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ABSTRACT 

Nicholas J. Taylor: Common Genetic Variation in Cell Cycle Regulatory Genes and Etiology of 
Intrinsic Breast Cancer Subtype: A Candidate Gene Approach 

(Under the direction of Andrew F. Olshan) 
 

A large proportion of unexplained risk for breast cancer remains to be accounted for.  

Contributing factors may be environmental, genetic, or a combination of both and there is 

considerable debate about which factors are most important.  However, the scope and magnitude 

of the genetic contribution to the causation of breast cancer remains unclear.  Genetic risk factors 

for breast cancer remain to be discovered, and with heterogeneity of breast cancer being 

characterized into intrinsic molecular subtypes, the difficulty in identifying these risk factors is 

diminishing.   

This dissertation used a candidate gene approach based on factors involved in cell cycle 

regulation to identify single nucleotide polymorphisms (SNPs) associated with overall rate of 

breast cancer and intrinsic breast cancer subtype in the Carolina Breast Cancer Study (CBCS).    

A total of 65 SNPs on five genes were genotyped in 1,946 cases and 1,747 controls in African 

American and Caucasian participants of the CBCS.  Additionally, 144 ancestry informative 

markers were genotyped in these individuals to estimate individual ancestry and adjust logistic 

models for potential population stratification.  Race-stratified odds ratios were calculated, as 

estimates of rate ratios, along with 95% confidence intervals for the associations between SNP 

genotypes and breast cancer using logistic regression and adjusting for age and ancestry.  These 
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associations were also estimated by intrinsic subtype of breast cancer in a similarly adjusted 

combined race group. 

The intronic SNP rs6092309 on AURKA showed an inverse association with rate of 

breast cancer among African Americans (OR=0.69, 95%CI=0.53-0.90), with inverse associations 

also noted across all strata of intrinsic subtype.  Exploratory race-stratified, subtype-specific 

analyses for some AURKA SNPs suggested race-specific effects.  Three SNPs in high LD on 

BRCA1 (rs16941, rs16942, and rs1799966) had positive associations with overall rate of breast 

cancer among Caucasians.  One SNP on BARD1 (rs28997576: OR=1.42, 95%CI: 1.00-2.03) 

showed a positive association with rate of breast cancer among Caucasians. 

These results suggest that associations between genetic exposures and rate of breast 

cancer may differ by intrinsic subtype and possibly by race within subtype.  Replication of these 

findings in larger populations of African American and Caucasian women will be required to 

make more accurate interpretations.
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Chapter 1. Background and Significance 

 

1.1 The Public Health Burden of Breast Cancer 

Breast cancer continues to represent a tremendous health burden in the United States.  

The American Cancer Society estimates that 30% of all cancers diagnosed among American 

women in 2010 will be breast cancers, making them the most commonly diagnosed cancers 

among women in the U.S. [1].  After cancers of the lung and bronchus, breast cancer is the 

leading cause of cancer death in American women [1].  Although recent data indicate a 

decline in incidence and mortality, a consistent disparity between African American and 

Caucasian women persists [1, 2]. 

Incident cases of breast cancer have been and continue to be more frequent in Caucasian 

women (126.5 per 100,000) compared to African American women (118.3 per 100,000) [2].  

However, age-adjusted trends have been consistent, if not convergent since 1975 [1] (Figure 

2.2).  The racial disparity in incidence is highlighted in women aged 40 and above (Figure 

2.1).  Notably however, this trend is reversed in women under 35, with African American 

women displaying a higher incidence rate. 

Despite a modest difference in the rates of newly diagnosed cases, African American 

women show a significantly higher age-adjusted mortality rate (Figure 2.3).  This disparity 

is even more pronounced when age-specific mortality rates are examined (Figure 2.4).  

African American women under the age of 50 are 77% more likely to die of breast cancer 

when compared to Caucasian women in the same age range [3].  Breast cancer in African 
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American women is distinguished by larger, higher-grade tumors that are diagnosed at later 

stages [3-6].  Even after controlling for stage at diagnosis, African American women still 

exhibit poorer survival when compared to Caucasian women [3, 6-8].  It has been suggested 

that differences in survival may be attributed to socioeconomic factors [5, 9-12] or 

differences in access to care [8-13].  However, recent studies have reported that trends in 

screening by mammography among African Americans and Caucasians are similar [14-16].  

In fact, controlling for socioeconomic factors, access to healthcare and co-morbidities does 

not diminish the racial disparity in mortality [11, 17-21].   This may suggest potential 

differences in tumor biology among African American and Caucasian women. 

 

1.2 Genetic Risk Factors for Breast Cancer 

A family history of breast cancer is a strong risk factor; women having a single first-

degree relative with breast cancer are nearly twice as likely to develop the disease, while 

having two first-degree relatives with breast cancer approximately triples a woman’s risk [1, 

22, 23].  Still, the vast majority of women who develop breast cancer (~85%) have no family 

history of the disease [22]. 

Hereditary breast cancers constitute between 5 and 10% of all cases [24].  The most 

common predisposing factors contributing to these cases are highly penetrant mutations in 

BRCA1 and BRCA2.  However, population-based epidemiologic studies have demonstrated 

that only 15-20% of familial breast cancers exhibit a mutation in either of these genes [24, 

25].  The large proportion of unexplained familial risk may be explained by unidentified 

genetic traits, environmental risk factors, or a combination of both.  There is considerable 

debate as to which predominates, but the scope and magnitude of the genetic contribution to 
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the causation of breast cancer remains unclear [26, 27].  Twin-studies and studies of familial 

inheritance have suggested that common, low penetrance genetic factors may account for the 

observed residual familial risk [26, 28].  This so-called polygenic model proposes that 

genetic susceptibility to breast cancer is not entirely predicted by rare, highly penetrant 

genes but more often stems from several common loci that each confer smaller independent 

increases in risk [28-31].  Acting multiplicatively, this aggregate of common risk variants 

may contribute a significant proportion of familial risk.  Under this model it would be rare to 

observe multiple-case families (as is the case for those demonstrating mutations in highly 

penetrant genes such as BRCA1) since an individual would have to inherit each of several 

different variants. 

Results from genome-wide association studies (GWAS) seem to support the polygenic 

model with respect to breast cancer.  GWAS take advantage of technological advances 

allowing for hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) 

to be analyzed as potential risk modifying loci without information regarding function.  A 

large GWAS conducted by Easton et al. identified significant associations between SNPs on 

FGFR2, TNRC9, MAP3K1, LSP1, H19 and breast cancer in European women from the 

United Kingdom [32].  These findings were supported by results from the Shanghai Breast 

Cancer Study (A GWAS conducted in Chinese women) [33].  GWAS have primarily been 

conducted in populations of European descent.  Recently, Hutter et al. examined 22 

previously identified breast cancer GWAS susceptibility loci in a study of 7,800 African 

American women from the Women’s Health Initiative SNP Health Association Resource 

[34].  SNPs in FGFR2 and TOX3 were associated breast cancer risk [34]. 
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Additionally, there are several rare conditions that substantially increase the risk of 

breast cancer in a small proportion of the population.  Li-Fraumeni Syndrome (LFS) is 

caused by a mutation in TP53 and is thought to account for approximately 1% of hereditary 

breast cancers [34].  LFS is characterized by early-onset cancers, including: breast cancer, 

soft-tissue sarcoma and leukemia [35].  LFS families experience an increased risk of cancer 

up to 90% by age 60 [36]. Cowden Syndrome is also associated with increased risk for 

breast cancer [37].  Cowden Syndrome is generally defined by germline mutations in PTEN, 

a putative tumor suppressor gene [38, 39].  Women with Cowden Syndrome have a lifetime 

risk of breast cancer between 25-50% [40]. Peutz-Jeghers Syndrome (PJS) has also been 

associated with an increased risk of cancer.  PJS is characterized by germline mutations in 

the tumor suppressor gene STK11 [41].  Women with PJS have demonstrated increased risk 

for breast cancer of up to 30% by age 60 [42].  Ataxia telangiectasia, a rare childhood 

condition characterized by neurological deterioration and hypersensitivity to ionizing 

radiation, has also been associated with an increased risk for breast cancer [37]. 

 

1.3 Other Risk Factors for Breast Cancer 

1.3.1 Age 

Age is one of the strongest risk factors for breast cancer, with incidence rates nearly six 

times as high in American women aged 75 or older compared to those aged 20-49 [43].  

Based on SEER data from 1975-2007, the Centers for Disease Control and Prevention 

estimated an 8-fold difference in 10-year risk of developing breast cancer between women 

currently age 60 and women currently age 30 [44, 45]. 
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1.3.2 BMI 

Studies investigating the relationship between BMI and risk of breast cancer have been 

inconsistent.  Reports have suggested that increased BMI is associated with an increased risk 

of breast cancer; in a pooled multivariate analysis of prospective cohorts, van den Brandt et 

al. reported increased risk of breast cancer with increasing BMI and weight only in 

postmenopausal women, but the trend was not linear.  Women between 75-80kg showed a 

higher relative risk than women ≥80kg.  Likewise, BMI results demonstrated the same trend, 

with postmenopausal women having a BMI of 31-33 demonstrating a higher relative risk 

than women of BMI ≥33 [46].  In premenopausal women, an inverse trend in risk was noted 

in both weight and BMI.  Possible explanations for this inverse trend include more frequent 

anovulatory menstrual cycles resultant from decreased concentrations of estrogen and 

progesterone exhibited in obese women [46-49].  In contrast, several case-control studies 

have found both inverse and direct associations between BMI and odds of breast cancer 

among premenopausal women [50-52]. 

As a result of inconsistent findings for associations between BMI and risk of breast 

cancer, it has been suggested that distribution of adiposity may be an important factor in 

explaining the relationship between BMI, weight, and risk of breast cancer in 

premenopausal women [53-55].  In a European cohort of women, Lahmann et al. reported a 

significant increase in breast cancer risk among premenopausal women in the highest 

quintiles of both waist circumference and hip circumference after adjusting for BMI 

(RR=1.81, 95%CI: 1.11-2.97; RR=1.70, 95%CI: 1.05-2.77 respectively).  However, 

Lahmann’s findings based on waist-hip ratio (WHR) were consistent with no association 

after controlling for BMI (RR=1.05, 95%CI: 0.74-1.50) [53].  Similarly, an IARC review 
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found no association between WHR and risk of breast cancer in premenopausal women [52].  

In contrast, a meta-analysis of case-control and cohort studies performed by Connolly et al. 

reported significant associations between WHR and risk of breast cancer, regardless of 

menopausal status, after controlling for BMI [56]. 

 

1.3.3 Physical Activity 

Studies of potential associations between physical activity and risk of breast cancer have 

been equivocal, probably due in part to the lack of any clear standardized instrument for 

measuring exposure and a failure to thoroughly evaluate confounding and effect measure 

modification [57].  Nevertheless, Monninkhoff’s systematic review of 29 case-control and 

19 cohort studies found strong evidence for risk reductions with increased physical activity 

among postmenopausal women; evidence for risk reduction among physically active 

premenopausal women was weaker [58]. 

 

1.3.4 Menarche 

Reproductive factors such as age at menarche and regularity of menstrual cycles have 

also been associated with breast cancer risk.  Early age at menarche (12 years or earlier) has 

been associated with an increased risk of breast cancer, with modest declines in risk 

accompanying each year of delayed onset [59, 60].  Moreover, there is evidence that 

menstrual cycle regularity is also an important risk factor; studies have demonstrated a 

doubling of risk among women who experienced earlier menarche with predictable 

menstrual cycles compared to women who had irregular cycles [61].  These associations 

have been attributed to earlier exposures to and higher concentrations of estrogen in the 
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adolescent years [59, 62].  Estrogen is known to influence normal breast epithelial cell 

growth by promoting cellular proliferation [59].  The increased exposure to estrogen during 

adolescence provides an environment of rapid cell proliferation that is thought to increase 

the risk of random mutations in the genome [59, 60, 63].  Supporting the role of estrogen in 

tumorigenesis, early menopause has been shown to decrease a woman’s risk for breast 

cancer [60]. 

 

1.3.5 Breast Density 

Breast density based on parenchymal patterns has also been strongly and consistently 

associated with breast cancer risk.  Mammographic studies have demonstrated increased 

risks among women with large nodular densities and/or extensive areas of homogenous 

density (i.e. high proportions of connective and epithelial tissues) compared to women 

whose breasts were largely composed of less dense fat tissue [64-67]. 

 

1.3.6 Breast Feeding 

Bernstein et al. reported that breast feeding decreased risk of breast cancer in 

premenopausal women, but only in those who had a full-term pregnancy within 5 years [68].  

Adjusting for age at first pregnancy, Newcomb et al. reported similar decreases in risk 

among premenopausal women based on lifetime months of breast feeding; findings among 

postmenopausal women were consistent with no association [69].  A subsequent age-

matched, population-based case-control study of breast cancer among postmenopausal 

women conducted by Enger et al. found an overall inverse association between breast 

feeding (OR=0.79, 95%CI: 0.66-0.96) and risk of breast cancer after controlling for more 
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than a dozen known and purported risk factors.  This association was monotonically 

strengthened with increasing number of children breastfed [70].  In a 2000 meta-analysis of 

the effects of breast feeding on risk for breast cancer, Bernier et al. reported a slight 

protective effect in women who ever breast fed (Pooled OR=0.88, 95%CI: 0.84-0.92) [71]. 

 

1.3.7 Exogenous Hormone Use 

Exogenous hormone use has been associated with a modest increased risk of breast 

cancer.  Previous studies have provided substantial evidence for a modest increased risk of 

breast cancer among young women who are currently taking oral contraceptives (OC) or 

who have discontinued the use of OC within 10 years [72-75].  However, evidence from the 

large population-based Women’s CARE Study showed no association between past or 

present use of OC and breast cancer in women 35-64 years old [76].  Recognizing that 

formulations of more modern OC have changed since the 1970’s, Hunter et al. examined 

newer OC use by analyzing data from the Nurses’ Health Study II.  Overall findings were 

consistent with previous literature, indicating a small increased risk of breast cancer among 

current OC users (RR=1.33, 95%CI: 1.03-1.73).  However, a substantially increased risk 

was observed among current users of triphasic preparations with levonorgestrel (a progestin) 

(RR=3.05, 95%CI: 2.00-4.66) [77].  Likewise, studies of combined hormone replacement 

therapy (HRT) have also been examined with respect to breast cancer.  Contemporary 

dosing of combined HRT (estrogen + progestin) has been associated with an increased risk 

of breast cancer in postmenopausal women, but not HRT containing estrogen alone [78, 79]. 
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1.3.8 Other Reproductive Factors 

Other reproductive factors that influence endogenous estrogen exposure, such as parity 

and early age at first birth, have shown inverse associations with risk of breast cancer.  

Parity and early age at first full-term pregnancy are associated with an overall decreased risk 

of breast cancer [59, 80].  Lifetime  risk decreases with increasing number of full-term 

pregnancies, but only among those women who experienced their first full-term pregnancy 

before the age of 20 [59, 80].  This reduction in risk observed among younger women at first 

birth is an overall reduction.  In actuality, the short term effects of term pregnancies on 

breast cancer risk appear to increase risk [59, 81].  Bruzzi et al. found that full term 

pregnancy at any age is followed by a short increase in risk of breast cancer, irrespective of 

the increase associated with aging alone, that distorts the long term inverse association 

between parity and risk of breast cancer [81].  One explanation for this short term increase in 

risk is the increased level of bioavailable estradiol during the first trimester of pregnancy.  

Exposure to high levels of estradiol is suspected to increase risk for breast cancer [47, 50, 

59, 82]. 

Women who experience their first full-term pregnancy after the age of 35 have been 

shown to experience a 20% increased risk for breast cancer compared to nulliparous women 

and a 70% increased risk compared to women whose first full-term pregnancy occurred 

before age 20 [80].  Multiparity among women experiencing their first full-term pregnancy 

after the age of 35 has been shown to confer additional modest increases in risk [80, 83]. 
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1.3.9 Height 

Associations between height and breast cancer risk have also been investigated, yielding 

conflicting results with respect to menopausal status.  Several studies have found an 

association between height and risk of breast cancer only among postmenopausal women 

[84-86].  However, Ahlgren et al. reported a significant increase in risk among women who 

were in the highest quintile of height at age 14 [87].  A pooled analysis conducted by van 

den Brandt et al. also found a significant association between height and risk for breast 

cancer, irrespective of menopausal status [46]. 

 

1.3.10 Ionizing Radiation 

Exposure to ionizing radiation has also been associated with increased risk of breast 

cancer.  A review of evidence from Japanese survivors of the atomic bomb supports a linear 

relationship between radiation dose and risk of breast cancer, with age modifying this 

relationship [88].  Using genotype data from the Women’s Environmental, Cancer, and 

Radiation Epidemiology study (WECARE), Brooks et al. investigated the effects of ionizing 

radiation on 152 SNPs involved in DNA double-strand break repair pathways in women 

with contralateral breast cancer [89].  None of the variants were found to interact with 

radiation dosage, however one haplotype in RAD50 was associated with increased risk of 

contralateral breast cancer [89]. 
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1.4 Intrinsic Breast Cancer Subtypes 

1.4.1 Gene Expression Patterns & Hormonal Receptor Status 

In an effort to improve molecular taxonomy and targeted therapies for breast cancers, 

Perou et al. identified four distinct subtypes of breast cancer based on differences in gene 

expression patterns using cDNA microarrays and hierarchical clustering [90].  Each subtype 

can also be described by immunohistochemical staining profiles based on hormonal receptor 

and cellular cytokeratin status, which are surrogates for the gene expression profiles [3, 90, 

91].  Of these, estrogen receptor positive (ER+) tumors are characterized by high expression 

of genes expressed by luminal breast cells.  ER+ tumors were also distinguished 

immunohistochemically by staining with antibodies against luminal cytokeratins 8 and 18 

[90].  Recent studies showed that ER+/luminal tumors can be further classified into luminal-

A and luminal-B subtypes based on expression of human epidermal growth factor receptor-2 

(HER2) (Figure 2.5) [3, 92, 93].  In comparison, luminal-A tumors are more common, 

express higher levels of estrogen receptor and little to no expression of HER2, and generally 

render a better prognosis [3, 92].  A second subtype was characterized by high expression of 

genes expressed by breast basal epithelial cells [90].  Support for this finding was evidenced 

by immunohistochemical staining of basal cell keratins 5/6 and 17 [90].  Basal-like tumors 

are also distinguished by the absence or low expression of estrogen receptor (ER-) and 

human epidermal growth factor receptor-2 (HER2-) [3, 90].  Basal-like tumors, often 

referred to as “triple-negative” breast cancers, are among the least responsive to hormonal 

and targeted therapies, and usually result in poorer prognoses [3].  A third subtype, 

HER2+/ER-, is characterized by low to no expression of genes that are highly expressed 

among luminal breast cells, low expression of estrogen receptor (ER-) and low expression of 
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nearly all genes associated with ER expression [90].  HER2+/ER- tumors exhibit gene 

expression patterns similar to those of basal-like cancers [3].  However, the availability of 

Herceptin treatment renders a more favorable prognosis in women with HER2+ tumors.  

The final subtype includes those remaining tumors whose gene expression profiles are 

characteristic of basal epithelial and adipose cells.  Tumors of this subtype are denoted 

“normal-like” due to their low expression of genes typified by ER+/luminal tumors and 

cannot be identified via immunohistochemistry [90]. 

In early 2006, Carey et al. used immunohistochemical surrogates for expression 

profiling to identify subtypes, including ER and progesterone receptor (PR) status, and also 

to further distinguish between those tumors expressing HER2 [3].  PR was included in the 

definitions because it is a commonly used breast tumor marker that is regulated by ER and is 

associated with response to hormonal therapy [3].  The HER2+ tumors were further 

categorized by ER expression due to the propensity for HER2+/ER- tumors to express genes 

that cluster closer to those of basal-like tumors, while HER2+/ER+ more closely resembled 

the clustering pattern of luminal cancers (Figure 2.5) [3].  Luminal-A tumors were defined as 

(ER+ and/or PR+, HER2-); luminal-B tumors were (ER+ and/or PR+, HER2+); HER2+/ER- 

tumors were further defined by PR status as (ER-, HER2+, PR-); basal-like tumors were 

defined as (ER-, PR-, HER2-, cytokeratin 5/6+, and/or HER1+) [3]. 

 

1.4.2 Epidemiologic Findings 

It is well established that breast cancer subtypes differ in their responsiveness to 

endocrine therapies as well as prognoses [3, 92-94].  Studies of invasive breast tumors have 

reported the best survival among women diagnosed with the most commonly diagnosed 
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luminal-A subtype, while women exhibiting HER2+/ER- tumors and basal-like tumors 

demonstrated the worst survival [3, 95, 96].  In a population-based study of African 

American and Caucasian women, Carey et al. reported women with HER2+/ER- tumors and 

luminal-B tumors were more likely to have lymph node metastases, while those women with 

basal-like tumors were not [3].  Several studies have reported a tendency for younger, 

premenopausal women to develop basal-like tumors when compared to older, 

postmenopausal women [3, 97-102].  Basal-like tumors are associated with poor prognosis, 

often characterized by higher grade, higher mitotic index, and significant DNA mutations [3, 

95, 100, 103-106].  Basal-like tumors are also characterized by aneuploidy [107, 108].  

Other research has reported that basal-like tumors are more likely to be larger and exhibit a 

greater tendency to metastasize [95, 106, 109-112].  Basal-like breast cancers are also more 

likely to be associated with BRCA1 mutations compared to other subtypes, suggesting a 

distinct biological mechanism [92, 104, 113].  Since BRCA1 mutation carriers tend to 

develop basal-like breast tumors, there may be other inherited genetic variants that 

predispose to developing specific subtypes of breast cancer [3, 92, 113].  In addition to 

relatively worse prognoses and fewer treatment options, basal-like breast cancers tend to 

develop in younger African American women disproportionately [3, 97, 98, 114].  Carey et 

al. found a high prevalence of basal-like tumors in African American women, all of whom 

were negative for BRCA1 mutations, suggesting genes other than BRCA1 may be associated 

with basal-like breast cancers as well [3].  In line with the polygenic model, increasing 

evidence suggests that common risk variants differ by intrinsic subtype of breast cancer 

[115, 116]. 
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1.4.3 Etiology 

As more epidemiologic evidence supports the biological heterogeneity of breast cancer, 

assessing risk factors by distinct breast cancer subtypes may reveal more accurate 

associations.  Lacroix et al. suggest that molecular tumor characteristics do not change 

appreciably over the progression from in situ carcinoma to invasive carcinoma [117].  As 

such, exposures that are associated with breast cancer etiology may show different 

associations according to molecular subtype.  Several studies have found varying 

associations between common risk factors for breast cancer (age, parity, age at first birth, 

age at menarche, race) and hormone receptor status [114, 118]. 

The Carolina Breast Cancer Study (CBCS), a population-based case-control study of 

African American and Caucasian women in North Carolina, reported increased odds of 

basal-like breast cancer as opposed to luminal breast cancer among women who were 

younger at first pregnancy [97].  On the other hand, a reduced odds of basal-like breast 

cancer was noted among women who breastfed more children for a longer duration, but not 

among luminal cases [97].  This finding is in contrast to other study findings indicating a 

reduced risk of breast cancer among Chinese women who breast fed, however those studies 

did not stratify by intrinsic subtype and were based on study populations that are not 

comparable to CBCS [119, 120].  In addition to finding the highest prevalence of basal-like 

tumors in younger African American women, Millikan et al. also reported increased odds of 

basal-like breast cancer associated with higher waist-hip ratio in both pre- and post-

menopausal women [97]. 

A case control study of invasive breast cancer in Polish women (805 cases, 2,502 

controls) reported higher BMI was associated with decreased odds of luminal breast tumors 
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among premenopausal women (OR=0.71, 95% CI: 0.57-0.88 per five-unit increase), while a 

slightly increased odds for basal-like breast cancer was noted among women with higher 

BMI (OR=1.18, 95% CI: 0.86-1.64) [114].  The same study also noted a significantly 

reduced risk of basal-like breast cancer with increasing age at menarche (OR=0.78, 95% CI: 

0.68-0.89 per 2-year increase) [114]. 

Contrasting data from two centers participating in the Cancer and Steroid Hormone 

Study (CASH) suggests clear differences in risk associated with late age at first birth 

between African American and Caucasian women.  A stronger association between ER 

negative tumors and late age at first birth was noted among African American women, 

whereas a strong association was noted with ER positive tumors in Caucasian women [118, 

121, 122].  Significant heterogeneity of associations by subtype was also reported in a case 

only study of 2,544 breast cancer cases classified by ER, PR, and HER2 status [123].  

Notable risk factors that may be related to the development of particular molecular subtypes 

of breast cancer included: BMI, alcohol consumption, and history of breastfeeding [123]. 

 

1.5 Cell Cycle Regulation and Cancer 

Cancers are characterized by aberrations in cell cycle regulation, leading to inappropriate 

cell replication.  This unchecked cell proliferation is associated with reduction in or loss of 

sensitivity to normal signals to either differentiate or initiate apoptosis.  Many genes are 

responsible for adherence to proper cell cycle function, and interpreting the changes that can 

disrupt this process is integral for understanding the etiology of cancer [124]. 

Two general types of genetic mutations have been shown to contribute to abnormal cell 

proliferation and the development of cancer: gain-of-function mutations and loss-of-function 
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mutations.  Gain-of-function mutations are characterized by the transformation of proto-

oncogenes into oncogenes (mutated genes that once performed normal cellular functions as 

proto-oncogenes, and now contribute to aberrant cell proliferation) [125].  Proto-oncogenes 

perform important functions within the cell, from signal transduction to programmed cell 

death [125].  Conversion of proto-oncogenes into oncogenes can result in unregulated cell 

growth [125].  Studies have shown that individual oncogenes can have identical effects 

leading to gain-of-function or can be cell-type specific, suggesting different genetic 

pathways resulting in cancer [124].  Gain-of-function mutations only require one copy of the 

mutant allele for transformation to the oncogene [124]. 

Loss-of-function mutations occur in tumor suppressor genes and are far more common.  

Only individuals who are homozygous for the mutant allele will exhibit loss-of-function, 

with heterozygotes demonstrating the normal wild-type phenotype.  However, heterozygotes 

will bear an increased risk for developing cancer due to the fact that a subsequent deleterious 

mutation will prevent normal gene function [124].  Loss-of-function mutations in tumor 

suppressor genes have been shown to result in circumvention of normal negative regulation 

that controls entry into the cell cycle [126].  One such example is a loss-of-function 

mutation in the tumor suppressor gene p53; p53 normally functions to arrest cell cycle 

progression in response to DNA damage [127].  Loss of normal p53 function allows for 

unchecked cellular proliferation of mutant DNA. 

 

1.6 The Centrosome and Centrosome Cycle 

The Centrosome is a membrane-less organelle whose function is necessary to maintain 

cell cycle fidelity [128].  It is composed of a pair of barrel shaped centrioles, surrounded by 
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an amorphous pericentriolar material (PCM) [129, 130].  Often referred to as the 

microtubule organizing center of the cell, centrosomes determine the number, length and 

distribution of microtubules.  Animal cells normally contain one centrosome which is 

duplicated once and only once per cell cycle.  Centrosomal duplication involves centriolar 

duplication in G1 of interphase and culminates in dual centrosomes by G2/mitosis.  As this is 

a semi-conservative process, one of the centrioles present in the centrosome will be more 

“mature” than the other and is denoted the mother centriole since it has experienced more 

cell cycles.  Likewise a centriole that has not yet completed a full cell cycle is referred to as 

a daughter centriole.  The distinction is in the number of microtubules each centriole can 

nucleate; the more mature centriole can be identified by appendages protruding from its 

distal end and is capable of nucleating more microtubules [129, 131].  During mitosis, the 

centrosomes nucleate microtubules in a polarized array with their positive ends directed 

outward from the electron-dense PCM [129, 130].  This polymerization of microtubules 

toward either pole of the cell forms the spindle apparatus that will facilitate alignment of the 

chromosomes in preparation for cell division.  The centrosomes are also important for 

cytokinesis and in establishing a midpoint at metaphase for the cleavage furrow to form; 

studies have shown that removal of the centrosome from cells resulted in failure to complete 

cytokinesis [129, 132].  Further studies of individual centriole removal provided evidence of 

the same; after removing one of two centrioles from a cell’s centrosome, Piel et al. 

demonstrated that the daughter cell lacking a centriole failed to complete cytokinesis 

whereas the daughter cell containing a centriole pair went on to complete the cell cycle 

normally [129, 133]. 
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Cells completing cytokinesis and exiting mitosis are characterized by a single 

centrosome, composed of two orthogonally positioned centrioles.  During G1, the centrioles 

separate in preparation for duplication.  Centriole duplication is distinguished by the 

formation of procentrioles on either parental centriole, a process referred to as centriole 

engagement [134].  Formation and orientation of the procentrioles and the duplication 

process are thought to be tightly regimented to prevent more than one replication in the same 

cell cycle.  Tsou and Stearns hypothesize that the physical presence and positioning of the 

procentrioles blocks reduplication [134].  During S phase and throughout G2, the 

procentrioles grow until they achieve their maximum length.  Maturation of the previously 

immature centriole begins during G2 and culminates in the development of distal 

appendages.  The maturation process requires approximately 1.5 cell cycles to complete 

[129, 131].  As the cell transitions from G2 into mitosis, it contains two centrosomes which 

will separate and migrate to either pole of the dividing cell to establish the mitotic spindle.  

A concomitant centrosomal and cell cycle are integral to ensure two independent 

centrosomes at mitosis, bipolar spindle formation, and equal segregation of chromosomes.  

The separation and migration of the centrosomes during mitosis is regulated by several 

kinases, including the serine-threonine kinases of the Aurora family of proteins [129].  

Glover et al. found that mutations in the single Aurora gene of Drosophila result in several 

deleterious manifestations.  In early metaphase, failure of the centrosomes to separate leads 

to monopolar spindles and aneuploidy accompanied by centrosomal amplification in 

daughter cells [135-137], suggesting a loss-of-function of the serine-threonine kinase [136, 

137].   After chromosomal alignment and segregation, cytokinesis ensues resulting in 



19 

 

identical daughter cells each containing a single centrosome.  The centrosome cycle is then 

repeated. 

 

1.7 Centrosomal Amplification and Breast Cancer 

It is important that a cell undergoing mitosis contain two independent centrosomes, each 

located at either pole.  Since the centrosome acts as a microtubule organizing center in the 

dividing cell, the presence of more than two could result in improper formation of the 

spindle apparatus, aberrant segregation of chromosomes, or failure of cytokinesis [138].  

Pihan et al. found amplified centrosomes (more than two centrosomes or more than four 

centrioles) as commonly characteristic of solid malignant tumors [139, 140].  In a study of 

high grade human breast tumors, Lingle et al. had similar findings, reporting increased 

microtubule nucleation in addition to amplified centrosomes [138]. 

Seven hundred eighty-two SNPs from 101 centrosomal genes were analyzed in a 

population-based study of 798 invasive breast cancer cases and 843 controls from the Mayo 

Clinic Breast Cancer Study.  Findings indicated that genes involved in the centrosome 

regulatory pathway were highly enriched with SNPs associated with risk of breast cancer 

(p=4.6x10-50) [141].  Amplified centrosomes are suspected of contributing to aneuploidy by 

increasing the rate of aberrant mitoses resulting in chromosomal missegregation [135, 142].  

Furthermore, Lingle et al. found evidence to support the hypothesis that centrosomal 

amplification occurs early in the tumorigenesis process by demonstrating supernumerary 

centrosomes in ductal carcinoma in situ (DCIS) [142].  Centrosome amplification can result 

from multiple mechanisms, including dissociation of the centrosomal and cell cycles [143] 

and overexpression of Aurora A serine-threonine kinase (AURKA) [135].  Balczon et al. 
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demonstrated unchecked centrosome replication in cells arrested at the G1/S boundary, 

supporting the hypothesis that centrosome replication is driven by activation and 

inactivation of centrosomal regulatory genes during the cell cycle [143].  An investigation 

by Zhou et al. showed that the AURKA locus encoding a serine-threonine kinase associated 

with centrosome regulation was implicated in causing centrosome duplication abnormalities 

and aneuploidy in mammalian cells; overexpression of AURKA was associated with 

centrosome amplification and chromosomal instability [135, 144].  Chromosomal instability 

is the rate of gains or losses of chromosomes, whereas aneuploidy is the cross-sectional 

disposition of the cell with respect to chromosome number [129].  Although aneuploidy is a 

common characteristic of cancer cells [129, 145-148], it is unclear as to whether or not it 

causes or results from disease progression. 

 

1.8 AURKA 

The Aurora A gene, also known as AURKA, encodes a serine/threonine kinase and is 

located on the q arm of chromosome 20 at amplicon 13.2, a region commonly amplified in 

human breast cancers [149, 150].  Isola et al. reported poorer prognosis and survival among 

breast cancer cases exhibiting highly amplified 20q13 [151].  Likewise, Tanner et al. found 

high amplification of 20q13 in primary breast carcinomas to be significantly associated with 

high histological grade, aneuploidy, short disease-free survival, and poor clinical outcome 

suggesting this region contains a gene involved in breast cancer progression [152].  AURKA 

functions in centrosomal maturation and separation, mitotic spindle formation and 

stabilization, and proper chromosome segregation [153].  AURKA activity is localized at the 

centrosome throughout all phases of the cell cycle [129] and is necessary for cell cycle 
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progression [154-157].  In a study of mammary tumorigenesis in mice, Wang et al. 

demonstrated centrosome amplification and aneuploidy in transgenic mice overexpressing 

AURKA in mammary epithelium [158].  Notably, severe chromosomal abnormalities failed 

to trigger apoptosis in cells overexpressing AURKA, allowing for continued proliferation of 

abnormal karyotypes [158].  Tanaka et al. showed overexpression of AURKA in 94% of 

invasive ductal carcinomas of the breast in a cohort of Japanese women [159]. 

Few population-based studies of genetic variation in AURKA have been conducted, and 

those that have been conducted have focused on a few functional variants in European and 

Asian populations.  The T/A coding region polymorphism (F31I) on AURKA that results in 

an amino acid substitution (Phe�Ile) has been studied extensively in European and Asian 

populations.  Functional evidence for a biochemical difference between the proteins encoded 

by the Ile31 variant and the more common Phe31 variant has been reported.  The Ile allele is 

more efficient in inducing cell growth in vitro, which facilitates the oncogenic effect of 

AURKA [160].  The Ile-Ile genotype has been associated with increased aneuploidy in 

human colon tumors, compared to the more common Phe-Phe genotype [161].  Sun T. et al. 

found increased risk for breast carcinoma associated with the Ile/Ile genotype in a case-

control study of unrelated Han Chinese women [162].  Additional studies of (F31I) in both 

Chinese [161, 163] and European [164] populations failed to replicate the finding.  A 2011 

meta-analysis conducted by Sun H. et al., which included 11 case-control studies, reported a 

slight inverse association between the Ile/Ile genotype and odds of breast cancer (OR=0.857, 

95% CI: 0.742-0.991), but only in Asian populations [165].  Overall, the evidence for an 

association between the F31I polymorphism and risk for breast cancer is summarized in 

Figure 2.14.  Another coding region polymorphism (V57I) on AURKA resulting in a 
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valine�isoleucine substitution has been investigated for potential association with risk of 

breast cancer.  Egan et al. reported no association with breast cancer risk among European 

women with the Ile/Ile genotype [164].  However, examining a relatively common genotype 

combining the two polymorphisms (31I-57V/31I-57V), Egan et al. reported a 2-fold 

increase in risk of breast cancer (OR=1.96; 95% CI: 1.01-3.79) [164].  A study by Dai et al. 

investigating both (F31I) and (V57I) reported no association between the combined (31I-

57V/31I-57V) genotype and risk of breast cancer in a population-based study of Chinese 

women [161].  Evidence for purported breast risk loci on AURKA are summarized in Table 

5. 

