T‖‖T ′‖
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we get a C > 0 such that

(6.3.16) |T (0)| ≤ C|T ′(0)|.

Combining (6.3.12) and (6.3.16), we get that there exists C > 0 such that (6.3.8) holds.

�

6.3.3. Medium frequencies. By Remark 17, the uniform Evans condition is:

(6.3.17) |ρ(0)|+ |T (0)|+ |u′(0)|+ |v′(0)| ≤ C(|u(0)|+ |v(0)|+ |T ′(0)|)

Pairing (6.3.6) with U , we get,

(6.3.18)

ρλ̄ρ̄+ ρv0ρ̄′ + ρ
√
p0
ρv̄
′ − iρη1u0ρ̄− iρη1

√
p0
ρū+ λ̄uū+ v0uū′ − iη1

√
p0
ρuρ̄− iη1u0uū−

iη1

√
p0p0

T

ρ0
√
cv0

uT̄ − µ

ρ0

uū′′ + iη1
µ+ η

ρ0

uv̄′ + η2
1

2µ+ η

ρ0

uū+ λ̄vv̄ +
√
p0
ρvρ̄

′ + v0vv̄′+√
p0p0

T

ρ0
√
cv0

vT̄ ′ − iη1u0vv̄ −
2µ+ η

ρ0

vv̄′′ + iη1
µ+ η

ρ0

vū′ + η2
1

µ

ρ0

vv̄ + λ̄T T̄+√
p0p0

T

ρ0
√
cv0

T v̄′ + v0T T̄ ′ − iη1

√
p0p0

T

ρ0
√
cv0

T ū− iη1u0T T̄ −
κ

ρ0cv0
T T̄ ′′ + η2

1

κ

ρ0cv0
T T̄ = 0

Rewriting (6.3.18) we get,
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(6.3.19)

λ̄ρρ̄+ v0ρρ̄′ +
√
p0
ρρv̄

′ − iη1u0ρρ̄− iη1

√
p0
ρρū+ λ̄uū+ v0uū′ − iη1

√
p0
ρuρ̄− iη1u0uū−

iη1

√
p0p0

T

ρ0
√
cv0

uT̄ − µ

ρ0

uū′′ + iη1
µ+ η

ρ0

uv̄′ + η2
1

2µ+ η

ρ0

uū+ λ̄vv̄ +
√
p0
ρvρ̄

′ + v0vv̄′+√
p0p0

T

ρ0
√
cv0

vT̄ ′ − iη1u0vv̄ −
2µ+ η

ρ0

vv̄′′ + iη1
µ+ η

ρ0

vū′ + η2
1

µ

ρ0

vv̄ + λ̄T T̄+√
p0p0

T

ρ0
√
cv0

T v̄′ + v0T T̄ ′ − iη1

√
p0p0

T

ρ0
√
cv0

T ū− iη1u0T T̄ −
κ

ρ0cv0
T T̄ ′′ + η2

1

κ

ρ0cv0
T T̄ = 0

That is,

(6.3.20)

λ̄|ρ|2 + v0ρρ̄′ +
√
p0
ρρv̄

′ − iη1u0|ρ|2 − iη1

√
p0
ρρū+ λ̄|u|2 + v0uū′ − iη1

√
p0
ρuρ̄−

iη1u0|u|2 − iη1

√
p0p0

T

ρ0
√
cv0

uT̄ − µ

ρ0

uū′′ + iη1
µ+ η

ρ0

uv̄′ + η2
1

2µ+ η

ρ0

|u|2 + λ̄|v|2 +
√
p0
ρvρ̄

′+

v0vv̄′ +

√
p0p0

T

ρ0
√
cv0

vT̄ ′ − iη1u0|v|2 −
2µ+ η

ρ0

vv̄′′ + iη1
µ+ η

ρ0

vū′ + η2
1

µ

ρ0

|v|2 + λ̄|T |2+√
p0p0

T

ρ0
√
cv0

T v̄′ + v0T T̄ ′ − iη1

√
p0p0

T

ρ0
√
cv0

T ū− iη1u0|T |2 −
κ

ρ0cv0
T T̄ ′′ + η2

1

κ

ρ0cv0
|T |2 = 0

That is,

(6.3.21)

