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ABSTRACT 

 
Nicole Marie Baker: Evaluating the therapeutic potential of the PAK1 and TBK1 kinases in 

pancreatic ductal adenocarcinoma 
(Under the direction of Channing J. Der)

 
 

Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer 

characterized by a high frequency (>95%) of activating mutations in the KRAS oncogene, 

which is a well-validated driver of PDAC growth. However, to date, no successful anti-KRAS 

therapies have been developed. Inhibitors targeting components of KRAS downstream 

signaling pathways, when used as monotherapy or in combination, have been ineffective for 

long-term treatment of KRAS-mutant cancers. Decidedly, the most studied and most 

targeted KRAS effector pathways have been the RAF-MEK-ERK mitogen-activated protein 

kinase (MAPK) cascade and the PI3K-AKT-mTOR lipid kinase pathway. The apparent lack 

of success exhibited by inhibitors of these pathways is due, in part, to an underestimation of 

the importance of other effectors in KRAS-dependent cancer growth. Additionally, 

compensatory mechanisms reprogram these signaling networks to overcome the action of 

inhibitors of the ERK MAPK and PI3K pathways. Consequently, the central hypothesis of my 

dissertation research is that a better understanding of the role of less studied KRAS effector 

signaling pathways may lead to more effective therapeutic strategies to block KRAS effector 

signaling and PDAC growth.  

Although the TIAM1-RAC1 small GTPase effector pathway has been validated as a 

driver of KRAS-mutant cancer growth, how RAC1 mediates this role has not been 

established. My studies aimed to address a possible critical role for the p21-activated kinase 
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1 (PAK1) in this effector pathway. In support of this, I found that PAK1 protein levels are 

overexpressed both in a subset of pancreatic cancer cell lines and in primary patient tumor 

samples. Moreover, I determined that stable shRNA-mediated suppression of PAK1 protein 

expression inhibited the anchorage-dependent and -independent growth of PDAC cell lines 

in vitro. I also observed that a pharmacologic inhibitor of PAK1 recapitulated the reduced 

growth phenotypes observed upon genetic ablation of PAK1.  

As KRAS-mutant tumors are known to upregulate certain cellular processes in order 

to support the increased metabolic demands of uncontrolled cellular proliferation, I sought to 

determine whether PAK1 signaling was partially accountable for ensuring that these 

metabolic needs were met. My studies confirmed a role for PAK1 in regulating 

macropinocytosis, a mechanism by which PDAC cells acquire macromolecules (e.g., 

proteins, polysaccharides, and lipids) from the extracellular environment as a source of 

nutrients. I found that both pharmacologic inhibition and genetic ablation of PAK1 resulted in 

markedly decreased macropinocytosis in PDAC cells. These data suggest inhibition of 

PAK1 in KRAS-mutant PDAC could interfere with PDAC metabolism and reduce tumor cell 

growth. I observed a further reduction in macropinocytosis upon inhibition of PAK1 together 

with concurrent ERK1/2 or PI3K inhibition. In summary, my results support PAK1 as a 

promising therapeutic target for pancreatic cancer.  

My lab and others have provided strong evidence for the key role of a second, less 

studied KRAS effector pathway, the RalGEF-RAL small GTPase effector pathway, in the 

growth of pancreatic and other cancers. One critical effector of RAL is the Sec5 component 

of the exocyst complex. How Sec5 contributes to the role of RAL in cancer remains 

unresolved. White and colleagues initially identified a Sec5 function independent of exocyst 

regulation that involved the TANK-binding kinase 1 (TBK1). When a study that searched for 

synthetic lethal partners of mutant KRAS identified TBK1, these findings suggested that 
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TBK1 may be a critical mediator of RalGEF-RAL effector-driven cancer growth. However, a 

subsequent study questioned the role of TBK1 in the growth of KRAS-mutant cancers. 

When my lab obtained a novel pharmacologic inhibitor of TBK1, I embarked on 

studies to determine whether inhibition of TBK1 kinase activity could be an efficacious 

treatment strategy for PDAC. My studies revealed that inhibition of TBK1 alone led to limited 

growth inhibition in PDAC cell lines. Furthermore, I found that concurrent inhibition of TBK1 

did not enhance the growth inhibitory activity of an ERK inhibitor. However, loss of TBK1 

protein via shRNA or pharmacologic inhibition prompted the development of large, 

intracellular vesicles that appeared to be swollen autolysosomes and the product of non-

productive autophagy. This work suggests that TBK1 may play a role in PDAC autophagic 

flux and provides a rationale for pairing a TBK1 inhibitor with other targeted therapies or 

chemotherapies to drive these tumor cells towards death. 

In summary, my studies support my hypothesis that concurrent inhibition of multiple 

KRAS effector pathways may provide more effective therapeutic strategies for PDAC. They 

emphasize that single agent therapies targeting KRAS effector signaling will not be effective, 

a reality that is emerging from ongoing clinical trials. While my studies took a rational 

approach to identifying these combinations, unbiased chemical library screens with PAK1 

and TBK1 inhibitors will likely identify additional combinations of inhibitors for PDAC. 
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CHAPTER 1: INTRODUCTION1 

 

RAS small GTPases in cancer  

The RAS (rat sarcoma viral oncogene homolog) small GTPases comprise a family of 

proteins that are involved, to some degree, in nearly every known cellular process (1). The 

members of this monomeric G-protein family are bound to guanine triphosphate (GTP) when 

in an activated state and are able to bind to and regulate downstream effectors (e.g., RAF) 

(2). GTP is then hydrolyzed to guanine diphosphate (GDP), either by slow intrinsic 

hydrolysis within the RAS protein, or by interaction with GTPase activating proteins (GAPs; 

e.g., NF1), which provide critical amino acid residues and assist the GTPase in adopting a 

more favorable conformation to catalyze the hydrolysis of GTP to GDP. Subsequently, 

guanine nucleotide exchange factors (GEFs; e.g, SOS1) facilitate the exchange of GDP for 

GTP, thus continuing the GTPase activation-deactivation cycle (2).  

The RAS superfamily is comprised of five distinct groups: the ARF, RAB, RAN, RHO, 

and RAS small GTPases (3). Of these families, the two with the strongest association with 

cancer are the RAS and RHO families (1, 4-6). In addition to RAS, the RAS family includes 

the RAL small GTPases (7, 8). Among the best-studied RHO family members is           

RAC1 (9, 10). In addition to sharing strong structural and biochemical similarities with RAS, 

as described below, RAL and RAC1 also function downstream of RAS as key effectors in

                                                           

1Portions of this introduction are adapted from a previously published review of PAK1 in 

RAS mutant cancer. The author list is as follows: Nicole M. Baker, Hoi Yee Chow, Jonathan 
Chernoff, and Channing J. Der. 
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driving RAS biology (11-13). RAC1 mutations have also recently been identified in human 

cancer (14). 

 There are three genes that encode four isoforms of the founding members of the 

RAS protein family: HRAS, NRAS, KRAS4A, and KRAS4B. KRAS4A and KRAS4B are 

formed by alternative KRAS gene splicing (1). The sequence of these proteins is highly 

conserved, save for a C-terminal hypervariable domain, which contains a tetrapeptide 

CAAX-motif (Cysteine-Alanine-Alanine-terminal amino acid) that is differentially prenylated 

to facilitate proper RAS subcellular localization (15, 16). In 1982, multiple groups discovered 

that these proteins were mutationally activated in human cancers and act as oncogenes (17-

22). Subsequently, extensive sequencing of many human cancers determined that 

approximately 25% of all human cancers contain activating mutations in one of the three 

RAS isoforms (COSMIC). KRAS mutations comprise 86% of all RAS mutations, followed by 

NRAS (10%), with HRAS mutations rarely seen in cancer (2). Though over 130 missense 

mutations of RAS proteins have been identified in human tumors, 98% of these mutations 

are found at three specific residues: G12, G13, and Q61 (2, 23, 24). Missense mutations at 

these residues leaves RAS proteins in a state that is GAP insensitive and, due to the low 

intrinsic rate of GTP hydrolysis, this results in RAS proteins that are essentially constitutively 

bound to GTP and actively signaling to downstream effectors.  

Normal RAS proteins are a central signaling hub coordinating extracellular growth 

signals with downstream cytoplasmic signaling that promotes proliferation, survival, 

migration, adhesion, and gene transcription (25). In resting normal cells, RAS is inactive. 

Upon growth factor stimulation, normal RAS is transiently activated, rapidly returning to the 

inactive GDP-bound state in the absence of growth factors. In contrast, constitutively active 

RAS proteins found in cancer are persistently signaling and can drive every hallmark 

characteristic of cancer. The central role of RAS proteins in these diverse cellular processes, 

coupled with the exceptionally high rate of RAS mutations in human cancer, poise RAS 
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proteins as an important target for therapeutic intervention. With RAS mutations found in 

cancers that comprise the three top causes of cancer deaths in the US (lung, colorectal and 

pancreatic cancer), an effective anti-RAS therapy will have a significant impact on cancer 

deaths.   

Therapeutically targeting mutant RAS in human cancer 

 Over three decades of intense effort have gone into attempting to drug RAS (1). 

Though directly targeting mutationally activated RAS for the treatment of human cancer 

sounds promising, and while impressive progress has been made, it remains to be 

determined whether direct inhibitors can be developed into clinically active and effective 

drugs. Since mutant RAS is persistently GTP-bound, by analogy to ATP-competitive 

inhibitors of protein kinases, one logical approach is the development of GTP antagonists. 

The primary reason these efforts have been confounded is due to the picomolar affinity of 

RAS for GTP (26). The especially high affinity of RAS for its natural activator leaves little 

room for pharmacologic intervention in the GTP-binding pocket. Therefore, attempts to 

directly target mutant RAS have been difficult. However, in recent years, moderate success 

has been seen with small molecules that directly bind RAS. For example, targeting specific 

mutant RAS proteins, such as KRAS-G12C, has been reported (27). 

 With the uncertain success in designing a direct inhibitor of RAS, the focus of most 

researchers has hinged on a multitude of indirect strategies to impair mutant RAS activity in 

tumor cells. The earliest research involved disrupting the posttranslational modifications of 

RAS that tether it to the plasma membrane. Unfortunately, inhibition of farnesyltransferase 

(28, 29), which is responsible for adding a C15 farnesyl lipid group to the CAAX motif of 

RAS, was unsuccessful due to the ability of KRAS and NRAS to be modulated by another 

enzyme when farnesyltransferase activity is blocked (30). Under these conditions, a related 

enzyme, geranylgeranyltransferase, which adds a C20 geranylgeranyl group to the CAAX 
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motif, restores RAS plasma membrane association. Another recent method for targeting 

KRAS membrane association involves inhibition of PDEδ, a RAS-binding protein that 

chaperones RAS to the plasma membrane (31, 32). However, more research is required to 

determine whether PDEδ inhibitors are a promising direction for therapeutic intervention 

(33).  

A currently exciting alternative approach to inhibit RAS activity involves exploiting the 

roles RAS plays in cellular metabolism (34-36). Tumor cells often exist in a hypoxic, nutrient 

depleted environment, which directly opposes the elevated metabolic needs of these cells. 

Many studies have demonstrated that RAS mutant tumors exhibit increased rates of 

glycolysis and non-oxidative phosphorylation (37). Additionally, nutrient scavenging from 

both internal and external resource pools, via autophagy and macropinocytosis, 

respectively, has been validated as a critical component necessary to support RAS-mutant 

tumor growth. Autophagy is a process of “self-eating” whereas macropinocytosis is a 

process of taking up extracellular materials (38-40). Both processes culminate in the 

lysosomal degradation of captured cargo and the creation of free nutrients that tumor cells 

use to sustain their unremitting growth. 

 Another method for targeting mutant RAS signaling has been to directly target 

effector pathways of RAS with known roles in driving tumor growth. This strategy is so far 

the most promising and the most clinically advanced approach for disrupting RAS activity 

due to the multitude of small molecule inhibitors designed against RAS downstream 

effectors. RAS-GTP binds to a spectrum of functionally diverse downstream effectors, 

including many protein kinases that are pharmacologically tractable (41). Protein kinases 

have been the most successfully targeted protein class in oncology due to accessibility and 

druggability of the ATP-binding pocket. Genetic studies in mouse models and cancer cells 

have demonstrated the critical requirement for effectors in RAS-mutant driven cancer 

initiation, progression and maintenance (1, 42). 
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Given the complex nature of RAS signaling, whether targeting one or multiple RAS 

effector signaling pathways will be required for effective and long-term therapy is unresolved 

(41, 43). Currently, most efforts have centered on the two canonical RAS effectors, the RAF 

serine/threonine protein kinases and the class I lipid kinases, the phosphatidylinositol 3-

kinases (PI3Ks) (44). Numerous inhibitors of each of these effector pathways are currently 

under clinical evaluation. Most attention has been focused on the RAF serine/threonine 

kinases. One RAF isoform, BRAF, is often mutationally activated in human cancers (45). 

Activated RAF phosphorylates and activates MEK1 and MEK2, which then go on to 

phosphorylate and activate the ERK1/2 mitogen-activated protein kinases (Figure 1.1). 

PI3Ks comprise the second most studied RAS effector class. PI3K activation causes 

increased conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) to 

phosphatidylinositol-3,4,5-trisphosphate (PIP3). Membrane-bound PIP3 can then regulate a 

diversity of signaling proteins, including the AKT1-3 serine/threonine kinases. One PI3K 

isoform, p110 alpha is frequently mutated in cancer and PI3K is considered essential for 

RAS-driven cancer development (46, 47).  

There are currently at least 30 inhibitors of the RAF-MEK-ERK pathway and 50 

inhibitors of the PI3K-AKT-mTOR pathway under clinical evaluation (clinicaltrials.gov) (43, 

48-51). However, limited clinical efficacy has been observed with these inhibitors as 

monotherapy. Likely, combinations of these inhibitors will be required to achieve clinical 

success. A central hypothesis of my research is that inhibitors of the less studied RAS 

effector pathways - those leading to the activation of the RAC1 and RAL small GTPases - 

may address this need. However, while these pathways have been clearly validated in 

driving the growth of RAS mutant cancers, attractive pharmacologic approaches for blocking 

them remain to be identified. In Chapter 2, I propose that the PAK1 serine/threonine kinase 

may be a promising candidate for targeting RAC1 downstream signaling. In Chapter 3, I 
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propose that the TBK1 serine/threonine kinase may be a promising direction for targeting 

the RAL effector pathway.  

Yet another method for indirectly targeting mutant RAS activity has involved the 

search for synthetic lethal partners of mutant, but not wild-type, RAS (52, 53). A gene is a 

synthetic lethal partner of mutant KRAS when its function is vital to the growth of only cancer 

cells containing mutant RAS, whereas its loss in RAS wild-type cells is inconsequential to 

cellular viability and function. Many unbiased functional genetic screens using large RNAi 

libraries against a multitude of gene products have sought to identify proteins whose loss 

sensitizes cells to loss of KRAS. Chapter 3 of my thesis includes the description of one such 

identified synthetic lethal partner of mutant KRAS, the TBK1 serine/threonine kinase (54). 

However, enthusiasm for the data generated in synthetic lethal studies is mixed due to some 

misgivings about the reproducibility of results from these reports (55). 

Targeting RAC-PAK signaling in RAS-driven cancers  

A somewhat overlooked RAS effector network results in activation of a RHO family 

protein, the RAC1 small GTPase. One mechanism that this can be mediated through is via 

RAS interaction with a RAS-GTP binding domain (RBD)-containing RAC-selective GEF, 

TIAM1 (56, 57) (Figure 1.1). Another mechanism involves PI3K-mediated formation of PIP3, 

which then activates other RAC-selective GEFs (e.g., PREX1/2, Vav) (58, 59).  

The three RAC isoforms are members of the RHO branch of the RAS superfamily 

(3). They are best known for their regulation of actin organization, in particular to regulate 

lamellipodia induction and promotion of cell migration and pinocytosis. RAC also regulates 

the formation of reactive oxygen species (60). The recent identification of activated RAC1 

mutants in melanoma supports an important driver role for RAC in cancer growth (61, 62). 

Like RAS, RAC is a GDP-GTP regulated binary switch, with RAC-GTP engaging 

multiple effectors (63). While the precise effector(s) that drive RAC-dependent cancer 
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growth remain to be determined, the PAK protein kinases are intriguing candidates. Below, I 

summarize the evidence for the importance of the RAC-PAK effector signaling pathway in 

RAS-driven cancer development and growth. 

RAC and RAS in cancer 

Early studies identified upregulated RAC activation in HRAS-transformed rodent 

fibroblasts (57, 64, 65). These were followed by studies where dominant negative RAC1 

mutants that sequester and inactivate RAC-GEFs, impaired the growth of HRAS-

transformed rodent fibroblasts (13, 66, 67). Subsequent genetically engineered mouse 

model studies found that tissue-restricted genetic loss of Rac1 impaired mutant Kras-driven 

lung (68) and pancreatic (69) cancer development. Furthermore, in a mutant Kras-driven 

model of papilloma development, tumor tissue exhibited increased levels of RAC-GTP, and 

loss of one Rac1 copy alone was sufficient to reduce tumor growth and increase survival 

(70). 

 The key effectors that drive RAC-dependent cancer growth remain to be elucidated. 

In an early study utilizing effector-binding mutants of RAC1 to study the effectors important 

for transformation of NIH 3T3 mouse fibroblasts, PAK1 was found to be dispensable (71). 

These analyses suggested that RAC1 regulates at least four distinct effector-mediated 

functions and that multiple pathways may contribute to RAC1-induced cellular 

transformation. However, since subsequent studies identified cell type and species 

differences in the effectors involved in RAS-mediated transformation (72, 73), a reevaluation 

of the role of PAK1 in RAC1-dependent cancer growth in human cancers is clearly merited. 

Another RAC1 activity, upregulation of reactive oxygen species, in which PAK1 is also 

involved (74), has been suggested to contribute to RAC1-mediated growth regulation  
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PAK activation in RAS mutant cancer 

PAKs comprise a family of six proteins divided into two sub-groups: group I 

comprises PAK1-3 and group II contains PAK4-6 (75-77). Since group I PAKs are RAC and 

CDC42 effectors, whereas group II PAKs are CDC42 only, my work will primarily focus on 

the group I PAKs. Although the group I PAKs share strong sequence identity in their kinase 

domains (92-95%), PAK1 is thus far the most studied family member, so I have focused 

primarily on PAK1 in my studies. 

Though PAK1 activity can be deregulated by a diversity of mechanisms in cancer 

that include gene amplification and increased gene transcription (76, 78), here I focus on 

activation of PAK downstream of RAS, RACGEFs, and RAC. While in the inactive 

conformation within the cytosol, PAK1-3 form head-to-tail homodimers with the N-terminal 

autoinhibitory domain (AID) of one monomer inserted within the C-terminal kinase domain of 

another. Upon binding of RAC1-GTP to the GTPase binding domain of group I PAKs, a 

conformational change releases the AID from the kinase domain leading to 

autophosphorylation at multiple serine/threonines and activation of PAK catalytic activity, 

allowing phosphorylation of substrates (79). Additionally, plasma membrane-associated 

RAC binding facilitates PAK plasma membrane recruitment, where PAKs can interact with 

effectors.  

