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ABSTRACT 
 

ERIC NOWICKI:  Measurement Error of Energy Intake During Pregnancy and its Influence 
on the Association Between Carbohydrate Quality and Fetal Growth  

(Under the direction of Anna Maria Siega-Riz) 
 

          Population studies rely on self-reported dietary intake, which is subject to considerable 

measurement error.  A growing body of literature has shown that subjects tend to underreport 

energy (food) intake, and that underreporting occurs more frequently in certain subgroups, 

such as women and overweight persons.  Further, recent evidence has demonstrated that 

systematic reporting error in energy intake can seriously distort nutrient risk estimates.  

Maternal nutrition plays an important role for both the mother and fetus; however results on 

associations between diet and pregnancy outcomes thus far have been modest or non-

existent.  One reason may be systematic reporting bias in nutritional data, although very little 

is known about this error in pregnant populations. 

Adequate fetal growth is an important predictor of newborn complications, and also 

contributes to a wide array of health conditions in adolescence and adulthood.  Maternal 

glucose is the main energy substrate for intrauterine growth.  The glycemic index (GI) and 

glycemic load (GL) of dietary carbohydrate, has been shown to alter postprandial glucose 

and insulin concentrations among healthy pregnant women, and thus may alter glucose 

substrate levels available for the fetus.  Despite this strong biological plausibility, research 

on the carbohydrate quality of maternal diet and fetal growth remains limited.   
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This dissertation includes two analyses of data from participants in the third phase of the 

Pregnancy, Infection and Nutrition cohort study (PIN3).  The first analysis indicates that 

measurement error in energy intake is prevalent during pregnancy with 32.8% and 12.9% of 

subjects reporting intakes that were implausibly low and high, respectively.  This error also 

varied by several maternal characteristics including pregravid body size, which is an 

important predictor of many pregnancy outcomes.  Therefore, determining the nature of 

measurement error in energy intake may help to improve dietary assessment methodology in 

reproductive studies and account for bias in the calculation of effect estimates.  In the second 

analysis, no association was observed between carbohydrate quality and fetal growth among 

generally healthy pregnancies; a null finding that remained after exclusion of participants 

with implausible energy intakes.  Strengths and limitations of this study and the current 

literature, as well as and recommendations for future research are noted. 
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Chapter One 
 

Background and Significance 
 
1.1. Assessment of Diet During Pregnancy  

Measuring diet accurately is challenging in human populations.  Food is a universal 

and essential exposure and its consumption is driven by numerous physiological, 

psychosocial, cultural and environmental circumstances.  In the United States and other 

developed countries, a person’s dietary intake can vary substantially from day to day (1), 

which introduces random error in estimates of usual intake. Day-to-day variation in 

intake arises from multiple biologic and environmental influences such as appetite, 

physical activity, illness, season of the year, holidays, and personal economic conditions. 

The direct observation and accountability of all food consumed is costly and impractical 

for most research.  Therefore, population based studies must rely on self-reported dietary 

intake, which is subject to considerable measurement error.  An emerging literature has 

begun to identify sources of systematic bias in nutritional data and the influence of this 

error on diet-disease associations.  However, such research in pregnant populations is 

exceedingly limited.  

Dietary assessment in pregnant women presents some distinctive challenges.  

Gestation is the most intensive period of human growth and development.  Conception 

triggers an array of complex physiological and behavioral changes that affect maternal 

nutrient absorption and metabolism, energy and nutrient needs, appetite, and meal 
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patterns (2, 3).  Nausea, which is estimated to occur in 50-80 percent of pregnancies, 

typically persists throughout most of the first trimester.  Heartburn and constipation can 

also occur as a result of pregnancy and may trigger changes in usual food habits.  Pica, 

an eating disorder characterized by the compulsion to eat substances that are not food, 

may affect up to one half or more of pregnant mothers.  In addition, pregnant women 

may develop food preferences and aversions due to changes in the sense of taste and 

smell.  Dietary intake of the mother may also change once they learn of their pregnancy 

in response to clinical recommendations or their own perception of an appropriate 

prenatal diet.  In fact, recent evidence has observed moderate intra-individual changes in 

energy and certain nutrient intakes between trimesters (4, 5).  Another issue unique to 

pregnancy is that both optimal fetal growth and appropriate maternal weight gain are a 

primary focus in prenatal care.  Such increased emphasis on maternal nutrition, food 

habits and weight consciousness may promote social desirability response bias in self-

reported dietary data.   

Determining the time period during pregnancy in which to assess dietary intake is an 

important methodological consideration.  The critical window whereby the primary 

nutrient or food of interest may influence the primary outcome is a key factor.  For 

example, diet in the first trimester may be more important to the development of various 

organs, while diet later in pregnancy may be more important for endpoints such as fetal 

growth.  Other circumstances such as physiological changes, stages of prenatal care, and 

study feasibility can also play a role.  Certain diet related health conditions that are 

diagnosed during pregnancy, such as gestational diabetes and preeclampsia, may bias 

future dietary assessment, as well as, pregnancy outcome.  Further, enrollment in 
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pregnancy cohort studies typically begins after the woman has become pregnant, which 

complicates ascertainment of diet in the first trimester (6) 

The Food Frequency Questionnaire (FFQ) has been shown to be an appropriate 

method for assessing dietary information in a wide variety of epidemiological settings, 

including studies among pregnant women.  FFQs are designed to ask respondents to 

report their usual frequency of consumption for specific foods or food groups over a 

previous period of time (i.e. month, year). Compared with other self-report methods, 

such as 24-hour dietary recalls and food records, the FFQ generally collects less detail 

regarding foods consumed, cooking methods, and portion size. As such, the 

quantification of intake is considered less accurate (7).  However, the FFQ can be self-

administered and imposes less subject burden compared to other self-report measures.  

Also, unlike records or recalls, FFQs are designed to capture usual dietary intake, which 

is desirable for examining the association between health outcomes and relevant dietary 

exposures  (8).  Moreover, the FFQ is particularly useful for ranking nutrient exposures, 

as opposed to estimating absolute intake, which is lends itself well to epidemiologic 

studies.  The ability of FFQs to capture habitual intake over a previous specified period 

of time is particularly useful in pregnancy studies where enrollment may not begin until 

the second trimester.   

FFQ methodology relies on data sources to develop food lists, portion sizes and a 

nutrient database to convert responses into estimates of daily nutrient intake.  The Block 

and Willett FFQs or modifications of either are among the most widely used dietary 

research (9). These two FFQs differ on several dimensions, such as the number of food 

items, specific food items, the way food items are grouped, the frequency categories, and 
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scoring methods. The Block FFQ also differs from the Harvard FFQ in that it asks an 

individual to approximate the usual portion size of each food item consumed.  The Block 

FFQ utilizes the most recent available nationally representative dietary data to develop 

the food lists, portion sizes, and nutrient databases (10).  And, the Willett FFQ database 

is constructed using multiple governmental and commercial sources, including tables 

from food manufacturers and journal articles (8).  FFQs are typically adapted for a given 

study population depending upon demographic factors such as age, income, education, 

race/ethnicity, as well as, study objectives including the nutrients or food groups of 

interest and the period of recall.  Other considerations are the inclusion of seasonal foods 

and supplements, as well as, cognitive issues regarding comprehension, number and 

order of food items, and format.  Both the Willett and Block FFQs have been utilized 

extensively in studies of pregnant women.  Some investigators have also designed their 

own FFQ specifically for maternal dietary assessment in their study population (11). 

     

 

 

1.1.2. Validity of FFQs in Pregnant Populations 

A large body of literature in non-pregnant populations indicates that FFQs can 

provide reasonably good measures of dietary composition when compared with more 

detailed assessments of diet or biochemical measures of intake (12).  Correlation 

coefficients between FFQs and reference methods in adult populations typically range 

between 0.40–0.70 for most foods and nutrients, including composite measures of 

carbohydrate intake such as glycemic index and glycemic load (13, 14, 15).  Sources of 
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measurement error include difficulty with recall, assessment of portion sizes, and social 

desirability bias.  It has been noted that the similarity of correlation coefficients across 

validation studies suggests a ceiling of validity, which may be attributed to both the 

inherent complexity of diet that cannot be fully captured by a structured questionnaire, as 

well as, error in the comparison methods.  FFQs also depend on the participants’ long-

term knowledge of their own dietary patterns, which consists of subjective assumptions 

about the nature of their habitual diet.  As such, they may not qualify for absolute 

validation procedures.  Validation of FFQs among pregnant women has been examined, 

however, research in this population remains limited (11, 16, 17, 18, 19, 20).  Some 

factors unique to pregnancy that may affect FFQ performance include gestational age 

(i.e. trimester), nausea, and parity; however, their potential influence has been addressed 

in only a small number of studies.   

A seminal validation study of FFQs in pregnant woman was conducted in 1994 on 

participants of the Women, Infants, and Children (WIC) program, which targets low-

income families.  Women were enrolled regardless of gestational age and the study 

population included approximately equal numbers of black, Hispanic and white subjects 

from multiple geographic areas of the United States.  A total of 186 participants with an 

average age of 25 years completed a self-administered Willett or Block FFQ (randomly 

assigned), as well as, three nonconsecutive 24-hour dietary recalls for the criterion; 

although, 16% of the sample was not included in the final analysis because of unreliable 

24-hour recall data .  Results suggested that neither the Willett nor the Block FFQ 

performed particularly well in this sample with only one of the eight nutrients analyzed 

having a correlation coefficient greater than 0.40.  The lowest values were among 
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Hispanic participants, who had considerably less years of education compared to the 

African American and white mothers.  The authors also noted that the FFQs were not 

ideal in listing all culturally appropriate foods and deriving nutrient estimates for certain 

foods commonly selected by Hispanic women.  Another study validated a self-

administered Willett FFQ in a culturally diverse sample of low-income women in 

Massachusetts and found slightly higher correlation coefficients with 7 of the 8 nutrients 

greater than 0.40 (21).  However, only women completing a FFQ in English were 

included in the final analysis.  Neither of these earlier studies stratified their results by 

race/ethnicity or income level likely because of small sample sizes.   

More recently, Baer et al reported on a large study of 283 pregnant women enrolled at 

WIC clinics in North Dakota (16).  Nutritional assessment was conducted at 12 weeks 

and 28 weeks gestation comparing the Willett FFQ with three 24 hr interviews at each 

period.  Correlation coefficients for most nutrients were fairly similar across subgroups 

when computed separately by ethnicity and poverty level.  However, the authors noted 

that the average correlation coefficient was slightly lower for American Indians than 

Caucasians (0.46 vs 0.51 at week 12, 0.37 vs. 0.50 at week 28) and slightly higher for 

women at 100% or less of poverty than 101% or greater (0.51 vs 0.48 at week 12, 0.54 

vs 0.40 at week 28).  Of note, the sample size for the American Indians group was 

comparatively smaller than the Caucasians (37% vs. 63%).  Interestingly, a study of 56 

well educated, white women in Minnesota had correlation coefficients similar to the 

results of studies in low-income, ethnically diverse WIC populations (22).   Using the 

Willett FFQ and four-day food records, Brown et al. reported an average correlation of 

0.45 in 15 nutrients during pregnancy.  These women were slightly older than the WIC 
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populations with a mean age of 32.  Nevertheless, these results indicate that 

socioeconomic status and race/ethnicity may not substantially alter FFQ performance in 

pregnant populations.   

Other validation studies have been conducted in Europe all of which tested their own 

FFQ design as opposed to a modified Willett or Block questionnaire.   A community-

based study of 569 women in the United Kingdom reported correlations ranging from 

0.27 to 0.55 for 20 energy-adjusted nutrients assessed by a 100-item FFQ and four-day 

food diaries at 15 weeks of pregnancy (19).  Erkkola et al. found somewhat better results 

in their sample of 113 Finnish women in their third trimester of pregnancy (23).  Their 

181-item FFQ and two five-day food records had an average correlation coefficient of 

0.53 for 45 nutrients and 70% of the foods and 69% of the nutrient estimates fell into the 

same or adjacent quintiles.  Mikkleson et al. utilized both 7-day weighed food diary (FD) 

and biomarkers to validate their FFQ during 32-38 weeks gestation in 88 pregnant 

Danish women (24).  Intakes estimated from the FFQ and both reference methods were 

all significantly correlated, ranging from 0.20 for retinol intake to 0.57 for folic acid 

intake.  Bransaeter et al. reported on their FFQ validation in 119 pregnant Norwegian 

women that the average correlation coefficient between the FFQ and food diaries for 

daily intake was 0.48 for foods and 0.36 for nutrients; and on average, 68% of the 

participants were classified into the same or adjacent quintiles by the two methods (11).   

Many dietary validation studies in pregnant women cite nausea as a potential source 

of measurement error (11, 19, 23, 25, 26), but few reports investigated this as a formal 

hypothesis.  In a validation study by Fawzi et al., 70% of women had experienced nausea 

during the dietary assessment period which was a mean gestational age of 9 weeks(25).  
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Of these, 57% of African American and 74% Caucasian women reported that they 

changed their dietary habits as a result of nausea.  Conversely, in a longitudinal 

assessment of energy expenditure using doubly labeled water, 10 out of 12 subjects 

reported nausea during early pregnancy, yet most women claimed that their appetites 

were the same as their normal during this time.  Brantsaeter et al. found that 76% of 

subjects reported nausea during the pregnancy, but only 15% reported nausea still at the 

time of answering the FFQ (12-15 weeks gestation).  Robinson presented an analysis by 

reported nausea severity for correlations of macronutrients for 569 women at 16 weeks 

of pregnancy(27).  With the exception of protein, the greatest correlations between food 

diary and FFQ were seen in the group of women who reported no nausea.  Moreover, the 

correlations for energy, fat and carbohydrates were significantly attenuated with 

increasing nausea severity.  These results suggest that the presence and severity of 

nausea may influence reported dietary intake of individual macronutrients; and, as a 

result, the overall validity of FFQ data may be underestimated in early to mid pregnancy.  

Conversely, a validation study comparing dietary pattern scores between FFQ and diary 

data found no trends in agreement across categories of nausea severity (28).   

Only one study examined whether the validity of dietary assessment tools was 

modified by parity or stage of pregnancy.  In the study by Baer at al., average 

deattenuated correlations comparing nutrient intakes estimated from the FFQ and the diet 

recalls at 12 weeks gestation were 0.47 for those with no previous livebirths, 0.58 for 

those with one previous livebirth, and 0.41 for those with two or more previous 

livebirths, and these were similar at 28 weeks gestation.  The authors also reported 

similar validity during the first and second trimesters, as shown by the average 
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deattenuated correlation coefficients of 0.48 and 0.47 for the week-12 and week-28 

FFQs compared to the 24-hour diet recalls (16).  

To summarize, the current literature suggests that the agreement between FFQs and 

more detailed dietary assessment methods is similar, or perhaps, slightly less than in 

other adult populations.  A small reduction in FFQ validity could reflect a less stable diet 

during pregnancy or the augmentation of other sources of error, such as, social 

desirability bias.  Regardless, validation studies generally conclude that FFQs provide 

reasonable classification of dietary intake for testing associations between diet and 

reproductive outcomes.  Research does not indicate that FFQ performance during 

pregnancy is substantially different in lower income or non-white mothers; although 

special cultural modifications may be necessary for use in Hispanic populations.   

Further, it does not appear that FFQ validity depends greatly on parity or stage of 

pregnancy; however, the degree to which nausea may influence dietary assessment and 

which nutrients are most affected remains unclear.   

 

 

1.2. Underreporting Bias in Dietary Intake  

Although FFQs and other self-report measures are deemed sufficiently valid for 

supporting causal inference, their threat to internal validity does not end with data 

collection.  A substantial body of literature has demonstrated that all methods of self-

reported dietary assessment tend to underreport energy and nutrient intake(29); and 

understanding the nature and severity of this bias is critical for disclosing true diet-

disease associations.  Research suggests that underreporting has both conscious and 
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unconscious dimensions resulting in the omission or the underrepresentation of the 

frequency and/or portion size of a food item.   Reporting fatigue, memory disturbances, 

and social desirability bias are established sources of misreporting energy and nutrient 

intake.   

 Dietary underreporting includes both random and systematic errors.  In general, 

random misclassification of a risk factor leads to an underestimation of diet-related 

health effects (8).   Studies have demonstrated how this error in the dietary estimates can 

attenuate measures of association, thereby reducing the power of the study.  Of greater 

concern is the accumulating evidence that nutrient risk estimates also incorporate 

systematic error, which has a far less predictable bias on the measure of association (30, 

31, 32).  Several investigators have indicated that the impact of systematic 

underreporting on the design, analysis and interpretation of nutritional studies may be 

much greater than previously estimated; and a better understanding of this measurement 

error is needed (33, 34, 35, 36). 

 

 

1.2.1. Measurement Error in Intake  

Correct estimation of energy intake is vital to many areas of nutrition research.  In 

epidemiologic studies, adjusting for total energy intake is critical to control for 

confounding, reduce extraneous variation, and predict the effect of dietary interventions.  