Because AURKA is strongly involved in centrosomal regulation, and aberrations in the 

centrosomal cycle lead to aneuploidy, polymorphisms on AURKA may also be more strongly 

associated with subtypes of breast cancer that are known to demonstrate relatively high 

levels of aneuploidy; namely, triple-negative and basal like breast cancers [108, 113].  

Relative to all other subtypes, basal like and triple-negative breast cancers are more likely to 

demonstrate higher levels of aneuploidy, with other subtypes demonstrating a more variable 

degree of aneuploidy [113].  This proposal will be the first to investigate AURKA’s 

association with intrinsic subtype of breast cancer. 

 

1.9 BRCA1 and Interacting Genes: BARD1, BRIP1, and ZNF350 

AURKA is not the only centrosomal regulatory gene that has been associated with breast 

cancer.  BRCA1 proteins are involved in centrosomal regulation as well, and are known to 

interact with AURKA proteins [166].  The Aurora-A kinase phosphorylates BRCA1 and 

regulates BRCA1 mediated inhibition of centrosome-dependent microtubule nucleation 
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[167].  Ruan et al. reported a significant interaction between haplotypes on AURKA and 

BRCA1 in a Han Chinese population, warranting further investigation in different 

populations [166].  Other purported risk loci on BRCA1 are summarized in Table 6. 

Genetic variants conferring high risk for breast cancer are not sufficient to cause breast 

cancer.  Even for carriers of mutations in the highly penetrant BRCA1 and BRCA2, the 

distribution of risk varies suggesting possible gene-gene or gene-environment interactions 

that affect overall risk [29].  Evidence supporting the multiplicative joint effects of low-

penetrance genes on breast cancer risk has been reported by Antoniou et al. [28].  BARD1, 

BRIP1 and ZNF350 are three putative low penetrance breast cancer susceptibility genes.  

The BARD1 protein interacts with BRCA1 to form a heterodimer complex 

BRCA1/BARD1 [168]. By itself, BRCA1 confers an ubiquitin ligase activity that is essential 

for its normal tumor suppression action, namely in coordinating DNA repair [168].  

However, when complexed with BARD1, the ubiquitin ligase activity is markedly enhanced 

[168].  This interaction with BRCA1 suggests a possible role for BARD1 in DNA repair 

processes.  Mutations in BRCA1 are known to deactivate the ubiquitin ligase activity of the 

BRCA1/BARD1 heterodimer complex [168, 169], which has been correlated with its tumor 

suppression function [170].   

Germline mutations in BARD1 were demonstrated in a cohort of 40 Italian families with 

a history of breast and breast/ovarian cancer whose probands were chosen due to their lack 

of BRCA1 mutations [171].   The Nordic collaborative study has reported that a specific 

BARD1 variant (Cys557Ser) may represent a common breast cancer susceptibility allele 

[172, 173].  In contrast, a Japanese case-control study found little to no evidence supporting 

a role for mutations in BARD1 contributing to familial breast cancer risk [174]. 
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BRIP1 encodes a helicase that binds directly to the C-terminus of BRCA1 and directly 

contributes to the double-strand break repair function of BRCA1 [175].  Cantor et al. found 

germline mutations in BRIP1 affecting the helicase domain among breast cancer patients 

with normal BRCA1 but not among controls, implicating BRIP1 as a potential low-

penetrance gene that contributes to familial breast cancer risk.  Further evidence of BRIP1’s 

important association with BRCA1 was noted: missense and deletion mutations in the C-

terminus of BRCA1, which inactivated its normal double-strand break repair function, also 

inhibited BRIP1 binding, suggesting a functional role in DNA repair [176]. 

ZNF350 is a corepressor of GADD45, which is involved in cell cycle arrest at the G2/M 

checkpoint subsequent to DNA damage [177].  GADD45 is regulated by both ZNF350 and 

BRCA1 [177, 178].  The interaction of ZNF350 with BRCA1 is necessary for the modulation 

of GADD45 [179].  ZNF350 has been shown to negatively regulate overexpression of 

BRCA1 [177], but its role in human carcinomas is largely unknown [180]. 

Due to their interactive roles with BRCA1, BARD1, BRIP1 and/or ZNF350 may show 

gene-gene interactions in association with odds of breast cancer with other BRCA1-

interacting genes, such as AURKA. 

 

1.10 Summary—Background and Significance 

Breast cancer still represents a public health burden in the United States.  Growing 

etiologic understanding of the heterogeneity of breast cancer will be crucial to future 

prevention and treatment, especially in light of racial disparities in intrinsic breast cancer 

subtype.  As our understanding of breast cancer heterogeneity improves, environmental and 

genetic risk factor investigations may become more focused and informative.  Given the 

unique CBCS population, this study is innovative in its attempt to further characterize racial 
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differences in breast cancer subtype using a candidate gene approach.  This study 

investigated important genes involved in cell cycle regulation that were carefully chosen for 

their suspected role in oncogenesis. 

Due to its function as an important centrosomal and cell cycle regulator, AURKA may 

play a significant role in oncogenesis, especially with respect to the proliferation of 

aneuploid cells—a common feature of basal-like tumors.  Although AURKA has been 

investigated in large population-based studies, these studies have been largely conducted 

among European and Chinese individuals.  In light of a disproportionate number of basal-

like cases among African American women, and due to previous investigations’ findings 

that basal-like and triple negative breast tumors demonstrate higher degrees of aneuploidy, 

the CBCS offers a novel opportunity to evaluate AURKA in African American women. 

This study was the first to investigate statistical interactions between BRCA1 and 

AURKA in African American women with breast cancer.  Since BRCA1 is known to be an 

important regulator of the cell cycle, and since BRCA1 proteins are known to interact with 

AURKA proteins, it’s reasonable to suspect gene—gene interactions between them.  In 

addition, three other BRCA1-interacting genes (BARD1, BRIP1, and ZNF350), which have 

not been investigated heavily with respect to breast cancer rate, were also investigated for 

statistical interaction with AURKA.
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Chapter 2. Study Design and Methods 

 

2.1 Specific Aims 

Breast cancer continues to represent a tremendous health burden in the United States.  

The American Cancer Society estimates that 30% of all cancers diagnosed among American 

women in 2011 will be invasive breast cancers, making them the most commonly diagnosed 

cancers in the U.S. [1].  After cancers of the lung and bronchus, breast cancer is the leading 

cause of cancer death in American women [1].  Traditionally, incidence and mortality 

statistics have been reported by race/ethnicity under the assumption that breast cancer is a 

single disease.  However, recent findings have established the significant heterogeneity in 

breast cancer by identifying at least five distinct subtypes that vary in their gene expression 

profiles and in their responsiveness to endocrine therapies [9,11,12,31].  The implications 

may be clinically important: differences in gene expression patterns suggest differences in 

tumor biology. 

Differences in gene expression and tumor biology may contribute to the significant 

disparity in breast cancer incidence and mortality that exists between African Americans and 

Caucasians.  Although incidence rates are higher among Caucasian women, African 

American women are 38% more likely to die from breast cancer [32].  Previous research has 

shown that risk factors for breast cancer may differ by subtype [23], suggesting variable 

molecular pathways of carcinogenesis by subtype.  Of particular significance is the higher 
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prevalence of basal-like breast tumors among younger African American women [2,13,23].  

Basal-like breast cancers have poor prognoses and relative insensitivity to hormonal or 

targeted therapies [11,12,33] due to the absence of expression of estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth factor receptor (HER2) in these 

“triple negative breast cancers”.  Compounding the concern for treatment options is the 

tendency for basal-like breast cancers to form distant metastases [18-21]. 

Although the relative prognosis of basal-like breast cancer is poor, environmental and 

genetic risk factors contributing to the etiology of this subtype remain unknown.  Hereditary 

breast cancers only account for 5-10% of all breast cancer cases, while 12-20% of all breast 

cancer cases are triple-negative or basal-like [2,3,13,23,34-40].  Variation in the proportion 

of triple-negative or basal-like cases relative to other intrinsic subtypes may stem from 

differences in population characteristics.  Mutations in the highly penetrant genes BRCA1 

and BRCA2, in addition to all other known breast cancer susceptibility genes, are only likely 

to account for 20-25% of hereditary cases [3,34,41-43].   Other hereditary breast cancer 

susceptibility genes remain to be discovered [4,5-8]. 

It has been suggested that common low-penetrance susceptibility genes may play an 

important role in the etiology of breast cancer, individually conferring small increases in risk 

[4,5-8].  In aggregate, these independently minor increases in risk may become substantial 

[4,5-8].  AURKA, encoding a serine/threonine kinase, is a putative low-penetrance tumor 

susceptibility gene due to its prominent role in cell cycle regulation [25].  AURKA 

overexpression has been demonstrated in several types of cancer and correlated with poor 

prognosis [24,44,45].  Previous studies of AURKA and risk of breast cancer have yielded 

conflicting results, and have been largely limited to investigations of a single functional 



43 

 

polymorphism in Asian [27-29] and Caucasian [26,30,46-49] populations.  The main 

objective of this study was to determine the association between SNPs on AURKA and 

breast cancer among African Americans and Caucasians. 

It has been suggested that overexpression of AURKA in conjunction with inactivation of 

BRCA1 could be associated with tumor development and progression [50].  Due to its 

prominent role in cell cycle regulation and the relatively high risk for breast cancer 

conferred by mutations in BRCA1, BRCA1 and lesser penetrant genes encoding BRCA1-

interacting proteins are also logical targets for further investigation [34].    The secondary 

objective of this study was to determine if hereditary genetic variation in each of three 

BRCA1-interacting genes is associated with odds of breast cancer.  The tertiary aim of this 

study was to evaluate whether a gene-gene interaction exists between SNPs on AURKA and 

SNPs on BRCA1 and the BRCA1-interacting genes: BARD1, BRIP1, and ZNF350 in 

association with breast cancer. 

To address these objectives, a case-control analysis of data from a population-based study 

of breast cancer (The Carolina Breast Cancer Study, CBCS) was performed.  CBCS data 

was collected on 1,972 cases of primary invasive breast cancer (742 African American 

cases, 1,230 Caucasian cases) and 1,776 controls (658 African American controls, 1,118 

Caucasian controls) residing in North Carolina.  Because basal-like breast cancers render a 

relatively poor prognosis [2] and luminal A breast cancers are the most commonly 

diagnosed [13], the main objectives of this investigation focus on those subtypes.  However, 

luminal B, HER2+/ER-, and unclassified breast cancer subtypes were also examined for 

associations with AURKA, BRCA1 and the BRCA1-inrteracting genes.     
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Summary—Aims 

 

1.) Determine the association between genetic variation in AURKA and breast cancer rate 

(all cases and controls) and intrinsic breast cancer subtype rate. 

 

a.) Determine the association between AURKA SNPs and breast cancer in a race-

stratified analysis using case and control subjects enrolled in CBCS, with adjustment 

for population stratification using ancestry informative markers. 

 

b.) Explore the association between AURKA SNPs and breast cancer subtype in a pooled 

analysis of African Americans and Caucasians, with adjustment for population 

stratification using ancestry informative markers. 

 

Hypothesis 1. There will be a significant positive association between SNPs on AURKA and 

breast cancer overall. 

 

2.) Determine the association between genetic variation in BRCA1, BARD1, BRIP1, and 

ZNF350 and breast cancer rate (all cases and controls) and intrinsic breast cancer subtype 

rate. 

 

a.) Determine the association between SNPs on BRCA1, BARD1, BRIP1, and ZNF350 

and breast cancer in a race-stratified analysis using case and control subjects enrolled 
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in CBCS, with adjustment for population stratification using ancestry informative 

markers. 

 

b.) Explore the association between SNPs on BRCA1, BARD1, BRIP1, and ZNF350 and 

breast cancer subtype in a pooled analysis of African Americans and Caucasians, with 

adjustment for population stratification using ancestry informative markers. 

 

Hypothesis 2. There will be significant positive associations between SNPs on each of 

BRCA1, BARD1, BRIP1 and ZNF35 and breast cancer overall.   

 

3.) Explore whether a gene-gene additive interaction exists between AURKA and BRCA1 

and BRCA1-interacting genes (BARD1, BRIP1, and ZNF350) in association with all breast 

cancers, with adjustment for population stratification using ancestry informative markers. 

 

Hypothesis 3. There will be gene-gene additive interactions between AURKA and each of 

BRCA1, BARD1, BRIP1 and ZNF350 in association with all breast cancer. 

 

2.2 Purpose 

The primary purpose of this study was to estimate the association between genetic 

variation in the cell cycle regulatory gene AURKA and rate of breast cancer.  Specifically, 

the outcomes of primary interest were the luminal A and basal-like subtypes, but in order for 

this investigation to be more comparable to existing literature, and to estimate an overall 

association, all breast cancer without respect to subtype was also an outcome of interest.  
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Since the highly penetrant BRCA1 gene is a known risk factor for breast cancer, and since 

BRCA1 proteins are known to interact with AURKA proteins, a secondary aim of this 

dissertation was to estimate the association between genetic variations in BRCA1 and select 

BRCA1-interacting genes and rate of breast cancer.  The final aim of this study was to 

estimate gene-gene additive interactions between tag and candidate polymorphisms in 

AURKA and tag and candidate polymorphisms in each of BRCA1 and select BRCA1-

interacting genes in association with breast cancer.  Data from the CBCS, a population-

based case-control study of breast cancer in African American and Caucasian women 

residing in North Carolina, was used to conduct this investigation. 

Germline DNA collected from CBCS participants provided biallelic genotype data on tag 

and candidate single nucleotide polymorphisms (SNPs) for the genes of interest.  Breast 

cancer subtype data for case participants was acquired from medical records and/or paraffin-

embedded tumor tissue.  Logistic regression was employed to estimate the association 

between genotype and rate of breast cancer (all breast cancer, intrinsic subtype of breast 

cancer).  In addition to potential main effects demonstrated by SNPs on BRCA1 and BRCA1-

interacting genes: BARD1, BRIP1, and ZNF350, gene-gene additive interaction was 

examined by considering interactions between SNPs on each of BRCA1, BARD1, BRIP1, 

and ZNF350 and SNPs on AURKA.  Due to the large number of SNPs under investigation, 

interactions were examined based on main effects and/or potential functionality.  Those 

SNPs showing statistically significant main effects on AURKA were further examined for 

statistical interaction with any SNPs showing statistically significant findings on each of the 

BRCA1-interacting genes.  Additionally, candidate SNPs (potentially functional) were 
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identified on each of the candidate genes of interest using a decision tree (Figure 2.7), and 

were included in the interaction study. 

 

2.3 The Carolina Breast Cancer Study 

The Carolina Breast Cancer Study (CBCS) is a population-based, case-control study of 

genetic and environmental risk factors for breast cancer among African American and 

Caucasian women residing in North Carolina [51].  CBCS study design and methods have 

been previously outlined by Newman et al. [51].  Study participants were recruited and 

selected from 24 contiguous counties in central and eastern North Carolina in an effort to 

accrue a representative sample of African American and rural participants (Figure 2.6) [51]. 

CBCS recruitment was conducted in two phases—from 1993 through 1995 (Phase 1) and 

from 1996 through 2001 (Phase 2).  Women living in the study area between the ages of 20 

and 74 and diagnosed with invasive breast cancer for the first time were eligible cases in 

Phase 1.  Phase 2 included women diagnosed with in situ breast cancer as well as those 

diagnosed with invasive breast cancer.  Cases were identified using a rapid case 

ascertainment system via the North Carolina Central Cancer Registry (NCCCR).  After 

eligibility criteria were met, randomized recruitment case sampling was undertaken to 

ensure adequate representation of African American and younger women.  Case sampling 

probabilities were as follows: 100% of African American women between the ages of 20 

and 49, 75% of African American women between the ages of 50 and 74, 67% of Caucasian 

women between the ages of 20 and 49, and 20% of Caucasian women between the ages of 

50 and 74.  Phase 2 in situ cases did not undergo random recruitment sampling; all eligible 
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in situ cases were enrolled.  After selection via sampling, potential case participants were 

contacted only after requesting and receiving permission from the patient’s physician [51]. 

Controls were selected from two sources: women younger than 65 were selected from a 

list maintained by the North Carolina Division of Motor Vehicles; women between the ages 

of 65 and 74 were selected from Health Care Financing Administration records.  Controls 

were sampled from these lists using modified randomized recruitment, and sampling 

fractions were designed to ensure frequency-matching of cases to controls by race and five-

year age interval [52,53]. 

Potential cases and controls were contacted first by letter and then by telephone, if 

available.  Women agreeing to participate were scheduled for an in-home visit by a 

registered nurse interviewer.  The interviewer administered a study questionnaire and 

collected anthropometric measurements in addition to a 30cc blood sample.  Germline DNA 

was extracted from peripheral blood lymphocytes and stored for future analysis [51].  

Written consent was obtained from cases to retrieve medical records and paraffin-embedded 

tumor tissue.  The CBCS pathologist performed a standardized review of all breast tissue 

received to confirm the diagnosis of breast cancer and to characterize histology [51].  Slides 

were cut from paraffin blocks for molecular and immunohistochemical (IHC) assays, 

procedures for which have been described previously [2,54,55]. 
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2.4 Immunohistochemistry 

2.4.1 Receptor Status 

For invasive cases, ER and PR status was primarily obtained from medical records 

(80%).  Various clinical laboratories determined ER/PR results on these cases.  

Approximately half used IHC on paraffin-embedded tissue, and employed cutoffs for 

receptor positivity from more than 0% to more than 20%.  The other half performed 

biochemical assays on frozen tissue with cutoffs for receptor positivity of 10-15 fmol/mg 

[55].   For approximately 11% of invasive cases, ER/PR status was not available in the 

medical record; however, paraffin-embedded tissue was available and ER/PR status was 

ascertained by the UNC Immunohistochemistry Core laboratory.  For these cases, IHC 

scoring was based on UNC Hospitals Department of Pathology standards, using a cutoff of 

5% positive nuclei staining in invasive breast cancer cells [2].  A random sample of ER+ and 

ER- cases based on medical record abstraction was drawn to compare with IHC performed 

by the UNC Immunohistochemistry Core laboratory.  A kappa statistic of 0.62 and 

concordance of 81% resulted from the comparison, indicating good agreement [2,56].  The 

remaining 9% of invasive cases had missing data for ER/PR status [2]. 

HER2 status in invasive cases was determined using the CB11 monoclonal antibody as 

previously described by Millikan et al. [54].  HER2 positivity was defined by weak to strong 

staining of membrane or membrane plus cytoplasm in at least 10% of tumor cells [2].  

Interscorer agreement was evaluated on a subset of cases, yielding a kappa statistic of 0.58 

and concordance of 82% resulted from the comparison overall concordance of 81% [2].  

HER1 and cytokeratin (CK) 5/6 characterization have been previously described [10,57], 
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and invasive cases demonstrating any staining were classified as positive [2].  All assays 

were performed by the UNC Immunohistochemistry Core laboratory. 

ER, HER2, CK5/6, and HER1 classification and determination for in situ cases were 

described in detail by Livasy et al. [58].  ER+ was defined by an Allred score of above 2 for 

ER nuclear staining; HER2 membrane positivity was defined by 3+ intensity with DAB 

chromogen staining and 2+ or 3+ intensity with SG chromogen staining in >10% of cells 

[58].  CK5/6 positivity was determined by the presence of any membrane staining.  HER1 

positivity was defined by any cytoplasmic staining [58]. All assays were performed by the 

UNC Immunohistochemistry Core laboratory.  PR status was not determined for in situ 

cases due to its high correlation with ER expression and to preserve tissue [13]. 

 

2.4.2 Intrinsic Breast Cancer Subtypes 

CBCS intrinsic breast cancer subtypes were based on expression of ER, PR, HER2, CK 

5/6, and HER1 according to Table 2.1 [2].  Tumors that were negative for expression of all 

five markers were unclassified.  Negative staining for all markers is not necessarily 

indicative of receptor negativity in the tumor, and can result from poor tumor block quality 

or inadequate tissue present in the tumor block [2]. 

 

2.5 CBCS Participation 

Detailed CBCS participation rates are presented in Table 2.2.  The overall response rate 

was ~77% for cases and ~57% for controls.  Higher participation rates were noted among 

Caucasians, regardless of case status or age.  The lowest participation rates were found in 

younger African American controls, aged 20-39 years (40.5%).  Among cases, the lowest 
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rates were noted in African American women older than 64 years (65.8%), while the highest 

rates were demonstrated in Caucasians aged 20-39 years (83.3%).  Among controls, the 

highest participation rates were found in Caucasian women older than 64 years (68.7%).  

Among cases, ~6% were ineligible mostly due to a prior history of breast cancer [59].  

Approximately 10% of controls did not meet eligibility criteria, primarily due to current 

residence outside the study area [59].  A total of 2,279 incident cases and 1,988 controls 

were enrolled. 

DNA was acquired and successfully genotyped for 2,013 of 2,279 enrolled case 

participants (88%) and 1,787 of 1,988 control participants (90%).  Among participants who 

were successfully genotyped, 38% of both cases and controls were African American.  IHC 

intrinsic breast cancer subtype data was available for 1,412 of 2,279 enrolled case 

participants (62%).  IHC intrinsic breast cancer subtype data was successfully acquired for 

1,250 (502 African American, 748 Caucasian) of 2,013 enrolled cases who were 

successfully genotyped (62%).  Of the 2,279 cases enrolled, inadequate tumor tissue and/or 

incomplete IHC data was available for 867 participants, who were excluded from analyses.  

Included cases were more likely than excluded cases to be stage II (40% vs. 25%) and less 

likely to be stage I (30% vs. 37%).  There was little difference between included and 

excluded cases with respect to stage III (8% vs. 7%) or stage IV (2% vs. 3%).  There was no 

statistical difference in age or menopausal status between included and excluded cases.  

African American women were more likely to have adequate tumor tissue and/or complete 

IHC subtype data compared to Caucasian women (36% of excluded cases were African 

American).  African American case participants were more likely to have larger tumors and 

later stage at diagnosis compared to Caucasian case participants [13]. 
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2.6 Characteristics of CBCS Case Participants 

Characteristics of 1,412 CBCS case participants with IHC data (but not necessarily 

successful genotype data) are presented in Table 2.3.  Case participants with basal-like 

tumors were younger than women with other tumors and more likely to be African 

American.  A higher prevalence of basal-like tumors was also noted among premenopausal 

participants.  The prevalence of luminal-A and luminal-B tumors was higher among 

Caucasians and postmenopausal women. 

 

2.7 CBCS Genotyping 

SNPs in this study were genotyped by the University of North Carolina Mammalian 

Genotyping Core using the Illumina Golden Gate Assay (Illumina, San Diego, CA).  A 

combination of tag and candidate SNPs were selected for genotyping (Table 2.4).  Tag SNPs 

are single nucleotide polymorphisms that are highly correlated with SNPs on the same gene 

or chromosome, but don’t necessarily have any functionality.  The high degree of correlation 

allows for more efficient genotyping in order to characterize genetic variation for a specific 

chromosomal region.  Candidate SNPs are those that alter gene function or expression, or 

are suspected of altering gene function or expression.  Tag SNPs were identified for 

Caucasians and African Americans from CEU (Utah residents with ancestry from northern 

and western Europe) and YRI (individuals of Yoruban descent from Idaban, Nigeria) 

HapMap populations respectively [60], and selected using the Tagger program developed by 

de Bakker et al. [61].  Tag SNPs were selected based on a LD threshold of r2=0.80 and a 

minimum minor allele frequency (MAF) of 0.10 separately for both CEU and YRI 

populations.  Tag SNPs in each population were then combined and CBCS participants were 
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genotyped for the pooled list.  Inclusion of suspected functional SNPs identified from the 

literature review was based on several criteria: relevance to plausible molecular pathways 

related to breast cancer, consistency of results related to breast cancer, and a minor allele 

frequency of at least 0.05 in CBCS participants.  Assay intensity data and genotype cluster 

images for all SNPs were reviewed individually.  To ensure quality control of genetic data, 

SNPs with low signal intensity or SNPs that were unable to be distinguished by genotype 

cluster were excluded.  Detailed genotyping procedures and quality control measures were 

described previously [62,63].   

The overall genotyping rate in CBCS was ~66% for case participants and ~56% for 

control participants.  Among case and control participants, the highest genotyping rates were 

noted in young Caucasians (~77%, ~68% respectively) while African American women 

older than 64 years exhibited the lowest rates (~50%, ~45% respectively) (Table 2.2). 

 

2.8 Population Stratification and Ancestry 

Population stratification is a form of confounding caused by differences in allele 

frequencies between cases and controls that result from ancestral disparities, as opposed to 

real associations between a genetic marker and disease [64,65].  If the genetic marker under 

study shows significant variation across ancestral groups, and if these ancestral groups also 

differ in their baseline risk for the outcome, then false positive associations could arise 

between genotypes in a particular subgroup and the outcome of interest, regardless of 

whether the locus is in LD with the true risk allele [64]. 

Several methods for assessing population stratification have been developed.  Genomic 

control, developed by Devlin et al., employs the testing of multiple unrelated (null) 
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polymorphisms, in addition to candidate loci, throughout the genome to estimate the degree 

of population substructure.  Χ2 test statistics are computed for both null and candidate loci.  

Population stratification increases the variability and magnitude of the test statistics 

observed in the null loci.  Based on this variance, a multiplier describing the degree of 

population stratification can be derived and used to adjust significance tests for candidate 

loci [66].  The genomic control approach works under the assumption that the inflation of 

variance due to population stratification is constant for all null loci [66].  However, SNP 

allele frequencies can differ markedly across ancestral populations.  Employing genomic 

control could result in an overly conservative adjustment for markers showing high variation 

across populations and/or an excessive adjustment at loci with low variability across 

populations [67].  A decrease in power may be noted under such circumstances. 

Another commonly employed method for controlling population stratification is the 

principal components analysis (PCA).  The first step in this process is to examine the sample 

covariance matrix.  If the covariance between any two genetic markers is not equal to zero, 

then a linear relationship exists between them and the strength of that relationship is 

represented by the correlation coefficient.  Via principal axis transformation, correlated 

markers are transformed into new uncorrelated markers known as principal components.  

Depending on the degree of ancestral variability in the population, the number of principal 

components will be less than or equal to the number of original markers under consideration.  

The principal axis transformation is defined in order that the first principal component 

should account for the maximum variability in the population, with each subsequent 

principal component accounting for the maximum residual variability in the population 

while maintaining no correlation with previous principal components [68].   After 
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determining the principal components in the population, methods can be employed to adjust 

for population stratification.  Price et al. have developed a method employed in their 

software package, EIGENSTRAT, which identifies axes of variation in a sample population 

and then continuously adjusts genotypes and phenotypes by amounts attributable to ancestry 

along each axis.  These ancestry-adjusted genotypes and phenotypes are then used in 

association analyses [67].  Principal component-based adjustment for population 

stratification is useful when analyzing hundreds of thousands of markers due to its efficiency 

in identifying population structure [67].  The disadvantage is that there is ambiguity in how 

each axis is defined without a standard reference sample with which to compare them. 

The CBCS used the software package Structure to infer the number of distinct ancestral 

populations (K) present in the study population [69].  Results indicated the most likely 

number of distinct populations was K=2.  CBCS then employed maximum likelihood 

estimation to determine individual ancestry using a predetermined set of 144 ancestry 

informative markers (AIMS) that were selected to maximally distinguish between African 

and European ancestry [62].  AIMs are a set of polymorphisms exhibiting substantially 

different allele frequencies between different populations.  They can be used to more 

accurately group people who share similar markers and phenotypes, like self-reported race.  

CBCS employed AIMs chosen to distinguish between African and European ancestries by 

maximizing differences in allele frequencies between the two ancestral populations and by 

maximizing Fisher’s information criterion (FIC) for distinguishing between African and 

European ancestries [62,70].  FIC is the inverse of the maximum likelihood estimation of the 

ancestral proportion and can be used to increase the efficiency of AIM selection [71].  FIC 

was based on allele frequencies in HapMap Project populations from Yoruba in Ibadan, 
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Nigeria (YRI) and Utah residents with ancestry from northern and western Europe (CEU) 

[60,62].  Each participant’s proportion European or African ancestry is computed and this 

continuous measure of individual ancestry is then used to adjust association analyses.  

Detailed statistical methods have been previously described [72]. 

The median proportion of African ancestry was 81% among participants self-reporting as 

African American and 6% among those self-reporting as non-African American.  Proportion 

African ancestry will be used as a variable in regression models and will range from 0 to 

0.96 based on the maximum individual proportion African ancestry in the study population 

[63]. 

 

2.9 Modeling Genotype Effects 

SNP allele and genotype frequencies were calculated for the CBCS study population.  All 

SNPs genotyped for this study are biallelic, meaning a participant may have one of three 

potential genotypes at any locus.  For example, if a particular locus is comprised of major 

allele X and minor allele Y, then a participant may be homozygous for the major allele 

(XX), heterozygous (XY,YX), or homozygous for the minor allele (YY).  Three genetic 

models were considered for SNP main effect analyses.  Since the mode of inheritance for 

SNPs genotyped in CBCS participants is unknown, and to maximize our power to detect an 

association, we employed 1-degree of freedom dominant models for SNPs which assume 

that a single risk allele (usually the minor allele) is sufficient to impact risk of the outcome.  

Under this model, homozygotes for the major allele act as the referent group and are coded 

as 0.  Both heterozygotes and homozygotes for the minor allele are assumed to have the 

same risk for the outcome, so they are grouped together and coded as index. 
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Unconditional logistic regression was used to estimate associations between SNP 

genotypes and all breast cancer (all cases and controls) and intrinsic subtype of breast 

cancer.  Specifying all breast cancer as an outcome provides an overall estimate of effect 

that is comparable to other case-control studies that do not distinguish between subtypes of 

breast cancer.  Although the primary interests of this study are luminal A and basal-like 

breast cancers, all intrinsic subtypes were examined for associations with SNP genotypes.  

Odds ratios and 95% confidence intervals were calculated to estimate the association 

between genotype and each of the outcomes of interest.  

The dependent variable Y can take on two possible values (Y=1 if the outcome is present, 

and Y=0 if otherwise).  The outcome probability that is modeled is ( )Pr 1|Y xπ = = , where 

( )1,..., sx x x=  is the vector of s independent variables.  

 

The binary logistic model function then has the form: 

 'logit( ) log
1

x
ππ α β

π
 ≡ = + − 

 

where α  is the intercept parameter and ( )1
' ,..., sβ β β=  is the vector of s regression 

coefficients [223].  For example, the dominant binary logistic model for each SNP will be: 

�����	�� = 1|� = 
� = 	� + ��
� + �
�
� 

where 1β  is the regression coefficient for the heterozygous or homozygous minor allele 

genotype, 1X  indicates presence or absence of the heterozygous or homozygous minor 

allele genotype ( 1 1X =  for heterozygous or homozygous minor allele genotype, 1 0X =  
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otherwise), ( )3
' ,..., sβ β β=  is the vector of s regression coefficients corresponding to 

confounders, and 3
' ( ,..., )sX X X=  is the vector of s confounders. 

 

 2.10 Gene-gene Interaction 

It has been suggested that overexpression of AURKA in conjunction with inactivation of 

BRCA1 could be associated with tumor development and progression [50].  Due to its 

prominent role in cell cycle regulation and the relatively high risk for breast cancer 

conferred by mutations in BRCA1, BRCA1 and lesser penetrant genes encoding BRCA1-

interacting proteins are also logical targets for further investigation [34].  The secondary 

objective of this study was to determine if hereditary genetic variation in each of three 

BRCA1-interacting genes is associated with odds of breast cancer.  The tertiary aim of this 

study was to evaluate whether a gene-gene additive interaction exists between SNPs on 

AURKA and SNPs on BRCA1 and the BRCA1-interacting genes: BARD1, BRIP1, and 

ZNF350 in association with breast cancer. 

First, main effects were determined for SNPs on AURKA, BRCA1, BARD1, BRIP1, and 

ZNF350.  SNPs demonstrating statistical significance (determined by exclusion of 1 from 

OR confidence intervals) were further scrutinized for additive interaction.  There was 

potential for none of the genotyped SNPs on each of the candidate genes of interest to show 

statistically significant main effects.  For this reason, potentially functional variants on each 

of the candidate genes under investigation were chosen for interaction investigation.  The 

primary criterion for inclusion was based on the likelihood that a SNP was functional 

(Tables 2.11-2.15).  Likelihood of SNP functionality was determined using the FS Score, an 

integrative in silico scoring system for assessing potential SNP functionality based on 
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protein coding, splicing regulation, transcriptional regulation, and post-translation [89].  

SNPs demonstrating FS Scores of ≥0.50 were included in the interaction study (Table 2.10). 

Second, gene-gene interaction was evaluated on an additive scale for selected SNPs by 

calculating the relative excess risk due to interaction (RERI) based on the formula 

RERI=OR11 – OR01 – OR10 + 1 [224], with 95% confidence intervals calculated based on 

the method proposed by Hosmer and Lemeshow [75]. 

 

2.11 Methodological Considerations 

Before association analyses were conducted, Fisher’s exact tests of HWE were performed 

for SNPs on the genes under study using SAS ver. 9.3.  HWE tests were performed on 

genotype data provided by controls and stratified by self-reported race, since deviations in 

cases can be indicative of an association between a SNP and the disease or a SNP in LD 

with a SNP associated with the disease [76].  Deviations from HWE in controls can occur 

due to genotyping error, violations of the Hardy-Weinberg principle [77], or chance.  For 

SNPs that deviate from HWE (p<0.05), genotype cluster images were reviewed to rule out 

any artifact in genotype calling.  SNPs that did not meet the following criteria among 

controls were excluded from analysis: (a) minor allele frequency ≥5%, (b) genotyping call 

rate ≥80% for Illumina and ≥95% for TaqMan, (c) HWE p>0.05 and genotype cluster plot 

indicating distinction between genotypes. 

Previous sensitivity analyses to assess outcome misclassification were conducted by 

Nyante et al. to evaluate the effect of molecular subtype misclassification, which was found 

to be minimal.  However, there are varying definitions for characterizing the basal-like 
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subtype, and even those investigators employing similar classification criteria do not report 

complete agreement [10,14,15]. 

Selection bias is another methodological concern and occurs when the study population 

does not represent the target population [79].  Selection bias is usually introduced during the 

recruitment of study participants and/or during the process of following participants up [79].  

Selection bias can also be introduced if missing data is related to case or exposure status.  In 

this investigation, cases and controls were frequency matched on race and five-year age 

interval which should mitigate the effects of selection bias since both age and race were 

included in regression models.  Also, any potential residual confounding by ancestry within 

race strata was adjusted for by including a model term accounting for proportion of African 

ancestry.  It is also possible that those enrolled participants who did not contribute genotype 

data for the analysis may be systematically different than those participants who did 

contribute genotype data with respect to race and age.  Since race and age were both 

adjusted for in regression models, selection bias that could occur should be minimized. 