PAK effector signaling in human cancer 

Group I PAKs regulate a spectrum of catalytically diverse substrates (76, 80). The 

precise substrates critical for PAK-dependent cancer growth remain to be fully understood 

and the interplay of multiple substrates is likely involved. In particular, PAK1 facilitates cross-

talk with both the RAF and PI3K effector signaling networks. PAK1 can enhance ERK 

signaling by phosphorylation of RAF-1 (S338) and MEK1 (S298) (81-84). PAK1 also 

regulates the PI3K-AKT-mTOR pathway, where PAK1 exhibits a kinase-independent 
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scaffolding function to facilitate PDK1-mediated recruitment of AKT to the plasma membrane 

to facilitate AKT activation (85). The physiologic relevance of PAK1 cross-talk with ERK and 

AKT signaling is supported by the observation that genetic or pharmacologic ablation of 

PAK1 impaired both ERK and AKT activation in Kras-driven skin tumors (86). 

Pharmacologic inhibitors of the RAF and PI3K pathways have been ineffective in RAS 

mutant cancer cells, in part, due to kinome reprogramming mechanisms that stimulate 

signaling activities that overcome inhibitor action (87-90). Consequently, combined targeting 

of PAKs and members of these pathways, such as MEK, ERK, PI3K or AKT, may help 

overcome these resistance mechanisms. However, PAK1 cross-talk with these RAS effector 

pathways can be context-dependent as PAK1 suppression in KRAS-mutant colon 

carcinoma cells impaired anchorage-dependent and -independent proliferation, but not ERK 

or AKT activation (91).  

PAKs are also capable of influencing transcription of genes that promote cell cycle 

progression and cell survival. In breast cancer and colon cancer cell lines, PAK1 can 

phosphorylate β-catenin on S663 and S675, stabilizing it and promoting its nuclear 

translocation and transcriptional stimulation of TCF-responsive genes, including CCND1 and 

MYC (92, 93).  

PAKs enhance cell survival by phosphorylating proteins associated with apoptosis. 

PAK1 phosphorylates BAD on S111 to prevent Bcl-2 binding and induction of apoptosis 

(94). Additionally, PAK1 can phosphorylate and induce relocalization of RAF-1 to the 

mitochondria where it also inhibits BAD by phosphorylating it on S112 (94).  

 PAKs are also critical mediators of the cytoskeleton and cell motility. PAK1 and 

PAK2 phosphorylate LIM kinase on T508, and LIMK in turn phosphorylates cofilin to prevent 

actin depolymerization (95, 96). Additionally, PAK1 can phosphorylate the p41-ARC subunit 

of the Arp2/3 complex to promote actin nucleation and cell motility (97, 98). PAKs are also 

involved in microtubule reorganization through both tubulin cofactor B (TCoB), a protein 
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responsible for assembling tubulin heterodimers (99), and through the inactivation of 

stathmin, which is normally responsible for destabilizing microtubules at the leading edge of 

cells (100-102).  

 Metabolism is a critically important factor to the survival of cancer cells because of 

their high energy demands, and PAKs play a role in driving several metabolic processes that 

aid tumor cell growth and survival. Elevated macropinocytosis to facilitate increased 

extracellular protein and lipid uptake is one consequence of the high metabolic requirements 

of cancer cells (36). PAK1 was found to be necessary and sufficient for growth factor- and 

RAC-induced macropinocytosis in NIH 3T3 fibroblasts (103). RAC and PAK1 were found to 

be both necessary for bladder cancer cell macropinocytotic uptake of Bacille Calmette-

Guerin (BCG), a strain of bacteria used in the treatment of bladder carcinoma (104). 

Additionally, bacterial uptake was also stimulated by activated KRAS or HRAS and this 

activity was blocked by pharmacologic inhibition of group I PAKs by IPA-3 (2,2’-dihydroxy-

1,1’dinaphthyldisulfide). This study suggests that the activity state of PAKs in cancer cells 

could be a determinant of efficient uptake of cancer therapeutics. Similarly, in pancreatic 

cancer cells, KRAS-dependent stimulation of macropinocytosis and uptake of albumen (105) 

may provide a basis for the efficacy of albumen-bound (nab) paclitaxel for the treatment of 

this cancer. It will also be important to assess a role for RAC-PAK signaling in KRAS-

dependent macropinocytosis to determine whether pharmacologic inhibition of PAK1 may 

be an effective approach to blocking cancer cell metabolism.  

 While PAKs are canonically thought of as functioning in the cytosol or at the plasma 

membrane, they do contain several nuclear localization signals (NLS) and play several roles 

within the nucleus. In zebrafish, PAK1 nuclear import is essential for development (106). In 

cancer cells, increased nuclear accumulation of PAK1 has been associated with advanced 

tumor stage in colorectal and breast tumors (107, 108). In breast tumors, increased nuclear 

PAK1 is capable of phosphorylating ERα at S305 and causing it to become active in a 
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ligand-independent manner, leading to tamoxifen resistance (109). Finally, PAK1 can 

translocate to the nucleus to drive transcription of fibronectin, which is crucial for supporting 

pancreatic cancer cell growth and migration (110).  

The first evidence for a role for PAK1 in RAS-dependent growth transformation came 

from studies in model cell systems. Ectopic expression of a kinase-dead PAK1 dominant 

negative mutant impaired HRAS and RAC1 growth transformation of rat 3Y1 fibroblasts 

(111) or HRAS transformation of Rat-1 rat fibroblasts, but not NIH3T3 mouse fibroblasts 

(112, 113). Similarly, dominant negative RAC1 and kinase-dead PAK1 inhibited KRAS 

transformation of MT4H1 rat Schwann cells (114). Recently, in a mouse model of Kras-

driven skin squamous cell carcinoma formation, genetic ablation of Pak1 strongly impaired 

tumor initiation and progression (86). Together with the validated role of RAC1 in RAS-

driven oncogenesis, these observations implicate the RAC-PAK effector pathway as a target 

for the development of anti-RAS therapeutic strategies. Like the RAS small GTPase, the 

RAC small GTPase is not considered a highly tractable drug target. Therefore, below we 

focus on the development of inhibitors of the PAK1 kinase for cancer treatment. 

Clinical-translational advances 

PAK inhibitor development is still largely at the preclinical stage, with only one PAK 

inhibitor evaluated in clinical trials (115). Due to the high sequence identity of the kinase 

domains, most attempts thus far have yielded molecules with a high affinity for all group I 

PAK members, and in some cases, inhibitory activity for both group I and II PAKs. Early 

stage ATP-competitive PAK inhibitors (e.g., staurosporine, A-FL172) lacked selectivity for 

PAK. The only PAK inhibitor to reach clinical trials was a pan-PAK inhibitor, PF-3758309 

(116). This compound was identified originally as a hit in a screen for inhibitors of PAK4, but 

it proved to effectively inhibit all PAK family members, in addition to other protein kinases. 

Preclinical evaluation showed anti-tumor activity against multiple human tumor cell lines, 
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leading to Phase I evaluation in patients with solid tumors. Unfortunately, this trial was 

stopped in phase I due to pharmacokinetic issues. Subsequently, derivatives of PF-3758309 

have been described with much improved pharmacologic properties, raising hope that this 

class of compound may yet have clinical utility (117). 

 More recently, Licciulli and colleagues described the discovery of a small molecule 

pyridopyrimidinone, FRAX59, that potently inhibits Group I PAKs by preventing ATP-binding 

and hydrolysis (118). FRAX597 exhibited high specificity and potency for Group I PAKs, 

although potent inhibition of other kinases was also seen. When evaluated in vivo, FRAX597 

inhibited the tumorigenic growth of NF2-null Schwann cells. NF2 loss causes RAC1 and 

PAK1 activation, indicating that this compound could be a viable therapeutic strategy for 

treating PAK-dependent tumors. FRAX597 treatment also phenocopied genetic loss of Pak1 

and impaired Kras-driven skin tumorigenesis (86). Interestingly, in this mouse model, both 

genetic and pharmacologic inhibition of PAK1 resulted in reduction of ERK and AKT activity, 

supporting the importance of PAK1 signaling cross-talk with these two RAS effector 

pathways.  

  Peterson and colleagues performed a screen to identify small molecule allosteric 

inhibitors of Cdc42 activation of Group I PAKs. The results of this screen led to the 

development of IPA-3, which interacts with the PBD/AID region of group I PAKs and 

prevents their activation by GTPase binding (119, 120). IPA-3 showed strong selectivity for 

Group I PAKs, with no inhibitory activity for Group II PAKs or more than 200 other protein 

kinases evaluated. However, the inability of IPA-3 to inhibit already activated PAK1, its 

micromolar IC50 and its rapid metabolism to a toxic compound due to the reduction of the 

disulfide bond it contains, limit the ability to transition IPA-3 as a clinically useful chemical 

platform. 

With increasing experimental evidence validating a driver role for PAKs in tumor 

growth and invasion, a key issue for the clinical advancement of PAK inhibitors will be 
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defining genetic and/or biochemical markers that identify those cancers that will respond to 

anti-PAK therapy. The position of PAK downstream of mutant KRAS and RAC, in addition to 

PAK signaling cross-talk with the key RAS effector pathways, support PAK inhibitors as a 

therapeutic strategy for RAS-mutant cancers. Given the involvement of multiple effectors in 

driving RAS-dependent cancer growth, PAK inhibition in combination with inhibitors of RAF 

or PI3K effector signaling will likely be required. Currently, pharmacologic inhibitors of PAK1 

also inhibit other Group I PAKs; whether PAK1-selective inhibitors are more desirable and 

possible to develop are issues that remain to be resolved. Of the spectrum of PAK 

substrates, which substrate(s) will provide a reliable biomarker for PAK inhibitor anti-tumor 

activity also remains unclear. A survey of the patent literature indicates that more PAK 

inhibitors are in the pipeline (121, 122). As more potent and selective inhibitors become 

available, the answers to many of these unresolved questions will likely be addressed. In 

Chapter 2, I detail my studies with a novel, ATP-competitive and PAK1-selective inhibitor. 

The RalGEF-RAL pathway in RAS-mutant cancer 

 Another less studied RAS effector pathway is the RalGEF-RAL pathway. The RAS-

like (RAL) members of the RAS family are two highly identical proteins, RALA and RALB (8). 

These two small GTPases contain a C-terminal CAAX motif that specifies subcellular 

location, similar to other RAS family members. Both RALA and RALB interact with RalGEFs 

that facilitate the exchange of GDP for GTP. These RalGEFs, which include RalGDS (123-

125) and RGL2/3 (126, 127), were identified in studies that sought proteins that interact with 

RAS family proteins, and thus comprise a direct link between RAS signaling and RAL 

activation. Like RAF and PI3K, RALGEFs also contain RBDs that promote their association 

with RAS-GTP (8). To catalyze hydrolysis of GTP to GDP and return RAL proteins back to 

an inactive state, there are two RalGAP proteins that consist of a heterodimer of RalGAPβ 

paired with either RalGAPα1 or RalGAPα2.  
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 Our lab and others have demonstrated that RALA and RALB have divergent roles in 

promoting various traits of cancer growth. For example, in pancreatic cancer RALA is 

necessary for anchorage-independent growth in vitro and tumorigenicity in vivo but RALB is 

dispensable (128). In contrast, RALB, but not RALA, is required for invasion in vitro and 

metastasis in vivo (129). Moreover, loss of RALB is lethal for tumor cells, but not normal 

cells (128). These differential roles for two highly identical proteins, which diverge primarily 

in their C-terminal membrane targeting sequences and their posttranslational modifications 

(130), highlight the importance of subcellular localization and substrate engagement for 

promoting specific cellular outcomes in that RALA and RALB must engage with disparate 

downstream effectors in the correct time and place to regulate these RAL isoform-driven 

phenotypes.  

Targeting the RAL effector TBK1 in human cancer 

 Like other RAS family members, RAL sits at the center of a diverse web of cellular 

effectors that mediate processes such as gene transcription, endocytosis, autophagy, and 

actin reorganization (8). The most well characterized effector signaling pathway of RAL 

proteins involves the exocyst complex, which facilitates cellular transport of vesicular cargo 

from the Golgi apparatus to the plasma membrane where it is released into the intercellular 

millieu (131). Two members of the exocyst complex that directly engage with RAL proteins 

are Exo84 AND Sec5. Interestingly, downstream of RALB, Sec5 is able to bind to and 

activate TANK-binding kinase 1 (TBK1) (132), a non-canonical IκB kinase (IKK), involved in 

regulation of NF-κB.  

 NF-κB signaling is a tightly controlled pathway that transcriptionally governs several 

aspects of cell physiology, most importantly, proliferation, survival, and the immune 

response to cellular pathogens (133). Misregulation of NF-κB has been heavily implicated in 

supporting many tumorigenic phenotypes in myriad cancer types, in part by upregulation of 
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genes that encode proteins important for growth and cell survival. Typically, complexes of 

different NF-κB family members are held inactive in the cytoplasm by inhibitors of NF-κB, 

known as IκB proteins. In response to various stimuli, such as inflammatory signals, the 

canonical IKKs, IKKα and IKKβ, become activated and promote dissolution of the IκB-NF-κB 

complex through phosphorylation and ubiquitylation of IκB proteins (134).  

There are other IKK proteins besides IKKα/β that are responsible for activating NF-

κB signaling. These non-canonical IKKs act downstream of diverse stimuli that converge on 

Toll-like receptors (TLR) and TNF receptor-associated factor (TRAF) proteins. These 

receptors mediate TANK binding to TBK1, which is one such non-canonical IKK (135). TBK1 

can then go on to promote both survival and inflammatory signaling. TBK1 is the focus of my 

studies in Chapter 3. 

Additionally, TBK1 is capable of phosphorylating the interferon regulatory factor 

proteins, IRF3 and IRF7, and inducing transcription of pro-inflammatory genes (55, 136). 

Therefore, the ability of the exocyst component Sec5 to induce activation of TBK1 provides 

a critical linkage between RAS-mediated proliferative signaling in cancer and NF-κB 

responsive inflammation (132). TBK1 also plays a role in pro-survival signaling through 

direct phosphorylation of AKT at both T308 and S473 (Figure 1.2) (137).  

 A study searching for synthetic lethal interactors of mutant RAS utilized a systematic 

siRNA screen and reported that TBK1 was deleterious to cancer cell lines harboring 

mutationally activated but not wild-type KRAS (54). The results of this screen were validated 

in non-small cell lung cancer (NSCLC). However, subsequent studies in other cell types 

reported that the relationship between KRAS and TBK1 was far more complex than initially 

imagined, and that not all KRAS-mutant tissue was exclusively dependent on TBK1 

signaling for tumor cell growth and survival (55, 137).  

One study screened a panel of PDAC cell lines for dependency on TBK1 using both 

genetic and pharmacologic approaches. Neither pharmacologic inhibitors of TBK1 nor 
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shRNA-mediated suppression of TBK1 expression had any measurable effect on the 

viability of the cell lines tested, though reduction in pIRF3 S386 was observed (55). Thus, 

conflicting observations have been made concerning whether TBK1 is a bona fide target for 

RAS-mutant cancers. In Chapter 3 I describe the application of a novel TBK1 inhibitor to 

focus on the study of TBK1 in KRAS-mutant PDAC. In my studies, I determined whether 

TBK1 inhibition could enhance the anti-tumor activity of an ERK1/2 inhibitor, as ERK1/2 is a 

vital member of the canonical RAF-MEK-ERK RAS effector pathway.  

Pancreatic ductal adenocarcinoma as a model to study KRAS effector signaling 

 Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest human cancers, 

with a 5-year survival rate of approximately 8% (138). In 2016, PDAC surpassed breast 

cancer and is now the 3rd leading killer among cancer deaths in the United States and is set 

to surpass colorectal cancer by 2020 (139, 140). The reasons for the dire and deadly state 

of PDAC are manifold. First of all, patients are often asymptomatic, affording the primary 

tumor time to disseminate and create extensive metastatic lesions in other areas of the 

body, such as the lymph nodes, lungs, liver and other abdominal compartments (141). 

Surgical resection of the primary tumor is the only option for long-term effective treatment, 

though most patients, at the time of diagnosis, are well past the stage where surgical 

resection is a viable option. This leaves radiation and chemotherapy as the only treatment 

strategies for the majority of PDAC patients.  

Since 1997, gemcitabine, a nucleoside analog that disrupts DNA replication, has 

been the standard of care for PDAC (138, 141, 142). Recently, two new therapies emerged 

that have become standards of care for PDAC, both of which are drug cocktails comprised 

of traditional cytotoxic anti-cancer drugs. Approved in 2013, one of these treatments is 

gemcitabine in combination with nab-paclitaxel. Nab-paclitaxel is a nanoparticle formulation 

of an albumen-conjugated form of the mitotic spindle inhibitor, paclitaxel. Approved in 2011, 



 

 

34

the second treatment is the four-drug cocktail FOLFIRINOX, comprised of folinic acid, 

fluorouracil (5-FU), irinotecan and oxaliplatin. 5-FU is a pyrimidine analogue and oxaliplatin 

is a DNA alkylating agent; both disrupt DNA synthesis. Irinotecan is a topoisomerase 

inhibitor that introduces strand breaks into DNA, also disrupting DNA synthesis. Folinic acid 

is a vitamin B analog that decreases some of the toxic side effects of 5-FU.  

Despite the approval of these therapies for PDAC, most patients still succumb to this 

disease in less than a year (139). While our knowledge of the genetic basis of pancreatic 

cancer is quite extensive (143-147), unlike in other cancers where such knowledge has led 

to the development of effective targeted therapies, no truly effective targeted therapies are 

available for PDAC. One targeted therapy that is approved for PDAC is erlotinib, an inhibitor 

of the EGFR receptor tyrosine kinase, which is responsible for driving activation of RASGEF 

proteins that stimulate RAS signaling (148). The clinical trial that led to the approval of 

erlotinib in combination with gemcitabine in 2005 showed a statistically significant but 

clinically insignificant two-week improvement in patient survival (149). That this minor 

improvement in survival was enough for erlotinib to be approved for PDAC therapy speaks 

volumes about the dire need for new therapeutic interventions for this disease. In fact, 

erlotinib is no longer used in the clinic for PDAC. Clearly, the need for more effective 

treatments will become even more acute in the coming years as PDAC overtakes colon 

cancer as the number two cancer killer in the US. 

