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ABSTRACT 

 
John Phillips Lovette: Towards a Function-Based Restoration Prioritization System 

(Under the direction of Lawrence Band) 
 

 This thesis explores the creation and assessment of a novel catchment-scale stream 

restoration prioritization tool in North Carolina. This tool aims to shift restoration prioritization 

towards a function-based assessment of catchment condition, whereas many traditional 

prioritization tools rely on simple geospatial data overlays and expert opinion in weighting. 

While the tool does not provide specific project design or siting information, the data integrated 

in the baseline and uplift assessments are firmly grounded in vetted, widely distributed data 

based models. In using these data, the tools and methods presented here are not only applicable 

in North Carolina but also provide a framework for a function-based restoration prioritization 

tool at a much larger scale. The assessment of the tool in four diverse river basins across North 

Carolina provides both a proof of concept on the tool’s implementation and highlights how the 

state’s physical geography and interaction with human activities variably influences hydrologic, 

water quality, and aquatic habitat conditions.  
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CHAPTER I. 

LEVERAGING BIG DATA TOWARDS FUNCTIONALLY-BASED, CATCHMENT SCALE 
RESTORATION PRIORITIZATION 

 

Preface 

 The work presented in this chapter arose from a large collaborative contract and project 

for the North Carolina Department of Environmental Quality, Division of Mitigation Services 

(formerly Department of Natural Resources, Ecosystem Enhancement Program). Parts of the 

project design and work were carried out by groups from Division of Mitigation Services, UNC, 

Duke University, and North Carolina State University, and USGS. Brief portions of the water 

quality methods section were written collaboratively with Anne Hoos and Ana Garcia from the 

USGS. 

 

Abstract 

 The persistence of freshwater degradation has necessitated the growth of an expansive 

stream and wetland restoration industry, yet restoration prioritization at wide spatial extents is 

still limited and ad hoc restoration prevails. The River Basin Restoration Prioritization tool has 

been developed to incorporate vetted, distributed data based models into a catchment scale 

restoration prioritization framework. Catchment baseline condition and potential uplift relative to 

changes in sources are calculated for all National Hydrography Dataset stream reaches and 

catchments in North Carolina and compared to other catchments within the river subbasin to 
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assess where restoration efforts may best be focused. Baseline and potential uplift conditions 

account for catchment hydrologic, water quality, and aquatic habitat quality response. The 

modular nature of the tool leaves ample opportunity to continually incorporate new and more 

useful datasets to better represent the holistic health of a watershed, and the nature of the datasets 

used herein allow this framework to be applied at much broader scales than North Carolina. 

 

1.1. Introduction 

The current national summary of impaired waters lists over 42,000 affected water bodies, 

with causes of impairment ranging from pathogens and nutrients to elevated salinity, 

temperature, and turbidity (National Summary of Impaired Waters and TMDL Information  

2017). Nutrient loading, primarily from urban and agricultural sources, has led to algal blooms 

and eutrophication in freshwater and estuarine environments globally, subsequently reducing 

water quality not only for aquatic species but also affecting human water use, whether for 

recreation, consumption, or aesthetic purposes (Kemp et al. 2005; Boesch, Brinsfield, and 

Magnien 2001; Smith 2003). Additionally, the phrase “urban stream syndrome” has been coined 

to describe the systematic degradation of waterways draining developed, impervious areas 

through flashier storm flows, elevated concentrations of nutrients and contaminants, and a 

decrease in species richness and diversity (Walsh et al. 2005). These problems are not unique to 

any one region, but rather ubiquitous in a continually developing world with increasing demands 

on land and water for supply and production.   

In order to address these problems, a wide variety of stream and wetland restoration 

projects are implemented globally with the goal of restoring hydrologic, ecologic, and 

biogeochemical function to waterways. Unfortunately, studies of restoration projects have shown 
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that expenses often far exceed the viability of the project (Bernhardt et al. 2005) and that projects 

are often implemented on an ad hoc basis with little attention paid to drivers within the 

watershed or upslope area as a whole (Kershner 1997; Wohl et al. 2005). This lack of focus on 

watershed function can lead to misspent dollars and project placement that may not address 

water quality and quantity issues appropriately. In other cases, restoration projects are focused on 

restoring the form of a waterway assuming that functional uplift will follow, but fail to treat the 

root cause of the impairment (Doyle, Miller, and Harbor 1999). All of these points underline the 

need for a functionally-based, catchment scale restoration priority system that can be 

implemented over a broad spatial scale to assist managers in uniformly determining where 

dollars may be best spent with the most ecological benefit for the watershed as a whole. Through 

a move towards a comprehensive watershed screening tool, better information can be provided to 

then help managers improve higher resolution site selection and field-based analysis. 

Some work has emerged in the past three decades focused on single watershed 

characteristics or functions and where best to implement restoration projects. The combination of 

terrain indices (topographic wetness, slope, etc.) and land cover has long been used for defining 

areas for wetland or riparian restoration site selection (Russell, Hawkins, and O'Neill 1997; 

O'Neill et al. 1997; White and Fennessy 2005; Beechie et al. 2008). The incorporation of multi-

criteria decision analysis into site selection and suitability analysis has also gained popularity, 

especially internationally (Rohde et al. 2006; Chowdary et al. 2013). In the last decade 

particularly, the emergence of a true focus on the watershed approach to ecological restoration 

has helped to shift from a reliance on site or project scale planning to a more holistic view of the 

ecosystem condition (Bohn and Kershner 2002; Beechie et al. 2010). 
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Several governmental entities have also developed frameworks for selecting and 

prioritizing areas for restoration through compensatory mitigation programs (Association of State 

Wetland Managers 2017), many in response to new requirements set forth in a 2008 amendment 

to Section 404 of the Clean Water Act in which the EPA and US Army Corps updated wording 

around the management of wetlands, streams, and other aquatic resources. As the relative 

importance of each watershed function varies from basin to basin and state to state, the structure 

and implementation of each watershed management framework varies significantly. Minnesota 

recently implemented a system that focuses on the watershed approach to restoration 

management in the state’s 80 major watersheds (Minnesota Pollution Control Agency 2017). The 

system uses a set of environmental health criteria and a categorical scoring scheme to identify 

current problems and assets, while also placing an emphasis on monitoring and assessment, 

allowing for a more effective focus on the longevity of projects. The restoration prioritization 

system in place within North Carolina has some similar aspects to systems implemented by other 

states, including both a river basin level screening as well as local and regional watershed plans 

(NC Department of Environmental Quality, 2016). 

What remains to be fully and ubiquitously implemented in restoration planning is a 

coherent focus on why restoration projects are undertaken; that is, what watershed functions are 

responsible for degradation in the catchment and what functions will be improved by carrying 

out the designed project. A function-based framework for stream assessment and restoration 

relies on a hierarchy of interrelated physical, chemical, and biological processes that together 

define the condition of a catchment or watershed, including the stream’s hydrologic regime, 

sediment and nutrient contributions, and biodiversity (Harman et al. 2012). While previous 

attempts to establish metrics for restoration need or catchment health have been driven by 
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proxies for these functional categories, the extent of available data and models to assess and 

project changes in nutrient loads, hydrologic regimes, and ecological health make it possible to 

change the status-quo for restoration planning (Figure 1.1). Additionally, by moving beyond 

categorization of problems and assets in a watershed and providing trained managers with the 

raw data specifically related to each function, this framework begins to approach the long-

desired need for an underlying scientific understanding of catchment function in restoration 

planning (Wohl et al. 2005; Beechie et al. 2010). 

As the North Carolina regulations require agencies to “develop basinwide plans for 

wetlands and riparian area restoration with the goal of protecting and enhancing water quality, 

flood prevention, fisheries, wildlife habitat, and recreational opportunities” (North Carolina 

General Statute 143-214.10), a new prioritization system was built to systematically provide 

objective, ecosystem function-based assessment of catchment condition rather than relying solely 

on a GIS-based overlay and weighting analysis. Here we present the River Basin Restoration 

Prioritization (RBRP) tool which was developed in conjunction with the North Carolina 

Department of Environmental Quality (DEQ, formerly Department of Environment and Natural 

Resources). The RBRP was designed with four primary goals:  

1) Distribute scalable data from catchment to river basin scale, 

2) Make use of readily available, uniform, and vetted models, 

3) Minimize subjectivity and weighting by removing categorical weighting schemes, 

4) Apply uniform methodology across North Carolina with ability to expand to other 

geographies.  
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 Here we focus primarily on the datasets and methods of this tool and present a set of 

representative results to demonstrate the use as a screening tool for catchment condition and 

restoration prioritization planning. 

 

1.2. Datasets 

One of the overarching goals of this methodology is to make use of readily available, 

vetted models and datasets. Although distributed, physically-based, or bottom-up, models can 

provide a small-scale representation of driving processes in a watershed, lumped conceptual and 

statistically based top-down models provide useful estimates of first-order relationships in 

catchment condition (Sivapalan et al. 2003). Each of the datasets and models used here are 

available across North Carolina and as statistical, top-down models can be easily implemented 

across gauged and ungauged catchments. While bottom-up models may be more appropriate for 

site-selection, these top-down models offer sufficient coverage and substantially decreased 

processing time that is key for assessing large volumes of data at a regional scale. The spatial 

resolution of all input data is equivalent to or finer than the catchment geometry, and can be 

aggregated to coarser resolutions as needed for scalable analysis. While much of the data refers 

to in-stream variables, we present input and output data at the catchment scale for visualization 

and interpretive purposes. All input data sources are presented in Table 1.1. 

 

1.2.1 Catchment Geometry and Study Area 

At the finest spatial resolution, the National Hydrography Dataset Plus, version 2 

(NHD+v2) is used to maintain a uniform catchment geometry (www.horizon-

systems.com/nhdplus). These flowlines and their associated catchments are delineated from 
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1:100,000 blue lines of the National Hydrography Dataset and the 1-arc second National 

Elevation Dataset. The NHD+v2 flowlines and catchments have a 1:1 association via a common 

ID, allowing data to be represented at either level. The NHD+v2 is also distributed with 

numerous associated datasets that provide information regarding local catchment attributes, 

upslope accumulated attributes, and in-stream data (flow, temperature, etc.) (Moore and Dewald 

2016). The NHD+v2 is nested within the Watershed Boundary Dataset (WBD) which allows for 

spatial aggregation to the multi-level Hydrologic Units (https://nhd.usgs.gov/wbd.html). For the 

purpose of this tool, we make use of the terminology from both the NHD+v2 and the WBD – 

catchments refer to the local drainage area for each NHD+v2 stream reach and not the entire 

upslope area; and the Hydrologic Unit Code (HUC) naming conventions are used to refer to river 

basins (HUC 6), subbasins (HUC 8), and subwatersheds (HUC 12). 

