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ABSTRACT

QING FENG: Statistical Integration of Information
(Under the direction of J. S. Marron and Jan Hannig)

Modern data analysis frequently involves multiple large and diverse data sets gener-

ated from current high-throughput technologies. An integrative analysis of these sources

of information is very promising for improving knowledge discovery in various fields. This

dissertation focuses on three distinct challenges in the integration of information.

The variables obtained from diverse and novel platforms often have highly non-

Gaussian marginal distributions and therefore are challenging to analyze by commonly

used methods. The first part introduces an automatic transformation for improving

data quality before integrating multiple data sources. For each variable, a new family

of parametrizations of the shifted logarithm transformation is proposed, which allows

transformation for both left and right skewness within the single family and an automatic

selection of the parameter value.

The second part discusses an integrative analysis of disparate data blocks measured

on a common set of experimental subjects. This data integration naturally motivates the

simultaneous exploration of the joint and individual variation within each data block

resulting in new insights. We introduce Non-iterative Joint and Individual Variation

Explained (Non-iterative JIVE), capturing both joint and individual variation within

each data block. This is a major improvement over earlier approaches to this challenge

in terms of both a new conceptual understanding and a fast linear algebra computation.

An important mathematical contribution is the use of score subspaces as the princi-

pal descriptors of variation structure and the use of perturbation theory as the guide

for variation segmentation. Furthermore, this makes our method robust against the

heterogeneity among data blocks, without a need for normalization.

The last part proposes a Generalized Fiducial Inference inspired method for finding

a robust consensus among several independently derived confidence distributions (CDs)

for a quantity of interest. The resulting fused CD is robust to the existence of potentially
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discrepant CDs in the collection. The method uses computationally efficient fiducial

model averaging to obtain a robust consensus distribution without the need to eliminate

discrepant CDs from the analysis.
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CHAPTER 1: INTRODUCTION

Current high-throughput technologies are powering the generation of large and di-

verse data sets. A collection of different types of data can be obtained from multiple

platforms and a major challenge to integrate them for meaningful analysis. Such in-

tegration of multiple sources of information is very promising for improving knowledge

discovery in various fields. For example, data integration methodologies become more

and more important in the life sciences research. One well-known data intense bio-

logical context is The Cancer Genome Atlas Project (TCGA). It aims at generating

insights into the heterogeneity of different cancer subtypes by analyzing various data

types from high-throughput technologies. For instance, Network et al. (2012) charac-

terized the breast cancers by genomic DNA copy number arrays, DNA methylation,

exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein ar-

rays. Through integrating information across platforms, Network et al. (2012) provided

key insights into previously-defined gene expression subtypes and demonstrated the ex-

istence of four main breast cancer classes when combining data from five platforms, each

of which shows significant molecular heterogeneity.

Another popular application of data integration analysis is precision medicine (PM).

This is a medical model that proposes the customization of healthcare, with medical

decisions, practices, and/or products being tailored to the individual patient. Instead of

classifying individuals into a particular disease, PM targets at classifying individuals into

subpopulations based on integrating personal multi-OMIC data (Binder et al., 2014),

imaging data and clinical data. These methods enable characterization of the genotype

and/or molecular phenotype on a personalized basis with the aim of increasing our

understanding of disease genesis and progression and, in final consequence, improvement

of diagnosis and treatment options (Binder et al., 2014).

Data integration analysis presents many challenges to traditional analytical tools

considering the large volume and complexity of the collections of data sets. This dis-



sertation addresses some statistical challenges raised by integration of information, in

particular three aspects described in the following sections.

1.1 Automatic Data Transformation

The multiple data sets generated from different and novel platforms frequently have

highly non-Gaussian marginal distributions. However commonly used analysis methods

are most effective with roughly Gaussian data. Therefore, an appropriate data transfor-

mation can be very useful for improving the data quality before any further analysis or

development of new methodologies. One great challenge of transforming an integrated

data set comes from the massive amount of variables and their heterogeneity. Con-

sidering the high dimensionality and the big difference in magnitudes, it is crucial to

automate the transformation and make it robust for each individual variable.

This dissertation introduces an automatic data transformation technique in Chap-

ter 2. This method proposes a new family of parametrizations of the shifted logarithm

transformation in which the parameter selection is invariant to the magnitudes of vari-

ables. This new family thus allows an automatic selection of parameters by minimizing

the Anderson–Darling test statistic of the transformed data.

1.2 Non-iterative Joint and Individual Variation Explained

One common and important data integration task is the combination of diverse

information from disparate data sets measured on a common set of experimental sub-

jects. This type of integrated data set is also known as multi-block data. Each data

block from distinct platforms provides important information of commonly measured

subjects, such as the TCGA example mentioned above. A unified and insightful under-

standing of the set of data blocks is expected from simultaneously exploring the joint

variation representing the inter-block associations and the individual variation specific

to each block.

The first challenge is interpretability. More insightful data analysis comes from

careful understanding of the common pattern across the blocks and the unique pattern

of each individual data set. To achieve this, it requires a model framework having

2



meaningful and rigorous definitions of each type of variation together with constraints

to obtain identifiability.

The second challenge is in heterogeneity. The block means could be quite different.

This can be addressed by subtracting each block mean. After mean normalization,

scaling should be considered. This needs more careful consideration because the number

of features can be vastly different. Taking the breast cancer study in the TCGA project

as an example, while one block contains about 100 features extracted from reverse phase

protein arrays, the other has approximately 14,000 gene expression features. Thus, any

important information from the reverse phase protein arrays may be swamped out by

the large amount of gene expression information.

This dissertation proposes a computationally efficient method, Non-iterative Joint

and Individual Variation Explained (Non-iterative JIVE), to obtain an identifiable and

insightful decomposition to a set of heterogeneous data blocks. Non-iterative JIVE

is based on the model framework developed by Lock et al. (2013) and improved the

interpretation of variation components and identifiability using the row space (assuming

columns are the data objects) of the data matrices. The new concept of latent score

vector provides many new insights. Furthermore, this method applies a new principal

angle analysis in the row space to resolve the heterogeneous challenge when segmenting

the variation into joint and individual components. Chapter 3 provides the details of

the population model, estimation method and Chapter 4 shows the applications to a

mortality data set and a TCGA breast cancer data set.

1.3 Fusion Learning for Interlaboratory Comparison

The other data integration challenge comes from interlaboratory trials which are

often conducted by leading metrology laboratories in the world to compare measure-

ments of various fundamental properties of substances. Such a trial typically involves

two or more participants each of whom measures the (nominally) same unknown value

(called measurand) and provides the result along with an assessment of the uncertainty

in the result. When facing discrepant measurements, statistical modeling and analysis

is needed for determining the consensus (reference) value and its associated uncertainty.

One major difficulty in integration stems from the sometimes big discrepancy of

the interlaboratory trials being combined. It is generally the case that the results from

3



one or a few laboratories differ noticeably from the rest in that there is no overlap

among the derived confidence intervals. Simply eliminating them from the analysis is

often not an acceptable approach, particularly so in view of the fact that the true value

being measured is not known and a discrepant result from a lab may be closer to the

true value than the rest of the results. Additionally, eliminating one or more labs from

the analysis can lead to political complications since all labs are regarded as equally

competent. These considerations make the proposed method well suited for the task

since no laboratory is explicitly eliminated from consideration.

To appropriately incorporate these considerations, a Generalized Fiducial Inference

inspired method is proposed in this dissertation to derive a robust consensus value from

a collection of interlaboratory trials. This method does not eliminate any discrepant

laboratory measurements and uses a fiducial model based weight to achieve a robust

average. More backgrounds and details are discussed in Chapter 5.
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CHAPTER 2: AUTOMATIC DATA TRANSFORMATION

2.1 Introduction

Technological developments have led to methods for generating complex data objects

such as DNA chip data and digital images of tumors. These new types of data objects

frequently strongly violate the approximate normality assumption which is commonly

made in statistical techniques. Therefore, an appropriate data transformation can be

very useful for improving the closeness of the data distribution to normality.