 PDAC is striking in that it harbors a KRAS mutation in nearly 100% of cases (2), and 

mutant KRAS is a well-validated driver of this disease. Although activating mutations in 

KRAS occur exceptionally early in the development of PDAC, appearing in the benign 

precursor lesions, pancreatic intraepithelial neoplasias (PanINs), cancer cell line and mouse 

model analyses show that ablation of KRAS expression dramatically impairs PDAC growth 

(42). Thus, KRAS is the key step in both PDAC initiation and maintenance (42, 150).  
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 Aside from KRAS mutations, three other genes are mutated frequently in PDAC. 

These include the TP53, CDKN2A and SMAD4 tumor suppressors (141). Since 

pharmacologic inhibitors that antagonize an activated oncoprotein, such as KRAS, should 

be much easier to develop than small molecules that restore the function of lost tumor 

suppressors, KRAS is the most attractive target for PDAC drug discovery. While many other 

genes have been identified in PDAC, these occur at frequencies of less than 5% (1, 25, 43). 

Thus, for this and other reasons mentioned above, the development of anti-KRAS drugs is 

one of four major directions for the field identified recently by the National Cancer Institute.  

The high frequency of KRAS mutations in PDAC and their driver role in this cancer type 

make PDAC an exceptional model for studying KRAS signaling and for elucidating the 

downstream signaling mechanisms that KRAS employs to promote tumor development and 

maintenance.  

Rationale and objectives for the studies described in this document 

 The aims of my thesis work described herein encompass evaluating the contribution 

and therapeutic potential of PAK1 and TBK1, which are downstream protein kinase 

components of two less studied KRAS effector pathways, the Tiam1-RAC and RalGEF-RAL 

pathways. In Chapter 2, I describe my studies of PAK1 in PDAC. I determined that PAK1 

was necessary to maintain PDAC cell line proliferation and anchorage-independent growth. I 

show that PAK1 could be promoting the growth and survival of pancreatic cancer cells via 

macropinocytosis, wherein the cell non-specifically engulfs portions of the extracellular 

compartment as a means to scavenge nutrients and to fuel unrestrained growth. In Chapter 

3, I demonstrate that, although TBK1 appears to be dispensable for maintaining PDAC cell 

viability, both in vitro and in vivo, TBK1 activity is intimately linked to autophagy, and this 

linkage could be exploited by pairing TBK1 inhibitors with other targeted therapies or with 

conventional cytotoxic drugs. Overall, my data suggest that, although PAK1 and TBK1 may 
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not represent exceptionally clinically useful targets on their own, both of these kinases are 

indelibly connected to cellular metabolism in PDAC and therefore warrant more research to 

assess their potential as therapeutic targets in combination with other agents. 
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Figure 1.1: RAS-RAC-PAK1 effector signaling. The importance of the RAF-MEK-ERK 
and PI3K-AKT-mTOR effector signaling networks: both are well-validated drivers of mutant 
RAS-dependent cancer growth. RAC is activated by RAS through direct (e.g., via Tiam1) or 
indirect (via PIP3 formation) activation of guanine nucleotide exchange factors for the RAC 
small GTPase. The Group I PAKs comprise one key effector family of RAC. Over 50 
substrates of PAK1 have been described. These substrates include components of the ERK 
MAPK cascade. Activated PAK1 can also function as a scaffold to facilitate AKT activation.
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Figure 1.2: TBK1 is activated downstream of both TLR signaling and RAS-mediated 
RALB/Sec5 signaling. TBK1 is canonically activated downstream of inflammatory or 
immune signals from Toll-like receptors (TLRs), though it can also become activated 
downstream of RAS-mediated activation of RAL and the Sec5 component of the exocyst 
complex. TBK1 can then go on to modulate survival signaling via direct phosphorylation of 
AKT, or inflammatory signals via release of NF-κB inhibition and stimulation of IRF3/IRF7. 
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CHAPTER 2: PAK1 REGULATES MACROPINOCYTOSIS IN PANCREATIC CANCER2 

 

Overview 

Despite attempts to directly target mutant KRAS and to design inhibitors of validated 

KRAS effector pathways, to date, no clinically successful anti-KRAS therapies have been 

developed. The lack of success of these inhibitors is due, in part, to the importance of other 

effectors in KRAS-dependent cancer growth and to the upregulation of compensatory 

signaling programs that overcome inhibitor activity. We have determined that PAK1 

serine/threonine kinase protein expression is elevated in a subset of primary patient 

pancreatic tumors and in pancreatic ductal adenocarcinoma (PDAC) cell lines. Both genetic 

silencing of PAK1 and pharmacologic inhibition of PAK1 kinase activity by a novel, highly-

selective ATP-competitive inhibitor, AZ13705339, impaired PDAC anchorage-independent 

growth. Additionally, as mutant KRAS has been linked to upregulation of metabolic 

processes, such as macropinocytosis, we examined the ability of PAK1 to regulate 

macropinosome formation in PDAC. Inhibition or genetic ablation of PAK1 resulted in a 

marked decrease in macropinocytosis. Surprisingly, PAK1-driven macropinocytosis is 

independent of KRAS-RAC1 signaling.  Finally, we determined that concurrent inhibition of 

PAK and either ERK or PI3K synergistically reduced macropinosome formation in a subset 

of PDAC lines. Our findings validate PAK1 as a therapeutic target in PDAC.

                                                           

2This chapter is currently under review for publication. The author list is as follows: Nicole M. 

Baker, ,Meagan B. Ryan, G. Aaron Hobbs, Kirsten L. Bryant, Tikvah K. Hayes, Campbell D. 
Lawson, Andrea Wang-Gillam, Janine LoBello, Haiyong Han, drenne D. Cox, and Channing 
J. Der. All experiments were performed by myself, except for Figure 2-1, panels C-D. 
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Introduction  

Pancreatic cancer is a rapidly fatal disease with a 8% 5-year survival rate (138, 139). 

Despite the fact that nearly all pancreatic ductal adenocarcinomas (PDAC) are driven by 

activating mutations in the KRAS oncogene, no clinically effective anti-KRAS targeted 

therapies have been developed. KRAS acts as a major cell signaling hub that promotes 

multiple cellular processes required to maintain tumorigenic growth (1). Most notably, a 

plethora of inhibitors have been generated against the two canonical KRAS effector 

pathways, the RAF-MEK-ERK mitogen-activated protein kinase (MAPK) and the PI3K-AKT-

mTOR lipid kinase pathways, with many currently under clinical evaluation (43). 

Disappointingly, as monotherapy, these inhibitors have shown limited to no clinical benefit. 

One known basis for their limited clinical efficacy is the process of dynamic kinome 

reprogramming, whereby pharmacological inhibitors induce signaling changes that 

compensate for and overcome inhibitor actions (88). 

A second likely basis for the limited efficacy of inhibitors of the canonical effector 

pathways is an unreallized requirement to concurrently inhibit other effector pathways that 

are also essential for KRAS-dependent cancer growth and that can compensate, at least in 

part, for impaired signaling through the canonical effectors. One such less studied pathway 

includes the Tiam1 guanine nucleotide exchange factor (GEF) and the RAC1 small GTPase. 

Tiam1-deficient mice show impaired Hras-induced tumorigenesis (56). Other studies 

demonstrated that Rac1 deficiency reduced mutant Kras-driven lung (68) and pancreatic 

cancer growth (69). However, the key effector(s) that are critical for Tiam1-RAC1-dependent 

oncogenesis remain to be established.  

Like KRAS, RAC1 can interact with a spectrum of functionally diverse effectors. Of 

these, the PAK1 serine/threonine kinase is an excellent candidate effector for RAC1-

dependent cancer growth. PAK1 substrates include proteins involved in regulating cellular 

processes that control cell proliferation, survival, cytoskeletal rearrangement, motility, and 
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epithelial-mesenchymal transition. PAK1 has been shown to act as a driver in breast (151, 

152), colon (91, 93), lung (153, 154), and other cancers (79). A recent study implicated a 

requirement for PAK1 in initiating and driving tumor development in a mouse model of Kras-

mutant skin squamous cell carcinoma (86). More importantly, studies of PAK1 in PDAC 

reveal that PAK1 is a key regulator of MET-regulated PDAC cell migration (155) and that 

PAK1 promotes PDAC cell growth through transcriptional regulation of NF-κB and 

fibronectin (110). 

Additionally, PAK1 is known to regulate macropinocytosis (103), an actin-driven 

process by which cells engulf extracellular protein as a source of amino acids to sustain the 

increased metabolic demands of tumor growth. Mutant KRAS has been shown to drive 

macropinocytosis in PDAC (64, 105, 156) and inhibition of macropinocytosis impaired PDAC 

tumor growth. However, the critical KRAS effector signaling pathways that promote 

macropinocytic activity in pancreatic cancer have not been determined. Elucidation of how 

mutant KRAS drives macropinocytosis may identify a therapeutic target, such as PAK1, to 

enable effective blockade of macropinocytosis and PDAC growth.  

In this study, we addressed a role for PAK1 in KRAS effector signaling, 

macropinocytosis, and pancreatic cancer growth. Unexpectedly, PAK1 activity and signaling 

were largely independent of KRAS and RAC1 in the PDAC cell lines tested. However, we 

did find elevated PAK1 protein expression in PDAC cell lines and patient tumors. Further, 

genetic and pharmacologic suppression of PAK1 impaired both anchorage-independent 

growth and macropinocytosis. Thus, PAK1 may be a relevant therapeutic target in KRAS-

driven pancreatic cancer, albeit not directly via KRAS itself. 



 

 

42

Materials and Methods 

Cell lines, tumor tissue lysates, and tissue microarray 

Authenticated PDAC cell lines were obtained from ATCC and maintained in either 

DMEM (HPAC, MIA PaCa-2, and PANC-1) or RPMI-1640 (AsPC-1, HPAF-II, and CFPAC-1) 

supplemented with 10% fetal bovine serum, and were not maintained in continuous culture 

for longer than two months after receipt from the source. Detergent buffer lysates generated 

from patient primary pancreatic tumor and adjacent non-tumor tissues were kindly provided 

by Dr. Jen Jen Yeh (UNC-Chapel Hill).  Pancreatic tumor tissue was acquired and tissue 

microarrays (TMAs) were generated by the Translational Genomics Research Institute 

(TGen) (Phoenix, Arizona) from freshly cut sections of fixed, embedded, de-identified 

primary pancreatic cancer tumor tissues. 

Plasmids and reagents 

 Lentiviral plasmids encoding shRNA against PAK1 were obtained from the University 

of North Carolina Lenti-shRNA Core Facility. All shRNAs are in the pLKO.1 backbone and 

contain a puromycin resistance gene. All hairpin sequences are based on those deposited in 

the TRC RNAi Consortium of the Broad Institute, and are as follows: NS (non-specific): (5’-

CCTCTTGATGAACCATCTATT-3’), shPAK1-1: (5’-CTTCTCCCATTTCCTGATCTA-3’), and 

shPAK1-2: (5’-GCTGTGGGTTGTTATGGAATA-3’). 

  Silencer Select siRNA targeting KRAS (#s s7939 and s7940) and RAC1 (#s s11711 

and s11713) were obtained from Thermo-Fisher. Mismatch control siRNA was obtained from 

Dharmacon (#D-001210-05). 

 Primary antibodies used for TMA staining and for western blot analysis were 

obtained from Cell Signaling Technologies: PAK1 (#2602), pMEK1 S298 (#9128), MEK1 

(#9124); Sigma-Aldrich: β-actin (#A5441), GAPDH (#G8795), and Vinculin (#CP74); and 
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Millipore: anti-KRAS (#OP24) and anti-RAC1 (#05-389). Secondary HRP-conjugated anti-

mouse (#31432) and anti-rabbit (#31460) antibodies were obtained from Thermo-Fisher. 

Immunohistochemistry 

Pancreatic TMAs were stained with anti-PAK1 antibody (Cell Signaling Technology, 

#2602). Samples were blinded and the intensity of PAK1 staining was scored by a 

pathologist (J. LoBello) and binned as none (+0), low (+1), medium (+2), or high (+3). 

Lentiviral transduction to silence PAK1 

 Lentivirus was generated in HEK-293T cells transfected with the pLKO.1 shRNA 

expressing plasmids and the psPAX2 and pMD2.G packaging vectors (Addgene). Virus was 

harvested 48 h post-transfection. PDAC cell lines were seeded at a density such that they 

would reach approximately 70% confluence the following day, and then were transduced 

with NS or shPAK1 virus in the presence of 8 μg/μL polybrene. Stably transduced cells were 

selected for 2-3 days in puromycin at a concentration determined empirically for each cell 

line.  

siRNA transfection to silence KRAS and RAC1 

All siRNA knockdown experiments were performed via reverse transfection to 

maximize transfection efficiency. Briefly, 10 μM siRNA was complexed with Lipofectamine 

RNAiMax (Life Technologies) per the manufacturer’s instructions, and cells were seeded in 

6 well dishes at a density of 3x105 cells/well in the presence of this complex. Knockdown 

was allowed to proceed for 48 hours before cells were used in assays. 

Growth assays  

For anchorage-dependent proliferation assays, cells in complete growth medium 

were seeded in 96-well plates at cell densities varying from 1x103 to 5x103 per well 

depending on the cell line. To monitor cell viability after 72 h, 3-(4,5-dimethylthiazol-2-yl)-
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2,5-diphenyltetrazolium bromide (MTT) was added to each well at a final concentration of 5 

μg/ml. Cells were incubated in the presence of MTT for 4 h, media was aspirated, cells were 

lysed in 100 μL DMSO per well, and the absorbance at 590 nM was measured.  

Soft agar colony formation assays were performed as we have described previously 

(157). Briefly, 0.6% bacto-agar dissolved in complete growth medium was allowed to solidify 

in a 6- or 12-well plate. Cells were seeded on top at densities ranging from 5x103 to 2x104 

cells per well, depending on the growth properties of each cell line, in 0.3% bacto-agar in 

complete growth medium. Cells were fed with complete growth medium supplemented with 

vehicle alone (DMSO) or with PAK inhibitor AZ13705339 for 7-14 days. Colonies were 

stained with 2 mg/mL MTT, visualized with a Typhoon FLA 7000 Scanner, and quantified 

with ImageJ (NIH) (158). 

Inhibitor treatment 

The PAK1-selective ATP-competitive inhibitor, AZ13705339 (manuscript in 

preparation, McCoull et al., 2016) and the PI3K inhibitor, AZD8186 (159), were synthesized 

and provided by AstraZeneca. The ERK1/ERK2-selective ATP-competitive and allosteric 

inhibitor SCH772984 (160) was provided by Merck. Inhibitors were dissolved in DMSO to 

yield stock concentrations of 10-100 mM, aliquotted, and stored at -80°C. 

PDAC cell lines were seeded and allowed to adhere for 24 h before inhibitor 

treatment. Compounds were dissolved in DMSO and serially diluted to attain the desired 

treatment concentrations. The amount of DMSO was held constant in all samples. GI50 and 

IC50 values for PDAC cells treated with AZ13705339 were determined with Prism Graphpad 

6 software. 

Western blot analyses 

 Cells were lysed in NP-40 buffer containing 1 M Tris pH 7.5, 1 M MgCl2, 5 M NaCl, 

10% NP-40, 10% glycerol, 0.25% sodium deoxycholate, and phosphatase and protease 
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inhibitors. Protein concentration was determined by Bradford Protein Assay (Bio-Rad). 

Lysates were resolved by SDS-PAGE and transferred to PVDF membranes that were then 

probed with the appropriate antibodies. Following application of Amersham ECL Prime 

Western Blotting Detection reagent (GE Healthcare Life Sciences #RON2232), 

chemiluminescence was visualized with a BioRad ChemiDoc, and images were analyzed for 

quantitation of bands with ImageJ.  

Macropinocytosis assay  

The macropinocytic index of cells was determined as described previously (161). 

Briefly, cell were seeded into glass-bottom MatTek dishes at densities such that they would 

reach approximately 30-40% confluence within 24 h. Cells were treated with vehicle or 

inhibitor at the indicated concentrations in complete growth medium for 24 h, then in serum-

free medium for 16 h. The treated cells were then transferred to serum-free medium 

containing 1 mg/mL 70 kDa dextran conjugated with FITC (Thermo-Fisher, #D1823), for 30 

min, washed with PBS, and fixed in 4% paraformaldehyde.  Nuclei were stained with DAPI 

and dishes were stored in the dark at 4°C in PBS containing 1 mg/mL BSA and 0.01% 

sodium azide until they were imaged. Cells were visualized on a Zeiss LSM 700 Confocal 

Laser Scanning Microscope at 63x magnification. Ten discrete fields were collected per 

sample and ImageJ was used to quantitate the area of FITC-dextran signal per total cell 

area of each image, as detailed previously (161).  

RAC1 activation assay 

The level of active RAC1-GTP was determined by a GST-PAK-PBD affinity assay as 

described previously (162). Briefly, 48 h post transfection with KRAS or RAC1 siRNA, whole 

cell lysates were collected, protein concentration was determined, and lysates were rotated 

at 4°C for 30 min in the presence of Sepharose beads covalently linked to GST-PAK-PBD, 
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which were kindly provided by Dr. Keith Burridge. Western blot analysis was performed on 

pulldown samples and whole cell lysates as described above. 

Statistical analysis 

 All data were imported into GraphPad Prism 6 software and statistical analyses were 

performed using a One-way ANOVA using multiple comparisons.  Significance values were 

designated as follows: *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. 

Results 

PAK1 protein levels are elevated in PDAC cell lines and tissue 

Previous studies established a role for the RacGEF-RAC1 pathway in cancer growth 

(56, 57, 68, 69). However, the critical RAC1 effector(s) important for RAC1-dependent 

pancreatic cancer growth have not been established. Here we addressed a possible role for 

the RAC1-activated protein kinase, PAK1, in pancreatic cancer. We observed elevated 

levels of PAK1 protein in a subset of PDAC cell lines (8 of 11) compared to HPNE 

immortalized human pancreatic ductal epithelial cells (Figure 2.1A). Elevated protein levels 

did not correlate with KRAS-mutation status, since there were high levels of PAK1 in the 

KRAS-wild type PDAC cell line BxPC-3, but not in KRAS-transformed HPNE cells. 

Additionally, PAK1 total protein did not always correlate with pMEK S298 levels, a validated 

marker of PAK1 activity (163) (Supplemental Figure 2.1). This could imply either that PAK1 

protein is not necessarily hyperactive simply because it is overexpressed, or that pMEK1 

S298 is not an ideal biomarker for PAK1 activity. 

We also detected high levels of PAK1 in lysates of primary tumor samples from 

PDAC patients (Figure 2.1B). Immunohistochemical analysis (IHC) of three separate primary 

PDAC tumor microarrays (TMAs) revealed that, although PAK1 staining was present in both 

primary tumor samples and adjacent normal tissues, typically the tumor exhibited more 
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intense staining (Figure 2.1C-D). We found no correlation of PAK1 levels with patient 

survival rates (data not shown).  