Failure to account for total energy intake can obscure associations between nutrient 

intakes and disease risk or even reverse the direction of association (37).  National 

survey data show that reported energy intake has decreased in recent decades despite a 
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rise in the prevalence of obesity. This disparity may be due to a decrease in energy 

expenditure, a secular increase in under-reporting, or both (38).  Further, a growing body 

of literature has demonstrated that underreporting energy intake is more prevalent in 

certain population subgroups.  However, information on the frequency, magnitude and 

predictors of energy underreporting during pregnancy is exceedingly limited.   

 

1.2.1.1. Key Concepts for Measurement Error in Intake  

 

1.2.1.1.1 Total Energy Expenditure (TEE) 

To identify measurement error in energy intake (EI) and factors associated with 

energy underreporting it is necessary to have an objective estimate of energy 

requirement, which is based on total energy expenditure (TEE).  TEE is the amount of 

energy spent, on average, in a typical day (kcal/day) to sustain life and is comprised of 3 

components: resting energy expenditure, thermic effect of feeding, and energy 

expenditure of physical activity. According to the fundamental principal of energy 

metabolism, TEE and EI are equal under conditions of stable body weight (Schoeller, 

1990).  

  Doubly labeled water (DLW) is generally considered the gold standard for assessment 

of TEE (19).  It uses non radioactive isotopes to measure carbon dioxide production, an 

indirect measure of metabolic rate.  Several studies have demonstrated DLW to have a 

relative accuracy of 1-3% and a within-subject repeatability of 5-8%.  While this 

technique provides confirmation of inaccuracies in reported energy intake, DLW is very 

costly and its use is precluded in large population studies.  In 2002, estimated energy 
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requirement (EER) prediction equations were published as part of the Dietary Reference 

Intakes (DRI).  EER equations were developed from an extensive normative DLW 

database, which included TEE measurements on adults, children and pregnant women 

with a variety of physical activity levels.  DRI equations for EER have been utilized in 

recent studies of energy underreporting (39, 40) and their accuracy has been 

independently corroborated (41). 

 

1.2.1.1.2. Basal Metabolic Rate (BMR) and Physical Activity Level (PAL) 

 Basal Metabolic Rate (BMR) is the minimum caloric requirement needed to sustain 

life in a resting individual and is the most dominant component of TEE.  BMR is 

measured by gas analysis through either direct or indirect calorimetry, which is much 

less costly than DLW.  In 1985, prior to expansive DLW data, a consultation group for 

the World Health Organization, published equations to estimate BMR using age, sex, 

height, and weight; and recommended that TEE be expressed as a multiple of BMR to 

determine energy requirements.  These multiples of BMR are referred to as physical 

activity levels (PALs) and calculated by dividing TEE by BMR.  Thus multiplying the 

PAL by the BMR estimates actual energy requirements; and the ratio of EI to BMR 

(EI:BMR) should equal PAL under conditions of stable body weight.   

Numerous publications have highlighted the strengths and limitations of this method 

to estimate caloric requirements.  For example, it has been demonstrated that the initial 

BMR equations developed by Schofield et al. are not representative of certain subgroups 

and also tend to underestimate BMR among in pregnant populations.  In addition, the 

WHO recommended PALs were derived based on limited DLW data and required 
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assumptions about the energy costs of physical activity, effect of meals and other 

thermogenic processes.  Despite some concerns about its general application, comparing 

EI:BMR with PAL has been deemed a convenient and reliable tool for detecting under-

reporters in most populations; although it should be modified for use in pregnant women 

to account for metabolic demands throughout gestation. 

 

 

1.2.1.1.3. Cutoff Values to Identify Underreporting 

Energy underreporting, also known as low energy reporting (LER), is typically 

defined as a self-reported EI that falls below some physiologically plausible cutoff.  The 

two validation methods for reported energy intake compare either TEE with EI or 

EI:BMR with PAL.  However, absolute agreement cannot be expected since there is 

measurement error in all elements of these equations; thus, confidence limits of 

agreement should be determined.  The lower confidence limit represents a value below 

which it is statistically unlikely that the reported intake represents either `habitual' long 

term intake or a low intake obtained by chance.  Goldberg et al., produced an equation 

that accounts for variation in PAL, daily energy intake, number of diet assessment days, 

and the error in estimated versus measured BMR (26); it was further adapted by Black 

and Cole to include error in estimated versus measured TEE (42).  Overreporting can 

also be identified using the upper confidence limit of the Goldberg cutoff.  However, 

overreporting food intake occurs less frequently than LER and is typically of less 

scientific interest.  In a meta-analysis of DLW energy expenditure of free-living subjects, 

Black et al. found that 35% of women underreported their intake while only 2% of 
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women over-reported.  Some researchers use a more simplified EI:BMR cutoff of 1.2, 

which was also proposed by Goldberg as the minimal requirement to sustain body 

weight, however, this approach ignores sources of dietary assessment variation and has 

been shown to be less accurate than a confidence limit approach.   

Several studies have shown the Goldberg cutoff to be reliable and conservative, 

detecting a large proportion of underreporters with a relatively small fraction of false 

positives.  Black et al. found that when individual data on physical activity was available, 

the Goldberg cutoff sensitivity improved from 0.52 to 0.67 without a loss of specificity 

(0.98) in a sample of 264 women.  A recent paper also demonstrated no difference in 

sensitivity or specificity when the Goldberg cut-off was applied to either EI:BMR or 

EER (43).  This cut-point methodology also appears robust in identifying subgroups with 

implausible energy intakes as studies using prediction equations have found similar 

conclusions as those using DLW. 

 

1.2.1.2. Prevalence of Energy Underreporting 

LER frequency can vary greatly between study populations.  DLW studies have 

provided confirmation on the existence of LER, but this research has been conducted on 

relatively small samples of highly motivated individuals, which weakens the external 

validity of their prevalence estimates.   On the other hand, a number of large national 

dietary surveys have estimated the prevalence of underreporting using prediction 

equations for energy requirements. Although such epidemiologic studies are considered 

less precise than DLW, this type of research can provide more appropriate population 

estimates of underreporting, as well as, the opportunity to look at a variety of predictor 
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variables.  LER prevalence can also vary by dietary assessment method however studies 

comparing the accuracy of these methods are inconsistent in their findings.  Among these 

studies, some have found that the food frequency questionnaire (FFQ) provided less 

underreporting than diet recalls, diet histories, and food records, while others found the 

opposite (44).   

Regardless of study design and dietary assessment methodology, nearly all 

researchers have noted that frequency of LER has differed according to certain subject 

characteristics.   In particular, LER is found to be more prevalent among women and 

overweight persons.  A large number of studies have also explored reasons for the 

disparity of underreporting in these two subgroups.  However, despite the abundance of 

literature regarding gender and obesity specific underreporting, information on the 

frequency and nature of LER in pregnant women is exceedingly limited.   

 

1.2.1.2.1. Demographic Predictors of Energy Underreporting 

LER is consistently more prevalent in women than men.  A review of LER studies 

using EI:BMR methodology found that in 11 of the 12 studies females were significantly 

more likely to under-report their dietary intake than males (45).  A recent analysis of 

individual data from 21 DLW studies comprising 429 adults found a prevalence of 

underreporting of 28% for men and 38% for women (46).  Further, LER prevalence from 

NHANES III data has been reported as 18% for men and 28% for women (47).  Several 

studies have indicated that a higher frequency of weight consciousness and dietary 

restraint among women contributes to this disparity (48). 
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Most studies in the United States have found an association between LER and low 

education or socioeconomic status (SES) (49).  This association may be explained, in 

part, by poor literacy and comprehension of dietary assessment.  For example, in a study 

population of low income women, poor literacy scores were the best predictor of LER 

(50).  However, the effect of education and SES is not always predictable as other studies 

have shown better educated, higher SES subjects can have a similar tendency toward 

LER, which may result from greater weight consciousness and social desirability bias 

(51, 52)  

Cultural differences in attitudes toward food and nutrition are well documented.  

However, the influence of race/ethnicity on dietary reporting behaviors is unclear.  LER 

has been documented in many populations across world and the literature indicates that 

underreporting is a universal phenomenon in both Western and non-Western cultures.  

However, research that has directly compared LER prevalence in multiple race/ethnic 

groups is limited.  Those studies do, however, suggest a higher frequency of 

underreporting among Caucasians compared to African Americans and Hispanic 

populations (36, 47).    

 

1.2.1.2.2. Overweight and Obesity Related Underreporting 

Early studies of obesity failed to identify excessive energy intake as a causal factor.  

Moreover, the prevailing attitude of obese persons was that their energy intake was no 

higher than that of an equivalent lean person.  In 1986, Prentice et al. conducted the first 

study to apply DLW to examine dietary measurement error by comparing TEE and 

energy intake in lean and obese women.  Dietary intake was measured using 7-day 
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weighed food records and all subjects were matched by obesity status for height, social 

class, and type of occupation.  In the lean group, average recorded energy intake was 2% 

lower than the measured energy expenditure, while mean intake in obese subjects was 

67% of TEE, representing an underestimate of 835 kcal/day.  In addition, energy balance 

was calculated after adjusting for changes in body composition over the measurement 

period.  A mean negative energy balance of 419 kcal/day was found in obese subjects, 

which suggests that a portion of underreporting bias in obese subjects may be due to 

dieting or restricted food intake.   

Numerous subsequent studies utilizing both DLW and prediction equations have 

supported the existence of an obesity specific underreporting bias in a variety of 

populations, particularly among women.   In fact, weight status, measured as body mass 

index (BMI), is the most robust predictor of LER and the magnitude of underreporting 

generally increases with higher BMI (49).  A recent review noted that 22 out of 25 

studies found a positive association between LER and higher BMI.  Furthermore, in 

studies that examined a range of variables, BMI explained the largest proportion of 

variance in LER. However, the association between obesity and low-energy reporting is 

not absolute. The probability that a subject will underreport increases as BMI increases, 

but there are obese subjects who do not underreport. Johansson et al. noted that 52% of 

underreporters had a BMI greater than, 25 kg/m2.  In some populations, obese subjects 

have been found to underreport up to half of their total energy intake (53).   

There is no plausible biological reason where higher body weight or excess body fat 

would cause women to underreport energy intake.  Thus, measures of body size and 

adiposity are likely surrogates for psychosocial characteristics that result in 
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underreporting energy, such as poor awareness of intake or portion sizes, deliberate 

underreporting, and subconscious biasing toward intake that is perceived to be 

appropriate (53).  In fact, a growing body of literature suggests that psychosocial factors 

such as restrained eating, concerns about body weight, and social desirability bias may 

explain LER in both obese and non-obese women.  Evidence suggests that such 

psychosocial characteristics are also prevalent during pregnancy, including a common 

fear of maternal weight gain (54); but studies on their relationship with weight status and 

LER in pregnant women have not been published. 

 

1.2.1.3. Energy Underreporting in Pregnancy Populations 

Very few studies have reported on the nature of underreporting dietary intake during 

pregnancy.  Goldberg et al. studied twelve women from Cambridge, UK during 6 to 36 

weeks gestation at 6-week intervals and conducted assessments of TEE by DLW method, 

BMR, energy intake, and body composition at each occasion.  Mean reported energy 

intake from 7-day weighed food records was underestimated compared to TEE by 6 to 

15 percent in the first trimester, 12 to 18 percent in the second trimester, and 22 to 24 

percent in the third trimester.  Using the Goldberg cutoff limits, 3 of the 12 (25%) 

subjects were consistently indentified as LER.  All subjects who completed were 

Caucasian and otherwise healthy, although this study sample was highly selective with a 

low participation rate and relatively high dropout rate.  More than 80 women responded 

and only 33 agreed to participate in the study. Of these, five conceived before the initial 

basal metabolic rate (BMR) measurement, three dropped out because they miscarried 

within the first 16 wk, four dropped out for other reasons, and nine failed to conceive.  



 

19 

Nevertheless, results from this study provide evidence that LER can occur during 

pregnancy and that the magnitude of underestimation may increase across trimesters.   

Winkvist et al. evaluated LER among 490 pregnant Indonesian women in a 

longitudinal study of dietary intake, using six repeated 24-hour diet recalls at each 

trimester.  BMR was estimated from a prediction equation using body weight and 

physical activity from occupation.  The Goldberg cutoff for EI:BMR was calculated to 

identify LER and certain risk factors were assessed.  For the three trimesters, proportion 

of LER was 29.7%, 16.2% and 17.6%, respectively.  Many women reported nausea 

during the first trimester and the mean weight gain was only 0.08 kg during that period.  

Thus, it was concluded that LER frequency in the first trimester likely reflected a true 

low intake due to nausea, rather than underreporting.   LER frequency in the second and 

third trimester was lower than is typically reported in non-pregnant women from the 

United States, but was similar to other published data of non-pregnant women in 

developing countries (55).  LER also varied by subject characteristics.  At each trimester, 

LER was more prevalent in women with a BMI greater than 25.0; and was more 

prevalent in women with less than 7 years of education in the second trimester.   

Derbyshire et al. studied LER in a convenience sample of 72 Caucasian, primiparous 

nonsmokers recruited from three London teaching hospitals.  Energy intake was 

estimated from 4-7 day weighed food records during the first trimester and was also 

compared with prepregnancy BMI abstracted from medical records.  It was reported that 

prepregnancy BMI was inversely associated with mean EI:BMR; and underreporting 

occurred in 24% of subjects with LER identified in 5 out of the 6 obese subjects.   
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In summary, the literature on LER in pregnant women remains sparse and has 

several limitations.  Each study was conducted on a small and relatively homogeneous 

population.  In particular, the two studies in Caucasian populations from the UK 

consisted of highly selective convenience samples, greatly limiting their external 

validity.  Although the cohort of Indonesian women may be somewhat representative of 

other pregnant women in the developing world, they are, on average, leaner and more 

physically active than pregnant women in developed countries.  Moreover, all studies 

estimated BMR using prediction equations that were not designed for use in pregnant 

women and it is unclear whether the recommended adjustment for changes in pregnancy 

metabolism was performed (56).  Finally, the nature of underreporting is complex and 

certain risk factors, such as fear of weight gain, are prominent during pregnancy; 

however, only a few predictors of LER have been assessed in the current literature.  A 

recent study of 35,929 pregnant women found that concern about maternal weight gain 

was prevalent and that it was also associated with outcomes of fetal growth (57).  Greater 

worry was associated with higher gestational weight gain, higher infant weights, greater 

likelihood of a large-for-gestational-age infant, and reduced likelihood of a small-for-

gestational-age infant.  

Despite methodological limitations, these few studies do suggest that underreporting 

needs to be considered in studies of maternal dietary intake.  However, the prevalence, 

magnitude and predictors of LER in pregnant women are still unclear.  Large studies of 

LER during pregnancy in developed countries have not been reported; and no studies on 

LER in pregnant women from the United States have been published, to date.  Future 
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population studies should include large samples of diverse pregnant women and explore 

a variety of predictors of LER.   

 

 

 

1.2.2. Selective Underreporting of Nutrients 

Some evidence indicates that reporting bias in total EI may also be associated with 

variable bias in macronutrient intake.  More specifically, percent calories from fat and/or 

carbohydrate tend to be under-reported whereas percent calories from protein are 

typically accurately reported or even over-reported (45).  Research in this area has some 

inherent limitations, however, since objective criterion methods are only available for 

estimating protein intake.  Therefore, carbohydrate and fat specific underreporting cannot 

be directly estimated.  As a result, studies that explore macronutrient specific under 

reporting typically compare differences between suspected under-reporters and ‘valid’ 

reporters using either an EI:BMR ratio or urinary nitrogen techniques.   

Several studies have found that carbohydrate intake is under-reported in dietary 

studies (34, 47, 58, 59, 60, 61).  However, these findings are not consistent across all 

studies.  A review of 20 studies found no trend in percent energy from carbohydrates 

between LER and non-LER subjects (49), although there did appear to be reporting 

variability between type of carbohydrate.  In six of the studies where data on the 

percentage of energy derived from starches and sugars were available, starch energy 

tended to be higher in LER, but sugars energy was lower.  Further, two recent studies 

have also noted that high-GI foods may be selectively underreported, particularly among 
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obese subjects (62, 63).  However, formal analyses to support this hypothesis are 

limited.  One of these studies reported an age-adjusted linear decrease of LER across 

glycemic index tertiles in a large cohort of Spanish women; while no difference in LER 

by tertile of percent energy from carbohydrate was observed in this population.  Most 

researchers observing selective underreporting of high sugar and high GI foods note 

social desirability bias as a primary explanation.  Additionally, evidence also suggests 

that snacks and food eaten in between meals are particularly susceptible to under 

reporting especially in overweight subjects (47, 64, 65).  Moreover, snack foods also 

tend to be higher in sugar and lower in protein and fat compared to meals (66).   

Despite a lack of consistency in study findings, it is becoming increasingly 

acknowledged that selective reporting error does occur in the general population (34).  A 

recent study utilizing DLW and protein biomarkers confirmed overreporting in 

percentage of energy derived from protein, together with the underreporting of energy 

intake, which suggests a disproportionate underreporting of fat and/or carbohydrate (36).  