In the context of the NHD+v2 and the WBD, North Carolina encompasses approximately 

70,000 catchments, 1,775 subwatersheds, 57 subbasins, and 14 river basins (Figure 1.2). These 

catchments span four Level III EPA Ecoregions within the state with varying drainage and land 

cover characteristics, ranging from well-drained coastal plains to the Appalachian Mountains. 

Elevations range from sea level to greater than 2,000 meters in the western portion of the state. 

The data presented here focuses on the Tar-Pamlico River basin (HUC 6: 030201). This region 

falls in the central and eastern portions of the state, north of the Research Triangle, and spans 

parts of the Piedmont and Coastal Plain ecoregions. 

 

1.2.2 Water Quality 

The approach for prioritizing watersheds for restoration potential with respect to nutrient 

water quality was based on estimates of current nutrient conditions (annual load of nitrogen and 
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phosphorus) in each NHD+ catchment. Most watersheds lack the water quality monitoring data 

required to estimate loads, therefore estimates for unmonitored watersheds must be extrapolated.  

The estimates of stream nitrogen and phosphorus load produced from the SPARROW nutrient 

models for the southeast region (Hoos et al. 2013) are well suited for analysis of restoration 

potential. Mean annual load to stream from catchment for the period 1995-2004, centered to 

2002, is estimated for each of 392,000 catchments in a 1:100,000 network of streams. The model 

estimate for each NHDPlus catchment is computed from a statistically derived equation that 

relates observed nutrient load in streams (from a set of about 300 monitored watersheds) with 

upstream factors such as fertilizer inputs, area of developed land, permitted wastewater 

discharges, soil erodibility and thickness, and precipitation. The equation accounts for 

differential rates among watersheds and streams of terrestrial and stream transport of nutrients. 

Using a single statistical equation to estimate loads for all watersheds in North Carolina provides 

a consistent set of estimates with quantified limits of confidence. 

The following description of the SPARROW model regression equation is taken from 

Schwarz et al. (2006), Eq. 1.27, modified by Hoos and McMahon (2009). The load originating 

within the catchment for reach i (Lcatchmenti) is determined by: 

𝐿𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡) = 𝑆,,)𝛼,𝐷, 𝑍)1; 𝜃1 𝐴 𝑍)5, 𝑍)6; 𝜃5, 𝜃6
78
)9: , 

where 

n, Ns = source index where Ns is the total number of individual sources; 

nS = vector of source variables (for example, a measurement of mass placed in the 

watershed, or the area of a particular land cover); and  

na  = vector of coefficients, estimated by the model, in units that convert source 

variable units to flux units. For land-applied sources, na  is the model estimate of the average 
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(across all catchments in the model area) fraction of nutrient input that completes the overland 

and subsurface phase of transport (i.e. terrestrial transport) to the stream channel. 

( )×nD  = the delivery variation factor, defining the variation among catchments in nutrient 

landscape attenuation processes. The delivery variation factor is modeled as a series of 

exponential functions of physical landscape characteristics that influence nitrogen attenuation. 

The factor for catchment i is multiplied by na  to calculate the fraction of input from source n 

that completes terrestrial transport to the edge of the stream channel in catchment i. 

DZ = vector of physical landscape variables (for example measured landform or soil 

characteristics); and  

Dq = vector of coefficients, estimated by the model, for the physical landscape 

variables. 

( )×A  = the stream delivery function, representing the result of attenuation processes 

acting on load as it travels along the stream channel. Modeled as first-order decay, the stream 

delivery function defines the fraction of load originating in and delivered to reach i that is 

transported to the reach’s downstream node.  

 SZ  and RZ = vectors of measured stream and reservoir variables, respectively (examples 

include stream-water depth or velocity and reservoir areal hydraulic loading); and 

Sq  and Rq  = vectors of coefficients, estimated by the model, for the stream and reservoir 

variables, respectively. The in stream nutrient load is then determined by adding nutrients 

originating in the catchment to those originating upstream from the particular reach, with the 

upstream nutrient source attenuated based on an aqueous-phase delivery ratio. For a more in 

depth discussion of the model equations, see Hoos et al. (2013), Appendix 2. 
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Conceptually the load or mass of nutrient transported in a stream varies continuously 

along the segment of stream within a catchment, as mass is added from terrestrial transport 

pathways distributed throughout the catchment and as mass is assimilated or stored within the 

channel. The SPARROW model equation parameterizes rates of terrestrial and stream transport 

and therefore the model tracks mass at the interface between catchment and stream segment 

(‘edge of channel’ interface) and through the segment of stream channel to the downstream node 

of the catchment. More commonly (and by default settings) the model estimate of catchment 

load (incremental or accumulated) is the simulated load at the downstream node of the 

catchment.  For application to restoration potential analysis – where evaluation of watershed 

condition (sources and terrestrial transport) independent of channel processing is desired – model 

simulations instead report load at the edge of the channel interface.  The set of load estimates 

produced with this alternate setting is referred to in this paper as SPECL, or Shift Prediction to 

Edge-of Channel-Load. When nutrient mass flux is referred to henceforth, it is meant to 

represent this land to water delivery and not necessarily the flux at the outlet of each catchment. 

It must be noted that the southeastern US SPARROW model does not cover the entirety 

of North Carolina. Because the focus of the model was on waterways draining areas east of, and 

not including the Mississippi River, the New River Basin (HUC6: 050500), which drains to the 

Ohio River and then to the Mississippi, is excluded from the Eastern US model dataset. This 

excludes 834 catchments covering almost 2,000 km2, only slightly more than 1% of the state. 

Because of this, the RBRP utilized a coarser resolution SPARROW run for this basin and scaled 

the data to match that of the updated model elsewhere. 
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1.2.3 Hydrology 

To assess the condition of the hydrologic flow regime in a succinct manner at the 

catchment scale, the RBRP framework calculates instantaneous peak flows at four return 

intervals. The USGS StreamStats tools provide a set of equations describing the relationships 

between landscape characteristics and these peak flows across space, calibrated with streamflow 

data from gaged basins. Feaster, Gotvald, and Weaver (2014) developed an updated set of 

regression equations to estimate return period specific flows from upstream watershed 

characteristics for North and South Carolina which we have adapted and supplemented with 

additional equations (Mason Jr et al. 2002) to fully represent the hydrologic regime of North 

Carolina. In order to differentiate hydrologic responses between geographic areas, separate 

equation sets were developed for each distinct hydrologic region. These regions vary only 

slightly from the traditional EPA Level III Ecoregions, with some ecoregions being aggregated 

(Mid Atlantic Coastal Plain and Southeastern Plains) and some Level IV regions included into 

the dataset as separate areas (Sand Hills). For each catchment, these equations are used to 

calculate instantaneous peak flows at 2-, 10-, 50-, and 100-year recurrence intervals, allowing the 

user to assess the response of a catchment and the upslope drainage area to a variety of storm 

magnitudes. 

In most areas, impervious surface and drainage area are the only variables included in the 

peak flow regression equations. In the Sand Hills hydrologic region, developed area was found to 

be a more descriptive predictor of peak flow than impervious surface, and in the Coastal Plain, 

the addition of a rainfall intensity metric improved the predictions of the regressions. 
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1.2.4 Habitat Quality 

The US Fish and Wildlife Service recently developed a wide-ranging dataset of aquatic 

indicator species and their probabilistic distributions for the state of North Carolina (Endries 

2011). These species occurrence points come from six different sources within the state and have 

been restructured to match the spatial resolution of the NHD+v2 stream reach and catchment 

dataset; that is to say that any catchment in which a species was sampled in any of the six 

datasets will be marked as a species presence location. While an indicator species dataset of this 

detail is somewhat unique to North Carolina, similar datasets are not uncommon, and national 

programs like EnviroAtlas (https://www.epa.gov/enviroatlas) are currently providing data layers 

representing the number of at-risk aquatic animal or plant species for CONUS. 

Stream, catchment, and watershed-scale characteristic data is used in conjunction with 

the species occurrence data to develop the prediction of aquatic habitat quality. These data come 

in large part from the information served through the NHD+v2 supplemental information. In 

addition, the RBRP collects data regarding stream temperature, dams, and agricultural 

production from state level data sources to supplement the information on catchment condition. 

 

1.2.5 Additional Input Data 

In addition to the wealth of data related to land use associated with the NHD+ dataset, the habitat 

uplift model for developed area growth and avoided development makes use of the SLEUTH 

urban growth model to predict urban extents through 2060 (Clarke and Gaydos 1998; Terando et 

al. 2014). This model, and its specific implementation for the Southeast US, uses past patterns of 

urban growth and to predict expansion and creation of newly developed areas. Model output is 

summarized at the NHD+v2 catchment scale to mimic already associated land use data. 
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1.3. Model Description and Methodology 

The primary goal of the RBRP workflow is to develop a uniform characterization of the 

baseline condition for each catchment within the dataset. In order to assess this condition, each 

subsection of the tool (water quality, hydrology, and habitat quality) is run with the previously 

described datasets. Because the equation sets and data sources for the water quality and 

hydrology sections of the model are static and do not require re-runs for new model 

implementations (i.e. as long as input data remains the same, the same result will be obtained 

from the models), these baseline values can be calculated for the entire region (North Carolina in 

this case) or data extent from the outset. Each individual model implementation, however, is 

meant to be implemented at the HUC 6 scale or finer resolution to match the basin-scale of 

previous DEQ management tools. Because the spatial distribution and habitat range of indicator 

species used in the habitat quality subsection is not uniform across space and the importance of 

each indicator species to local habitat quality varies from region to region, this portion of the 

model is intended to focus on the extent of the river basin or finer. 

In addition to the baseline characterization of each catchment, a simple potential uplift 

analysis is performed for each function in each catchment by altering the input data and 

comparing this new model output to the baseline condition (Figure 1.1). This uplift analysis 

allows the user to assess the sensitivity of each catchment to changes in each model element. The 

uplift portion of the model relies on the baseline data and manageable model elements in each 

submodel. The ability to carry out this analysis with the chosen models in order to efficiently 

assess the potential impact of management was key to the selection of models and datasets. 

Because good working knowledge of the study catchments, current conditions, and manageable 
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landscape elements is required, implementation of these models is meant to be carried out by a 

trained geospatial analyst and natural resources manager. 