Genetic suppression of PAK1 impairs anchorage-independent but not anchorage-

dependent growth 

To determine whether PAK1 serves a driver role in PDAC, we evaluated the 

consequences of genetic suppression of PAK1 on PDAC growth. We utilized two shRNA 

sequences targeting PAK1 to stably suppress PAK1 protein expression (Figure 2-2A). We 

then assayed the ability of cells to proliferate in anchorage-dependent and -independent 

growth assays. We observed limited reduction in anchorage-dependent proliferation (Figure 

2-2B). In contrast, PAK1 suppression significantly reduced anchorage-independent growth 

as determined by colony formation in soft agar (Figure 2-2C). The level of growth 

suppression correlated with the level of knockdown achieved by each individual shRNA. We 

observed a reduction in soft agar colony formation in all six cell lines evaluated, albeit with a 

range of sensitivity to PAK1 knockdown. In 5 of 6 cell lines, we observed at least a 50-70% 

impairment of colony formation (p<0.01 to p<0.001). We conclude that PAK1 is critical for 

PDAC anchorage-independent cell proliferation. Unexpectedly, levels of pMEK1 S298, the 

best validated marker of PAK1 activity, were not reduced upon knockdown of PAK1 

expression, possibly due to cellular reprogramming of compensatory signaling pathways 

(Supplemental Figure 2.2). 

AZ13705339 effectively impairs anchorage-independent growth in PDAC cells 

To complement our genetic suppression studies of PAK1, we next utilized a novel 

ATP-competitive, highly selective small molecule inhibitor of PAK1. AZ13705339 was 

isolated from a kinase subset screen and displays selectivity for PAK1, with limited potency 

against PAK2 and SRC family kinases (manuscript in preparation, McCoull et al., 2016). We 

first evaluated the ability of AZ13705339 to block PAK1 activity as measured by a reduction 



 

 

48

in phosphorylation of the well-validated PAK1 substrate, MEK1, at residue S298 (pMEK1) 

(163). We observed a dose-dependent decrease in pMEK1 S298 in all cell lines evaluated 

(Figure 2.3A-B), although the IC50 for pMEK1 reduction varied significantly among them. MIA 

PaCa-2 cells were the most sensitive to the PAK1 inhibitor with respect to target inhibition, 

displaying the lowest IC50 for pMEK1 reduction (2.2 μM), whereas CFPAC-1 cells were the 

most resistant (>10 μM). Additionally, although in vitro specificity analyses revealed that 

AZ13705339 exhibits limited potency against SRC family kinases (SFKs) (manuscript in 

preparation, McCoull et al., 2016), we did not observe detectable inhibition of SFK activity at 

concentrations that fully suppressed MEK1 phosphorylation at S298. Instead, inhibition of 

SFKs, as measured by phosphorylation of focal adhesion kinase (FAK), was seen only at a 

concentration approximately 10-fold greater than that required for inhibition of PAK1 activity 

(Supplementary Figure 2.3).  This result indicates that AZ13705339 displays good selectivity 

for PAK1 in cells. 

We next determined if pharmacologic inhibition of PAK1 signaling impaired the 

growth of PDAC cell lines on plastic. We observed a range of sensitivity that correlated 

generally with reduction in pMEK1. However, the concentrations for inhibition of anchorage-

dependent growth (GI50) were considerably higher than the IC50 values for inhibition of PAK1 

signaling (Figure 2.3C). The GI50 values for sensitive cell lines ranged between 2 and 10 

μM, with two cell lines, HPAF-II and CFPAC-1, demonstrating no sensitivity at 10 μM. Thus 

the growth inhibition seen at these high concentrations is likely due to off-target activities of 

AZ13705339. These results are consistent with our PAK1 shRNA analyses (Figure 2.2B), 

indicating that PAK1 is not essential for anchorage-dependent growth.  

In contrast to its very small effect on anchorage-dependent growth, pharmacological 

inhibition of PAK1 with AZ13705339 caused significant reduction in anchorage-independent 

growth and colony formation in agar of several cell lines (Figure 2.3D). That both 

pharmacologic inhibition and genetic suppression of PAK1 caused similar growth 
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consequences supports a role for PAK1 kinase activity in driving anchorage-independent 

but not -dependent growth of PDC cells. 

Interestingly, the two cell lines that demonstrated resistance to AZ13705339 when 

evaluated for viability on plastic, HPAF-II and CFPAC-1 (Figure 2.3C), exhibited enhanced 

colony formation with increasing doses of AZ13705339 (Figure 2.3D). This could be due to 

compensatory signaling pathways or due to the scaffolding function of PAK1 that couples 

PDK1 to AKT and induces phosphorylation of AKT at T308 to drive survival signaling, which 

treatment with AZ13705339 would not block.  

PAK1 inhibition reduces macropinocytosis  

We next addressed a possible mechanism for PAK1 support of PDAC growth. 

Recent studies found that PDAC cells exhibit increased macropinocytosis as one 

mechanism to fulfill their increased metabolic needs (105, 156). Since previous studies also 

described a role for PAK1 in macropinocytosis (103, 104, 164), we sought to determine 

whether PAK1 is important for macropinocytosis in KRAS-mutant PDAC cells. First, we used 

shRNA to suppress PAK1 expression in a panel of PDAC cell lines. Depletion of PAK1 

markedly reduced macropinocytotic uptake in three out of four PDAC cell lines (AsPC-1, 

PANC-1, and HPAF-II, but not MIA PaCa-2) (Figure 2.4 A-C). In these lines, the impairment 

of macropinocytosis correlated with the level of PAK1 suppression. 

To determine whether pharmacologic inhibition of PAK1 kinase activity can also 

reduce macropinocytotic activity, we treated cells with AZ13705339 in a 4-fold range of 

concentrations around the IC50 for pMEK1 inhibition. Inhibition of PAK kinase activity with 

AZ13705339 diminished macropinocytotic uptake in the same cell lines in which 

macropinocytosis was disrupted upon PAK1 knockdown (Figure 2.4D-E). Therefore, we 

conclude that PAK1 activity is crucial for regulating macropinocytosis in PDAC cells. 
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KRAS and RAC1 drive macropinocytosis in only a subset of PDAC cell lines 

PAK proteins are often activated downstream of the small GTPase RAC1 (165), and 

RAC1 has been previously implicated in driving macropinocytosis (166, 167). Additionally, 

both PAK1 and RAC1 are thought to be activated downstream of KRAS. We therefore 

determined whether KRAS and RAC1 regulate PAK1 activity and signaling. We used 

shRNA to stably suppress either KRAS or RAC1 expression (Figure 2.5A) and observed that 

pMEK1 levels were not reduced. Thus, current evidence indicates that neither KRAS nor 

RAC1 activity regulate PAK1-dependent MEK1 signaling in PDAC cell lines, though it is 

possible that another marker of PAK1 activity may better reflect modulation of PAK1 activity 

downstream of KRAS or RAC1. 

Next we performed macropinocytosis assays on our panel of PDAC cell lines 

following suppression of KRAS or RAC1 (Figure 2.5B). Loss of KRAS expression 

significantly reduced macropinocytosis in two PDAC cell lines, AsPC-1 and MIA PaCa-2, 

supporting previously published observations that KRAS is necessary for macropinocytic 

uptake in these and other PDAC cells (105) (Figure 2.5C). Two other PDAC lines, HPAF-II 

and PANC-1, displayed either no change in macropinocytosis or increased macropinocytotic 

uptake, respectively. This could be due to insufficient KRAS knockdown in the case of 

HPAF-II cells, or compensatory signaling mechanisms in PANC-1 cells. Alternatively, it is 

possible that KRAS regulates macropinocytosis in some but not all PDAC cell lines. 

Knockdown of RAC1 was less potent at inhibiting macropinocytosis, with only AsPC-

1 cells proving sensitive to loss of RAC1 (Figure 5 B-C). Additionally, in a standard RAC1-

GTP pulldown assay, only AsPC-1 cells exhibited loss of RAC1-GTP levels following loss of 

KRAS expression (Supplemental Figure 2.4). Collectively, these results suggest that KRAS 

and RAC1 play a role in macropinocytosis in a subset of PDAC lines, but are not necessary 

for this process in all PDAC cells, and are not always linked within the same effector 

pathway.  
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Dual inhibition of PAK1 and ERK or PI3K further reduces macropinocytic uptake in 

PDAC 

Although PAK inhibition alone caused a significant reduction in the macropinocytic 

index, we endeavored to determine whether combining inhibition of PAK1 with other 

targeted therapies could further reduce the ability of PDAC cells to undergo 

macropinocytosis. Furthermore, we sought to overcome the resistance to AZ13705339-

mediated inhibition of macropinocytosis exhibited by MIA PaCa-2 cells that were 

nevertheless quite sensitive to AZ13705339-mediated inhibition of PAK1 kinase activity as 

measured by anchorage-independent growth. We propose that a blockade of extracellular 

nutrient scavenging could prove to be a viable strategy for the treatment of pancreatic 

cancer.  

We treated a panel of PDAC cell lines with 450 nM SCH772984 (160), an ERK1/2 

inhibitor, and 1μM AZD8186 (168), a PI3Kβ/δ inhibitor, either alone or in combination with 

200 nM AZ13705339 for 24 hours and then performed a macropinocytosis assay as 

described above (Figure 2.6A). We probed for markers of PAK1 (pMEK1 S298), ERK1/2 

(pRSK), and PI3K (pAKT S473) activity via western blot to verify that we achieved target 

inhibition at the indicated concentrations of inhibitor (Figure 2.6B). PI3K is a known regulator 

of macropinocytosis (167, 169), and we observed a significant reduction in macropinocytosis 

upon combination of AZ8186 with AZ13705339 in all cell lines tested compared with cells 

treated with these compounds as single agents. Additionally, dual ERK/PAK1 inhibition 

impaired macropinocytosis in all cell lines with the exception of PANC-1 cells, which have 

previously demonstrated resistance to SCH772984 (170). Moreover, combination treatment 

was the only method to significantly reduce inhibition of macropinocytosis in the relatively 

resistant MIA PaCa-2 cell line. These data suggest that multiple KRAS-driven pathways 

contribute to extracellular scavenging through macropinocytosis, and that combinatorial 
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inhibition of PAK1 and other validated KRAS effectors could lead to a macropinocytic 

blockade.  

Discussion 

  Despite more than three decades of effort, an effective anti-KRAS therapeutic 

strategy has not reached the clinic. Currently, the most comprehensive efforts being 

pursued involve inhibitors of KRAS effector signaling, with many compounds currently under 

clinical evaluation (43). Disappointingly, inhibitors of components of the two canonical KRAS 

effector pathways, the RAF-MEK-ERK and PI3K-AKT-mTOR cascades, have not been 

effective when applied as single agents. One likely basis for the ineffectiveness of these 

compounds is that KRAS utilizes additional effectors to drive cancer growth. In this study, 

we addressed the role of PAK1 as a component of KRAS effector signaling and as a key 

driver of PDAC growth. Although we found that PAK1 activity is not directly linked with 

KRAS and RAC1, we did find that PAK1 is critical for anchorage-independent growth and for 

elevated extracellular nutrient scavenging. We conclude that pharmacologic inhibition of 

PAK1, in combination with inhibitors of other KRAS effector pathway components, may be 

an effective therapeutic approach for PDAC treatment. 

The data in support of PAK1 as a necessary component of KRAS signaling in tumors 

(86, 110, 155) led us to survey a panel of PDAC cell lines and patient tumors. We observed 

that PAK1 protein expression is elevated in nearly all tumor cells and patient tumor tissues 

compared to controls. However, the expression of PAK1 did not directly correlate with 

mutant KRAS status, as a normal pancreatic ductal epithelial cell line (HPDE) transformed 

by mutant KRAS displayed lower PAK1 expression than untransformed HPDEs. 

Additionally, BxPC-3 cells, which are homozygous for wildtype KRAS but mutant for BRAF 

(171), exhibited one of the highest levels of PAK1 protein expression of any PDAC cell line.  
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Furthermore, levels of PAK1 protein did not correlate with an increase in 

phosphorylation of MEK1 at serine 298, a validated marker of PAK1 activity (163). However, 

we also observed that pMEK1 S298 was not an accurate marker of PAK1 protein loss. This 

is likely due to compensatory signaling mechanisms or the presence of other Group I PAK 

proteins in PDAC cell lines that can also phosphorylate MEK1 S298. Additionally, PAK1 

possesses a scaffolding function whereby it can couple PDK1 to AKT in order to 

phosphorylate AKT on T308 and promote survival signaling (85). Phosphorylation of MEK1 

at S298 is a good measure of PAK1 kinase activity, but does not take into account the 

scaffolding function of PAK1, which may play a large role in PDAC cell viability.  Overall, 

these data, while establishing PAK1 overexpression in both conventional tumor cell lines 

and in patient tumor tissue, speak to the inherent heterogeneity of tumor tissue (145, 172) 

and the necessity for experimentation to be performed in a large number of samples in order 

to determine the role of any given protein in supporting pancreatic cancer growth. 

 One recent study focused on the role of PAK1 in mediating MET-induced PDAC cell 

migration (155) and found that PAK1 was a critical regulator of MET-driven cell motility and 

metastasis in mice, and that PAK1 activity drives resistance to MET inhibition. Yet another 

study identified a role for PAK1 promoting downstream transcription of fibronection via NF-

κB activation, and proposed this was a mechanism that could support PDAC growth (110). 

Neither study thoroughly examined a role for PAK1 in relation to KRAS signaling, which is 

the ultimate driver of PDAC tumor growth. We chose to a complementary focus to these 

studies and examined KRAS-mediated activation of PAK1 and the ability of PAK1 to sustain 

the heightened level of PDAC cell proliferation and metabolism via macropinocytosis. We 

showed that either genetic or pharmacologic suppression of PAK1 function impaired 

anchorage-independent proliferation.  

 We then sought to extend the role of PAK1 in PDAC beyond these studies by 

evaluating its potential as a therapeutic target. We employed a novel ATP-competitive small 
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molecule inhibitor of PAK1, AZ13705339, which exhibits high selectivity for PAK1 and more 

limited affinity for PAK2 and other kinases. Though a definitive biomarker of PAK1 activity in 

tumors remains to be identified, we used pMEK1 S298 (163) as a reliable measure of PAK1 

inhibition by AZ13705339. The majority of PDAC cell lines responded to AZ13705339 and 

loss of PAK1 expression similarly, in that anchorage-independent growth was impaired. 

However, two cell lines, HPAF-II and CFPAC-1, displayed some resistance to AZ13705339. 

It is possible that PAK1 kinase activity is not critical for maintaining growth in these two cell 

lines, and that the scaffolding function of PAK1 is more important for driving AKT activity. In 

this case, inhibition of kinase activity may stimulate the scaffolding function of PAK1 in an 

effort for cells to compensate for loss of PAK1 kinase activity. This hypothesis, if correct, 

would account for the seemingly opposing growth phenotypes observed in these cell lines 

upon knockdown of PAK1 protein and PAK1 inhibition. Furthermore, compensatory 

upregulation of signaling pathways and cell growth is often observed following 

pharmacologic inhibition. This has been observed with a BRAF V600E inhibitor, vemurafinib 

(173), and reprograming of the kinome in response to inhibitors is well validated (88). These 

studies, and ours, support the notion that multifaceted, combinatorial inhibitor strategies will 

be necessary to prevent tumor cells from subverting inhibition and continuing to proliferate. 

That a subset of PDAC lines is not dependent on PAK1 for this growth property likely 

reflects the genetic heterogeneity of PDAC. As a case in point, even with respect to what is 

arguably the most critical effector pathway for KRAS-dependent growth, we recently found 

that only ~50% of KRAS-mutant PDAC cell lines were sensitive to pharmacologic inhibition 

at certain nodes of the ERK MAPK cascade (170). 

 To begin to assess the cellular processes that PAK1 might regulate in PDAC, we first 

examined macropinocytosis, a mechanism by which cells uptake extracellular nutrients, 

such as proteins, and use lysosomes to break down these nutrients in order to use the 

byproducts to support catabolic processes (36). PAK1 has been previously implicated in this 
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process, though predominantly as a driver of endocytosis of viral particles or of 

phagocytosis in cells of the immune system (174-177). Additionally, PAK1 plays a role in the 

macropinocytosis of Bacille Calmette-Guerin (BCG), which is a type of bacterium, into 

bladder cancer cells (104). Commisso and colleagues found that mutant KRAS was capable 

of driving macropinocytosis as a means to scavenge extracellular amino acids for PDAC, but 

did not identify the mechanism by which KRAS mediates this process (105). That PAK1 was 

independently verified to contribute to macropinocytosis (103, 104, 164) and that it is a 

therapeutically tractable kinase thought to function downstream of mutant KRAS gave us 

reason to assess the role of PAK1 in promoting macropinocytosis in KRAS-mutant PDAC. 

Indeed, we observed that two out of the four PDAC cell lines surveyed depended on the 

expression of mutant KRAS to maintain levels of macropinocytosis. Surprisingly, all cell lines 

were dependent upon PAK1 activity to some degree despite our initial hypothesis that it 

would be KRAS mutation status, and not PAK1 activity alone, that would determine the 

macropinocytic potential of PDAC cells. These data suggest that, while PAK1 is a central 

contributor to macropinocytosis in PDAC, there are mechanisms independent of mutant 

KRAS that drive PAK1-mediated macropinocytosis in some KRAS-mutant tumors. 

 Finally, we addressed the utility of concurrent inhibition of PAK1 together with 

pharmacologic inhibitors of the canonical KRAS effector pathways. It is widely accepted that 

the best treatment strategies will likely exploit the effects of inhibitors against two or more 

signaling axes that are critical for tumor growth. In our study, we combined a PAK1 inhibitor, 

AZ13705339, with a dual allosteric and ATP-competitive inhibitor of ERK1/2, SCH772984 

(160), or with AZD8186, an ATP-competitive inhibitor of PI3Kβ/δ (159, 168). In every PDAC 

line we tested, we saw a greater reduction in macropinocytosis with combined inhibition of 

PAK1 and ERK or PAK1 and PI3K, than with any inhibitor alone. Though in some cases the 

reductions were modest, especially when the compounds were used alone, combined 

inhibition of PAK1 and PI3K significantly reduced macropinocytosis in every cell line tested. 
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The resistance of MIA PaCa-2 cells to macropinocytic inhibition with PAK1 or PI3K inhibitor 

alone was markedly overcome upon combination treatment. This study establishes the 

groundwork for successful combined approaches to impair PDAC metabolism, and 

potentially, PDAC viability. 

In summary, our data solidify a role for PAK1 in driving PDAC growth, potentially 

through macropinocytic scavenging of extracellular nutrients to support elevated PDAC cell 

metabolism. We demonstrate that both genetic loss and ATP-competitive inhibition of PAK1 

kinase activity reduce both PDAC growth and macropinocytosis, though these activities are 

unexpectedly dependent upon KRAS and RAC1 signaling in only a subset of PDAC cells. 