Some authors have also demonstrated how macronutrient specific underreporting in 

obese individuals can seriously distort measures of association (67).  Therefore, the 

general underreporting of energy intake among obese subjects may be compounded by 

food-specific underreporting.  To date, however, no publications have addressed 

macronutrient specific underreporting in pregnant populations.   

 

1.3. Methods to Account for Underreporting Bias 

Interpretation of self-reported nutrient data in relation to a disease outcome is 

critically dependant on the method of data analysis.  Underreporting can seriously bias 
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nutrient and risk estimates, particularly in studies where energy intake and weight status 

are important exposures.  However, it is unclear how to best account for dietary data 

from LER subjects in the analysis.  Ideally, the method of choice is one that best 

minimizes bias, provides maximum power and is the most strongly related to biological 

or other objective markers of nutrient intake.  And, the goal is to provide insights into 

diet-disease relationships that would otherwise have been obscured by the measurement 

error in self-reported intake.   

 

1.3.1. Energy Adjustment for Nutrient Intakes 

 

Intakes of specific nutrients, particularly macronutrients, and their measurement error 

tend to be highly correlated with intake and variation in total energy consumption, 

mainly because they are both computed from the same foods.  This relationship presents 

two major problems in the attempt to separate the effect of total EI from the effect of 

nutrient intake in the analysis of diet and disease associations.  First, confounding can 

result if total energy intake is associated with disease risk, perhaps because of differences 

in physical activity, body size, metabolic efficiency, or biased reporting.  If total energy 

is associated with disease, virtually all specific nutrients will also tend to be associated 

with disease risk, in the same direction (37).  Therefore, a nutrient that is found to be 

associated with disease risk could be due merely to an association between physical 

activity and disease risk, with the association being a result of the relation between total 

energy intake and physical activity.  Also, if an outcome of interest, such as obesity, is 

related to misreporting total energy intake, a nutrient may be associated with the disease 
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as a result of reporting bias in overall food intake. Second, failure to control for 

variation in total energy intake may result in extraneous measurement errors for specific 

nutrients (37).  This has been demonstrated in studies that have examined the correlation 

between the intake of nutrients and the blood concentrations of these nutrients, which 

presumably are more directly reflective of biological effects. In general, adjustment for 

total energy intake increased associations between calculated nutrient intakes and their 

concentrations in blood or adipose tissue (68, 69).   

Several methods for energy adjustment have been proposed and their relative merits 

have been debated (37, 70, 71).  Nevertheless, given the consequences of failing to 

account for EI, most studies in nutritional epidemiology focus on results using energy-

adjusted nutrient intakes.  However, many researchers agree that energy adjustment 

alone cannot eliminate differential reporting bias (34, 72, 73), which includes both 

systematic underreporting by subject characteristics such as obesity and more universal 

types of selective underreporting, such as foods of low social desirability.  Energy 

adjustment depends on the assumption that foods, and consequently nutrients are all 

misreported in similar proportions.  Therefore, adjustment for total energy intake may 

only be meaningful if underreporting occurs at the whole-diet level, and there is 

accumulating evidence that this is not always so (34).  Moreover, given the low precision 

of self-reported energy intake, energy adjustment methodology may be compromised by 

failing to control for true energy intake; which could add to residual confounding in 

estimated associations between disease incidence and energy-adjusted nutrients (7). 

Furthermore, the ability of current energy adjustment methods to prevent confounding of 
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risk estimates from differential reporting bias by subject characteristics has not been 

demonstrated. 

 

 

1.3.2. Exclusion of Low Energy Reporters (LERs) 

Excluding LER subjects from the data set has been adopted in many studies as a 

solution to minimize dietary reporting bias, particularly when BMI is a variable of 

interest (39, 59, 63, 73, 74, 75, 76, 77, 78, 79, 80).  And, several of these studies have 

demonstrated that LERs may influence relationships between certain dietary factors and 

health outcomes.  For example, a recent study analyzed a large national survey database 

using a range of cut-off levels for LER and found that excluding implausible energy 

intakes modified several associations between diet and BMI  (80).  Recent studies on the 

association between glycemic index, glycemic load and BMI have also reported results 

both with and without LERs, given the authors’ suspicion that high-GI foods were 

underreported (62, 63).  Moreover, Bergmann et al. found counterintuitive relationships 

in their analyses of body mass index (BMI), net weight gain and energy intake during 

pregnancy; and concluded that underreporting needs to be considered in studies 

investigating maternal dietary intake (81).  More recent studies of diet-disease risk in 

pregnant populations have also noted the importance of excluding LERs (77, 78).  

Although evidence suggests that misleading or spurious diet-disease associations may 

be reported if LERs are not identified and excluded, the application of this methodology 

is not universal and has some important caveats.  LER is consistently prevalent in 

nutrition epidemiology and can comprise a substantial proportion of a given study 
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population.  Exclusion of such a large subgroup can introduce selection bias, reduce 

power, and threaten external validity.  In addition, the Goldberg cut-point approach 

identifies LERs only at the lower end of the energy intake distribution and not those 

subjects whose diet records are plausible but who nevertheless may be under-reporting at 

higher energy intakes.  Furthermore, the exclusion of LER, as with energy adjustment, 

cannot eliminate bias due to selective underreporting of foods, nor does it provide 

corrected estimates of nutrient intake according to systematic underreporting by subject 

characteristics such as obesity. 

 

 

1.3.3. Calibration and Measurement Error Models for Nutrient Intakes 

Measurement error models are commonly used in nutrition epidemiology to calibrate 

self-reported dietary data.  These models are typically regression-based and use 

validation sample data to predict a “true” estimate for the entire study population.   

Statistically, such models assume that either the validation data are measured without 

error or that any such error is independent of the true dietary exposure.  Therefore, 

correlated biases between self-report instruments dictate the use of objective measures of 

diet for calibration, such as biomarkers, since their measurement errors are likely to be 

independent of the errors associated with self-reported estimates (82, 83).  Conventional 

models also assume that measurement error is independent of all other study subject 

characteristics.  However, given the evidence of systematic underreporting bias, some 

more complex measurement error models have been proposed, including a model that 

allows all measurement-error parameters to depend on body mass index and incorporates 



 

27 

a random underreporting quantity that applies to each dietary self-report instrument (30, 

84, 85). 

DLW, the gold standard biomarker for energy consumption, has been used to 

internally calibrate reported energy intake; and such studies have highlighted the 

importance of this measurement error (31, 36).  Recently, Neuhouser et al. found that 

calibrated estimates of energy consumption depended only weakly on FFQ energy and 

more strongly on other participant characteristics, which suggests that disease 

associations with calibrated energy may differ greatly from corresponding associations 

using uncalibrated energy (36).  However, given its high cost, performing DLW is not 

feasible for most epidemiologic studies, even on a small validation sample.  Conversely, 

published energy prediction equations based on DLW data provide an alternative 

objective measure of TEE that can be applied to entire study populations.  However, the 

application of EER in studies of underreporting bias has been limited to identifying LER 

and examining the magnitude and predictors in a given population.  Therefore, the 

potential of EER equations to calibrate energy intake and to estimate energy adjusted 

nutrient intakes has not been adequately explored.  Such an application of the EER 

equations appears valuable for large studies that cannot collect DLW biomarker data and 

particularly when calibrated estimates depend on participant characteristics.  

 

 

1.4. Maternal Nutrition and Fetal Growth 

Fetal growth and birth weight are primary indicators of a successful pregnancy 

outcome.  Babies born large for gestational age (LGA) or small for gestational age 
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(SGA) often have had an unusual rate of development, which can cause perinatal and 

neonatal complications, including death.  SGA, which can result from intrauterine 

growth restriction (IUGR), is associated with an increased risk of developmental and 

behavioral problems in childhood.  Moreover, epidemiological and experimental 

evidence has shown that both SGA and LGA may also contribute to a wide array of 

metabolic disorders and chronic diseases in adulthood (26, 86, 87).  

Maternal nutrition plays a critical role in fetal growth and development.  Glucose, the 

main energy substrate for the fetus, is transmitted in a steady stream primarily through 

metabolism of carbohydrate from the mother’s diet.  Certain conditions can have a 

profound impairment on the regulation of this glucose stream, such as diabetes or 

obesity, where high circulating or postprandial concentrations of glucose can result in 

excessive nutrient transfer to the fetus and increase the risk of LGA.  Other conditions 

such as famine have the opposite effect, where small, infrequent meals result in lower 

circulating maternal glucose, which promote slower fetal growth, an increased risk for 

intrauterine growth restriction, and smaller birth size.  While these represent the more 

extreme conditions, evidence also suggests a similar connection between glucose 

concentration and fetal growth even in healthy pregnancies (88, 89). 

 

1.4.1. Carbohydrate Quality: Glycemic Index (GI) and Glycemic Load (GL) 

The glycemic index (GI) concept was first published in 1981 after earlier studies had 

shown that starchy carbohydrate foods had very different effects on postprandial blood 

glucose responses and subsequent glycemia in both healthy and diabetic subjects (90).  

Indexing of the glycemic response is based on the average subject’s incremental area 
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under the curve (AUC) of blood glucose after consumption of a given food, expressed 

as a percentage of incremental AUC for that of the reference food, typically glucose or 

white bread.  In general, foods with carbohydrates that break down rapidly during 

digestion releasing glucose rapidly into the bloodstream have a high GI; carbohydrates 

that break down slowly, releasing glucose gradually into the bloodstream, have a low GI.   

Some early studies challenged the physiologic relevance of the GI by suggesting that 

when individual carbohydrate foods are consumed as part of a mixed meal, differences in 

glycemic responses between foods are minimal or non-existent (91, 92) . Since then, 

however, numerous studies have supported the importance of the glycemic index in the 

context of mixed meals (93, 94, 95). In particular, studies have shown that although fat 

and protein affect the absolute glycemic response, they do not affect the relative 

differences between carbohydrate-containing foods (96, 97). Moreover, studies using 

standardized methods have indicated that the correlation between the glycemic index of 

mixed meals and the average glycemic index values of individual component foods 

ranges from 0.84 to 0.99 (93, 98).  Thus, although other aspects of diet may add to 

variation in glucose and insulin responses, the effect of these other sources of variation 

does not appear to seriously affect the validity of calculated glycemic index values for 

mixed meals under realistic conditions.  

GI is now widely recognized as a reliable, physiologically based classification of 

foods according to their postprandial glycemic effect (99). In 1997 an expert panel 

created by the Food and Agriculture Organization (FAO) of the United Nations and the 

World Health Organization (WHO) endorsed the GI concept after reviewing the 

available research evidence regarding the importance of carbohydrates in human 
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nutrition and health.  International Tables of Glycemic Index, which were first 

published in 1995 and revised in 2002, aim to provide a reliable list of GI values 

compiled from a variety of sources in the scientific literature and allow GI to be used as a 

dietary epidemiologic tool, allowing novel comparisons of the effects of different 

carbohydrates on disease risk (95, 99). 

GI, however, does not take into account the amount of carbohydrate consumed, which 

is also an important determinant of glycemic response. For example, watermelon has a 

high GI(99) however, it only contains 5 g of carbohydrate per 100 g, and therefore 

produces a minimal glycemic effect.  Glycemic load (GL), which accounts for both the 

GI of a food and the amount eaten, is a more recent concept and has gained popularity in 

nutritional research as an estimate of the overall glycemic effect from diet (100, 101).  

GL is indirectly measured as the product of the GI for a food and the amount of available 

carbohydrate in the portion of food consumed.  It should be noted that this calculation 

implies GL is directly proportional to the amount of the particular food eaten; whereas 

research has actually shown that as the amount of a given food increased the rate of 

increase in AUC declines.  For example, eating six times the amount of bread results in 

an approximately threefold increase in AUC(102). However, recent laboratory data 

found that GL calculated using GI multiplied by available carbohydrate agreed well with 

GL measured directly (103).  Therefore, GL provides another ranking classification for 

both the quality and quantity of carbohydrate containing foods; and GL values are also 

included in the 2002 International Tables of Glycemic Index.  
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1.4.2. Influence of Carbohydrate Quality on Fetal Growth 

Given that maternal glucose is the main energy substrate for intrauterine growth, it 

seems intuitive that the GI concept would be particularly relevant during pregnancy.  

Thus far, research on maternal dietary glycemic index and gestational diabetes mellitus 

(GDM) has received the most attention.  Studies have demonstrated that high GI diets 

both prior and during pregnancy may increase the risk of GDM (104).  Further, a low GI 

diet is commonly advised as treatment for women with GDM; and has been shown to 

reduce obstetric and fetal complications, such as macrosomia (105).  It has also been 

hypothesized that the type of carbohydrate intake in the maternal diet may alter glucose 

substrates and, in turn, effect fetal growth in non-diabetic women (106, 107, 108); 

however, research in this area remains limited.   

 

1.4.2.1. Biological Plausibility 

Factors which alter substrate delivery, mainly substrate levels or placental-bed blood 

flow, regulate the rate of feto-placental growth by initiating a change in synthesis and 

tonic release of placental growth suppressive peptides into the fetal circulation (109).  A 

fall in placental-bed blood flow and/or maternal substrate level increases the placental 

release of growth-suppressive peptides, which slow fetal growth rate by decreasing the 

expression of insulin-like growth factors and increasing their binding proteins in fetal 

tissues.  Conversely, a rise in flow and/or substrate levels decreases the placental release 

of growth suppressive peptides, which increases fetal growth rate by increasing the 

expression of insulin-like growth factors and decreasing their binding proteins (109).   



 

32 

 In pregnancies complicated by obesity or diabetes, greater plasma volume and the 

increased placental perfusion along with, greater maternal insulin resistance with 

decreased glucose disposal is thought to allow more glucose to be transmitted from 

mother to fetus(110).  This may explain the positive association of maternal plasma 

glucose, especially postprandial glucose level, on infant birth weight (111, 112) among 

obese and/or diabetic women.   However, the literature also suggests a similar connection 

between glucose concentration and fetal growth in nondiabetic pregnancies (88, 89, 113, 

114).  On the other hand, severe reductions in maternal energy intake are known to 

reduce maternal blood sugar levels, fetal growth rate and size at birth (106).  And, 

evidence also suggests that fetal growth restriction even among women of normal body 

weight and adequate nutrition may be explained by differences in carbohydrate 

metabolism, such as higher insulin sensitivity, which leads to a reduction in glucose 

substrates for fetal growth.  Caruso et al., found that women who experienced 

unexplained fetal growth restriction had increased insulin sensitivity during the third 

trimester, which exhibited a strong negative correlation with relative birth weight 

compared to controls (115).  No differences were seen in fasting plasma glucose, insulin 

and human placental lactogen samples, age, height, pregravid weight, weight gain, and 

parity. 

The type of carbohydrate eaten can influence insulin resistance and sensitivity, which 

are the key components of glucose metabolism, and thus glucose substrate levels 

available for the fetus.   Studies have demonstrated that both the quality and quantity of 

carbohydrate in the diet influence glucose metabolism, affecting insulin demand or 

sensitivity in healthy individuals (116, 117).  Therefore, it is conceivable that part of the 
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normal variance in birth weight may be related to differences in maternal dietary 

carbohydrate via altering circulating maternal glucose and insulin levels.  Thus, altering 

the GI and/or GL of maternal dietary carbohydrate may be a valuable in the prevention 

and management of pregnancies at risk for anomalous feto-placental growth.   

 

1.4.2.2. Dietary Intervention Studies of Glycemic Index and Fetal Growth 

In 1998, Clapp et al. reported on a longitudinal study of 12 healthy women who were 

recruited before pregnancy and followed through to delivery (118). The women agreed to 

follow a diet that provided 55–60% carbohydrate with the initial diet being composed of 

low GI foods.  At 8 weeks gestation, they were randomly assigned to continue either the 

low-GI diet or to follow a high-GI diet for the duration of pregnancy. For women on the 

high-GI diet, the glucose responses to a standard meal progressively increased during 

pregnancy, whereas for women who consumed the low-GI diet the glucose responses did 

not change.  Mean infant birth weight was approximately 1000 grams more compared to 

babies from women who consumed the low-GI diet; and all women who consumed the 

high-GI diet all had infants that were LGA.  Although this study provides intriguing 

evidence that a high-GI diet may increase the risk of LGA in healthy women, the results 

are somewhat undermined by the small sample size, and thus compromised internal and 

external validity.   

In 2006, Moses et al. conducted a similar experiment on a larger sample of 62 healthy 

women enrolled between 12-16 weeks gestation (107).  The subjects were alternately 

assigned to receive dietary counseling that encouraged a low-GI (LGI) carbohydrate 

foods or a high-fiber, moderate-to-high GI (HGI) foods and were studied 5 times 
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between 16 wk gestation and delivery; both groups were matched for initial 

macronutrient intake.  Measures of dietary adherence were similar for women in either 

group; however, neither subjects nor investigators were blinded to the dietary 

intervention.  Compared with the LGI group, women in the HGI group gave birth to 

infants who were heavier (3408 grams vs. 3644 grams; P=0.05), a higher ponderal index 

(2.62 vs 2.74; P=0.03), and a higher prevalence of LGA (3.1% vs. 33.3%; P=0.01). 