 

1.3.1 Water Quality 

The tabular SPARROW output for each catchment in the study area is joined directly to 

the NHD+v2 catchments. Each catchment then has nitrogen and phosphorus baseline data for a 

variety of sources, and for both the loading on the catchment as well as the portion that is 

delivered from the land to water phase. The SPECL data is used as the primary representation of 

catchment level water quality information. The SPARROW model allows users to view nitrogen 

and phosphorus data by source and the RBRP workflow retains this source specific data to better 

inform management decisions. However, in an effort to make output data more concise, multiple 

agricultural sources are aggregated into a single agricultural loading value. For the nitrogen 

model, this includes fertilizer from rotation crops, fertilizer from other crops, and nitrogen from 

manure. For the phosphorus model, this aggregate value includes phosphorus from cultivated 

crops and phosphorus from pasture/hay. Non-manageable sources of each nutrients (e.g. bedrock 

sources of phosphorus) are dropped from the model to simplify analysis as well. Therefore, 

baseline water quality condition is calculated from agricultural, urban, and depositional sources 

of nitrogen and agricultural and urban sources of phosphorus. 

Water quality uplift is calculated by reducing source values by a user-defined percentage 

and recalculating SPECL loads with the previously determined SPARROW model coefficients. 

The reduction in SPECL load relative to baseline condition is then used as the potential uplift. 

While mathematically the reduction in source is equivalent to an increase in terrestrial phase 

attenuation, the model coefficients do not necessarily support considering this uplift as a change 
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in landscape variables other than source reduction. The results of this potential uplift analysis can 

therefore be interpreted as either, allowing managers to release priorities that maintain the 

practitioner’s ability to specify which methods will be used to control or reduce water quality 

issues. 

 

1.3.2 Hydrology 

The peak flow regression equations rely on a finite set of variables, making it relatively 

simple to calculate the flows across multiple return intervals for each catchment (Table 1.2). As 

many catchments have portions of their upslope drainage area in multiple hydroregions, an area-

weighted mean of the values for each individual hydroregion is used. Accounting for this, the 2-, 

10-, 50-, and 100-year instantaneous peak flows are computed for every catchment. Peak flows, 

when normalized to a depth per unit time or volume per unit area, are typically highest for small 

catchments and are reduced as drainage area increase. Because the focus is on instantaneous 

peak flows, the targeted areas are often shifted to the headwaters where management practices 

can be implemented to reduce runoff and impact these flows. Flood mitigation along trunk 

streams is not considered to the same degree here but could be included in future versions by 

considering floodplain extents or levee implementation. 

In order to calculate a potential uplift metric for the hydrologic condition of each 

catchment, the RBRP addresses the only manageable model element in the peak flow regression 

equations – percent impervious surface (or developed area for the Sand Hills hydrologic region). 

The tool allows the user to specify a percent reduction in the impervious surface and then 

calculates the subsequent percent reduction in peak flow for each return interval. This 

mathematical reduction in impervious surface does not necessarily equate to a physical removal 
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of these areas but could represent an alteration to the landscape which reduces effective 

impervious surface (e.g. green infrastructure, increased buffer, or run-on infiltration). 

 

1.3.3 Habitat Quality 

The habitat function utilizes the Maximum Entropy (Maxent) modeling framework to 

build species distribution models for key aquatic quality indicator species. Generally, Maxent 

uses incomplete information on species distribution to predict a probability distribution of 

maximum entropy (Phillips, Anderson, and Schapire 2006). Maxent offers many advantages in 

that it requires only presence data along with environmental information for the study area, it can 

utilize both continuous and categorical variables, and the solutions have concise mathematical 

definitions which are simpler to analyze. 

For each model implementation within a HUC 6, the RBRP user selects a set of key 

aquatic quality indicator species and calculates species distribution likelihood models for each 

based on the habitat condition in the catchments in which the species has been noted as present. 

These individual models are then averaged to represent the aggregate habitat condition in that 

catchment. It is important for the viability and parsimony of the habitat quality model that an 

appropriate subset of species be chosen to accurately represent the catchments in the study area. 

Therefore, the user should be familiar with their study area and the key aquatic indicator species 

therein. 

As the Maxent-derived habitat quality metrics are influenced by a wealth of catchment 

characteristic data, the habitat quality submodel has substantially more manageable input 

parameters that can be altered as part of the potential uplift model. Ten habitat quality uplift 

scenarios are separated into four categories: aquatic connectivity, avoided 
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urbanization/conversion, wetland restoration, and stream restoration. Each of these scenarios 

alters a set of catchment parameters by some user-defined amount and proceeds to recompute the 

habitat suitability models for each species in the study area analysis. For example, upstream and 

downstream distances to dams are calculated to determine a metric of aquatic habitat 

connectivity. In order to calculate potential uplift in each of these scenarios, the distance to dams 

is increased by a uniform scalar, and the Maxent distribution models are rerun to determine the 

effect this change in aquatic connectivity has on species distribution. This change from the 

baseline species distribution is then considered to be a simple metric of potential habitat quality 

uplift under the aquatic connectivity aggregate scenario. 

 

1.3.4 Data Aggregation and Visualization 

With the goal of avoiding an over-use of subjective weightings in the aggregation and 

interpretation of model output, raw data for each of the three RBRP submodels is presented for 

each catchment across the study area. When combining individual output variables (e.g. each 

return interval for instantaneous peak flows) to create a single submodel score (e.g. hydrology), 

the influence of each output is, by default, considered equally and a simple arithmetic mean is 

calculated. However, some variety of data normalization and scoring is required to compare 

across basins and model implementations. In order to do this, the RBRP implements a max-min 

normalization of data from each submodel output relative to other catchments in the same 

subbasin (HUC 8); that is, each catchment within a subbasin is attributed with a 0.0 – 1.0 score 

for each water quality, hydrology, and habitat quality metric based on the maximum and 

minimum values for the same variable of the other catchments in that basin.  

𝑧),< =
𝑥),< − 𝑚𝑖𝑛@ABC(𝑥<)

𝑚𝑎𝑥@ABC 𝑥< − 𝑚𝑖𝑛@ABC(𝑥<)
 



 18 

where zi,j represents the maximum-minimum normalized score for catchment i and measurement 

j, and xj represents the raw score for measurement j within the 8-digit HUC of interest. The 8-

digit HUC was chosen as it is considered the management unit by NC DEQ. The metrics within 

each submodel are then aggregated through the following equations: 

𝐻𝑦𝑑𝑟𝑜𝑙𝑜𝑔𝑦) =
1
𝑛 (𝑧),<)

,

<9:
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𝐻𝑎𝑏𝑖𝑡𝑎𝑡) =
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where zi represents the maximum-minimum normalized score for catchment i, and j represents 

each individual measurement (e.g. 2-year peak flow, nitrogen from agricultural sources, or 

tessellated darter presence likelihood). In following this data normalization and aggregation, 

each catchment score is relativized to that of more than 1,000 spatially contiguous catchments, 

helping to elucidate spatial patterns in the data within each basin and to help improve 

visualization of data. This normalization also helps the comparison between basins and subbasins 

as the raw values may vary significantly due to changes in the basin conditions, but the relative 

impact of locally, relatively high nutrient loads can be equally impactful. We acknowledge that 

the normalization and aggregation scheme that we employ has an implicit (even) weighting, but 

in doing so we aim to present the function-derived data in as objective a method as possible. The 

tools do allow the user to alter weights as they see fit. 
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1.4. Results and Illustration of RBRP Use 

The RBRP provides both raw and relativized scores for each catchment in the study area. 

Here we present these data for the catchments of the Tar-Pamlico River basin in eastern North 

Carolina. (HUC6: 030201) and a small subsection near Tarboro, NC, at the confluence of the Tar 

River and Fishing Creek (Figure 1.3, Figure 1.4). The aggregation and normalization of the 

baseline and uplift scores is done at the HUC8 level, meaning that each catchment in a HUC8 is 

relativized based on the range of values in that HUC8; there will be a single minimum and a 

single maximum value catchment in each river subbasin. We focus here only on the baseline 

catchment condition data. 

 

1.4.1 Single Variable Output from Submodels 

1.4.1.1 Baseline Catchment Condition 

For the hydrology submodel, we present data for the two-year return interval 

instantaneous peak flow and the aggregate score for all four return intervals (Figure 1.3A). The 

single variable output exhibits a noticeable monotonic decrease in instantaneous peak flow 

(mm/day) with increasing drainage area. As increasing drainage area allows for the attenuation 

of the impact of large storm events and peak flood flows, the impact of storms on the two-year 

peak flow (and large flood flows) is largely concentrated in the headwaters. In the region 

surrounding Tarboro and the river confluence, the main flowlines of the Tar River and Fishing 

Creek have relatively low peak flows, but small headwater catchments exhibit the potential to 

create much flashier flows relative to their area. This is especially true for some of the 

catchments that are both highly urbanized and fall just downslope of the basin divides. As the 

flow recurrence interval increases, the influence of drainage area increases relative to that of 
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impervious surface or developed area. Along with the patterns of drainage area and land use, 

there is a sharp transition in flow response at the boundary of the Coastal Plain and Piedmont 

hydrologic regions. 

The SPARROW model output provides numerous raw data points for nitrogen and 

phosphorus loads, one for each nutrient source group in the catchment. The spatial patterns seen 

in the Tar-Pamlico basin for rotation crop fertilizer-sourced nitrogen are driven largely by the 

patterns of agricultural land use in the area (Figure 1.3C). Moving from the less cultivated 

Piedmont to the Coastal Plain, delivered nitrogen loads increase substantially. In the outermost 

coastal plain, when very low slopes and expansive wetland areas begin to dominate the 

landscape, delivered nitrogen loads from rotation crops again reach a minimum. In the area 

around Tarboro, delivered rotation crop nitrogen loads are especially high in catchments where 

the agricultural land is in close proximity to the flow lines. For the additional nitrogen sources 

and those sources of phosphorus, the patterns exhibited by land use on both accumulation and 

removal of nutrients hold in a similar fashion to the rotation crop derived nitrogen. 

The distribution of a single aquatic indicator species, here the tessellated darter, provides 

only a small view into the overall condition of a catchment (Figure 1.3E). As the habitat quality 

metrics and species distribution models for each of the selected aquatic indicator species vary 

greatly depending on the location of species presence points, the use of a suite of species rather 

than a single indicator is important for calculating a more holistic and representative metric of 

catchment habitat condition. However, patterns such as the influence of higher flows and lower 

levels of development or agriculture on increased species presence likelihood begin to stand out 

at small spatial scales. Each species responds uniquely to environmental drivers and has different 

spatial ranges, therefore it is key for the user to understand how best to represent aggregate 
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habitat suitability over a study area with the use of representative aquatic habitat quality indicator 

species. 