It is important to consider the introduction of selection bias from missing values for the 

exposure or the outcome in CBCS cases and controls.  If the number of case and/or control 

participants in the analytic cohort with missing values for either exposure or outcome is 

small, then it should be acceptable to assume those values are missing at random and 

excluding them from the analysis should not introduce any significant bias.  However, if a 

significant proportion of participants are excluded due to missing values there is the 

potential for bias to be introduced if those participants are selected out of the analysis based 

on a factor associated with either the outcome (IHC subtype) or the exposure (genotype); 

that is to say, if participation is related to IHC subtype, genotype, or some integral factor that 
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influences IHC subtype or genotype.   It is implausible for genotype to be associated with 

participation, so missing genotype data will be missing at random.  On the other hand, IHC 

subtype could be associated with other tumor characteristics that could be associated with 

selection into the analytic cohort.  For example, if those case participants missing subtype 

data are excluded from analysis and the distribution of tumor size is different between the 

excluded group and the included group (i.e. the included group being those case participants 

providing both IHC subtype data and genotype data) then bias could be introduced.  The 

bias could be introduced if “missingness” is associated with tumor size.  The most likely 

reasons for missing IHC subtype data are lack of hospital participation with respect to 

procurement of tumor tissue, lack of patient consent, and lost specimens.  However, it is 

possible that smaller tumors are less likely to be procured due to the higher probability of 

exhausting the tissue, and smaller tumors may be associated with a particular subtype.  

However, subtype distributions were similar between cases with and without genotyping 

data.  Likewise, genotyping distributions were similar between cases with and without 

subtype data.  This suggests that the subtype distribution in cases with genotype data is 

likely representative of the subtype distribution in all cases.  Similarly, the genotype 

distribution in cases with subtype data is likely representative of the genotype distribution in 

all cases. 

For controls, genotype would have to be the factor by which participants are 

preferentially selected into the study in order for selection bias to be a problem.  It is 

possible that controls may be less likely than cases to donate blood for DNA procurement.  

In the CBCS, participation with respect to DNA procurement between cases and controls is 
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comparable.  Since cases were matched to controls, the factors affecting selection should be 

the same or similar between cases and controls. 

Results from this study were interpreted and reported based on magnitude of effect 

estimate, precision, and observed patterns.  Precision of estimates was evaluated based on 

relative values of confidence limit ratios, with lower ratios indicating higher precision.  Null 

hypothesis testing and P-values were not used interpret any results or draw conclusions 

about SNP associations with breast cancer. 

 

2.12 Statistical Power 

 

Power was calculated using Episheet [80] based on a distribution of binary genotype 

prevalences ranging from 5% to 30% and main effects odds ratios of 1.25 and 1.50 at an α 

level of 0.05.  Table 2.8 contains power estimates for overall breast cancer by race.  Figures 

2.8-2.13 provide visual context for the change in power as the estimate of effect changes in 

each race group.  Power was also calculated by intrinsic subtype in the combined race group 

and is reported in Table 2.9.  Due to the exploratory nature of the additive interaction 

analysis, power was not calculated for this analysis. 

There was low power to detect an odds ratio of 1.25 for the association between binary 

coded genotype and overall breast cancer in African Americans at all ranges of genotype 

prevalence.  Generally, the same was true for Caucasians although there was moderate 

power to detect an odds ratio of 1.25 at a genotype prevalence of 30%.  There was moderate 

to high power to detect an odds ratio of 1.50 in African Americans when genotype 
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prevalence was between 10% and 30% and high power in Caucasians within the same 

genotype prevalence range.   Overall, there was low power to detect subtype-specific effects. 

Previous case control studies of AURKA and overall breast cancer have reported odds 

ratios ranging from 1.35 to 2.56, which suggests adequate power in CBCS to replicate 

similar findings [50,81]. 

 

2.13 Public Health Impact and Scientific Significance 

There is a clear disparity in age-adjusted mortality between African American women 

and Caucasian women with respect to breast cancer [2].  Reducing the incidence of breast 

cancer in general is a significant public health concern, since breast cancer is the second 

leading cause of cancer death in American women.   Aside from differences in mortality, 

younger African American women are more likely to be diagnosed with basal-like tumors, 

which are associated with poorer survival [2,13].  Recently, O’Brien et al. reported that 

basal-like breast tumors were equally aggressive among African American and Caucasian 

women [83].  This suggests the disproportionate number of basal-like cases among African 

American women may be related to a particular genetic profile.  Identifying genotypes that 

are associated with breast cancer subtype could help to further explain biological differences 

between Caucasian women, who are more likely to present with luminal breast tumors [83], 

and African American women.  In addition, the identification of SNP associations with 

subtypes of breast cancer could lead to distinct preventive measures for women 

demonstrating genetic profiles associated with higher risk for a particular subtype of breast 

cancer. 
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This study conducted a novel investigation of genetic variation in biologically plausible 

candidate genes and association with breast cancer among African American and Caucasian 

women.  The CBCS provides a distinctly under studied population of African American 

participants, who are prone to the basal-like subtype of breast cancer.  The candidate genes 

examined were carefully chosen for their potential roles in oncogensis and cell cycle 

regulation.  A better understanding of common genetic exposures involved in specific breast 

cancer subtype etiology could lead to more specific treatments in the future. 

 

2.14 Strengths and Limitations 

The Carolina Breast Cancer Study is the largest population-based study of breast cancer 

in African American women in the United States.  In addition to the collection of genetic 

data on nearly 70% of cases and 60% of controls, molecular subtype of breast cancer was 

measured using immunohistochemistry in all cases included in the data set under analysis 

(~1,400 cases).  Because the CBCS oversampled the African American population in North 

Carolina, genetic loci that may increase the risk for particular subtypes of breast cancer in 

African American women are more likely to be accurately identified.  With specific regard 

to the main gene of interest, this study was well powered to address a wide range of loci on 

AURKA in relation to breast cancer among African American women.  

Another advantage of this study is the candidate gene approach, focused on biological 

plausibility.  The candidate gene approach allows us to directly test the effects of genetic 

variants on a particular gene in an association study.  A candidate gene study may be limited 

if our understanding of the biology of the disease under investigation is lacking.  However, 

this proposal is guided by the role AURKA is known to play in cell cycle regulation.  
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AURKA and the other genes chosen for this investigation are responsible for distinct 

biological mechanisms that are likely to play a role in cancer etiology and/or progression.  

AURKA in particular was chosen for its prominent role in cell cycle regulation and its 

potential to contribute to the proliferation of aneuploid cells, a common characteristic of 

basal-like breast tumors that may distinguish them from other subtypes [16,17].  BRCA1 was 

chosen due to its role in breast cancer etiology, its involvement in cell cycle regulation, and 

its tendency to be associated with basal-like breast cancers more often than other subtypes 

[12,15,22]. 

This study collected and incorporated adjustment for ancestry informative markers in 

addition to self-reported race to diminish the potentially confounding effects of population 

stratification.  A sensitivity analysis was conducted to evaluate potential misclassification of 

the breast cancer subtypes (Nyante, 2010); misclassification is likely to be minimal and non-

differential. 

I did not expect that any of the SNPs under investigation would be associated with a 

decreased odds of breast cancer, and for this reason power calculations were based on 

expected odds ratios >1.  Although the Carolina Breast Cancer Study is the largest of its 

kind, these analyses were generally underpowered if the true association between locus and 

overall rate of breast cancer is closer to the null value (Table 2.8).  This lack of power will 

be more pronounced in the African American stratum because there are relatively fewer 

African American cases compared to Caucasian cases.  Power to detect subtype-specific 

effects was generally low (Table 2.9), but the innovative nature of the CBCS in 

distinguishing intrinsic subtypes makes this analysis a worthwhile endeavor in an effort to 

generate new hypotheses about the relationships between genetic exposures and breast 
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tumor heterogeneity.  Given the hypothesis that a single locus may contribute only a small 

proportion of the change in risk, I expected that individual risk loci would demonstrate odds 

ratios on the order of 1.2-2.0, with the majority of meaningful risk loci demonstrating odds 

ratios of between 1.5 and 2.0.   

A limitation of this study is that only certain candidate and tag SNPs were evaluated in 

the genes of interest.  This study did not capture all of the genetic variability in these genes, 

however—tag SNPs were chosen by the CBCS primary investigators to maximize 

interrogation of the selected genes in two HapMap populations (CEU and YRI).  It is 

possible that these tag SNPs may not be representative of the CBCS population, however 

this strategy was chosen because specific data on African Americans and Caucasians living 

in North Carolina are not available.  Candidate SNPs were selected based on an exhaustive 

literature review.  Nevertheless, potentially functional loci may have been ignored or missed 

which limits the ability to fully characterize the risk conferred by the genes of interest. 

 

2.15 Summary—Study Design and Methods 

The Carolina Breast Cancer Study offers an excellent opportunity to further characterize 

potential racial differences in genetic exposures associated with intrinsic subtype of breast 

cancer.   The CBCS recruited a large proportion of African American women in an effort to 

better understand racial disparities in risk factors for breast cancer.  By subtyping case 

participants, the CBCS affirms the heterogeneity within breast cancer and allows for more 

distinct etiologic pathways to be investigated. 

This study takes advantage of the CBCS study population by investigating a key racial 

disparity in breast cancer—younger African American women are more likely to be 
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diagnosed with basal-like breast cancer.  This could be due in part to polymorphic 

differences in AURKA between African Americans and Caucasians.  Since AURKA is a key 

regulator of the cell cycle, and aberrations in its function have been shown to lead to 

aneuploidy, its potential as an oncogene should be considered.  AURKA is further implicated 

in playing a specific role in the etiology of basal-like breast cancer, which commonly 

demonstrates higher degrees of aneuploidy. 

To investigate AURKA’s association with breast cancer, logistic regression was employed 

to calculate odds ratios and 95% confidence intervals as estimates of rate ratios.   

Acknowledging the potential for gene-gene interaction among cell cycle regulatory 

genes, additive interactions between AURKA and BRCA1 (a known cell cycle regulatory 

gene) were also evaluated.  BRCA1 was chosen in particular due to its role as a known risk 

factor for breast cancer and due to its known protein interaction with the AURKA protein.  

Additionally, BARD1, BRIP1, and ZNF350 were also investigated for additive interaction 

with AURKA due to their established roles as BRCA1-interacting genes.
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2.16 Tables 

 

Intrinsic Subtype ER PR HER2 CK 5/6 HER1
Luminal-A + + - N/A N/A
Luminal-A + - - N/A N/A
Luminal-A - + - N/A N/A

Luminal-Ba + + + N/A N/A

Luminal-Ba + - + N/A N/A

Luminal-Ba - + + N/A N/A

HER+/ER- - - + N/A N/A
Basal-like - - - + +
Basal-like - - - + -
Basal-like - - - - +
Unclassified - - - - -

IHC Receptor Status

*  in situ cases were classified without respect to PR status
a Definition does not identify all luminal-B tumors, since only 30-50% are HER2+

Table 2.1 Breast Cancer Intrinsic Subtype Classification by Immunohistochemistry (IHC)*
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Total 20-39 yrs 40-49 yrs 50-64 yrs > 64 yrs 20-39 yrs 40-49 yrs 50-64 yrs > 64 yrs
Sampled (N) 3360 192 432 471 323 236 680 603 423

Ineligible (%)a 6.3 3.6 6.5 5.3 9.9 3.4 5.0 6.8 8.5
Deceased (%) 1.2 2.6 0.9 2.3 2.2 0.4 0.6 0.8 0.5

Uncontactable (%) 2.0 2.6 3.0 2.3 3.1 2.5 1.9 1.7 0
Physician Refusal (%) 6.5 4.2 5.8 3.8 5.0 7.2 7.1 8.8 8.3

Participant Refusal (%) 12.2 12.0 13.0 17.8 22.0 6.4 7.5 8.3 14.2

Interviewed (%)b 71.8 75.0 70.8 68.3 57.9 80.1 77.9 73.6 68.5

Contact Ratec 98.0% 97.4% 97.0% 97.7% 96.9% 97.5% 98.1% 98.3% 100.0%

Cooperation Rated 79.3% 82.3% 79.1% 75.9% 68.2% 85.5% 84.3% 81.2% 75.3%

Overall Response Ratee 77.6% 80.0% 76.5% 74.0% 65.8% 83.3% 82.6% 79.7% 75.3%

Genotyping Ratef 66.3% 70.9% 63.0% 62.0% 49.6% 77.4% 71.2% 69.8% 64.7%

Total 20-39 yrs 40-49 yrs 50-64 yrs > 64 yrs 20-39 yrs 40-49 yrs 50-64 yrs > 64 yrs
Sampled (N) 4465 297 663 631 452 272 788 805 557

Ineligible (%)a 9.9 9.1 5.0 4.1 17.7 15.1 9.0 8.1 17.6
Deceased (%) 2.3 0.3 1.2 2.4 6.6 0.4 0.4 2.4 4.3

Uncontactable (%) 17.0 36.0 27.6 22.0 14.4 21.7 15.2 8.7 2.9
Participant Refusal (%) 20.6 17.8 18.4 25.8 24.6 12.1 18.1 21.9 21.5

Interviewed (%)b 50.2 36.7 47.8 45.7 36.7 50.7 57.2 59.0 53.6

Contact Ratec 83.0% 64.0% 72.4% 78.0% 85.6% 78.3% 84.8% 91.3% 97.1%

Cooperation Rated 70.9% 67.3% 72.2% 63.9% 59.9% 80.7% 75.9% 73.0% 71.4%

Overall Response Ratee 57.2% 40.5% 51.0% 48.8% 48.5% 60.0% 63.2% 65.9% 68.7%

Genotyping Ratef 56.4% 56.2% 54.0% 50.3% 44.8% 67.8% 64.3% 57.6% 55.4%

Cases*

African Americans Caucasians

Table 2.2 Response/Participation Rates of Women Selected as Potential Participants for the CBCS by Case Status, Race, and Age

Controls
African Americans Caucasians

a Eligibility criteria include age (20-74 years), female gender, residence in 24-county study area, able to complete an interview in English, and 
no prior history of breast cancer

f Genotyping rate= # of women who were successfully genotyped divided by # of women selected for study minus ineligible, uncontactable, 
and deceased women

*  Includes in situ cases

b Includes women who did not complete a full interview
c Contact rate= # of women contacted divded by # of women identified as potential cases or controls
d Cooperation rate= # of completed interviews divided by # of women contacted and eligible
e Overall response rate= # of completed interviews divided by # of women selected for study minus ineligible and deceased women
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Attribute
All cases 

(N=1,412)
Luminal A 
(n=790)

Luminal B 
(n=135)

Her2+/ER- 
(n=116)

Basal-like 
(n=224)

Unclassified 
(n=147)

Age (yrs), mean (SD) 52 (11) 53 (11) 51 (11) 51 (12) 48 (11) 50 (12)
Race
      African American 581 (41) 287 (36) 45 (33) 48 (41) 122 (54) 79 (54)

      European American 831 (59) 503 (64) 90 (67) 68 (59) 102 (46) 68 (46)
Menopausal Status
      Premenopausal 632 (45) 322 (41) 64 (47) 46 (40) 124 (55) 76 (52)
      Postmenopausal 780 (55) 468  (59) 71 (53) 70 (60)100 (45) 71 (48)
AJCC Stage
      in situ 272 (20) 170 (22) 24 (18) 43 (38) 19 (9) 16 (11)
      I 414 (30) 263 (34) 37 (28) 17 (15) 47 (22) 50 (34)
      II 559 (40) 277 (36) 59 (45) 37 (32) 125 (57) 61 (42)
      III 108 (8) 49 (6) 10 (8) 12 (11) 21 (10) 16 (11)
      IV 28 (2) 11 (1) 2 (2) 5 (4) 6 (3) 4 (3)
      Missing 31 20 3 2 6 0
ER Status
      Positive 841 (60) 716 (91) 125 (93) 0 0 0
      Negative 571 (40) 74 (9) 10 (7) 116 (100) 224 (100) 147 (100)
PR Status*
      Positive 614 (54) 524 (85) 90 (81) 0 0 0
      Negative 526 (46) 96 (15) 21 (19) 73 (100) 205 (100) 131 (100)
Combined ER/PR Status*
      ER+/PR+ 530 (46) 450 (73) 80 (72) 0 0 0
      ER+/PR- 117 (10) 96 (15) 21 (19) 0 0 0
      ER-/PR+ 84 (7) 74 (12) 10 (9) 0 0 0
      ER-/PR- 409 (36) 0 0 73 (100) 205 (100) 131 (100)
HER2 Status
      Positive 251 (18) 0 135 (100) 116 (100) 0 0
      Negative 1,161 (82) 790 (100) 0 0 224 (100) 147 (100)
CK 5/6 Status
      Positive 206 (15) 55 (7) 7 (5) 20 (17) 124 (55) 0
      Negative 1,206 (85) 735 (93) 128 (95) 96 (83) 100 (45) 147 (100)
HER1 Status
      Positive 289 (20) 44 (6) 17 (13) 45 (39) 183 (82) 0
      Negative 1,123 (80) 746 (94) 118 (87) 71 (61) 41 (18) 147 (100)

No. (%)

Abbreviations: AJCC, American Joint Committee on Cancer; ER, estrogen receptor; HER2, human 
epidermal growth factor receptor-2; PR, progesterone receptor.
*PR status not collected for  in situ cases (n=272)

Table 2.3 Attributes of CBCS Case Participants with IHC Subtype Data
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Gene SNP Gene SNP Gene SNP
AURKA rs1047972 BRCA1 rs4986850 BARD1 rs10932568

rs34987347 rs1799950 rs10221582
rs1468056 rs16941 rs10932573
rs16979826 rs16942 rs12474696
rs16979829 rs1799966 rs12477063
rs16979865 rs799917 rs1542173
rs2064863 rs4986852 rs16852761
rs2180691 rs3737559 rs16852798
rs2236207 rs799923 rs16852799
rs2273535 BRIP1 rs4986764 rs17487827
rs2298016 rs7213430 rs1979028
rs6014711 rs4988350 rs2075622
rs6014712 rs4988346 rs2888294
rs6024840 rs4988351 rs3768704
rs6092309 rs2048718 rs3768707
rs6099120 rs1978111 rs3768708
rs6099122 ZNF350 rs4986773 rs3820727
rs6099126 rs2278420 rs4672729
rs6099127 rs3764538 rs6706777
rs6099128 rs4986771 rs6712055
rs1468055 rs2278415 rs6749828
rs6024836 rs11879758 rs6751923
rs33923703 rs2278417 rs6753417
rs6099119 rs4986770 rs6756902
rs911162 rs4988334 rs7557557

rs8102072 rs7566806
rs7585356
rs1048108
rs3738888
rs28997576
rs2229571

Table 2.4 Single Nucleotide Polymorphisms (SNPs) Genotyped in CBCS Participants



72 

 

A
U

R
K

A
 

p
o

lym
orphism

A
utho

r
Y

ear
S

tud
y 

P
o

p
ulatio

n 
D

esign
C

ases
C

ontro
ls

E
ffect E

stim
ate

9
5

%
 C

I

D
ai

2
00

4
A

sian
P

o
p

ulatio
n-b

ased
1

1
0

2
1

18
6

O
R

*=
1

.2
0

.9
0

-1
.6

0

E
gan

2
00

4
C

aucasian
P

o
p

ulatio
n-b

ased
9

4
0

83
0

O
R

*=
1

.5
6

0
.9

6
-2

.4
7

S
un

2
00

4
A

sian
H

o
spital-b

ased
5

2
0

52
0

O
R

*=
1

.7
6

1
.1

6
-2

.6
6

Lo
2

00
5

A
sian

H
o

spital-b
ased

7
0

7
1

96
9

O
R

†=
1

.0
8

0
.8

1
-1

.4
6

E
w

art-T
oland

2
00

5
M

ixed
P

o
p

ulatio
n-b

ased
8

9
8

44
8

O
R

†=
1

.5
4

0
.9

2
-2

.5
9

F
letcher

2
00

6
C

aucasian
P

o
p

ulatio
n-b

ased
5

0
7

87
5

O
R

*=
0

.7
8

0
.5

7
-1

.0
4

B
C

A
C

2
00

6
C

aucasian
P

o
o

led
 case-co

ntro
l

7
8

1
6

9
28

5
O

R
*=

1
.0

4
0

.9
1

-1
.2

0

C
o

x
2

00
6

C
aucasian

N
ested

 case-co
ntro

l
‡

1
2

4
1

1
71

1
O

R *=
1

.4
3

0
.9

9
-2

.0
6

C
o

uch
2

00
7

M
ixed

P
o

p
ulatio

n-b
ased

3
8

8
4

3
30

3
H

R
*=

0
.9

1
0

.7
7

-1
.0

6

V
id

arsd
o

ttir
2

00
7

C
aucasian

H
o

spital-b
ased

7
5

9
65

3
O

R
*=

1
.8

7
1

.0
9

-3
.2

1

G
uenard

2
00

9
C

aucasian
C

o
hort-fam

ilial
9

6
9

6
O

R
†=

1
.3

8
0

.4
2

-4
.5

7
T

he M
A

R
IE

-G
E

N
IC

A
 C

o
nso

rtium
2

01
0

C
aucasian

P
o

p
ulatio

n-
b

ased
3

1
3

6
5

46
6

O
R

*=
1

.17
0

.9
4

-1
.4

4

R
uan

2
01

1
A

sian
P

o
p

ulatio
n-b

ased
1

3
3

4
1

56
8

O
R

*=
1

.9
9

1
.1

0
-3

.6
1

S
hi

2
01

1
C

aucasian
P

o
p

ulatio
n-b

ased
7

6
3

1
51

6
O

R
*=

0
.7

2
0

.4
5

-1
.1

3

rs6
06

4
3

9
1 (T

>
G

)
R

uan
2

01
1

A
sian

P
o

p
ulatio

n-b
ased

1
3

2
6

1
56

9
O

R
*=

1
.1

7
0

.7
1

-1
.9

5

rs6
06

4
3

8
9 (T

>
A

)
S

hi
2

01
1

C
aucasian

P
o

p
ulatio

n-b
ased

7
6

5
1

52
9

O
R

*=
0

.8
0

0
.6

2
-1

.0
3

rs1
69

7
9

8
77

 (G
>

A
)

S
hi

2
01

1
C

aucasian
P

o
p

ulatio
n-b

ased
7

6
5153

0
O

R *=
2

.5
9

0
.7

0
-9

.7
5

rs8
17

3
 (G

>
C

)
S

hi
2

01
1

C
aucasian

P
o

p
ulatio

n-b
ased

7
6

2
1

52
4

O
R

*=
0

.7
9

0
.5

5
-1

.1
6

rs9
11

1
6

2
 (G

>
A

)
R

uan
2

01
1

A
sian

P
o

p
ulatio

n-b
ased

1
3

3
4

1
56

8
O

R
*=

1
.6

2
0

.6
2

-4
.2

4

rs1
04

7
9

7
2 (G

>
A

)
T

he M
A

R
IE

-G
E

N
IC

A
 C

o
nso

rtium
2

01
0

C
auca
sian

P
o

p
ulatio

n-b
ased

3
1

3
9

5
46

9
O

R
*=

0
.7

0
0

.5
2

-0
.9

4

rs2
06

4
8

6
3 (T

>
G

)
R

uan
2

01
1

A
sian

P
o

p
ulatio

n-b
ased

1
3

2
3

1
56

8
O

R
*=

0
.6

3
0

.4
0

-1
.0

1

rs2
29

8
0

1
6 (C

>
G

)
R

uan
2

01
1

A
sian

P
o

p
ulatio

n-b
ased

1
3

3
1

1
56

8
O

R
*=

0
.4

3
0

.2
4

-0
.7

8

rs8
11

7
8

9
6 (T

>
C

)
R

uan
2

01
1

A
sian

P
o

p
ulatio

n-b
ased

1
3

3
4

1
56

8
O

R
*=

2
.0

5
0

.9
3

-4
.5

0

rs1
04

8
5

8
05

 (G
>

A
)

R
uan

2
01

1
A

sian
P

o
p

ulatio
n-b

ased
1

3
3

0
1

5
6

8
O

R
*=

0
.6

8
0

.4
6

-1
.0

0

rs6
02

4
8

3
6 (A

>
G

)
R

uan
2

01
1

A
sian

P
o

p
ulatio

n-b
ased

1
3

3
2

1
56

8
O

R
*=

1
.5

9
1

.2
0

-2
.1

1

‡
 N

ested
 case-co

ntro
l study w

ithin th N
urses' H

ealth 
S

tud
y

† B
ased

 o
n a cod

o
m

inant m
o

d
el; i.e. ind

ex=
 ho

m
o

zygo
us

 for the rare allele, referent=
hom

o
zygous fo

r the c
om

m
o

n allele; unad
justed

* B
ased o

n a co
d

o
m

inant m
o

del; i.e. ind
ex=

 hom
o

zygous
 fo

r the rare allele, referent=
ho

m
ozygo

us fo
r the c

o
m

m
o

n allele; ad
justed

 for study covariates

T
ab

le 2
.5

 P
revious S

tud
y R

esults o
f the A

asso
ciatio
ns B

etw
een P

olym
o

rp
hism

s o
n 

A
U

R
K

A
 and

 O
d

d
s/H

azard
 o

f B
reast C

ancer

rs2
2

7
35

3
5

       
(T

>
A

)



73 

 

B
R

C
A

1
 

p
olym

o
rphism

A
utho

r
Y

ear

S
tud

y 
P

opulatio
n 

E
thnicity

D
esign

C
ases

C
o

ntro
ls

E
ffect E

stim
ate

95%
 C

I

rs3
737

559
 (C

>
T

)
R

uan
2

011
A

sian
P

o
pulation-based

1
330

156
8

O
R

*=
1

.35
1.11

-1.64

rs498
685

0 (A
>

G
)

B
hatti--U

S
R

T
2

008
C

aucasian
U

S
 R

adio
logic T

echno
logist
s C

ohort
859

108
3O

R
**=

0.97
0.75

-1.25
rs169

42 (C
>

T
)†

C
ox--C

IM
B

A
2

011
M

ixed
P

o
pulation-based C

onsortium
2

980
267

2
H

R
=

0.8
5

0.74
-0.96

rs799
917

 (C
>

T
)

H
uo

2
008

A
sian

H
ospital-based

568
62

4
O

R
*=

0
.98

0.66
-1.44

† D
ata is from

 the C
onso

rtium
 of Investigato

rs of M
o

difiers o
f B

R
C

A
1
/2 (C

IM
B

A
); a to

tal of 9,87
4 BR

C
A

1 m
utatio

n carriers w
ere available; "cases" and "con

trols" refer to "breast 
cancer case" and

 "unaffected
 by breast cancer" resp

ectively; H
R

 d
escribes the associatio

n b
etw

een rs1
6

94
2 genotypes on the 'w

ild-type' (no
n-m

utant) allel
e of B

R
C

A
1 and breast 

cancer risk given a total o
f 23

5,4
88 p

erson-years c
o

ntributed
.

** B
ased

 on a dom
inant m

od
el; i.e. index=

 ho
m

o
zygo

us 
fo

r the rare allele +
 hetero

zygo
tes, referent=

ho
m

o
z

ygous for the com
m

on allele; unad
justed

* B
ased on a co

dom
inant m

od
el; i.e. ind

ex=
 ho

m
o

zygou
s fo

r the rare allele, referent=
hom

ozygous for the 
com

m
on allele; ad

justed fo
r stud

y covariates

T
able 2.6 P

revious S
tudy R

esults o
f the A

ssociation
s B

etw
een P

olym
orphism

s on 
B

R
C

A
1 and

 O
d

ds of B
reast C

ancer



74 

 

Gene SNP Exact HWE P-value
Caucasian Controls AURKA rs6099127 0.01

BRIP1 rs4988346 0.01
BARD1 rs6712055 0.03
BRCA1 rs4986850 0.02
BRCA1 rs3737559 0.02
ZNF350 rs4986771 0.04

African American ControlsAURKA rs2236207 0.03
AURKA rs33923703 0.01
BRIP1 rs2048718 0.01
BARD1 rs6706777 0.04
ZNF350 rs3764538 0.001
ZNF350 rs2278415 <0.001
ZNF350 rs8102072 0.03

Table 2.7 Candidate Gene Single Nucleotide Polymorphisms (SNPs) with 
Extreme Hardy-Weinberg Equilibrium (HWE) P-values
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Genotype† 

prevalence
Minimal Detectable 

Odds Ratio
Power in Caucasians   

(N cases= 1,204, N controls= 1,089)

Power in African Americans 

(N cases= 742, N controls= 658)

1.25 0.23 0.16
1.50 0.63 0.43
1.25 0.39 0.25
1.50 0.88 0.69
1.25 0.60 0.40
1.50 0.98 0.89
1.25 0.70 0.49
1.50 0.99 0.95

Table 2.8 Study Power for Main Effects of Genotype on All Breast Cancer in CBCS Participants by Race 

(α=0.05)*

5%

10%

30%

20%

* Power calculations performed using Episheet
† Genotype prevalence in controls, assuming a dominant genetic model
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Subtype
Genotype† 

prevalence Minimal Detectable Odds Ratio Power
1.25 0.22
1.50 0.59
1.25 0.35
1.50 0.84
1.25 0.54
1.50 0.97
1.25 0.64
1.50 0.99
1.25 0.10
1.50 0.23
1.25 0.13
1.50 0.33
1.25 0.18
1.50 0.47
1.25 0.20
1.50 0.53
1.25 0.09
1.50 0.20
1.25 0.12
1.50 0.29
1.25 0.16
1.50 0.41
1.25 0.18
1.50 0.47
1.25 0.12
1.50 0.31
1.25 0.18
1.50 0.47
1.25 0.25
1.50 0.66
1.25 0.30
1.50 0.74

10%

20%

30%

30%

5%

10%

20%

5%

10%

20%

Luminal A 
(Cases=674)

30%

20%

5%

† Genotype prevalence in controls, assuming a dominant genetic model

* Power calculations performed using Episheet and an estimated 1,747 controls

30%

Table 2.9 Study Power for Main Effects of Genotype on Intrinsic Subtype of Breast Cancer in CBCS Participants 
(α=0.05)*

Luminal B 
(Cases=114)

HER2+/ER- 
(Cases=94)

Basal-like 
(Cases=199)

5%

10%
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Gene SNP
rs34987347
rs2273535
rs2298016
rs6024836
rs4986773
rs2278420
rs11879758
rs4986770
rs1048108
rs3738888
rs2229571
rs1799950
rs16941
rs16942

rs1799966
rs799917
rs4986852
rs4986764
rs4988350

AURKA

ZNF350

BARD1

BRCA1

BRIP1

Table 2.10 Single nucleotide polymorphisms 
(SNPs) included in additive interaction 
analysis
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Table 2.11 Assessment of potential functionality of single nucleotide polymorphisms (SNPs) on candidate 
gene ZNF350genotyped in the CBCS 

SNP Status FS Score1 
Polyphen 
prediction2 

SIFT 
prediction3 Description 

rs4986773 
Possibly 

functional 0.319 N/A N/A 

Predicted to impact splicing 
regulation by ESEfinder5 
and ESRSearch6; previous 
study reported joint effects 
of variants of rs4986773 
with rs799917 (BRCA1) 
were found to increase 
breast cancer risk in a 
population of Chinese 
women (OR=2.03, 95%CI= 
1.02-4.05, P(int)=0.059) 
PMID=19484476  

rs2278420 
Possibly 

functional 0.599 Benign Tolerated 

Predicted to be deleterious 
by SNPeffect4; predicted to 
impact splicing regulation 
by ESEfinder5 and 
ESRSearch6; predicted to 
impact post translation by 
OGPET7  

rs3764538 
Probably 
functional 0.623 N/A N/A 

Predicted to impact splicing 
regulation by ESRSearch6, 
PESX8 and RESCUE_EXE9  

rs4986771 Functional 0.906 Benign Tolerated 

Predicted to be deleterious 
by SNPeffect; predicted to 
impact splicing regulation 
by ESEfinder5, ESRSearch6, 
PESX8 and RESCUE_EXE9; 
predicted to impact post 
translation by OGPET7 

rs2278415 Functional 0.902 
Possibly 

damaging Damaging 

Predicted to be deleterious 
by PolyPhen2, SIFT3, 
SNPeffect4, and SNPs3D10; 
predicted to impact splicing 
regulation by ESEfinder5, 
ESRSearch6, PESX8 and 
RESCUE_EXE9 

rs11879758 
Possibly 

functional 0.5 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11; No previously 
reported literature results. 

rs2278417 
Not 

functional 0 N/A N/A 
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rs4986770 
Possibly 
functional 0.5 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11; 1845 C>T 
variant previously studied in 
a 2004 kin-cohort study of 
familial breast cancer risk. 
Among 2,430 female first-
degree relatives of women 
with a history of breast 
cancer, 190 cases of breast 
cancer arose. The 1845 C>T 
variant was associated with 
an increased risk for breast 
cancer up to age 50 in this 
cohort (OR=2.2, 
95%CI=0.5-4.3). 
PMID=15113441 

rs4988334 
Possibly 
functional 0.365 N/A N/A 

Predicted to impact splicing 
regulation by ESEfinder5, 
ESRSearch6 and 
RESCUE_EXE9; no 
previously reported 
literature results. 

rs8102072 
Possibly 
functional 0.5 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11; No previously 
reported literature results. 