Women who consumed the LGI diet did not have an increased number of infants who 

were either SGA or LGA.  These data appear to replicate the earlier finding of Clapp et 

al. that mixed diets high in GI foods may increase the risk of excessive fetal growth 

among healthy, free-living pregnant women.  Further, neither intervention study 

observed an increase risk of SGA among subjects on the low-GI diet. 

 

1.4.2.3. Epidemiologic Research on Glycemic Index and Fetal Growth 

To date, Scholl et al.(108) have published the only observational study on 

carbohydrate quality and fetal growth.  They analyzed data from 1,082 delivered 

gravidas from of an ethnically-diverse, low income cohort who enrolled at prenatal 

clinics in Camden, NJ between August 1996 and October 2002.  Women with serious 

non-obstetric problems, such as hypertension, diabetes mellitus type 1 or type 2, 

malignancies, and drug or alcohol abuse, were not eligible.  Dietary data were computed 

from the average of three, nonconsecutive 24-hour recalls obtained at entry to prenatal 

care and updated at weeks 20 and 28 of gestation.  Samples for plasma glucose and for 

glycosylated hemoglobin were obtained at 24–28 weeks’ gestation.  Regression models 

were constructed to test the differences for infant birth weight, plasma glucose and 
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glycosylated hemoglobin between quintiles of dietary GI and GL.  Models were further 

adjusted for age, parity, ethnicity, cigarettes smoking, body mass index, prior history of 

LBW, and duration of gestation.  Biomarkers of maternal carbohydrate metabolism 

during the third trimester were positively related to maternal GI, as well as, infant birth 

weight.   Compared to the middle quintile, women in the lowest GI quintile had lower 

infant birth weights (mean, -105.6 ; 95% CI, -39.0, -172.2), which persisted after 

adjustment for confounders (mean, -116.2; 95%CI, -50.0, -182.5).  However, no 

significant difference in infant birth weight was observed for women in the highest GI 

quintile.  The risk of SGA was higher for women in the lowest GI quintile with adjusted 

odds ratio was 1.75 (95% CI, 1.10, 2.77); no increased risk in LGA by strata of GI was 

observed.  Regression models were also performed separately for GL, and indicated that 

GL and was unrelated to maternal plasma glucose, infant birth weight, or risk of SGA.   

In this study, the general relationship between dietary GI, maternal glucose and infant 

birth appear plausible given the scientific literature.  Although, the statistically 

significant association between low GI and SGA and the null finding of high GI and 

LGA are not consistent with results from the two dietary intervention studies.  

Furthermore, the presence of an association between fetal growth and GI, but not GL, 

seems counterintuitive given that GL is considered a better measure of overall glycemic 

impact.  This study population was primarily comprised of low income, African 

American and Hispanic women and nearly 50% of the cohort were overweight or obese.  

Therefore, it is possible that measurement error in dietary intake may have affected these 

results.  For example, the underreporting of high GI foods among obese gravidas, who 

are already at greater risk for LGA, may have obscured a true positive association 
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between high-GI and LGA.  In addition, GL is calculated using absolute energy intake 

from carbohydrate, thus a positive association between infant birth weight and GL may 

have been similarly distorted due to an increased frequency of LER among obese 

subjects.  However, the influence of dietary measurement error was not considered in 

this study.   

  

 

1.5. Conclusion 

Measurement error is pervasive in nutritional epidemiology and is known to obscure 

diet-disease associations.  The existence of obesity related energy underreporting is well 

documented in the general population; and emerging evidence has indicated that 

macronutrient specific underreporting is also prevalent.  However, information on the 

frequency, magnitude and predictors of underreporting bias during pregnancy is 

exceedingly limited.  Moreover, given that both maternal weight status and energy intake 

are on the causal pathway for many pregnancy outcomes, such as fetal growth, a failure 

to account for obesity related underreporting may yield erroneous conclusions in such 

studies. 

There is strong biological plausibility for the potential influence of maternal 

carbohydrate quality on fetal growth and infant birth weight.  Preliminary research 

suggests that low GI diets during pregnancy may reduce maternal glucose levels and 

restrict fetal growth (108); and high GI diets during pregnancy are associated with higher 

maternal glucose parameters and larger infant birth weights (106) (107).  Results across 

these studies, however, are not consistent regarding the magnitude and statistical 
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significance of the observed change in fetal growth.  Moreover, etiological studies on 

this topic remain limited and have yet to explore the potential role of dietary 

measurement error.  A recent review has concluded that further study of glycemic index 

and glycemic load on parameters of fetal growth is warranted (119).  We conclude that 

such future research include large, diverse study populations of pregnant women, as well 

as, methods that adjust for systematic underreporting bias in maternal diet.   
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Chapter Two 
 

Statement of the Problem and Specific Aims 
 
     Many adverse health outcomes are associated with an imbalance of nutrients, whether 

an excess or a deficiency.  The ability to detect associations between diet and disease is 

often complicated by measurement error of dietary intake.  Information on the frequency, 

magnitude and predictors of underreporting bias during pregnancy, however, is 

exceedingly limited.  The course of pregnancy creates some unique physiological, 

medical, and psychosocial demands, which may alter the patterns of measurement error 

in energy intake that have been observed in non-pregnant populations.  Indentifying 

sources of this bias is necessary to improve dietary assessment methodology in 

reproductive epidemiologic studies and minimize error for susceptible participants.  

Further, both maternal weight status and energy intake lie on the causal pathway for 

many pregnancy outcomes, such as fetal growth; and a failure to account for obesity 

related underreporting bias may yield erroneous conclusions in such studies. 

The purpose of this dissertation is: to determine the frequency, magnitude and predictors 

of underreporting energy intake during pregnancy; to examine the association between 

the type of maternal carbohydrate consumption, fetal growth and infant birth weight; and 

finally, to explore the influence of underreporting bias on this association.   

The specific aims include: 

asdfasdfadf 
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Aim 1  

Calculate measurement error in energy intake using the ratio of values from a food 

frequency questionnaire (FFQ) to total energy expenditure (TEE), as estimated from a 

validated prediction equation.  Upper and lower cutoff values for this ratio will be 

determined using an accepted methodology from the literature and will identify 

participants who misreported their energy intake. 

This is a descriptive Aim to identify the following groups of measurement error in 

energy intake:  

A) Low Energy Reporting (LER), also known as Underreporting 

B) Adequate Energy Reporting (AER) 

C) High Energy Reporting (HER) 

 
Aim 2 

Compare the distribution of participant characteristics including demographic, 

psychosocial, and nutritional parameters between LER, AR and HER.  In particular, LER 

status of participants will be modeled on their characteristics to determine independent 

predictors of energy underreporting. 

 Hypothesis 2a  

LER will be positively associated with body mass index (BMI) and obesity. 

Hypothesis 2b  

LER will be negatively associated with education status 

Hypothesis 2c  

LER will be negatively associated with African American race  

Hypothesis 2d  
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LER will be positively associated with dietary restraint 

Hypothesis 2e  

LER will be positively associated with dietary glycemic index (GI) 

Hypothesis 2f  

LER will be positively associated with gestational weight gain  

 
Aim 3  

Examine the association between maternal dietary GI and dietary glycemic load (GL) 

during the second trimester, random glucose screen, and fetal growth.  Fetal growth will 

be estimated using infant birth weight adjusted for gestational age.  Maternal glucose and 

fetal growth will be modeled separately against dietary GI and GL and other variables 

that are shown to be confounders in our study population.  

Hypothesis 3a 

 Maternal dietary GI/GL will be positively associated with maternal glucose  

Hypothesis 3b 

 Maternal dietary GI/GL will be positively associated with infant birth weight. 

Hypothesis 3c  

Diets high in GI/GL will be associated with a higher incidence of LGA. 

Hypothesis 3d  

Diets low in GI/GL will be associated with a higher incidence of SGA. 
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Aim 4  

A sensitivity analysis will be conducted to compare the coefficients and effect estimates 

from models in Aim 3 after excluding physiologically implausible energy intakes (LER 

and HER) as determined from Aim 1.   
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Chapter Three 
 

Methods 
 

3.1. Data Source 

The four aims of this proposal will be accomplished by analyzing data collected in the 

third phase of the Pregnancy, Infection, and Nutrition Study (PIN3).  PIN3 is a 

prospective cohort study designed to examine whether certain maternal characteristics, 

such as maternal physical activity or stress, are associated with preterm birth.  

3.1.1. Study Population and Subject Recruitment  

PIN3 includes a cohort of pregnant women seeking services from prenatal clinics at 

University of North Carolina (UNC) Hospitals. Women were recruited for enrollment at 

<20 weeks gestation.  Recruitment began in January 2001 and ended in June 2005.  

Potential subjects were identified by study staff through a review of all medical charts of 

new prenatal patients.  Women were excluded if they were less than age 16, non-English 

speaking, not planning to continue care or deliver at the study site, carrying multiple 

gestations, or did not have a telephone from which they could complete phone 

interviews.  A total of 3,203 women were eligible for the study and 2,006 (63%) were 

recruited.  All participants gave informed consent at the time of recruitment.  PIN3 was 

approved by the UNC School of Medicine Institutional Review Board. 
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3.1.2. Data Collection 

Women enrolled in PIN3 were asked to complete the following: 2 research clinic 

visits (<20 and 24–29 weeks gestation); 2 telephone interviews (17–22 and 27–30 weeks 

gestation); 2 self-administered questionnaires distributed at each of the clinic visits; and 

1 food frequency questionnaire distributed at the second clinic visit.  Delivery logs at 

study hospitals were examined daily to determine delivery information on all study 

participants.  Following delivery, medical charts were abstracted. 

3.2.1.5. Statistical Analysis  

Details of the statistical methods will be described for each paper in Chapter 4 and 

Chapter 5, respectively. 

 

3.3.3.1 Causal Diagram for Carbohydrate Quality and Fetal Growth 
 

Below is a causal directed acyclic graph (DAG), which illustrates a set of potential 

confounders and effect modifiers for the association between carbohydrate quality and 

fetal growth.  As described previously, variation in glucose metabolism is the proposed 

biological mechanism for altering fetal growth via carbohydrate quality.   
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Figure 3. 1.  Causal Diagram of Glycemic Index and Glycemic Load on Fetal 
Growth 
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Chapter Four 
 
 

Predictors of Measurement Error in Energy Intake 

 
Introduction 

     Accurately measuring dietary intake in human populations is challenging.  

Population based studies typically rely on self-reported dietary assessment, which is 

subject to considerable measurement error.  A growing body of literature has 

demonstrated that subjects tend to underreport energy and nutrient intake, and this 

underreporting occurs more frequently in certain subgroups, such as women and 

overweight subjects (29).  Further, there is accumulating evidence that nutrient risk 

estimates incorporate this systematic error, which can have an unpredictable bias on the 

measure of association (30, 31, 32).   

Pregnancy is a complex period of human growth for both the mother and the fetus.  

The course of pregnancy creates some unique physiological, medical, and psychosocial 

demands, and these demands affect maternal energy and nutrient needs, appetite, and 

meal patterns (2, 3).  Maternal nutrition plays an important role during this time; 

however reported associations between dietary exposures and pregnancy outcomes have 

been modest or non-existent.  One reason for this may be systematic reporting bias in 

nutritional data, but very little is known about this error in pregnant populations.  

Therefore, it is possible that the frequency and patterns of measurement error in energy 

intake may differ between pregnant and non-pregnant populations.   

asdfasdfadf 
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Only a few studies have investigated the misreporting of maternal dietary energy 

intake (26, 78, 120), and the only population based study of misreporting was conducted 

in 490 pregnant Indonesian women.  Winkvist et al. reported an energy underreporting 

prevalence of 16.2% during the second trimester and noted that underreporting was more 

common among women with BMI greater than 25.0.  However, this cohort may not be 

representative of women in developed countries; furthermore, several important 

predictors were not examined, including certain pregnancy characteristics such as 

gestational weight gain.  Two smaller studies conducted in the UK also found evidence 

of energy underreporting among pregnant women, but were limited due to small sample 

size.  Therefore, the prevalence, magnitude and predictors of measurement error in 

energy intake among pregnant women remain unclear.  Indentifying these components 

may enhance data collection and analytic methods by reducing systematic bias in 

reproductive studies.   

To identify measurement error in energy intake (EI) it is necessary to have an 

objective estimate of energy requirement, which is usually based on total energy 

expenditure (TEE).  Doubly labeled water (DLW) is generally considered the gold 

standard for assessment of TEE (29), however this technique is very costly and is not 

practical for large population studies.  In 2002, estimated energy requirement (EER) 

prediction equations were published as part of the Institute of Medicine (IOM) Dietary 

Reference Intakes (DRI).  EER equations were developed from an extensive normative 

DLW database, which included TEE measurements on adults, children and pregnant 

women with a variety of physical activity levels.  DRI equations for EER have been 

utilized in recent studies of identifying energy underreporting (39, 40) and their accuracy 
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compared with DLW has been independently corroborated (121).  Measurement error in 

energy intake is typically classified as low energy reporting (LER) and high energy 

reporting (HER).  These categories represent implausible energy intakes and are 

determined using confidence limits of agreement, which account for the within subject 

variation expected from the methods used to estimate EI and TEE. 

The Food Frequency Questionnaire (FFQ) has been shown to be an appropriate 

method for assessing habitual dietary intake in a wide variety of epidemiological 

settings, including studies among pregnant women (11, 16, 17, 18, 19, 20).  We 

examined measurement error in daily energy intake during the second trimester from a 

FFQ among subjects who participated in the third phase of the Pregnancy, Infection and 

Nutrition Study (PIN3).   

 

Materials and Methods     

     Study Population  

PIN3 was a prospective study designed to examine whether certain maternal 

characteristics, such as maternal physical activity or stress, are associated with preterm 

birth.   Women enrolled in PIN3 were recruited from the prenatal clinics at University of 

North Carolina Hospitals. Women were recruited for enrollment at <20 weeks gestation 

from January 2001 through June 2005.  Women were excluded if they were less than age 

16, non-English speaking, not planning to continue care or deliver at the study site, 

carrying multiple gestations, or did not have a telephone from which they could complete 

phone interviews.   
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A total of 2,006 women were recruited.  Of the 1,446 subjects who completed the 

FFQ: 319 were missing the survey on restrained eating behaviors, which was added to 

the study protocol after enrollment began; 8 were missing pregravid height and weight; 

and an additional 119 subjects were missing data for one or more other variables of 

interest. Some women were recruited into the cohort more than once because of 

additional pregnancies within the recruitment period. In these instances (n=35), the 

pregnancy with the most complete information or the first pregnancy (when information 

was complete for both pregnancies) was included in the analysis. Data from the 

remaining 988 pregnancies were used in this analysis.  

 

Data Collection  

The PIN Study protocols were reviewed and approved by the Institutional Review 

Board of the School of Medicine at the University of North Carolina at Chapel Hill.  

Women enrolled were asked to complete 2 research clinic visits (<20 and 24–29 weeks 

gestation), 2 telephone interviews (17–22 and 27–30 weeks gestation), 2 self-

administered questionnaires, and 1 FFQ distributed at the second clinic visit.  Following 

delivery, medical charts were abstracted.  Pregnancies were dated using an algorithm 

based on first ultrasound performed prior to 22 weeks' gestation (up to 21 weeks, 6 days). 

If no ultrasound was performed or none was performed prior to the start of week 22, then 

last menstrual period (LMP) was used to date the pregnancy.   

Self-reported pre-pregnancy weight and measured height were recorded at the first 

prenatal visit.  Weight measurements taken at the first prenatal clinic visit were 

compared with the self-reported pre-pregnancy weights to identify biologically 
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implausible weight gains.   In such cases, an imputed weight was calculated using the 

measured weight at the first prenatal visit (if taken prior to 16 weeks) minus the 

recommended amount of weight to be gained in the first and second trimesters as defined 

by the 1990 IOM recommendations.  Pregravid BMI in kg/m2 was then calculated by 

using either reported or imputed pregravid weight and measured height.  The rate of 

gestational weight gain during the second trimester was calculated as the difference 

between the first clinically measured weight following 12 weeks gestation and the last 

clinically measured weight recorded prior to week 27, divided by the number of weeks 

between measurements.  Cut points to determine inadequate and excessive weight gains 

were based on the 1990 IOM BMI-specific recommendations previously used in the 

literature (122).   

Dietary information was collected at 26–29 wk of gestation using a self-administered 

110-item Block-98 FFQ.  Daily energy and nutrient intake was estimated from all foods 

and beverages.  The Block FFQ has been validated in several populations (10, 123, 124), 

including the PIN Study.  Deattenuated Pearson correlation coefficients between FFQ 

and multiple 24-h dietary recalls for total energy was 0.32 for PIN1 and 0.33 for PIN2.  

A more detailed description of the PIN FFQ has been published elsewhere(125) .   