λ̄(|ρ|2 + |u|2 + |v|2 + |T |2) + v0(ρρ̄′ + uū′ + vv̄′ + T T̄ ′) +
√
p0
ρ(ρv̄

′ + vρ̄′)−

iη1u0(|ρ|2 + |u|2 + |v|2 + |T |2)− iη1

√
p0
ρ(ρū+ uρ̄)− iη1

√
p0p0

T

ρ0
√
cv0

(uT̄ + T ū)−

µ

ρ0

uū′′ − 2µ+ η

ρ0

vv̄′′ − κ

ρ0cv0
T T̄ ′′ + iη1

µ+ η

ρ0

(uv̄′ + vū′) + η2
1

2µ+ η

ρ0

|u|2+√
p0p0

T

ρ0
√
cv0

(vT̄ ′ + T v̄′) + η2
1

µ

ρ0

|v|2 + η2
1

κ

ρ0cv0
|T |2 = 0

Taking the real part of (6.3.21), we get,
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(6.3.22)

γ(|ρ|2 + |u|2 + |v|2 + |T |2) + η2
1

2µ+ η

ρ0

|u|2 + η2
1

µ

ρ0

|v|2 + η2
1

κ

ρ0cv0
|T |2+

v0R(ρρ̄′ + uū′ + vv̄′ + T T̄ ′) +
√
p0
ρR(ρv̄′ + vρ̄′) + R(iη1

µ+ η

ρ0

(uv̄′ + vū′))+√
p0p0

T

ρ0
√
cv0

R(vT̄ ′ + T v̄′)− µ

ρ0

R(uū′′)− 2µ+ η

ρ0

R(vv̄′′)− κ

ρ0cv0
R(T T̄ ′′) = 0

Taking integral of (6.3.22) w.r.t. z from 0 to ∞, we get,

(6.3.23)

γ(‖ρ‖2
L2 + ‖u‖2

L2 + ‖v‖2
L2 + ‖T‖2

L2) + η2
1

2µ+ η

ρ0

‖u‖2
L2 + η2

1

µ

ρ0

‖v‖2
L2 + η2

1

κ

ρ0cv0
‖T‖2

L2+

v0R

∫ ∞
0

(ρρ̄′ + uū′ + vv̄′ + T T̄ ′) +
√
p0
ρR

∫ ∞
0

(ρv̄′ + vρ̄′) + R(iη1
µ+ η

ρ0

∫ ∞
0

(uv̄′ + vū′))+√
p0p0

T

ρ0
√
cv0

R

∫ ∞
0

(vT̄ ′ + T v̄′)− µ

ρ0

R

∫ ∞
0

(uū′′)− 2µ+ η

ρ0

R

∫ ∞
0

(vv̄′′)−

κ

ρ0cv0
R

∫ ∞
0

(T T̄ ′′) = 0

That is,

(6.3.24)

γ(‖ρ‖2
L2 + ‖u‖2

L2 + ‖v‖2
L2 + ‖T‖2

L2) + η2
1

2µ+ η

ρ0

‖u‖2
L2 + η2

1

µ

ρ0

‖v‖2
L2+

η2
1

κ

ρ0cv0
‖T‖2

L2 + ‖u′‖2
L2 + ‖v′‖2

L2 + ‖T ′‖2
L2 −

1

2
v0(|ρ(0)|2 + |u(0)|2 + |v(0)|2 + |T (0)|2)−

√
p0
ρR(ρ(0)v(0))−R(iη1

µ+ η

ρ0

u(0)v(0))−
√
p0p0

T

ρ0
√
cv0

R(v(0)T (0)) +
µ

ρ0

R(u(0)u′(0))+

2µ+ η

ρ0

R(v(0)v′(0)) +
κ

ρ0cv0
R(T (0)T ′(0)) = 0

That is,
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(6.3.25)