 

1.4.1.2 Potential Uplift 

Potential uplift within the hydrology submodel is driven entirely by a reduction in 

impervious surface. Again, while mathematically this reduction represents a removal of 

impervious surfaces, the same or similar responses could be obtained by reducing effective 

impervious areas, which has been shown to be a better predictor of stream conditions than total 

imperviousness (Walsh, Fletcher, and Ladson 2009). The most effective reductions in 2 year 

peak flows tend to occur in those areas that have small drainage areas and high levels of 

impervious surface (Figure 1.4A). The sharp transition between the Coastal Plain and Piedmont 

regions is not apparent in this case as the metric for potential uplift is based on a change from 

previous peak flow volumes.  

Response to reductions in nitrogen loads from fertilized rotation crops is relatively low 

across the Tar-Pamlico basin though small hotspots of changes in delivered loads are found in 

the upslope portions of the Upper Tar subbasin and in the Outer Coastal Plain (Figure 1.4C). 

Much of the upstream area of the basin, northeast of the Coastal Plain-Piedmont boundary, 

exhibits a stronger response to changes in nutrient sources. With any of the individual sources of 

nitrogen or phosphorus, the spatial distribution is not homogenous. Therefore, the potential uplift 

response for each nutrient source is contingent on the existence of those sources. 

Each species responds uniquely to changes in the catchment condition, as predicted 

through the Maxent model. The presence likelihood model for the bluehead chub shows 

relatively uniform increases in habitat suitability with an increase in streamside buffer forests 
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(Figure 1.4E). Because the model is probability based, the response of species presence 

likelihood is not constrained to only increases or decreases but can range from total elimination 

to doubling or tripling of likelihood in a given catchment. This is seen in part of the area around 

Tarboro, where many catchments show increases in bluehead chub presence likelihood but 

others show no change or even a decreasing likelihood. 

 

1.4.2 Submodel Aggregation 

1.4.2.1 Function Specific Visualization 

As each of the individual model elements are aggregated to a submodel baseline score, 

the individual influence of each element decreases. The calculation and normalization of baseline 

scores also accounts for the distribution of values within a single HUC 8. Therefore, while the 

raw values may be uniformly higher in one subbasin than in another, each subbasin will still 

have values ranging from 0-1. 

The hydrology model baseline score exhibits many of the same patterns as those in the 

two year recurrence interval (Figure 1.3B). Trunk streams with large drainage areas show 

relatively little impact from large flow events. Small headwater catchments remain as the key 

areas to target in order to mitigate high peak flood flows over all recurrence intervals. Within 

each HUC8, catchments of the lowest priority are uniformly found along the main stems of the 

Tar River and Fishing Creek while the high priority catchments follow drainage area and land 

use patterns. 

When considering the aggregate baseline score for the water quality model, the priority 

catchments vary between subbasin based on the land use makeup of the subbasin as a whole 

(Figure 1.3D). The agricultural areas that dominate in the southeastern portions of the river basin 
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are identified as key areas of focus for reducing the delivery of nitrogen and phosphorus to 

waterways. In the upstream subbasins, especially in the Upper Tar (HUC 8: 03020101) which 

encompasses Rocky Mount and much of Tarboro, urban sources of nutrients are also found to be 

key drivers of the overall water quality condition of the subbasin. 

Habitat quality metrics for individual species are calculated as habitat suitability metrics, 

scaling from poor quality to good quality. As the other submodels scale from good quality to 

poor quality in a single catchment, the aggregation of multiple species suitability models is 

inverted to return a metric of habitat quality that also scales from good to bad quality, or low 

priority to high priority for restoration. The suite of species modeled for the Tar-Pamlico basin 

show negative response to the limited urban areas within the basin (especially in the Upper Tar 

subbasin) and some response to conditions along the estuary mouth of the Tar River (Figure 

1.3F). 

 

1.4.2.2 Aggregation of Function-Specific Potential Uplift Metrics 

As with the baseline submodel aggregation, the aggregated potential uplift metrics help 

elucidate spatial patterns across the model elements within each subbasin. Where high values of 

potential uplift are uniform across individual model elements, catchments exhibit a high priority 

for restoration planning. 

Aggregate potential uplift scores for both the hydrology and water quality models are 

concentrated around problem sources for each. Many of the high priority hydrology uplift areas 

are in catchments with comparatively high levels of impervious surface (Figure 1.4B). In the less 

agricultural upstream subbasins, the aggregate uplift scores for the water quality submodel are 

focused near urban nutrient sources. In the Coastal Plain, although raw values for source 
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reduction may be uniformly higher than in adjacent subbasins, the high priority areas are more 

localized (Figure 1.4D). 

The aquatic connectivity, wetland restoration, and stream restoration habitat quality uplift 

scenarios all scale from little influence of catchment alteration to high impact, and therefore 

yield uplift scores that scale from low priority to high priority. The avoided conversion scenario 

is based on the response of species within a catchment that experiences development. Because of 

this, the avoided conversion scenario inverts the response of species to the development 

(typically reduced presence likelihood with increased urbanization) to highlight catchments in 

which development should be avoided in order to preserve aquatic habitat quality. In the Tar-

Pamlico basin, the stream restoration suite of uplift scenarios exhibits high priority areas for all 

species in small headwater catchments within the upstream subbasins and relatively high priority 

across all catchments in the outer Coastal Plain (Figure 1.4F). 

 

1.4.2.3 Integrated Function Visualization 

In addition to presenting single catchment quality scores for each submodel, simultaneous 

visualization of all three submodel scores is beneficial to identifying key locations for further 

study or prioritization. By converting the single score output of each of the three submodels to a 

band of an RGB raster (e.g. hydrology score to the blue band, water quality score to the green 

band, and habitat score to the red band), a single visualization of RBRP output can be generated 

(Figure 1.5). Catchments that are visualized in this method can also be filtered based on their 

final score in order to only view and analyze catchments with high priority conditions in any or 

all of the submodels. When viewing catchments that rank in the top 10% for any single submodel 

or the top 30% across all three submodels, groups of priority catchments stand out across the 
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study area. This 10%/30% data filter does not necessarily represent a functional split in the data, 

but provides users with a framework to visualize a subset of data representing likely problem 

areas. These values can be changed to visualize more or fewer catchments for potential further 

action. The region surrounding Rocky Mount stands out for its detrimental impacts on both water 

quality and habitat quality, while the upper portions of the Fishing Creek subbasin exhibit poor 

quality scores for both hydrology and habitat quality. By analyzing the normalized and 

aggregated data from all submodels in this manner, unique color combinations emerge that 

indicate the influence of different watershed functions on the condition of the catchment, and 

watershed planners can work towards targeting spatially contiguous areas where restoration 

efforts may have the most impact. 

 

1.5. Discussion 

The RBRP tool provides objective ecosystem function-based assessment of catchment 

condition. Models such as the one presented here provide function specific and function 

integrated information as a screening tool but should not be used for reach scale project 

implementation. Selection of project type and placement is left to the planners and practitioners, 

but the information provided from this analysis is key to directing these decisions. Restoration 

efforts such as riparian rehabilitation, dam removal, and natural flood regime restoration have 

shown promising results in addressing aspects of all three functions analyzed as part of the 

RBRP, especially for habitat and ecological restoration (Roni, Hanson, and Beechie 2008), 

although certain types of in-stream restoration still remain controversial in terms of their effects 

on nutrient management and hydrology and efforts may be better focused on source-localized 

efforts. By shifting the planning and prioritization focus towards a functionally-based approach, 
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improvements can be made that can improve the success and provide more specific metrics of 

outcomes of the individual projects. 

In carrying both raw data and aggregated and normalized scores through the prioritization 

process, the RBRP provides users with a simple visualization tool which represents an 

aggregation of big data while also directly tying the outcomes to vetted models with strong 

ecological backing. The normalized scores utilized to calculate final catchment condition scores 

are presented with minimal subjective weighting in an effort to focus on the impact of individual 

model elements and not that of the element weights themselves. 

 

1.5.1 RBRP and Previous Prioritization Systems 

Within the previous RBRP setup, targeted local watersheds (TLWs), or spatially 

contiguous groups of catchments in which restoration assessment and planning has taken place, 

were shown to have a 275% greater rate of project establishment than non-targeted watersheds 

(Woodruff and BenDor 2015).  In improving the basis on which TLWs are selected, the new 

RBRP not only benefits stake holders and project managers by utilizing and presenting 

systematic and interpretable data, it also improves the creation, impact, and viability of projects 

that are implemented in these areas. When the most recent Tar-Pamlico River Basin Watershed 

Plan was released in 2010, NC DEQ identified 61 hydrologic units (HUC 14) as TLWs 

(Breeding 2010). The primary restoration and protection goals for the river basin focused 

primarily on nutrient management. When comparing the output of the two RBRP workflows, 

many of the same regions in the Tar-Pamlico basin are highlighted as priority restoration areas 

(Figure 1.6). While there are many catchments highlighted by the new RBRP methodology that 

are not identified as parts of TLWs in the 2010 report, it is key to recall the differences between 
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the tools. First, as the focus of the basin’s previous TLW delineation was water quality condition, 

many of the catchments outside of the TLW boundaries are those highlighted for their hydrologic 

and habitat quality condition. Additionally, the former RBRP workflow allowed planners to add 

or remove watersheds from the TLW list based on a variety of factors, including local input. 

Those catchments identified as priorities for restoration in the new workflow are highlighted 

specifically because of the underlying data supporting the catchment condition. 

 

1.5.2 Data Updates and Model Extensibility 

Due to the modular nature of the RBRP, adding new model elements or updating 

previously existing submodels is relatively simple. As each submodel functions individually, 

adding a new dataset would only require constructing a new submodel and implementing the 

preexisting data aggregation tools. The continued growth of large data models related to 

environmental quality and catchment condition can only improve this type of tool. Nationwide, 

datasets such as the Enviroatlas, “Surf Your Watershed”, and StreamCat are continuing to 

compile substantial data sources into forms that can be easily leveraged towards an analysis of 

catchment condition. At the state level, many states have collected or are collecting data that 

could be hugely beneficial to the analysis of holistic catchment health. For example, as part of 

the state’s floodplain mapping program, North Carolina has collected cross-sectional profiles and 

floodplain information for all FEMA stream reaches across the state, providing information 

regarding channel geometry and geomorphology (North Carolina Floodplain Mapping Program). 