Furthermore, we show that dual treatment of PDAC cells with PAK1 inhibitor and 

compounds targeting either ERK or PI3K have a combinatorial effect in blocking 

macropinocytosis. Overall, our findings suggest that small molecules targeting PAK1 activity, 

in combination with other inhibitors, may be an effective strategy for reducing PDAC tumor 

cell growth.  
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Figure 1.1: PAK1 is overexpressed in a subset of PDAC cell lines. A, Basal levels of 
PAK1 protein were evaluated via western blot in a panel of PDAC cell lines and in normal 
human pancreatic ductal epithelial (HPDE) cells with or without ectopic expression of mutant 
KRAS. B, Western blot of PAK1 protein levels in lysates from patient primary PDAC tumor 
tissues (lanes 4-10) and unmatched normal pancreatic tissues (lanes 1-3). C, TMAs 
containing human tissue samples from primary PDAC tumors and adjacent normal tissues 
were subjected to IHC staining for PAK1. Samples were blinded and evaluated by a 
pathologist, who scored them as follows: 0=no staining, 1=low staining, 2=moderate 
staining, 3=high staining. Shown are representative images of PAK1 staining intensity. D, 
Quantitation of PAK1 staining in three distinct TMAs of primary patient PDAC tumor tissue 
and adjacent normal tissue.  
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Figure 2.2: Genetic suppression of PAK1 reduces cellular proliferation in KRAS-
mutant PDAC cell lines. A, A panel of PDAC cell lines was transduced with one of two 
distinct shRNA sequences against human PAK1 or with non-specific (NS) control shRNA. 
Loss of PAK1 was confirmed by western blot; GAPDH served as a loading control. B, Cell 
viability in 2D culture was measured with a standard MTT assay at the specified time points 
following PAK1 suppression. C, A 3D soft agar colony formation assay was performed in 
PAK1 knockdown PDAC cells. After 7-14 days, colony number was determined by MTT 
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staining and analysis in ImageJ. Data are represented as mean ±  SEM and normalized to 
the NS control. Statistical analysis was done with a one-way ANOVA using multiple 
comparisons where *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. 
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Figure 2.3: Pharmacologic inhibition of PAK1 phenocopies the proliferative defect 
seen upon genetic suppression. A, PDAC cells were treated for 24 h with the indicated 
concentrations of AZ13705339, and the IC50 for inhibition of PAK-dependent phosphorylation 
of MEK1 at serine 298 was evaluated via western blot. B, Western blot data from panel A 
were subjected to densiotometric analysis and plotted as a ratio of pMEK1 to total MEK1. 
GraphPad Prism was used to generate dose response curves for each PDAC cell line. IC50 
values cluster in the mid nanomolar range. C, The GI50 was determined by MTT viability 
assays using 12-point dose-response curves. GI50 values cluster in the low micromolar 
range. D, Quantitation of 3D soft agar colony formation assay following treatment with 
AZ13705339. Data are represented as mean ± SEM and normalized to the NS control. 
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Figure 2.4: Genetic suppression and pharmacologic inhibition of PAK1 significantly 
reduce macropinocytotic uptake in PDAC cells. A, Confocal microscopy images of a 
panel of PDAC cell lines following stable PAK1 shRNA-mediated knockdown. Cells were 
starved overnight and transferred to growth medium containing fluorescent dextran before 
being fixed and stained for imaging. Green: 70 kDa TMR-dextran; Blue: DAPI. Scale bar 
represents 10 μm. B, Relative macropinocytic index was calculated in ImageJ for 10 fields, 
as a ratio of the area of green signal to the cell area. C, Western blot analysis of shRNA-
mediated PAK1 knockdown. D, Confocal microscopy images of PDAC cell lines treated with 
a range of AZ13705339 concentrations spanning the IC50 for pMEK1 (S298) inhibition. 
Scale bar represents 15 μm. E, Quantitation of macropinocytic index for cells treated with 
AZ13705339 in panel D. Data are represented as mean ± SEM and normalized to the NS 
control. Statistical analysis was done with a one-way ANOVA using multiple comparisons 
where *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. 
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Figure 2.5: A KRAS-RAC1-PAK1 signaling axis does not drive macropinocytosis in 
most PDAC cell lines. A, KRAS and RAC1 were genetically suppressed via siRNA in a 
panel of PDAC cell lines, and pMEK1 (S298) levels were examined via western blot to 
determine PAK1 activity. B, Following knockdown of KRAS and RAC1, cells were treated 
with inhibitors and imaged via confocal microscopy.  The macropinocytotic index was 
quantitated as before. Scale bar represents 15 μm. C, Quantitation of macropinocytic index 
from panel B. Data are represented as mean ± SEM and normalized to the NS control. 
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Statistical analysis was done with a one-way ANOVA using multiple comparisons where *: 
p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. 
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Figure 2.6: Combinatorial inhibition of PAK1 with ERK1/2i or PI3Ki further reduces 
macropinocytosis in some PDAC cell lines. A, Macropinocytosis assays were performed 
on a panel of PDAC cell lines with AZ13705339 (200 nM), SCH772984 (450 nM), and 
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AZD8186 (1000 nM) alone or in combination with AZ13705339 (200 nM). The 
macropinocytic index was determined as before and data are represented as mean ±  SEM 
and normalized to the NS control. Statistical analysis was done with a one-way ANOVA 
using multiple comparisons where *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001. B, 
Representative western blots demonstrating reduced phosphorylation of PAK1, ERK1/2, 
and PI3K substrates upon inhibitor treatment. 
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Supplemental Figure 2.1: Levels of phospho-MEK1 at S298 do not correlate with 
levels of PAK1 in pancreatic cell lines.  Lysates of pancreatic cell lines including 6 PDAC 
lines and two non-tumor pancreatic lines (HPDE and HPNE) were probed by western blot for 
total PAK1 and phospho-MEK1. Vinculin served as a loading control. 
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Supplemental Figure 2.2: Phospho-MEK1 levels are not reduced following stable 
knockdown of PAK1 in PDAC cell lines. PDAC cell lines were transduced with one of two 
distinct shRNAs against PAK1 or a control non-specific (NS) shRNA. PAK1 knockdown and 
pMEK1 (S298) levels were evaluated via western blot. Vinculin served as a loading control.
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Supplemental Figure 2.3: PAK activity, but not SRC family kinase activity, is inhibited 
at sub-micromolar concentrations of AZ13705339. AsPC-1 PDAC cells were treated with 
increasing concentrations of AZ13705339 for 24 h and cell lysates were subjected to 
western blot analysis. Phospho-MEK1 served as a marker of PAK activity and phospho-FAK 
served as a marker of SRC family kinase activity.  GAPDH served as a loading control. 



 

 

70

 

Supplemental Figure 2.4: RAC1 activity is not dependent on KRAS in all PDAC cell 
lines. Cells were transfected with two distinct siRNAs targeting KRAS (K1 and K2). Forty-
eight h post transfection, cells were harvested and a RAC1-GTP pulldown assay was 
performed with GST-PAK1-PBD. Active RAC1-GTP and total RAC1 (input from total lysate) 
were analyzed via western blot. 
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CHAPTER 3: TARGETING THE TBK1 PROTEIN KINASE IN KRAS-MUTANT 

PANCREACTIC DUCTAL ADENOCARCINOMA3 

Overview 

 Despite the critical importance of mutant KRAS in numerous cancers, including 

pancreatic ductal adenocarcinomas (PDAC), direct targeting of this small GTPase has not 

yet proven successful.  To overcome this challenge, considerable effort has been devoted to 

identifying more druggable downstream targets, such as protein kinases, whose activities 

are required by mutant KRAS in order to exert its oncogenic effects. TANK-binding kinase 

(TBK1) has been proposed to be both a synthetic lethal partner of KRAS and a critical 

downstream component of the KRAS-RALB-effector pathway. However, whether TBK1 is 

required for KRAS-mediated transformation and tumor maintenance, and is therefore a 

useful therapeutic target in KRAS-mutant cancers, has been unresolved owing to conflicting 

results from several independent studies. To address this issue, we utilized a novel small 

molecule inhibitor of TBK1, LSN3090279, to examine the consequences of impaired TBK1 

kinase activity in more than 300 cancer cell lines, 47 of which harbor KRAS mutations. 

Treatment with LSN3090279 led to growth suppression in a small subset of cell lines, but 

this suppression was not correlated with KRAS-mutation status. One possible explanation 

for this result is that TBK1 is not a critical effector of KRAS-mediated transformation. To

                                                           

3
 This chapter is currently under revision for publication and is adapted in part from © 

‘Targeting the RAS-RAL effector pathway for cancer treatment’ by Leanna R. Gentry. The 
author list is as follows: Nicole M. Baker, Leanna R. Gentry, Meagan B. Ryan, Adrienne D. 
Cox, Robert Van Horn, Tinggui Yin, Xiaoyi Zhang, Chunping Yu, Youyan Zhang, Xueqian 
Gong, Sean Buchanan, Xiang S. Ye, William McMillen, David Barda, Sheng-Bin Peng, 
Hannah Savage, Linda S. Yasui, and Channing J. Der. This work was performed in 
collaboration with scientists at Eli Lilly. All figures represent the work of Nicole M. Baker and 
Leanna R. Gentry except Figures 3.1-3.3. 
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further resolve this issue, we therefore focused on KRAS-mutant PDAC, arguably the most 

KRAS-dependent cancer type. We found that inhibition of TBK1 alone was ineffective at 

impairing the transformed growth phenotypes of most PDAC cell lines despite effective 

disruption of TBK1 signaling. To bolster the therapeutic potential of TBK1 inhibition, we 

chose a combinatorial strategy with an inhibitor of a key KRAS signaling component, 

ERK1/2. Although PDAC cell lines are sensitive to inhibition of ERK1/2 MAP kinases, a key 

node in the RAF-MEK-ERK kinase cascade that is the most critical effector of KRAS-

mediated transformation in PDAC, even concurrent inhibition of TBK1 and ERK did not 

enhance TBK1 inhibitor activity against these cells, either in vitro or in vivo. We conclude 

that targeting TBK1 has limited therapeutic potential in PDAC unless effective combinations 

can be identified. Interestingly, we observed that LSN3090279 treatment induced autophagy 

and caused formation of enlarged autolysosomes, indicative of an unresolved autophagic 

process. TBK1 has a known role in regulating autophagosome formation, so it is possible 

that LSN3090279 will serve as a useful tool to aid further exploration of the complex and 

context-dependent roles of TBK1 in autophagy. 

Introduction 

Mutational activation of RAS family oncogenes is among the most frequent genetic 

alterations found in cancer (2), with high frequencies found in the cancers that comprise the 

top three causes of cancer deaths in the US (139). Despite the undruggable nature of RAS 

proteins, there is renewed interest and effort in identifying novel anti-RAS therapies for 

cancer treatment. Among the approaches currently being pursued, inhibitors of RAS effector 

signaling hold great promise. However, since RAS utilizes a diverse spectrum of 

downstream effectors to drive cancer growth (1), which effectors are best to target and 

whether concurrent targeting of multiple effectors will be required remain unresolved issues. 

Currently, most of the emphasis on effector targeting has centered on the two canonical 
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RAS effector pathways, the RAF-MEK-ERK mitogen-activated protein kinase cascade and 

the PI3K-AKT-mTOR lipid kinase pathway, with many inhibitors currently in clinical trials 

(43). 

Among the less studied RAS effectors are the RAL guanine nucleotide exchange 

factors (RalGEFs) and the the RAL small GTPases, RALA and RALB (8). Both RALA and 

RALB have been implicated as critical effectors of RAS-driven cancer development and 

growth. However, the effectors that mediate RAL-dependent cancer growth remain to be 

fully elucidated. Additionally, despite their strong sequence identity, RALA and RALB 

commonly serve distinct roles in cancer growth (128, 129). For example, in pancreatic 

cancer we determined that RALA is required for tumorigenesis whereas RALB is required for 

invasion and metastasis (129). One promising candidate for a unique effector of RALB, but 

not RALA, is the TANK-binding kinase 1 (TBK1), a noncanonical IκB kinase (IKK) that is 

activated by RALB through the exocyst component Sec5, which regulates exocyst-

independent activation of NF-κB (nuclear factor κB) and subsequent transcription of survival 

genes (132, 135, 178). That TBK1 may be a critical effector of a KRAS-RALB pathway in 

cancer is supported by the independent identification of TBK1 as a synthetic lethal interactor 

of mutant KRAS (54). TBK1 has also been found to be overexpressed in pancreatic, 

colorectal, breast, and lung cancer, and its aberrant activation has been shown to play a role 

in proliferation and survival of cancer cells with or without KRAS mutation (132, 135, 179, 

180).  

While it has been demonstrated that TBK1 is important in certain cancer types, like 

non-small cell lung carcinoma (54, 137), the exact mechanisms governing the dependence 

of cancer cells on TBK1 activity remain unclear. Some studies have shown that certain 

cancer cell lines harboring KRAS mutations require TBK1 for survival while other studies 

demonstrated that TBK1 is dispensable in KRAS-mutant cell lines (54, 55, 137). Thus, 
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whether TBK1 is a viable therapeutic target for KRAS-mutant cancers, and if so, under what 

conditions, remains unresolved. 

Here, we seek to further understand the role of TBK1 activity in promoting cancer 

growth and survival, and specifically to address its function in PDAC. Since PDAC, a highly 

lethal cancer with limited treatment options (141), is characterized by an oncogenic KRAS 

mutation in nearly 100% of cases (2), inhibition of TBK1 has been considered as one 

approach to treat this disease. Inhibitors of the major effector pathways of RAS, including 

the RAF-MEK-ERK and PI3K-AKT pathways, have thus far proven ineffective in reducing 

PDAC tumor burden in vivo, leading to the desire for an alternative approach of targeting the 

RalGEF-RAL pathway, which has been implicated in PDAC tumorigenesis and metastasis 

(129, 181). TBK1 is one of two kinases defined downstream of the RalGEF-RAL signaling 

axis and therefore is considered one of the most tractable targets in this pathway (8).  

The emerging evidence of a role for TBK1 in human cancers, as well as continued 

interest in its better characterized role in the autophagic and immune response to infections 

and inflammation, has led to the development of small molecule inhibitors targeting TBK1 

kinase activity. The first such small molecule, BX795, was originally discovered as a PDK1 

inhibitor, and its amino-pyrimidine component is a pharmacophore also used in newer 

compounds that have enabled probing the role of TBK1 in cancer and other diseases (137, 

182-184). BX795 and a less promiscuous inhibitor, AZ909, were shown to inhibit clonogenic 

colony formation of NRAS-mutant melanoma cell lines (185). However, not all cancer types 

are sensitive to TBK1 inhibition. One study showed that neither genetic nor pharmacologic 

inhibition of TBK1 activity, as measured by disruption of IRF3 phosphorylation, was 

sufficient for growth inhibition of PDAC cells, suggesting that combination therapy may be 

necessary (55). Utilization of more recently developed inhibitors has begun to define TBK1-

dependent mechanisms of cell survival and viability in cancer cells (136, 185, 186).   
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Here, we used a novel TBK1 inhibitor, LSN3090729, to further explore the effect of 

inhibiting TBK1 in PDAC and other cancer cells. We first surveyed a large panel of cancer 

cell lines derived from myriad tumor types, including 10 PDAC tumor cell lines, and found 

that, despite inhibiting TBK1 enzymatic activity, treatment with LSN3090729 had a minimal 

effect on anchorage-dependent proliferation that was often uncorrelated with RAS mutation 

status. A minimal impact on tumor cell proliferation was also observed in a panel of lung 

cancer cell lines as well as tumor xenografts of skin, lung, and pancreatic cancer. We found 

that only a small subset of the PDAC cell lines tested was sensitive to LSN3090279. 

Previous studies have demonstrated that single-agent inhibition of a target is ineffective in 

PDAC, and this holds true in the context of TBK1 inhibition, indicating that combination 

approaches of targeted therapies will be necessary (55). However, combined inhibition of 

ERK1/2, a validated and crucial RAS effector, and TBK1 produced no synergistic decrease 

in anchorage-dependent proliferation. However, we did see a negative effect on growth in a 

single cell environment in clonogenic cell growth assays, and these data suggest that 

examining the anchorage-independence of TBK1 inhibition in a 3D context may reveal 

greater sensitivity to LSN3090279. Aside from these results, we did observe an interesting 

metabolic phenotype upon TBK1 inhibition that resulted in non-productive autophagy. This 

observation, combined with previous evidence implicating TBK1 in autophagy (187-189), 

warrants further study of the role of TBK1 in PDAC cell metabolism and cell survival, and 

suggests that combining a TBK1 inhibitor with inhibitors of cellular metabolic pathways may 

be a viable therapeutic strategy. 

Materials and Methods 

Cell lines and plasmids 

PDAC cell lines were obtained from ATCC and maintained in either DMEM or RPMI-

1640 supplemented with 10% fetal bovine serum. All cell lines were maintained in 
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continuous culture for two months or less. A lentiviral vector encoding a short hairpin RNA 

(shRNA) sequence, shT15, for human TBK1 was kindly provided by Dr. Paul Kirschmeier 

(Dana-Farber Cancer Institute) and was validated for TBK1 specificity as previously 

described (55). The pBabe-puro mCherry-EGFP-LC3 plasmid was obtained from Addgene 

(#22418). 

Inhibitor treatment assays 

Sensitivity of PDAC cells to the TBK1 inhibitor LSN3090279, alone or in combination 

with the ERK inhibitor SCH772984, was determined by MTT assay. Briefly, LSN3090279 

was serially diluted from 30 μM to 0.0005 μM and added to a 96-well plate in the absence or 

presence of a constant concentration of SCH772984 (450 nM). Cells were seeded at a 

density of 3 x 103 cells per well and allowed to proliferate at 37°C and 5% CO2 for 72 h. 

Then, cells were treated with 5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) for 4 h at 37°C, formazan crystals were solubilized in DMSO, and the 

resulting absorbance at 590 nM was recorded.  

Single cell clonogenic growth assays were performed by seeding cells in 6-well 

plates at 1,000 cells per well. Cells were allowed to adhere for 24 h and were then treated 

with LSN3090279 (2 μM) for 10 days. Colonies were stained with crystal violet (2 mg/mL) in 

4% paraformaldehyde for 10 min and quantified using ImageJ (158). 

Western blot analyses 

Cells were lysed in NP-40 lysis buffer supplemented with protease and phosphatase 

inhibitor cocktails. Protein concentration was determined by a Bradford Protein Assay (Bio-

Rad). Proteins were separated by SDS-PAGE, transferred to PVDF membranes, and 

probed with the following antibodies (all from Cell Signaling Technology): anti-AKT (#9272), 

anti-phospho-AKT S473 (#4060) anti-TBK1 (#3504), anti-phospho-TBK1 S172 (#5483), anti-

IRF3 (#D83B9), anti-phospho-IRF3 S396 (#4D4G), anti-LC3B (#3868), anti-RSK (#9355), or 
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anti-phospho-p90RSK S380 (#9344). Anti-GAPDH was obtained from Sigma-Aldrich 

(#G8795). Blots were imaged with the BioRad ChemiDoc and analyzed using BioRad Image 

Lab and ImageJ (158) software. 