γ‖U‖2
L2 + η2

1

2µ+ η

ρ0

‖u‖2
L2 + η2

1

µ

ρ0

‖v‖2
L2 + η2

1

κ

ρ0cv0
‖T‖2

L2 + ‖U ′2‖2
L2 −

1

2
v0|U(0)|2−

√
p0
ρR(ρ(0)v(0))−R(iη1

µ+ η

ρ0

u(0)v(0))−
√
p0p0

T

ρ0
√
cv0

R(v(0)T (0)) +
µ

ρ0

R(u(0)u′(0))+

2µ+ η

ρ0

R(v(0)v′(0)) +
κ

ρ0cv0
R(T (0)T ′(0)) = 0

Thus, ∃ a constant C > 0, such that

(6.3.26)

γ‖U‖2
L2 + η2

1‖U2‖2
L2 + ‖U ′2‖2

L2 + |U(0)|2

≤ C(
√
p0
ρR(ρ(0)v(0)) + R(iη1

µ+ η

ρ0

u(0)v(0)) +

√
p0p0

T

ρ0
√
cv0

R(v(0)T (0))−

µ

ρ0

R(u(0)u′(0))− 2µ+ η

ρ0

R(v(0)v′(0))− κ

ρ0cv0
R(T (0)T ′(0)))

≤ C(|ρ(0)||v(0)|+ |u(0)||v(0)|+ |v(0)||T (0)|+ |u(0)||u′(0)|+ |v(0)||v′(0)|+

|T (0)||T ′(0)|)

Thus we have,

(6.3.27)

γ‖U‖2
L2 + η2

1‖U2‖2
L2 + ‖U ′2‖2

L2 + |U(0)|2 ≤ C(|ρ(0)||v(0)|+ |u(0)||v(0)|

+|v(0)||T (0)|

+|u(0)||u′(0)|+ |v(0)||v′(0)|+ |T (0)||T ′(0)|)

Thus we get,
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(6.3.28)

γ‖U‖2
L2 + η2

1‖U2‖2
L2 + ‖U ′2‖2

L2 + |U(0)|2 ≤ C(|u(0)|2 + |v(0)|2 + |T ′(0)|2)+

δ(|u′(0)|2 + |v′(0)|2)

for δ > 0 sufficiently small.

So we have,

(6.3.29)

|ρ(0)|2 + |u(0)|2 + |v(0)|2 + |T (0)|2 ≤ C(|u(0)|2 + |v(0)|2 + |T ′(0)|2)

+δ(|u′(0)|2 + |v′(0)|2)

Also by (4.25) from [8], we know

(6.3.30) |ρ(0)|2 + |u′(0)|2 + |v′(0)|2 + |T ′(0)|2 ≤ C(|u(0)|2 + |v(0)|2 + |T (0)|2)

From (6.3.30), we get

(6.3.31) |u′(0)|2 + |v′(0)|2 ≤ C(|u(0)|2 + |v(0)|2 + |T (0)|2)

Combining (6.3.29) and (6.3.31) we have,

(6.3.32) |ρ(0)|2 + |T (0)|2 ≤ C(|u(0)|2 + |v(0)|2 + |T ′(0)|2)

Adding (6.3.29) and (6.3.31),
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(6.3.33)

|ρ(0)|2 + |u(0)|2 + |v(0)|2 + |T (0)|2 + |u′(0)|2 + |v′(0)|2 ≤ C(|u(0)|2 + |v(0)|2 + |T ′(0)|2)

+δ(|u′(0)|2 + |v′(0)|2)

Combining (6.3.31) and (6.3.33),

(6.3.34)

|ρ(0)|2 + |u(0)|2 + |v(0)|2 + |T (0)|2 + |u′(0)|2 + |v′(0)|2 ≤ C(|u(0)|2 + |v(0)|2 + |T ′(0)|2)