Physical activity data were captured using a 1 week recall questionnaire specifically 

designed for PIN 3, which was administered by telephone between 17 and 22 weeks’ 

gestation.  This instrument assessed the frequency, duration and intensity of a variety of 

reported physical activities over the last 7 days at either a moderate or vigorous intensity 

level. Domains incorporated the following settings and/ or roles: at work, for recreation, 
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for transportation, during care giving and as a part of indoor and outdoor household 

tasks.   

The Revised Restraint Scale (RRS) was administered to assess preconception dieting 

and restrained eating behaviors. It consists of 10 questions in a multiple choice format: 5 

that pertain to diet and weight history; and 5 that pertain to concern with food and eating.  

Responses to questions regarding dieting behaviors were based on the Likert Scale.  

Wording of the RRS was changed so that it was clear the questions focused on the period 

prior to pregnancy and not on weight changes associated with pregnancy. An overall 

score for Restrained Eating was calculated by summing the scores for all of the 

questions. Comparisons were made between subjects above and below the median (126). 

The Center for Epidemiologic Studies Depression Scale (CES-D) was administered to 

assessed psychological disposition or generalized distress (127). The 20-item scale has 

Likert-type response categories assessing feelings and activities the respondent 

experienced during the past week. The range is from 0 to 60 points. A CES-D score of 25 

or higher was considered to indicate significant depressive symptoms.  

Estimated energy requirement (EER) for each subject was calculated using the 2002 

DRI equations, which are sex and age-specific and are based on age, weight and height 

(128) (Appendix A).  For pregnant women, the DRI equations have an additional 340 

kcal/d, which was found to be the average energy costs of pregnancy during the second 

trimester.  However, recent evidence has shown that total energy expenditure during 

pregnancy is dependent on pregravid weight status.  Using DLW, Butte et. al. estimated 

the energy requirements in a group of healthy underweight, normal-weight, and 

overweight pregnant women(129).  Values for energy costs (kcal/d) of pregnancy for the 
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second trimester were 163 for low BMI (≤19.8), 356 for normal BMI (19.8–26.0), and 

441 for high BMI (≥26) subjects.  We applied these values to our calculation of TEE, 

which justified our use of the 1990 IOM cutpoints for pregravid BMI.  

EER equations also allow for four levels of physical activity; sedentary, low activity, 

active and very active with a corresponding physical activity coefficient (Appendix A).  

Each subject was assigned an activity level based on her average daily minutes of 

moderate and vigorous physical activity, which was calculated from the PIN 7-day 

physical activity recall questionnaire.  Using the American College of Sports Medicine 

(ACSM) guidelines, weekly moderate physical activity was estimated from minutes 

spent in reported activities with a MET value of 4.8-7.1; and vigorous physical activity 

was from minutes spent in activities with a MET value ≥ 7.2.  These weekly values were 

divided by 7 to represent average daily moderate and vigorous physical activity during 

the second trimester. 

 

Statistical Analysis 

To identify physiologically implausible self-reported energy intakes, 95% confidence 

limits of agreement were calculated for the ratio of reported EI to EER (EI:EER) using 

the Goldberg method described by Black & Cole (42) and further adapted by Huang et 

al.(80).  The combined within subject coefficient of variation (CVw) was calculated as 

CVw = √(CV2
 wEI / d + CV2

mTEE + CV2
pER).  Because the FFQ measures habitual intake, 

the number of days (d) is not applicable; thus, combined CVw is equal to the variation in 

measured TEE (CVmTEE) and predicted energy requirements (CVpER). Using a 

compilation of data from DLW studies, Black et al. estimated the within subject error in 
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TEE measured by DLW (CVmTEE) to be 9.6% over a period of 13 weeks, which 

approximates a trimester of pregnancy (42).  The error in predicted energy requirements 

(CVpER) was estimated from the published DRI database using the available data on 

females ages 18-40 (128).  We conducted least-squares regression of measured TEE on 

age, height, weight and physical activity level.  CVpER was then calculated by dividing 

the SD of the residuals by the mean TEE.  This was performed separately for three strata 

of BMI, which resulted in CVpER values of 10.9% for low BMI (≤19.8), 9.9% for normal 

BMI (19.8–26.0), and 8.1% for high BMI (≥26) women.  Therefore, the lower 

confidence limit (LCL) for EI:EER was 0.76, 0.73, and 0.72 and the upper confidence 

limit (LCL) was 1.24, 1.27, and 1.28 for low, normal and high BMI woman, 

respectively.  LER was defined as having a ratio of EI:EER < LCL, adequate energy 

reporting (AER) was defined as LCL ≤ EI:EER ≥ UCL, and HER was defined  as 

EI:EER > UCL.   

A univariate analysis was conducted to compare values of EI, EI:EER, LER, HER 

across maternal characteristics.  Continuous covariates, which included age, education, 

pregravid BMI and gestational weight gain were additionally coded into discrete ordinal 

categories.  Differences in EI:EER were tested using an independent samples t-test or 

ANOVA F-test.  Independence between proportions of LER and HER was tested using a 

chi-square test.  Multiple logistic regression models were developed separately for LER 

and HER.  First, all maternal baseline characteristics including gestational weight gain 

were considered one at a time in each model.  Any variable with P value <0.25 was 

considered for inclusion.  Each multivariable model was fit using backward elimination, 

including all the potential predictor variables and evaluating variables one at a time in 
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order of the smallest Wald chi-square test.  A variable was removed if the change in 

deviance via likelihood ratio test was not statistically significant (P <0.05).  Interactions 

between predictor variables were also considered, however none were identified. Smooth 

scatterplots were used to determine linearity on the logit scale for continuous variables.   

To examine if nutrient intakes varied by energy reporting status, mean nutrient 

density (intake expressed as a percentage of total energy) for macronutrients and 

micronutrients were compared between LER, AER, and HER using ANOVA with 

Bonferroni adjustment for multiple comparisons.  Each nutrient was log-transformed 

beforehand to improve normality.  Threshold for statistical significance was a p-value 

less than 0.05.  All analyses were performed using SAS software (version 9.1.3; SAS 

Institute Inc, Cary, NC).    

 

Results 

     This pregnancy cohort consisted of mostly white woman who were married and 

had at least some college education (Table 1).  Average maternal age was 29 SD=5.5 

years.  Prior to pregnancy, 11.2% of the participants were overweight and 22.0% were 

obese according to the 1990 IOM cutpoints.  Median and IQR for energy intake in 

kilocalories were 1483±451, 2182±583, and 3801±1213 for LER, AER, and HER, 

respectively.  Median EI:EER was 0.85, indicating that most subjects underreported their 

energy intake.  The prevalence of implausible intakes, LER and HER, was 32.8% and 

12.9%, respectively.  Univariate analysis also demonstrated that EI:EER, LER and HER 

varied by several maternal characteristics (Table 1).  LER prevalence differed by 

education, pregravid BMI, gestational weight gain, physical activity, and restrained 
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eating behavior.  Like LER, HER prevalence differed by pregravid BMI, education and 

restrained eating behavior; but also varied by race, marriage, adequacy of gestational 

weight gain, and depressive symptoms. 

  In a multivariable analysis (Table 2), pre-gravid BMI was related to both LER and 

HER.   Compared to normal weight women, LER was higher in overweight (OR=2.06, 

95% CI=1.33, 3.19) and obese women (OR=2.93, 95% CI=2.07, 4.13), but lower in 

underweight women (OR=0.27, 95% CI=0.15, 0.48).   Whereas, HER was higher in 

underweight women (OR=4.58, 95% CI=2.77, 7.60) and lower in obese women 

(OR=0.44, 95% CI=0.24, 0.82) than in normal weight counterparts.   

Other than pregravid BMI, independent predictors of LER and HER were different.  

LER was more prevalent among married women and those who reported higher levels of 

physical activity.  HER was more prevalent among subjects who were African American, 

less educated, and had higher depressive symptom scores.  Gestational weight gain in the 

second trimester and restrained eating behavior were not associated with either LER or 

HER, after adjusting for Pregravid BMI.  Both GWG and restrained eating scores were 

moderately correlated with pregravid BMI, -0.31 and 0.47, respectively.   

 LER was most common in pregnant women who were classified as obese prior to 

pregnancy (49.8%).  Figure 1 displays the prevalence of LER by pregravid BMI status 

and adequacy of gestational weight gain according to the IOM guidelines.  Among obese 

women, we observed a similarly high proportion of LER in women whose gestational 

weight gain over the first two trimesters was classified as inadequate (45.6%) or 

excessive (52.6%).   
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Table 3 displays median intakes for macronutrients and micronutrients according to 

category of energy reporting.  Nutrient intakes for LER women were not significantly 

different compared to those with AER.  However, HER women had significantly lower 

intakes for riboflavin, calcium, and magnesium than AER women.   

 

Discussion 

     Our results indicate that implausible reported energy intakes, both underreporting 

and overreporting, are prevalent in this large cohort of pregnant women.  Direct 

comparison of measurement error between dietary studies is somewhat difficult because 

of variations in dietary assessment, physical activity assessment, estimation of TEE, as 

well as population characteristics.  Black et al. conducted a meta-analysis on studies that 

utilized both DLW and weighed food records.  Among non-pregnant women aged 18-39 

years, the authors found that 31% underreported their intake and 3% over-reported (46).  

Larger population studies on non-pregnant females, which utilized prediction equations 

for energy requirements and a variety of dietary assessment methods, have reported a 

frequency of LER ranging from 11%-52% (49).  Although LER prevalence has been 

shown to vary by dietary assessment method, studies comparing these methods have 

been inconsistent in their findings.  Some have found that the FFQ provided less 

underreporting than dietary recalls or food records (130, 131, 132), while others found 

the opposite (31, 44, 133, 134)  

In our study, pregravid BMI was a positive predictor of LER, which is consistent with 

most studies in non-pregnant populations.  It has been proposed that measures of body 

size and adiposity are likely surrogates for psychological factors characteristics that 
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result in underreporting energy, such as poor awareness of intake or portion sizes, 

subconscious biasing toward intake that is perceived to be appropriate, restrained eating 

behaviors, and fear of weight gain (47, 48, 53, 135).  However, we found no association 

between dietary restraint score and underreporting in our cohort after adjusting for 

pregravid BMI.  In addition, there was no independent association between LER and 

gestational weight gain.  LER was similarly prevalent among overweight subjects 

regardless of whether they were categorized as having excessive or inadequate 

gestational weight gain.   

LER was also more common in pregnant women who reported minutes of moderate 

to vigorous physical activity which met the American College of Obstetrics and 

Gynecology (ACOG) recommendation for exercise during pregnancy (136).  However, 

this finding was likely attributed to measurement error in reported physical activity.  One 

common bias in these data is the overreporting of minutes spent in a given activity (137).  

Because physical activity data were utilized in the estimation of TEE, an overreporting 

bias would result in artificially higher EER, thereby reducing the EI:EER ratio and 

increasing the tendency to be classified as LER.  In fact, a validation study for PIN3 

found that minutes of moderate to vigorous physical activities where 85% higher on 

average when compared with accelerometery, an objective measure of physical activity 

(138).  Further, social desirability bias is a purported reason for both underreporting 

energy intake (139) and overreporting physical activity (137).  Therefore, any association 

between higher physical activity and LER may also be influenced by correlated error.   

Our study is the first to investigate HER, or overreporting, among pregnant women.  

We determined that 12.9% of subjects overreported their energy intake, which is higher 
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than typically seen in non-pregnant populations.  HER was more common among 

pregnant women who were underweight, African-American, and had no college 

education.  Additionally, we found that HER was more prevalent among women with 

higher depressive symptoms scores.  Researchers have suggested that depression and 

anxiety may influence reporting accuracy by impairing cognitive processes such as 

memory or triggering eating disinhibition (140) and some studies in non-pregnant 

women have shown a positive association between depression and LER (135), however, 

to our knowledge the relationship between depression and HER has not been previously 

reported.     

An emerging literature has demonstrated how both energy specific and nutrient 

specific underreporting can seriously distort measures of association in nutrition 

epidemiology (30, 34, 67, 141).  In our cohort, measurement error in energy intake 

varied significantly by certain maternal characteristics.  However, we did not observe 

that underreporting bias was associated with variable bias in specific nutrient intakes.  

This finding suggests that energy underreporting occurred at the whole diet level, which 

is an important assumption in the analysis of diet and disease since nutrient intakes are 

typically adjusted for EI to separate the effect of EI from the effect of an individual 

nutrient on a particular health outcome (34).  Nevertheless, many researchers agree that 

energy adjustment alone cannot eliminate the effects of differential reporting bias (30, 

34, 141).  Additional methods include stratifying results by LER and AER, as well as a 

more sophisticated approach of including predictors of LER (i.e. BMI) in a nutrient 

measurement error model (142).   
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The main limitation of this study is that TEE was estimated rather than directly 

measured using DLW.  We calculated TEE using DRI prediction equations for EER, 

which were derived from DLW data.  These equations have been deemed a valid 

alternative to DLW measurements and have also been used in previous studies of 

LER.  Another limitation is that approximately 25% of PIN 3 subjects did not complete 

the FFQ.  On average, women that we excluded from the analysis were more likely to be 

overweight, younger, less educated, African American and unmarried.  Because some of 

these characteristics were predictive of LER and HER, it is possible that our results may 

have differed if complete data were available for all subjects.  It should also be noted that 

PIN 3 subjects were not sampled at random and all participants received their prenatal 

care in the UNC Hospital system.  Therefore, generalizablity of our results to other 

pregnant populations may be limited.  The primary strength of this project is the 

prospective study design of PIN 3.  Data were collected from the first trimester of 

pregnancy through delivery.  Moreover, dietary information was ascertained during the 

second trimester, where intake is less likely to be influenced by nausea.   

In conclusion, it appears that the level of LER and HER during pregnancy is not 

grossly different than what has been observed in non-pregnant women.  Nevertheless, 

nearly half of all women in our cohort misreported their energy (food) intake.  This 

measurement error was also associated with maternal characteristics, including pregravid 

BMI, which is a risk factor for several reproductive, perinatal, and pediatric outcomes 

(143, 144, 145, 146, 147, 148, 149).  Thus, a failure to account for obesity-specific 

underreporting bias may yield erroneous conclusions in such studies.  A few analytical 

methods to account for this error have been proposed; however more research is needed.  
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Future studies of maternal diet should consider identifying LER, HER and their 

predictors to assess the level of potential bias and to help adjust for this error in the 

calculation of nutrient risk estimates.   
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Table 4. 1.  Energy Intake, EI:EER and Prevalence of Low Energy Reporting (LER) and High Energy Reporting (HER) 
by Maternal Characteristics Among Women Enrolled in the Pregnancy, Infection and Nutrition Cohort, North Carolina, 
2000-2005. 
 