1 F-SNP database and algorithms are the work of Phil H. Lee and Hagit Shatkay of Queen's University; the database provides information about 
the functional effects of SNPs by integrating results from 16 bioinformatics tools and databases. SNPs are evaluated on the basis of four integral 
functions: protein coding, splicing regulation, transcriptional regulation and post-translation. SNPs then receive an FS Score which ranges from 
0-1, with scores above 0.5 indicating high probability of functionality. A detailed explanation of how the algorithm scores SNPs can be found at 
http://compbio.cs.queensu.ca/F-SNP/ 
2 PolyPhen is a website and method for predicting SNP variant impact on protein structure and function developed by Ramensky V., Bork P., and 
Sunyaev S. and described in Human non-synonymous SNPs: server and survey. Nucleic Acids Res. (2002) 30(17): 3894-900 (PMID: 12202775) 

3 SIFT predicts whether an amino acid substitution affects protein function and is based on the conservation of amino acid residues in the 
genome.  SIFT was developed by Ng, P. and Henikoff, S. and described in Predicting deleterious amino acid substitutions. Genome Research, 
(2001) 11, 863-874. The SIFT database can be accessed at http://blocks.fhcrc.org/sift/SIFT.html 
4 SNPeffect predicts deleterious missense SNPs using methods described by Reumers, J., Schymkowitz, J., Ferkinghoff-Borg, J., Stricher, F., 
Serrano, L., and Rousseau, F.  in SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic 
Acid Research, (2005) 33 (Database issue), D527–532.  The SNPeffect database can be accessed at http://snpeffect.switchlab.org/index.php 

5 ESEfinder identifies exonic splice sites using methods described by Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., and Krainer, A. R. in 
ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Research,  (2003), 31(13), 3568–3571. The ESEfinder database 
can be accessed at http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi 
6 ESRSearch identifies exonic splice sites using methods described by Fairbrother, W. G., Yeh, R. F., Sharp, P. A., and Burge, C. B. in Predictive 
identification of exonic splicing enhancers in human genes.. Science, (2002), 297, 1007–1013. The ESRSearch database can be accessed at 
http://www.tau.ac.il/lifesci/ 
7 OGPET identifies O-glycosylation sites, which are associated with post-translational functionality.  Methods employed by OGPET are 
described by Gerken, T., Tep, C., and Rarick, J. in The role of peptide sequence and neighboring residue glycosylation on the substrate specificity 
of the uridine 5 diphosphate-alpha-n-acetylgalactosamine:polypeptide n-acetylgalactosaminyl transferases t1 and t2: kinetic modeling of the 
porcine and canine submaxillary gland mucin tandem repeats. (2004) Biochemistry, 43, 9888–9900.   The OGPET database may be accessed at 
http://ogpet.utep.edu/main.php 
8 PESX identifies exonic splice sites using methods described by Zhang et al. in Exon inclusion is dependent on predictable exonic splicing 
enhancers. Molecular and Cellular Biology, (2005), 25(16), 7323–7332. The PESX database may be accessed at 
http://cubweb.biology.columbia.edu/pesx/ 
9 RESCUE_EXE identifies exonic splice sites using methods described by Yeo, G. and Burge, C. B. in Variation in sequence and organization of 
splicing regulatory elements in vertebrate genes. In the Proceeding of Proc. Natl. Acad. Sci., (2004),  101(44), 15700–15705. 5. The 
RESCUE_EXE database can be accessed at http://genes.mit.edu/burgelab/rescue-ese/ 
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10 SNPs3D predicts deleterious missense mutations using methods described by Yue, P., Melamud, E., and Moult, J. in SNPs3D: candidate gene 
and SNP selection for association studies. BMC Bioinformatics, (2006), 7, 166.  The SNPs3D database can be accessed at 
http://www.snps3d.org/modules.php?name=SNPtargets 
11 TFSearch identifies transcription factor binding sites using methods described by Akiyama, Y. in TFSEARCH: Searching Transcription Factor 
Binding Sites (1998). The TFSearch database can be accessed at http://www.cbrc.jp/research/db/TFSEARCH.html 

12 The MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk Polymorphisms 
in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women, Breast Cancer 
Res Treat (2010) 120:727–736 
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Table 2.12 Assessment of potential functionality of single nucleotide polymorphisms (SNPs) on candidate 
gene BARD1 genotyped in the CBCS 

SNP Status 
FS 
Score1 

Polyphen 
prediction2 

SIFT 
prediction3 Description 

rs10932568 
Probably not 
functional 0.268 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs10221582 
Probably not 
functional 0.268 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs10932573 
Probably not 
functional 0.268 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs12474696 Not functional 0 N/A N/A   

rs12477063 
Probably not 
functional 0.242 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs1542173 
Probably not 
functional 0.242 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs16852761 
Probably not 
functional 0.109 N/A N/A 

  

rs16852798 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs16852799 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs17487827 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs1979028 
Probably not 
functional 0.144 N/A N/A 

  

rs2075622 
Probably not 
functional 0.242 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs2888294 
Probably not 
functional 0.217 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs3768707 
Probably not 
functional 0.242 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs3768708 
Probably not 
functional 0.242 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs3820727 
Probably not 
functional 0.242 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs4672729 
Probably not 
functional 0.109 N/A N/A 
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rs6706777 
Probably not 
functional 0.242 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs6712055 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11; common variation 
in BARD1 was studied in a 
case-control GWAS of high 
risk neuroblastoma (397 cases, 
2,043 controls). rs6712055 
was associated with an 
increased odds of 
neuroblastoma (ORCMH=1.56, 
95%CI=1.37-1.78) 
PMID=19412175. 

rs6749828 Not functional 0 N/A N/A   

rs6751923 
Probably not 
functional 0.268 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs6753417 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs6756902 Not functional 0 N/A N/A   

rs7557557 
Probably not 
functional 0.268 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs7566806 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs7585356 
Probably not 
functional 0.242 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11; common variation 
in BARD1 was studied in a 
case-control GWAS of high 
risk neuroblastoma (397 cases, 
2,043 controls). rs7585356 
was associated with a 
decreased odds of 
neuroblastoma (ORhom=0.36, 
95%CI=0.22-0.58) 
PMID=19412175. 

rs1048108 Functional 0.774 
Probably 
damaging Tolerated 

Predicted to be deleterious by 
PolyPhen2; predicted to impact 
splicing regulation by 
ESEfinder5; predicted to 
impact post-translation by 
OGPET7. rs1048108 has been 
studied in relation to cervical 
cancer in Chinese women. 
PMID=19482343. 
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rs3738888 
Probably 
functional 0.69 

Possibly 
damaging Damaging 

Predicted to be deleterious by 
PolypPhen2, SIFT3, SNPeffect4 
and SNPs3D10; predicted to 
impact splicing regulation by 
ESEfinder5, ESRSearch6 and 
PESX8.  No significant 
literature results reported. 

rs28997576 
Possibly 
functional 0.33 Benign N/A 

Predicted to impact splicing 
regulation by ESEfinder5, 
ESRSearch6 and PESX8; 
predicted to impact post-
translation by OGPET7. 
rs28997576 has been 
previously associated with risk 
of schizophrenia in a 3-cohort 
meta-analysis (RR=1.655, 
95%CI=1.095-2.502) 
PMID=19435634. 

rs2229571 
Probably 
functional 0.649 Benign Damaging 

Predicted to be deleterious by 
SIFT3 and SNPs3D10; 
predicted to impact splicing 
regulation by ESEfinder5, 
ESRSearch6 and 
RESCUE_EXE9; predicted to 
impact post-translation by 
OGPET7. No significant 
literature results reported. 

1 F-SNP database and algorithms are the work of Phil H. Lee and Hagit Shatkay of Queen's University; the database provides information about 
the functional effects of SNPs by integrating results from 16 bioinformatics tools and databases. SNPs are evaluated on the basis of four integral 
functions: protein coding, splicing regulation, transcriptional regulation and post-translation. SNPs then receive an FS Score which ranges from 
0-1, with scores above 0.5 indicating high probability of functionality. A detailed explanation of how the algorithm scores SNPs can be found at 
http://compbio.cs.queensu.ca/F-SNP/ 
2 PolyPhen is a website and method for predicting SNP variant impact on protein structure and function developed by Ramensky V., Bork P., and 
Sunyaev S. and described in Human non-synonymous SNPs: server and survey. Nucleic Acids Res. (2002) 30(17): 3894-900 (PMID: 12202775) 

3 SIFT predicts whether an amino acid substitution affects protein function and is based on the conservation of amino acid residues in the 
genome.  SIFT was developed by Ng, P. and Henikoff, S. and described in Predicting deleterious amino acid substitutions. Genome Research, 
(2001) 11, 863-874. The SIFT database can be accessed at http://blocks.fhcrc.org/sift/SIFT.html 
4 SNPeffect predicts deleterious missense SNPs using methods described by Reumers, J., Schymkowitz, J., Ferkinghoff-Borg, J., Stricher, F., 
Serrano, L., and Rousseau, F.  in SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic 
Acid Research, (2005) 33 (Database issue), D527–532.  The SNPeffect database can be accessed at http://snpeffect.switchlab.org/index.php 

5 ESEfinder identifies exonic splice sites using methods described by Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., and Krainer, A. R. in 
ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Research,  (2003), 31(13), 3568–3571. The ESEfinder database 
can be accessed at http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi 
6 ESRSearch identifies exonic splice sites using methods described by Fairbrother, W. G., Yeh, R. F., Sharp, P. A., and Burge, C. B. in Predictive 
identification of exonic splicing enhancers in human genes.. Science, (2002), 297, 1007–1013. The ESRSearch database can be accessed at 
http://www.tau.ac.il/lifesci/ 
7 OGPET identifies O-glycosylation sites, which are associated with post-translational functionality.  Methods employed by OGPET are 
described by Gerken, T., Tep, C., and Rarick, J. in The role of peptide sequence and neighboring residue glycosylation on the substrate specificity 
of the uridine 5 diphosphate-alpha-n-acetylgalactosamine:polypeptide n-acetylgalactosaminyl transferases t1 and t2: kinetic modeling of the 
porcine and canine submaxillary gland mucin tandem repeats. (2004) Biochemistry, 43, 9888–9900.   The OGPET database may be accessed at 
http://ogpet.utep.edu/main.php 
8 PESX identifies exonic splice sites using methods described by Zhang et al. in Exon inclusion is dependent on predictable exonic splicing 
enhancers. Molecular and Cellular Biology, (2005), 25(16), 7323–7332. The PESX database may be accessed at 
http://cubweb.biology.columbia.edu/pesx/ 
9 RESCUE_EXE identifies exonic splice sites using methods described by Yeo, G. and Burge, C. B. in Variation in sequence and organization of 
splicing regulatory elements in vertebrate genes. In the Proceeding of Proc. Natl. Acad. Sci., (2004),  101(44), 15700–15705. 5. The 
RESCUE_EXE database can be accessed at http://genes.mit.edu/burgelab/rescue-ese/ 
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10 SNPs3D predicts deleterious missense mutations using methods described by Yue, P., Melamud, E., and Moult, J. in SNPs3D: candidate gene 
and SNP selection for association studies. BMC Bioinformatics, (2006), 7, 166.  The SNPs3D database can be accessed at 
http://www.snps3d.org/modules.php?name=SNPtargets 
11 TFSearch identifies transcription factor binding sites using methods described by Akiyama, Y. in TFSEARCH: Searching Transcription Factor 
Binding Sites (1998). The TFSearch database can be accessed at http://www.cbrc.jp/research/db/TFSEARCH.html 

12 The MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk Polymorphisms 
in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women, Breast Cancer 
Res Treat (2010) 120:727–736 
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Table 2.13 Assessment of potential functionality of single nucleotide polymorphisms (SNPs) on candidate 
gene BRCA1 genotyped in the CBCS 

SNP Status 
FS 
Score1 

Polyphen 
prediction2 

SIFT 
prediction3 Description 

rs4986850 
Probably 
functional 0.684 Benign Tolerated 

Predicted to be deleterious by 
SNPs3D10; predicted to impact 
splicing regulation by 
ESEfinder5, ESRSearch6 and 
RESCUE_EXE9 

rs1799950 Functional 0.892 
Possibly 
damaging Damaging 

Predicted to be deleterious by 
PolyPhen2, SIFT3, and 
SNPs3D10; predicted to impact 
splicing regulation by 
ESEfinder5, ESRSearch6, PESX8 
and RESCUE_EXE9. 

rs16941 Functional 0.945 
Possibly 
damaging Damaging 

Predicted to be deleterious by 
SIFT3, SNPeffect4 and 
SNPs3D10; predicted to impact 
splicing regulation by 
ESEfinder5, ESRSearch6, PESX8 
and RESCUE_EXE9 

rs16942 Functional 0.934 Benign Tolerated 

Predicted to be deleterious by 
SNPeffect4 and SNPs3D10; 
predicted to impact splicing 
regulation by ESEfinder5, 
ESRSearch6, PESX8 and 
RESCUE_EXE11 

rs1799966 
Possibly 
functional 0.5 Benign Damaging 

Predicted to be deleterious by 
SIFT3, SNPeffect4 and 
SNPs3D10; predicted to impact 
splicing regulation by ESEfinder5 
and ESRSearch6; predicted to 
impact post-translation by 
OGPET7. A 2007 case control 
study of functional variants  on 
BRCA1 found rs1799966 to be 
associated with a first primary 
breast tumor (OR= 1.17, 
95%CI=1.00-1.36) in cases with 
more than one occurrence of 
primary breast cancer.  
PMID=17341484.  A 2008 
pathway analysis of SNPs 
associated with Glioblastoma 
Multiforme susceptibility found 
a statistically significant 
interaction between rs1799966 
and rs1047840 (EXO1) 
(OR=0.06, 95%CI=0.01-0.41, 
P(int)=0.01) PMID=18559551. 
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rs799917 
Possibly 
functional 0.518 Benign Damaging 

Predicted to be deleterious by 
SIFT3, SNPeffect4 and 
SNPs3D10; predicted to impact 
splicing regulation by 
ESEfinder5, ESRSearch6 and 
PESX8.  Per the above referenced 
Globlastoma Multiforme study, 
rs799917 is in linkage 
disequilibrium with rs1799966. 
rs799917 is also in near complete 
linkage disequilibrium with rs 
16942 (D' = 0.97; r2 = 0.93)12. A 
2009 case control study of 
BRCA1-interacting genes in 
Chinese women with breast 
cancer found a statistically 
significant interaction between 
rs799917 and rs4986773 
(ZNF350) (OR=2.03, 95%CI= 
1.02-4.05, P(int)=0.059) 
PMID=19484476. 

rs4986852 
Possibly 
functional 0.576 Benign N/A 

Predicted to be deleterious by 
SNPeffect4 and SNPs3D10; 
predicted to impact splicing 
regulation by ESEfinder5, 
ESRSearch6 and PESX8; 
predicted to impact post-
translation by OGPET7. 

rs3737559 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. Was associated with 
breast cancer in a 2011 case-
control study of Han Chinese 
women.  (dominant model OR = 
1.35, 95% CI = 1.11-1.64) 

rs799923 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

1 F-SNP database and algorithms are the work of Phil H. Lee and Hagit Shatkay of Queen's University; the database provides information about 
the functional effects of SNPs by integrating results from 16 bioinformatics tools and databases. SNPs are evaluated on the basis of four integral 
functions: protein coding, splicing regulation, transcriptional regulation and post-translation. SNPs then receive an FS Score which ranges from 
0-1, with scores above 0.5 indicating high probability of functionality. A detailed explanation of how the algorithm scores SNPs can be found at 
http://compbio.cs.queensu.ca/F-SNP/ 
2 PolyPhen is a website and method for predicting SNP variant impact on protein structure and function developed by Ramensky V., Bork P., and 
Sunyaev S. and described in Human non-synonymous SNPs: server and survey. Nucleic Acids Res. (2002) 30(17): 3894-900 (PMID: 12202775) 

3 SIFT predicts whether an amino acid substitution affects protein function and is based on the conservation of amino acid residues in the 
genome.  SIFT was developed by Ng, P. and Henikoff, S. and described in Predicting deleterious amino acid substitutions. Genome Research, 
(2001) 11, 863-874. The SIFT database can be accessed at http://blocks.fhcrc.org/sift/SIFT.html 
4 SNPeffect predicts deleterious missense SNPs using methods described by Reumers, J., Schymkowitz, J., Ferkinghoff-Borg, J., Stricher, F., 
Serrano, L., and Rousseau, F.  in SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic 
Acid Research, (2005) 33 (Database issue), D527–532.  The SNPeffect database can be accessed at http://snpeffect.switchlab.org/index.php 

5 ESEfinder identifies exonic splice sites using methods described by Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., and Krainer, A. R. in 
ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Research,  (2003), 31(13), 3568–3571. The ESEfinder database 
can be accessed at http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi 
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6 ESRSearch identifies exonic splice sites using methods described by Fairbrother, W. G., Yeh, R. F., Sharp, P. A., and Burge, C. B. in Predictive 
identification of exonic splicing enhancers in human genes.. Science, (2002), 297, 1007–1013. The ESRSearch database can be accessed at 
http://www.tau.ac.il/lifesci/ 
7 OGPET identifies O-glycosylation sites, which are associated with post-translational functionality.  Methods employed by OGPET are 
described by Gerken, T., Tep, C., and Rarick, J. in The role of peptide sequence and neighboring residue glycosylation on the substrate specificity 
of the uridine 5 diphosphate-alpha-n-acetylgalactosamine:polypeptide n-acetylgalactosaminyl transferases t1 and t2: kinetic modeling of the 
porcine and canine submaxillary gland mucin tandem repeats. (2004) Biochemistry, 43, 9888–9900.   The OGPET database may be accessed at 
http://ogpet.utep.edu/main.php 
8 PESX identifies exonic splice sites using methods described by Zhang et al. in Exon inclusion is dependent on predictable exonic splicing 
enhancers. Molecular and Cellular Biology, (2005), 25(16), 7323–7332. The PESX database may be accessed at 
http://cubweb.biology.columbia.edu/pesx/ 
9 RESCUE_EXE identifies exonic splice sites using methods described by Yeo, G. and Burge, C. B. in Variation in sequence and organization of 
splicing regulatory elements in vertebrate genes. In the Proceeding of Proc. Natl. Acad. Sci., (2004),  101(44), 15700–15705. 5. The 
RESCUE_EXE database can be accessed at http://genes.mit.edu/burgelab/rescue-ese/ 
10 SNPs3D predicts deleterious missense mutations using methods described by Yue, P., Melamud, E., and Moult, J. in SNPs3D: candidate gene 
and SNP selection for association studies. BMC Bioinformatics, (2006), 7, 166.  The SNPs3D database can be accessed at 
http://www.snps3d.org/modules.php?name=SNPtargets 
11 TFSearch identifies transcription factor binding sites using methods described by Akiyama, Y. in TFSEARCH: Searching Transcription Factor 
Binding Sites (1998). The TFSearch database can be accessed at http://www.cbrc.jp/research/db/TFSEARCH.html 

12 The MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk Polymorphisms 
in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women, Breast Cancer 
Res Treat (2010) 120:727–736 
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Table 2.14 Assessment of potential functionality of single nucleotide polymorphisms (SNPs) on candidate 
gene BRIP1 genotyped in the CBCS 

SNP Status 
FS 
Score1 

Polyphen 
prediction2 

SIFT 
prediction3 Description 

rs4986764 
Possibly 
functional 0.58 Benign Tolerated 

Predicted to deleterious by 
SNPeffect4; predicted to 
impact splicing regulation by 
ESEfinder5, ESRSearch6 and 
PESX8; predicted to impact 
post-translation by OGPET7. 

rs7213430 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs4988350 
Possibly 
functional 0.557 Benign N/A 

Predicted to be deleterious by 
SNPs3D10; predicted to impact 
splicing regulation by 
ESEfinder5, ESRSearch6 and 
PESX8. 

rs4988346 
Probably not 
functional 0.237 Benign N/A 

Predicted to impact splicing 
regulation by ESRSearch6 and 
PESX8. 

rs4988351 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs2048718 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs1978111 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

1 F-SNP database and algorithms are the work of Phil H. Lee and Hagit Shatkay of Queen's University; the database provides information about 
the functional effects of SNPs by integrating results from 16 bioinformatics tools and databases. SNPs are evaluated on the basis of four integral 
functions: protein coding, splicing regulation, transcriptional regulation and post-translation. SNPs then receive an FS Score which ranges from 
0-1, with scores above 0.5 indicating high probability of functionality. A detailed explanation of how the algorithm scores SNPs can be found at 
http://compbio.cs.queensu.ca/F-SNP/ 
2 PolyPhen is a website and method for predicting SNP variant impact on protein structure and function developed by Ramensky V., Bork P., and 
Sunyaev S. and described in Human non-synonymous SNPs: server and survey. Nucleic Acids Res. (2002) 30(17): 3894-900 (PMID: 12202775) 

3 SIFT predicts whether an amino acid substitution affects protein function and is based on the conservation of amino acid residues in the 
genome.  SIFT was developed by Ng, P. and Henikoff, S. and described in Predicting deleterious amino acid substitutions. Genome Research, 
(2001) 11, 863-874. The SIFT database can be accessed at http://blocks.fhcrc.org/sift/SIFT.html 

4 SNPeffect predicts deleterious missense SNPs using methods described by Reumers, J., Schymkowitz, J., Ferkinghoff-Borg, J., Stricher, F., 
Serrano, L., and Rousseau, F.  in SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic 
Acid Research, (2005) 33 (Database issue), D527–532.  The SNPeffect database can be accessed at http://snpeffect.switchlab.org/index.php 

5 ESEfinder identifies exonic splice sites using methods described by Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., and Krainer, A. R. in 
ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Research,  (2003), 31(13), 3568–3571. The ESEfinder database 
can be accessed at http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi 
6 ESRSearch identifies exonic splice sites using methods described by Fairbrother, W. G., Yeh, R. F., Sharp, P. A., and Burge, C. B. in Predictive 
identification of exonic splicing enhancers in human genes.. Science, (2002), 297, 1007–1013. The ESRSearch database can be accessed at 
http://www.tau.ac.il/lifesci/ 
7 OGPET identifies O-glycosylation sites, which are associated with post-translational functionality.  Methods employed by OGPET are 
described by Gerken, T., Tep, C., and Rarick, J. in The role of peptide sequence and neighboring residue glycosylation on the substrate specificity 
of the uridine 5 diphosphate-alpha-n-acetylgalactosamine:polypeptide n-acetylgalactosaminyl transferases t1 and t2: kinetic modeling of the 
porcine and canine submaxillary gland mucin tandem repeats. (2004) Biochemistry, 43, 9888–9900.   The OGPET database may be accessed at 
http://ogpet.utep.edu/main.php 
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8 PESX identifies exonic splice sites using methods described by Zhang et al. in Exon inclusion is dependent on predictable exonic splicing 
enhancers. Molecular and Cellular Biology, (2005), 25(16), 7323–7332. The PESX database may be accessed at 
http://cubweb.biology.columbia.edu/pesx/ 
9 RESCUE_EXE identifies exonic splice sites using methods described by Yeo, G. and Burge, C. B. in Variation in sequence and organization of 
splicing regulatory elements in vertebrate genes. In the Proceeding of Proc. Natl. Acad. Sci., (2004),  101(44), 15700–15705. 5. The 
RESCUE_EXE database can be accessed at http://genes.mit.edu/burgelab/rescue-ese/ 
10 SNPs3D predicts deleterious missense mutations using methods described by Yue, P., Melamud, E., and Moult, J. in SNPs3D: candidate gene 
and SNP selection for association studies. BMC Bioinformatics, (2006), 7, 166.  The SNPs3D database can be accessed at 
http://www.snps3d.org/modules.php?name=SNPtargets 
11 TFSearch identifies transcription factor binding sites using methods described by Akiyama, Y. in TFSEARCH: Searching Transcription Factor 
Binding Sites (1998). The TFSearch database can be accessed at http://www.cbrc.jp/research/db/TFSEARCH.html 

12 The MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk Polymorphisms 
in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women, Breast Cancer 
Res Treat (2010) 120:727–736 
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Table 2.15 Assessment of potential functionality of single nucleotide polymorphisms (SNPs) on candidate 
gene AURKA genotyped in the CBCS 

SNP Status 
FS 
Score1 

Polyphen 
prediction2 

SIFT 
prediction3 Description 

rs1047972 
Probably not 
functional 0.273 Benign Tolerated 

Predicted to impact splicing 
regulation by ESEfinder5 and 
ESRSearch6. 

rs34987347 
Possibly 
functional 0.5 N/A N/A 

Predicted to impact splicing 
regulation by ESEfinder5 and 
ESRSearch6; predicted to 
impact pos-translation by 
OGPET7. Not significantly 
researched in the literature. 

rs1468056 Not functional 0 N/A N/A   

rs16979826 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs16979829 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs16979865 Not functional 0.05 N/A N/A   

rs2064863 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs2180691 Not functional 0.05 N/A N/A   

rs2236207 
Probably not 
functional 0.109 N/A N/A 

 

rs2273535 
Possibly 
functional 0.5 Benign Tolerated 

Predicted to impact splicing 
regulation by ESEfinder5, 
ESRSearch6, PESX8 and 
RESCUE_EXE9. Has been 
associated with risk of breast 
cancer in several studies. 

rs2298016 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. Has been 
associated with a decreased 
odds of breast cancer in a case 
control study of AURKA in a 
Han Chinese population 
(OR=0.38, 95%CI=0.18-0.82) 
PMID= 21598251 

rs6014711 Not functional 0.05 N/A N/A   

rs6014712 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs6024840 
Probably not 
functional 0.158 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 
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rs6092309 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs6099120 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs6099122 
Probably not 
functional 0.158 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs6099126 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

rs6099127 Not functional 0.05 N/A N/A  

rs6099128 Not functional 0.05 N/A N/A   

rs1468055 Not functional 0 N/A N/A  

rs6024836 
Probably not 
functional 0.208 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. Has been 
associated with an increased 
odds of breast cancer in a case 
control study of AURKA in a 
Han Chinese population 
(OR=1.54, 95%CI=1.18-2.00) 
PMID= 21598251 

rs33923703 
Probably not 
functional 0.103 N/A Damaging 

Predicted to be deleterious by 
SIFT3; predicted to impact 
splicing regulation by 
ESRSearch6. 

rs6099119 
Possibly 
functional 0.39 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11.  Ensembl-NS 
predicts frameshift coding. 

rs911162 
Probably not 
functional 0.176 N/A N/A 

Predicted to impact 
transcriptional regulation by 
TFSearch11. 

1 F-SNP database and algorithms are the work of Phil H. Lee and Hagit Shatkay of Queen's University; the database provides information about 
the functional effects of SNPs by integrating results from 16 bioinformatics tools and databases. SNPs are evaluated on the basis of four integral 
functions: protein coding, splicing regulation, transcriptional regulation and post-translation. SNPs then receive an FS Score which ranges from 
0-1, with scores above 0.5 indicating high probability of functionality. A detailed explanation of how the algorithm scores SNPs can be found at 
http://compbio.cs.queensu.ca/F-SNP/ 
2 PolyPhen is a website and method for predicting SNP variant impact on protein structure and function developed by Ramensky V., Bork P., and 
Sunyaev S. and described in Human non-synonymous SNPs: server and survey. Nucleic Acids Res. (2002) 30(17): 3894-900 (PMID: 12202775) 

3 SIFT predicts whether an amino acid substitution affects protein function and is based on the conservation of amino acid residues in the 
genome.  SIFT was developed by Ng, P. and Henikoff, S. and described in Predicting deleterious amino acid substitutions. Genome Research, 
(2001) 11, 863-874. The SIFT database can be accessed at http://blocks.fhcrc.org/sift/SIFT.html 
4 SNPeffect predicts deleterious missense SNPs using methods described by Reumers, J., Schymkowitz, J., Ferkinghoff-Borg, J., Stricher, F., 
Serrano, L., and Rousseau, F.  in SNPeffect: a database mapping molecular phenotypic effects of human non-synonymous coding SNPs. Nucleic 
Acid Research, (2005) 33 (Database issue), D527–532.  The SNPeffect database can be accessed at http://snpeffect.switchlab.org/index.php 

5 ESEfinder identifies exonic splice sites using methods described by Cartegni, L., Wang, J., Zhu, Z., Zhang, M. Q., and Krainer, A. R. in 
ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Research,  (2003), 31(13), 3568–3571. The ESEfinder database 
can be accessed at http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi 
6 ESRSearch identifies exonic splice sites using methods described by Fairbrother, W. G., Yeh, R. F., Sharp, P. A., and Burge, C. B. in Predictive 
identification of exonic splicing enhancers in human genes.. Science, (2002), 297, 1007–1013. The ESRSearch database can be accessed at 
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http://www.tau.ac.il/lifesci/ 

7 OGPET identifies O-glycosylation sites, which are associated with post-translational functionality.  Methods employed by OGPET are 
described by Gerken, T., Tep, C., and Rarick, J. in The role of peptide sequence and neighboring residue glycosylation on the substrate specificity 
of the uridine 5 diphosphate-alpha-n-acetylgalactosamine:polypeptide n-acetylgalactosaminyl transferases t1 and t2: kinetic modeling of the 
porcine and canine submaxillary gland mucin tandem repeats. (2004) Biochemistry, 43, 9888–9900.   The OGPET database may be accessed at 
http://ogpet.utep.edu/main.php 
8 PESX identifies exonic splice sites using methods described by Zhang et al. in Exon inclusion is dependent on predictable exonic splicing 
enhancers. Molecular and Cellular Biology, (2005), 25(16), 7323–7332. The PESX database may be accessed at 
http://cubweb.biology.columbia.edu/pesx/ 
9 RESCUE_EXE identifies exonic splice sites using methods described by Yeo, G. and Burge, C. B. in Variation in sequence and organization of 
splicing regulatory elements in vertebrate genes. In the Proceeding of Proc. Natl. Acad. Sci., (2004),  101(44), 15700–15705. 5. The 
RESCUE_EXE database can be accessed at http://genes.mit.edu/burgelab/rescue-ese/ 
10 SNPs3D predicts deleterious missense mutations using methods described by Yue, P., Melamud, E., and Moult, J. in SNPs3D: candidate gene 
and SNP selection for association studies. BMC Bioinformatics, (2006), 7, 166.  The SNPs3D database can be accessed at 
http://www.snps3d.org/modules.php?name=SNPtargets 
11 TFSearch identifies transcription factor binding sites using methods described by Akiyama, Y. in TFSEARCH: Searching Transcription Factor 
Binding Sites (1998). The TFSearch database can be accessed at http://www.cbrc.jp/research/db/TFSEARCH.html 

12 The MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk Polymorphisms 
in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women, Breast Cancer 
Res Treat (2010) 120:727–736 
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HWE
a

P-value
Count AF Count AF Count GF Count GF

G 1269 0.86 1121 0.85 GG 539 0.73 475 0.72
A 215 0.14 195 0.15 GA 191 0.26 171 0.26

AA 12 0.02 12 0.02
G 2022 0.84 1810 0.83 GG 838 0.70 757 0.70
A 386 0.16 368 0.17 GA 346 0.29 296 0.27

AA 20 0.02 36 0.03
C 1477 1.00 1308 1.00 CC 735 0.99 651 0.99
T 7 0.00 6 0.00 CT 7 0.01 6 0.01

TT 0 0.00 0 0.00
C 2408 1.00 2178 1.00 CC 1204 1.00 1089 1.00
T 0 0.00 0 0.00 CT 0 0.00 0 0.00

TT 0 0.00 0 0.00
G 526 0.35 453 0.34 GG 88 0.12 80 0.12
C 958 0.65 863 0.66 GC 350 0.47 293 0.45

CC 304 0.41 285 0.43
G 1621 0.67 1494 0.69 GG 544 0.45 515 0.47
C 787 0.33 684 0.31 GC 533 0.44 464 0.43

CC 127 0.11 110 0.10
T 1331 0.90 1180 0.90 TT 596 0.80 528 0.80
C 153 0.10 134 0.10 TC 139 0.19 124 0.19

CC 7 0.01 5 0.01
T 2404 1.00 2175 1.00 TT 1200 1.00 1086 1.00
C 4 0.00 3 0.00 TC 4 0.00 3 0.00

CC 0 0.00 0 0.00
T 1236 0.83 1096 0.83 TT 515 0.69 451 0.69
G 248 0.17 220 0.17 TG 206 0.28 194 0.29

GG 21 0.03 13 0.02
T 2325 0.97 2112 0.97 TT 1123 0.93 1025 0.94
G 83 0.03 66 0.03 TG 79 0.07 62 0.06

GG 2 0.00 2 0.00
A 1351 0.91 1182 0.90 AA 612 0.82 531 0.81
C 133 0.09 132 0.10 AC 127 0.17 120 0.18

CC 3 0.00 6 0.01
A 2222 0.92 2027 0.93 AA 1031 0.86 941 0.86
C 184 0.08 151 0.07 AC 160 0.13 145 0.13

CC 12 0.01 3 0.00
G 359 0.24 304 0.23 GG 42 0.06 37 0.06
A 1121 0.76 1008 0.77 GA 275 0.37 230 0.35

AA 423 0.57 389 0.59
G 1743 0.72 1594 0.73 GG 641 0.53 590 0.54
A 663 0.28 584 0.27 GA 461 0.38 414 0.38

AA 101 0.08 85 0.08
A 1242 0.84 1113 0.85 AA 517 0.70 477 0.72
T 240 0.16 203 0.15 AT 208 0.28 159 0.24

TT 16 0.02 22 0.03
A 1889 0.78 1701 0.78 AA 740 0.61 673 0.62
T 519 0.22 477 0.22 AT 409 0.34 355 0.33

TT 55 0.05 61 0.06
G 1129 0.76 1011 0.77 GG 433 0.58 393 0.60
C 355 0.24 305 0.23 GC 263 0.35 225 0.34

CC 46 0.06 40 0.06
G 1873 0.78 1693 0.78 GG 729 0.61 665 0.61
C 535 0.22 485 0.22 GC 415 0.34 363 0.33

CC 60 0.05 61 0.06
G 1270 0.86 1121 0.85 GG 540 0.73 475 0.72
A 214 0.14 195 0.15 GA 190 0.26 171 0.26

AA 12 0.02 12 0.02
G 2021 0.84 1806 0.83 GG 838 0.70 753 0.69
A 387 0.16 372 0.17 GA 345 0.29 300 0.28

AA 21 0.02 36 0.03

AURKA

Caucasian

G/A

Allele Count and Frequency
Allele

0.53

0.28

African 
American

Race Genotype
Genotype Count and Frequency

Cases ControlsCases ControlsGene SNP

rs1047972

dbSNP rs

rs6014711 G/A African 
American

0.53

Caucasian 0.39

rs2273535 A/T African 
American

0.07

Caucasian 0.13

rs2298016 G/C African 
American

0.31

Caucasian 0.22

0.31

rs16979865 A/C African 
American

1.00

Caucasian 0.47

T/C African 
American

0.53

Caucasian 1.00

rs2180691 G/A African 
American

0.67

Caucasian

African 
American

1.00

Caucasian

rs16979829 T/G African 
American

0.15

Caucasian 0.26

rs16979826

--

rs1468056 G/C African 
American

0.72

Caucasian 0.72

rs34987347 C/T

Table 2.16 Race-specific allele and genotype frequencies for AURKA, BRCA1, and BRCA1-interacting genes genotyped in CBCS participants enrolled 1993-2001.
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HWE
a

P-value
Count AF Count AF Count GF Count GF

C 1484 1.00 1316 1.00 CC 742 1.00 658 1.00
G 0 0.00 0 0.00 CG 0 0.00 0 0.00

GG 0 0.00 0 0.00
C 2408 1.00 2178 1.00 CC 1204 1.00 1089 1.00
G 0 0.00 0 0.00 CG 0 0.00 0 0.00

GG 0 0.00 0 0.00
A 741 0.50 628 0.48 AA 183 0.25 143 0.22
G 743 0.50 688 0.52 AG 375 0.51 342 0.52

GG 184 0.25 173 0.26
A 1808 0.75 1648 0.76 AA 684 0.57 628 0.58
G 600 0.25 530 0.24 AG 440 0.37 392 0.36

GG 80 0.07 69 0.06
G 1340 0.90 1141 0.87 GG 605 0.82 494 0.75
A 144 0.10 175 0.13 GA 130 0.18 153 0.23

AA 7 0.01 11 0.02
G 2403 1.00 2174 1.00 GG 1199 1.00 1085 1.00
A 5 0.00 4 0.00 GA 5 0.00 4 0.00

AA 0 0.00 0 0.00
C 1484 1.00 1316 1.00 CC 742 1.00 658 1.00
T 0 0.00 0 0.00 CT 0 0.00 0 0.00

TT 0 0.00 0 0.00
C 2408 1.00 2178 1.00 CC 1204 1.00 1089 1.00
T 0 0.00 0 0.00 CT 0 0.00 0 0.00

TT 0 0.00 0 0.00
T 1038 0.70 891 0.68 TT 368 0.50 302 0.46
G 446 0.30 425 0.32 TG 302 0.41 287 0.44

GG 72 0.10 69 0.10
T 2344 0.97 2130 0.98 TT 1142 0.95 1041 0.96
G 64 0.03 48 0.02 TG 60 0.05 48 0.04

GG 2 0.00 0 0.00
C 902 0.61 779 0.59 CC 280 0.38 235 0.36
T 582 0.39 537 0.41 CT 342 0.46 309 0.47

TT 120 0.16 114 0.17
C 2340 0.97 2124 0.98 CC 1137 0.94 1035 0.95
T 68 0.03 54 0.02 CT 66 0.05 54 0.05

TT 1 0.00 0 0.00
T 1248 0.84 1079 0.82 TT 523 0.70 442 0.67
G 236 0.16 237 0.18 TG 202 0.27 195 0.30

GG 17 0.02 21 0.03
T 2174 0.90 1942 0.89 TT 989 0.82 871 0.80
G 232 0.10 236 0.11 TG 196 0.16 200 0.18

GG 18 0.01 18 0.02
C 1428 0.96 1260 0.96 CC 687 0.93 602 0.91
A 56 0.04 56 0.04 CA 54 0.07 56 0.09

AA 1 0.00 0 0.00
C 1885 0.78 1714 0.79 CC 730 0.61 674 0.62
A 523 0.22 464 0.21 CA 425 0.35 366 0.34

AA 49 0.04 49 0.04
G 493 0.33 437 0.33 GG 80 0.11 68 0.10
A 991 0.67 879 0.67 GA 333 0.45 301 0.46

AA 329 0.44 289 0.44
G 1783 0.74 1620 0.74 GG 660 0.55 611 0.56
A 625 0.26 558 0.26 GA 463 0.38 398 0.37

AA 81 0.07 80 0.07
C 321 0.22 255 0.19 CC 27 0.04 23 0.03
A 1163 0.78 1061 0.81 CA 267 0.36 209 0.32

AA 448 0.60 426 0.65
C 1418 0.59 1272 0.58 CC 419 0.35 376 0.35
A 988 0.41 906 0.42 CA 580 0.48 520 0.48

AA 204 0.17 193 0.18

Allele Count and Frequency
Genotype

Genotype Count and Frequency
Cases Controls Cases Controls

AURKA

Table 2.16 (cont.) Race-specific allele and genotype frequencies for AURKA, BRCA1, and BRCA1-interacting genes genotyped in CBCS participants enrolled 1993-
2001.