As is the case with many of these types of datasets, data collection and reporting protocols often 

make the data somewhat difficult to manipulate into a readily useful form. However, with a 

renewed focus on utilizing datasets of this nature for novel purposes in restoration planning, 
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planners and policymakers can work to update this work in a way that can additionally benefit 

restoration prioritization tools. 

We are now working in a landscape in which increasingly finer resolution data over 

greater spatial scales is becoming available and can be incorporated into this type of framework. 

Because of this, many opportunities exist to supplement or improve those data sources already 

used in the RBRP. The water quality and hydrology models are both predicated on models 

developed for the eastern or southeastern United States. Both of these models, with appropriate 

expertise and data availability, could be redeveloped with data focused solely in North Carolina 

or within the immediate drainage area. This would allow for improved predictions of peak flows 

and nutrient loading specific to the state. The habitat model could be supplemented in a variety 

of ways, either by adding and refining key aquatic indicator species or by improving the 

catchment condition datasets that are used to build the Maxent species distribution models. A 

primary need to improve aquatic suitability assessment is in stream information, characterizing 

bed material and channel morphology.  Current efforts to develop bed material estimates at the 

NHD+ reach scale by the USGS and others are underway and could be easily incorporated into 

this analysis (Gomez-Velez and Harvey 2014; Wang et al. 2013). 

 

1.6. Concluding Remarks 

Here we’ve presented a novel, function-based workflow for characterizing and 

identifying catchments for restoration through the use of large spatial scale, vetted, and widely 

distributed data models in an effort to move closer to a fully-functionally based restoration 

scheme. While the application in this case is for the state of North Carolina, the methodology and 

data sets are easily applicable to other states or regions and could be considered as a 
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generalizable and extensible process by which state or regional planners can assess a large 

volume of data in order to better inform restoration models. In addition to the function-based 

framework, this methodology leaves managers with the ability to supplement data with 

previously developed information on watershed assets, opportunities, or problems as well as any 

related stakeholder information. While this work does not directly support site selection and 

project design decisions for restoration, better defining the underlying data that informs these 

processes is key to improving their viability and longevity by targeting larger watershed areas 

requiring attention. In presenting this work, we hope to continue the process of reshaping how 

the ecosystem management and restoration community considers the holistic health of a 

watershed in project prioritization, planning, and implementation. 
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Table 1.1 – Input data sources for catchment baseline characterization 

Input data sources for RBRP baseline characterization workflow. 
 
Function/Usage	 Data	 Source	

Catchments	 1:100,000	scale	NHD+v2	Catchments	 USGS	&	Horizon	Systems	
Corp.	

	
 Water	Quality	 Nitrogen	 Atmospheric	Deposition	

USGS	Eastern	US	SPARROW	

	  
Agricultural	

  
Urban	

   
 

Phosphorus	 Agricultural	

  
Urban	

   Hydrology	 Impervious	Surface	 NLCD	2011	

	
24-hour,	50-year	Maximum	Precipitation	 NOAA	Atlas	14,	Volume	2	

	  
 

Habitat	Quality	 Indicator	Species	Presences	 USFWS	
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Table 1.2 – Regional instantaneous peak flow equations for 2-, 10-, 50-, and 100-year 
recurrence intervals  

Hydrology submodel regional instantaneous peak flow equations for 2-, 10-, 50-, and 100-year 
recurrence intervals. DA: drainage area, ImpArea: percent upslope impervious, DevArea: percent 
upslope developed (NLCD class 21-24). Equation set developed from Feaster, Gotvald, and 
Weaver (2014) and Mason Jr et al. (2002). 
 

Flood	
Recurrence	
Interval	

Hydrologic	Region	

1	-	Piedmont/Valley	and	Ridge	 2	-	Blue	Ridge	

0.1	sq.mi.	≤	DA	≤	3	sq.mi.		 3	sq.mi.	≤	DA	≤	436	sq.mi.	 ImpArea	≤	10%	
(rural)	 10%	<	ImpArea	(urban)	

2	year	 163(DA)0.7089	*	10(0.0133*ImpArea)	 198(DA)0.5735	*	10(0.0101*ImpArea)	 135(DA)0.702	 33.3(DA)0.739	*	(ImpArea)0.686	
10	year	 381(DA)0.7536	*	10(0.0076*ImpArea)	 484(DA)0.5539	*	10(0.0060*ImpArea)	 334(DA)0.662	 122(DA)0.655	*	(ImpArea)0.515	

50	year	 632(DA)0.7903	*	10(0.0037*ImpArea)	 794(DA)0.5428	*	10(0.0037*ImpArea)	 602(DA)0.635	 296(DA)0.602	*	(ImpArea)0.396	

100	year	 753(DA)0.8038	*	10(0.0024*ImpArea)	 941(DA)0.5386	*	10(0.0028*ImpArea)	 745(DA)0.625	 374(DA)0.593	*	(ImpArea)0.358	

 

Flood	
Recurrence	
Interval	

Hydrologic	Region	

3	-	Sand	Hills	 4	-	Coastal	Plain	

0.22	sq.mi.	≤	DA	≤	459	sq.mi.	 0.1	sq.mi.	≤	DA	≤	53.5	sq.mi.	

2	year	 30(DA)0.6605	*	10(0.0122*DevArea)	 26.3(DA)0.5908	*	10(0.0173*ImpArea)	*	10(0.0515*MRF)	

10	year	 68.4(DA)0.6507	*	10(0.0102*DevArea)	 51.8(DA)0.6004	*	10(0.0101*ImpArea)	*	10(0.0666*MRF)	

50	year	 114(DA)0.6451	*	10(0.0090*DevArea)	 78.4(DA)0.6111	*	10(0.0058*ImpArea)	*	10(0.0738*MRF)	

100	year	 138(DA)0.6430	*	10(0.0086*DevArea)	 90.5(DA)0.6154	*	10(0.0043*ImpArea)	*	10(0.0762*MRF)	
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Figure 1.1 – River Basin Restoration Prioritization workflow 

The RBRP framework aims to progress restoration prioritization towards a fully function-based 
process through the incorporation of data and models representing key watershed functions. 
Baseline and potential uplift scores for each catchment are calculated to help managers 
determine a measure of restoration priority. Hierarchical functional pyramid adapted from 
Harman et al. (2012). 
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Figure 1.2 – North Carolina’s hydrographic geography 

North Carolina’s hydrologic geography. The finest resolution boundaries in the full state map are 
the HUC 12s. The Tar-Pamlico River basin (HUC 6: 030201) is shaded in gray. The inset depicts 
the NHD+v2 catchments nested within HUC 12s around Rocky Mount and Tarboro, North 
Carolina. 
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Figure 1.3 – Single variable and aggregate baseline scores for Tar-Pamlico basin 

Single variable and aggregate baseline scores for each of the individual submodels in the Tar-
Pamlico River basin (HUC 6: 030201). The 2011 NLCD land cover and impervious surface 
cover data for the same area are also shown for comparison. The inset in each of the single 
variable panels shows a small area around the confluence of the Tar River and Fishing Creek, 
north of Tarboro, NC, which is noted in the first panel. 
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Figure 1.4 – Single variable and aggregate uplift scores for Tar-Pamlico basin 

Single variable and aggregate uplift scores for each of the individual submodels in the Tar-
Pamlico River basin (HUC 6: 030201). The habitat quality single variable panel is based on 
uplift in bluehead chub presence likelihood with an increase in streamside forests, and the 
aggregate habitat quality score includes a suite of stream/streamside restoration scenarios.  
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Figure 1.5 – Three band raster visualization of composite baseline catchment condition for Tar-
Pamlico basin 

Catchments with poor quality baseline scores highlighted as high priority areas for restoration. 
Aggregated and normalized values from each of the submodels are converted to an RGB raster 
band and combined to create a more interpretable data visualization of all data output. Colored 
catchments represent those that have final submodel values in the top 10% for any one submodel 
or in the top 30% across all three models. 
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Figure 1.6 – Comparison of composite baseline score with previous targeted local watersheds 

Overlay of Targeted Local Watersheds from the most recent NC DEQ prioritization plan for the 
Tar-Pamlico River basin (2010) with those catchments identified as priorities for restoration 
through the new RBRP workflow. Catchment colors follow the same schema as Figure 1.5. 
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SUMMARY AND TRANSITION 

 The first chapter of this thesis outlined the structure and design of the River Basin 

Restoration Prioritization toolkit. By using easily accessible data from a variety of vetted data 

sources, this toolkit can either be used directly or serve as a model for other state or federal units 

to develop their own tools in order to move towards a more functionally-based restoration 

prioritization model. In the second chapter, we test these methods in four diverse basins spanning 

North Carolina’s three major ecoregions. In applying the RBRP workflow to these 

heterogeneous regions, we are able to assess how differing arrangements of land use, 

topography, and stream network connectivity influence both current ecosystem condition and the 

potential for functional uplift across natural and built environments.  
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CHAPTER II. 

SPATIAL PATTERNS IN FUNCTION-BASED RESTORATION PRIORITIZATION 
ACROSS NORTH CAROLINA 

 

 

Abstract 

While developing new models for restoration prioritization can greatly improve the 

restoration planning process, it is vital to understand how models will respond across a 

heterogeneous natural and built environments, as captured by the available data domain. To 

better understand the performance of the River Basin Restoration Prioritization toolkit, four river 

basins were modeled for baseline condition and uplift potential. Analyzing four basins covering 

the three major geographic provinces of North Carolina provides a lens into how the input data 

and models respond to the physical geography of the state, including land use patterns, 

topography, and changes in stream network arrangement. While the Piedmont and Coastal Plain 

vary substantially in soils, topography, and stratum, the land use patterns and relative influence 

of urban and agricultural land are more similar to each other than to the mountains, and the 

model responds as such. Alternatively, the Blue Ridge region is much less developed and varies 

greatly in its topography, geomorphology, and land cover, influencing the types of areas 

highlighted for poor catchment condition or potential uplift. Assessing these differences provides 

insight into model use and future directions to pursue in model development. 
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2.1. Introduction 

Despite continued efforts to protect waterways from degradation, anthropogenic 

development, land use change, and a changing climate have caused freshwater quality issues to 

persist. Nutrient loading of nitrogen and phosphorus from agricultural, urban, and other sources 

has led to substantial changes in water quality, negatively impacting not only the aquatic habitat 

quality, but also lowering the economic and aesthetic potential of these areas (Boesch, Brinsfield, 

and Magnien 2001; Kemp et al. 2005; Vitousek et al. 1997; Carpenter et al. 1998). Increased 

pressure on the hydrologic regime has also resulted from expanding urban and otherwise 

developed areas, with changes in infiltration capacity and stormflow generation leading to 

degradation of headwater streams and altered flooding regimes downstream (Walsh et al. 2005).  