Autophagic flux assay 

Cells were transduced with lentivirus expressing pBabe-puro mCherry-EGFP-LC3 

(112) and selected in puromycin for 48 h. Cells were then seeded into glass-bottom MatTek 

dishes, allowed to adhere overnight in complete growth medium, then transferred. to 

complete growth medium lacking phenol red and imaged live on a Zeiss 700 confocal 

microscope. Treatment with chloroquine (12.5 μM) was used as a positive control to 

visualize both autophagosomes and autolysosomes. Images were quantitated in ImageJ as 

the ratio of red (autolysosomes) to green (autophagosomes).  

Transmission electron microscopy 

Ultrastructural analysis of cells was performed as we previously described (190). 

Briefly, HPAC cells were collected by trypsinization, washed with PBS, fixed for TEM using 

1.5% glutaraldehyde, and post-fixed using 1% osmium tetroxide in cacodylate buffer. Post-

fixed cells were dehydrated through an acetone series prior to embedding in Spurr’s epoxy 

resin. Ultrathin sections were stained with uranyl acetate and lead citrate and then imaged 

using a Hitachi H-600 transmission electron microscope. Images were acquired using an 

SIA digital camera.  

Results 

LSN3090279 is a selective TBK1 inhibitor 

 We synthesized LSN3090279, a 4-aryl-2-aminopyrimidine derivative (Figure 3.1A), 

and characterized the compound as a TBK1 kinase inhibitor with an in vitro IC50 ranging 

from 19 nM to 73 nM in an in vitro kinase assay using IRF3 as a substrate (data not shown). 
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We next evaluated LSN3090279 for selectivity in a panel of over 100 protein kinases and 

found minimal off-target effects in vitro (Figure 3.1B).  Thus, LSN3090279 is a moderately 

potent and selective inhibitor of TBK1. 

We further characterized LSN3090729 by evaluating its ability to inhibit TBK1 

signaling to known phosphorylation targets IRF3 and AKT in cells. First, we stably 

expressed TLR4 and IRF3 in HEK-293 cells to ensure that the known upstream (TLR4) and 

downstream (IRF3) components of the TBK1 signaling pathway were intact in our model 

system. We then stimulated TBK1 activity by treatment with lipopolysaccharide (LPS) and 

used an Acumen-based assay to measure the ability of LSN3090729 to block LPS-induced 

TBK1-mediated phosphorylation of its direct substrate IRF3 at S386 (Figure 3.1C). 

LSN3090729 blocked phosphorylation of IRF3 with an IC50 of 125 nM.  

To extend our cellular analysis, we compared pharmacologic inhibition of TBK1 

kinase activity to genetic depletion of TBK1 and examined downstream TBK1 signaling to 

AKT. We either stably suppressed TBK1 expression by shRNA or inhibited TBK1 kinase 

activity with LSN3090729 for 1 h in PANC-1 pancreatic cancer cells starved of FBS (Figure 

3.1D-E). We then treated cells with 100 ng/mL EGF for 5-8 min and confirmed that the 

TBK1-dependent phosphorylation of AKT S473 (pAKT) was also reduced in the presence of 

LSN3090729 (Figure 3.1E). Collectively, these results show that LSN3090279 potently 

inhibits TBK1-dependent AKT signaling in PDAC cells. 

LSN3090279 has a minimal effect on cancer cell proliferation in vitro and in vivo 

The effect of TBK1 depletion or inhibition on cell proliferation across different cancer 

types may be highly context-dependent. In one study, TBK1 was shown to be dispensable 

for the survival of a panel of PDAC cell lines that harbor mutant KRAS (55) whereas another 

study showed that TBK1 was required for KRAS-dependent lung cancer cell proliferation 

(54). Furthermore, a third study provided conflicting evidence regarding whether TBK1 
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inhibition is lethal to mutant KRAS-dependent cancer cell lines, demonstrating that some 

were sensitive to TBK1 inhibition, while others were resistant, even though all most cell lines 

tested had a KRAS mutation (137). To investigate the TBK1 dependence of RAS-mutant 

cancers more definitively, we sought to determine the impact of TBK1 inhibition by 

LSN3090729 on cancer cell proliferation, and whether this type of dependence on TBK1 

was dictated by the presence of an activating RAS mutation. To that end, we assessed the 

effect of LSN3090279 (0 to 20 μM) on anchorage-dependent growth in a panel of over 300 

cancer cell lines of varying RAS mutation status. This panel included cancer cell lines of 

lung, colon, and pancreatic origin, as well as a wide range of other tissue types. We found a 

large range of GI50 values (where GI50 is the concentration required for 50% growth 

inhibition), from 1.37 μM to over 20 μM (Figure 3.2A). The majority of cell lines were 

insensitive to LSN3090279, displaying a GI50 >20 μM. There was no correlation between 

GI50 and RAS mutation status (Figure 3.2A). We extended this study to examine the effects 

of LSN3090729 on anchorage-independent growth in a more select panel of KRAS-mutant 

cancer cell lines (Figure 3.2B). Again, we found that sensitivity to LSN3090729 did not 

correlate with RAS mutation status across this panel. Overall, LSN3090279 alone had only a 

minimal effect on cancer cell proliferation in vitro. However, there may be cell context-

dependent differences in the requirements for TBK1 in proliferation. Therefore, we next set 

out to examine TBK1 inhibition in the context of PDAC cell lines known to exhibit strong 

KRAS-dependent growth.  

PDAC cell lines show varying sensitivity to pharmacologic TBK1 inhibition 

Since the RAS dependency of most of the cell lines analyzed in Figure 3.2 has not 

been established, we next focused our analyses specifically on KRAS-mutant pancreatic 

ductal adenocarcinoma (PDAC) cell lines. Though several mutant KRAS lines were initially 

screened and many were found insensitive to TBK1 inhibition (Figure 3.2A-B), our studies 
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focus in on a cancer type highly dependent upon mutant KRAS signaling. Additionally, due 

to the ambiguous findings described by Ou, Muvaffak, and colleauges regarding whether 

KRAS mutation status truly dictates TBK1 dependence, we screened a greater number of 

KRAS-mutant pancreatic cancer lines than the rest of these studies. We showed recently 

that these lines exhibit strong KRAS-dependent growth as determined by transient or stable 

si/shRNA silencing of KRAS expression in both anchorage-dependent and -independent 

assays (170). 

We determined the impact of LSN3090729 on the anchorage-dependent proliferation 

of eight KRAS-mutant PDAC cell lines and two normal immortalized pancreatic epithelial cell 

lines (Figure 3.3A). We found that the growth of only two PDAC cell lines, PANC-1 and 

HPAC, was sensitive to TBK1 inhibition (GI50 of 2.59 μM and 3.41 μM, respectively) whereas 

six other PDAC cell lines, including the two normal pancreas cell lines, were insensitive (GI50 

>8 μM). We also applied a single cell clonogenic growth assay to assess the effects of 

LSN3090729 activity.  At 5 µM, there was near-complete inhibition of growth of two sensitive 

cell lines, HPAC and PANC-1, with partial growth suppression in two other lines, Capan-1 

and SW1990 that were resistant under normal growth conditions in a 72 h MTT viability 

assay (Figure 3.3B). We conclude that sensitivity to LSN3090729 does not strictly correlate 

with mutant KRAS-dependency.  

To determine whether the minimal effect on cell proliferation was due to insufficient 

inhibition of TBK1 signaling, we next compared the ability of LSN3090729 to suppress TBK1 

signaling in sensitive and resistant cell lines. While TBK1 has an autophosphorylation site at 

serine 172, the phosphorylation status of this site is not indicative of TBK1 activation, 

contrary to what is often found in other kinases (184). Instead, it was previously determined 

that IRF3 phosphorylation levels are elevated chronically in PDAC cells and that 

phosphorylation of IRF3 at serine 396 is a reliable marker of TBK1 inhibition (55). We 

sought to determine if inhibition of phosphorylation of IRF3 or TBK1 by LSN3090729 
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correlated with sensitivity to growth inhibition using two sensitive and two resistant PDAC 

cell lines. We found that reduction in phosphorylation of IRF3 tracked closely with increasing 

doses of LSN3090729, whereas varying effects on TBK1 phosphorylation were observed 

(Figure 3.3C), which is also consistent with previous studies (55). Furthermore, in our two 

sensitive cell lines, PANC-1 and HPAC, we observed that 50% inhibition of TBK1 as 

measured by phosphorylation of IRF3 (IC50) correlated with GI50. Conversely, the IC50 of 

LSN3090729 in two resistant cell lines, SW1990 and Capan-1, was much lower than that of 

the GI50. These results suggest that, while IRF3 phosphorylation is a reliable marker of 

TBK1 inhibition by LSN3090729, inhibition of this phosphorylation is not always sufficient to 

block cell proliferation, and that when cells display an LSN3090729-resistant phenotype, it is 

because their proliferation is genuinely not TBK1-dependent. Furthermore, in contrast to the 

stimulus-induced TBK1 activation assays (Figure 3.1C), we found that significantly higher 

concentrations were needed to effectively reduce the basal, steady state levels of pIRF3 

(Figure 3.3C).  

Unexpectedly, two cell lines identified as resistant to TBK1 inhibition in standard 2D 

culture MTT assays, Capan-1 and SW1990, exhibited a response to inhibitor treatment in 

single cell clonogenic assays (Figure 3.3B), although only Capan-1 responded to genetic 

knockdown using shRNA (Figure 3.4A-B) These results may indicate that TBK1 has a 

specialized role in promoting specific aspects of cellular proliferation in certain contexts.   

TBK1 inhibition leads to non-productive autophagy 

Interestingly, upon treatment with LSN3090729, we observed a rapid formation of 

large vacuoles that remained unresolved after 72 h (Figure 3.5A). These vacuoles also 

formed to a lesser degree following depletion of TBK1 by shRNA (data not shown). Because 

of the known roles of TBK1 in autophagy (187-189) and the resemblance of these vacuoles 

to autolysosomes (191, 192), we sought to determine if autophagy was misregulated in 
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LSN3090729-treated cells. We observed an increase in total LC3BI and LC3BII as well as 

an increasing ratio of LC3BII to LC3BI, indicating that autophagy was induced and that 

lysosomal clearance was disrupted (112) (Figure 3.5B). To elucidate the identity of these 

vesicles, we performed transmission electron microscopy (TEM). Their ultrastructural 

properties revealed induction of autophagosome formation. The large vacuoles, while not 

autophagosomes, appeared to be lysosomes or autolysosomes containing cell debris 

(Figure 3.5C). TEM images following a time course of treatment with LSN3090729 (5 μM) 

revealed that these endocytic vesicles did not appear to form from the endoplasmic 

reticulum, nor from the plasma membrane, as there was an absence of coated pits. These 

observations ruled out various intracellular trafficking events and also macropinocytosis. 

Therefore, we sought to determine whether these vesicles were of another origin, and 

whether they were possibly enlarged autophagosomes or autolysosomes. 

To confirm that autophagy was altered following treatment with LSN3090729, we 

used an mCherry-EGFP-tagged LC3 construct as previously described (112) to measure 

autophagic flux in HPAC cells. EGFP is sensitive to the acidic environment of the 

autolysosome and degrades whereas mCherry is not. Therefore, an increase in red signal 

over that of both red and green together indicates that autophagy is functioning and 

autolysosomes are generated following autophagosome formation. In HPAC cells treated 

with LSN3090729 (5 μM) for 24 h, there was an increase in the ratio of red puncta 

(autolysosmes) to green puncta (autophagosomes) relative to that ratio in vehicle-treated 

cells (Figure 3.5D). These data indicate that autophagic flux is increased in TBK1 inhibitor-

treated cells. Further investigation is required to determine the effect of this LSN3090729-

dependent regulation of autophagy on cancer cell proliferation and survival. 
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TBK1 inhibition has no effect on tumor growth in vivo 

Mounting evidence suggests that disparate effects of inhibitor treatment are often 

observed in cancer cells in vitro versus in vivo due to influences of the tumor 

microenvironment and inter- and intra-tumor heterogeneity (193-195). Therefore, we 

examined the effect of LSN3090729 on tumor growth to determine if the sensitivity observed 

in selected PDAC cell lines was recapitulated in a xenograft mouse model. Pharmacokinetic 

analysis showed that LSN3090279 has over 70% oral bioavailability and an acceptable half-

life of 1.7 h in rats (Figure 3.1F). Initial observations in an HCT116 colorectal cancer-derived 

subcutaneous xenograft mouse model showed a modest decrease in tumor growth upon 

treatment with either of two different doses of LSN3090729 compared to vehicle control 

(Figure 3.6A). We extended this to PANC-1 pancreatic cancer (Figure 3.6B) and lung cancer 

A549 (Figure 3.6C) mouse xenograft models. In the pancreatic cancer model, a slight 

decrease in tumor growth was observed at a lower dosing regimen than in the colorectal 

cancer model (Figure 3.6B). In the lung cancer model, treatment with LSN3090279 caused 

only a minimal tumor growth delay, whereas, for comparision, the PI3K/mTOR inhibitor, 

BEZ-235, produced a dramatic decrease in tumor size (Figure 3.6C).  

Combined TBK1 and ERK inhibition do not synergize to reduce PDAC cell 

proliferation 

Small molecule inhibitors against TBK1 in cancer have proven ineffective as single 

agents (55), and concurrent inhibition of other cancer-promoting pathways is being explored 

as a new approach. One study demonstrated that combined TBK1 inhibition with MEK 

inhibition in NRAS-mutant melanoma cells induced apoptosis, as shown by increased PARP 

cleavage and annexin V staining (185). However, this study did not address the impact of 

the combination treatment on cell proliferation. Previously, we have shown differential 

growth sensitivity to MEK and ERK inhibition in PDAC cells, with ERK inhibition proving 
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slightly more effective, although the majority of cells remained resistant to both inhibitors 

(170). We sought to determine if simultaneous inhibition of TBK1 and a validated KRAS 

effector, ERK, impacted PDAC cell growth. 

We have previously determined that the growth of Capan1, SW1990, and PANC-1 

cells is resistant to treatment with ERK inhibitor SCH772984 (GI50 >4 μM) despite inhibition 

of ERK1/2 kinase activity, as measured by phosphorylation of RSK, at almost 10-fold lower 

concentrations (IC50 = 450 nM) (170). We treated Capan1, SW1990, PANC-1, and HPAC 

cells with the ERK inhibitor, SCH772984, and the TBK1 inhibitor, LSN3090729, and 

measured the effect on anchorage-dependent growth over 72 h (Figure 3.7 A-D). Compared 

with ERK inhibitor treatment alone, we observed no significant synergistic effect of 

combined TBK1 and ERK inhibition. This combination was also tested in vivo in mice 

bearing subcutaneous SW1990-derived tumors. Here, we saw that, while ERK inhibition 

effectively reduced tumor growth rates, TBK1 inhibition, did not, and that TBK1 inhibition 

also did little to enhance the growth defect seen with ERK inhibition alone (Figure 3.7E) 

despite robust evidence that these compounds inhibited their targets (Supplemental Figure 

3.1) We conclude that simultaneous inhibition of TBK1 and ERK does not enhance the 

therapeutic potential of either of these inhibitors in PDAC. 

Discussion 

 Mutationally activated KRAS is a driver in over 90% of PDAC cases (144). Despite 

an increased understanding of effector pathways mediating KRAS-dependent cancer 

growth, treatment options remain limited (141). With the exception of the EGFR inhibitor 

erlotinib, there are no approved targeted therapies for PDAC patients, and conventional 

cytotoxic drugs remain the standards of care. This is in contrast to other cancers including 

lung, skin, and breast, for which multiple approved targeted therapies options have 

contributed to prolonging patient survival (196-198). While inhibitors of PI3K, AKT, and MEK 
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have exhibited moderate effects on PDAC cell proliferation, the overall efficacy of these 

inhibitors observed in patients has been minimal (43), and other possible targets should be 

considered. Given the increasing evidence for TBK1 activity in promoting cancer (54, 55, 

137, 199), we utilized a novel TBK1 inhibitor to address a role for of this less studied RAS 

effector in PDAC. Our results suggest a limited therapeutic value of targeting TBK1 alone in 

PDAC. 

 Given the implication of TBK1 overexpression and aberrant activation in promoting 

numerous cancers, several small molecule inhibitors targeting TBK1 have been developed. 

Inhibition of TBK1 with LSN3090279 had a minimal growth inhibitory effect on the majority of 

large panel of cancer cell lines from diverse tissue origins in both anchorage-dependent and 

-independent growth assays. Similarly, only a small subset of KRAS-mutant lines showed 

sensitivity to TBK1 inhibition. In both cell line groups, sensitivity did not correlate with RAS 

mutation status. Our findings agree with previous findings that TBK1 inhibition alone is not 

sufficient to reduce growth in most PDAC cell lines (55, 137). However, we do not believe 

that this finding alone argues that TBK1 will not be a useful therapy for RAS-mutant cancers. 

In our recent assessment of ERK inhibitors, we also found that only approximately 50% of 

KRAS-mutant PDAC lines demonstrated sensitivity in vitro and in vivo (170). Thus, to 

advance TBK1 inhibitors, future studies will need to define a biomarker(s) that are indicative 

of TBK1 sensitivity. 

With TBK1 inhibition alone ineffective in most cell lines, we reasoned that concurrent 

inhibition of other key KRAS effector pathways may enhance TBK1 anti-proliferative activity. 

However, we found that combining ERK1/2 and TBK1 inhibition yielded no significant 

synergistic inhibitory activity beyond that seen with ERK inhibition alone, both in vitro and in 

vivo. Though inhibition of TBK1 has been shown to increase phosphorylation of ERK 

through feedback signaling in lung cancer cells, providing one explanation for the synergy 

seen with dual inhibition of these kinase pathways (180, 200), we did not observer this in 



 

 

86

PDAC. These data highlight the importance of pancreatic cancer genetic heterogeneity. Our 

findings differ from another study that found combined TBK1 and ERK MAPK inhibition in a 

mouse model of KRAS-driven lung cancer caused tumor regression and demonstrated that 

the disruption of autocrine signaling by a TBK1 inhibitor led to sensitivity in lung cancer cells 

(200). Thus, exploring cytokine production by PDAC cells both sensitive and resistant to 

TBK1 inhibition may shed light on the TBK1-dependent mechanisms dictating PDAC cell 

proliferation. 

One significant result of our study revealed that both genetic and pharmacologic 

inhibition of TBK1 led to upregulation of autophagic flux and the formation of large 

autolysomal vesicles in every PDAC cell line that we treated. Though these cells did not 

appear to be undergoing apoptosis or necrosis as they were still able to metabolize MTT 

and remained attached to tissue culture flasks, we hypothesize that this phenotype may 

contribute to the slight reduction in cell growth observed upon TBK1 inhibition or depletion. 