Many transformation techniques have been proposed. Sakia (1992) pro-

vided a comprehensive review of the Box-Cox (Box and Cox, 1964) and related

transformations. Various methods have been developed for selecting the trans-

formation parameters, including the maximum likelihood method (Box and Cox,

1964), robust adaptive method (Carroll, 1980), Kullback-Leibler information

based method (Hernandez and Johnson, 1980), and Kendall’s rank correlation-based

method (Han, 1987).

A commonly used member of the Box-Cox family is the logarithm transformation,

which is useful for tackling data sets generated by a multiplicative process. Furthermore,

the logarithm transformation can stabilize the asymptotic variance of data. One impor-

tant application is to transform some types of microarray data. A shift parameter was

further introduced to make the logarithm transformations more flexible and useful. See

Section 3 of Yang (1995) for a good overview of the shifted logarithm transformation.

The parameterizations of the shift parameter strongly depend on knowledge of the data

e.g. data range, data distribution, so user intervention is usually required. However,

modern high-output data sets usually have a very large number of variables, i.e. fea-

tures, so there is a strong need to automate the selection of shift parameter, which is an

important contribution of this paper.

We propose a new automatic data transformation scheme for making various types

of marginal distributions close to being normally distributed. In particular, we aim at

addressing certain types of departures from normality, for example, strong skewness.



Our proposed method focuses on the family of shifted logarithm transformations and

introduces a new parametrization which treats the data as lying on the entire real line.

Besides, our parametrization makes the selection of shift tuning parameter independent

of data magnitude which is an advantage for automation. This algorithm is designed to

automatically select a parameter value such that the transformed data has the small-

est Anderson–Darling test statistic. Furthermore, this transformation scheme includes

a winsorization of influential observations based on the extreme value theorem. The

transformation is univariate in nature and thus cannot guarantee multivariate normal-

ity. However, we have seen many real data sets where bivariate normality is a clear

consequence.

2.1.1 Data Example

A motivating data example is digital image analysis in a study of mutant types of

melanocytic lesions (Miedema et al., 2012). Image features are constructed as mathe-

matical descriptions of cell and nuclei shape, color and relationship, capturing image

aspects such as the regularity of nuclear shape, nuclear area and stain intensity. A set of

33 features are extracted for each cell (approximately 1,425,000), describing both nuclei

and surrounding cytoplasm. A table of a summarized description of these features can

be found in Miedema et al. (2012).

Many of the raw features extracted from digital images contain excessive skewness.

For example, the marginal distributions of two of the image features, Hu4 and Eccen-

tricity, are visualized by the kernel density estimated plots (KDE plots) in the top row of

Figure 2.1. The blue curves are the Gaussian kernel density estimate i.e. smoothed his-

tograms, using Sheather-Jones plug-in bandwidths (See Chapter 3 of Wand and Jones

(1994) for the comparison of bandwidth selection methods). The green dots are jitter

plots of the data. Each symbol is a data point whose horizontal coordinate is the value

and vertical coordinate is based on data ordering for visual separation. As can be seen,

these distributions are highly skewed. For such data sets with substantial skewness,

an analysis based on a Gaussian assumption would tend to generate poor results. The

bottom plots of Figure 2.1 display the KDE plots of each feature vector after our au-

tomatic transformation. The kernel density estimates (blue curves) are approximately

symmetric.
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Figure 2.1: Comparison of the KDE-plots of two image feature vectors before (top row) and
after (bottom row) transformation. This shows that the transformed distributions are much
closer to Gaussian for data with both positive (Hu4, left column) and negative (Eccentricity,
right column) skewness.

The Quantile–Quantile (Q–Q) plots in Figure 2.2 give a more precise measure of

closeness to the standard normal distribution. The left panel shows the Q–Q plots for

Hu4 applied with standardization only (blue plus signs) and for Hu4 after automatic

transformation (green stars). The symbols are the quantiles of 1000 randomly selected

data points against the theoretical quantiles of the standard normal distribution. For

comparison, we also show the 45° red dashed line. The blue plus signs clearly depart from

this line, while the green stars approximately lie on the line. This contrast suggests a

dramatic improvement in normality by our automatic transformation of Hu4. A similar

improvement in normality of Eccentricity is also shown in the right panel. Although

there are slight departures at each tail of the transformed data, an overall improvement

can be seen as the majority of the quantiles approach the theoretical quantiles of the

standard normal distribution.

Even though our transformation acts only on the marginal distributions, it often

results in major improvement of the joint distribution of the features. In Figure 2.3,

the scatter plot on the left shows a strong non-linear relationship between the Hu4 and

Eccentricity that were studied in Figures 2.1 and 2.2. After transformation, the scatter

plot on the right shows a bivariate Gaussian relationship which is much more amenable

to analysis using standard statistical tools.
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Figure 2.2: The Q–Q plots of Hu4 (left) and Eccentricity (right). The comparison between
before (blue plus signs) and after (green stars) indicates a major overall improvement in closeness
to normality made by transformation.
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Figure 2.3: Comparison of the scatter plots, showing the joint distributions from Figure 2.1,
before (left) and after (right) transformation. Relationship after transformation is much closer
to linear.

2.2 Methodology

In this section, a novel automatic data transformation scheme is proposed for general

data sets to achieve approximate normality. For any given data set, the transformation

works feature by feature. In other words, for a data matrix with columns considered as

data objects and rows considered as features, the transformation is applied to each row.
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The transformation scheme consists of three components: a family of shifted log-

arithm transformation functions indexed by a parameter β, standardization with an

option for winsorization of extreme observations and an evaluation of the transforma-

tion with a given parameter value. The key steps will be introduced in the following

subsections.

The transformation scheme is a grid search based on three components to determine

the optimal value of β for each feature, which is outlined as

� Initialization: Construct a grid of parameter values β = {βi, i = 1, . . . ,m}

� Step 1: Apply the transformation function to the feature vector for each parameter

value βk.

� Step 2: Standardize the transformed feature vector and winsorize any existing

extreme observations. Re-standardize the feature vector if winsorization has been

done.

� Step 3: Calculate the Anderson–Darling test statistic.

Lastly, select β to minimize the Anderson–Darling test statistic for normality.

2.2.1 Transformation Function

A new parametrization of the family of shifted logarithm functions, {φβ, β ∈ R}, is

proposed for addressing both left and right skewness in each individual feature. For a

feature vector x = (x1, x2, . . . , xn), the sample skewness of x is

g(x) =
1
n

∑n
i=1(xi − x̄)3

( 1n
∑n

i=1(xi − x̄)2)
3

2

where x̄ is the sample mean of the vector x.

As convex transformation functions tend to increase the skewness of data while

concave transformations reduce it (van Zwet, 1964), the transformation functions are

chosen to be concave for g(x) > 0 and convex for g(x) < 0. As logarithm functions

are concave, the transformation function can be a logarithm for the case g(x) > 0 i.e.

log(xi). While for the other case g(x) < 0, the transformation function should be made

convex by inserting negative signs within and before a logarithm function i.e. − log(−xi).
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A limitation of sample skewness is its lack of robustness, i.e. sensitivity to outliers.

Our algorithm only uses the sign of the skewness, and not its magnitude. Hence it works

well in the typical case where outliers go in the same direction as the skewness. There

can be exceptions to this, which will be detected during the recommended visualization

of the results of our transformation.