In an effort to address these issues (and to keep up with the expanding local and federal 

regulations surrounding them), an expansive stream restoration economy has emerged (BenDor 

et al. 2015). Project planning, implementation, and monitoring efforts have shown mixed results, 

however (Filoso and Palmer 2011; Roni, Hanson, and Beechie 2008). With costs exceeding $1-2 

billion per year, it is vital to improve all aspects of the process (Bernhardt et al. 2005; Bronner et 

al. 2013). Much of this improvement can come through a more explicit inclusion of restoration 

science and watershed function understanding (Wohl et al. 2005; Beechie et al. 2008), and some 

of this incorporation and research-practitioner integration has already begun to take place (Wohl, 

Lane, and Wilcox 2015). A shift towards a more holistic watershed approach with the intent of 

better understanding the connectivity of watershed elements and the importance of such on the 

viability of restoration projects will also continue to improve the efficacy of these projects (Bohn 

and Kershner 2002). Within the planning and prioritization phase of project design, a watershed 
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function-based approach has also emerged to define a hierarchy of interrelated processes 

influencing the condition of the watershed (Harman et al. 2012). 

This turn towards a function-based restoration design has allowed for the movement 

away from form-based or structural design (Bronner et al. 2013; Palmer, Hondula, and Koch 

2014). By defining key watershed parameters and their role in the baseline catchment condition, 

workflows and models can be developed not only to design and monitor specific projects but 

also to help screen and prioritize catchments for restoration across a broad region. With this in 

mind, widely distributed, vetted data sources and models can be manipulated to represent 

individual parts of the functional pyramid defined by Harman et al. (2012), one that describes the 

interconnected, hierarchical structure of watershed functions and their influence on ecosystem 

health. 

The River Basin Restoration Prioritization (RBRP) system was developed in North 

Carolina to assess function-based catchment condition across a large spatial domain. With the 

NHD+v2 catchments as the base geometry, hydrology, water quality, and aquatic habitat quality 

are assessed for baseline condition and potential uplift in condition. Both baseline and potential 

uplift conditions are based on functional assessment using regional scale, data-based models, 

including the USGS regional instantaneous peak flow regression equations, USGS Spatially-

Referenced Regression on Watershed Attributes (SPARROW) model, and USFWS key aquatic 

indicator species datasets, respectively. Key in the development of the RBRP was the goal of 

producing consistent, repeatable methods with publicly available datasets that can still capture 

the heterogeneity of a region like North Carolina. This state, as with any other, is heterogeneous 

in its geomorphology, substrate, land use, and climate, yet managers are tasked with assessing 

catchment condition over large areas and prioritizing the use of taxpayer dollars to improve 
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water quality. The RBRP was designed as part of an effort to account for this spatial variability 

and to present equally valuable data across these gradients. 

 

2.2. Methods 

2.2.1 Study Area 

In order to capture variations in model representation of ecosystem state and potential 

restoration through space, four river basins/subbasins across North Carolina were modeled using 

the RBRP (Figure 2.1). The Upper Neuse subbasin (HUC 8: 03020201) flows from rural 

headwaters upstream of the Research Triangle, through the northern parts of the cities of Durham 

and Raleigh before reaching the coastal plain in its downstream segment. The Upper Neuse 

subbasin encompasses 4,466 NHD+v2 catchments covering 6,231 km2. The Haw River subbasin 

(HUC 8: 03030002) lies entirely within the Piedmont and is a key water supply basin for Jordan 

Lake, one of the primary reservoirs serving the Research Triangle. The Haw encompasses 3,490 

NHD+v2 catchments covering 4,422 km2. The South Fork Catawba subbasin (HUC 8: 

03050102) spans from the Piedmont downstream to the Blue Ridge hydrologic region in the 

headwaters and drains much of Charlotte’s metropolitan area. The South Fork Catawba 

encompasses only 567 NHD+v2 catchments covering 1,711 km2. The Upper and Lower Little 

Tennessee subbasins (HUC 8: 06010202 and 06010204) fall in the largely forested Blue Ridge 

hydrologic region of southwestern North Carolina. The Little Tennessee subbasins are made up 

of 2,463 NHD+v2 catchments covering 4,901 km2. Because prioritization decisions are made for 

and within the state of North Carolina, the catchments of the Little Tennessee subbasins are 
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clipped at the state boundary. This state boundary clipping does not affect any of the other study 

basins1. 

 

2.2.2 Study Methods 

Following the RBRP workflow laid out in the previous chapter, we characterized the 

baseline and potential uplift conditions related to hydrology, water quality, and aquatic habitat 

quality for every catchment within each of four basins. Briefly, the hydrologic condition of each 

catchment was assessed using the instantaneous peak flow regression equations for 2-, 10-, 50-, 

and 100-year recurrence intervals (Feaster, Gotvald, and Weaver 2014; Mason Jr et al. 2002). 

Water quality condition was assessed using nitrogen and phosphorus data from the USGS 

SPARROW model (Hoos et al. 2013). Nitrogen baseline condition was calculated with the 

SPARROW Shift Prediction to Edge-of-Channel Load (SPECL) model version for urban areas, 

atmospheric deposition, and an aggregated value for all agricultural sources which specifically 

accounts for nutrient flux to the edge of the channel and removes effects of in stream processes 

in order to better match the unit of management for restoration. Phosphorus baseline conditions 

were calculated using the same SPECL loads for urban and aggregated agricultural sources. The 

aquatic habitat quality was assessed by predicting modeled species distributions based on 

landscape attributes via MAXENT (Phillips, Anderson, and Schapire 2006). Five key aquatic 

indicator species’ distributions (as selected for each hydrologic region by NC DMS planners) 

were modeled to create an aggregate measure of aquatic habitat quality (Endries 2011). 

Potential uplift for each catchment was also calculated using the RBRP workflows. 

Hydrology and water quality uplift was modeled through a 10% reduction in respective sources 

                                                
1 For further analysis of model response in the Coastal Plain hydrologic region, see the 
assessment of the Tar-Pamlico basin (HUC 6: 030201) in Chapter I. 
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and recomputing the altered conditions. That is, reduction of impervious surface or reduction in 

nitrogen or phosphorus sources are used as a proxy for effective treatment in the hydrology and 

water quality models, respectively. These changes represent a wide range of management 

practices that may manifest in similar effects on watershed health, without prescribing a specific 

management practice. The percent change in catchment condition relative to the baseline was 

used as the metric for a catchment’s uplift potential. For the aquatic habitat quality submodel, the 

buffer forestation scenario was run to calculate each species’ modeled response to increases in 

streamside buffer forest. Increased species presence likelihood indicates higher uplift potential. 

Data were visualized and areas highlighted for restoration prioritization using a three 

band raster visualization in which each of the RBRP submodels was attributed to a red, green, or 

blue raster band and visualized as a composite image. Without additional input from local 

watershed managers and as to not bias results towards any one submodel input, the default even 

weights and arithmetic means were used for aggregation of each submodel variable to the 

function score. We note that these weights can be adjusted by the software user based on local 

conditions and priorities. 

 

2.3. Results 

2.3.1 Baseline Conditions 

Aggregated baseline conditions for variables from the hydrology, water quality, and 

aquatic habitat submodels in each of the four basins were used to highlight potential catchments 

for restoration prioritization and further analysis. Using a filter on each of the three submodels, 

catchments with a value from one function in the top decile or values in the top 30% across all 

three functions were visualized using an RGB raster, with catchments outside of these ranges not 
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colored (Figure 2.2). In theory, a catchment that has the worst baseline condition in all three 

submodels will be seen as white in these composite images, although this is not seen in practice 

in these study regions. Again, the 10% and 30% filter thresholds are used to visualize a subset of 

the data and allow managers to analyze contiguity of potential problem areas; these values are 

determined a priori and can be changed by the user to visualize more or fewer catchments. 

The baseline condition workflow identified 26%-28% of the catchments in each of the 

four basins as potential priority areas for restoration (Table 2.1). In the Little Tennessee 

subbasins 16 catchments, or 4.5% of the total, were in the top three deciles for all three functions 

while no catchments were in the top decile across all three functions. For the top decile condition 

across any single function, 343 catchments were identified, with 60 catchments in this worst 

baseline condition group for both aquatic habitat and water quality. In the remaining three 

subbasins, few catchments satisfied the top three deciles condition, with zero, four, and five 

catchments identified in the South Fork Catawba, Haw, and Upper Neuse respectively. Similar to 

the Little Tennessee subbasin, the most common overlap of worst decile condition is between 

aquatic habitat and water quality condition in the other three basins. In the Little Tennessee, 18% 

of the catchments are identified as being in the worst decile of baseline condition for more than 

one of the functions, while the other three basins only have around 10% overlap between 

functions. 

 

2.3.2 Potential Uplift Scenario 

Using the same 10%/30% filter, catchments in each of the four basins were highlighted 

based on their uplift potential across the three model functions (Figure 2.3). As the potential 

uplift is calculated based on a change from baseline conditions, it does not necessarily represent 



 46 

where current conditions are the worst, but where altering driving variables in each submodel 

manifests in large changes in catchment condition. 

The potential uplift analysis incorporating the buffer forestation scenario in the aquatic 

habitat model identified 25%-29% of the catchments in each basin as candidates for management 

(Table 2.1). Catchments primarily fulfilled the top decile in any function condition, but a larger 

portion of catchments fell into the top three deciles for all three conditions than during the 

baseline analysis. Additionally, four and five catchments in the Haw and Upper Neuse subbasins 

respectively were in the highest potential uplift decile across all three conditions, indicating areas 

that may be especially responsive to management actions. The potential uplift workflow also 

identified a more consistent co-occurrence of overlap between functions identified for 

prioritization in each catchment. In each subbasin, between 7%-16% of the catchments were 

identified as priority areas in more than one function. 

 

2.4. Discussion 

By moving towards a function-based analysis of catchment condition and restoration 

potential, this tool allows managers to better understand the drivers of health of a particular 

stream reach and how those drivers compare to other catchments across that same river subbasin. 