Gene dbSNP rs SNP Race Allele

rs2064863 A/C African 
American

0.56

0.80

Caucasian

rs6024836 G/A African 
American

0.48

Caucasian 0.18

rs1468055 C/A African 
American

0.62

Caucasian 1.00

rs6099126 C/T African 
American

0.46

Caucasian 1.00

rs6099128 T/G African 
American

1.00

Caucasian 0.12

rs6099120 C/T African 
American

--

Caucasian --

rs6099122 T/G African 
American

0.93

Caucasian 1.00

rs6024840 A/G African 
American

0.31

Caucasian 0.45

rs6092309 G/A African 
American

1.00

Caucasian 1.00

rs6014712 C/G African 
American

--

Caucasian --
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HWE
a

P-value
Count AF Count AF Count GF Count GF

A 1408 0.95 1255 0.96 AA 668 0.90 599 0.91
G 72 0.05 57 0.04 AG 72 0.10 57 0.09

GG 0 0.00 0 0.00
A 2388 1.00 2158 1.00 AA 1193 1.00 1078 1.00
G 2 0.00 2 0.00 AG 2 0.00 2 0.00

GG 0 0.00 0 0.00
G 1409 0.96 1258 0.96 GG 673 0.91 606 0.93
A 65 0.04 50 0.04 GA 63 0.09 46 0.07

AA 1 0.00 2 0.00
G 2373 0.99 2148 0.99 GG 1178 0.99 1065 0.98
A 17 0.01 18 0.01 GA 17 0.01 18 0.02

AA 0 0.00 0 0.00
G 1105 0.74 962 0.73 GG 407 0.55 339 0.52
A 379 0.26 354 0.27 GA 291 0.39 284 0.43

AA 44 0.06 35 0.05
G 2376 0.99 2150 0.99 GG 1172 0.97 1061 0.97
A 32 0.01 28 0.01 GA 32 0.03 28 0.03

AA 0 0.00 0 0.00
C 736 0.50 629 0.48 CC 187 0.25 159 0.24
T 748 0.50 679 0.52 CT 362 0.49 311 0.48

TT 193 0.26 184 0.28
C 2249 0.95 2048 0.94 CC 1060 0.89 971 0.89
T 129 0.05 124 0.06 CT 129 0.11 106 0.10

TT 0 0.00 9 0.01
T 1472 1.00 1309 1.00 TT 733 0.99 653 0.99
C 6 0.00 5 0.00 TC 6 0.01 3 0.00

CC 0 0.00 1 0.00
T 2345 0.98 2114 0.98 TT 1147 0.96 1032 0.95
C 55 0.02 54 0.02 TC 51 0.04 50 0.05

CC 2 0.00 2 0.00
A 1211 0.82 1063 0.81 AA 487 0.66 430 0.65
C 273 0.18 253 0.19 AC 237 0.32 203 0.31

CC 18 0.02 25 0.04
A 1891 0.79 1663 0.76 AA 747 0.62 642 0.59
C 517 0.21 511 0.24 AC 397 0.33 379 0.35

CC 60 0.05 66 0.06
C 761 0.51 644 0.49 CC 201 0.27 157 0.24
T 723 0.49 672 0.51 CT 359 0.48 330 0.50

TT 182 0.25 171 0.26
C 1421 0.59 1263 0.58 CC 420 0.35 372 0.34
T 985 0.41 915 0.42 CT 581 0.48 519 0.48

TT 202 0.17 198 0.18
T 908 0.61 838 0.64 TT 282 0.38 262 0.40
C 576 0.39 478 0.36 TC 344 0.46 314 0.48

CC 116 0.16 82 0.12
T 1203 0.50 1107 0.51 TT 297 0.25 284 0.26
C 1203 0.50 1069 0.49 TC 609 0.51 539 0.50

CC 297 0.25 265 0.24
A 1047 0.71 926 0.70 AA 371 0.50 329 0.50
G 437 0.29 388 0.30 AG 305 0.41 268 0.41

GG 66 0.09 60 0.09
A 1436 0.60 1320 0.61 AA 443 0.37 393 0.36
G 968 0.40 856 0.39 AG 550 0.46 534 0.49

GG 209 0.17 161 0.15
C 956 0.65 862 0.66 CC 306 0.41 287 0.44
T 522 0.35 454 0.34 CT 344 0.47 288 0.44

TT 89 0.12 83 0.13
C 988 0.41 900 0.41 CC 195 0.16 183 0.17
T 1414 0.59 1270 0.59 CT 598 0.50 534 0.49

TT 408 0.34 368 0.34

Cases Controls Cases Controls

BARD1

AURKA

Table 2.16 (cont.) Race-specific allele and genotype frequencies for AURKA, BRCA1, and BRCA1-interacting genes genotyped in CBCS participants enrolled 1993-
2001.

Gene dbSNP rs SNP Race Allele
Allele Count and Frequency

Genotype
Genotype Count and Frequency

1.00

African 
American

rs6099119 A/G

rs33923703 T/C African 
American

0.01

Caucasian 0.14

0.24

Caucasian 0.005

rs2236207 G/A African 
American

0.01

Caucasian 1.00

rs6099127 C/T African 
American

rs911162 G/A African 
American

0.24

Caucasian 1.00

0.63

Caucasian

rs10221582 C/T African 
American

Caucasian

rs10932568 A/C African 
American

0.90

Caucasian 0.31

African 
American

Caucasian

rs12477063 C/T African 
American

Caucasian

rs10932573 T/C African 
American

Caucasian

rs12474696 A/G

0.37

0.44

0.66

1.00

0.50

0.44

0.77

0.63
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HWE
a

P-value
Count AF Count AF Count GF Count GF

A 998 0.67 912 0.69 AA 342 0.46 321 0.49
G 486 0.33 404 0.31 AG 314 0.42 270 0.41

GG 86 0.12 67 0.10
A 1806 0.75 1692 0.78 AA 671 0.56 658 0.60
G 602 0.25 486 0.22 AG 464 0.39 376 0.35

GG 69 0.06 55 0.05
G 1341 0.90 1184 0.90 GG 604 0.81 534 0.81
A 143 0.10 132 0.10 GA 133 0.18 116 0.18

AA 5 0.01 8 0.01
G 2372 0.99 2137 0.98 GG 1168 0.97 1050 0.96
A 36 0.01 41 0.02 GA 36 0.03 37 0.03

AA 0 0.00 2 0.00
C 1290 0.87 1148 0.87 CC 562 0.76 501 0.76
T 194 0.13 168 0.13 CT 166 0.22 146 0.22

TT 14 0.02 11 0.02
C 2364 0.98 2129 0.98 CC 1161 0.96 1040 0.96
T 44 0.02 49 0.02 CT 42 0.03 49 0.04

TT 1 0.00 0 0.00
A 1295 0.87 1139 0.87 AA 568 0.77 490 0.74
G 189 0.13 177 0.13 AG 159 0.21 159 0.24

GG 15 0.02 9 0.01
A 2262 0.94 2023 0.93 AA 1065 0.89 942 0.87
G 144 0.06 155 0.07 AG 132 0.11 139 0.13

GG 6 0.00 8 0.01
C 1250 0.84 1105 0.84 CC 527 0.71 464 0.71
G 234 0.16 211 0.16 CG 196 0.26 177 0.27

GG 19 0.03 17 0.03
C 1852 0.77 1746 0.80 CC 708 0.59 697 0.64
G 556 0.23 432 0.20 CG 436 0.36 352 0.32

GG 60 0.05 40 0.04
T 919 0.62 836 0.64 TT 282 0.38 261 0.40
A 563 0.38 480 0.36 TA 355 0.48 314 0.48

AA 104 0.14 83 0.13
T 1691 0.70 1532 0.70 TT 604 0.50 549 0.51
A 715 0.30 642 0.30 TA 483 0.40 434 0.40

AA 116 0.10 104 0.10
C 1140 0.77 1011 0.77 CC 445 0.60 392 0.60
A 344 0.23 303 0.23 CA 250 0.34 227 0.35

AA 47 0.06 38 0.06
C 1442 0.60 1348 0.62 CC 442 0.37 414 0.38
A 964 0.40 830 0.38 CA 558 0.46 520 0.48

AA 203 0.17 155 0.14
C 734 0.50 641 0.49 CC 177 0.24 152 0.23
G 744 0.50 671 0.51 CG 380 0.51 337 0.51

GG 182 0.25 167 0.25
C 1225 0.51 1132 0.52 CC 322 0.27 290 0.27
G 1183 0.49 1046 0.48 CG 581 0.48 552 0.51

GG 301 0.25 247 0.23
G 1282 0.86 1135 0.86 GG 552 0.74 490 0.75
A 202 0.14 179 0.14 GA 178 0.24 155 0.24

AA 12 0.02 12 0.02
G 2092 0.87 1900 0.87 GG 902 0.75 829 0.76
A 316 0.13 278 0.13 GA 288 0.24 242 0.22

AA 14 0.01 18 0.02
C 991 0.67 906 0.69 CC 337 0.45 314 0.48
T 493 0.33 410 0.31 CT 317 0.43 278 0.42

TT 88 0.12 66 0.10
C 1807 0.75 1690 0.78 CC 672 0.56 656 0.60
T 601 0.25 488 0.22 CT 463 0.38 378 0.35

TT 69 0.06 55 0.05

Race Allele
Allele Count and Frequency

Genotype
Genotype Count and Frequency

Cases Controls Cases Controls

BARD1

Table 2.16 (cont.) Race-specific allele and genotype frequencies for AURKA, BRCA1, and BRCA1-interacting genes genotyped in CBCS participants enrolled 1993-
2001.

Gene dbSNP rs SNP

rs16852798 C/T African 
American

Caucasian

rs1542173 A/G African 
American

Caucasian

rs16852761 G/A African 
American

Caucasian

African 
American

Caucasian

rs1979028 T/A African 
American

Caucasian

rs3768704 G/A African 
American

Caucasian

rs16852799 A/G African 
American

Caucasian

rs17487827 C/G

rs2075622 C/A African 
American

Caucasian

rs2888294 C/G African 
American

Caucasian

rs3768707 C/T African 
American

Caucasian

0.63

0.50

0.19

0.05

0.87

1.00

0.40

0.25

1.00

0.36

0.87

0.52

0.51

0.71

0.52

0.63

1.00

0.89

0.72

0.93
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HWE
a

P-value
Count AF Count AF Count GF Count GF

A 885 0.60 802 0.61 AA 263 0.35 238 0.36
G 597 0.40 514 0.39 AG 359 0.48 326 0.50

GG 119 0.16 94 0.14
A 1801 0.75 1686 0.77 AA 667 0.55 653 0.60
G 607 0.25 492 0.23 AG 467 0.39 380 0.35

GG 70 0.06 56 0.05
T 1180 0.80 1036 0.79 TT 477 0.64 413 0.63
G 304 0.20 280 0.21 TG 226 0.30 210 0.32

GG 39 0.05 35 0.05
T 1321 0.55 1197 0.55 TT 356 0.30 334 0.31
G 1087 0.45 979 0.45 TG 609 0.51 529 0.49

GG 239 0.20 225 0.21
G 939 0.63 860 0.65 GG 307 0.41 282 0.43
A 543 0.37 456 0.35 GA 325 0.44 296 0.45

AA 109 0.15 80 0.12
G 1609 0.67 1504 0.69 GG 539 0.45 519 0.48
A 797 0.33 674 0.31 GA 531 0.44 466 0.43

AA 133 0.11 104 0.10
G 873 0.59 771 0.59 GG 268 0.36 213 0.32
C 611 0.41 545 0.41 GC 337 0.45 345 0.52

CC 137 0.18 100 0.15
G 1404 0.58 1245 0.57 GG 412 0.34 360 0.33
C 1004 0.42 933 0.43 GC 580 0.48 525 0.48

CC 212 0.18 204 0.19
T 1220 0.82 1080 0.82 TT 500 0.67 445 0.68
C 264 0.18 236 0.18 TC 220 0.30 190 0.29

CC 22 0.03 23 0.03
T 1677 0.70 1568 0.72 TT 585 0.49 550 0.51
C 731 0.30 610 0.28 TC 507 0.42 468 0.43

CC 112 0.09 71 0.07
C 899 0.61 797 0.61 CC 280 0.38 255 0.39
G 571 0.39 501 0.39 CG 339 0.46 287 0.44

GG 116 0.16 107 0.16
C 1071 0.45 929 0.43 CC 237 0.20 199 0.18
G 1335 0.55 1249 0.57 CG 597 0.50 531 0.49

GG 369 0.31 359 0.33
T 986 0.66 894 0.68 TT 324 0.44 308 0.47
C 498 0.34 422 0.32 TC 338 0.46 278 0.42

CC 80 0.11 72 0.11
T 2088 0.87 1842 0.85 TT 898 0.75 784 0.72
C 320 0.13 336 0.15 TC 292 0.24 274 0.25

CC 14 0.01 31 0.03
C 1164 0.78 1030 0.78 CC 455 0.61 407 0.62
T 320 0.22 286 0.22 CT 254 0.34 216 0.33

TT 33 0.04 35 0.05
C 1564 0.65 1432 0.66 CC 508 0.42 468 0.43
T 842 0.35 744 0.34 CT 548 0.46 496 0.46

TT 147 0.12 124 0.11
C 960 0.65 865 0.66 CC 306 0.41 288 0.44
T 524 0.35 451 0.34 CT 348 0.47 289 0.44

TT 88 0.12 81 0.12
C 986 0.41 899 0.41 CC 194 0.16 183 0.17
T 1420 0.59 1279 0.59 CT 598 0.50 533 0.49

TT 411 0.34 373 0.34
C 990 0.67 904 0.69 CC 336 0.45 308 0.47
T 492 0.33 412 0.31 CT 318 0.43 288 0.44

TT 87 0.12 62 0.09
C 1205 0.50 1111 0.51 CC 300 0.25 286 0.26
T 1201 0.50 1067 0.49 CT 605 0.50 539 0.49

TT 298 0.25 264 0.24

Cases Controls Cases Controls

BARD1

Table 2.16 (cont.) Race-specific allele and genotype frequencies for AURKA, BRCA1, and BRCA1-interacting genes genotyped in CBCS participants enrolled 1993-
2001.

Gene dbSNP rs SNP Race Allele
Allele Count and Frequency

Genotype
Genotype Count and Frequency

African 
American

Caucasian

rs3820727 T/G African 
American

Caucasian

rs6712055 T/C African 
American

Caucasian

rs3768708 A/G

rs4672729 G/A African 
American

Caucasian

rs6706777 G/C African 
American

Caucasian

African 
American

Caucasian

rs6753417 C/T African 
American

Caucasian

rs6749828 C/G African 
American

Caucasian

rs6751923 T/C

rs6756902 C/T African 
American

Caucasian

rs7557557 C/T African 
American

Caucasian

0.32

0.60

0.03

0.54

0.80

0.71

0.93

0.24

0.58

0.86

1.00

0.04

0.62

0.10

0.90

0.47

0.25

0.36

0.69

0.76



98 

 

HWE
a

P-value
Count AF Count AF Count GF Count GF

G 1240 0.84 1094 0.83 GG 513 0.69 458 0.70
C 244 0.16 222 0.17 GC 214 0.29 178 0.27

CC 15 0.02 22 0.03
G 2039 0.85 1818 0.83 GG 857 0.71 763 0.70
C 369 0.15 360 0.17 GC 325 0.27 292 0.27

CC 22 0.02 34 0.03
G 1231 0.83 1081 0.82 GG 515 0.69 446 0.68
A 253 0.17 235 0.18 GA 201 0.27 189 0.29

AA 26 0.04 23 0.03
G 1699 0.71 1542 0.71 GG 610 0.51 556 0.51
A 709 0.29 634 0.29 GA 479 0.40 430 0.40

AA 115 0.10 102 0.09
G 1151 0.78 1017 0.78 GG 450 0.61 401 0.61
A 323 0.22 289 0.22 GA 251 0.34 215 0.33

AA 36 0.05 37 0.06
G 1543 0.65 1422 0.66 GG 503 0.42 462 0.43
A 827 0.35 740 0.34 GA 537 0.45 498 0.46

AA 145 0.12 121 0.11
G 1471 1.00 1310 1.00 GG 734 1.00 655 1.00
A 3 0.00 0 0.00 GA 3 0.00 0 0.00

AA 0 0.00 0 0.00
G 2372 0.99 2152 0.99 GG 1176 0.98 1069 0.99
A 20 0.01 16 0.01 GA 20 0.02 14 0.01

AA 0 0.00 1 0.00
G 1476 0.99 1313 1.00 GG 734 0.99 655 1.00
C 8 0.01 3 0.00 GC 8 0.01 3 0.00

CC 0 0.00 0 0.00
G 2315 0.96 2118 0.97 GG 1114 0.93 1029 0.94
C 93 0.04 60 0.03 GC 87 0.07 60 0.06

CC 3 0.00 0 0.00
C 611 0.41 540 0.41 CC 131 0.18 111 0.17
G 871 0.59 776 0.59 CG 349 0.47 318 0.48

GG 261 0.35 229 0.35
C 1426 0.59 1301 0.60 CC 424 0.35 391 0.36
G 982 0.41 873 0.40 CG 578 0.48 519 0.48

GG 202 0.17 177 0.16
G 1449 0.98 1277 0.97 GG 707 0.95 619 0.94
A 35 0.02 39 0.03 GA 35 0.05 39 0.06

AA 0 0.00 0 0.00
G 2226 0.92 2005 0.92 GG 1029 0.85 929 0.85
A 182 0.08 173 0.08 GA 168 0.14 147 0.13

AA 7 0.01 13 0.01
A 1464 0.99 1297 0.99 AA 722 0.97 639 0.97
G 20 0.01 19 0.01 AG 20 0.03 19 0.03

GG 0 0.00 0 0.00
A 2272 0.94 2046 0.94 AA 1072 0.89 963 0.88
G 136 0.06 132 0.06 AG 128 0.11 120 0.11

GG 4 0.00 6 0.01
A 1214 0.82 1072 0.81 AA 491 0.66 439 0.67
G 270 0.18 244 0.19 AG 232 0.31 194 0.29

GG 19 0.03 25 0.04
A 1626 0.68 1501 0.69 AA 541 0.45 529 0.49
G 782 0.32 677 0.31 AG 544 0.45 443 0.41

GG 119 0.10 117 0.11
A 1131 0.76 1012 0.77 AA 427 0.58 390 0.59
G 351 0.24 304 0.23 AG 277 0.37 232 0.35

GG 37 0.05 36 0.05
A 1625 0.67 1496 0.69 AA 540 0.45 526 0.48
G 783 0.33 680 0.31 AG 545 0.45 444 0.41

GG 119 0.10 118 0.11

Race Allele
Allele Count and Frequency

Genotype
Genotype Count and Frequency

Cases Controls Cases Controls

BARD1

BRCA1

Table 2.16 (cont.) Race-specific allele and genotype frequencies for AURKA, BRCA1, and BRCA1-interacting genes genotyped in CBCS participants enrolled 1993-
2001.

Gene dbSNP rs SNP

rs7566806 G/C African 
American

Caucasian

African 
American

Caucasian

rs3738888 G/A African 
American

Caucasian

rs4986850 G/A African 
American

Caucasian

rs7585356 G/A African 
American

Caucasian

rs1048108 G/A

rs28997576 G/C African 
American

Caucasian

rs2229571 C/G African 
American

Caucasian

Caucasian

rs16941 A/G African 
American

Caucasian

rs16942 A/G African 
American

Caucasian

rs1799950 A/G African 
American

0.52

0.40

0.37

0.59

0.16

0.26

0.51

--

0.06

1.00

1.00

1.00

0.85

1.00

0.02

1.00

0.28

0.82

0.10

0.11
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HWE
a

P-value
Count AF Count AF Count GF Count GF

A 1120 0.76 1004 0.76 AA 419 0.57 385 0.59
G 360 0.24 310 0.24 AG 282 0.38 234 0.36

GG 39 0.05 38 0.06
A 1622 0.67 1496 0.69 AA 538 0.45 526 0.48
G 784 0.33 680 0.31 AG 546 0.45 444 0.41

GG 119 0.10 118 0.11
C 293 0.20 243 0.18 CC 34 0.05 23 0.04
T 1187 0.80 1071 0.82 CT 225 0.30 197 0.30

TT 481 0.65 437 0.67
C 1590 0.66 1466 0.67 CC 517 0.43 506 0.47
T 816 0.34 710 0.33 CT 556 0.46 454 0.42

TT 130 0.11 128 0.12
C 1469 0.99 1303 0.99 CC 730 0.99 648 0.99
T 9 0.01 7 0.01 CT 9 0.01 7 0.01

TT 0 0.00 0 0.00
C 2341 0.98 2110 0.97 CC 1141 0.95 1028 0.95
T 59 0.02 58 0.03 CT 59 0.05 54 0.05

TT 0 0.00 2 0.00
G 1430 0.96 1274 0.97 GG 688 0.93 616 0.94
A 54 0.04 42 0.03 GA 54 0.07 42 0.06

AA 0 0.00 0 0.00
G 2203 0.91 2015 0.93 GG 1012 0.84 938 0.86
A 205 0.09 163 0.07 GA 179 0.15 139 0.13

AA 13 0.01 12 0.01
G 1420 0.96 1259 0.96 GG 684 0.92 601 0.91
A 64 0.04 57 0.04 GA 52 0.07 57 0.09

AA 6 0.01 0 0.00
G 1809 0.75 1655 0.76 GG 677 0.56 629 0.58
A 597 0.25 523 0.24 GA 455 0.38 397 0.36

AA 71 0.06 63 0.06
C 994 0.67 861 0.65 CC 333 0.45 274 0.42
T 490 0.33 455 0.35 CT 328 0.44 313 0.48

TT 81 0.11 71 0.11
C 1442 0.60 1320 0.61 CC 438 0.36 406 0.37
T 966 0.40 858 0.39 CT 566 0.47 508 0.47

TT 200 0.17 175 0.16
A 992 0.67 857 0.65 AA 331 0.45 271 0.41
G 492 0.33 459 0.35 AG 330 0.44 315 0.48

GG 81 0.11 72 0.11
A 1437 0.60 1317 0.60 AA 433 0.36 404 0.37
G 971 0.40 861 0.40 AG 571 0.47 509 0.47

GG 200 0.17 176 0.16
T 1484 1.00 1316 1.00 TT 742 1.00 658 1.00
G 0 0.00 0 0.00 TG 0 0.00 0 0.00

GG 0 0.00 0 0.00
T 2408 1.00 2178 1.00 TT 1204 1.00 1089 1.00
G 0 0.00 0 0.00 TG 0 0.00 0 0.00

GG 0 0.00 0 0.00
G 1484 1.00 1315 1.00 GG 742 1.00 657 1.00
A 0 0.00 1 0.00 GA 0 0.00 1 0.00

AA 0 0.00 0 0.00
G 2391 0.99 2169 1.00 GG 1187 0.99 1081 0.99
A 17 0.01 9 0.00 GA 17 0.01 7 0.01

AA 0 0.00 1 0.00
G 1254 0.85 1126 0.86 GG 531 0.72 485 0.74
C 224 0.15 182 0.14 GC 192 0.26 156 0.24

CC 16 0.02 13 0.02
G 1745 0.73 1622 0.75 GG 637 0.53 611 0.56
C 649 0.27 544 0.25 GC 471 0.39 400 0.37

CC 89 0.07 72 0.07

Genotype Count and Frequency
Cases Controls Cases Controls

BRCA1

BRIP1

Table 2.16 (cont.) Race-specific allele and genotype frequencies for AURKA, BRCA1, and BRCA1-interacting genes genotyped in CBCS participants enrolled 1993-
2001.

Gene dbSNP rs SNP Race Allele
Allele Count and Frequency

Genotype

rs799917 C/T African 
American

Caucasian

rs4986852 C/T African 
American

Caucasian

rs1799966 A/G African 
American

Caucasian

rs3737559 G/A African 
American

Caucasian

1.00

0.17

0.75

0.10

0.89

0.10

rs799923 G/A African 
American

0.63

Caucasian 1.00

rs4988346 G/A African 
American

1.00

Caucasian

1.00

0.02

African 
American

0.20

Caucasian 0.49

rs4988350 T/G African 
American

--

Caucasian --

rs4986764 C/T African 
American

0.20

Caucasian 0.44

rs7213430 A/G

0.01

rs4988351 G/C African 
American

0.87

Caucasian 0.57
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HWE
a

P-value
Count AF Count AF Count GF Count GF

C 1143 0.78 996 0.78 CC 446 0.61 399 0.62
T 325 0.22 286 0.22 CT 251 0.34 198 0.31

TT 37 0.05 44 0.07
C 1313 0.55 1232 0.57 CC 359 0.30 356 0.33
T 1077 0.45 930 0.43 CT 595 0.50 520 0.48

TT 241 0.20 205 0.19
C 961 0.66 812 0.64 CC 321 0.44 253 0.40
T 505 0.34 462 0.36 CT 319 0.44 306 0.48

TT 93 0.13 78 0.12
C 1429 0.60 1309 0.60 CC 433 0.36 401 0.37
T 959 0.40 855 0.40 CT 563 0.47 507 0.47

TT 198 0.17 174 0.16
T 530 0.36 508 0.39 TT 105 0.14 103 0.16
C 924 0.64 794 0.61 TC 320 0.44 302 0.46

CC 302 0.42 246 0.38
T 1731 0.72 1603 0.74 TT 634 0.53 596 0.55
C 661 0.28 563 0.26 TC 463 0.39 411 0.38

CC 99 0.08 76 0.07
A 927 0.62 819 0.62 AA 290 0.39 249 0.38
G 557 0.38 497 0.38 AG 347 0.47 321 0.49

GG 105 0.14 88 0.13
A 2019 0.84 1839 0.84 AA 851 0.71 784 0.72
G 389 0.16 339 0.16 AG 317 0.26 271 0.25

GG 36 0.03 34 0.03
G 1293 0.87 1138 0.87 GG 565 0.76 484 0.74
T 187 0.13 174 0.13 GT 163 0.22 170 0.26

TT 12 0.02 2 0.00
G 2067 0.87 1894 0.87 GG 902 0.76 835 0.77
T 321 0.13 272 0.13 GT 263 0.22 224 0.21

TT 29 0.02 24 0.02
T 1475 0.99 1307 0.99 TT 734 0.99 649 0.99
C 9 0.01 9 0.01 TC 7 0.01 9 0.01

CC 1 0.00 0 0.00
T 2302 0.96 2101 0.97 TT 1103 0.92 1017 0.93
C 106 0.04 75 0.03 TC 96 0.08 67 0.06

CC 5 0.00 4 0.00
T 1298 0.87 1142 0.87 TT 566 0.76 486 0.74
A 186 0.13 174 0.13 TA 166 0.22 170 0.26

AA 10 0.01 2 0.00
T 2083 0.87 1903 0.87 TT 908 0.75 838 0.77
A 325 0.13 275 0.13 TA 267 0.22 227 0.21

AA 29 0.02 24 0.02
G 1291 0.87 1153 0.88 GG 561 0.76 502 0.77
C 193 0.13 159 0.12 GC 169 0.23 149 0.23

CC 12 0.02 5 0.01
G 2067 0.86 1882 0.86 GG 887 0.74 809 0.74
C 339 0.14 296 0.14 GC 293 0.24 264 0.24

CC 23 0.02 16 0.01
C 535 0.36 502 0.38 CC 104 0.14 99 0.15
T 949 0.64 814 0.62 CT 327 0.44 304 0.46

TT 311 0.42 255 0.39
C 1739 0.72 1609 0.74 CC 638 0.53 599 0.55
T 669 0.28 569 0.26 CT 463 0.38 411 0.38

TT 103 0.09 79 0.07
C 1341 0.91 1205 0.92 CC 609 0.82 549 0.83
T 139 0.09 111 0.08 CT 123 0.17 107 0.16

TT 8 0.01 2 0.00
C 2239 0.93 2025 0.93 CC 1043 0.87 942 0.87
T 167 0.07 153 0.07 CT 153 0.13 141 0.13

TT 7 0.01 6 0.01

Controls

ZNF350

Table 2.16 (cont.) Race-specific allele and genotype frequencies for AURKA, BRCA1, and BRCA1-interacting genes genotyped in CBCS participants enrolled 1993-
2001.

Gene dbSNP rs SNP Race Allele
Allele Count and Frequency

Genotype

BRIP1

Genotype Count and Frequency
Cases Controls Cases

Caucasian 0.53

African 
American

0.00

rs2048718

rs2278420 A/G African 
American

0.36

Caucasian 0.08

rs4986773 T/C African 
American

0.51

Caucasian 0.63

C/T African 
American

0.01

rs1978111 C/T African 
American

0.35

Caucasian 0.53

rs2278415 T/A African 
American

0.00

Caucasian 0.07

Caucasian 0.07

rs4986771 T/C African 
American

1.00

Caucasian 0.04

rs3764538 G/T

rs2278417 C/T African 
American

0.62

Caucasian 0.48

rs11879758 G/C African 
American

0.10

Caucasian 0.36

rs4986770 C/T African 
American

0.30

Caucasian 0.64
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HWE
a

P-value
Count AF Count AF Count GF Count GF

T 1051 0.71 930 0.71 TT 375 0.51 319 0.48
C 433 0.29 386 0.29 TC 301 0.41 292 0.44

CC 66 0.09 47 0.07
T 2057 0.85 1883 0.86 TT 885 0.74 820 0.75
C 351 0.15 295 0.14 TC 287 0.24 243 0.22

CC 32 0.03 26 0.02
T 1187 0.81 1081 0.82 TT 481 0.65 437 0.67
C 287 0.19 231 0.18 TC 225 0.31 207 0.32

CC 31 0.04 12 0.02
T 1870 0.78 1725 0.79 TT 739 0.61 687 0.63
C 538 0.22 453 0.21 TC 392 0.33 351 0.32

CC 73 0.06 51 0.05

Cases Controls Cases Controls

Table 2.16 (cont.) Race-specific allele and genotype frequencies for AURKA, BRCA1, and BRCA1-interacting genes genotyped in CBCS participants enrolled 1993-
2001.

Gene dbSNP rs SNP Race Allele
Allele Count and Frequency

Genotype
Genotype Count and Frequency

ZNF350 African 
American

0.07

Caucasian 0.12

a
 HWE assesed in controls only; exact p-value corresponding to a 1 df chi-square test

rs4988334 T/C

rs8102072 T/C African 
American

0.03

Caucasian 0.46
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Table 2.17 Characteristics of CBCS case participants with genotype data (N=1,946), case participants missing 
genotype data (N=331), controls with genotype data (N=1,747), and controls missing genotype data (N=238) 

  
Cases with genotype 

data (85%) 
Cases missing 

genotype data (15%) 
Controls with 

genotype data (88%) 
Controls missing 

genotype data (12%) 
Race         

African American 742 (38) 151 (46) 658 (38) 128 (54) 

Caucasian 1204 (62) 180 (54) 1089 (62) 110 (46) 

Age         

20-24 6 (0) 0 (0) 1 (0) 0 (0) 

25-29 21 (1) 4 (1) 10 (0) 1 (0) 

30-34 85 (4) 10 (3) 60 (3) 7 (3) 

35-39 172 (9) 24 (7) 133 (8) 11 (5) 

40-44 276 (14) 55 (17) 242 (14) 39 (16) 

45-49 387 (20) 82 (25) 359 (21) 56 (24) 

50-54 208 (11) 29 (9) 237 (14) 28 (12) 

55-59 216 (11) 37 (11) 191 (13) 27 (11) 

60-64 201 (10) 23 (7) 166 (10) 22 (9) 

65-69 200 (10) 43 (13) 185 (11) 17 (7) 

70-74 174 (9) 25 (8) 163 (9) 30 (13) 

Menopausal Status         

Premenopausal 864 (44) 149 (45) 746 (43) 105 (44) 

Postmenopausal 1082 (56) 182 (55)  1001 (57) 133 (56) 

Stage         

1 609 (31) 94 (28)     

2 627 (32) 129 (39)     

3 144 (7) 21 (6)     

4 42 (2) 8 (2)     

CIS 437 (22) 59 (18)     

Missing 87 (4) 20 (6)     

Tumor Sizea         

≤2cm 769 (40) 125 (38)     

>2cm - 5cm 502 (26) 107 (32)     

>5cm 146 (8) 23 (7)     

Missing 529 (27) 76 (23)     
Subtype         

Luminal A 674 (35) 116 (35)     

Luminal B 114 (6) 21 (6)     

HER2+/ER- 94 (5) 22 (7)     

Basal-like 199 (10) 25 (8)     

Unclassified 129 (7) 18 (5)     

Missing 736 (38) 129 (39)     
a Not available for carcinoma in situ (CIS) cases 
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2.17 Figures 

Figure 2.1 Age-specific (Crude) SEER Incidence Rates by Race and Sex, 
Female Breast Cancer, All Ages, 2000-2007 
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Figure 2.2 Age Adjusted SEER Incidence Rates by Race and Sex, Female 
Breast Cancer, All Ages, 2000-2007 (SEER17) 
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Figure 2.3 Age-Adjusted U.S. Mortality Rates by Race and Sex, Female 
Breast Cancer, All Ages, 2000-2007 
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Figure 2.4 Age-Specific (Crude) U.S. Mortality Rates by Race and Sex, 
Female Breast Cancer, All Ages, 2000-2007 
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Figure 2.8 Power in Caucasian participants (Cases=1,204, Controls=1,089) given a genotype 
prevalence of 5% 
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Figure 2.9 Power in Caucasian participants (Cases=1,204, Controls=1,089) given a genotype 
prevalence of 10% 
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Figure 2.10 Power in Caucasian participants (Cases=1,204, Controls=1,089) given a genotype 
prevalence of 20% 
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Figure 2.11 Power in African American participants (Cases=742, Controls=658) given a 
genotype prevalence of 5% 
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Figure 2.12 Power in African American participants (Cases=742, Controls=658) given a 
genotype prevalence of 10% 
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Figure 2.13 Power in African American participants (Cases=742, Controls=658) given a 
genotype prevalence of 20% 
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Chapter 3. Results Manuscript 1: Genetic variation in cell cycle regulatory 
gene AURKA and association with intrinsic breast cancer subtype 
 

 
3.1 Background 

Previous research has established at least five distinct breast cancer subtypes that vary in 

their gene expression profiles and in their responsiveness to endocrine therapies [1-4].  