Because logarithm functions require positive inputs, it is important to modify the

functions for both cases to be valid for any element xi. For example, in the case g(x) > 0,

this concern can be resolved by subtracting the minimal value of the feature vectors from

xi and adding a positive shift parameter η. That is,

log(xi −min(x1, x2, . . . , xn) + η), (2.1)

Similarly for the negative skewness g(x) < 0, the function is

− log(max(x1, x2, . . . , xn)− xi + η), (2.2)

The shift parameter η is further parameterized in terms of the multiples of the range

of the feature vectors i.e. R = max(x1, x2, . . . , xn) - min(x1, x2, . . . , xn). This makes the

selection of parameter values independent of the data magnitude. In particular, set

η = | 1
β
|R. (2.3)

By tuning the value of β, the effect of the transformation varies. In particular, the

transformation together with standardization is equivalent to standardization only, when

the parameter β approaches 0. In order to make the resulting transformation function

φβ(xi) continuous over β ∈ R, we define our transformation to be standardization only

for β = 0.

Incorporating all these elements, the formal representation of the family of transfor-

mation functions is

φβ(xi) =











log(xi −min(x1, x2, . . . , xn) + | 1β |R), β > 0

− log(max(x1, x2, . . . , xn)− xi + | 1β |R), β < 0
(2.4)

in which β ∈ R, R and g(x) are as defined above.
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2.2.2 Standardization and Winsorization

After logarithm transformation, standardization is applied to the transformed fea-

ture vector i.e.[φβ(x1), . . . , φβ(xn)], by subtracting its median and dividing by
√

π
2 of

the mean absolute deviation from the median.1 The median is used considering the

lack of robustness of sample mean. The mean absolute deviation is choose over the

median absolute deviation as it is less likely to be zero and therefore is computationally

preferable. Denote the vector after standardization as x†.

While the shifted logarithm is frequently very successful at eliminating skewness, in

some situation there can still be influential outliers. Here a winsorization of x† at an

appropriate threshold is further applied to reduce the impact of extreme observations.

Because standardization and winsorization are both based on roughly Gaussian data, it

is important to apply these operations after log transformation.

2.2.2.1 Winsorization

Extreme value theory provides reasonable choices of thresholds for winsorization. A

fundamental result of that area is the Fisher–Tippett–Gnedenko Theorem, also known

as the Three Types Theorem. This theorem was first developed by Fisher and Tippett

(1928); Gnedenko (1943). See De Haan and Ferreira (2007) and Leadbetter et al. (2011)

for detailed discussion.

Theorem 2.1 (Fisher–Tippett–Gnedenko Theorem). Suppose X = (X1,X2, . . . ,Xn)

are independent random variables with the underlying distribution F . Define Mn =

max(X1,X2, . . . ,Xn). Assume there exist constants an > 0, bn such that

P (
Mn − bn

an
≤ x) = F (anx+ bn)

n → G(x) (2.5)

If a non-degenerate G exists, it belongs to the family of generalized extreme value dis-

tributions Gζ(ax+ b) with a > 0 and b ∈ R, where

Gζ(x) = e−(1+ζx)−1/ζ
, 1 + ζx > 0 (2.6)

1If the mean absolute deviation is zero, return a vector of zeros.
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The parameter ζ is a real number named as extreme value index and governs the tail

behaviors of each type of distribution.

The Gζ(x) has three types of distribution defined by ζ > 0, ζ = 0 and ζ < 0. When

ζ = 0, Gζ(x) is represented as e−e−x
, which is known as the standardGumbel distribution

or type I extreme value distribution. The other two types, ζ > 0 and ζ < 0, respectively

correspond to Fréchet and Weibull distributions. For our purpose a common case of

Theorem 2.1 is where the underlying distribution F is standard normal distribution

and the generalized extreme value distribution is the standard Gumbel distribution as

discussed in De Haan and Ferreira (2007).

Theorem 2.2. Suppose X = (X1,X2, . . . ,Xn) are independent, identically distributed

standard normal random variables, there exist real constants an > 0 and bn such that

P (
Mn − bn

an
≤ x) → G(x) (2.7)

where G(x) is the cumulative distribution function of the standard Gumbel distribution

i.e. G(x) = e−e−x
and

bn =
√

2 log n− log log n− log 4π (2.8)

an = (2 log n)−
1

2 (2.9)

From this extreme value theory, the threshold of the standardized vector x† is com-

puted based on the 95th percentile of the standard Gumbel distribution (p95), that

is

L = p95an + bn. (2.10)

When the absolute value of the element in x† is greater than L i.e. |x†i | > L, the element

value is winsorized (i.e pulled back) to the value sign(x†i )L. After the winsorization, the

feature vector will be standardized again, using the sample mean and standard deviation,

since the impact of the outliers has been mitigated.

2.2.3 Evaluation

The evaluation of the stated transformation procedure is based on measuring the

distance between the empirical distribution function (EDF) of the transformed data and
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the cumulative distribution function (CDF) of the standard normal. Commonly used

EDF statistics are the Kolmogorov–Smirnov test statistic, the Cramér-von Mises test

statistic, the Watson statistic and the Anderson–Darling test statistic. Stephens (1974)

conducted power studies of these statistics under different specifications of hypothesized

distributions. Based on this study, the Anderson–Darling test statistic is considered

as powerful for detecting most common departures from normality. Therefore, that

is used here as the criterion for evaluation. The Anderson–Darling test statistic is

constructed based on measuring a distance between the empirical distribution function of

observations {xi, i = 1, . . . , n} i.e. Fn and the CDF of the standard normal distribution

Φ. The empirical distribution function Fn is defined as

Fn(x) =
1

n

n
∑

i=1

I(xi < x) (2.11)

The Anderson–Darling test statistic aims to give appropriate weight to the tails using

a weighted L2 metric. In particular, the Anderson–Darling test statistic is based on

A2 = n

∫ ∞

−∞

(Fn(x)− Φ(x))2

Φ(x)(1 −Φ(x))
dΦ(x). (2.12)

A simply computable form of the Anderson–Darling test statistic is defined in terms of

the order statistics (Anderson and Darling, 1954) i.e.

A2 = −n−
n
∑

i=1

2i− 1

n
[log Φ(x(i)) + log(1− Φ(x(n+1−i)))] (2.13)

Larger values of this indicate stronger departures from Gaussianity. Thus, by searching

for a parameter value minimizing this statistic, an optimal transformation for improving

the closeness of the distributions of features to normality is obtained.

2.3 Discussion

2.3.1 Limitations of the Shifted Log Transformation

The newly proposed shifted log transformation has useful power for improving the

closeness to normality of a data distribution with strong skewness. However, as with

all transformations, it has some limitations. For example, the shifted logarithm is not
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useful in modifying a symmetric, but highly kurtotic distribution. It also provides no

benefit for binary variables.

2.3.2 Computation

In our proposed transformation, a grid search is used to search for the parameter

value β to minimize the Anderson–Darling test statistic. This algorithm performs an

exhaustive search through a manually specified subset of the parameter space, guided

by the statistic as performance metric i.e. objective function. In general, a grid search

is most appropriate when objective functions are cheap to compute or the number of

parameters is small. Considering the complication of optimizing the Anderson–Darling

test statistic, a grid search is preferable in this context. Besides, there is only one

parameter for searching and the algorithm can be easily computed in parallel as the

metric evaluations are independent of each other.

The parameter β is real-valued for arbitrary data sets because of our reparametriza-

tion. The search region is among either positive or negative values based on the sign of

the skewness. Take the positive values as an example for illustration. The search can-

didates for this side are the exponential values of equally-spaced points in the interval

[0, 9] with step 0.01. This search space contains more candidates with small values.

This is because the shift parameter η (η = R
|β|) in the function 2.4 is more sensitive

to changes in small values of β. Thus, more candidates near zero lower the chance of

missing optima. As discussed in Section 2.2.1, when the parameter β approaches 0,

the transformation together with standardization is equivalent to standardization only.

When the parameter β increases to a very large number e.g. the upper bound e9 of

the search region, the shift parameter η tends to be zero and the transformation works

similarly as the conventional shifted logarithm transformation.
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CHAPTER 3: NON-ITERATIVE JOINT AND INDIVIDUAL VARIATION

EXPLAINED

3.1 Introduction

A major challenge in modern data analysis is data integration, combining diverse in-

formation from disparate data sets measured on a common set of experimental subjects.