 
   EI  EI:EER    LER HER 

  N (%)  Median (IQR) 
Median 
(IQR) p-value* N (%) p-value† N (%) p-value† 

Overall   988 (100.0) 2008 (878) 0.85 (0.87) - 324 ( 32.8) - 127 ( 12.9) - 

Age (years) <25 188 ( 19.0) 2164 (1195) 0.87 (0.48) 0.05 55 ( 29.3) 0.17 42 ( 22.3) <0.01 

 25-<30 288 ( 29.1) 1985 ( 874) 0.84 (0.37)  107 ( 37.2)  25 (  8.7)  

 30-<35 349 ( 35.3) 1995 ( 868) 0.86 (0.33)  105 ( 30.1)  39 ( 11.2)  

 ≥ 35 163 ( 16.5) 1929 ( 800) 0.84 (0.40)  57 ( 35.0)  21 ( 12.9)  

Race White 750 ( 75.9) 1971 ( 832) 0.85 (0.36) <0.01 246 ( 32.8) 0.72 81 ( 10.8) <0.01 

 Black 155 ( 15.7) 2344 (1431) 0.89 (0.55)  48 ( 31.0)  37 ( 23.9)  

 Other 83  (  8.4) 1915 ( 785) 0.80 (0.34)  30 ( 36.1)  9 ( 10.8)  

Married No 205 ( 20.7) 2258 (1212) 0.91 (0.49) <0.01 58 ( 28.3) 0.12 45 ( 22.0) <0.01 

 Yes 783 ( 79.3) 1925 ( 844) 0.84 (0.35)  266 ( 34.0)  82 ( 10.5)  

Highest 
Education 

HS 171 ( 17.3) 2249 (1422) 0.88 (0.70) 0.02 57 ( 33.3) 0.03 49 ( 28.7) <0.01 

Coll. Grad 469 ( 47.5) 1948 ( 969) 0.83 (0.39)  171 ( 36.5)  46 (  9.8)  

 Grad. School  348 ( 35.2) 1976 ( 716) 0.86 (0.29)  96 ( 27.6)  32 (  9.2)  

Smoked 
During 
Pregnancy 

No  890 ( 90.1) 1976 ( 859) 0.85 (0.37) 0.83 293 ( 32.9) 0.80 111 ( 12.5) 0.28 

Yes 98 (  9.9) 2145 ( 971) 0.88 (0.44)  31 ( 31.6)  16 ( 16.3)  

Nulliparous No  481 ( 48.7) 2018 ( 915) 0.84 (0.40) 0.75 164 ( 34.1) 0.40 70 ( 14.6) 0.12 

 Yes 507 ( 51.3) 1999 ( 828) 0.86 (0.35)  160 ( 31.6)  57 ( 11.2)  

Pregravid 
BMI 

<19.8 134 ( 13.6) 1970 ( 952) 0.97 (0.54) <0.01 14 ( 10.4) <0.01 37 ( 27.6) <0.01 
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   EI  EI:EER    LER HER 

  N (%)  Median (IQR) 
Median 
(IQR) p-value* N (%) p-value† N (%) p-value† 

 19.8-26.0 526 ( 53.2) 1997 ( 779) 0.86 (0.35)  155 ( 29.5)  52 (  9.9)  

 >26.0-29.0 111 ( 11.2) 2053 ( 837) 0.82 (0.37)  47 ( 42.3)  17 ( 15.3)  

 >29.0 217 ( 22.0) 2053 (1098) 0.76 (0.41)  108 ( 49.8)  21 (  9.7)  

Gestational 
Weight Gain 
(lbs/week) 

<0.87 249 ( 25.2) 1929 ( 930) 0.80 (0.38) 0.03 100 ( 40.2) <0.01 28 ( 11.2) 0.63 

0.87-1.15 241 ( 24.4) 1940 ( 850) 0.85 (0.38)  84 ( 34.9)  36 ( 14.9)  

>1.15-1.45 234 ( 23.7) 2018 ( 850) 0.88 (0.39)  66 ( 28.2)  28 ( 12.0)  

>1.45 264 ( 26.7) 2081 ( 858) 0.87 (0.36)  74 ( 28.0)  35 ( 13.3)  

Adequacy of 
Gestational 
Weight Gain 

Inadequate 207 ( 21.0) 1885 ( 856) 0.82 (0.35) 0.06 75 ( 36.2) 0.12 20 (  9.7) <0.01 

Adequate 186 ( 18.8) 1978 ( 895) 0.88 (0.46)  50 ( 26.9)  36 ( 19.4)  

Excessive 595 ( 60.2) 2034 ( 889) 0.86 (0.36)  199 ( 33.4)  71 ( 11.9)  

Met Physical 
Activity 
Guidelines 

No  810 ( 82.0) 2042 ( 886) 0.87 (0.38) <0.01 245 ( 30.2) <0.01 111 ( 13.7) 0.09 

Yes  178 ( 18.0) 1842 ( 751) 0.76 (0.34)  79 ( 44.4)  16 (  9.0)  

Restrained 
Eating 
Behavior 

No 430 ( 43.5) 1976 ( 877) 0.87 (0.40) <0.01 120 ( 27.9) <0.01 66 ( 15.3) 0.04 

Yes 558 ( 56.5) 2015 ( 881) 0.83 (0.37)  204 ( 36.6)  61 ( 10.9)  

High 
Depressive 
Symptoms 

No  743 ( 75.2) 1969 ( 841) 0.85 (0.36) 0.10 243 ( 32.7) 0.92 79 ( 10.6) <0.01 

Yes 245 ( 24.8) 2125 ( 981) 0.86 (0.43)  81 ( 33.1)  48 ( 19.6)  

*P-value for difference in EI:EER by maternal characteristic from ANOVA F-test or Independent Samples t-test.  

†P-value for independence between LER status (or HER status) and maternal characteristic from Pearson Chi-Squared test. 

IQR = Interquartile range. 
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Table 4. 2.  Predictors of Low Energy Reporting (LER) and High Energy Reporting (HER) Among Women Enrolled in the 
Pregnancy, Infection and Nutrition Cohort, North Carolina, 2000-2005. 
 
 

Low Energy Reporting (LER) High Energy Reporting (HER) 
  OR (95% CI)*   OR (95% CI)* 
      

Pregravid BMI <19.8 0.27 (0.15, 0.48) Pregravid BMI <19.8 4.58 (2.77, 7.60) 

 19.8-26.0 -  19.8-26.0 - 

 >26.0-29.0 2.06 (1.33, 3.19)  >26.0-29.0 0.98 (0.51, 1.88) 

 >29.0 2.93 (2.07, 4.13)  >29.0 0.44 (0.24, 0.82) 

      

Married Yes 1.86 (1.29, 2.70) Race White - 

 No -  Black 2.77 (1.62, 4.72) 

    Other 0.95 (0.44, 2.03) 

      

Met Physical 
Activity 
Guidelines 

Yes  2.05 (1.44, 2.91) Highest Education High School 3.45 (2.10, 5.67) 

No - College Graduate - 

    Grad. School  0.90 (0.54, 1.49) 

      
   High Depressive 

Symptoms 
Yes 1.75 (1.13, 2.73) 

   No - 

*Calculated from logistic regression adjusted for other significant predictors of LER (pregravid BMI, marital status, and physical activity). 
† Calculated from logistic regression adjusted for other significant predictors of HER (pregravid BMI, race, education and depression). 
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Table 4. 3.  Nutrient density for macronutrients and micronutrients by Energy Reporting Status Among Women Enrolled 
in the Pregnancy, Infection and Nutrition Cohort, North Carolina, 2000-2005. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nutrient LER AER HER 

Protein (%kcal) 14.5 ( 3.70) 14.2 ( 3.37) 13.7 ( 3.32) 

Carbohydrate (%kcal) 54.8 (11.00) 55.2 ( 8.13) 54.1 ( 8.25) 

Fat(%kcal) 33.0 ( 8.75) 33.0 ( 6.74) 33.8 ( 7.52) 

Saturated Fat (g/1000 kcal) 11.9 ( 3.52) 12.0 ( 3.10) 12.6 ( 2.67) 

Vitamin A (RE/1000 kcal) 636.2 (369.4) 619.6 (375.5) 532.0 (421.9) 

Vitamin C (mg/1000 kcal) 95.8 (59.23) 89.0 (45.49) 83.7 (63.16) 

Vitamin D (µg/1000 kcal) 96.9 (103.2) 89.0 (80.56) 82.1 (68.42) 

Vitamin E (mg/1000 kcal) 4.55 (2.027) 4.62 (1.745) 4.33 (1.540) 

Thiamin (mg/1000 kcal) 0.81 (0.227) 0.81 (0.187) 0.77 (0.213) 

Riboflavin (mg/1000 kcal) 1.03 (0.412) 1.01 (0.336) 0.91 (0.222)* 

Niacin (mg/1000 kcal) 9.45 (2.519) 9.55 (2.631) 9.40 (3.125) 

Vitamin B6 (mg/1000 kcal) 0.94 (0.328) 0.93 (0.301) 0.91 (0.300) 

Folate (µg/1000 kcal) 192.6 (65.22) 194.7 (57.02) 186.6 (62.76) 

Calcium (mg/1000 kcal) 494.2 (251.8) 473.1 (220.6) 425.2 (160.1)* 

Iron (mg/1000 kcal) 6.95 (2.553) 7.16 (2.153) 6.90 (2.587) 

Zinc (mg/1000 kcal) 5.13 (1.794) 5.08 (1.677) 4.86 (1.755) 

Magnesium (mg/1000 kcal) 152.4 (52.03) 150.6 (46.18) 137.7 (47.58)* 

LER=Low Energy Reporters; AER=Adequate Energy Reporters; HER=High Energy Reporters. 

Data are presented as median and IQR. 

* Significant difference between AER using ANOVA with Bonferonni adjustment for multiple comparisons.  
Each nutrient was log-transformed prior to statistical testing. 
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Figure 4. 1.  Percent of Low Energy Reporting (LER) by Pregravid BMI and Adequacy of Gestational Weight Gain 
(AWG) Among Women Enrolled in the Pregnancy, Infection and Nutrition Cohort Study, North Carolina, 2000-2005. 

 
 

 
Bar patterns represent categories of adequacy of gestational weight gain (AWG).  Parallel lines represent inadequate weight gain, sold bars represent 
adequate weight gain and cross hatched lines represent excessive weight gain. 
%LER is calculated separately for each combination of BMI and AWG. 
Error bars represent the upper confidence limit for binomial proportions using normal approximation. 
Horizontal reference line represents overall LER prevalence for the study population. 
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Chapter Five 
 

Carbohydrate Quality of Maternal Diet and Fetal Growth 

 

Introduction 

    Adequate fetal growth is an important predictor of newborn complications, and also 

contributes to a wide array of health conditions in adolescence and adulthood.  Maternal 

glucose is the main energy substrate for intrauterine growth.  In pregnancies complicated 

by diabetes, greater maternal insulin resistance and decreased glucose disposal allows 

more glucose and other nutrients to be transmitted to the fetus, which can result in 

excessive fetal growth (106, 110).  However, accumulating evidence also suggests a 

similar relationship with maternal glucose concentration and infant birth weight among 

non-diabetic pregnancies (88, 150).  In addition, some studies indicate that fetal growth 

restriction in healthy pregnancies may also be explained in part by differences in 

carbohydrate metabolism, such as greater insulin sensitivity, which can lead to a reduction 

in glucose substrates for fetal growth (88, 115).   

The type of carbohydrate eaten has been shown to affect post-prandial glucose and 

insulin resistance and sensitivity, and thus, may alter glucose substrate levels available for 

the fetus.  The glycemic index (GI) concept was introduced in 1981 based on findings that 

starchy carbohydrate foods had very different effects on postprandial blood glucose 

responses and subsequent glycemia in both healthy and diabetic subjects (90).  Foods with 

carbohydrates that break down quickly during digestion and release glucose rapidly into 

asdfasdfadf 
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the bloodstream have a high GI; carbohydrates that break down slowly, and release 

glucose gradually into the bloodstream, have a low GI.  GI is now widely recognized as a 

physiologically based classification of foods according to their postprandial glycemic 

effect (99). Glycemic load (GL), which accounts for both the GI of a food and the amount 

eaten, is a more recent concept and provides another ranking classification for the quality 

and quantity of carbohydrate containing foods (100, 101).  

Despite the strong biological plausibility for an influence of maternal carbohydrate 

quality on fetal growth in healthy pregnancies, research in this area remains limited.  Two 

dietary intervention studies have found that women randomized to a high GI diet during 

the second and third trimester of pregnancy had significant increases in the risk for LGA, 

compared to pregnant women on a low GI diet.  The lone epidemiologic investigation 

found that pregnant women with diets lower in glycemic index had significantly reduced 

infant birth weight and an approximate twofold greater risk of small for gestational age 

(SGA) infants.  While these results are intriguing, the studies thus far had some key 

limitations and were not consistent regarding the magnitude and statistical significance of 

the observed differences in fetal growth endpoints.  And recently, two review papers 

concluded that further study of carbohydrate quality on parameters of fetal growth in the 

general population is warranted (119, 150).   

We examined the association between glycemic index and glycemic load of maternal 

diet and fetal growth among women who participated in the third phase of the Pregnancy, 

Infection and Nutrition Study (PIN3).  Our study will provide additional evidence to 

determine if part of the normal variance in birth weight may be related to differences in 

the quality of maternal carbohydrate intake.   
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Materials and Methods     

 

PIN3 was a prospective study designed to examine whether certain maternal 

characteristics, such as maternal physical activity or stress, are associated with preterm 

birth.   Women enrolled in PIN3 were recruited from the prenatal clinics at University of 

North Carolina Hospitals. Women were recruited for enrollment at <20 weeks gestation 

from January 2001 through June 2005.  Women were excluded if they were less than age 

16, non-English speaking, not planning to continue care or deliver at the study site, 

carrying multiple gestations, or did not have a telephone from which they could complete 

phone interviews.   

A total of 2,006 women were enrolled, of which 1,895 had a live birth without 

congenital anomaly or respiratory or fetal distress.  Subjects with pre-existing diabetes 

(n=77) were excluded.  Of the 1,818 eligible subjects, 448 did not complete the food 

frequency questionnaire (FFQ), 96 were missing values for post-load glucose screen, and 

22 were missing data for one or more other variables of interest.  Some women were 

recruited into the cohort more than once because of additional pregnancies within the 

recruitment period.  In these instances (n=66), the pregnancy with the most complete 

information or the first pregnancy (when information was complete for both pregnancies) 

was utilized. Data from the remaining 1,186 pregnancies were used in this analysis. 

The PIN3 protocols were reviewed and approved by the Institutional Review Board of 

the School of Medicine at the University of North Carolina at Chapel Hill.  Women 

enrolled were asked to complete 2 research clinic visits (<20 and 24–29 weeks gestation), 
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2 telephone interviews (17–22 and 27–30 weeks gestation), 2 self-administered 

questionnaires, and 1 FFQ distributed at the second clinic visit.  Following delivery, 

medical charts were abstracted.  Pregnancies were dated using an algorithm based on first 

ultrasound performed prior to 22 weeks' gestation (up to 21 weeks, 6 days).  If no 

ultrasound was performed prior to the start of week 22, then date of last menstrual period 

was used to date the pregnancy.   

Self-reported pre-pregnancy weight and measured height were recorded at the first 

prenatal visit.  Weight measurements taken at the first prenatal clinic visit were compared 

with the self-reported pre-pregnancy weights to identify biologically implausible weight 

gains.   In such cases, an imputed weight was calculated using the measured weight at the 

first prenatal visit (if taken prior to 16 weeks) minus the recommended amount of weight 

to be gained in the first and second trimesters as defined by the IOM recommendations 

(122).  Pregravid BMI in kg/m2 was then calculated by using either reported or imputed 

pregravid weight and measured height.  The rate of gestational weight gain was calculated 

as the difference between the first clinically measured weight following 12 weeks 

gestation and the last clinically measured weight recorded, divided by the number of 

weeks between measurements.  Cut points to determine inadequate and excessive weight 

gains were based on IOM BMI-specific recommendations (122) previously used in the 

literature (148, 151).   

Dietary information was collected at 26–29 wk of gestation using a self-administered 

110-item Block-98 FFQ.  Daily energy intake was estimated from all foods and beverages.  

The Food Frequency Questionnaire (FFQ) has been shown to be an appropriate method 

for assessing habitual dietary intake in a wide variety of epidemiological settings, 
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including studies among pregnant women (11, 16, 17, 18, 19, 20).  The Block FFQ has 

been validated in studies of pregnant women and in the two previous PIN study 

populations.  The deattenuated Pearson correlation coefficients between the 

FFQ and the 24-h dietary recalls for total energy and carbohydrates were 0.32 and 0.44, 

respectively, for PIN 1 and 0.33 and 0.61, respectively, for PIN 2.  A more detailed 

description of the PIN FFQ has been published elsewhere (125) .   

Glycemic index values were applied to the FFQ data by the Department of Nutrition’s 

Clinical Research Unit Epidemiology Core using published values (95). Approximately 

25% of the questions on the FFQ contained a single food that had a direct match to 

published values. For cases of mixed foods, one glycemic index value was derived in 

those situations through calculations that were proportional to the number of foods 

embedded in each question. From this, the average glycemic index (the average of the 

glycemic indexes for all foods and beverages) and glycemic load (summing the products 

of the glycemic index and the carbohydrate content of the foods contributing to it) were 

calculated for each subject.   

Physical activity data were captured using a 1 week recall questionnaire specifically 

designed for PIN 3, which was administered by telephone between 17 and 22 weeks’ 

gestation.  This instrument assessed the frequency, duration and intensity of a variety of 

reported physical activities over the last 7 days at either a moderate or vigorous intensity 

level. Domains incorporated the following settings and/ or roles: at work, for recreation, 

for transportation, during care giving and as a part of indoor and outdoor household tasks.   

A 1 hour 50 gram glucose challenge test was performed as an initial screening for 

gestational diabetes (GDM) during the second or third trimester.  The values for maternal 
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plasma or serum post-load glucose concentration were abstracted from the medical chart 

and if necessary, converted to mg/dL.  Glucose was also analyzed using a categorical 

cutoff of >140 mg/dL, which is predictive of impaired glucose tolerance (152). 

Delivery logs at the study hospital were examined daily to determine delivery 

information including birth weight in grams.  Fetal growth was further classified using 

percentile of infant birth weight standardized for gestational length.  This calculation 

utilizes published values on birth-weight-for-gestational-age patterns by race, sex, and 

parity in the United States population (153).  Large-for-gestational-age (LGA) was 

defined by an infant birth weight for gestation above the 90th percentile of the standard.  

A small-for-gestational-age (SGA) fetus was defined by birth weight for gestation below 

the 10th percentile of the same standard.   

 

Statistical Analyses 

Energy adjustment was performed on values of glycemic index and glycemic load by 

using the nutrient residual method of Willett et al. (37).  To enhance the interpretation, the 

predicted glycemic index and glycemic load value at the mean total energy intake was 

added as a constant to the nutrient residual.   Both glycemic index and glycemic load were 

categorized into quartiles for all analyses.  A univariate analysis was conducted to 

compare values of maternal characteristics across quartiles of glycemic index.  For 

continuous covariates, linear test for trend was conducted using least-squares regression.  