+δ(|u(0)|2 + |v(0)|2 + |T (0)|2)

Thus,

(6.3.35)

|ρ(0)|2 + |u(0)|2 + |v(0)|2 + |T (0)|2 + |u′(0)|2 + |v′(0)|2 ≤ C(|u(0)|2 + |v(0)|2+

|T ′(0)|2)

Thus,

(6.3.36)

|ρ(0)|2 + |u(0)|2 + |v(0)|2 + |T (0)|2 + |u′(0)|2 + |v′(0)|2 ≤ C(|u(0)|2 + |v(0)|2+

|T ′(0)|2)

Thus,

(6.3.37) |ρ(0)|2 + |u′(0)|2 + |v′(0)|2 + |T (0)|2 ≤ C(|u(0)|2 + |v(0)|2 + |T ′(0)|2)

This establishes the Evans condition for all frequencies.

Thus we have also proved the following corollary:
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Corollary 6.3.7. For our system of Navier Stokes equations with the given bound-

ary conditions, under hypotheses (H1) - (H6), but with (H4’) replacing (H4), we have

the following:

Given a smooth global assignment of states p(t, x), there exists a C manifold satisfying

Assumption 12 with p(t, x) ∈ C(t, x) ⊂ U for all (t, x), and associated small amplitude

profiles W (z, t, x, q) satisfying the uniform Evans condition on [−T, T ]× ∂Ω. The man-

ifold C defines a residual hyperbolic boundary condition.

Given initial data v0 satisfying appropriate corner compatibility conditions for the hyper-

bolic problem, there exists an inviscid solution U0, an approximate solution uεa, and as

exact boundary layer solution uε satisfying all the conclusions of Theorem 19 for constants

s0, k and M as described there.

6.4. Subsonic, inflow

Just like in the previous case, we will check for Uniform Evans condition for all

frequencies for constant profiles.

Consider G2 as before. We need to determine if in this case, (i) and (ii) of Proposition

23 hold in order to establish transversality.

When we showed that

γ
′
2G
−1
2

K2

 is injective on E−(G2), we didn’t use subsonicity or

outflow in the proof. Thus in this case too, we can conclude that (i) of Proposition 23

holds.

We know that the eigenvalues of Ā2, counted with multiplicities are: v, v, v+
√

ppT
ρ2cv

+ pρ

and v −
√

ppT
ρ2cv

+ pρ.
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Now inflow implies that v > 0 and subsonic implies that |v| <
√

ppT
ρ2cv

+ pρ. This means

that N+ = 3. Also N1
+ = 1.

∴ N2
− = Nb −N+ = N

′
+N1

+ −N+ = 3 + 1− 3 = 1. Thus dimE−(G2) = 1.

By the third equation of (4.54) of [7] we know that whichever r2 works should have its

last coordinate = 0. Since v is positive in this case and E−(G2) is one dimensional and

invariant under G2, we have that E−(G2) should be generated by a vector (0, y, z).

Claim 6.4.1. (0, 1, 0) /∈ E−(G2).

Proof. If not, then since dim E−(G2) = 1 and E−(G2) is invariant under G2, we would

get the second column of G2 to be a multiple of (0, 1, 0) which is a contradiction since

the (3, 2)th entry of G2 is p
κ

which is known to be non-zero. This proves the claim. �

Thus z 6= 0. This proves that K2 is of full rank on E−(G2). Thus (ii) of Proposition 23

holds and we have that constant profiles are transversal in this case as well.

Also, we get that the only r2 that works in (4.54) in [7] is (0, 0, 0).

Now N1
+ = 1 =⇒ Nb = 4 and the boundary conditions are

ρ(0) = g1

u(0) = g2

v(0) = g3

T ′(0) = 0(6.4.1)
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Thus by the definition of υ1 and υ2 in this case, we get that q1 = 0 and the first two

coordinates of q2 are both 0. But since there is no restriction on the last coordinate of

q2, we get that Ċν,p = SpanR{(0, 0, 0, 1)}.