A unified and insightful understanding of the set of data blocks is expected from simul-

taneously exploring the joint variation representing the inter-block associations and the

individual variation specific to each block.

Lock et al. (2013) formulated this challenge into a matrix decomposition problem.

Each data block is decomposed into three matrices modeling different types of variation,

including a low-rank approximation of the joint variation across the blocks, low-rank

approximations of the individual variation for each data block, and residual noise. Def-

initions and constraints were proposed for the joint and individual variation together

with a method named JIVE for obtaining a target decomposition.

The method JIVE developed a very promising framework for studying multiple data

matrices. However, the concepts of joint and individual variation were neither fully un-

derstood nor well defined. That lack of understanding of variation led to problems in

computation. The Lock et al. (2013) algorithm was iterative (thus slow) and had no

guarantee of achieving a solution that satisfied the definitions of JIVE. The example

in Figure 3.4 below shows this is a serious issue. Another drawback of that approach

includes a need for arbitrary normalization of the data sets which can be hard to choose

in some complicated contexts. A related algorithm was developed by Zhou et al. (2015),

which consider a JIVE type decomposition as a quadratic optimization problem with

restrictions to ensure identifiability. But it still has some drawbacks in terms of in-

terpretation. Besides, the Zhou et al. (2015) algorithm also requires iterations and an

additional tuning parameter for distinguishing joint and individual variation.

A novel solution is proposed here for addressing this matrix decomposition problem.

This provides a relatively very efficient non-iterative algorithm ensuring an identifiable



decomposition and also an insightful new interpretation of extracted variation structure.

The key insight is the use of row spaces, i.e. a focus on scores, as the principal descriptor

of the joint and individual variation, assuming columns are the n data objects, e.g.

vectors of measurements on patients. This focuses the methodology on variation patterns

across data objects, e.g. patient signatures, which gives straightforward definitions of the

components and thus provides identifiability. These variation patterns are captured by

the row patterns living in the row space, defined as score subspaces of Rn. Segmentation

of joint and individual variation is based on studying the relationship between these score

subspaces and using perturbation theory to quantify noise effects (Stewart and Sun,

1990).

Using score subspaces to describe variation contained in a matrix not only empow-

ers the interpretation of analysis but also improves the correctness and efficiency of the

algorithm. An identifiable decomposition can now be obtained with all definitions and

constraints satisfied. Moreover, the selection of a tuning parameter to distinguish joint

and individual variation is eliminated based on theoretical justification using pertur-

bation theory (Stewart and Sun, 1990). A consequence is a fast linear algebra based

algorithm which no longer requires any iteration. The algorithm achieves an overall

speedup factor around 16 compared with JIVE, when analyzing the data described in

section 3.1.1. A further benefit of this new approach is that a very problematic data nor-

malization to handle data scaling and widely differing numbers of features is no longer

needed as variation patterns are now quantified by score subspaces.

Other methods that aim to study joint variation patterns and/or individual varia-

tion patterns have also been developed. Westerhuis et al. (1998) discusses two types of

methods. One main type extends the traditional Principal Component Analysis (PCA),

such as Consensus PCA and Hierarchical PCA first introduced by Wold et al. (1987,

1996). An overview of extended PCA methods is discussed in Smilde et al. (2003). This

type of method computes the block scores, block loadings, global loadings and global

scores based on an iterative procedure. The other main type of method are exten-

sions of Partial Least Squares (PLS) (Wold, 1985) or Canonical Correlation Analysis

(CCA) (Hotelling, 1936) that seek associated patterns between the two data blocks by

maximizing covariance/correlation. For example, Wold et al. (1996) introduced multi-
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block PLS and hierarchical PLS (HPLS) and Trygg and Wold (2003) proposed O2-PLS

to better reconstruct joint signals by removing structured individual variation.

A connection between extended PCA and extended PLS methods is discussed

in Hanafi et al. (2011). Both types of methods provide an integrative analysis by taking

the inter-block associations into account. These papers make the recommendations to

use normalization to address potential scale heterogeneity, including normalizing by the

Frobenius norm, or the largest singular value of each data block etc. However, there

are no consistent criteria for normalization and some of these methods have convergence

problems. An important point is that none of these approaches provide simultaneous

decomposition highlighting joint and individual modes of variation with the goal of

contrasting these to reveal new insights.

3.1.1 Practical Motivation

Simultaneous variation decomposition has been useful in many practical applica-

tions, e.g., cancer genomic research. For example, Lock and Dunson (2013), Kühnle

(2011), Mo et al. (2013) performed integrative clustering on multiple sources to re-

veal novel and consistent subtypes based on understanding of joint and individual

variation. Other types of application include analysis of multi-source metabolomic

data (Kuligowski et al., 2015), extraction of commuting patterns in railway net-

works (Jere et al., 2014), recognition of braincomputer interface (Zhang et al., 2015)

etc.

The Cancer Genome Atlas (TCGA) (Network et al., 2012) provides a prototypical

example for the application of JIVE. TCGA contains disparate genomic data types

generated from high-throughput technologies. Integration of these is fundamental for

studying cancer on a molecular level. As a concrete example, we analyze gene expression,

copy number variations, reverse phase protein arrays (RPPA) and gene mutation for a

set of 616 breast cancer tumor samples. For each tumor sample, there are measurements

of 16615 gene expression features, 24174 copy number variations features, 187 RPPA

features and 18256 mutation features. Thus, these data sources have very different

dimensions. Additionally, the various data sources have different scalings, e.g., the gene

expression data are continuous with range between −20 and 20 while the mutation data

are binary valued.

17



The tumor samples are classified into four molecular subtypes: Basal-like, HER2,

Luminal A and Luminal B. An integrative analysis targets the association among the

features of these four disparate data sources that jointly quantify the differences be-

tween tumor subtypes. In addition, identification of driving features for each source and

subtype is obtained from studying loadings.

3.1.2 Toy Example

A toy example provides a clear view of multiple challenges brought by potentially

very disparate data blocks. This toy example has two data blocks, X (100×100) and Y

(10000×100), with patterns corresponding to joint and individual structures. Figure 3.1

shows colormap views of matrices, with the value of each matrix entry colored according

to the color bar at the bottom of each subplot. The signals have row mean 0. Therefore

mean centering is not necessary in this case. A careful look at the color bar scalings

shows the values are almost 4 orders of magnitude larger for the top matrices. Each

column of these matrices is regarded as a common data object and each row is considered

as one feature. The number of features is also very different as labeled in the y-axis.

Each of the two raw data matrices (X and Y in the left panel) is the sum of joint,

individual and noise components shown in the other panels.

The joint variation for both blocks presents a contrast between the left and right

halves of the data matrix, thus having the same rank one score subspace. If for example

the left half columns were male and right half were female, this joint variation component

can be interpreted as a contrast of gender groups which exist in both data blocks for

those features where color appears.

The X individual variation partitions the columns into two groups of size 50 that

are arranged so the row space signature is orthogonal to that of the joint score subspace.

The individual signal for Y contains two variation components, each driven by the half

of the features. The first component, displayed in the first 5000 rows, partitions the

columns into three groups. The other component is driven by the bottom half of the

features and partitions the columns into two groups, both with row spaces orthogonal

to the joint. Note that these two individual score subspaces for X and Y are different

but not orthogonal. The largest principal angle between the individual subspaces is 48°.
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This example presents several challenging aspects, which also appear in real data

sets, such as TCGA. First, the values of the features are orders of magnitude different

between X and Y . There are two standard approaches to handle this, both having

drawbacks. Feature by feature normalization loses information in X because Y has so

many more features. Total power normalization tends to underweight the signal in Y

because each feature then receives too little weight.