Trend for categorical variables was tested using a Mantel-Haenzel chi-square test.  A 

multivariable linear regression model was developed for infant birth weight.  Gestational 

age, race, and parity were included as default independent variables.  Next, all maternal 
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characteristics except for dietary variables were considered for inclusion.  The model was 

fit using a backward regression procedure, first including all potential predictor variables 

in the model and then with the variables removed one at a time, until the likelihood ratio 

test statistic exceeded an alpha cutoff of 0.10.  After determination of a preliminary final 

model for infant birth weight, glycemic index and glycemic load were included separately 

along with total energy intake.  Interactions between all independent variables were also 

considered with a particular focus on pregravid BMI and maternal glucose.  As part of a 

sensitivity analysis on the model of infant birth weight, we excluded subjects with 

implausibly low and high energy intakes based on the 2002 DRI equations for estimated 

energy requirement (EER), which are sex and age-specific and are based on age, weight 

and height; and also include energy costs during pregnancy.  To identify physiologically 

implausible self-reported energy intakes, 95% confidence limits of agreement were 

calculated for the ratio of reported energy intake to EER using the Goldberg method 

described by Black & Cole (42) and further adapted by Huang et al.(80).  Another 

sensitivity analysis included the calibration of FFQ energy intake using a method 

proposed by Prentice et al. (30, 142) (Appendix B), which modifies the classic 

measurement error model by incorporating subject characteristics such as BMI, a robust 

predictor of measurement error in energy intake in our data.  Values for both glycemic 

index and glycemic load were then energy adjusted based on calibrated energy intake.  

Threshold for statistical significance was a p-value less than 0.05.  All analyses were 

performed using SAS software (version 9.1.3; SAS Institute Inc, Cary, NC).    
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Results 

The PIN3 cohort was comprised of primarily white women (74.5%) and the majority of 

participants had at least some college level education (82.0%).  The average maternal age 

was 29.3 ± 5.5 years.  Most of the women were married (78.8%) and more than half were 

nulliparous (51.4%).  In addition, 33.2% of women were overweight (BMI >26.0 to 29.0) 

and 21.9% were obese (BMI >29.0) prior to pregnancy.   

Several univariate trends in dietary glycemic index by maternal characteristics were 

observed (Table 1).   Women with diets higher in glycemic index tended to be younger, 

African American, less educated, unmarried, overweight prior to pregnancy, smokers 

during pregnancy, less physically active during pregnancy, and with higher frequency of a 

previous low birth weight (LBW) pregnancy.  Mean gestational weight gain and adequacy 

of gestational weight gain did not differ across levels of maternal glycemic index.   

Fiber and certain energy adjusted nutrient intakes also varied across quartiles of 

glycemic index (Table 2).  For macronutrients, carbohydrate and protein intake decreased 

(p<0.01 for both carbohydrate and protein), whereas fat intake increased (p<0.01) with 

increasing quartiles of glycemic index.  Calcium, Vitamin C, and folate decreased (p<0.01 

for each nutrient) across glycemic index of maternal diet.  There was no significant trend 

in energy intake by level of glycemic index (p=0.63). 

Table 3 shows results from a univariate analysis for glycemic index and glycemic load 

by endpoints for post-load glucose and fetal growth.  Mean post-load glucose intake and 

the proportion of subjects with elevated post-load glucose did not vary by glycemic index, 

but significant trends were observed for glycemic load.  Comparing the lowest to highest 

quartile of glycemic load, mean glucose was 108.4 mg/dL versus 104.5 mg/dL and the 
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prevalence of elevated glucose was 13.2% compared to 8.1%.  However, this association 

with glycemic load and post-load glucose was not statistically significant after adjusting 

for other confounders in our data, including pregravid BMI, maternal age, smoking during 

pregnancy, parity, race and physical activity during pregnancy.  The odds of an elevated 

random glucose screen (>140 mg/dL) for the lowest GL quartile were 1.71 (95% CI = 

0.98, 2.96) compared to the highest quartile. We found no trends in the frequency of SGA 

or LGA across levels of glycemic index or glycemic load.  Not surprisingly, these null 

associations remained after adjustment for potential confounders (results not shown).     

  In a multivariable analysis, several maternal characteristics were predictors of infant 

birth weight (Table 4).  After adjusting for a gestational age and all other covariates, we 

observed a higher mean birth weight for subjects with higher pregravid BMI, higher 

gestational weight gain, maternal age and maternal height.  Infant birth weight was lower 

among women who were nulliparous, had a previous LBW pregnancy, smokers during 

pregnancy, and African American (compared to Caucasian mothers).   Factors for 

glycemic index and glycemic load as quartiles were added separately to this full model for 

infant birth weight; and neither of these classifications for maternal carbohydrate quality 

were statistically significant.  Several maternal characteristics were examined as possible 

effect modifiers such as pregravid weight status, race, elevated post-load glucose, protein 

intake; however there was no strong evidence of effect modification by any of these 

factors.     

We also conducted various sensitivity analyses for the primary model of infant birth 

weight, as well as SGA, LGA and maternal glucose. These included modeling both 

glycemic index and glycemic load with and without kilocalories, after exclusion of prior 
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LBW, and after exclusion of subjects with GDM.   Additionally, we used two methods to 

account for systematic measurement error in energy intake, which were: the exclusion of 

energy underreporters and overreporters; and the calibration of energy intake and 

glycemic load.  However, none of the above approaches altered the results for 

carbohydrate quality and infant birth weight (results not shown).   

 

 
Discussion 

It is conceivable that birth weight may be related to differences in the type of maternal 

dietary carbohydrate via circulating glucose levels, even among generally healthy 

pregnancies.  However, we found no evidence that glycemic index or glycemic load of 

maternal diet during the second trimester was associated with post-load glucose or fetal 

growth parameters in a large cohort of pregnant women living in central North Carolina.  

These null findings are in contrast to the few published studies that have addressed this 

research question.   

Clapp et al. conducted a dietary and exercise intervention study in 20 healthy women 

recruited prior to pregnancy.  All women agreed to follow a diet of low glycemic index 

foods and at 8 weeks gestation were randomly assigned to either continue with the low 

glycemic index diet or to follow a high glycemic index diet for the duration of pregnancy.  

Women randomized to the high glycemic index diet compared to the low glycemic index 

diet had significantly higher levels of post-prandial glucose and insulin levels during mid 

to late pregnancy; and delivered symmetrically larger infants (approximately 840 grams) 

all of which were considered LGA. However, maternal weight gain was also remarkably 

greater in the high glycemic index group compared to the low glycemic index group (18.6 
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kg vs. 10.4 kg, p<0.01), which confounds the inference that glycemic index per se was 

responsible for the observed differences in carbohydrate metabolism and infant birth 

weights between the two groups.     

Moses et al. conducted a similar experiment on a larger sample of 62 healthy women 

enrolled between 12-16 weeks gestation (107).  The subjects were alternately assigned to 

receive dietary counseling that encouraged a low-GI (LGI) carbohydrate foods or a high-

fiber, moderate-to-high GI (HGI) foods; both groups were matched for initial 

macronutrient intake.  Compared with the LGI group, women in the HGI group gave birth 

to infants who were heavier (3408 vs. 3644 grams; P=0.05), a higher ponderal index (2.62 

vs 2.74; P=0.03), and a higher prevalence of LGA (3.1% vs. 33.3%; P=0.01).  However, 

we noticed that BMI at baseline was significantly higher in the HGI group (26.6 vs 24.4 

kg/m2, P=0.04), which may have explained part or all of the observed difference in infant 

birth size and LGA.     

Scholl et al.(108) analyzed data from 1,082 non-diabetic gravidas who enrolled at 

prenatal clinics in Camden, NJ.  Dietary data were averaged from three, nonconsecutive 

24-hour recalls obtained at entry to prenatal care and weeks 20 and 28 of gestation.  No 

significant difference in infant birth weight or LGA incidence was observed for women in 

the highest GI quintile; and glycemic load was unrelated to maternal post-load glucose or 

infant birth weight.  However, women in the lowest GI quintile, compared to all other 

subjects, had lower infant birth weights after adjustment for confounders (mean, -116.2; 

95%CI, -50.0, -182.5).  Further, the risk of SGA was greater for women in the lowest GI 

quintile compared to the middle quintile with an adjusted odds ratio of 1.75 (95% CI, 1.10, 

2.77).  Of note, this study population was ethnically diverse with a large proportion of 



 

76 

African-American women, who have demonstrated higher insulin levels and lower 

glucose concentrations compared to Caucasian women.  Therefore, the suggested 

influence of a lower glycemic index diet and reduced fetal growth in this study may be 

due to ethnic differences in carbohydrate metabolism.   

The lack of finding for higher glycemic index diets and excessive birth weight in our 

study and the Camden Study disagree with results from the two dietary intervention trials.  

Of course there is a tradeoff between dietary intervention and epidemiologic study designs 

regarding factors such as selection bias, confounding bias, statistical power and dietary 

measurement error.  Of note, however, neither epidemiologic study monitored dietary 

intake throughout the third trimester, which may be the most important critical window of 

exposure.  Even among healthy subjects, maternal glucose tolerance decreases and insulin 

resistance increases throughout pregnancy, which is seen as a normal physiological 

adaptation that restricts maternal glucose uptake and guarantees sufficient glucose 

availability for the growing fetus (154).  This deterioration in maternal glucose tolerance 

typically begins during the second trimester, but worsens progressively until delivery.  In 

fact, results from Clapp et. al. suggest that a high glycemic index diet may be most 

influential on maternal glucose and insulin during 32-36 weeks gestation.  Pregnancy is 

characterized by complex physiological and behavioral changes that affect maternal 

nutrient absorption and metabolism, energy and nutrient needs, appetite, and meal patterns 

(2, 3).  Thus, it is conceivable that intakes of glycemic index and glycemic load may vary 

significantly from the second to third trimester of pregnancy.   

One particular event that may induce changes in the type of carbohydrate consumption 

during pregnancy is the diagnosis of gestational diabetes mellitus.  For example, a low GI 
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diet is commonly advised as treatment for women with GDM; and has been shown to 

reduce obstetric and fetal complications, such as macrosomia (105).  In our cohort, dietary 

intake was assessed prior to screening for GDM; therefore women who were subsequently 

diagnosed with GDM may have altered the amount and type of carbohydrate intake during 

the third trimester in response to clinical recommendations.  However, we observed a low 

incidence of GDM in our cohort (3.5%) and there was still no association between either 

glycemic index or glycemic load and infant birth weight even after excluding these 

subjects.   

In pregnancies complicated by diabetes, higher circulating concentrations of maternal 

glucose can lead to increased transport of glucose and other nutrients to the fetus.  In 

response, fetal insulin secretion is stimulated which acts as a growth factor and increases 

the storage of glucose, amino acids and other nutrients, thereby increasing the intrauterine 

growth rate and resulting in higher infant birth weights.  However, despite the contention 

from some authors that maternal glucose in non-diabetic pregnancies is positively 

associated with higher infant birth weight and excessive fetal growth (88, 106, 150), other 

studies including ours have not observed such an connection (107, 155).  It is plausible 

that pregnancies with normal glucose concentrations result in little or no extra maternal 

glucose for excessive fetal growth (108).  Or, perhaps other markers of maternal glucose 

homeostasis are needed to elucidate this relationship.  Interestingly, Moses et al. found 

significantly higher LGA infants among HGI compared to LGI, but no differences in 

maternal postprandial glucose, insulin resistance, beta cell function, or insulin sensitivity 

between the two groups.  These results indicate that excessive fetal growth can occur 

among healthy women independent of changes in maternal carbohydrate metabolism.  On 
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the other hand, this study also suggests that carbohydrate quality may affect fetal growth 

regardless of any change in maternal carbohydrate metabolism.  Therefore, additional 

work is needed to determine the influence of dietary glycemic index on both glucose 

homeostasis and fetal growth in healthy pregnant women.   

The primary limitation of our study was that measurement of glycemic index and 

glycemic load were ascertained using an FFQ, which cannot accurately assess 

combinations and portions of foods, both in recipes and during meals, and thereby 

introduces error in the overall glycemic index and quantity of carbohydrate intake.  

Measurement of glycemic load via FFQs has been validated in previous studies, which 

have demonstrated reasonable correlations with more detailed dietary assessment methods 

and suggest that FFQs provide a valid representation of usual intake for ranking subjects.  

Studies of glycemic index and glycemic load on other outcomes such as diabetes have 

found positive associations using a variety of dietary methods, including FFQs.  

Furthermore, the PIN FFQ was validated in previous PIN cohorts against 24 hour dietary 

recall and performed reasonably well for most nutrients including carbohydrate intake.  

Also, in our data we observed a significant inverse relationship between glycemic index 

and fiber intake, which is the hallmark characteristic of dietary glycemia.   

To date, there is no compelling evidence that carbohydrate quality of maternal diet is 

associated with fetal growth among generally healthy pregnant women.  In a large cohort 

of non-diabetic gravidas, we found no relationship between glycemic index or glycemic 

load of maternal diet and infant birth weight.  Our results partially conflict with another 

cohort study, which found that women with diets lower in glycemic index were associated 

with a decrease in birth weight and an increase in SGA.  Conversely, two dietary 
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intervention studies suggest that a high GI diet during pregnancy may significantly 

increase the risk of LGA compared to a low GI diet.   However, these trials were limited 

by small sample size and a lack of adjustment for important confounders such as pregravid 

BMI and gestational weight gain.  Nevertheless, there is accumulating evidence that 

maternal glucose levels within normal limits are adversely related to fetal growth (106), as 

well as other obstetric outcomes (156, 157, 158).  Further, the glycemic index of foods has 

also been shown to alter postprandial glucose and insulin concentrations among healthy 

pregnant women.  Therefore, additional study of the carbohydrate quality in maternal diet 

remains important.   Future research should focus on larger scale intervention trials and 

epidemiologic studies that adequately account for measurement error in dietary 

assessment and capture food intake throughout the third trimester.   
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Table 5. 1.  Maternal characteristics by quartile of dietary glycemic index 
 
 

 Glycemic Index  

Characteristic 

Quartile 1 

(43 to <50) 

 Quartile 2 

(50 to <53) 

Quartile 3 

(53 to <56) 

Quartile 4 

(56 to 68) 

p-value 

Age (%)       

   <25 years 15.9 19.9 17.9 23.9 0.0092 

   25-<30 years 31.1 25.3 29.7 31.0  

   30-<35 years 35.5 34.3 39.5 31.0  

   35+ years 17.6 20.5 12.8 14.1  

Race (%)      

   White 77.0 78.5 76.4 66.3 0.0109 

   Black 15.2 15.5 15.5 20.5  

   Other 7.8 6.1 8.1 13.1  

Education (%)      

   <=High School 17.6 16.2 14.9 23.6 0.0019 

   >High School to Undergraduate 40.9 47.5 51.4 47.5  

   Graduate School 41.6 36.4 33.8 29.0  

Married (%) 81.4 79.8 79.7 74.1 0.0374 

Nulliparous (%) 63.2 53.5 50.0 39.1 <0.0001 

Prior LBW  (%) 7.4 5.1 9.5 11.4 0.0219 

BMI (%)      

   <19.8 kg/m2 12.2 16.5 13.2 13.8 0.0560 

   19.8-26 kg/m2 56.8 53.9 55.4 45.5  

   26-29 kg/m2 11.8 9.4 7.8 16.2  

   >29 kg/m2 19.3 20.2 23.6 24.6  

Smoked Cigarettes During 
Pregnancy (%) 

6.1 5.4 10.8 14.5 <0.0001 

Met Recommendations for Physical 
Activity During Pregnancy (%) 

20.9 19.9 15.5 14.8 0.0222 

Gestational Weight Gain in kg/week 
(mean, SD)  

1.03 (0.39) 1.06 (0.39) 1.05 (0.44) 1.00 (0.45) 0.3921 

Adequacy of GWG (%)       

  Inadequate 18.9 17.5 19.6 23.6 0.2550 

  Adequate 20.3 19.9 18.6 17.5  

  Excessive 60.8 62.6 61.8 58.9  
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Table 5. 2.  Median intake of energy, energy-adjusted macronutrients, selected 
micronutrients and fiber by quartile of dietary glycemic index 
 

 Glycemic Index   

 

Quartile 1 

(43 to <50) 

 Quartile 2 

(50 to <53) 

Quartile 3 

(53 to <56) 

Quartile 4 

(56 to 68) 

p-value 

Kilocalories 2046 (849.1) 1989 (885.4) 2010 (867.7) 2048 (926.7) 0.8592 

Protein (g) 81.6 (19.15) 77.0 (15.58) 75.9 (13.58) 73.5 (16.49) <0.0001 

Carbohydrate (g) 305.8 (47.42) 309.5 (47.10) 298.6 (39.06) 297.0 (49.16) <0.0001 

Fat (g) 77.2 (16.34) 78.7 (16.39) 81.6 (13.73) 82.8 (16.62) <0.0001 

Vitamin C (mg) 232.5 (119.5) 229.4 (106.0) 198.8 (101.1) 165.0 (98.20) <0.0001 

Folate (ug) 451.5 (128.1) 422.5 (119.1) 414.8 (98.64) 391.5 (106.2) <0.0001 

Calcium (mg) 1250 (472.2) 1043 (428.8) 990.0 (343.8) 816.8 (304.2) <0.0001 

Iron (mg) 15.9 ( 4.78) 15.4 ( 4.18) 15.5 ( 4.44) 15.1 ( 5.34) 0.6310 

Fiber (g) 21.1 ( 9.02) 19.5 ( 7.11) 17.9 ( 6.87) 15.8 ( 5.34) <0.0001 
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Table 5. 3.  Fetal growth and glucose parameters by quartiles of glycemic index and 
glycemic load. 