The filters used to visualize data assist users in identifying contiguous areas of potential 

problems in order to better direct management efforts. However, as a screening tool, the RBRP 

does not provide explicit information regarding project siting or project design. Understanding 

how landscape elements and individual model outputs interact across space can expand the 

utility of this tool to a great extent. 
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2.4.1 Interpreting Baseline and Potential Uplift Prioritization Patterns 

Poor hydrologic condition is commonly found in urbanized and developed areas across 

all regions, and especially in catchments with no upstream neighbors. The transition between 

hydrologic regions, as seen in the Upper Neuse and South Fork Catawba subbasins, also 

influences this hydrologic response to a certain degree as the peak flow regression equations shift 

across region boundaries. For example, while there are some small developed regions in the 

southeast of the Upper Neuse, the flood peak response in the coastal plain is much lower and the 

hydrologic baseline condition of these catchments is therefore relatively better than comparable 

catchments around the Raleigh and Durham metropolitan areas in the northwest of that basin. In 

the Little Tennessee, because the peak flow equations predict very little flood response in the 

forested catchments that make up a large portion of this basin, catchments with any appreciable 

urbanization exhibit much higher peak flow response relative to their neighbors and stand out 

when using the raster visualization method. Additionally, as data are presented as depth per unit 

time or volume per unit area, the highest peak flows are typically found in smaller headwater 

catchments where urban area covers larger proportions of the drainage area. While to some 

degree this decision downgrades management practices that mitigate flooding along trunk 

streams, the focus on headwater reaches promotes localized practices that can reduce flashy 

runoff, the effects of which will also benefit downstream areas. 

Water quality response varies based on the overall land use makeup of the basins, 

primarily in regards to the urban-agricultural balance. The Haw River subbasin has a substantial 

amount of pasture land and animal feeding operations, but comparatively little row crop. On the 

other hand, it captures drainage from the Chapel Hill, Burlington, and parts of the Greensboro 

metro areas, therefore leading to urban sources contributing comparatively more to the water 
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quality baseline condition, as can be seen by the location of catchments visualized in the green 

band (Figure 2.2). Alternatively, the southeastern portion of the Upper Neuse and southern half 

of the South Fork Catawba subbasins are highlighted as the primary contributors of poor 

catchment water quality conditions because of the dominance of row crop agriculture. 

As the aquatic habitat baseline conditions are derived from an aggregate of five species 

with differing responses to landscape variables, the spatial patterns in this function are not as 

readily tied to land cover as in the hydrology and water quality submodels. However, percent 

contribution of variables to each species’ distribution model offers insight to driving factors of 

poor aquatic habitat quality. Within the Little Tennessee, stream temperature arises as a key 

contributor across all five species, with distance to dams also affecting species distribution 

models.  

In the remaining three subbasins, aquatic habitat quality was commonly driven by a 

metric of stream size, whether that was total drainage area, stream order, discharge or velocity. 

Presence or absence of forested areas and developed areas in the catchments was also a 

uniformly high contributor to each species’ distribution model. Even with the different sets of 

modeled species, the relatively similar land use patterns in these basins largely drove species 

presence predictions and aquatic habitat quality models. 

Across the Little Tennessee subbasin, uplift priorities are almost entirely focused within 

catchment hydrology response or a mix of hydrology and the other functions. The stark contrast 

between the rural and developed areas in the basin, and the influence of developed land on the 

three RBRP submodels, is pronounced in this region, with almost all highlighted regions falling 

in developed catchments. In the South Fork Catawba, hydrology and aquatic habitat potential 

uplift follow patterns of development as well, with potential uplift hotspots occurring in the 
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northern headwaters near Hickory and to the south near Lincolnton and Gastonia. There is a 

contiguous region of high potential uplift for water quality in the northwestern headwaters of the 

catchment, an area downstream of the relatively pristine South Mountains State Park but with 

some interspersed agriculture. The Haw and Upper Neuse again show higher potential uplift in 

conjunction with developed areas, in this case indicating areas of higher source problems with a 

greater potential for reduction. Areas of high potential uplift for aquatic habitat quality tend to be 

more isolated in these two basins. As the aquatic habitat potential uplift in these scenarios is 

based on response to increased buffer forests, these areas highlight stream reaches in which 

buffer forestation is both possible and has high positive impact on species presence likelihood. 

The Tar-Pamlico basin exhibits many of the same baseline and potential uplift metrics as 

the Haw and Upper Neuse subbasins, as shown in Chapter 1, Section 4 and Figures 1.3-1.5. 

Large, contiguous areas of poor baseline condition are concentrated around the small urban area 

of Tarboro, and many of the catchments identified for poor baseline condition in the hydrology 

submodel fall in the headwaters of the basin, in the Piedmont rather than the Coastal Plain. The 

same transitions in hydrology and water quality response across the ecoregion boundary take 

place in this basin as well. 

 

2.4.2 Tracing root causes of impairment 

While concurrently visualizing the wealth of data provided through the RBRP workflow 

is meant to help managers identify potential catchments of interest or large contiguous areas of 

problem conditions, it is essential that the data are still available to interpret what the causes of 

impairment may be. Across any basin, the RBRP workflow provides the user with the 

opportunity to visualize any subset of underlying data with which to interpret final model output. 
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Within the Haw and Upper Neuse river basins, we can examine an underlying variable of each of 

the submodels to help interpret the baseline aggregate data (Figure 2.4). Urban areas in the 

western portion of the Haw and along the joined border of the two basins exhibit poor baseline 

quality for both the two year peak flow and incremental nitrogen loads. These patterns clearly 

stand out in the aggregate baseline data with the same areas being highlighted as potential 

candidates for restoration. High incremental nitrogen loads and low presence likelihoods for a 

single species (N. leptocephalus) in the southeastern, downstream portion of the Upper Neuse 

come together to highlight areas of potential restoration interest with these functions in mind. 

The same analysis of data from each individual model element can be very useful when 

examining a single catchment. For one catchment near the Duke University campus that is 

highlighted through the baseline catchment condition analysis, we can trace back through the 

data to help elucidate possible driving factors of impairment (Table 2.2). When compared against 

other catchments in the Haw River subbasin, this catchment ranks in the worst modeled 27% for 

hydrologic condition, 15% for water quality, and 20% for aquatic habitat quality. Being able to 

note that urban sources of nutrients are a potential driver of catchment condition and that the 

catchment conditions are especially poor for some but not all fish species can help direct 

planners in how they may move forward with restoration planning in this area. Although this 

catchment is not in the top 10% in any one function, poor baseline condition across all three 

functions may influence how restoration dollars are spent in this area. 

When examining data in this manner, it is especially important to keep in mind that data 

normalization is completed relative to other catchments within a single 8-digit HUC. This 

geography is primarily used because it is the current management unit used by the NC DEQ. 

However, it also provides a reasonable context through which a heterogeneous landscape may be 
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compared at a scale that maintains hydrologic connectivity and differs from arbitrary political 

units. 

 

2.4.3 Understanding data and model effects on output 

Within each of the submodels, there are some model artifacts that represent naturally 

occurring processes affecting the condition of the catchments. While these data elements, 

especially within the water quality and hydrology submodels, are manifested purely based on the 

form of the regression equations, the ecological influence of the landscape conditions that drive 

these responses is key for the understanding and management of that catchment. The 

instantaneous peak flow equations are driven by two key parameters: drainage area and 

impervious surface cover. Because of this, headwater streams in developed areas are highlighted 

by the model as priority locations for restoration planning (Figure 2.5A). The model’s backing of 

these areas as focal regions adds a functional precedent for action. Management of these 

upstream urban areas is not only important for controlling peak flood flows (Konrad and Booth 

2005), but has been shown to have significant carry over effects for water quality and aquatic 

habitat quality (Walsh et al. 2005). Additionally, the influence of the change in peak flow 

regression equations across hydrological regions is clearly noted by the sharp transition in 

catchment peak flow values along that boundary (Figure 2.5B). While the shift is driven by this 

change in equation sets, this boundary also corresponds with a shift in dominant soil 

characteristics and drainage patterns between the Piedmont and Coastal Plain. The Coastal Plain 

has primarily well-drained, sandy soils and gently sloping topography that allow for better 

infiltration and help attenuate large storm events relative to the Piedmont region. 
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The effects of these underlying model elements are not unique to any one basin or 

submodel. Other interesting data artifacts are also found in the response of the water quality 

model in the South Fork Catawba subbasin (Figure 2.5C). The uppermost headwaters of the 

subbasin drain the South Mountain State Park, a wilderness area with little to no development 

impact (>98% canopy, <1% developed). However, parts of this region exhibit high modeled 

delivery ratios for nutrients relative to their downstream neighbor. This phenomenon is 

attributable to the landscape position and topography of these upstream catchments. While many 

of them contain no agriculture, those that are cultivated are at risk for high nutrient delivery 

because of the steeper slopes, soil properties, and proximity of cultivatable land to streams. The 

downstream portions of the subbasin, while containing more agriculture, contribute less of their 

total applied nutrient load to the stream than these upstream catchments. These patterns manifest 

themselves clearly in the potential uplift output for this subbasin as well, with high potential 

water quality uplift noted in the same region (Figure 2.3). 

 

2.4.3 Caveats with the NHD+v2 catchment dataset 

While the NHD+v2 dataset and its siblings have been widely accepted as the 

hydrographic datasets of choice for wide resolution spatial analyses, there remains potential 

issues with the data. The primary concern with the dataset is in regards to the varying catchment 

density across large regions. In North Carolina, this issue manifests itself in the south central 

portion of the state, near Charlotte (Figure 2.6). Although landscape topography can drive 

changes in drainage density (e.g. drainage density will be lower, and catchment size in the 

Coastal Plain will be larger than in the dissected Blue Ridge landscape), sharp changes in 

catchment size at artificial boundaries should not exist. Moore and Dewald (2016) provide a 
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detailed description of how the NHD was developed, including the flow-line digitization from 

the USGS 1:100,000 topographic quads, but do not mention that the drainage density and 

catchment size could vary substantially between quads (Figure 2.7). Although this difference 

across quad boundaries is visibly notable, there exist few options for correcting the existing data. 

Because of this, the effect of catchment area on analysis must be kept in mind. Local or state 

agencies have been tasked with maintaining and stewarding their local NHD data, but the fact 

that the blue lines for the national scale data were digitized at widely varying resolution remains 

a cause for concern when attempting to utilize the data across large regions. 