The noise matrices are standard Gaussian random matrices (scaled by 5000 for X)

which generates a very noisy context for both data blocks and thus a challenge for

analysis.
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Figure 3.1: Data blocks X (top) and Y (bottom) in the toy example. The left panel of figures
present the observed data matrices with each type of signal and noise matrices depicted in the
remaining panels. Color bar at the bottom of each sub-plot. These structures are challenging
to capture using conventional methods due to very different orders of magnitude and numbers
of features.

A first attempt at integrative analysis can be done by concatenating X and Y on

columns and performing a singular value decomposition on this concatenated matrix.

Figure 3.2 shows the results for 3 choices of rank. The rank 2 approximation essentially

captures the joint variation component and the individual variation component of X.

This can be clearly seen in the rank 2 approximation of Y . The bottom 2000 rows

show a contrast of two groups as the joint variation and the top half reveals differences
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of four groups as the individual component of X. Considering the magnitude of the

X matrix, the rank 2 approximation gives a reasonable result. One might hope that

the Y individual components would show up in the rank 3 and rank 4 approximations.

However, because the noise in the X matrix is so large, a noise component from X

dominates the Y signal, so the important latter component disappears from this low

rank representation. In this example, this naive approach completely fails to give a

meaningful joint analysis.
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Figure 3.2: Shows the concatenation SVD approximation of each block for rank 2 (left), 3
(center) and 4 (right). Although block X has a relatively accurate approximation when the rank
is chosen as 2, the individual pattern in block Y has never been captured due to the heterogeneity
between X and Y .

PLS and CCA might be used to address the magnitude difference in this examples

and capture the signal components. However, they target at finding common relation-

ships between two data matrices and therefore are not able to simultaneously extract

and distinguish the two types of variation. Figure 3.3 presents the PLS approximations

with different number of components selected. The first PLS component shown in the

left panel mainly captures the individual component in X. Although the joint varia-

tion is expected to be in the one component PLS approximations, it is later captured

by the two components PLS approximations displayed in the middle. Therefore PLS

completely fails to distinguish the joint and individual variation structure. The right
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panel shows the three component PLS approximations which only include more noise.

The two individual components in Y are not captured by any of these selected number

of components. More detailed studies of SVD, PLS and CCA are given in Section 3.2.
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Figure 3.3: Shows the PLS approximations of each block for numbers of components as 1
(left), numbers of components as 2 (center) and numbers of components as 3 (right). PLS fails to
distinguish the joint and individual variation structure as the one component PLS approximation
is driven by the individual component in X .

The Lock et al. (2013) method, called old JIVE here, is applied to this toy data

set. The left panel of Figure 3.4 shows a reasonable JIVE approximation of the total

signal variation within each data block. However, the Lock et al. (2013) method gives

rank 2 approximations to the joint matrices shown in the middle panel. The approx-

imation consists of the real joint component together with the individual component

of X. Following this, the approximation of the X individual matrix is a zero matrix

and a wrong approximation of the Y individual matrix is obtained shown in the top

half of the right panel. We speculate that failure to correctly apportion the joint and

individual variation is caused by either the iterative algorithm that cannot guarantee

the satisfaction of JIVE definitions, and/or the Frobenius norm normalization of the

individual components.

The left panel of Figure 3.5 shows our JIVE approximation of each data block

which well captures the signal variations within both X and Y . What’s more, our
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method correctly distinguishes the types of variation showing its robustness against

heterogeneity across data blocks. The approximations of both joint and individual

signal are depicted in the remaining panels.
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Figure 3.4: The Lock et al. (2013) JIVE method approximation of the data blocks X and Y in
the toy example are shown in the first panel of figures. The joint matrix approximations (middle
panel) incorrectly contain the individual component of X caused by the problematic algorithm
and inappropriate normalization.

The rest of this chapter is organized as follows. Section 3.2 introduces related

methods. Section 3.3 describes the population model and the estimation approach.

Results of application to a mortality data set and a TCGA breast cancer data set are

presented in Chapter 4.

3.2 Related Methods

3.2.1 Singular Value Decomposition (SVD)

SVD is a fundamental tool since it simultaneously provides the principal components

(PC) for both the row space and the column space of a data matrix, after appropriately

subtracting the feature means. However, unlike PCA, it does not necessarily have to

be centered and allows more choices of mean centering. A brief introduction to SVD is
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X: JIVE Approx
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Figure 3.5: Our JIVE method approximation of the data blocks X and Y in the toy example
are shown in the first column of figures, with the joint and individual signal matrices depicted
in the remaining columns. Both quite diverse types of variations are well captured for each data
block by new proposed JIVE.

given in this section to highlight its role in the newly developed method. The discussion

of five types of mean centering of SVD in Zhang et al. (2007) is also summarized here.

Let A be a d × n matrix of rank r. The columns of A are often viewed as data

objects in an experiment, and the rows of A are thought of as the features. Then, a full

SVD of A can be represented as

A = UΣV T =

min(d,n)
∑

k=1

σkukv
T
k

where the columns of the unitary matrices U = [u1, . . . ,ud], V = [v1, . . . ,vn] are respec-

tively the left and right singular vectors of A. The diagonal entries of the d×n matrix Σ

i.e. diag(σ1, . . . , σmin(d,n), 0, . . . , 0) are corresponding singular values with ordered non-

negative numbers σ1 ≥ σ2 ≥ . . . ≥ σmin(d,n) ≥ 0. When the rank r < min(d, n) , singular

values from σr+1 to σmin(d,n) are equal to zero. By eliminating the zero components, an

economy version of the SVD is represented as

A =
r
∑

k=1

σkukv
T
k
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Figure 3.6 visualizes the economic SVD representation of a rank-r matrix A. As can

be seen in the figure, the row space of the matrix A is spanned by the r right singular

vectors {v1, . . . ,vr} in the matrix V which are also known as the score vectors. These

score vectors can be understood as the hidden variation patterns whose importance are

indicated by the corresponding singular values in Σ. Similarly {u1, . . . ,ur} span the

column space of the matrix A, known as the loading vectors. The loading vectors give

linear combinations of observed features, that is, each row of the matrix A, to generate

the latent features that is the score vectors.

Figure 3.6: SVD decomposes the rank r data matrix A into three parts: the unitary matrix
U on the left and V T on the right respectively contain left and right singular vectors of A.
The first r of them correspond to the r positive singular values in decreasing order. The right
singular vectors {v1, . . . ,vr} span the row subspace of the matrix A. The right singular vectors
{u1, . . . ,ur} span the column space of the matrix A, which are also called loading vectors and
gives linear combinations of rows in A to generate the score vectors

.

The SVD factorization has an important approximation property. In the equation

(3.1), A is expressed as sum of orthogonal layers σkukv
T
k of decreasing importance

indicated by the singular value σk. It is common to keep the layers with larger σk and

treat the rest as noise, especially for high dimensional low sample size data sets. This

property enables SVD to work as a signal extraction device by providing lower rank

approximation of a noisy data matrix. For any selected integer l ≤ r, the matrix

A(l) =

l
∑

k=1

σkukv
T
k (3.1)
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is the closest rank l approximation to A in terms of Frobenius norm, that is

A(l) = argmin
Ã:rank(Ã)=l

‖A− Ã‖2F

The sum of the remaining layers can be defined as the residual matrix R(A) = A−A(l).

And the sum of squares of the elements in R(A) is denoted as RSS(A).

Mean Centering Process

Zhang et al. (2007) provided a comprehensive discussion of five types of mean cen-

tering of SVD: no centering, overall centering, column centering, row centering and

double centering which is centering in both row and column directions.