To verify maximal dissipativity of residual boundary conditions for constant profiles, we

need to check for the negative definiteness of SĀ2 on Ċν,p.

For (0, 0, 0, T ) ∈ Ċν,p,
〈
SĀ2(0, 0, 0, T ), (0, 0, 0, T )

〉
= vpT cv

p
T 2 =

C〈(0, 0, 0, T ), (0, 0, 0, T )〉 where C = vpT cv
p
T 2 which is positive due to our assumption that

v > 0. Thus we see that in this case, the residual boundary condition is not maximally

dissipative.

Since maximal dissipativity is stronger than the Uniform Lopatinski condition, we still

don’t know if the Uniform Lopatinski condition fails.

Thus we need to find a C > 0 independent of p such that for all ζ with γ > 0,

| det(E−(H(p, ζ)), ker Γres(p))| ≥ C.

We attempt to check whether Uniform Lopatinski condition fails at ζ = (λ, 0). Fix such

a ζ, then the Lopatinski determinant for this ζ is

| det(E−(−λĀ−1
2 ), ker Γres(p))|.

Since γ > 0, E−(−λĀ−1
2 ) = E+(λĀ−1

2 ).

Since Ā2 is invertible and γ > 0, E+(λĀ−1
2 ) = E+(Ā2).

By inspection, we see that (0, 1, 0, 0), (1/pρ, 1, 0,−1/pT ) and

(ρ, 0, c, p/(ρcv)) form a basis of E+(Ā2). We also note that (0, 0, 0, 1) /∈ E+(Ā2).

By continuity of the Lopatinski determinant,∃C > 0 and ∃δ > 0 such that for |η1| < δ,

| det(E−(H(p, ζ)), ker Γres(p))| ≥ C.

But H(p, ζ) being linear in ζ, we see that for any α > 0,
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| det(E−(H(p, αζ)), ker Γres(p))| ≥ C for the above C and ζ with |η1| < δ.

Thus the Lopatinski condition holds for some ζ. But we still don’t know if it does for all

the ζ required in the definition of the Lopatinski condition.

6.5. Supersonic, outflow

As we saw in the last section we already know that (i) of Proposition 23 holds in this

case as well. So in order to determine the transversality of a constant profile, we only

need to establish (ii).

In this case, outflow implies that v < 0 and supersonic implies that |v| >
√

ppT
ρ2cv

+ pρ.

This means that N+ = 0 = N1
+.

∴ N2
− = Nb −N+ = N

′
+N1

+ −N+ = 3 + 0− 0 = 3. Thus dim E−(G2) = 3.

Now since (1, 0, 0) ∈ E−(G2) we know that K2 must be of full rank on E−(G2). This

shows that constant profiles are transversal in this case.

In order to determine the uniform Evans condition for low frequencies we need to de-

termine maximum dissipativity which in turn would imply that the uniform Lopatinski

condition holds.

In this case we get that the tangent space to the C -manifold is 4 dimensional and hence

is R4. But maximal dissipativity holds just as it does for the subsonic outflow case. Thus

low frequency Evans condition holds in this case as well.

The proof for verification of Evans condition is similar to that in the subsonic case.
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6.6. Supersonic, inflow

As we saw in the last section we already know that (i) of Proposition 23 holds in this

case as well. So in order to determine the transversality of a constant profile, we only

need to establish (ii).

In this case, inflow implies that v > 0 and supersonic implies that |v| >
√

ppT
ρ2cv

+ pρ. This

means that N+ = 4 and that N1
+ = 1.

∴ N2
− = Nb − N+ = N

′
+ N1

+ − N+ = 3 + 1 − 4 = 0. Thus dim E−(G2) = 0. Thus

K2 is not of full rank on E−(G2). Thus transversality fails in this case and thus uniform

Evans condition does not hold.
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