 

2.5. Conclusion 

Here we have demonstrated the ability to assess spatial patterns in catchment-scale 

restoration potential using the recently developed RBRP workflow. Across the Coastal Plain and 

Piedmont hydroregions, urban areas uniformly stand out for their poor baseline condition and are 

regularly highlighted as areas of high potential restoration. Catchments with intensive agriculture 

also contribute to poor baseline conditions in the water quality submodel and are large drivers of 

overall catchment baseline condition. The choice of modeled species can affect the response of 

the aquatic habitat quality submodel, but these species typically respond adversely to flashy or 

otherwise elevated flow conditions within a catchment. Compared to the other hydrologic 

regions, the Blue Ridge region exhibits better baseline conditions based on the raw data, but the 

model still highlights problem and sensitive areas and areas of potential restoration in urban 

catchments across all functions. The model output normalization relative to the subbasin allows 

managers to focus or local watershed problems even when conditions relative to other subbasins 

are vastly different, as is the case in the Little Tennessee. 
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These tools and their underlying data models provide an opportunity to succinctly and 

uniformly track catchment condition and potential uplift across an expansive, heterogeneous 

area. Developing effective data visualization tools is also key to presenting large volumes of data 

to land managers or practitioners, while it is also crucial to provide these end users with the data 

driving final prioritization. Although this tool does not make an attempt to suggest exact 

restoration project placement or structure, the available data and the eye towards a function-

based design is an advancement in restoration planning over larger watersheds.  
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Table 2.1 – Catchments identified as baseline and potential uplift priorities 

Baseline and potential uplift analysis results for each of the four river subbasins, including 
counts of all catchments identified with 10%/30% filter. Approximately 25% of all catchments 
were identified as potential management areas in each basin. The distribution of catchments in 
the worst decile in two or more functions varies across basins. 
 

 
Baseline 

  

Little 
Tennessee 

South 
Fork 

Catawba 
Haw Upper 

Neuse 

Total Catchments  1,368   567   3,490   4,466  
Identified Priority Catchments 356 152 956  1,211  
Percent of Total 26.0% 26.8% 27.4% 27.1% 
Top decile (any function)  343   152   955   1,210  
Top decile (all functions) 0 0 0 0 
Top three deciles (all functions) 16 0 4 5 
Top decile overlap 

    Habitat/Hydrology 0 0 0 0 
Habitat/Water Quatlity 60 16 88 122 

Hydrology/Water Quality 5 0 4 6 
Percent Overlap 18.3% 10.5% 9.6% 10.6% 

     
 

Potential Uplift (Buffer Forestation) 

  

Little 
Tennessee 

South 
Fork 

Catawba 
Haw Upper 

Neuse 

Total Catchments  1,368   567   3,490   4,466  
Identified Priority Catchments  397   145   956   1,240  
Percent of Total 29.0% 25.6% 27.4% 27.8% 
Top decile (any function)  377   145   927   1,200  
Top decile (all functions) 0 0 5 4 
Top three deciles (all functions) 62 6 124 105 
Top decile overlap 

    Habitat/Hydrology 16 14 21 27 
Habitat/Water Quatlity 4 5 68 38 

Hydrology/Water Quality 11 4 36 77 
Percent Overlap 7.8% 15.9% 11.5% 10.5% 
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Table 2.2 – Composite baseline data for single NHD+v2 catchment 

Selected baseline data for a single NHD+v2 catchment (COMID: 8893134), located on the Duke 
University campus in the Haw River subbasin. This catchment ranks within the top 30% in all 
three functions and is a potential candidate for restorative action based on the baseline condition. 
The rank value is relative to the other catchments with the same 8-digit HUC (03030002). It 
must be noted that the peak discharge values are instantaneous peaks. The two year peak flow 
converts to approximately 772 cfs. A USGS stream gage just downstream of the outlet of this 
catchment (USGS 0209722970) reports a peak discharge over its period of record (2009-2017) 
of 1,010 cfs. 
 

Single	Catchment	Model	Output	

ComID	 8893134	
HUC	12	 030300020601	
Area	(sq.	km.)	 1.786	
Total	Drainage	Area	(sq.	km.)	 5.295	

	   Nitrogen	-	Atmospheric	 1.94	
kg/ha/yr	Nitrogen	-	Urban	 5.72	

Nitrogen	-	Agriculture	 0.23	

	   Phosphorus	-	Urban	 0.64	 kg/ha/yr	
Phosphorus	-	Agriculture	 0.07	

	   Aphredoderus	sayanus	 0.019	

occurrence	
likelihood	

Etheostoma	flabellare	 0.056	
Moxostoma	collapsum	 0.047	
Nocomis	leptocephalus	 0.213	
Noturus	insignis	 0.180	

	   Peak	Discharge	-	2	yr	 357.2	 mm/day	
(instantaneous	

peak)	
Peak	Discharge	-	10	yr	 564.7	
Peak	Discharge	-	50	yr	 719.8	
Peak	Discharge	-	100	yr	 786.3	 	

	   Hydrology	Rank	 954	
of	3,490	

catchments	Water	Quality	Rank	 534	
Habitat	Rank	 721	
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Figure 2.1 – Four study basins for River Basin Restoration Prioritization assessment 

Four River Basin Restoration Prioritization study basins highlighted across North Carolina. 
These basins span three hydrologic regions and a wide range of land uses. The two Little 
Tennessee basins are considered as one for this analysis. The basins are underlain by the 2011 
National Land Cover Database. 
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Figure 2.2 – Composite baseline score for four study basins 

Catchment scale baseline composite condition in each of the four study basins. The red, green, 
and blue bands of the color composite raster represent the habitat, water quality, and hydrology 
composite scores. Colored catchments represent those in which the aggregated and normalized 
function score is either in the top 10% across the basin or all three function scores are within the 
top 30%. Color values (on a 0-255 scale per band) are scaled relative to their baseline condition 
(i.e. the top ranked hydrology catchment, or that with the worst baseline condition has a blue 
value of 255). These catchments represent priority areas with relatively poor baseline condition. 
Inset maps depict the 2011 NLCD land cover in each of the basins.  



 59 

 
Figure 2.3 – Composite uplift score for four study basins 

Catchment scale potential uplift composite condition in each of the four study basins. The band 
combination and top 10% and 30% representations are the same as in Figure 2.2. The habitat 
potential uplift represents changes in species presence likelihood with an increase in streamside 
buffer forests. These catchments represent priority areas with comparatively higher response to 
changes in catchment conditions. Inset maps depict the 2011 NLCD land cover in each of the 
basins. 
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Figure 2.4 – Composite baseline score and single input variable from each submodel to trace 
model input influence 

Tracing individual model elements to aggregate catchment condition scores provides insight 
towards the driving factors of impairment. Here, for the Haw and Upper Neuse basins, an 
individual element from each of the hydrology, water quality, and aquatic habitat quality 
submodels demonstrates how these data points can feed into final prioritization. The inset 
highlights a catchment near Duke University’s campus for which catchment baseline condition 
data are highlighted in Table 2.1.  
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Figure 2.5 – Analysis of influence of data and model structure on prioritization output 

Representative regions for analysis of the influence of underlying data elements. A) highlights 
the influence of headwater catchments on the hydrologic response to storm events, especially in 
urban areas, with Durham, NC located in the center of the panel. B) exhibits the difference in 
catchment hydrologic response to storm events across the hydrologic region boundary. The shift 
from the Piedmont to Coastal Plain hydrologic region is matched by a sharp drop in peak flood 
flows. C) highlights the influence of catchment slope and the topographic position of agricultural 
land on the nutrient land-to-water delivery ratio. 
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Figure 2.6 – Variation of catchment size across USGS 1:100k topographic quad boundaries 

North Carolina’s NHD+v2 catchments overlaid with the 1:100k USGS quads. These catchments 
were digitized with blue lines derived from USGS 1:100k quads. Certain areas of the state have 
much less dense catchment features than their neighbors (USGS Quads: Charlotte, Gastonia, and 
Plymouth), a point of note when comparing catchments across these boundaries. 
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Figure 2.7 – Boxplots of catchment area by USGS 1:100k topographic quads 

Boxplots representing the NHD+v2 catchment areas by USGS 1:100k Quad. The Charlotte, 
Gastonia, and Plymouth quads have both higher median areas and larger inter-quartile ranges. 
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CONCLUSIONS 

 In this thesis, we have demonstrated the use of a novel restoration prioritization toolkit 

that makes use of readily available data sources. This tool provides a new framework through 

which planners and managers across the country can reconfigure how catchments are prioritized 

for the use of restoration dollars. The incorporation of the regional regression equations, 

SPARROW model, and species occurrence dataset into the RBRP offers a novel use for these 

widely-distributed data to benefit watershed planning. Additionally, the structure of the 

workflow to prioritize catchments relative to their subbasin while still distributing non-

normalized baseline and uplift conditions affords watershed planners the opportunity to not bias 

restoration solicitations in one subbasin over another but to still understand the baseline 

conditions and potential impact of these projects. In testing model output in four diverse 

subbasins across North Carolina, we found that the model performs well in heterogeneous 

basins. The relative influence of urban and agricultural areas on model output remains high 

across the state, partially because of the structure of the input data sources, but also because these 

areas are key drivers of watershed condition. As expected, overall current catchment condition 

generally improves in the Blue Ridge relative to the rest of the state, but sensitivity is high. The 

RBRP structure maintains the ability to highlight areas of interest for potential restoration even 

in comparatively healthy basins. 

 The creation of this tool was driven by the needs of NC DMS. Throughout the process, 

many decisions regarding the inclusion or exclusion of datasets, thresholds to test, and outputs to 

present were therefore influenced by this client-driven model development. There may be other 
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prioritization workflows that better characterize single functions, but we believe the 

representation of general ecosystem function presented here provides a unique and eminently 

useful tool to further regional analysis of restoration prioritization. While validation of the 

priorities identified through this workflow is difficult as no similar priorities existed previously, 

the use of the datasets and methodology employed here provides a substantive framework for 

monitoring and follow-up after project implementation in prioritized areas. 

While the current structure of the model does not yet fully match the functional hierarchy 

set up by Harman et al. (2012), it is a marked improvement on traditional GIS overlay methods. 

The structure of the RBRP also allows for relatively easy addition of new datasets. Future 

directions for this work aim to better represent geomorphological conditions with metrics of 

channel shape and floodplain connectivity. Improved representation of in-stream conditions 

using emerging datasets like that from Gomez-Velez and Harvey (2014) could also greatly 

improve the model, either alone or as improved inputs to the habitat submodel.  
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