Let ā be the sample overall mean of all the elements in A; āc be the sample column

mean vector of the columns as data objects and ār be the sample row mean vector of

the rows as data objects. These mean vectors can be respectively written as

ā =
1

nd
11×dA1n×1

āc = (
1

d
11×dA)

′

ār =
1

n
A1n×1

The sample mean matrices of each type can be correspondingly defined as

� No centering: 0d×n

� Overall centering: āId×n

� Column centering: 1d×1ā
′

c

� Row centering: ār11×n

� Double centering: DM = 1d×1ā
′

c + ār11×n - ā1d×n

These sample mean matrices can be considered as the projections of matrix A onto

a set of special subspaces which either or both have a same value of column or row

vector. Denote Pd and Pn as two projection matrices Pd = 1
d1d×d, Pn = 1

n1n×n. Then,

the projection representations of each sample mean matrix are respectively written as
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PdAPn for overall centering, PdA for column centering, APn for row centering and

PdA+APn − PdAPn for double centering.

Zhang et al. (2007) stated that the overall mean centering might cause data sets to

lose some good features, for example, the orthogonality of the curves in functional data

set. Therefore, the overall mean centering was not recommended. The comparison was

made for the other four types of mean centering in terms of approximation performance.

Denote A(N), A(C), A(R) and A(D) respectively as the best approximation matrices of

SVD after each type of mean centering. Depending on the ranks of these matrices, the

comparisons of approximation performances are different. The main results are

1. With a same selected rank of SVD after column or row centering, double centering

gives a better approximation than either of column centering or row centering

alone.

2. No centering is better than either column or row centering, if rank(A(N)) − 1 =

rank(A(C)) = rank(A(R)).

3. Column and row centering is better than no centering if the SVDs have the

same number of components after centering, i.e, rank(A(N)) = rank(A(C)) =

rank(A(R)).

4. If rank(A(D))+1 = rank(A(C)) = rank(A(R)), column and row centering is better

than double centering.

5. In terms of the Frobenius norm of residual matrix, there is no clear relationship

between column centering and row centering (either could be better), nor between

double centering and no centering.

As stated in Zhang et al. (2007), the choice of the centering depends on the specific

context of a data set and trying all the options was recommended. The decision could

be made following criteria such as small Frobenius norm of the residual matrix, few

components and straightforward interpretation. Therefore, the mean centering should

be determined according to properties of each data set. In the following sections, Non-

iterative JIVE will be developed on a set of data blocks, assuming all of them have been

appropriately mean-centered.
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3.2.2 Partial Least Squares (PLS)

Whereas SVD maximizes variation explained within a dataset, Partial Least Squares

(PLS) seeks to maximize covariation explained between two datasets, originally intro-

duced by Wold (1985). See Mateos-Aparicio (2011) for a historical overview of PLS.

Consider X and Y as two datasets measured on the same set of samples. The

covariance matrix of their vertical concatenation can be expressed as

Cov







X

Y






=







ΣXX , ΣXY

ΣY X , ΣY Y






,

in which ΣXX and ΣY Y are the covariance matrices of X and Y . The cross-product

matrices ΣXY and ΣY X contain the information of relationship between X and Y .

The goal of PLS is to find two unit vectors bx and by such that

max
‖bx‖=‖by‖=1

Cov(XTbx, Y
Tby),

This goal can be achieved by performing SVD on the dX × dY matrix ΣXY i.e.

ΣXY = UΣV T .

The left singular vectors in U and right singular vectors in V provide weights of orig-

inal features, respectively for X and Y , such that the covariances between their linear

combinations are sorted in a decreasing order. The covariance of each pair of linear

combinations is indicated by the squared singular values σ2
i .

PLS was extended to a predictive scheme and is known as PLS regression, that is,

one data matrix, e.g., Y is taken as a set of response variables and the other matrix,

e.g., X is a set of predictor variables. PLS regression is particularly suitable when the

matrix X is ill-conditioned i.e. X has more predictors than the observations or contains

multi-collinearity (Wold et al., 1984). Following the mechanism of PLS, PLS regression

finds principal components that explain X and are also the best for explaining Y .
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3.2.3 Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) introduced by Hotelling (1936) maximizes

correlation between two sets of variables for globally examining their relationship. Take

X and Y as two datasets on the same set of samples. Similarly as PLS, CCA tries to

find a pair of basis vectors (bx,by) such that the respective projections of X and Y onto

them have a maximal correlation, that is,

max
‖bx‖=‖by‖=1

Corr(XTbx, Y
Tby),

The projections with maximal correlation i.e. XTbx, Y Tby are the first pair of

canonical variates. Similarly, this can be obtained by performing SVD on the ma-

trix Σ
−1/2
XX ΣXY Σ

−1/2
Y Y . When the covariance matrices ΣXX or ΣY Y are not invertible,

the pseudo-inverse can be used.

3.3 Proposed Method

In this section the details of the new proposed JIVE are discussed. The population

model is proposed in Section 3.3.1. The theoretical foundations based on matrix per-

turbation theory from linear algebra (Stewart and Sun, 1990) are given in Section 3.3.4.

These theoretical results motivate our estimation approach which is proposed in Sec-

tion 3.3.5.

3.3.1 Population Model - Signal

Matrices {Xk, k = 1, . . . ,K} (dk × n) are a set of data blocks for study. The

columns are regarded as data objects, one for each experimental subject, while rows are

considered as features. All Xk therefore have the same number of columns and perhaps

a different number of rows .

Each Xk is modeled as low rank signals Ak perturbed by additive noise matrices Ek.

Each low rank signal is the summation of two matrices containing joint and individual
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variation, denoted as Jk and Ik respectively for each block



















X1

X2

...

XK



















=



















A1

A2

...

AK



















+



















E1

E2

...

EK



















=



















J1

J2
...

JK



















+



















I1

I2
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IK



















+


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
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

















(3.2)

Our approach focuses on score vectors, e.g., patient signatures, which are determined

by the row patterns living in the row space, Rn. These row patterns are essentially

represented by the right basis vectors of appropriate SVDs. These score vectors generate

the score subspace(⊂ Rn). Therefore, the matrices capturing joint variation i.e. joint

matrices are defined as sharing a common score subspace denoted as row(J)

row(Jk) = row(J), k = 1, . . . ,K.

The individual matrices are individual in the sense that the intersection of their score

subspaces is the zero vector space, i.e.

K
⋂

k=1

row(Ik) = {0}, k = 1, . . . ,K.

This can be understood as there is no non-trivial common row pattern living in the

individual score subspaces across blocks. To ensure an identifiable variation decom-

position, orthogonality between the score subspaces of matrices containing joint and

individual variation is assumed. In particular, row(J) ⊥ row(Ik), k = 1, . . . ,K. Note

that orthogonality between individual matrices {Ik, k = 1, . . . ,K} is not assumed as

it is not required for the model to be uniquely determined. The relationship between

individual matrices, to some extent, has an impact on the estimation accuracy which

will be discussed in Section 3.3.5.

Under these assumptions, the model is identifiable in the sense:

Theorem 3.1. Given a set of matrices {Ak, k = 1, . . . ,K}, there are unique sets of

matrices {Jk, k = 1, . . . ,K}, and {Ik, k = 1, . . . ,K} so that:

1. Ak = Jk + Ik, k = 1, . . . ,K

2. row(Jk) = row(J), k = 1, . . . ,K
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3. row(J) ⊥ row(Ik), k = 1, . . . ,K

4.
K
⋂

k=1

row(Ik) = {0}.

The proof is provided in the Appendix. This model has enhanced the matrix de-

composition idea proposed in Lock et al. (2013) by providing a clearer mathematical

framework and precise understanding of the different types of variation. In particular,

Lock et al. (2013) imposed rank constraints on the joint matrices i.e. rank(Jk) are the

same for all data blocks but did not clearly formulate the definition of a common row

pattern. Furthermore, the orthogonality constraint was formulated on matrices instead

of score subspaces i.e. JkI
T
k = 0, which tended to obscure the role of row spaces in

defining variation structure. An unnecessary orthogonality among individual matrices

was further suggested, although not explicitly enforced in the estimation, for ensuring

a well defined decomposition.