However, since this was seen in both sensitive and resistant cell lines, clearly this cellular 

change alone cannot explain the TBK1-dependency of sensitive cell lines. While 

combination treatment with an ERK1/2 inhibitor did not significantly reduce cell viability, it is 

possible that other inhibitors, either targeted therapies or general chemotherapies, may 

synergize with LSN3090729 and exploit a situation in which the cell health appears to be 

compromised.  

In summary, while our study is in agreement with other recent studies that TBK1-

dependency is not strongly correlated with RAS-mutation status, a subset of KRAS-mutant 

cell lines were sensitive. Future studies that apply unbiased chemical library screening will 

be needed to identify combinatorial TBK1 inhibition strategies to overcome the resistance of 

the majority of RAS-mutant cancer cells to TBK1 inhibition. Genetic screens to identify 

mechanisms of de novo resistance will also be needed to contribute to these efforts. 
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Figure 3.1: LSN3090729 is an inhibitor of TBK1 in vitro and in vivo. A, LSN3090729 
was discovered as a TBK1 inhibitor with IC50s ranging from 0.019 to 0.073 μM for inhibition 
of recombinant TBK1 in vitro. Other kinases are inhibited to a lesser extent. B, Evaluation of 
LSN3090729 inhibition in a panel of more than 100 protein kinases. Summarized are the 

activities detected under 1 µM. C, LSN3090729-mediated inhibition of LPS-induced 
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phosphorylation of IRF3 was evaluated in HEK-293 cells. D, The ability of TBK1 shRNA and 
E, LSN3090729 treatment to inhibit EGF-stimulated AKT phosphorylation at S473 was 
evaluated in PANC-1 cells. F, The pharmacokinetic profile of LSN3090729 delivered orally 
or intravenously (IV) was determined in rats. 
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Figure 3.2: Sensitivity of human tumor cell lines to LSN3090729 treatment does not 
correlate with RAS mutation status. A, A panel of cancer cell lines was treated with 
LSN3090729 and anchorage-dependent proliferation was monitored by using the CellTiter-

Glo Luminescent Cell Viability Assay (orange, RAS-mutant; blue, RAS wild-type). B, The 
ability of LSN3090729 treatment to inhibit the anchorage-independent growth of a panel of 
human cancer cell lines was determined by measuring colony formation in soft agar (red, 
mutant KRAS; grey, wild-type KRAS). 



 

 

90

 

Figure 3.3: KRAS-mutant PDAC cell lines are differentially sensitive to LSN3090279 
treatment in a manner dependend on the growth endpoint. A, GI50 of PDAC cells treated 
with LSN3090279 for 72 hl anchorage-dependent proliferation was monitored by using an 
MTT viability assay. B, Sensitive and resistant cell lines were seeded for clonogenic assays 
on day 0, treated with LSN3090279 at the indicated concentrations on day 1, and colonies 
were quantified on day 10. C, Sensitive and resistant PDAC cells were probed as indicated 
at 72 h post-treatment with LSN3090279 to determine the IC50 of TBK1 inhibition, using 
pIRF3 pTBK1 as markers of TBK1 activity. 
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Figure 3.4: TBK1 depletion reduces clonogenic single cell colony formation. A, TBK1 
was stably knocked down by shRNA and knockdown was verified by western blot analysis. 
B, Cells were seeded for clonogenic single cell colony formation assays on day 0.  Plate 
coverage was quantified on day 10 by using ImageJ.  Results are presented as mean +/- 
SEM of three replicates. 
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Figure 3.5: LSN3090729 increases autophagic flux and autolysosome formation in 
PDAC cells. A, Indicated PDAC cell lines were treated with increasing doses of 
LSN3090729. Cells were imaged at 24 h at 20x magnification. Scale bar represents 400 μm. 
B, Cells were treated with LSN3090279 for 72 h and probed for LC3B I and II. C, HPAC 
cells were treated for 24 h with DMSO or 5 μM LSN3090729, fixed and imaged via 
transmission electron microscopy. Scale bar represents 2 μm. D, HPAC cells infected with 
EGFP-mCherry-LC3 were treated with 5 μM LSN3090729 for 24 h and the ratio of red 
(autolysosomes) to green (autophagosomes) was quantitated with ImageJ. 
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Figure 3.6: LSN3090729 marginally impairs KRAS-mutant tumor growth in vivo. A, 
Mice harboring HCT116-derived subcutaneous tumors in a colon cancer xenograft model 
were dosed with vehicle or one of 2 doses of LSN3090729. B, Mice bearing subcutaneous 
tumors derived from PANC-1 PDAC cell lines were dosed with vehicle or a single dose of 
LSN3090729. C, Mice bearing subcutaneous tumors derived from A549 lung cancer cells 
were dosed with vehicle, LSN3090729, or the PI3K/mTOR inhibitor BEZ-235 in order to 
compare the effectiveness of TBK1 and the dual PI3K/mTOR inhibitors at reducing tumor 
cell viability. For each experiment, n = 10 mice per treatment group. 
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Figure 3.7: Combined treatment with TBK1 inhibitor LSN3090729 and ERK1/2 inhibitor 
SCH772984 does not efficiently reduce PDAC growth. A-D, PDAC cell lines were treated 
with a range of concentrations of LSN3090729 both with (purple) and without (green) 
constant SCH772984 (450 nM), and also with a range of SCH772984 concentrations with 
(blue) or without (red) constant LSN3090729 (2 μM). E, Mice were subcutaneously injected 
with SW1990 PDAC cells and treated with vehicle or inhibitor starting on day 16 as indicated 
by the arrow. n = 7 mice per treatment group.  
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Supplemental Figure 3.1: Western blot analysis of tumor cell lysates collected from 
subcutaneous mouse tumors derived from SW1990 PDAC cells. A reduction in pRSK 
was used as a marker of ERK1/2 inhibition and pAKT was used to confirm inhibition of 
TBK1.
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CHAPTER 4: CONCLUDING REMARKS AND FUTURE DIRECTIONS

 

To date, the effective chemotherapeutic approaches for pancreatic cancer are 

comprised of the classical cytotoxic drugs (141). Despite our now advanced and detailed 

genetic understanding of pancreatic cancer, disappointingly, this wealth of information has 

failed to lead to effective targeted therapies. With death from pancreatic cancer surpassing 

breast cancer in 2016 (139), and projected to be second only to lung cancer death by 2020 

(140), the need for improved therapies is now acute. As KRAS mutations are found in nearly 

100% of pancreatic cancers (2), there is much hope that the successful development of anti-

KRAS therapies will be the key to accomplishing this feat. Targeting KRAS has become a 

major effort in cancer research, and there are many ongoing strategies and ideas (43). My 

studies explore directions where there is promise, but where there has not been sufficient 

effort. To address this need, my research has centered on two less studied kinase effectors 

of KRAS in pancreatic cancer, PAK1 and TBK1. My findings reveal both the promise and 

complexities of targeting effector signaling to develop the elusive anti-KRAS therapy for 

pancreatic cancer. 

Currently, there are at least five major directions for anti-KRAS drug discovery (43). 

Of these, targeting KRAS effector signaling is arguably considered one of the most 

promising. This promise is based in large part on the demonstrated requirement for KRAS 

effector signaling to drive cancer growth, and also in part on the fact that many effector 

signaling components are protein kinases, which are highly tractable drug targets (201).  

Since the 1990s when RAF and PI3K were identified and validated as effectors of 

RAS, there has been intensive effort by the pharmaceutical industry to develop inhibitors of 
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these two crucial downstream effector signaling components (43). There has been 

impressive success in developing potent inhibitors of components of these two canonical 

effector pathways, with many now under clinical evaluation (ClinicalTrials.gov). However, 

despite intensive clinical trial analyses, when evaluated as monotherapy, molecules that 

inhibit RAF, MEK, ERK, PI3K, AKT, or mTOR have demonstrated limited to no clinical 

efficacy for pancreatic cancer. Do these failures argue that targeting effector signaling is not 

a useful anti-KRAS strategy? No – instead, I argue that, because of the complexity of 

effectors that KRAS utilizes to drive cancer growth, concurrent inhibition of multiple effector 

pathways will be needed.  

In my studies, I have addressed the role of two less studied effector pathways, the 

Tiam1-RAC1 (56, 57, 69) and the RalGEF-RAL (8, 11) small GTPase signaling networks. 

While there are considerable cell culture and mouse model studies that validate their roles in 

mutant RAS-initiated and -maintained cancer growth, how these pathways can be targeted 

therapeutically has been the challenge. My studies explored the PAK1 and TBK1 

serine/threonine kinases as mediators of RAC1- and RAL-driven growth.  

Previous studies of RAC1 and RAL applied genetic approaches to interrogate their 

roles in tumor growth. However, each small GTPase can interact with multiple downstream 

effectors and which effectors account for their driver roles in cancer remains to be 

determined. Among the multitude of RAC1 and RAL effectors, I focused on PAK1 and 

TBK1, respectively, for two main reasons. First, these effectors are serine/threonine protein 

kinases. With the greatest success in targeted anti-cancer drug development seen with 

protein kinases, PAK1 and TBK1 are highly tractable drug targets. Second, there is 

evidence that each of these protein kinases can serve driver roles in cancer (54, 86, 151). 

My studies benefited from collaborative interactions with pharmaceutical companies that 

shared their unpublished inhibitors. I have employed pharmacologic inhibitors of these 

molecules to evaluate PAK1 and TBK1 as possible therapeutic targets in the treatment of 
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PDAC. Though both genetic suppression and pharmacologic inhibition of PAK1 and TBK1 

caused reduced cellular proliferation, this reduction was limited and observed only in a 

subset of PDAC lines. Thus their merit as stand-alone therapeutic targets for KRAS-mutant 

PDAC may be limited. This is in contrast to published studies reporting the critical 

importance of these kinases in supporting other cancer types, such as breast and skin 

cancer for PAK1 and non-small cell cancer for TBK1, where loss or inhibition of these 

proteins resulted in significant growth inhibition of these tumor lines (54, 86, 151). It is 

possible that PAK1 and TBK1 may be suitable for monotherapy in these cancer types, 

though, undoubtedly, combination strategies involving multiple inhibitors will be required to 

prevent tumor cell resistance to PAK1 or TBK1 inhibition alone. As an additional note for 

TBK1, in our screen of 300 cell lines, described in Chapter 3, we observed no clustering of 

tumor cell type and dependency on TBK1. It remains to be determined whether tumor type 

differences and tumor heterogeneity (or some other factor) account for these disparate 

dependencies on PAK1 and TBK1. 

My PAK1 studies described in Chapter 2 reveal that PAK1 is a moderately effective 

target for decreasing cellular viability, especially in an anchorage-independent context. 

Either genetic suppression of PAK1 by RNAi or pharmacologic inhibition of PAK1 by a 

recently developed, highly selective PAK1 inhibitor, AZ13705339, reduced PDAC tumor cell 

viability in vitro. While I used the canonical phosphorylation of MEK1 at S298 (163) to 

demonstrate the efficacy of the PAK1 inhibitor, loss of pMEK1 did not always correlate with 

a reduction in PDAC cell growth. As PAK1 can also act as a scaffold for PDK1 and AKT 

(85), inhibition of kinase activity does not abolish all PAK1 functions. Furthermore, since 

pMEK1 S298 reduction did not correlate with a significant reduction in phosphorylation of 

ERK1/2 signaling (data not shown), the only well-validated MEK1 substrate and a key 

mediator of RAS signaling, it is likely that other PAK1 effectors are the key substrates 

involved in PAK1-dependent cancer growth. To determine which PAK1 effectors are truly 
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critical for driving PDAC, I would propose to do two experiments: 1) Determine how loss of 

PAK1 protein and pharmacologic inhibition of PAK1 modulate kinome-wide activity levels in 

cell lines dependent upon PAK1 for maintaining proliferation and macropinocytosis. To do 

this I would utilize multiplexed kinase inhibitor beads and mass spectrometry (MIB/MS) as 

described by Duncan and colleagues (88). 2) I would perform metabolic profiling of PDAC 

cell lines that exhibit reduced macropinocytosis following loss of PAK1 activity. This might 

reveal a clue about the metabolic pathways being modulated following loss or inhibition of 

PAK1, and could point to known proteins that may function downstream of PAK1. 

In the absence of a clear signaling mechanism that would indicate why loss of PAK1 

activity led to a reduction in PDAC cellular viability, I began to assess other biological 

phenotypes associated with PAK1. Earlier studies in mouse fibroblast models suggested a 

role for PAK1 in macropinocytosis (103). However, these observations had not been 

extended to cancers with bona fide RAS mutations. As pancreatic cancers are especially 

reliant on the scavenging of protein, carbohydrates, and other nutrients to fuel their 

increased metabolic needs in their hypoxic, nutrient-scarce tumor/stromal environment (36, 

37, 202), I began to assess the role of PAK1 in macropinocytosis as a potential mechanism 

to support the elevated metabolism of pancreatic cancer.  

Previous reports describe the role of PAK1 in promoting macropinocytosis in the 

context of extracellular protein scavenging and as a means of bacterial/viral entry into cells 

(103, 104). Additionally, macropinocytosis is a known contributor to pancreatic cancer amino 

acid pools and necessary to maintain the unremitting metabolic needs of PDAC cell growth, 

both in vitro and in vivo (105, 156). My studies revealed that PAK1 does indeed regulate 

macropinocytosis in PDAC. Both suppression of PAK1 protein expression and inhibition of 

PAK1 catalytic activity resulted in a reduction of macropinocytosis in the majority of cell lines 

I tested. This indicated that PAK1 could be partially supporting PDAC tumor cell growth and 

survival through macropinocytic protein scavenging. Future studies in mouse models of 
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Kras-driven PDAC, such as the widely studied KPC (KrasLSL.G12D/+; p53R172H/+; 

PdxCretg/+) mouse model (203), will be needed to address the potential relevance of my 

findings for the pancreatic cancer patient. Due to the large stromal component of PDAC 

tumors, composed of cancer associated fibroblasts, pancreatic stellate cells, and a large 

immune inflammatory component (141, 204, 205), it will be critical to determine whether 

PAK1 modulates the macropinocytic index of tumor cell or stromal cells. A critical question 

is: Will genetic ablation or pharmacologic inhibition of PAK1 also reduce macropinocytosis 

activity in vivo, where tumor cells are associated with stromal cells that can, and do, 

influence tumor cell behavior? 

In Chapter 3 I detailed my studies of TBK1 in PDAC. I utilized a novel ATP-

competitive inhibitor of TBK1, LSN3090729, as well as RNAi targeting TBK1 mRNA, to 

demonstrate that loss of TBK1 activity marginally reduces pancreatic cancer cell growth in a 

subset of cell lines. Though most PDAC lines exhibited some degree of resistance to TBK1 

inhibition in terms of viability, all cell lines treated with LSN3090729 developed large 

autolysosomal vacuoles. Since this vacuole formation was also seen with RNAi suppression 

of TBK1, I believe that this phenotype is not likely to be due to an off-target activity of this 

inhibitor. This result indicated that loss of TBK1 leads to misregulation of autophagic flux, 

leading to non-productive autophagy that culminates in swollen lysosomes that do not 

complete the processing of the cargo to provide the required nutrients to sustain cellular 

metabolic needs. Though this non-productive autophagy did not appear to result in cell 

death, proliferation appeared to be marginally impaired. This opens up the potential for 

combination studies with LSN3090729 and inhibitors of other metabolic pathways, such as 

chloroquine (112), which inhibits autophagy, or 2-deoxy-D-glucose (206), which inhibits 

glycolysis, that may together stress PDAC tumor cells sufficiently to lead to significant loss 

of viability. Studies that could be done to address this possibility are described below. 
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 Overall, my research has described the role of two serine-threonine kinases 

implicated downstream of mutant KRAS in PDAC. While loss or inhibition of both kinases led 

to a marginal decline in tumor cell viability, the more interesting implications of my data 

involve how both PAK1 and TBK1 regulate aspects of cellular metabolism in PDAC. 

Perhaps the marginal reduction in cell viability following application of these inhibitors 

reflects the limited potency and selectivity of the inhibitors that I used in my studies. Future 

development of more potent and selective inhibitors may well find more robust anti-tumor 

activities than I observed. Also, my studies have been limited to cell culture analyses and 

subcutaneous nude mouse tumorigenicity studies. Cancer cells are likely to show different 

dependencies when in a three-dimensional in vivo environment, with stromal cell 

interactions and immune responses also likely to greatly impact drug sensitivities of PDAC 

tumors. Therefore, using immune-competent, orthotopic mouse models of PDAC to test 

these inhibitors in vivo, alone or in combination with other compounds, will be valuable. The 

following sections describe potential future directions of these studies and methods for 

resolving the unanswered questions provoked by these data. 

What regulates PAK1 activation in PDAC if not KRAS-RAC1? 

 The original premise of a KRAS-Tiam1-RAC1-PAK1 pathway was based on multiple 

earlier reports that used overexpression studies to demonstrate that individual components 

of this proposed pathway interact (57, 207-209). Yet, no study has evaluated endogenous 

proteins in KRAS-mutant cancer cells to comprehensively link all of these molecules 

together in a direct signaling cascade. My data indicate that, contrary to this initial 

hypothesis, neither KRAS nor RAC1 play a large role in regulating phosphorylation of MEK1 

by PAK1. My initial hypothesis that PAK1 signals downstream of a KRAS-RAC1 signaling 

axis in PDAC was revealed to be contextually false. Additionally, only two PDAC cell lines, 

AsPC-1 and MIA PaCa-2, appeared to require expression of KRAS to drive PAK-1 
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dependent macropinocytosis. RAC1 appeared largely dispensable for PAK1-dependent 

macropinocytosis. Furthermore, loss of KRAS expression did not affect RAC1-GTP levels in 

most cells. These data beg the question of how PAK1 is truly regulated in PDAC cell lines, if 

not downstream of KRAS and RAC1 as has been both hypothesized and reported in 

previous studies (79, 86, 92, 165). That PAK1 has been shown to be aberrantly activated in 

cancer types where KRAS mutations are not common (e.g., breast cancer (151)) may 

provide clues for these mechanisms.  

 PAK proteins remain the most validated effectors of RAC1, but they are also 

activated downstream of both receptor and non-receptor tyrosine kinases, GPCRs, 

scaffolding molecules such Nck and Grb2, various protein-protein interactions, and WNT-

WRCH1 signaling (165).  

To determine the mechanism of PAK1 activation in PDAC, I propose to perform co-

immunoprecipitation (co-IP) mass spectrometry experiments with exogenously expressed 

PAK1 across different PDAC cell lines. These co-IP experiments could reveal candidate 

proteins that PAK1 is in complex with in each cell type. Additionally, I could use mutants of 

PAK1, such as L83/86H, which does not bind to RAC1 or Cdc42 (113), to officially rule out a 

contribution of the latter small GTPases to PAK1-dependent macropinocytosis in PDAC.  

What is the contribution of other PAK isoforms to PDAC tumor growth? 