Furthermore, risk factors for breast cancer have been shown to differ by intrinsic subtype [5], 

suggesting distinct etiologic and molecular pathways of carcinogenesis.  Common low-penetrant 

susceptibility single nucleotide polymorphisms (SNPs) may play an important role in the 

etiology of breast cancer, individually conferring small increases in risk [6-10].  In aggregate, 

these increases in risk may become substantial [6-10].  AURKA, encoding a serine/threonine 

kinase (Aurora-A), is a putative oncogene that plays a role in cell cycle regulation [11].  

Overexpression of AURKA has been associated with centrosomal duplication abnormalities, 

chromosomal instability and aneuploidy in mammalian cells, common characteristics of cancer 

cells [12,13].  AURKA overexpression has been demonstrated in several types of cancer and has 

been correlated with poor prognosis [14-16].  Previous studies of genetic variation in AURKA 

and risk of breast cancer have been largely limited to investigations of a single polymorphism 

(rs2273535) in Asian and Caucasian (Cau) populations, and none have focused on African 

Americans (AA).  Some effect estimates among Asian and Cau populations were increased [17-

21], some decreased [22], and some suggested no association [23,24].  These inconsistent results 

could be due to tumor heterogeneity and/or differences in population substructure.  Importantly, 

these associations have not been previously investigated by breast cancer subtype, and this 
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approach could elucidate important subtype-specific associations, as has been shown in previous 

studies of other breast cancer risk factors [5,25-27]. 

We evaluated SNPs on AURKA in association with breast cancer rate in the Carolina Breast 

Cancer Study (CBCS), a large population-based case-control study of breast cancer in AA and 

Cau women in North Carolina.  The CBCS allowed us to examine genetic risk factors given the 

increased incidence of breast cancer in younger AA women [28], as well as increased mortality 

and a preponderance of the basal-like subtype among AA women [25,29].  Capitalizing on the 

CBCS study design which oversampled African American women, we examined main effects of 

AURKA SNPs on breast cancer rate stratified by race.  We also utilized the carefully 

characterized intrinsic subtype information in this study to evaluate AURKA genetic variation in 

association with specific intrinsic subtypes.  This subtype-specific analysis is important because 

AURKA overexpression has been associated with aneuploidy and basal-like tumors have been 

shown to demonstrate a high degree of aneuploidy [30,31]. 

 

3.2 Methods 

Study Population 

The CBCS is a population-based, case-control study of genetic and environmental risk 

factors for breast cancer among AA and Cau women residing in North Carolina [32].  CBCS 

study design and methods have been previously described by Newman et al. [32].  Study 

participants were recruited and selected from 24 contiguous counties in central and eastern North 

Carolina [32].  CBCS recruitment was conducted in two phases—from 1993 through 1995 

(Phase 1) and from 1996 through 2001 (Phase 2).  Women living in the study area between the 

ages of 20 and 74 and diagnosed with invasive breast cancer for the first time were eligible cases 
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in Phase 1.  CBCS Phase 2 included women diagnosed with in situ breast cancer (CIS) as well as 

those diagnosed with invasive breast cancer.  Cases were identified using a rapid case 

ascertainment system via the North Carolina Central Cancer Registry (NCCCR).  After 

eligibility criteria were met, randomized recruitment case sampling was undertaken to ensure 

adequate representation of AA and younger women [33].  Phase 2 CIS cases did not undergo 

random recruitment sampling; all eligible CIS cases were enrolled. 

Controls were selected from two sources: women younger than 65 were selected from a list 

maintained by the North Carolina Division of Motor Vehicles; women between the ages of 65 

and 74 were selected from Health Care Financing Administration records.  Controls were 

sampled from these lists using modified randomized recruitment, and sampling fractions were 

designed to ensure frequency-matching of cases to controls by race and five-year age interval 

[33,34]. 

Potential cases and controls were contacted first by letter and then by telephone, if available.  

Women agreeing to participate were scheduled for an in-home visit by a registered nurse 

interviewer.  The nurse interviewer collected anthropometric measurements, questionnaires, 

permission/consent to obtain tumor tissue, and a 30cc blood sample.  Germline DNA was 

extracted from peripheral blood lymphocytes and stored at -80°C for future analysis [32].  The 

CBCS pathologist performed a standardized review of all breast tissue received to confirm the 

diagnosis of breast cancer and to characterize histology [32].  Slides were cut from paraffin 

blocks for molecular and immunohistochemical (IHC) assays, procedures for which have been 

described previously [29,35,36].  The study procedures for recruitment and enrollment into the 

CBCS were approved by the Institutional Review Board of the University of North Carolina 

(UNC), and all study participants gave written informed consent. 



128 

 

Subtyping of Cases by Immunohistochemistry (IHC) 

For invasive cases, estrogen receptor (ER) and progesterone receptor (PR) status were 

primarily obtained from medical records (80%).  Clinical laboratories determined ER/PR results 

on these cases.  Approximately half of the clinical laboratories used IHC on paraffin-embedded 

tissue, and employed cutoffs for receptor positivity from more than 0% to more than 20%.  The 

other half performed biochemical assays on frozen tissue with cutoffs for receptor positivity of 

10-15 fmol/mg [36].   For approximately 11% of invasive cases, ER/PR status was not available 

in the medical record; however, paraffin-embedded tissue was available and ER/PR status was 

ascertained by the UNC IHC Core laboratory.  For these cases, IHC scoring was based on UNC 

Hospitals Department of Pathology standards, using a cutoff of 5% positive nuclei staining in 

invasive breast cancer cells [29].  A random sample of ER+ and ER- cases based on medical 

record abstraction was drawn to compare with IHC performed by the UNC IHC Core laboratory.  

A kappa statistic of 0.62 and concordance of 81% resulted from the comparison, indicating good 

agreement [37].  Nine percent of invasive cases had missing data for ER/PR status [3]. 

CBCS intrinsic breast cancer subtypes were based on expression of ER, PR, human 

epidermal growth factor receptor 2 (HER2), cytokines (CK) 5/6, and human epidermal growth 

factor receptor (HER1) according to previously published definitions [29].  Tumors that were 

negative for expression of all five markers were unclassified.  Negative staining for all markers is 

not necessarily indicative of receptor negativity in the tumor, and can result from poor tumor 

block quality or inadequate tissue present in the tumor block [29].  Tissue subtype analysis was 

performed in the following manner: HER2 status in invasive cases was determined using the 

CB11 monoclonal antibody as previously described [35].  HER2 positivity was defined by weak 

to strong staining of membrane or membrane plus cytoplasm in at least 10% of tumor cells [29].  
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Interscorer agreement of the HER2 IHC assay was evaluated on a subset of cases, yielding 

overall concordance of 82% [29].  HER1 and cytokeratin (CK) 5/6 characterization have been 

previously described [38,39], and invasive cases demonstrating any staining were classified as 

positive [29].  All assays for HER1, HER2, and CK5/6 were performed by the UNC IHC Core 

laboratory.  ER, HER2, CK5/6, and HER1 classification and determination for CIS cases were 

described in detail previously [40].  PR status was not determined for CIS cases due to its high 

correlation with ER expression and to preserve tissue [25]. 

 

SNP Selection 

SNPs in this study were genotyped as part of a larger panel of 1,536 SNPs by the UNC 

Mammalian Genotyping Core using the Illumina Golden Gate Assay (Illumina, San Diego, CA).  

Detailed genotyping procedures and quality control measures for the entire 1,536 SNP panel 

were described previously [41,42].  Assay intensity data and genotype cluster images for all 

SNPs were reviewed individually.  To ensure quality control of genetic data, SNPs with low 

signal intensity or SNPs that were unable to be distinguished by genotype cluster were excluded.  

For each SNP, Hardy-Weinberg equilibrium (HWE) was evaluated in SAS v9.3 (SAS, Cary, 

NC) using a one-degree-of-freedom chi square exact test among race-stratified controls to 

determine if genotype frequencies were distributed as expected given the allele frequencies.  

Specifically for the evaluation of AURKA, a combination of tag and candidate SNPs were 

selected for genotyping.  Tag SNPs were identified for Cau and AA from Utah residents with 

ancestry from northern and western Europe (CEU) and individuals of Yoruban descent from 

Idaban, Nigeria (YRI) HapMap populations respectively [43], and selected using the Tagger 

program developed by de Bakker et al. [44].  Tag SNPs were selected based on a linkage 
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disequilibrium (LD) r2
≥0.80 and a minor allele frequency (MAF) of ≥0.10 in either CEU or YRI 

populations.  Tag SNPs in each population were then combined and CBCS participants were 

genotyped for the pooled list.  Candidate SNPs were chosen based on a literature review or 

previous GWAS association [41].  Five SNPs in AURKA were excluded from the overall analysis 

due to HWE P-values <0.05 in either AA or Cau (N=3) or because they were not polymorphic in 

the CBCS population (N=2); one SNP was excluded from the combined race subtype analysis 

because it was not polymorphic in Cau (rs34987347).  Detailed genotyping procedures and 

quality control measures were described previously [41,42].  The software package Structure and 

a set of 144 ancestry informative markers (AIMs) were used to determine the proportion of 

African and European ancestry for each participant [41,45]. 

 

Statistical Analysis 

Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated, as estimates of the 

rate ratios [46], for genotype associations with breast cancer overall and by 

immunohistochemical (IHC) subtype using unconditional binary logistic regression in SAS v9.3 

(SAS, Cary, NC).  SNPs were coded using a dominant model, with the most common allele in 

Cau as the reference allele in both race groups for SNPs that were tags in both CEU and YRI 

HapMap populations to facilitate race comparisons.  In race-stratified analyses, YRI tag SNPs 

that were not tag SNPs in the CEU population were analyzed in AA only, using the major allele 

in AA as the reference allele; likewise, CEU tag SNPs that were not tag SNPs in the YRI 

population were analyzed in Cau only, using the major allele in Cau as the reference allele.  

Candidate SNPs were analyzed in both race groups, using the major allele in Cau as the 

reference allele to facilitate race comparisons.  Genotype associations were adjusted for age, 
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potential population stratification using the AIMs variable, and an offset term (defined as the 

natural log of recruitment probability of cases/recruitment probability of controls) to adjust for 

differing randomized recruitment sampling probabilities between phases of CBCS [41,47].  

Subtype-specific analyses were performed in the combined race group rather than by race due to 

small sample numbers within strata of subtype, and were adjusted for self-identified race, age, 

the AIMs variable, and the offset term.  Subtype-specific analyses included all tag and candidate 

SNPs, and assigned the major allele in Cau as the reference allele. 

 

3.3 Results 

Participant Characteristics 

Among self-reported AA, the median proportion of African ancestry was 81%.  The median 

proportion of African ancestry among self-reported Cau was 6%.  Immunohistochemical subtype 

data was available for 1,412 of 2,277 (62%) cases, and successful genotyping data was collected 

for 1,946 of 2,277 (85%) cases.  Of the 2,277 cases, 1,210 (53%) were successfully genotyped 

and subtyped (742 AA/1,204 Cau) (Table 1).  The distribution of tumor subtype in cases with 

genotype data was as follows: 199 basal-like, 674 luminal A, 114 luminal B, 94 HER2+/ER-, 

and 129 unclassified (Table 1).  Cases with missing subtype data were more likely to be Cau and 

have an earlier stage at diagnosis [25].  Of 1,985 controls, 1,747 (88%) were successfully 

genotyped (658 AA/1,089 Cau) (Table 1).  Participants were excluded from analysis because of 

genotype calls for <95% of SNPs (N=569), gender mismatch (N=5), and suspected 

contamination of DNA specimen (N=1) [41].  Participants missing genotype data were more 

likely to be AA cases.  
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Genotype Associations 

Here we focus on patterns to identify those SNPs for which the effect estimates were 

pronounced; and, we highlight estimates that were least influenced by chance (i.e. those 

estimates with the lowest confidence limit ratios (CLRs); the ratio of the upper to lower 95% 

confidence limits-a measure of precision [48]).  Odds ratios for AURKA SNPs in the race-

stratified analysis with breast cancer, not divided by subtype, were all close to 1.00 (Table 2).  

Among AA, rs6092309 showed a decreased odds ratio and rs911162 had a slightly elevated odds 

ratio with breast cancer.  Table 3 presents the subtype-specific (race-combined) results.  

Rs6092309 and rs6099128 had decreased ORs for all subtypes, except the luminal B subtype 

which had imprecise effect measure estimates close to 1.00.  Three AURKA SNPs (rs6014711, 

rs911162, rs1047972) had elevated ORs for basal-like breast cancer, and ORs reduced or close to 

1.00 for all other subtypes.  One SNP (rs16979826) showed a two-fold elevated odds ratio for 

HER2+/ER- breast cancer. 

 

3.4 Discussion 

Compared to previous studies, this study represents a more comprehensive investigation of 

AURKA related to breast cancer in a population of AA and Cau women.  Previous studies of 

AURKA have focused largely on a few functional SNPs (rs2273535—Phe31Ile, rs1047972—

Val57Ile) in Cau and Asian populations and have not investigated the influence of subtype.  Our 

main finding was a decreased association between rs6092309 and breast cancer among AA 

women.  Among Cau women this SNP led to an elevated but very imprecise odds ratio estimate 

because of a minor allele frequency of less than 1% in both Cau cases and controls.  In the 

combined race group subtype-specific analysis, rs6092309 showed odds ratios less than one 
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across all subtypes.  These results suggest that the association of AURKA genetic variation with 

subtype-specific breast cancer may differ by race.  Rs6092309 is located within an intronic 

region of AURKA, is not predicted to be deleterious by SIFT or PolyPhen, and has not been 

previously studied with respect to breast cancer.  Rs6092309 is in weak LD with other SNPs on 

AURKA in the HapMap YRI population (Release #27), demonstrates weak residual LD among 

SNPs genotyped in CBCS AA controls, and may be a marker for an ungenotyped genetic factor. 

The importance of population stratification and race also emerged in subtype specific 

analyses, where there was evidence of heterogeneity in the relationships between AURKA SNPs 

and luminal A and basal-like breast cancer.  Intronic SNPs rs2298016 and rs6099128 both 

demonstrated decreased odds ratios for basal-like breast cancer (Table 3).  A population-based 

case-control study of breast cancer in Han Chinese women found rs2298016 to be inversely 

associated with breast cancer (OR = 0.52, 95% CI = 0.32-0.87, p = 0.01) [49].  However, the 

minor/test allele in the Han Chinese population was opposite that in the CBCS population and 

subtype-specific results were not reported in that study.  Furthermore, rs2298016 was positively 

associated with both HER2+/ER- and unclassified breast cancer subtypes in CBCS cases.  The 

instability of ORs for these SNPs across populations suggests significant differences in LD 

structure and/or different subtype distributions among the study populations.  Allele and 

genotype frequencies for rs2298016 among AA cases and controls were comparable to those in 

Cau (Table 2.16), however LD structure was considerably different between races.  This study 

was not powered to examine associations by race and breast cancer subtype, but exploratory 

subtype analysis of rs2298016 showed a decreased association between rs2298016 and basal-like 

breast cancer in AA (OR = 0.55, 95 % CI = 0.35-0.88), with weaker effects among Cau (OR = 

0.81, 95 % CI = 0.51-1.28).  Allele and genotype frequencies for rs6099128 among AA cases 
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and controls were also similar to those in Cau (Table 2.16), and LD structure was similar 

between races.  Exploratory subtype analysis by race showed an odds ratio less than one for the 

association between rs6099128 and basal-like breast cancer among AA (OR = 0.45, 95 % CI = 

0.27-0.75), with weaker effects in Cau (OR = 0.71, 95 % CI = 0.39-1.28).  Rs6099128 was 

negatively associated with luminal A breast cancer; upon exploratory race-specific subtype 

analysis, a stronger negative association (OR = 0.68, 95% CI = 0.49-0.93) among Cau women 

compared to AA (OR = 0.86, 95 % CI = 0.61-1.20).  These results should be considered in the 

context of small sample sizes and imprecise effect estimates, but may suggest race-specific 

differences by breast cancer subtype. 

Several published studies have investigated the effects of missense SNP rs2273535 

(Phe31Ile) and rs1047972 (Val57Ile) in association with breast cancer overall.  Sun T. et al. 

found increased risk for breast carcinoma associated with the Ile/Ile genotype of rs2273535 

(OR=1.66, 95% CI = 1.29-2.12) in a case-control study of unrelated Han Chinese women [17].  

Additional studies of rs2273535 in both Chinese [18,23] and Cau [20] populations failed to 

replicate the finding.  A 2011 meta-analysis of rs2273535, which included 11 case-control 

studies, reported a slight inverse association between the Ile/Ile genotype and risk of breast 

cancer (OR=0.86, 95% CI = 0.74-0.99), but only in Asian populations [50].  Our study found no 

association between rs2273535 and breast cancer overall in Cau or among AA women.  We also 

found no association for rs2273535 among luminal A cases, and a slightly negative association 

with basal-like breast cancer.  The coding region polymorphism rs1047972 on AURKA resulting 

in a valine to isoleucine substitution has also been heavily investigated for association with risk 

of breast cancer.  Egan et al. reported no association with breast cancer risk among Cau women 

with the Ile/Ile genotype (OR = 0.92, 95 % CI = 0.50-1.71) in a population-based case-control 
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study [20].  Our study found no association between rs1047972 and breast cancer overall or 

luminal A breast cancer.  However, an elevated odds ratio for rs1047972 and basal-like breast 

cancer was found (OR=1.34, 95%CI=0.97-1.85). 

Limitations of this study include diminished statistical power to detect subtype-specific 

effects of AURKA due to small numbers of cases within strata of breast cancer subtype.  

Furthermore, whereas this study employed IHC to classify breast cancer subtypes, gene 

expression profiling using mRNA-based assays containing thousands of genes was originally 

used to characterize intrinsic breast cancer subtypes [2,3].  IHC assays do not provide as much 

information about tumor biology as mRNA-based expression assays do, and could result in 

misclassification of subtype [29].  However, IHC-based subtyping has been shown to identify 

common tumor subtypes with similar biologic characteristics, does not require fresh tissue, and 

has been widely used in population-based studies as a surrogate for gene expression profiling 

methods [29,51].  Although our study population was large, the effect sizes of AURKA SNP 

associations with breast cancer risk are likely small and thus more subtle main or subtype effects 

will require a much larger study sample to determine more accurate estimates.  Additionally, 

sample sizes were not sufficient to reliably conduct subtype-specific race stratified analyses of 

AURKA.  A third phase of the CBCS is underway to augment the number of AA cases with 

characterized tumor subtype, which will allow for further genetic evaluation to address this 

limitation.  There was potential for selection bias to influence study results since 38% of cases 

were unable to be subtyped.  However, genotyping distributions were similar between cases with 

and without subtype data (data not shown).  Likewise, subtype distributions were similar 

between cases with and without genotyping data (Table 2.17).  This suggests that the genotype 

distribution in cases with subtype data is likely representative of the genotype distribution in all 
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cases.  Similarly, the subtype distribution in cases with genotype data is likely representative of 

the subtype distribution in all cases. 

This study applied a candidate gene approach that was based on a plausible biological 

mechanism involving the cell-cycle regulatory gene AURKA, which is implicated in oncogensis 

[12,13,52].  Strengths of this study include (1) the availability of a comprehensive set of tag and 

candidate SNPs in AURKA, which improves our survey and coverage of this important 

oncogene, (2) inclusion of a relatively large number of AA women, (3) inclusion of 5-marker 

intrinsic subtype data based on the most current understanding of breast tumor heterogeneity, and 

(4) use of AIMS to adjust for population stratification, a factor which has been shown to impact 

effect estimates significantly if not controlled for [41]. 

In summary, these results represent the first comprehensive examination of AURKA SNPs in 

a population-based study with a large group of African American participants.  Odds ratios for 

associations between AURKA SNPs and breast cancer overall were modest and consistent by 

race.  Associations by intrinsic breast cancer subtype were relatively imprecise compared to 

overall estimates, but results were suggestive of decreased associations between a few AURKA 

SNPs and breast cancer subtype.  Exploratory results also suggested race-specific effects within 

subtype.  Given the likelihood of small effect sizes of AURKA SNPs on rate of breast cancer, 

evaluating subtype-specific effects in larger groups of AA and Cau women may better estimate 

the effect of AURKA on the rate of distinct breast cancer subtypes.
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3.5 Tables 

Table 3.1 Characteristics of CBCS participants with genotype data. 
 Cases (%) Controls (%) 

N 1,946 (100) 1,747 (100) 
Self-identified race   
African American 742 (38.1) 658 (37.7) 

Caucasian 1,204 (61.9) 1,089 (62.3) 
Age   

20-24 6 (0.3) 1 (0.0) 
25-29 21 (1.1) 10 (0.6) 
30-34 85 (4.4) 60 (3.4) 
35-39 172 (8.8) 133 (7.6) 
40-44 276 (14.2) 242 (13.9) 
45-49 387 (19.9) 359 (20.5) 
50-54 208 (10.7) 237 (13.6) 
55-59 216 (11.1) 191 (10.9) 
60-64 201 (10.3) 166 (9.5) 
65-69 200 (10.3) 185 (10.6) 
70-74 174 (8.9) 163 (9.3) 

Menopausal Status   
Premenopausal 864 (44.4) 746 (42.7) 

Postmenopausal 1,082 (55.6) 1,001 (57.3) 
Stage   

1 609 (31.3)  
2 627 (32.3)  
3 144 (7.4)  
4 42 (2.2)  

CIS 437 (22.5)  
Missinga 87 (4.5)  

Tumor sizeb   
≤2 cm 769 (51.0)  

>2 – 5 cm 502 (33.3)  
>5 cm 146 (9.7)  

Missing 92 (6.1)  
Subtype   

Luminal A 674 (34.6)  
Luminal B 114 (5.9)  

HER2+/ER- 94 (4.8)  
Basal-like 199 (10.2)  

Unclassified 129 (6.6)  
Missing 736 (37.8)  

a Invasive breast cancer cases 
b Not available for CIS (carcinoma in situ) cases 
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Caucasian cases & 
controls

African American cases 
& controls

SNP ORa (95% CI) ORa (95% CI)

rs1468055
b

AC + AA 1.06 (0.88, 1.26) 0.95 (0.63, 1.41)
CC Referent Referent

rs1468056
b

CG + CC 1.09 (0.91, 1.30) 1.05 (0.75, 1.47)
GG Referent Referent

rs16979829
b

GT + GG 1.10 (0.77, 1.58) 0.97 (0.77, 1.23)
TT Referent Referent

rs2064863
b

AC + AA 1.00 (0.83, 1.20) 0.91 (0.50, 1.64)
CC Referent Referent

rs2180691
b

AG + AA 0.99 (0.84, 1.18) 0.90 (0.56, 1.45)
GG Referent Referent

rs2273535
b

TA + TT 1.00 (0.84, 1.20) 1.07 (0.84, 1.36)
AA Referent Referent

rs6099122
b

GT + GG 1.20 (0.79, 1.81) 0.86 (0.69, 1.07)
TT Referent Referent

rs6099128
b

GT + GG 0.85 (0.98, 1.06) 0.81 (0.64, 1.02)
TT Referent Referent

rs911162
b

AG + AA 0.82 (0.41, 1.67) 1.23 (0.82, 1.84)
GG Referent Referent

rs6014711
b

AG + AA 1.04 (0.86, 1.25) 0.97 (0.76, 1.23)
GG Referent Referent

Table 3.2 Odds ratios (Ors) and 95% confidence intervals (CIs) for the 
association between single nucleotide polymorphisms (SNPs) on 
AURKA and all incident cases of breast cancer by race.
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Caucasian cases & 
controls

African American cases 
& controls

SNP ORa (95% CI) ORa (95% CI)

rs1047972
c

AG + AA 1.05 (0.87, 1.27) 0.97 (0.76, 1.24)
GG Referent Referent

rs6024836
c

AG + AA 1.02 (0.86, 1.22) 0.95 (0.67, 1.35)
GG Referent Referent

rs34987347
c,d

TC + TT 1.04 (0.34, 1.27)
CC Referent

rs16979865
e

CA + CC 0.85 (0.64, 1.13)
AA Referent

rs2298016
e

CG + CC 0.97 (0.78, 1.21)
GG Referent

rs16979826
e

CT + CC 0.96 (0.73, 1.27)
TT Referent

rs6092309
e

AG + AA 0.69 (0.53, 0.90)
GG Referent

rs6099119
e

GA + GG 1.11 (0.77, 1.62)
AA Referent

rs6099126
e

TC + TT 0.89 (0.71, 1.12)
CC Referent

rs6024840
e

GA + GG 1.13 (0.88, 1.45)
AA Referent

b
 Tag SNP in both CEU and YRI HapMap populations.

c
 Candidate SNP.

d
 Too few heterozygotes and homozygotes for the minor allele in 

e
 Tag SNP in YRI HapMap population only.

Table 3.2 (cont.) Odds ratios (Ors) and 95% confidence intervals (CIs) 
for the association between single nucleotide polymorphisms (SNPs) on 
AURKA and all incident cases of breast cancer by race.

a
 Case-control odds ratio and 95% confidence interval adjusted for age, 
African ancestry 
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SNP ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI)
rs1047972

AG + AA 0.96 (0.78, 1.18) 0.75 (0.48, 1.18) 0.84 (0.52, 1.36) 1.34 (0.97, 1.85) 0.93 (0.62, 1.40)
GG Referent Referent Referent Referent Referent

rs1468056
CG + CC 1.28 (1.03, 1.59) 1.06 (0.68, 1.64) 1.04 (0.64, 1.70) 1.13 (0.78, 1.63) 0.90 (0.58, 4.41)

GG Referent Referent Referent Referent Referent
rs16979826

CT + CC 0.81 (0.54, 1.21) 0.69 (0.28, 1.72) 2.14 (1.06, 4.29) 0.88 (0.51, 1.50) 1.18 (0.65, 2.15)
TT Referent Referent Referent Referent Referent

rs16979829
GT + GG 0.92 (0.69, 1.23) 0.97 (0.54, 1.77) 1.05 (0.57, 1.92) 1.22 (0.82, 1.82) 1.03 (0.63, 1.69)

TT Referent Referent Referent Referent Referent
rs16979865

CA + CC 1.20 (0.93, 1.55) 0.71 (0.39, 1.31) 1.01 (0.56, 1.82) 0.91 (0.59, 1.41) 1.05 (0.64, 1.73)
AA Referent Referent Referent Referent Referent

rs2180691
AG + AA 0.96 (0.77, 1.20) 1.02 (0.65, 1.61) 1.25 (0.74, 2.11) 0.96 (0.64, 1.43) 1.01 (0.62, 1.65)

GG Referent Referent Referent Referent Referent
rs2273535

TA + TT 0.96 (0.78, 1.17) 1.30 (0.87, 1.94) 1.11 (0.71, 1.74) 0.81 (0.58, 1.13) 1.36 (0.92, 2.00)
AA Referent Referent Referent Referent Referent

rs2298016
CG + CC 0.96 (0.79, 1.16) 1.14 (0.77, 1.70) 1.38 (0.90, 2.11) 0.67 (0.48, 0.93) 1.34 (0.93, 1.95)

GG Referent Referent Referent Referent Referent
rs6014711

AG + AA 0.95 (0.77, 1.17) 0.74 (0.47, 1.17) 0.79 (0.48, 1.29) 1.33 (0.97, 1.84) 0.93 (0.61, 1.40)
GG Referent Referent Referent Referent Referent

rs6024840
GA + GG 0.95 (0.78, 1.16) 1.21 (0.80, 1.84) 1.28 (0.80, 2.05) 0.76 (0.54, 1.06) 1.00 (0.66, 1.50)

AA Referent Referent Referent Referent Referent

HER2+/ER- 

(Ncases=94)

Basal-like 

(Ncases=199)

Unclassified 

(Ncases=129)

Table 3.3 Odds ratios (ORs) and 95% confidence intervals (CIs) for the association between single nucleotide polymorphisms 
(SNPs) on AURKA and intrinsic subtype of breast cancer

Luminal A 

(Ncases=674)

Luminal B 

(Ncases=114)
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SNP ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI)
rs6092309

AG + AA 0.61 (0.41, 0.92) 0.95 (0.43, 2.09) 0.69 (0.29, 1.61) 0.75 (0.44, 1.25) 0.62 (0.32, 1.20)
GG Referent Referent Referent Referent Referent

rs6099122
GT + GG 1.08 (0.81, 1.42) 1.06 (0.58, 1.92) 1.56 (0.86, 2.83) 1.15 (0.77, 1.71) 0.71 (0.44, 1.17)

TT Referent Referent Referent Referent Referent
rs6099126

TC + TT 1.05 (0.79, 1.39) 0.83 (0.45, 1.52) 1.35 (0.73, 2.49) 1.10 (0.73, 1.66) 0.86 (0.53, 1.41)
CC Referent Referent Referent Referent Referent

rs6099128
GT + GG 0.76 (0.60, 0.95) 1.09 (0.70, 1.69) 0.86 (0.52, 1.41) 0.54 (0.37, 0.80) 0.61 (0.38, 0.97)

TT Referent Referent Referent Referent Referent
rs1468055

AC + AA 1.01 (0.81, 1.27) 1.28 (0.82, 2.00) 0.80 (0.46, 1.37) 1.10 (0.75, 1.63) 0.79 (0.48, 1.30)
CC Referent Referent Referent Referent Referent

rs6024836
AG + AA 1.02 (0.82, 1.27) 0.90 (0.58, 1.39) 0.85 (0.52, 1.39) 0.85 (0.59, 1.24) 0.63 (0.41, 0.98)

GG Referent Referent Referent Referent Referent
rs2064863

AC + AA 0.87 (0.69, 1.11) 1.25 (0.76, 2.06) 1.12 (0.64, 1.97) 0.93 (0.61, 1.43) 0.94 (0.56, 1.58)
CC Referent Referent Referent Referent Referent

rs6099119
GA + GG 1.15 (0.68, 1.93) 0.28 (0.04, 2.11) 0.58 (0.13, 2.49) 1.61 (0.85, 3.06) 1.37 (0.62, 3.05)

AA Referent Referent Referent Referent Referent
rs911162

AG + AA 0.83 (0.50, 1.40) 0.85 (0.29, 2.47) 0.87 (0.30, 2.55) 1.32 (0.70, 2.51) 0.68 (0.26, 1.79)
GG Referent Referent Referent Referent Referent

Table 3.3 (cont.) Odds ratios (ORs) and 95% confidence intervals (CIs) for the association between single nucleotide 
polymorphisms (SNPs) on AURKA and intrinsic subtype of breast cancer

Luminal A 

(Ncases=674)

Luminal B 

(Ncases=114)

HER2+/ER- 

(Ncases=94)

Basal-like 

(Ncases=199)

Unclassified 

(Ncases=129)

a Case-control odds ratio and 95% confidence interval adjusted for age, self-reported race, African ancestry and offset term
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Chapter 4. Results Manuscript 2: Genetic variation in BRCA1 and BRCA1-
interacting genes in association with intrinsic breast cancer subtype 
 

 
4.1 Background 

Mutations in BRCA1 are likely to account for fewer than 10% of hereditary cases of breast 

cancer and between 1-2% of all breast cancers [1].  The large proportion of unexplained risk may 

depend on unidentified genetic traits, environmental risk factors, or a combination of both.  

There is considerable debate as to which of these factors predominates, and the magnitude of the 

genetic contribution to the causation of breast cancer remains unclear [2, 3].  Twin-studies and 

studies of familial inheritance have suggested that common, low penetrance genetic factors may 

account for residual familial risk [2, 4].  The polygenic model proposes that genetic susceptibility 

to breast cancer is not entirely predicted by rare, highly penetrant genes but more often stems 

from several common loci that each confer smaller increases in risk [4-7].  Under this model it 

would be rare to observe multiple-affected case families (as is the case for those demonstrating 

highly penetrant mutations in genes such as BRCA1) since multiple individuals in a family would 

each have to inherit several different less penetrant susceptibility variants. 

Studies have shown that the tumor suppressor activity of BRCA1 influences several 

pathways, including DNA damage repair and cell cycle regulation [8].  Through these pathways, 

BRCA1 interacts with numerous other proteins that are important for cell cycle progression [8].  

Due to the prominent role BRCA1 plays throughout the cell cycle and the relatively high risk for 

breast cancer conferred by mutations in it, BRCA1 and lesser penetrant genes encoding BRCA1-

interacting proteins are logical targets for further investigation [9].  BARD1, BRIP1 and ZNF350 
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are three putative low penetrance breast cancer susceptibility genes whose protein products are 

known to interact with BRCA1.  The BARD1 protein markedly enhances the tumor suppression 

activity of BRCA1 by forming a heterodimer BRCA1/BARD1 complex [10].  Mutations in 

BRCA1 are known to deactivate this heterodimer complex [10, 11], suggesting a role for BARD1 

in DNA repair processes.  BRIP1 encodes a helicase that binds to the C-terminus of BRCA1, 

contributing to its double-strand break repair function [12], and has previously been identified as 

a potential breast cancer susceptibility gene [13].  ZNF350 and BRCA1 are corepressors of 

GADD45, which is involved in cell cycle arrest at the G2/M checkpoint subsequent to DNA 

damage [14, 15].  ZNF350 has been associated with breast cancer risk in previous DNA repair 

pathway-based studies of breast cancer [16, 17]. 

 Based on the plausible etiologic role for genetic variants of three BRCA1-interacting 

genes, we investigated tag and candidate single nucleotide polymorphisms (SNPs) on these 

genes and their associations with breast cancer and intrinsic breast cancer subtype.  We used data 

from the Carolina Breast Cancer Study (CBCS), a large population-based case-control study of 

breast cancer in African American (AA) and Caucasian (Cau) women in North Carolina.  We 

also examined associations between candidate SNPs on BRCA1 and breast cancer.  In addition, 

and building on our previous investigation of another BRCA1-interacting gene, AURKA, we 

explored gene—gene interactions between candidate SNPs on AURKA and candidate SNPs on 

each of BRCA1, BARD1, BRIP1, and ZNF350.  Several epidemiologic studies have examined 

common genetic variation in BRCA1 and BRCA1-interacting genes in association with breast 

cancer risk [16-18], but none of them were conducted in large groups of African Americans or 

by breast cancer subtype.  Taking advantage of the CBCS study design, which oversampled AA 

women and classified samples as to intrinsic subtype, we estimated the association of BRCA1 
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and BRCA1-interacting SNPs on overall breast cancer and with stratification by race (all cases 

and controls) and by subtype (race-combined). 