 

 Glycemic Index  

 

Quartile 1 

(43 to <50) 

 Quartile 2 

(50 to <53) 

Quartile 3 

(53 to <56) 

Quartile 4 

(56 to 68) 

p-value 

SGA (%) 8.1 7.4 6.1 7.4 0.6116 

LGA (%) 6.8 13.1 7.8 9.8 0.6299 

Post-load Glucose in mg/dL  

(mean, SD) 

106.8 
(26.87) 

106.0 (27.00) 108.2 (31.25) 106.2 (25.12) 0.9601 

Elevated Post-load Glucose (%) 11.5 10.8 10.1 9.8 0.4669 

 

 Glycemic Load  

 

Quartile 1 

(58 to <139 

 Quartile 2 

(50 to <152) 

Quartile 3 

(53 to <164) 

Quartile 4 

(164 to 276) 

p-value 

SGA (%) 7.1 9.4 6.1 6.4 0.4190 

LGA (%) 7.8 10.4 11.1 8.1 0.8302 

Post-load Glucose in mg/dL  

(mean, SD) 

108.4 (31.14) 108.5 (29.38) 105.8 (25.36) 104.5 (23.93) 0.0457 

Elevated Post-load Glucose (%) 13.2 12.8 8.1 8.1 0.0123 
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Table 5. 4.  Least squares regression model of infant birth weight on glycemic index 
and glycemic load of maternal diet 
  
 
 

 Glycemic Index Glycemic Load 

 Beta SE P-value Beta SE P-value 

Quartile 1 vs. 4 1.388092 41.9090690 0.9736 3.189178 41.5620638 0.9388 

Quartile 2 vs. 4 50.555746 41.5487248 0.2239 54.011534 41.4832380 0.1932 

Quartile 3 vs. 4 -6.038944 41.2201411 0.8835 68.041571 41.1951398 0.0989 

Kilocalories (per 100) -2.180351 1.6238457 0.1796 -1.562058 1.6546963 0.3454 

Prior LBW  -236.632568 56.2921062 <.0001 -243.941969 56.2012273 <.0001 

Gestational Age (weeks) 193.174012 8.0039414 <.0001 192.270240 7.9962281 <.0001 

BMI (kg/m 2) 21.110396 2.4837569 <.0001 21.077698 2.4846101 <.0001 

GWG (kg/week) 266.040114 37.0431579 <.0001 263.110877 37.0597498 <.0001 

Maternal Age 6.095776 2.9215143 0.0371 6.179476 2.9399740 0.0358 

Nulliparous -221.241200 31.7633497 <.0001 -220.861079 31.3245466 <.0001 

Smoked During 
Pregnancy 

-172.471905 52.0303471 0.0009 -174.936846 51.7281635 0.0007 

Maternal Height (inches) 25.025754 5.4712238 <.0001 25.155210 5.4543646 <.0001 

Black vs. White -167.299359 43.8773634 0.0001 -168.606301 44.0125216 0.0001 

Other vs White -63.079589 52.1607308 0.2268 -67.031515 51.9727266 0.1974 
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Chapter Six 
 

Conclusions 
 
     The findings from this research support many of the initial hypotheses from the specific 

aims.  These results highlight potential issues regarding nutritional assessment during 

pregnancy and provide additional evidence whether the modification of the carbohydrate 

quality in maternal diet can affect fetal growth among generally health pregnancies.  

 

Specific Aim 1 

     The first aim of this dissertation was to identify pregnant women who reported energy 

intakes that were physiologically implausible.  Statistical methodology to determine LER and 

HER had been previously established, however, its application for dietary assessment during 

pregnancy required some important modifications.  The 1 to 1 ratio of EI:EER is based on 

the assumption of energy balance, which may be violated in the case of pregnancy where 

additional caloric needs are required to support adequate gestational weight gain and 

increases in BMR.  To account for this, the 2002 DRI equations for EER in pregnant women 

provide an overall estimate of additional kilocalories per day to account for energy 

deposition during the second and third trimesters.  However, this ignores the recent finding 

that additional energy requirements during pregnancy are also a function of pregravid BMI.  

Therefore, we applied three separate values for daily change in TEE based on underweight, 

normal weight, or overweight prior to pregnancy.  In addition, because of variability in TEE 

asdfasdfadf 
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estimation by weight status, we calculated a separate within subject CV for the EER 

prediction equation based on the same categories of pregravid weight status.  These updates 

to the EI:EER cutpoint methodology may prove useful for future studies of measurement 

error in energy intake during pregnancy.   

 Results from Aim 1 indicate that measurement error of maternal energy intake should be 

considered is studies of maternal diet.  Nearly half of the women reported implausible intakes 

with LER and HER being 32.8% and 12.9%, respectively.  This overall LER prevalence is 

similar to what has been found in non-pregnant women; whereas HER for this study was 

somewhat higher, which may be unique to pregnancy, a time period characterized by 

increased energy intake.  However, comparing the frequency of measurement error across 

studies is complicated due to variations in the assessment of diet and physical activity, as 

well as subject characteristics.  Therefore, additional studies on pregnant women would be 

needed to determine whether the overall prevalence of measurement error in reported energy 

intake is grossly different between pregnant and non-pregnant populations.  Nevertheless, 

estimates of LER and HER from Aim1 are the first published values from a large cohort of 

pregnant women in a developed country.    

 

Specific Aim 2 

Aim 2 was an extension of Aim 1 to determine if the prevalence of LER and HER varied 

by maternal characteristics.  LER was most common in pregnant women who were classified 

as obese prior to pregnancy (49.8%).  Measures of body size and adiposity are likely 

surrogates for psychosocial characteristics that result in misreport energy (food) intake.  

Previous studies have suggested that restrained eating behaviors may explain much of the 
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variation in LER, although we found no independent association between dietary restraint 

score and underreporting in our cohort.  However, we did find women with higher depressive 

symptoms were more likely to overreport energy intake, a finding that has not been 

previously noted in the literature.  Gestational weight gain was not related to LER or HER 

after adjustment for pregravid weight status, which, as was hypothesized, a robust predictor 

of measurement error.   

We did not observe that reporting bias in energy intake was associated with variable bias 

for most nutrient intakes, as well as glycemic index and glycemic load.  This suggests that 

food intake was misreported on the whole diet level, which is an important assumption when 

relying on energy adjusted nutrient intakes to represent diet composition.  However, many 

researchers agree that energy adjustment alone cannot eliminate the effects of differential 

reporting bias.   Pregravid BMI is an important predictor of many reproductive outcomes, 

and obesity specific bias in energy intake during pregnancy may distort nutrient risk 

estimates between diet and reproductive outcomes, particularly if total energy intake is also 

related to the outcome.   

 

Specific Aim 3 

The goal of Aim 3 was to determine if the carbohydrate quality of maternal diet was 

associated with fetal growth within a generally healthy pregnant population.  However, we 

found no evidence that either glycemic index or glycemic load during the second trimester 

was related to either post-load glucose or fetal growth parameters.  These null findings are in 

contrast to the few published studies in this research area; one suggested that a low glycemic 

diet increases the risk of SGA and two concluded that a high glycemic diet may increase the 
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risk of LGA.  However, each of these studies including ours had differences with respect to 

study population and study design, which could explain the inconsistency in results.   

It is conceivable that birth weight may be related to differences in the type of dietary 

carbohydrate via circulating maternal glucose levels, even among generally healthy 

pregnancies.  However, not all studies including ours have found a positive association 

between maternal glucose and fetal growth.  Perhaps, pregnancies with normal glucose 

concentrations result in little or no extra maternal glucose for excessive fetal growth.  Or, 

perhaps other markers of maternal glucose homeostasis are needed to elucidate this 

relationship.  Regardless, additional work is needed to determine the influence of maternal 

carbohydrate metabolism and fetal growth among healthy pregnant women.  Moreover, the 

validity of the GI concept during pregnancy has been assessed for only a small number of 

foods in limited subjects.  Certain physiological changes during pregnancy, such as decreased 

gastric emptying, may reduce the impact of dietary glycemic index and glycemic load on 

postprandial glucose.  Thus, although biological plausibility exists, more research is needed 

to determine the capacity for carbohydrate quality to influence maternal glucose substrates in 

pregnant women without diabetes. 

It is also possible that there is no true association between glycemic index and fetal 

growth among non-diabetic pregnancies, as the current analysis on the PIN3 data would 

suggest.  However, this study is not without limitation.  The main concern with the PIN3 data 

is that measurement of glycemic index and glycemic load were ascertained using an FFQ, 

which cannot accurately assess combinations and portions of foods, and consequently less 

valid than other diet assessment tools.  Moreover, there were no validation data to compare 

GI and GL values from the PIN3 FFQ with those from a more detailed assessment method, 
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although a previous validation study suggested moderate agreement between total 

carbohydrate intake from the PIN FFQ and multiple 24 hour dietary recalls.  Nevertheless, 

the PIN3 FFQ was not specifically designed to assess habitual intake of foods with respect to 

glycemic index.  Therefore, while the PIN3 design has several strengths, it is not an entirely 

optimal data source to address the specific research hypotheses of Aim 3.   

   

Specific Aim 4 

 The purpose of Aim 4 was to conduct a sensitivity analysis on the results from Aim 3 to 

explore the potential influence of misreporting energy intake.  Results from Aim 4 suggest 

that misreporting energy intake per se did not affect the observed null association between 

glycemic index or glycemic load and infant birth weight.  Perhaps no true relationship exists; 

however, the method of excluding implausible energy intakes has some caveats with regard 

to removing measurement error from diet disease estimates.  Mainly, LER and HER subjects 

comprise a large proportion of the study population and their removal may exclude important 

subjects particularly with respect to pregravid BMI.  Thus, exclusion of physiologically 

implausible energy intakes cannot correct estimates of nutrient intake according to systematic 

error, such as obesity specific bias.  One such method to calibrate systematic bias has been 

proposed in the literature, however, its application to studies where BMI is both a predictor 

of measurement error and the disease outcome remains questionable.   

Overall Conclusions 

This work suggests that measurement error in energy intake is common during pregnancy 

and that obesity-specific bias exists.  Person-specific bias has been shown to distort nutrient 

risk estimates in studies of diet and disease and its influence may be underemphasized in 
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nutrition epidemiology.  Identifying predictors of systematic underreporting is an important 

step in reducing the impact of measurement error on the results.  However, additional 

research is needed to generate methods of improving the data of susceptible subgroups 

during the dietary assessment and analytic phase of nutritional studies.   

As a whole, this dissertation indicates that carbohydrate quality of maternal diet is not 

related to fetal growth among generally healthy pregnant women and that measurement error 

in energy intake does not account for this null finding.  The primary limitation of this work 

was the use of FFQ to ascertain energy intake as well as glycemic index and glycemic load.  

Yet, the FFQ remains an important and commonly used tool in nutrition research, including 

pregnancy cohorts.   

Maternal diet is a critical component for reproductive outcomes and modifying the quality 

of carbohydrate eaten during pregnancy may provide an opportunity to reduce the risk of 

inadequate or excessive fetal growth.  Prior research in this area has some considerable 

limitations; however, the findings are intriguing and additional study of the carbohydrate 

quality in maternal diet remains important.  Results from this work including the insights on 

the current literature will add to the etiological evidence and may improve future studies of 

maternal diet and fetal growth.   

Public Health Significance 

Diet has enormous exposure potential in the prevention and treatment of disease.  Yet, the 

importance of nutrition in public health is somewhat undermined by measurement error in 

self-reported dietary data.  In some cases, nutritional biomarkers can provide an objective 

measure that is independent of memory, capacity to estimate average intake over a period of 

time, and social desirability bias.  Errors associated with biologic variables are also 
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independent of those associated with self-report data, which are important for statistical 

analyses involving measurement-error correction (159).  However, there are also several 

limitations with their use including biological variability, cost, subject burden, and temporal 

relationship with dietary intake.   Thus, while incorporating biomarkers can enhance the 

study design, biomarkers are complementary to, rather than a replacement for, self-report 

tools, particularly in large epidemiologic studies (12).  Accordingly, it is critical to improve 

existing self-report instruments and develop new methods of querying subjects on nutritional 

intake in order to establish valid relationships between diet and disease.     

Measurement error of diet during pregnancy has some additional considerations; however, 

research in this population remains limited.   This work provides some new insights on 

implausible dietary intakes and the sources of systematic bias in maternal diet.  Additional 

work is needed to implement similar methodology in other pregnancy cohorts and to improve 

validity in the diet assessment of vulnerable subgroups.  Further, adjusting for implausible 

energy intakes in analysis may help discern the importance of nutrition during pregnancy and 

should be considered future studies of diet and reproductive outcomes. 

Modification of the quality and quantity of carbohydrate in woman with diabetes during 

pregnancy can have important benefits with respect to fetal growth.  If this association also 

existed in the general population of pregnant women, it could have a considerable public 

health impact.  However, results from the PIN3 data and a critique of the literature suggest 

there is no overwhelming evidence of a relationship between either glycemic index or 

glycemic load of maternal diet on fetal growth in generally healthy pregnancies.  It is 

possible that less detailed assessment methods used in epidemiologic studies cannot 

adequately quantify the habitual intake of glycemic index foods.  In which case, intervention 
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studies comparing the effects of a high and low glycemic index diet on both glucose and 

fetal growth parameters may help address this issue.    However, the tradeoff with 

intervention studies is typically a more selective study population, which may not be 

representative with respect to dietary intake and other factors related to fetal growth among 

the general population.  Therefore, both large cohort studies and diet intervention studies of 

pregnant women may be needed to determine if glycemic index and glycemic load can 

prevent anomalous fetal growth. 
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 Appendix A  

 
Daily Reference Intakes (DRI) Equations for Estimated Energy Requirement (EER), 
Institute of Medicine, 2002. 
Girls 9-18 
years 

EER = 135.3 – (30.8 × age [y]) + PA × { (10.0 × weight [kg]) + (934 × height [m]) } + 
25  
 

Women 19 
years and 
older 

354 – (6.91 × age [y]) + PA × { (9.36 × weight [kg]) + (726 × height [m]) } 

Pregnancy in  
2nd trimester 
 

Non-pregnant EER + 340 

PA=Physical Activity Coefficient 
 
 
Physical Activity Coefficients (PA) Values for DRI ERR Equations, Institute of 
Medicine, 2002. 

 Sedentary Low Active 
 

Active 
 

Very Active 

Typical daily 
living 
activities 
(e.g., household 
tasks, 
walking to the 
bus) 

Typical daily 
living 
activities 
PLUS 
30 - 60 minutes 
of daily 
moderate activity 
(ex. walking at 5-
7 km/h) 

Typical daily 
living 
activities 
PLUS 
At least 60 
minutes of 
daily moderate 
activity 

Typical daily 
living activities 
PLUS 
At least 60 
minutes of daily 
moderate activity 
PLUS 
An additional 60 
minutes of 
vigorous activity 
or 120 minutes 
of 
moderate activity 

Girls 3-18 years 1.00 1.16 1.31 1.56 
Women 19 years 
and older 

1.00 1.12 1.27 1.45 
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Appendix B 

Regression Calibration Estimator  

A classic measurement error model would be 

W = Z + µ, 

where Z represents typical daily average energy consumption, W represents an objective measure of 

energy intake, and µ is a mean zero error variable that is independent of Z and independent of other 

study subject characteristics.  However, because the measurement error associated with FFQ intake 

depends on subject characteristics, this calibration model was modified to incorporate key predictors 

of systematic reporting bias in dietary intake (30, 142).  This approach is a relaxed dietary 

measurement error model that allows all measurement error parameters to depend on a vector of 

subject characteristics (i.e. BMI, age, social desirability bias).  The resulting model is 

W = Z* + ε, 

Where ε is a random error term independent of Z* and certain subject characteristics and Z* is the 

actual ‘target’ of the FFQ assessment that could plausibly be expressed as 

Z*= γ0 + γ1Z + γ2
T
 V + γ3

T
 VZ + η, 

Where η is a person-specific random effect and ‘T’ denotes vector transpose. Note that the term γ3
T

 

VZ makes a provision for systematic bias in that, if a component of g3 is non-zero, then there is 

systematic bias in the self-report assessment of Z that is associated with the corresponding element of 

V. Also, the mean zero random effect, η, accommodates a further person-specific bias. Its variance is 

allowed to depend on V, but when rescaled to have unit variance the random effect is assumed to be 

independent of (V, Z). The random effect allows the measurement errors in repeat self-report 

assessments of Z to be correlated. 
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