My work has demonstrated a role for PAK1 in supporting PDAC cell growth and 

macropinocytosis. However, PAK1 is one of six PAK family members. While the Group II 

PAK family proteins, PAK4, PAK5/7, and PAK6, have some overlapping roles with those of 

the Group I PAK family proteins, they are regulated in a different manner and have distinct 

tissue distribution to that of PAK1-3 (79, 165). PAK2 and PAK3 harbor kinase domains that 

are respectively 93% and 95% identical to PAK1. I was unable to detect expression of PAK3 

in PDAC cell lines, but PAK2 is abundantly present in most PDAC lines. It was beyond the 
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scope of my studies to distinguish the roles of PAK1 and PAK2 in PDAC, though it is 

possible that PAK2 activity contributes to PDAC growth and survival.  

 Most of my data would indicate that, of the Group I PAKs, PAK1 is the dominant 

contributor to PDAC growth due to the substantial growth impairment observed in 

anchorage-independent soft agar colony formation assays upon loss of PAK1 expression or 

inhibition of PAK1 activity. However, if PAK2 were able to partially compensate for loss of 

PAK1, this compensation may be masking some of the effects of PAK1 loss. The 

AZ13705339 compound primarily inhibits PAK1, and treatment of PDAC cells with 

AZ13705339 faithfully recapitulated both the growth impairment and defect in 

macropinocytosis observed with knockdown of only PAK1 in all but two cell lines. It may be 

that these two cell lines could represent a subset of tumors where PAK2 could potentially 

compensate for PAK1. Dual genetic ablation of both PAK1 and PAK2, or use of a small 

molecule inhibitor of all Group I PAK proteins, such as FRAX597 (118), would reveal 

whether PAK2 was crucial for supporting growth in the absence of PAK1 kinase activity in 

these two cell lines. So while my data point to PAK1 as having a more important role in 

PDAC signaling, exploring the role of PAK2 in PDAC might still be informative. 

 Furthermore, Group II PAKs functionally overlap with Group I PAK substrates to a 

small degree (79). Though the expression of PAK5/7 and PAK6 tends to be limited to 

tissues of a neuronal origin (79, 122), PAK4 amplification and overexpression has been 

observed in pancreatic cancer, and is able to promote increased cellular motility and 

invasiveness of PDAC cells downstream of Rio Kinase 3 and RAC1 (210, 211). Additionally, 

PAK4 is known to contribute to pancreatic cancer cell proliferation via AKT and ERK- 

mediated induction of NF-κB signaling (212). These data support that further investigation 

into the role of PAK4 in PDAC may prove fruitful for furthering the body of knowledge 

encompassing PAK regulation in cancer.  
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  To elucidate the contribution of individual PAK isoforms in pancreatic cancer, I could 

perform PAK2 or PAK4 RNAi knockdown experiments and assess PDAC cell viability, 

induction of cell death by apoptosis, anchorage-independent growth, and macropinocytic 

uptake under these conditions. Additionally, knockdown of individual or multiple isoforms in 

combination with inhibition of PAK1 by AZ13705339, Group I PAKs with FRAX597 (118), 

Group II PAKs with GNE-2861 (213), or both at once with the pan-PAK inhibitor, PF3758309 

(which was originally a Group II inhibitor, but found to be equally effective at inhibiting all 

PAKs) (122), could reveal distinct cellular functions of PAK isoforms. Such data would 

provide valuable information about whether different PAK isoforms can compensate for one 

another in the context of PDAC cell viability and macropinocytosis. 

Is macropinocytosis a primary mechanism by which PAK1 supports PDAC growth? 

Many previous studies implicate PAK1 in proliferative or survival signaling through 

the phosphorylation of AKT and MEK1 (75, 76, 165). In breast cancer PAK1 is known to 

promote phosphorylation of β-catenin downstream of ErbB2 to promote survival (151). A 

model of KRAS-mutant squamous cell skin cancer revealed that PAK1 was necessary to 

drive signaling to promote tumor proliferation through MEK and ERK signaling in that tumor 

type (86). Another study revealed that nuclear PAK1, along with protein kinase A, is able to 

phosphorylate ERα in the absence of hormone signaling to lead to tamoxifen resistance in 

breast cancer (214). In pancreatic cancer, MET activation leads to PAK1 activation and 

induces pancreatic cancer cell migration (155). Still another study observed that PAK1 is 

able to regulate PDAC cell survival through engagement with NF-κB, which then induces the 

transcription of fibronectin (110).  

My studies took a different angle to evaluate the mechanism of PAK1 growth 

dependence in PDAC. Early observations in NIH 3T3 cells demonstrated a role for PAK1 in 

driving macropinocytosis (103). Additionally, PAK1-mediated macropinocytosis was shown 
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to occur in bladder cancer cells downstream of PI3K-AKT signaling in the context of uptake 

of Bacille Calmette-Guerin (BCG), an attenuated strain of Mycobacterium bovis that is used 

as a treatment for bladder carcinoma (104). Due to the grossly elevated metabolic rate of 

pancreatic cancer cells (36, 37), it is likely that macropinocytosis is a necessary and critical 

means to encourage tumor cell survival. Most of my studies of viability were done in 

complete culture medium containing serum and ample growth factors, as well as essential 

and non-essential amino acids. However, the macropinocytosis assays were performed over 

the course of 16 h where the cells are starved of FBS. The results of my studies suggest 

that if cells were to be cultured for a longer period of time in media lacking sufficient growth 

factors while treating with PAK inhibitor in the absence of serum albumin as an amino acid 

source, perhaps increased loss of cell viability would be seen upon PAK1 loss or inhibition 

due to insufficient macropinoctyic uptake of extracellular nutrients. A study performed in 

MEFs expressing KRAS G12D demonstrated that these cells could thrive in media lacking 

essential amino acids as long as they were supplied with albumin, which was internalized by 

the cell via macropinocytosis and catabolized in the lysosome to serve as an amino acid 

source (215). A similar experimental system using constitutively activated PAK1 (L107F or 

T423E) could reveal the role of PAK1 in supporting macropinocytosis-dependent cell 

survival. 

How is PAK1-dependent macropinocytosis regulated and what substrate does PAK1 

employ to drive this process in PDAC? 

 In two of the four PDAC cell lines I surveyed (AsPC-1 and MIA PaCa-2), expression 

of mutant KRAS was necessary to drive PAK1-dependent macropinocytosis. These results 

mirror what was reported in a study by Commisso and colleagues (105), in which the 

authors showed that mutant KRAS drives macropinocytosis in MIA PaCa-2 cells, which 

harbor a KRAS G12C mutation. This was in contrast to BxPC-3 PDAC cells, which have WT 
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KRAS, but mutant BRAF, and thus still possess elevated MAPK signaling. However, tumor 

cells are heterogenous in their preferences for certain signaling events, so it was not 

altogether surprising that the macropinoctyic index of two other cell lines were not affected 

by loss of KRAS expression. HPAF-II cells showed no significant change in 

macropinocytotic index following siRNA-mediated depletion of KRAS, and PANC-1 cells 

actually displayed increased macropinocytosis upon loss of KRAS expression. Despite the 

different roles of KRAS in these cells, all of these cell lines exhibited some level of sensitivity 

to PAK1 loss. Thus, there exist KRAS-dependent and KRAS-independent mechanisms that 

drive macropinocytosis through PAK-dependent mechanisms. 

 The downstream effectors that PAK1 utilizes to promote macropinocytosis are 

largely unknown and much speculated. MEK1 S298 as a marker of PAK1 activity was 

sufficient for assessing the level of PAK1 inhibition induced by the AZ13705339 inhibitor, but 

no studies have directly linked MEK1 to macropinocytosis in human cancer, though my data 

showing inhibition of ERK reduces macropinocytosis may yet implicate the MAPK pathway 

in this process. To date, PAK1 has over 40 known substrates (77), many of which are 

involved in cytoskeletal reorganization. As macropinocytosis is a process largely driven by 

actin reorganization at the plasma membrane that leads to membrane ruffling and 

macropinocytic cup formation (40, 166, 167, 169), it is likely that cytoskeletal targets of 

PAK1 activity are involved. Possible candidate PAK1 substrates involved in PAK1-

dependent macropinocytosis include LIMK (216), CtBP1/BARS (164), and p41-ARC (97). To 

more extensively examine PAK1-mediated macropinocytosis, I could perform an siRNA 

screen to look for proteins that when lost further reduce macropinocytosis beyond that of a 

PAK1 inhibitor or loss of PAK1 alone. Hits from this initial screen could be further validated 

as PAK1 interactors via co-IP and western blotting. If these hits are bona fide regulators of 

macropinocytosis, loss or inhibition of these proteins should lead to a reduction in 

macropinocytic index of PDAC cells. These data could help us link PAK1 activity to proteins 
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that affect macropinocytic nutrient scavenging in PDAC, and perhaps identify another 

therapeutic target. 

Can combined inhibition of macropinocytosis and other metabolic pathways be 

useful to treat PDAC?  

If inhibition or loss of PAK1 signaling is capable of preventing extracellular protein 

scavenging and decreasing cell viability in PDAC cell lines, it is a logical next step to attempt 

to pair PAK inhibitors with inhibitors of other metabolic pathways. For example, combining a 

PAK inhibitor with an inhibitor of autophagy, such as chloroquine (36), and thus preventing 

nutrient scavenging from two distinct mechanisms, may decrease the ability of cancer cells 

to initiate compensatory mechanisms, leading to more efficient cancer cell growth 

suppression.  

 Combinatorial approaches with PAK inhibition and other targeted therapies may also 

be a viable strategy for diminishing cell viability. As we have observed an additive decrease 

in macropinocytic uptake with combinatorial treatment of PDAC cells with AZ13705339 and 

either ERK1/2 inhibition with SCH77298 or PI3Kβ/δ inhibition with AZD8186, these 

combinations may also result in reduced viability of PDAC cells. Based on my studies in 

both Chapter 2 and Chapter 3, a combination of both a PAK1 inhibitor and a TBK1 inhibitor 

may prove to be a very fruitful strategy for reducing PDAC nutrient scavenging from both 

macropinocytosis and autophagy.  

 Additionally, I could perform an unbiased chemical inhibitor library screen to identify 

compounds that act synergistically with a PAK1 inhibitor. Such screens have been useful in 

identifying combinations that enhance the activities of other RAS effector inhibitors, such as 

MEK inhibitors.  

 As a cautionary note, some approved chemotherapies, such as nab-paclitaxel, which 

is paclitaxel tagged to serum albumin, is thought enter cells via macropinocytosis. In such 
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cases, combining nab-paclitaxel with a PAK1 inhibitor may prove to be therapeutically 

unproductive, or worse. However, combining PAK1 inhibition with gemcitabine or 

FOLFIRINOX, which do not depend on macropinocytotic uptake such that delivery would not 

be affected by inhibition of PAK, may serve to be a promising therapeutic strategy for PDAC. 

Does inhibition of PAK1 prevent macropinocytosis in vivo? 

 PDAC tumors are notorious for having extensive stromal tissue and a relatively low 

number of tumor cells (141). Therefore, the dynamics of amino acid scavenging and tumor 

cell metabolism are likely very different from what is observed in tissue culture. The 

Commisso et al. study (105) examined the role of macropinocytosis in supporting PDAC 

tumors in vivo. They showed that tumors derived from MIA PaCa-2 cells were able to 

internalize FITC-dextran delivered intratumorally, and that this macropinocytosis was 

abrogated in the presence of EIPA, a non-specific inhibitor of the Na+/H+ antiporter that 

incidentally interferes with macropinosome formation. I would propose to extend this type of 

study to PAK1 inhibition in vivo. I could generate mice bearing orthotopic tumors induced by 

implantation of PDAC cell lines derived from human pancreatic tumors or use the KPC 

mouse model and treat with a PAK inhibitor. PDAC cell lines that have genetically 

suppressed PAK1 could also be used to complement the inhibitor studies. I could then 

intratumorally inject FITC-dextran and excise tumors for imaging to determine the level of 

macropinocytosis occurring in these tumors. Additionally, these in vivo studies could indicate 

the effectiveness of PAK1 loss at reducing PDAC tumor burden in mice. Unfortunately, the 

PAK1 inhibitor AZ13705339 does not possess favorable pharmacokinetic and 

pharmacodynamic traits to make it suitable for in vivo studies. However, I could utilize other 

selective PAK1 inhibitors, or Group I PAK inhibitors, as they become available, to 

complement PAK1 genetic suppression in these studies. 
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 Which substrate is a reliable marker of TBK1 activity and sensitivity to TBK1 

inhibition in PDAC cells? 

Two of the PDAC cell lines from the panel I surveyed in Chapter 3 displayed high 

sensitivity to TBK1 inhibition by LSN3090729. While even cells that were resistant to 

LSN3090729 became more sensitized in a single cell clonogenic assay, there was a large 

discrepancy in the effects between the PANC-1 and HPAC cells, which were significantly 

sensitive to TBK1 inhibition, and the rest of the PDAC lines. Moreover, studies have shown 

that many tumor cell lines exhibit differential sensitivity to loss of TBK1, with many cell lines 

being fairly resistant (55, 137). One study suggested that TBK1 is necessary for KRAS-

mutant proliferation in NSCLC (54), but this does not appear to be the case in PDAC (55). 

Phosphorylation of specific sites in both IRF3 S386 (55) and AKT T308/S473 (137) 

have been previously validated as markers of TBK1 activity in tumor cells, including in 

PDAC. However, my studies revealed that neither pIRF3 nor pAKT were clear indicators of 

PDAC cell sensitivity to LSN3090729 or genetic ablation of TBK1. PANC-1 cells did not 

show a consistent, dose-dependent reduction of pAKT S473 in the presence of 

LSN3090729 despite showing reduced viability (data not shown). On the other hand, all cell 

lines, whether highly sensitive or fairly resistant, showed moderate loss of pIRF3 S386 

levels. To discern the cellular signaling consequences of TBK1 inhibition in hopes of 

identifying a better biological marker for distinguishing sensitive cell lines from resistant cell 

lines, I propose to perform reverse phase protein array (RPPA) (217) analysis following 

TBK1 suppression or inhibition with LSN3090729. RPPA is a method for assessing the 

phosphorylation status of a large panel of protein kinases via phospho-specific antibodies. It 

is akin to a large western blot. This type of study would reveal the phosphorylation status of 

a large array of signaling proteins and thereby provide a clue as to which pathways are 

modulated following loss of TBK1 activity. If the results of such an experiment do show 

differences between the phosphorylation profiles of sensitive and resistant cell lines, 
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validation of these differences and whether these identified kinases actually contribute to 

promoting tumor growth downstream of TBK1 would then direct future studies aimed at 

identifying these hits as potential biomarkers that define the patients that may benefit from 

treatment with LSN3090729. 

What is the mechanism of TBK1-mediated autolysosome accumulation?  

Our studies demonstrated that TBK1 inhibition leads to upregulation of non-

productive autophagy that results in the accumulation of large vesicles that are unable to 

resolve. The accumulation of mCherry-tagged LC3 in these large vesicles indicates that 

these are unresolved autolysosomes that have acidified sufficiently to cause the degradation 

of the EGFP signal, but not of the mCherry signal (112). These autolysosomes continuously 

swell in size rather than undergo normal degradation and export of cargo to other endocytic 

vesicles. This non-productive autophagy, while not immediately lethal to PDAC cell lines, 

correlated with slight reduction in cellular proliferation rates following treatment with 

LSN3090729.  

To determine the mechanism of the observed autolysosomal accumulation in PDAC 

cells, I propose to use RNAi-mediated  knockdown or pharmacologic inhibition of individual 

regulators of autophagy and lysosomal fusion (e.g., Atg-5/7, Ulk1/2, beclin-1, VSP34, etc.) 

(36, 112) to determine which of these proteins produce a similar phenotype to loss of TBK1 

activity. Any positive hit could identify a potential, novel TBK1 binding partner or TBK1-

regulated protein associated with autophagy. These data might give mechanistic insight into 

how these autolysosomes accumulate.  

Can TBK1 inhibitors be paired successfully with other targeted therapies or 

chemotherapies to drive the cells towards death?  

Though PDAC cells develop enormous autolysomes as a result of non-productive 

autophagy, this alone is not sufficient to induce apoptotic cell death or significantly reduce 
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cellular proliferation in all cell lines. I observed no cleavage of PARP or caspase-3 upon 

TBK1 inhibition (data not shown), and at up to 72 h, cells containing these large 

autolysosomes were still viable and able to metabolize MTT while remaining adhered to the 

tissue culture flask. The grotesque morphological phenotypes of these cells would suggest 

that viability should be compromised and that TBK1 inhibition could be driving these cells, 

albeit weakly and slowly, towards cell death.  

To determine whether TBK1 inhibition may yet be a fruitful strategy for the treatment 

of PDAC, I would first culture cells for a long period of time (>2 weeks) in TBK1 inhibitor to 

determine if this non-productive autophagy eventually leads to cell death at time points 

longer than 72 h. Death by autolysosomal accumulation may very well prove to be a slow, 

but efficient process. These non-productive autolysosomes would allow substances to 

accumulate in the cell and interfere with normal cellular physiology, perhaps similar to 

lysosomal storage diseases, such as Niemann-Pick disease (218). Secondly, it is highly 

possible that TBK1 inhibition alone will never be enough to drive PDAC cell toward death, 

and that combined inhibition of multiple cellular processes should be evaluated. Our studies 

with the ERK1/2 inhibitor, SCH772984 did not lead to a significant loss of viability in PDAC, 

either in vitro or in vivo, but this excludes only one of many potential therapeutic targets. No 

tumor cell is solely reliant on one oncogenic pathway for survival, so I propose pairing 

LSN3090729 with other targeted therapies, such as a PI3K or PAK1 inhibitor. Previous 

studies cited above, including my own studies that are the subject of this document, indicate 

that PI3K and PAK1 are involved in driving macropinocytosis in PDAC. Macropinocytosis 

and autophagy can be considered as different sides of the same coin with relation to nutrient 

scavenging in tumor cells. In theory, if one could concurrently block both macropinocytosis 

(with PI3K and PAK1 inhibition) and autophagy (with a TBK1 inhibitor), pancreatic tumor 

cells would be less able to meet the demands of their hyperactive metabolism. This could 

lead to cell death. Additionally, I would like to assay the effect of dual treatment with 
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LSN3090729 and gemcitabine or nab-paclitaxel, which are currently approved 

chemotherapeutic regimens used in the treatment of pancreatic cancer (141).  

Conclusion 

In summary, I have found that both PAK1 and TBK1 play a role in mediating 

metabolic processes in PDAC. While PAK1 appears to be a more promising target for 

therapeutic intervention in PDAC, TBK1 exhibited more limited potential as a single agent. 

My studies demonstrate the need for further evaluation of the mechanisms whereby these 

kinases modulate PDAC metabolic processes. Further, they support the idea that inhibitors 

of these proteins would be effective in combination with other therapies for the treatment of 

pancreatic cancer. 
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