 

4.2 Methods 

Study Population 

The CBCS is a population-based, case-control study of genetic and environmental risk 

factors for breast cancer among AA and Cau women residing in North Carolina [19].  CBCS 

study design and methods have been previously described by Newman et al. [19].  Study 

participants were recruited and selected from 24 contiguous counties in central and eastern North 

Carolina [19].  CBCS recruitment was conducted in two phases—from 1993 through 1995 

(Phase 1) and from 1996 through 2001 (Phase 2).  Women living in the study area between the 

ages of 20 and 74 and diagnosed with invasive breast cancer for the first time were eligible cases 

in Phase 1.  CBCS Phase 2 included women diagnosed with in situ breast cancer (CIS) as well as 

those diagnosed with invasive breast cancer.  Cases were identified using a rapid case 

ascertainment system via the North Carolina Central Cancer Registry (NCCCR).  After 

eligibility criteria were met, randomized recruitment case sampling was undertaken to ensure 

adequate representation of AA and younger women [20].  Phase 2 CIS cases were not included 

in random recruitment sampling and all eligible CIS cases were enrolled. 

Controls were selected from two sources: women younger than 65 were selected from a list 

maintained by the North Carolina Division of Motor Vehicles; women between the ages of 65 

and 74 were selected from Health Care Financing Administration records.  Controls were 

sampled from these lists using modified randomized recruitment, and sampling fractions were 
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designed to ensure frequency-matching of cases to controls by race and five-year age interval 

[20, 21]. 

Potential cases and controls were contacted first by letter and then by telephone, if available.  

Women agreeing to participate were scheduled for an in-home visit by a registered nurse 

interviewer.  The nurse interviewer collected anthropometric measurements, questionnaires, 

permission/consent to obtain tumor tissue, and a 30cc blood sample.  Germline DNA was 

extracted from peripheral blood lymphocytes and stored at -80°C for future analysis [19].  The 

CBCS pathologist performed a standardized review of all breast tissue received to confirm the 

diagnosis of breast cancer and to characterize histology [19].  Slides were cut from paraffin 

blocks for molecular and immunohistochemical (IHC) assays, procedures for which have been 

described previously [22-24].  The study procedures for recruitment and enrollment into the 

CBCS were approved by the Institutional Review Board of the University of North Carolina, 

Chapel Hill (UNC), and all study participants gave written informed consent. 

 

Subtyping of Cases by Immunohistochemistry (IHC) 

For invasive cases, estrogen receptor (ER) and progesterone receptor (PR) status were 

primarily obtained from medical records (80%).  Clinical laboratories determined ER/PR results 

on these cases.  Approximately half of the clinical laboratories used IHC on paraffin-embedded 

tissue, and employed cutoffs for receptor positivity from more than 0% to more than 20%.  The 

other half performed biochemical assays on frozen tissue with cutoffs for receptor positivity of 

10-15 fmol/mg [24].   For approximately 11% of invasive cases, ER/PR status was not available 

in the medical record; however, paraffin-embedded tissue was available and ER/PR status was 

ascertained by the UNC IHC Core laboratory.  For these cases, IHC scoring was based on UNC 
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Hospitals Department of Pathology standards, using a cutoff of 5% positive nuclei staining in 

invasive breast cancer cells [22].  A random sample of ER+ and ER- cases based on medical 

record abstraction was drawn to compare with IHC performed by the UNC IHC Core laboratory.  

A kappa statistic of 0.62 and concordance of 81% resulted from the comparison, indicating good 

agreement [25].  Nine percent of invasive cases had missing data for ER/PR status [22]. 

CBCS intrinsic breast cancer subtypes were based on expression of ER, PR, human 

epidermal growth factor receptor 2 (HER2), cytokines (CK) 5/6, and human epidermal growth 

factor receptor 1 (HER1) according to previously published definitions [22].  Tumors that were 

negative for expression of all five markers were unclassified.  Negative staining for all markers is 

not necessarily indicative of receptor negativity in the tumor, and can result from poor tumor 

block quality or inadequate tissue present in the tumor block [22].  HER2, CK5/6 and HER1 

assays were performed by the UNC IHC Core laboratory (IC).  Tissue subtype analysis was 

performed in the following manner: HER2 status in invasive cases was determined using the 

CB11 monoclonal antibody as previously described [23].  HER2 positivity was defined by weak 

to strong staining of membrane or membrane plus cytoplasm in at least 10% of tumor cells [22].  

Interscorer agreement of the HER2 IHC assay was evaluated on a subset of cases, yielding 

overall concordance of 82% [22].  HER1 and cytokeratin (CK) 5/6 characterization have been 

previously described [26, 27], and invasive cases demonstrating any staining were classified as 

positive [22].  ER, HER2, CK5/6, and HER1 classification and determination for CIS cases were 

described in detail previously [28].  PR status was not determined for CIS cases due to its high 

correlation with ER expression and to preserve tissue [29]. 
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SNP Selection 

SNPs in this study were genotyped as part of a larger panel of 1,536 SNPs by the UNC 

Mammalian Genotyping Core using the Illumina Golden Gate Assay (Illumina, San Diego, CA).  

Detailed genotyping procedures and quality control measures for the entire 1,536 SNP panel 

were described previously [30, 31].  Assay intensity data and genotype cluster images for all 

SNPs were reviewed individually.  To ensure quality control of genetic data, SNPs with low 

signal intensity or SNPs that were unable to be distinguished by genotype cluster were excluded.  

For each SNP, Hardy-Weinberg equilibrium (HWE) was evaluated in SAS v9.3 (SAS, Cary, 

NC) using a one-degree-of-freedom chi square exact test among race-stratified controls to 

determine if genotype frequencies were distributed as expected given the allele frequencies.  For 

the evaluation of AURKA, BRCA1 and BRCA1-interacting genes, a combination of tag and 

candidate SNPs were selected for genotyping.  Tag SNPs were identified for Cau and AA from 

CEU (Utah residents with ancestry from northern and western Europe) and YRI (individuals of 

Yoruban descent from Idaban, Nigeria) HapMap populations respectively [32], and selected 

using the Tagger program developed by de Bakker et al. [33].  Tag SNPs were selected based on 

a linkage disequilibrium (LD) r2
≥0.80 and a minor allele frequency (MAF) of ≥0.10 in either 

CEU or YRI populations.  Tag SNPs in each population were then combined and CBCS 

participants were genotyped for the pooled list.  Candidate SNPs were chosen based on a 

literature review and previous GWAS hits [30].  Twelve SNPs on BRCA1 and the BRCA1-

interacting genes were excluded due to HWE P-values <0.05 in either AA or Cau (N=10) or 

because they were not polymorphic in the CBCS population (N=2) (Table 2.16).   Six SNPs on 

AURKA were excluded from consideration for the interaction analysis due to HWE P-values 

<0.05 in either AA or Cau (N=3) or because they were not polymorphic in the CBCS population 
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(N=3).  One SNP on BARD1 was excluded from the combined race subtype analysis because it 

was not polymorphic in African Americans (rs28997576).  Detailed genotyping procedures and 

quality control measures were described previously [30, 31].  The software package Structure 

and a set of 144 ancestry informative markers (AIMs) were used to determine the proportion of 

African ancestry for each participant [30, 34]. 

SNPs were chosen for inclusion into the interaction analysis based on a decision tree (Figure 

2.7).  The primary criterion for inclusion was based on the likelihood that a SNP was functional.  

Likelihood of SNP functionality was determined using the FS Score, an integrative in silico 

scoring system for assessing potential SNP functionality based on protein coding, splicing 

regulation, transcriptional regulation, and post-translation [35].  SNPs demonstrating FS Scores 

of ≥0.50 were included in the interaction study. 

  

Statistical Analysis 

We used multivariable logistic regression to identify patterns among SNPs having effect 

estimates that were most different from the null; and, were least influenced by chance (i.e. those 

estimates with the lowest confidence limit ratios (CLRs); the ratio of the upper to lower 95% 

confidence limits-a measure of precision [41]).  We defined relatively good estimate precision to 

correspond to a CLR of ≤3.0.  Odds ratios (ORs), as estimates of rate ratios [36],  and 95% 

confidence intervals (CIs) were calculated for genotype associations with breast cancer overall, 

by race, and by immunohistochemical (IHC) subtype using unconditional binary logistic 

regression in SAS v9.3 (SAS, Cary, NC).  SNPs were coded using a dominant model, with the 

most common allele in Cau as the reference allele in both race groups for SNPs that were tags in 

both CEU and YRI HapMap populations to facilitate race comparisons.  In race-stratified 
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analyses, YRI tag SNPs that were not tag SNPs in the CEU population were analyzed in AA 

only, using the major allele in AA as the reference allele; likewise, CEU tag SNPs that were not 

tag SNPs in the YRI population were analyzed in Cau only, using the major allele in Cau as the 

reference allele.  Candidate SNPs were analyzed in both race groups, using the major allele in 

Cau as the reference allele to facilitate race comparisons.  Genotype associations were adjusted 

for age, potential population stratification using the AIMs variable, and an offset term (defined as 

the natural log of recruitment probability of cases/recruitment probability of controls) to adjust 

for differing randomized recruitment sampling probabilities between phases of CBCS [41,47].  

Subtype-specific analyses were performed in the combined race group rather than by race due to 

small sample numbers within strata of subtype, and were adjusted for self-identified race, age, 

the AIMs variable, and the offset term.  Subtype-specific analyses included all tag and candidate 

SNPs and assigned the major allele in Cau as the reference allele.  Additive interaction between 

selected SNPs on AURKA, BRCA1, and BRCA1-interacting genes was assessed using the relative 

excess risk due to interaction (RERI) based on the formula RERI=OR11 – OR01 – OR10 + 1 [39], 

with 95% confidence intervals calculated based on the method proposed by Hosmer and 

Lemeshow [40]. 

 

4.3 Results 

Participation  

Among self-reported AA, the median proportion of African ancestry was 81%.  The median 

proportion of African ancestry among self-reported Cau was 6%.  Immunohistochemical subtype 

data was available for 1,412 of 2,277 (62%) cases, and successful genotyping data was collected 

for 1,946 of 2,277 (85%) cases.  Of the 2,277 cases, 1,210 (53%) were successfully genotyped 
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and assigned a breast cancer intrinsic subtype (742 AA/1,204 Cau) (Table 3.1).  The distribution 

of tumor subtype in cases with genotype data was as follows: 199 basal-like, 674 luminal A, 114 

luminal B, 94 HER2+/ER-, and 129 unclassified (Table 3.1).  Cases with missing subtype data 

were more likely to be Cau and have an earlier stage at diagnosis [29].  Of 1,985 controls, 1,747 

(88%) were successfully genotyped (658 AA/1,089 Cau) (Table 3.1).  Participants were excluded 

from analysis if genotype calls were missing for ≥95% of SNPs (N=569), gender was 

mismatched (N=5), or due to suspected contamination of DNA specimen (N=1) [30].  

Participants missing genotype data were more likely to be AA cases. 

 

Genotype Associations 

Odds ratios for SNPs on BRCA1 and breast cancer were all close to 1.00 among AA (Table 

4.1).  Among Cau, three SNPs on BRCA1 (rs16941, rs16942, and rs1799966) showed positive 

associations with breast cancer and had relatively good estimate precision.  The majority of 

SNPs on BARD1 had ORs close to 1.00 in AA and Cau.  Rs16852799 on BARD1 had an inverse 

association with breast cancer among AA (OR=0.87, 95% CI: 0.68-1.13) and Cau (OR=0.75, 

95% CI: 0.58-0.98).   One BARD1 SNP (rs28997576: OR=1.42, 95% CI: 1.00-2.03) showed an 

elevated OR among Cau but was not polymorphic among African American CBCS participants 

(not shown in Table 4.1).  Among AA, three BRIP1 SNPs (rs4986764, rs7213430, and 

rs1978111) had inverse associations with breast cancer, with relatively good estimate precision.  

Results for BRIP1 SNPs among Cau were consistent with little or no association.  Similarly, ORs 

for SNPs on ZNF350 were all close to 1.00 for both AA and Cau. 

Table 4.2 presents intrinsic breast cancer subtype-specific (race-combined) results.  Three 

SNPs on BRCA1 (rs16941, rs16942, and rs1799966) had inverse associations with HER2+/ER- 
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breast cancer and positive associations with luminal A and basal-like subtypes, with relatively 

good estimate precision.  Two BRCA1 SNPs (rs1799950 and rs799923) had reduced ORs for 

luminal A breast cancer and increased ORs for luminal B breast cancer.  Rs1799950 also showed 

inverse associations with HER2+/ER- and basal-like breast cancer.  Exploratory race-stratified 

analysis of rs1777950 showed an inverse association with basal-like breast cancer among Cau 

(OR=0.15, 95%CI: 0.04-0.61), with results in AA imprecise, but consistent with no association 

(OR=1.02, 95%CI: 0.30-3.46).  Exploratory analysis of rs799923 by race and subtype showed an 

inverse association with luminal A breast cancer and a positive association with the basal-like 

subtype among Cau (luminal A OR=0.76, 95%CI: 0.60-0.97; luminal B OR=1.76, 95%CI: 1.10-

2.84). 

Two SNPs on BARD1 (rs16852761 and rs3768704) had positive associations with luminal B 

breast cancer and negative associations with basal-like breast cancer, with ORs closer to 1.00 for 

other subtypes.  Three BARD1 SNPs (rs12474696, rs2075622, and rs2888294) had decreased 

ORs for luminal A breast cancer and elevated ORs for basal-like breast cancer.  One BARD1 

SNP (rs16852799) showed decreased ORs for both luminal A and basal-like subtypes. 

Three SNPs on BRIP1 (rs4986764, rs7213430, and rs1978111) were positively associated 

with HER2+/ER- breast cancer and negatively associated with basal-like breast cancer.  Two 

SNPs on ZNF350 (rs2278420 and rs4988334) showed elevated ORs for luminal B and 

HER2+/ER- breast cancer.  Assessment of additive interactions between candidate SNPs on 

AURKA and BRCA1 and BRCA1-interacting genes using RERI yielded results that were 

consistent with little or no departure from additivity (Tables 4.3-4.6). 
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4.4 Discussion 

We estimated associations between tag and candidate SNPs on BRCA1 and BRCA1-

interacting genes and rate of breast cancer overall and by intrinsic subtype using data from a 

large population based case-control study.  Our main findings were positive associations between 

three candidate SNPs on BRCA1 (rs16941, rs16942, and rs1799966) and breast cancer overall 

that demonstrated relatively good estimate precision among Cau women.  All three 

nonsynonymous missense SNPs demonstrated estimates of similar magnitude and precision, 

which is likely due to the high degree of LD between them (r2
≥0.90).   Furthermore, among the 

HapMap CEU population (Release #27), all three SNPs are also in high LD with 36 other SNPs 

on BRCA1 that were not genotyped in the CBCS population.  It is possible that these three 

coding SNPs along with other SNPs in LD alter function of BRCA1 and together are responsible 

for the associations we observed.  Both rs16941 and rs1799966 are predicted to be deleterious by 

SIFT and showed FS scores of ≥0.5, indicting a strong probability of functionality.  Rs16942 was 

also predicted to be functional, with an FS score of 0.9, but was predicted to be tolerated by 

SIFT.  Using data on BRCA1 mutation carriers from the Consortium of Investigators of 

Modifiers of BRCA1/2 (CIMBA), Cox et al. reported a decreased risk of breast cancer among 

women carrying the minor allele of rs16942 on the wild-type copy of BRCA1 (hazard ratio=0.86, 

95%CI: 0.77-0.95), contrary to our results.   The proportion of CBCS case participants with 

disease-related BRCA1 mutations is largely unknown, but its population-based design and a 

previous study by Newman et al. suggests it may be small [42].  This difference may account for 

contrasting results reported by Cox et al.  Furthermore, the study group evaluated by Cox et al. 

(CIMBA) is a hospital-based study comprised of study participants from 18 different countries 

that may not be comparable to the CBCS study population. 
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Subtype-specific analyses suggested heterogeneity in the relationship between genotyped 

SNPs and intrinsic breast cancer subtype.   BRCA1 missense SNP rs1799950, resulting in a 

glutamine to arginine amino acid change, has been examined in large population-based studies of 

breast cancer.  Baynes et al. reported an inverse association between rs1799950 and overall 

breast cancer risk in a large case-control study of European women (OR=0.63, 95%CI: 0.23-

1.23) [43].  Similar results were reported by Dunning et al. in a case-control study of Caucasian 

women from the United Kingdom [44].  These prior results are consistent with our overall 

findings for rs1799950 among Caucasians.  Subtype-specific results also indicated inverse 

associations between rs1799950 and luminal A, HER2+/ER-, and basal-like breast cancers in 

CBCS participants.  Since genotype and allele frequencies for rs1777950 were similar between 

races, we conducted exploratory subtype analyses stratified by race (data not shown).  Race-

stratified estimates for luminal A breast cancer were similar in magnitude and direction to those 

reported in our combined race subtype-specific analysis.  An inverse association was also noted 

between rs1799950 and HER2+/ER- breast cancer among Cau, with inadequate cell sizes 

precluding calculation of an estimate in AA.  Intronic BRCA1 SNP rs799923 demonstrated an 

inverse association with luminal A breast cancer and a positive association with luminal B breast 

cancer.  Exploratory subtype analysis by race showed this pattern repeated among Cau, with 

highly imprecise estimates among AA.  Rs799923 is not in high LD with any other SNP on 

BRCA1 in Cau.  Three intronic SNPs on BARD1 (rs12474696, rs2075622, and rs6749828) 

demonstrated positive associations with basal-like breast cancer.  Exploratory subtype analysis 

by race demonstrated the same pattern of association in both Cau and AA.  All three SNPs are 

predicted to be nonfunctional by FS score and are in high LD with other SNPS that were not 
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genotyped by CBCS.  These exploratory results should be considered in the context of the 

imprecise effect estimates, but may suggest race-specific differences by breast cancer subtype.   

Limitations of this study include limited statistical power to detect intrinsic breast cancer 

subtype-specific associations of candidate genes due to small numbers of cases within these 

strata.  Although our study population was large, effect sizes of selected candidate gene SNP 

associations with breast cancer risk are likely small, and thus more subtle main or subtype effects 

will require a much larger study sample to estimate accurately.  Additionally, samples sizes were 

not sufficient to reliably conduct subtype-specific race-stratified analyses.  A third phase of the 

CBCS is underway to augment the number of AA cases with tumor subtype data, which will 

allow for better powered genetic analyses.  There was potential for selection bias to influence 

study results since 38% of cases were unable to be subtyped.  However, genotyping distributions 

were similar between cases with and without subtype data.  Likewise, subtype distributions were 

similar between cases with and without genotyping data (data not shown).  This suggests that the 

genotype distribution in cases with subtype data is likely representative of the genotype 

distribution in all cases.  Similarly, the subtype distribution in cases with genotype data is likely 

representative of the subtype distribution in all cases. 

This study applied a candidate gene approach that was based on plausible biological 

oncogenic mechanisms involving candidate genes BRCA1, BARD1, BRIP1, and ZNF350.  

Additional strengths of this study include (1) inclusion of a relatively large number of AA 

women, which are drawn from the largest case-control study of breast cancer among AA women 

available to date; (2) inclusion of 5-marker intrinsic subtype data, and (3) use of AIMS to adjust 

for population stratification [30]. 
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In summary, we observed positive associations between breast cancer and three candidate 

SNPs on BRCA1 (rs16941, rs16942, and rs1799966).  These results represent the first candidate 

gene study of genetic variation in BARD1, BRIP1, and ZNF350 in a population-based study with 

a large group of African American participants.  Odds ratios for associations between SNPs on 

these candidate genes and breast cancer overall were close to 1.00 and consistent by race.  

Associations by intrinsic breast cancer subtype were relatively imprecise compared to overall 

estimates, but results were suggestive of differential associations between candidate genes and 

intrinsic breast cancer subtype.  Exploratory results also suggested race-specific effects within 

subtype.  Given the likelihood of small effect sizes of candidate gene SNPs on rate of breast 

cancer, evaluating subtype-specific effects in larger groups of AA and Cau women may better 

estimate the effects of genetic variation in BRCA1 and BRCA1-interacting genes on the rate of 

distinct breast cancer subtypes.
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4.5 Tables 

SNP ORa (95% CI) ORa (95% CI)

BRCA1

rs1799950
c

AG+GG 0.89 (0.68, 1.17) 0.94 (0.48, 1.83)

AA Referent Referent

rs16941
c

AG+GG 1.24 (1.04, 1.48) 1.04 (0.83, 1.31)
AA Referent Referent

rs16942
c

AG+GG 1.24 (1.04, 1.48) 1.10 (0.88, 1.37)
AA Referent Referent

rs1799966
c

AG+GG 1.25 (1.05, 1.48) 1.11 (0.89, 1.38)

AA Referent Referent

rs799917
c

CT+TT 1.06 (0.80, 1.40) 1.06 (0.83, 1.34)

CC Referent Referent

rs4986852
c

CT+TT 0.98 (0.66, 1.45) 1.07 (0.38, 3.02)

CC Referent Referent

rs799923
f

GA+AA 1.05 (0.88, 1.26)

GG Referent

BARD1

rs12477063
b

TC+CC 1.10 (0.87, 1.40) 1.10 (0.88, 1.37)

TT Referent Referent

rs6751923
b

TC+CC 0.83 (0.68, 1.01) 1.13 (0.91, 1.41)

TT Referent Referent

rs1542173
b

AG+GG 1.16 (0.97, 1.39) 1.11 (0.89, 1.38)

AA Referent Referent

Caucasian cases & 
controls

African American 
cases & controls

Table 4.1 Odds ratios (ORs) and 95% confidence intervals (CIs) for 
the association between single nucleotide polymorphisms (SNPs) on 
BRCA1 and BRCA1-interacting genes and all incident cases of breast 
cancer by race
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SNP ORa (95% CI) ORa (95% CI)

rs16852761
b

GA+AA 0.92 (0.57, 1.49) 0.99 (0.75, 1.31)

GG Referent Referent

rs16852798
b

CT+TT 0.85 (0.55, 1.32) 1.00 (0.77, 1.28)

CC Referent Referent

rs16852799
b

AG+GG 0.75 (0.58, 0.98) 0.87 (0.68, 1.13)

AA Referent Referent

rs2075622
b

CA+AA 1.00 (0.84, 1.20) 0.95 (0.76, 1.19)

CC Referent Referent

rs2888294
b

CG+GG 0.93 (0.77, 1.13) 0.96 (0.74, 1.24)

CC Referent Referent

rs3768704
b

GA+AA 1.07 (0.88, 1.31) 1.02 (0.79, 1.30)

GG Referent Referent

rs4672729
b

GA+AA 1.08 (0.91, 1.29) 1.06 (0.85, 1.32)

GG Referent Referent

rs6749828
b

GC+CC 0.99, (0.79, 1.24) 1.09 (0.87, 1.36)

GG Referent Referent

rs1979028
c

TA+AA 1.07 (0.90, 1.28) 1.05 (0.84, 1.31)

TT Referent Referent

rs7585356
c

GA+AA 1.07 (0.90, 1.28) 0.92 (0.73, 1.16)

GG Referent Referent

Table 4.1 (cont.) Odds ratios (ORs) and 95% confidence intervals 
(CIs) for the association between single nucleotide polymorphisms 
(SNPs) on BRCA1 and BRCA1-interacting genes and all incident 
cases of breast cancer by race

Caucasian cases & 
controls

African American 
cases & controls
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SNP ORa (95% CI) ORa (95% CI)

rs1048108
c

GA+AA 1.03 (0.86, 1.23) 1.02 (0.81, 1.27)

GG Referent Referent

rs28997576
c,d

GC+CC 1.42 (1.00, 2.03)
GG Referent

rs2229571
c

CG+GG 0.99 (0.82, 1.18) 0.93 (0.70, 1.24)
CC Referent Referent

rs10221582
e

CT+TT 0.81 (0.63, 1.04)
CC Referent

rs10932573
e

TC+CC 1.06 (0.85, 1.33)
TT Referent

rs12474696
e

AG+GG 1.00 (0.80, 1.24)
AA Referent

rs3768707
e

CT+TT 1.09 (0.87, 1.35)
CC Referent

rs3768708
e

AG+GG 1.02 (0.81, 1.28)
AA Referent

rs3820727
e

TG+GG 0.94 (0.75, 1.18)
TT Referent

rs6756902
e

TC+CC 1.11 (0.89, 1.39)
TT Referent

Table 4.1 (cont.) Odds ratios (ORs) and 95% confidence intervals 
(CIs) for the association between single nucleotide polymorphisms 
(SNPs) on BRCA1 and BRCA1-interacting genes and all incident 
cases of breast cancer by race

Caucasian cases & 
controls

African American 
cases & controls
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SNP ORa (95% CI) ORa (95% CI)

rs7557557
e

CT+TT 1.04 (0.84, 1.29)
CC Referent

rs7566806
e

GC+CC 1.04 (0.82, 1.32)
GG Referent

rs6753417
e

CT+TT 1.02 (0.82, 1.28)
CC Referent

rs10932568
f

AC+CC 0.91 (0.76, 1.08)
AA Referent

rs17487827
f

CG+GG 1.18 (0.99, 1.42)
CC Referent

BRIP1

rs4986764
c

CT+TT 1.07 (0.89, 1.28) 0.83 (0.67, 1.03)
CC Referent Referent

rs7213430
c

AG+GG 1.09 (0.91, 1.30) 0.82 (0.66, 1.03)
AA Referent Referent

rs4988351
c

GC+CC 1.17 (0.98, 1.40) 1.15 (0.90, 1.47)
GG Referent Referent

rs1978111
c

CT+TT 1.06 (0.89, 1.27) 0.81 (0.65, 1.01)
CC Referent Referent

Table 4.1 (cont.) Odds ratios (ORs) and 95% confidence intervals 
(CIs) for the association between single nucleotide polymorphisms 
(SNPs) on BRCA1 and BRCA1-interacting genes and all incident 
cases of breast cancer by race

Caucasian cases & 
controls

African American 
cases & controls
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SNP ORa (95% CI) ORa (95% CI)
ZNF350

rs4986773
c

TC+CC 1.08 (0.91, 1.29) 1.18 (0.86, 1.61)
TT Referent Referent

rs2278420
c

AG+GG 1.10 (0.91, 1.33) 0.98 (0.78, 1.22)
AA Referent Referent

rs11879758
c

GC+CC 1.02 (0.84, 1.25) 1.06 (0.82, 1.37)
GG Referent Referent

rs2278417
c

CT+TT 1.08 (0.91, 1.29) 1.16 (0.85, 1.60)
CC Referent Referent

rs4986770
c

CT+TT 0.96 (0.74, 1.24) 1.09 (0.82, 1.46)
CC Referent Referent

rs4988334
c

TC+CC 1.15 (0.84, 1.40) 0.93 (0.75, 1.15)
TT Referent Referent

e
 Tag SNP in YRI HapMap population only

f
 Tag SNP in CEU HapMap population only

d
 Too few heterozygotes and homozygotes for the minor allele in 

African Americans

Table 4.1 (cont.) Odds ratios (ORs) and 95% confidence intervals 
(CIs) for the association between single nucleotide polymorphisms 
(SNPs) on BRCA1 and BRCA1-interacting genes and all incident 
cases of breast cancer by race

Caucasian cases & 
controls

African American 
cases & controls

a
 Case-control odds ratio and 95% confidence interval adjusted for age, 
African ancestry, and offset term 
b
 Tag SNP in both CEU and YRI HapMap populations

c
 Candidate SNP
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SNP ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI)
BRCA1
rs1799950

AG+GG 0.62 (0.42, 0.90) 1.36 (0.74, 2.51) 0.55 (0.51, 1.41) 0.33 (0.14, 0.79) 1.43 (0.76, 2.72)
AA Referent Referent Referent Referent Referent

rs16941
AG+GG 1.17 (0.97, 1.42) 1.02 (0.69, 1.51) 0.64 (0.41, 1.01) 1.21 (0.88, 1.65) 0.86 (0.58, 1.27)

AA Referent Referent Referent Referent Referent
rs16942

AG+GG 1.15 (0.95, 1.39) 1.01 (0.68, 1.49) 0.69 (0.44, 1.06) 1.19 (0.88, 1.63) 0.96 (0.66, 1.40)
AA Referent Referent Referent Referent Referent

rs1799966
AG+GG 1.17 (0.97, 1.42) 1.00 (0.68, 1.48) 0.71 (0.46, 1.10) 1.20 (0.88, 1.64) 0.95 (0.65, 1.38)

AA Referent Referent Referent Referent Referent
rs799917

CT+TT 1.10 (0.86, 1.42) 1.12 (0.65, 1.90) 1.32 (0.74, 2.35) 0.88 (0.60, 1.30) 0.78 (0.49, 1.24)
CC Referent Referent Referent Referent Referent

rs4986852
CT+TT 1.01 (0.61, 1.67) 1.67 (0.69, 4.04) 0.33 (0.05, 2.47) 1.13 (0.46, 2.73) 1.25 (0.43, 3.61)

CC Referent Referent Referent Referent Referent
rs799923

GA+AA 0.79 (0.63, 0.99) 1.58 (1.02, 2.45) 1.08 (0.65, 1.79) 0.95 (0.64, 1.41) 1.43 (0.91, 2.25)
GG Referent Referent Referent Referent Referent

BARD1
rs10932568

AC+CC 1.05 (0.87, 1.28) 0.88 (0.58, 1.32) 1.10 (0.71, 1.71) 0.86 (0.63, 1.20) 0.86 (0.58, 1.27)
AA Referent Referent Referent Referent Referent

rs10221582
CT+TT 1.10 (0.89, 1.35) 0.86 (0.57, 1.30) 0.71 (0.46, 1.11) 1.02 (0.73, 1.43) 0.82 (0.55, 1.22)

CC Referent Referent Referent Referent Referent

Table 4.2 Odds ratios (ORs) and 95% confidence intervals (CIs) for the association between single nucleotide 
polymorphisms (SNPs) on BRCA1 and BRCA1-interacting genes and breast cancer subtype

Luminal A 
(NCASES= 674)

Luminal B 
(NCASES= 114)

HER2+/ER- 
(NCASES= 94)

Basal-like 
(NCASES= 199)

Unclassified 
(NCASES= 129)
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SNP ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI)
rs10932573

TC+CC 1.05 (0.85, 1.29) 1.10 (0.71, 1.69) 1.17 (0.73, 1.89) 1.29 (0.62, 1.82) 1.08 (0.72, 1.62)
TT Referent Referent Referent Referent Referent

rs12474696
AG+GG 0.78 (0.64, 0.94) 1.00 (0.67, 1.49) 0.95 (0.61, 1.46) 1.40 (1.01, 1.93) 1.03 (0.70, 1.51)

AA Referent Referent Referent Referent Referent
rs12477063

TC+CC 1.21 (0.96, 1.52) 0.93 (0.59, 1.47) 1.29 (0.77, 2.16) 1.06 (0.75, 1.51) 1.32 (0.85, 2.03)
TT Referent Referent Referent Referent Referent

rs1542173
AG+GG 1.04 (0.86, 1.26) 1.00 (0.68, 1.49) 1.20 (0.78, 1.84) 1.24 (0.91, 1.69) 1.25 (0.86, 1.82)

AA Referent Referent Referent Referent Referent
rs16852761

GA+AA 1.14 (0.81, 1.59) 1.39 (0.70, 2.77) 0.87 (0.38, 1.97) 0.75 (0.44, 1.30) 0.87 (0.46, 1.63)
GG Referent Referent Referent Referent Referent

rs16852798
CT+TT 0.95 (0.69, 1.30) 0.82 (0.41, 1.65) 0.78 (0.37, 1.60) 0.76 (0.47, 1.23) 1.27 (0.76, 2.14)

CC Referent Referent Referent Referent Referent
rs16852799

AG+GG 0.71 (0.55, 0.93) 0.84 (0.49, 1.44) 1.08 (0.63, 1.84) 0.74 (0.49, 1.13) 1.30 (0.84, 2.01)
AA Referent Referent Referent Referent Referent

rs17487827
CG+GG 0.98 (0.81, 1.20) 0.89 (0.59, 1.36) 1.09 (0.70, 1.69) 1.32 (0.96, 1.81) 0.95 (0.64, 1.42)

CC Referent Referent Referent Referent Referent
rs1979028

TA+AA 1.18 (0.98, 1.43) 0.79 (0.54, 1.18) 1.02 (0.66, 1.56) 1.06 (0.77, 1.44) 1.17 (0.80, 1.71)
TT Referent Referent Referent Referent Referent

rs2075622
CA+AA 0.86 (0.71, 1.05) 1.06 (0.71, 1.59) 0.89 (0.58, 1.38) 1.38 (1.00, 1.90) 0.94 (0.64, 1.38)

CC Referent Referent Referent Referent Referent

Table 4.2 (cont.) Odds ratios (ORs) and 95% confidence intervals (CIs) for the association between single nucleotide 
polymorphisms (SNPs) on BRCA1 and BRCA1-interacting genes and breast cancer subtype

Luminal A 
(NCASES= 674)

Luminal B 
(NCASES= 114)

HER2+/ER- 
(NCASES= 94)

Basal-like 
(NCASES= 199)

Unclassified 
(NCASES= 129)
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SNP ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI)
rs2888294

CG+GG 0.79 (0.64, 0.98) 0.86 (0.56, 1.34) 0.87 (0.53, 1.40) 1.18 (0.82, 1.71) 1.18 (0.75, 1.84)
CC Referent Referent Referent Referent Referent

rs3768704
GA+AA 1.10 (0.88, 1.37) 1.51 (0.99, 2.30) 1.02 (0.62, 1.68) 0.72 (0.49, 1.06) 1.19 (0.79, 1.81)

GG Referent Referent Referent Referent Referent
rs3768707

CT+TT 1.01 (0.84, 1.22) 0.99 (0.67, 1.47) 1.17 (0.76, 1.80) 1.23 (0.90, 1.67) 1.22 (0.84, 1.77)
CC Referent Referent Referent Referent Referent

rs3768708
AG+GG 0.99 (0.81, 1.20) 1.02 (0.68, 1.52) 1.00 (0.65, 1.55) 1.21 (0.88, 1.66) 1.19 (0.81, 1.75)

AA Referent Referent Referent Referent Referent
rs3820727

TG+GG 1.14 (0.93, 1.39) 0.90 (0.60, 1.37) 1.25 (0.79, 1.98) 1.30 (0.94, 1.81) 0.81 (0.55, 1.21)
TT Referent Referent Referent Referent Referent

rs4672729
GA+AA 0.95 (0.79, 1.15) 1.10 (0.75, 1.64) 1.08 (0.71, 1.66) 1.12 (0.82, 1.53) 1.22 (0.83, 1.78)

GG Referent Referent Referent Referent Referent
rs6749828

GC+CC 1.03 (0.83, 1.29) 0.88 (0.56, 1.37) 1.27 (0.76, 2.11) 1.35 (0.94, 1.93) 1.04 (0.69, 1.58)
GG Referent Referent Referent Referent Referent

rs6751923
TC+CC 0.94 (0.77, 1.15) 1.04 (0.69, 1.58) 0.98 (0.62, 1.54) 0.84 (0.61, 1.17) 1.09 (0.74, 1.60)