3.3.2 Population Model - Noise

The additive noise matrices are assumed to follow an isotropic error model where the

energy of projection is invariant to direction in both row and column spaces. Important

examples include the multivariate standard normal distribution and the multivariate

student t–distribution (Kotz and Nadarajah, 2004). The singular values of each noise

matrix are assumed to be smaller than the smallest singular values of each signal to give

identifiability.

The assumption on the noise distribution here is less strong than the classical i.i.d.

Gaussian random matrix, and only comes into play when determining the number of

joint components. Other than that, the estimation approach given in Section 3.3.4

reconstructs each signal matrix based on SVD and thus is quite robust against the error

distribution.

3.3.3 Principal Angel Analysis

Principal angles (PAs) introduced by Jordan (1875) provide useful language for the

subsequent discussion and are defined as
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Definition 3.2. Suppose P ⊂ Cn and Q ⊂ Cn are two subspaces with dimensions p and

q. Let l = min(p, q). The principal angles between P and Q are

Θ(P,Q) = (θ1, . . . , θl)

in which θi ∈ [0, π2 ], i = 1, . . . , l, are recursively defined by

cos(θi) , 〈pi,qi〉 = max
p∈P,q∈Q

〈p,q〉

subject to p ⊥ pk, ‖p‖ = 1 and q ⊥ qk, ‖q‖ = 1, for k = 1, . . . , i − 1. The l pairs of

unitary vectors

(pi, qi) ∈ P ×Q, i = 1, . . . , l

are the principal vectors corresponding to each principal angle.

There are two methods based on SVD to compute principal angles between two

subspaces. Let the columns of the matrix MP ∈ Rn×p and the matrix MQ ∈ Rn×q be

orthonormal bases for the subspaces P and Q respectively. For historical records, the

first method was introduced by Björck and Golub (1973), shown in Proposition 1. SVD

is performed on M
′

PMQ and the singular values are the cosine value of the principal

angles between the subspaces P and Q.

Proposition 1 (Björck and Golub (1973)). Represent the SVD of M
′

PMQ as UPSU
′

Q.

The first l = min(p, q) singular values are s1 ≥ s2 ≥ · · · ≥ sl ≥ 0, then the principal

angles of subspaces P and Q as defined, Θ(P,Q) = [θ1, . . . , θl], are

cos θi = si, i = 1, . . . , l

and s1 = · · · = sk = 1 > sk+1 if only if dim(P ∩Q) = k. Moreover, the principal vectors

are the first l columns of matrices MPUP and MQUQ.

The second method was later proposed by Miao and Ben-Israel (1992), as seen in

Proposition 2. This method performs SVD on the vertical concatenation of the matrices

M
′

P and M
′

Q, which fits more easily into to our framework. Thus, the second method

will be utilized for computing principal angles in the later sections.
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Proposition 2 (Miao and Ben-Israel (1992)). Denote a (p+ q)× n matrix M as

M ,







M
′

P

M
′

Q






.

Let the SVD of the matrix M be USV ′. Then the singular values on the diagonal of S

are equal to

√

1 + cos θ1, . . . ,
√

1 + cos θl, 1, . . . , 1,
√

1− cos θl, . . . ,
√

1− cos θ1 (3.3)

in which θi, i = 1, · · · , l are the principal angles between subspaces P and Q as in the

definition. There are max(p, q) − l number of singular values taking on the value 1 in

the middle.

Let the matrix U (l) be the first l columns of U and write it as the vertical concate-

nation of the p × l matrix U
(l)
P and the q × l matrix U

(l)
Q i.e. U (l) = [U

(l)
P ;U

(l)
Q ]. Then,

the principal vectors are the l columns of the matrices MPU
(l)
P and MQU

(l)
Q .

Both methods can compute both principal angles and principal vectors for the two

subspaces. However, the second method also provides l right singular vectors in V

pointing in the same direction as the sum of corresponding principal vector pairs. In

particular, consider the principal vectors pi of subspace P and qi of subspaces Q, which

correspond to the principal angle θi shown in Figure 3.7. The sum of the vectors pi and

qi, denoted as vi, is depicted as a red dashed line. The vector vi also points to the same

direction as the right singular vector in V with the singular value being
√
1 + cos θi.

Figure 3.7: A diagram displaying the relationship between each pair of principal vectors and
the right singular vector corresponding to the same principal angle.
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3.3.4 Theoretical Foundations

The main challenge is segmentation of the joint and individual variation in the pres-

ence of noise which individually perturbs each signal. Let {Ãk, k = 1, . . . ,K} be noisy

approximations of {Ak, k = 1, . . . ,K} respectively. The subspaces of joint variation

within the approximations Ãk, while expected to be similar, are no longer exactly the

same due to noise. If some subspaces of {Ãk, k = 1, . . . ,K} are very close, they can

be considered as estimates of the common score subspace under different perturbations.

Application of the results of the Generalized sin θ Theorem (Wedin, 1972) is proposed to

decide when a set of subspaces are close enough to be regarded as estimates of the joint

score space. Based on this theorem, the number of joint components can be determined

resulting in an appropriate segmentation.

Take the approximation Ãk of Ak as an example of perturbation of each matrix’s

score space. For consistency with the Generalized sin θ Theorem, a notion of distance

between theoretical and perturbed subspaces is defined as a measure of perturbation.

Let Q, Q̃ be the l dimensional score subspaces of Rn respectively for the matrix Ak and

its approximation Ãk. The corresponding symmetric projection matrices are PQ and PQ̃.

The distance between the two subspaces is defined as the difference of the projection

matrices under the L2 operator norm, i.e ρ(Q, Q̃) = ‖PQ−PQ̃‖ (Stewart and Sun, 1990).

An insightful understanding of this defined distance ρ(Q, Q̃) comes from a principal

angle analysis (Jordan, 1875; Hotelling, 1936) of the subspaces Q and Q̃. Denote the

principal angles between Q and Q̃ as Φ(Q, Q̃) = {φ1, . . . , φl} with φ1 ≥ φ2 . . . ≥ φl. The

distance ρ is equal to the sine of the maximal principal angle, i.e. sinφ1. This suggests

that the largest principal angle between two subspaces can indicate their closeness,

i.e. distance. Under a slight perturbation, the largest principal angle between Q (a

theoretical subspace) and Q̃ (its perturbed subspace) is expected to be small.

The distance ρ(Q, Q̃) can be also written as

ρ(Q, Q̃) = ‖(I − PQ)PQ̃‖ = ‖(I − PQ̃)PQ‖

which brings another useful understanding of this definition. It measures the relative

deviation of the signal variation from the theoretical subspace. Accordingly, the similar-

ity/closeness between the subspaces and its perturbation can be written as ‖PQPQ̃‖ and
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is equal to the cosine of the maximal principal angle defined above, i.e. cosφ1. Hence,

sin2 φ1 indicates the percentage of signal deviation and cos2 φ1 tells the percentage of

remaining signal in the theoretical subspace.

The generalized sin θ theorem provides a bound for the distance between a subspace

and its perturbation, e.g., the subspaces Q and Q̃. This bound quantifies how the

theoretical subspace Q is affected by noise. In particular,

Theorem 3.3 (The Generalized sin θ Theorem (Wedin, 1972)). Signal matrix Ak is

perturbed by additive noise Ek. Let φk be the largest principal angle for the subspace of

signal Ak and its approximation Ãk. Denote the SVD of Ãk as ŨkΣ̃kṼ
T
k . The distance

between the subspaces of Ak and Ãk, ρ(Q, Q̃) i.e. sines of φk, is bounded

ρ(Q, Q̃) = sinφk ≤ max(‖EkṼk‖, ‖ET
k Ũk‖)

σmin(Σ̃k)
, (3.4)

where σmin(Σ̃k) is the smallest singular value of Ãk.