TT Referent Referent Referent Referent Referent
rs6753417

CT+TT 1.15 (0.95, 1.39) 0.97 (0.65, 1.44) 1.07 (0.69, 1.64) 1.21 (0.89, 1.66) 1.03 (0.70, 1.50)
CC Referent Referent Referent Referent Referent

rs6756902
TC+CC 1.21 (0.96, 1.52) 0.93 (0.59, 1.47) 1.29 (0.77, 2.16) 1.07 (0.75, 1.52) 1.32 (0.86, 2.03)

TT Referent Referent Referent Referent Referent

Table 4.2 (cont.) Odds ratios (ORs) and 95% confidence intervals (CIs) for the association between single nucleotide 
polymorphisms (SNPs) on BRCA1 and BRCA1-interacting genes and breast cancer subtype

Luminal A 
(NCASES= 674)

Luminal B 
(NCASES= 114)

HER2+/ER- 
(NCASES= 94)

Basal-like 
(NCASES= 199)

Unclassified 
(NCASES= 129)
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SNP ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI)
rs7557557

CT+TT 1.12 (0.91, 1.38) 1.00 (0.65, 1.52) 1.21 (0.76, 1.95) 1.23 (0.88, 1.71) 0.95 (0.64, 1.40)
CC Referent Referent Referent Referent Referent

rs7566806
GC+CC 1.07 (0.87, 1.31) 1.09 (0.71, 1.67) 0.97 (0.60, 1.57) 0.73 (0.51, 1.05) 1.13 (0.76, 1.69)

GG Referent Referent Referent Referent Referent
rs7585356

GA+AA 1.09 (0.90, 1.32) 0.77 (0.51, 1.16) 1.15 (0.75, 1.77) 1.01 (0.74, 1.39) 1.07 (0.73, 1.58)
GG Referent Referent Referent Referent Referent

rs1048108
GA+AA 1.11 (0.91, 1.34) 0.94 (0.63, 1.39) 1.03 (0.67, 1.59) 1.13 (0.82, 1.54) 1.02 (0.69, 1.49)

GG Referent Referent Referent Referent Referent
rs3738888

GA+AA 0.96 (0.36, 2.53) 2.08 (0.45, 9.69) 2.65 (0.57, 12.33) 1.39 (0.30, 6.50) ----
GG Referent Referent Referent Referent Referent

rs2229571
CG+GG 0.86 (0.70, 1.06) 1.16 (0.74, 1.80) 0.88 (0.55, 1.40) 1.24 (0.85, 1.80) 1.42 (0.89, 2.25)

CC Referent Referent Referent Referent Referent
BRIP1
rs4986764

CT+TT 1.01 (0.83, 1.22) 0.91 (0.61, 1.35) 1.30 (0.83, 2.05) 0.85 (0.63, 1.17) 0.76 (0.52, 1.10)
CC Referent Referent Referent Referent Referent

rs7213430
AG+GG 1.01 (0.84, 1.23) 0.94 (0.63, 1.39) 1.36 (0.87, 2.14) 0.86 (0.63, 1.17) 0.75 (0.52, 1.09)

AA Referent Referent Referent Referent Referent
rs4988351

GC+CC 1.09 (0.90, 1.33) 0.98 (0.65, 1.48) 0.91 (0.57, 1.43) 0.99 (0.71, 1.38) 1.73 (1.18, 2.55)
GG Referent Referent Referent Referent Referent

rs1978111
CT+TT 0.96 (0.79, 1.17) 0.93 (0.63, 1.39) 1.32 (0.84, 2.08) 0.84 (0.61, 1.15) 0.74 (0.51, 1.08)

CC Referent Referent Referent Referent Referent

Table 4.2 (cont.) Odds ratios (ORs) and 95% confidence intervals (CIs) for the association between single nucleotide 
polymorphisms (SNPs) on BRCA1 and BRCA1-interacting genes and breast cancer subtype

Luminal A 
(NCASES= 674)

Luminal B 
(NCASES= 114)

HER2+/ER- 
(NCASES= 94)

Basal-like 
(NCASES= 199)

Unclassified 
(NCASES= 129)
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SNP ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI) ORa (95% CI)
ZNF350
rs4986773

TC+CC 1.09 (0.89, 1.35) 1.04 (0.67, 1.59) 1.04 (0.64, 1.67) 1.08 (0.75, 1.54) 1.28 (0.82, 2.01)
TT Referent Referent Referent Referent Referent

rs2278420
AG+GG 0.99 (0.81, 1.21) 1.31 (0.86, 1.98) 1.47 (0.94, 2.31) 0.93 (0.67, 1.29) 1.23 (0.83, 1.81)

AA Referent Referent Referent Referent Referent
rs11879758

GC+CC 1.04 (0.84, 1.30) 1.24 (0.81, 1.91) 0.99 (0.61, 1.63) 1.16 (0.82, 1.64) 0.72 (0.45, 1.14)
GG Referent Referent Referent Referent Referent

rs2278417
CT+TT 1.09 (0.88, 1.34) 1.08 (0.70, 1.65) 1.03 (0.64, 1.65) 1.03 (0.72, 1.47) 1.37 (0.87, 2.13)

CC Referent Referent Referent Referent Referent
rs4986770

CT+TT 0.87 (0.66, 1.14) 0.83 (0.46, 1.47) 1.21 (0.69, 2.12) 0.93 (0.60, 1.43) 0.93 (0.55, 1.55)
CC Referent Referent Referent Referent Referent

rs4988334
TC+CC 0.95 (0.77, 1.16) 1.44 (0.96, 2.18) 1.32 (0.84, 2.06) 0.97 (0.70, 1.35) 1.27 (0.86, 1.87)

TT Referent Referent Referent Referent Referent
a Case-control odds ratio and 95% confidence interval adjusted for age, self-identified race, African ancestry and 
offset term

Table 4.2 (cont.) Odds ratios (ORs) and 95% confidence intervals (CIs) for the association between single nucleotide 
polymorphisms (SNPs) on BRCA1 and BRCA1-interacting genes and breast cancer subtype

Luminal A 
(NCASES= 674)

Luminal B 
(NCASES= 114)

HER2+/ER- 
(NCASES= 94)

Basal-like 
(NCASES= 199)

Unclassified 
(NCASES= 129)
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AURKA-BRCA1
1. SNP1 SNP2

rs2273535 rs1799950 OR RD RERI 95% CI
00 AA AA 1.00 0.00
01 AA GA+GG 1.09 0.09
10 TA+TT AA 1.03 0.00
11 TA+TT GA+GG 1.14 0.11

SNP1 SNP2
rs1799950 rs2273535 OR RD RERI 95% CI

00 AA AA 1.00 0.00
01 AA TA+TT 1.03 0.03
10 GA+GG AA 1.09 0.00
11 GA+GG TA+TT 1.14 0.05

2. SNP1 SNP2
rs2273535 rs16941 OR RD RERI 95% CI

00 AA AA 1.00 0.00
01 AA GA+GG 1.27 0.27
10 TA+TT AA 1.15 0.00
11 TA+TT GA+GG 1.14 -0.01

SNP1 SNP2
rs16941 rs2273535 OR RD RERI 95% CI

00 AA AA 1.00 0.00
01 AA TA+TT 1.15 0.15
10 GA+GG AA 1.27 0.00
11 GA+GG TA+TT 1.14 -0.13

Table 4.3 Additive interaction analysis between select SNPs on AURKA and 
BRCA1

0.01

0.01

(-0.57-0.60)

(-0.57-0.60)

-0.28 (-0.62-0.06)

-0.28 (-0.62-0.06)
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3. SNP1 SNP2
rs2273535 rs16942 OR RD RERI 95% CI

00 AA AA 1.00 0.00
01 AA GA+GG 1.27 0.27
10 TA+TT AA 1.15 0.00
11 TA+TT GA+GG 1.17 0.02

SNP1 SNP2
rs16942 rs2273535 OR RD RERI 95% CI

00 AA AA 1.00 0.00
01 GA+GG TA+TT 1.15 0.15
10 AA AA 1.27 0.00
11 GA+GG TA+TT 1.17 -0.10

4. SNP1 SNP2
rs2273535 rs1799966 OR RD RERI 95% CI

00 AA AA 1.00 0.00
01 AA GA+GG 1.28 0.28
10 TA+TT AA 1.15 0.00
11 TA+TT GA+GG 1.18 0.03

SNP1 SNP2
rs1799966 rs2273535 OR RD RERI 95% CI

00 AA AA 1.00 0.00
01 GA+GG TA+TT 1.15 0.15
10 AA AA 1.28 0.00
11 GA+GG TA+TT 1.18 -0.10

-0.25 (-0.60-0.09)

-0.25 (-0.60-0.09)

-0.25 (-0.60-0.09)

-0.25 (-0.60-0.09)
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5. SNP1 SNP2
rs2273535 rs799917 OR RD RERI 95% CI

00 AA TT 1.00 0.00
01 AA CT+CC 1.11 0.11
10 TA+TT TT 1.13 0.00
11 TA+TT CT+CC 1.09 -0.04

SNP1 SNP2
rs799917 rs2273535 OR RD RERI 95% CI

00 TT AA 1.00 0.00
01 TT TA+TT 1.13 0.13
10 CT+CC AA 1.11 0.00
11 CT+CC TA+TT 1.09 -0.01

6. SNP1 SNP2
rs2298016 rs1799950 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG GA+GG 1.07 0.07
10 GC+CC AA 1.01 0.00
11 GC+CC GA+GG 1.18 0.17

SNP1 SNP2
rs1799950 rs2298016 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GC+CC 1.01 0.01
10 GA+GG GG 1.07 0.00
11 GA+GG GC+CC 1.18 0.11

-0.15 (-0.50-0.21)

-0.15 (-0.50-0.21)

0.10 (-0.49-0.69)

0.10 (-0.49-0.69)
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7. SNP1 SNP2
rs2298016 rs16941 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG GA+GG 1.29 0.29
10 GC+GG AA 1.13 0.00
11 GC+GG GA+GG 1.12 -0.01

SNP1 SNP2
rs16941 rs2298016 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GC+GG 1.13 0.13
10 GA+GG GG 1.29 0.00
11 GA+GG GC+GG 1.12 -0.17

8. SNP1 SNP2
rs2298016 rs16942 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG GA+GG 1.28 0.28
10 GC+CC AA 1.11 0.00
11 GC+CC GA+GG 1.15 0.05

SNP1 SNP2
rs16942 rs2298016 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GC+CC 1.11 0.11
10 GA+GG GG 1.28 0.00
11 GA+GG GC+CC 1.15 -0.13

-0.30 (-0.63-0.04)

-0.23 (-0.56-0.10)

-0.23 (-0.56-0.10)

-0.30 (-0.63-0.04)
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9. SNP1 SNP2
rs2298016 rs1799966 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG GA+GG 1.30 0.30
10 GC+CC AA 1.11 0.00
11 GC+CC GA+GG 1.16 0.05

SNP1 SNP2
rs1799966 rs2298016 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GC+CC 1.11 0.11
10 GA+GG GG 1.30 0.00
11 GA+GG GC+CC 1.16 -0.14

10. SNP1 SNP2
rs2298016 rs799917 OR RD RERI 95% CI

00 GG TT 1.00 0.00
01 GG TC+CC 1.05 0.05
10 CG+CC TT 1.02 0.00
11 CG+CC TC+CC 1.06 0.04

SNP1 SNP2
rs799917 rs2298016 OR RD RERI 95% CI

00 TT GG 1.00 0.00
01 TT CG+CC 1.02 0.02
10 TC+CC GG 1.05 0.00
11 TC+CC CG+CC 1.06 0.01

-0.01 (-0.31-0.30)

-0.01 (-0.31-0.30)

-0.25 (-0.58-0.08)

-0.25 (-0.58-0.08)



177 

 

 

  

11. SNP1 SNP2
rs6024836 rs1799950 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG AG+GG 1.07 0.07
10 GA+AA AA 1.01 0.00
11 GA+AA AG+GG 1.18 0.17

SNP1 SNP2
rs1799950 rs6024836 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GA+AA 1.01 0.01
10 AG+GG GG 1.07 0.00
11 AG+GG GA+AA 1.18 0.11

12. SNP1 SNP2
rs6024836 rs16941 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG GA+GG 1.11 0.11
10 GA+AA AA 1.04 0.00
11 GA+AA GA+GG 1.16 0.12

SNP1 SNP2
rs16941 rs6024836 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GA+AA 1.04 0.04
10 GA+GG GG 1.11 0.00
11 GA+GG GA+AA 1.16 0.05

0.01 (-0.33-0.36)

0.01 (-0.33-0.36)

0.10 (-0.49-0.69)

0.10 (-0.49-0.69)
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13. SNP1 SNP2
rs6024836 rs16942 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG GA+GG 1.08 0.08
10 GA+AA AA 1.07 0.00
11 GA+AA GA+GG 1.17 0.09

SNP1 SNP2
rs16942 rs6024836 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GA+AA 1.07 0.07
10 GA+GG GG 1.08 0.00
11 GA+GG GA+AA 1.17 0.09

14. SNP1 SNP2
rs6024836 rs1799966 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG GA+GG 1.08 0.08
10 GA+AA AA 1.08 0.00
11 GA+AA GA+GG 1.17 0.09

SNP1 SNP2
rs1799966 rs6024836 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GA+AA 1.08 0.08
10 GA+GG GG 1.08 0.00
11 GA+GG GA+AA 1.17 0.09

0.02 (-0.34-0.37)

0.01 (-0.34-0.37)

0.01 (-0.34-0.37)

0.02 (-0.34-0.37)
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15. SNP1 SNP2         

  rs6024836 rs799917 OR RD RERI 95% CI 

00 GG TT 1.00 0.00 

-0.03 
(-0.42-
0.35) 

01 GG TC+CC 1.01 0.01 
10 GA+AA TT 1.05 0.00 

11 GA+AA TC+CC 1.03 
-

0.02 
   

  

  SNP1 SNP2  
  

  rs799917 rs6024836 OR RD RERI 95% CI 

00 TT GG 1.00 0.00 

-0.03 
(-0.42-
0.35) 

01 TT GA+AA 1.05 0.05 
10 TC+CC GG 1.01 0.00 

11 TC+CC GA+AA 1.03 0.02 
 

  



180 

 

 

  

AURKA-BARD1
16. SNP1 SNP2

rs2273535 rs1048108 OR RD RERI 95% CI
00 AA GG 1.00 0.00
01 AA GA+AA 1.07 0.07
10 AT+TT GG 1.10 0.00
11 AT+TT GA+AA 1.04 -0.06

SNP1 SNP2
rs1048108 rs2273535 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG AT+TT 1.10 0.10
10 GA+AA AA 1.07 0.00
11 GA+AA AT+TT 1.04 -0.04

17. SNP1 SNP2
rs2273535 rs2229571 OR RD RERI 95% CI

00 AA CC 1.00 0.00
01 AA CG+GG 1.16 0.16
10 AT+TT CC 1.22 0.00
11 AT+TT CG+GG 1.03 -0.19

SNP1 SNP2
rs2229571 rs2273535 OR RD RERI 95% CI

00 CC AA 1.00 0.00
01 CC AT+TT 1.22 0.22
10 CG+GG AA 1.16 0.00
11 CG+GG AT+TT 1.03 -0.13

Table 4.4 Additive interaction analysis between select SNPs on AURKA and 
BARD1

-0.13 (-0.44-0.18)

-0.13 (-0.44-0.18)

-0.35 (-0.74-0.03)

-0.35 (-0.74-0.03)
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18. SNP1 SNP2
rs2298016 rs1048108 OR RD RERI 95% CI

00 GG CC 1.00 0.00
01 GG CG+GG 1.04 0.04
10 GC+CC CC 1.02 0.00
11 GC+CC CG+GG 1.02 0.00

SNP1 SNP2
rs1048108 rs2298016 OR RD RERI 95% CI

00 CC GG 1.00 0.00
01 CC GC+CC 1.02 0.02
10 CG+GG GG 1.04 0.00
11 CG+GG GC+CC 1.02 -0.02

19. SNP1 SNP2
rs2298016 rs2229571 OR RD RERI 95% CI

00 GG GG 1.00 0.00
01 GG GA+AA 1.13 0.13
10 GC+CC GG 1.16 0.00
11 GC+CC GA+AA 1.06 -0.10

SNP1 SNP2
rs2229571 rs2298016 OR RD RERI 95% CI

00 GG GG 1.00 0.00
01 GG GC+CC 1.16 0.16
10 GA+AA GG 1.13 0.00
11 GA+AA GC+CC 1.06 -0.06

-0.23 (-0.59-0.13)

-0.23 (-0.59-0.13)

-0.03 (-0.32-0.25)

-0.03 (-0.32-0.25)
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20. SNP1 SNP2
rs6024836 rs1048108 OR RD RERI 95% CI

00 GG GG 1.00 0.00
01 GG GA+AA 1.01 0.01
10 GA+AA GG 1.01 0.00
11 GA+AA GA+AA 1.04 0.03

SNP1 SNP2
rs1048108 rs6024836 OR RD RERI 95% CI

00 GG GG 1.00 0.00
01 GG GA+AA 1.01 0.01
10 GA+AA GG 1.01 0.00
11 GA+AA GA+AA 1.04 0.03

21. SNP1 SNP2
rs6024836 rs2229571 OR RD RERI 95% CI

00 GG CC 1.00 0.00
01 GG CG+GG 1.00 0.00
10 GA+AA CC 1.04 0.00
11 GA+AA CG+GG 1.02 -0.02

SNP1 SNP2
rs2229571 rs6024836 OR RD RERI 95% CI

00 CC GG 1.00 0.00
01 CC GA+AA 1.04 0.04
10 CG+GG GG 1.00 0.00
11 CG+GG GA+AA 1.02 0.01

0.02 (-0.27-0.31)

0.02 (-0.27-0.31)

-0.03 (-0.37-0.32)

-0.03 (-0.37-0.32)
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AURKA-BRIP1
22. SNP1 SNP2

rs2273535 rs4986764 OR RD RERI 95% CI
00 AA CC 1.00 0.00
01 AA CT+TT 1.10 0.10
10 AT+TT CC 1.08 0.00
11 AT+TT CT+TT 1.00 -0.07

SNP1 SNP2
rs4986764 rs2273535 OR RD RERI 95% CI

00 CC AA 1.00 0.00
01 CC AT+TT 1.08 0.08
10 CT+TT AA 1.10 0.00
11 CT+TT AT+TT 1.00 -0.10

23. SNP1 SNP2
rs2298016 rs4986764 OR RD RERI 95% CI

00 GG CC 1.00 0.00
01 GG CT+TT 1.12 0.12
10 GC+CC CC 1.13 0.00
11 GC+CC CT+TT 1.04 -0.09

SNP1 SNP2
rs4986764 rs2298016 OR RD RERI 95% CI

00 CC GG 1.00 0.00
01 CC GC+CC 1.13 0.13
10 CT+TT GG 1.12 0.00
11 CT+TT GC+CC 1.04 -0.08

Table 4.5 Additive interaction analysis between select SNPs on AURKA and 
BRIP1

-0.17 (-0.49-0.15)

-0.17 (-0.49-0.15)

-0.21 (-0.53-0.11)

-0.21 (-0.53-0.11)
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24. SNP1 SNP2
rs6024836 rs4986764 OR RD RERI 95% CI

00 GG CC 1.00 0.00
01 GG CT+TT 1.10 0.10
10 GA+AA CC 1.14 0.00
11 GA+AA CT+TT 1.02 -0.12

SNP1 SNP2
rs4986764 rs6024836 OR RD RERI 95% CI

00 CC GG 1.00 0.00
01 CC GA+AA 1.14 0.14
10 CT+TT GG 1.10 0.00
11 CT+TT GA+AA 1.02 -0.08

-0.22 (-0.55-0.11)

-0.22 (-0.55-0.11)
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AURKA-ZNF350
25. SNP1 SNP2

rs2273535 rs4986773 OR RD RERI 95% CI
00 AA TT 1.00 0.00
01 AA TC+CC 1.20 0.20
10 AT+TT TT 1.16 0.00
11 AT+TT TC+CC 1.10 -0.05

SNP1 SNP2
rs4986773 rs2273535 OR RD RERI 95% CI

00 TT AA 1.00 0.00
01 TT AT+TT 1.16 0.16
10 TC+CC AA 1.20 0.00
11 TC+CC AT+TT 1.10 -0.09

26. SNP1 SNP2
rs2273535 rs2278420 OR RD RERI 95% CI

00 AA AA 1.00 0.00
01 AA AG+GG 1.04 0.04
10 AT+TT AA 1.07 0.00
11 AT+TT AG+GG 1.14 0.07

SNP1 SNP2
rs2278420 rs2273535 OR RD RERI 95% CI

00 AA AA 1.00 0.00
01 AA AT+TT 1.07 0.07
10 AG+GG AA 1.04 0.00
11 AG+GG AT+TT 1.14 0.10

Table 4.6 Additive interaction analysis between select SNPs on AURKA and 
ZNF350

-0.25 (-0.59-0.09)

-0.25 (-0.59-0.09)

0.03 (-0.45-0.50)

0.03 (-0.45-0.50)
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27. SNP1 SNP2
rs2273535 rs11879758 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GC+CC 1.15 0.15
10 AT+TT GG 1.10 0.00
11 AT+TT GC+CC 1.07 -0.04

SNP1 SNP2
rs11879758rs2273535 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG AT+TT 1.10 0.10
10 GC+CC AA 1.15 0.00
11 GC+CC AT+TT 1.07 -0.08

28. SNP1 SNP2
rs2273535 rs4986770 OR RD RERI 95% CI

00 AA CC 1.00 0.00
01 AA CT+TT 1.18 0.18
10 AT+TT CC 1.09 0.00
11 AT+TT CT+TT 1.20 0.11

SNP1 SNP2
rs4986770 rs2273535 OR RD RERI 95% CI

00 CC AA 1.00 0.00
01 CC AT+TT 1.09 0.09
10 CT+TT AA 1.18 0.00
11 CT+TT AT+TT 1.20 0.02

-0.19 (-0.66-0.29)

-0.19 (-0.66-0.29)

-0.07 (-0.63-0.50)

-0.07 (-0.63-0.50)
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29. SNP1 SNP2
rs2298016 rs4986773 OR RD RERI 95% CI

00 GG TT 1.00 0.00
01 GG TC+CC 1.18 0.18
10 GC+CC TT 1.08 0.00
11 GC+CC TC+CC 1.08 0.00

SNP1 SNP2
rs4986773 rs2298016 OR RD RERI 95% CI

00 TT GG 1.00 0.00
01 TT GC+CC 1.08 0.08
10 TC+CC GG 1.18 0.00
11 TC+CC GC+CC 1.08 -0.09

30. SNP1 SNP2
rs2298016 rs2278420 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG AG+GG 1.04 0.04
10 GC+CC AA 1.09 0.00
11 GC+CC AG+GG 1.09 0.00

SNP1 SNP2
rs2278420 rs2298016 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GC+CC 1.09 0.09
10 AG+GG GG 1.04 0.00
11 AG+GG GC+CC 1.09 0.05

-0.17 (-0.49-0.15)

-0.04 (-0.51-0.43)

-0.04 (-0.51-0.43)

-0.17 (-0.49-0.15)
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31. SNP1 SNP2
rs2298016 rs11879758 OR RD RERI 95% CI

00 GG GG 1.00 0.00
01 GG GC+CC 1.13 0.13
10 GC+CC GG 1.05 0.00
11 GC+CC GC+CC 1.05 0.00

SNP1 SNP2
rs11879758rs2298016 OR RD RERI 95% CI

00 GG GG 1.00 0.00
01 GG GC+CC 1.05 0.05
10 GC+CC GG 1.13 0.00
11 GC+CC GC+CC 1.05 -0.08

32. SNP1 SNP2
rs2298016 rs4986770 OR RD RERI 95% CI

00 GG CC 1.00 0.00
01 GG CT+TT 1.20 0.20
10 GC+CC CC 1.06 0.00
11 GC+CC CT+TT 1.21 0.15

SNP1 SNP2
rs4986770 rs2298016 OR RD RERI 95% CI

00 CC GG 1.00 0.00
01 CC GC+CC 1.06 0.06
10 CT+TT GG 1.20 0.00
11 CT+TT GC+CC 1.21 0.02

-0.04 (-0.61-0.52)

-0.04 (-0.61-0.52)

-0.13 (-0.60-0.34)

-0.13 (-0.60-0.34)
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33. SNP1 SNP2
rs6024836 rs4986773 OR RD RERI 95% CI

00 GG TT 1.00 0.00
01 GG TC+CC 1.09 0.09
10 GA+AA TT 1.01 0.00
11 GA+AA TC+CC 1.10 0.09

SNP1 SNP2
rs4986773 rs6024836 OR RD RERI 95% CI

00 TT GG 1.00 0.00
01 TT GA+AA 1.01 0.01
10 TC+CC GG 1.09 0.00
11 TC+CC GA+AA 1.10 0.02

34. SNP1 SNP2
rs6024836 rs2278420 OR RD RERI 95% CI

00 GG AA 1.00 0.00
01 GG AG+GG 1.08 0.08
10 GA+AA AA 1.02 0.00
11 GA+AA AG+GG 1.05 0.03

SNP1 SNP2
rs2278420 rs6024836 OR RD RERI 95% CI

00 AA GG 1.00 0.00
01 AA GA+AA 1.02 0.02
10 AG+GG GG 1.08 0.00
11 AG+GG GA+AA 1.05 -0.03

-0.05 (-0.36-0.27)

0.00 (-0.33-0.33)

0.00 (-0.33-0.33)

-0.05 (-0.36-0.27)
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35. SNP1 SNP2
rs6024836 rs11879758 OR RD RERI 95% CI

00 GG GG 1.00 0.00
01 GG GC+CC 1.09 0.09
10 GA+AA GG 1.02 0.00
11 GA+AA GC+CC 1.03 0.01

SNP1 SNP2
rs11879758rs6024836 OR RD RERI 95% CI

00 GG GG 1.00 0.00
01 GG GA+AA 1.02 0.02
10 GC+CC GG 1.09 0.00
11 GC+CC GA+AA 1.03 -0.06

36. SNP1 SNP2
rs6024836 rs4986770 OR RD RERI 95% CI

00 GG CC 1.00 0.00
01 GG CT+TT 1.04 0.04
10 GA+AA CC 1.01 0.00
11 GA+AA CT+TT 1.00 0.00

SNP1 SNP2
rs4986770 rs6024836 OR RD RERI 95% CI

00 CC GG 1.00 0.00
01 CC GA+AA 1.01 0.01
10 CT+TT GG 1.04 0.00
11 CT+TT GA+AA 1.00 -0.04

-0.05 (-0.46-0.36)

-0.05 (-0.46-0.36)

-0.08 (-0.42-0.26)

-0.08 (-0.42-0.26)
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Chapter 5. Summary and Conclusions 
 
5.1 Main Findings 

The primary purpose of this dissertation was to utilize data from the CBCS and a candidate 

gene approach to investigate associations between common genetic variation in the oncogene 

AURKA (in the form of SNPs) and breast cancer overall, while also exploring the hypothesis that 

associations may differ by intrinsic subtype of breast cancer.  This hypothesis was considered in 

light of previous CBCS findings that showed differences for clinical outcomes and non-genetic 

risk factors between intrinsic subtypes [1,2].  Because AURKA is a key regulator of the cell 

cycle, and overexpression of its encoded protein product (Aurora-A) has been demonstrated in 

human cancers [3-5], other candidate genes whose protein products are known to interact with 

Aurora-A were also logical targets for this investigation.  The highly penetrant BRCA1 is such a 

critical gene, and we also evaluated SNPs on it for associations with overall breast cancer and 

intrinsic breast cancer subtype in the CBCS study population.   Mutations in BRCA1 are known 

to confer large increases in lifetime risk of breast cancer [6], and because the BRCA1 protein is 

known to interact with Aurora-A during the cell cycle, it seemed logical to investigate BRCA1-

interacting genes for associations with breast cancer and possible gene-gene interactions with 

AURKA.  Therefore, SNPs in BARD1, BRIP1, and ZNF350 were also examined.  Although the 

CBCS was not fully powered to investigate gene-gene interactions, the biological plausibility of 

such interactions between loci on AURKA and each of BRCA1, BARD1, BRIP1, and ZNF350 

warranted analysis.  To focus this endeavor and minimize the possibility of chance findings, each 

SNP was evaluated for presumed functionality using an integrative in silico scoring system based 
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on protein coding, splicing regulation, transcriptional regulation, and post-translation [7].  

Additive interaction between selected SNPs was then assessed using the RERI. 

Chapter 3 details the investigation of AURKA in relation to overall rate of breast cancer and 

intrinsic breast cancer subtype.  Analyses of AURKA SNPs in association with breast cancer 

among all cases and controls were stratified by race due to differences in LD between African 

Americans and Caucasians.  The CBCS’s coverage of SNPs genotyped on AURKA was 

comprehensive, and represents the largest genotyping of tag SNPs on AURKA to date among 

African Americans.  The patterns noted in the race stratified analysis suggested little or no 

association between most AURKA SNPs and overall rate of breast cancer.  However, one tag 

SNP among African Americans (rs6092309; OR=0.69) demonstrated a pronounced inverse 

association with breast cancer and relatively good estimate precision (CLR=1.69).  Future studies 

of variation in AURKA among African Americans will be required to replicate this finding and 

examine the biological consequences of this SNP.  There was diminished statistical power to 

estimate intrinsic subtype-specific associations, but the innovative feature of the CBCS is in the 

5-marker subtyping of cases based on our most current understanding of breast tumor 

heterogeneity which justifies the exploration of such associations.  Due to small numbers within 

strata of intrinsic subtype, it was necessary to combine African Americans and Caucasians for 

this analysis.  Several SNPs on AURKA showed subtype-specific estimates that suggest 

differences in risk by subtype.  Further race-stratified exploratory analyses within subtype were 

also suggestive of racial differences by subtype.  It is important to note that these exploratory 

analyses were not powered to detect race-stratified subtype-specific associations, and caution is 

advised when interpreting these results. 
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Chapter 4 focused on germline genetic variation in BRCA1 and the BRCA1-interacting 

genes: BARD1, BRIP1, and ZNF350 in association with overall rate of breast cancer and intrinsic 

subtype of breast cancer.  These candidate genes were chosen based on their biologically 

plausible influence on AURKA.  The BRCA1 protein is known to interact with Aurora-A to 

regulate cell cycle progression, so other candidate genes interacting with BRCA1 may also 

influence AURKA.  CBCS genotyping coverage of BRCA1 was limited to several candidate SNPs 

and a single tag SNP in Caucasians.  The main finding of manuscript 2 was a modest positive 

association between three nonsynonymous missense BRCA1 SNPs and overall rate of breast 

cancer among Caucasians.  All three SNPs are predicted to be functional by FS Score and 

demonstrated associations of similar magnitude and precision, which could be due to the high 

degree of LD between them (r2>0.90).  It is possible that the observed associations were caused 

by an ungenotyped locus that is also in high LD with the three candidate SNPs, and future 

studies may endeavor to sequence the region of BRCA1 bound by these loci.  Tag SNP 

genotyping coverage of BARD1 by CBCS was comprehensive, but yielded few patterns of 

association with breast cancer in the race-stratified analysis.  Previous genetic studies of BARD1 

are limited, and focus on a few functional variants.  One such variant, rs28997576, results in a 

cysteine to serine amino acid substitution at codon 557, a missense mutation that has been 

suspected of increasing risk for breast cancer in Icelandic women (OR=1.82, 95%CI: 1.11-3.01) 

[8].  Our study also noted a positive association between rs28997576 and overall rate of breast 

cancer among Caucasians that was similar in magnitude and more precise, however a recent 

meta-analysis of ~12,000 cases and ~7500 controls reported no association between the 

polymorphism and breast cancer risk [9].  Subtype-specific associations among BARD1 SNPs 

were suggestive of differences by subtype, but estimates were less precise and patterns more 
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difficult to ascertain.  BRIP1 and ZNF350 polymorphisms genotyped in the CBCS were limited 

to candidate SNPs.  Among African Americans, there was some evidence for inverse 

associations between three SNPs on BRIP1 and overall rate of breast cancer, with no such 

evidence among Caucasians.  Results for ZNF350 among both race groups were consistent with 

little or no association.  There was limited evidence for subtype-specific effects of SNPs on 

BRIP1 and ZNF350.  Future studies may require a more exhaustive genotyping of these genes in 

larger groups of African Americans and Caucasians to improve coverage and accuracy of 

estimates, especially for subtype analyses. 

Lastly, we calculated RERIs to investigate the potential for gene-gene interactions on the 

additive scale between select SNPs on AURKA and select SNPs on each of BRCA1, BARD1, 

BRIP1, and ZNF350 in association with overall rate of breast cancer.  Although the CBCS was 

not powered to investigate gene-gene interactions, there were several interactions that suggested 

one SNP allele antagonistically eliminated or reversed a rate-increasing effect of another SNP 

allele.  Some of these reductions or reversals were relatively large in magnitude and occurred 

between SNPs on AURKA and each of the other investigated candidate genes. 

 

5.2 Future Directions 

The results of this dissertation provide evidence that some genotypes are associated with 

breast cancer, and those associations may vary by race and intrinsic subtype of breast cancer.  

Although common genetic variation in the main candidate gene of interest, AURKA, has been 

studied previously, this investigation is the first comprehensive evaluation of AURKA in African 

American women with intrinsic subtype data and results will need to be replicated in yet larger 

studies with similar outcome assessment.  Future studies may also consider fine mapping regions 
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of AURKA that include SNPs identified in this study as showing the largest and most precise 

associations with breast cancer and intrinsic breast cancer subtype. 

Although germline genetic variation in the form of SNPs may be associated with breast 

cancer risk, little is known about how genetic variation contributes to mRNA and protein 

expression levels [10].  Since mRNA overexpression of AURKA has been previously associated 

with tumor characteristics as well as poor clinical outcomes, it may be important to know how 

AURKA is being expressed within intrinsic subtype of breast cancer.  Future studies may 

endeavor to fine map AURKA and measure expression levels to look for patterns among 

intrinsically subtyped cases of breast cancer. 

Future assessment of AURKA and other candidate genes with respect to intrinsic breast 

cancer subtype could benefit from more refined intrinsic subtype definitions to further reduce the 

chances of subtype misclassification.  The CBCS used definitions based on 

immunohistochemistry as surrogates for subtypes defined by gene expression profiling using 

mRNA-based assays containing thousands of genes.  IHC assays do not provide as much 

information about tumor biology as mRNA-based expression assays do, and could result in 

subtype misclassification.  In addition, efforts could be made to better describe heterogeneity 

within the unclassified subtype of breast cancer.  Tumors showing no expression for any of the 

five markers used to classify intrinsic breast cancer subtype in the CBCS were labeled 

unclassified.  It is possible that mRNA-based expression assays may be better suited to 

characterize these tumors. 

Future investigations of AURKA might also consider a pathway-based approach to improve 

our chances of discovering important risk loci for breast cancer.  AURKA is known to play a vital 

role in regulating the cell cycle via its control over centrosomal function.  Other important genes 
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function in this pathway as well, and focusing our investigations on the whole pathway may 

elucidate important susceptibility patterns for breast cancer.
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