This bound measures how far the perturbed space can be away from the theoretical

one. The deviation is bounded by the maximal value of noise energy on column and row

spaces and also the smallest signal singular values. This is consistent with the intuition

that a deviation distance, i.e. a largest principal angle, is small when the signal is strong

and perturbations are weak.

Notice that the bound in Theorem 3.3 is applicable but cannot be directly used for

data analysis since the error matrices Ek are not observable. As the error matrices are

assumed to be isotropic, we propose to re-sample noisy directions from the residuals of

the low rank approximations. The L2 norm of these error related terms can thus be

estimated by projecting the observed data onto the subspace spanned by re-sampled

directions. This re-sampling based method can also provide confidence intervals for

these perturbation bounds. More details of estimating the perturbation bound will be

discussed in Section 3.3.5.

3.3.5 Estimation Approach

The algorithm uses SVD as a building block to find an estimate of the targeted

decomposition . A three-step algorithm is outlined below.
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1. Obtain an initial estimate of the signal score space of each data block by thresh-

olding the singular values.

2. Extract the joint score space from the signal score spaces using a threshold derived

from Theorem 3.3.

3. Decompose each data matrix into joint and individual variation matrices using

projections onto the score space in Step 2.

As a basic illustration for each step we use the toy example described in Section 3.1.

Details for each step appear in the following subsections.

Signal Space Initial Extraction

Even though the signal components {Ak, k = 1, . . . ,K} are low rank, the data

matrices {Xk, k = 1, . . . ,K} are usually of full rank due to corruption by noise. SVD

works as a signal extraction device in this step, keeping components with singular values

greater than selected thresholds individually for each data block. These thresholds are

selected using a multi-scale perspective. For example, by finding relatively big jumps in

a scree plot. Figure 3.8 shows the scree plots of each data block for the toy example in

Section 3.1. The left scree plot for X suggests a selection of rank as 2 and the right one

for Y suggests the rank being 3, since in both cases those components stand out while

the rest of the singular values decay slowly showing no clear jump.
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Figure 3.8: Scree plots for the toy data sets X (left) and Y (right). Both plots display
the singular values associated with a component in descending order versus the index of the
component. The components with singular values above the dashed red threshold line are
regarded as the initial signal components in the first step of JIVE.
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Let {r̃k, k = 1, . . . ,K} be the initial estimates of the signal ranks {rk, k = 1, . . . ,K}.

In the toy example r̃1 = 2 (for X) and r̃2 = 3 (for Y ). Each data block has a low rank

approximation, Ãk, which is the initial estimate of the signal matrix Ak, k = 1, . . . ,K.

The estimate is decomposed as

Ãk = ŨkΣ̃kṼ
T
k (3.5)

where Ũk contains the left singular vectors corresponding to the largest r̃k singular values

respectively for each data block. The initial estimate of the signal score space, denoted

as row(Ãk), is spanned by the right singular vectors in Ṽk.

Score Space Segmentation: Two-Block

For a clear introduction of the basic idea of score space segmentation, the two-block

special case (K = 2) is first studied. The goal is to use the low rank approximations

Ãk from equation (3.5) to obtain estimates of the common joint and individual score

subspaces. Due to the presence of noise, the components of row(Ãk) corresponding to

the underlying joint space, no longer are the same, but should have a relatively small

angle. Similarly, the components corresponding to the underlying individual spaces are

expected to have a relatively large angle. This motivates the use of principal angle anal-

ysis as discussed in Section 3.3.3 to separate the joint from the individual components.

The following Lemma 1 provides a bound on the largest allowable principal angle of the

joint part of the initial estimated spaces.

Lemma 1. Let θ be the largest principal angle between two subspaces that are each

a perturbation of the common row space within row(Ã1) and row(Ã2). That angle is

bounded by

sin θ ≤ sin(φ1 + φ2) (3.6)

in which φ1 and φ2 are the angles given in Theorem 3.3.

The proof is provided in the Appendix. As mentioned in Section 3.3.4, the pertur-

bation bounds of each θk require the estimation of terms ‖EkṼk‖, ‖ET
k Ũk‖ for k = 1, 2.

These terms are the measurements of energies of noise matrices projected onto the sig-

nal column and row spaces. Since an isotropic error model is assumed, the energy
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of the noise matrices in arbitrary directions are supposed to be equal. Denote Ṽ ⊥
k

(n × (min(dk, n) − r̃k)) and Ũ⊥
k (dk × (min(dk, n) − r̃k)) as the respective orthonor-

mal bases of the row and column subspaces of the residual matrices from the low rank

approximations in equation (3.5). Thus, we propose to resample noisy directions, i.e.

column vectors, from the matrices Ṽ ⊥
k and Ũ⊥

k .

Take the term ‖EkṼk‖ as an example for illustration. Given the r̃k number of column

vectors resampled from Ṽ ⊥
k , denoted as V ⋆, the observed data block Xk is projected onto

the subspace spanned by V ⋆, written as XkV
⋆. The L2 norm, ‖XkV

⋆‖, is taken as the

estimate of the term ‖EkṼk‖. This can be similarly applied to ‖ET
k Ũk‖ for k = 1, 2. A

typical number of resamples is 1000. The quantiles of this distribution provide both a

point estimate and a simulated confidence interval for terms ‖EkṼk‖, ‖ET
k Ũk‖, resulting

in a confidence interval for the perturbation bound. Typically the median is chosen as

the estimate of the angle bound for exploratory analysis. This will result in at least

50% confidence that all joint components are included. For certain cases that no loss of

joint components is desired, the 95th percentile of these estimated terms can be used to

derive a conservative angle threshold, resulting in at least 95% confidence of finding all

joint components.

The principal angles between row(Ã1) and row(Ã2) are computed by performing

SVD on a concatenation of their right singular vector matrices (Miao and Ben-Israel,

1992), i.e.

M ,







Ṽ T
1

Ṽ T
2






= UMΣMV T

M .

where the singular values ΣM determine the principal angles, Θ(row(Ã1), row(Ã2)) =

{θ1, . . . , θl} as

θi = arccos((σM,i)
2 − 1), i = 1, . . . ,min(r̃1, r̃2). (3.7)

Given a left singular vector UM,i denoted as u, a pair of principal vectors {pi,qi}

in each subspace can be constructed by projecting Ṽ1 and Ṽ2 onto the vector u. Denote

u as the concatenation of [u1;u2]. Note that the length of u1 is equal to the number of

columns of Ṽ1 and similarly for the other part. The principal vectors in each subspace

can be written as pi = Ṽ1u1 and qi = Ṽ2u2 respectively. The angle between the pair
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of principal vectors θi is equal to the principal angle computed from the singular value

corresponding to u, as illustrated in Figure 3.7.

As seen in Miao and Ben-Israel (1992), the vector vi, the corresponding right sin-

gular vector of VM , points in the same direction as the sum of principal vector pairs of

each subspace. When the principal angle θi is smaller than the perturbation bound θ,

this right singular vector can be taken as an estimate of the theoretical joint direction

to assure the definition of joint variation.

This SVD decomposition can be understood as a tool sorting pairs of directions

within the two subspaces in increasing order of the angle between each pair. When

the corresponding principal angle is smaller than the perturbation bound θ, the pair of

principal vectors can be considered as noisy versions of the same joint direction. Assume

there are r̂J principal angles smaller than the bound θ. The first r̂J singular vectors

vi are used as the natural orthonormal basis of the estimated joint score subspace i.e.

row(Ĵ).

The left panel of Figure 3.9 depicts the principal angles of the concatenated right

singular vector matrices for the toy example in Section 3.1.2. Since the initial estimates

of rx and ry are 2 and 3, there are only two potential components for joint variation.

The associated principal angles between the initially estimated signal row spaces are

labeled next to the first two component as 10.99° and 47.11°. The estimated bound on

the principal angle in Lemma 1 is 31.29° for this toy example. The 5% and 95% one-

sided confidence intervals of the angle bound are [−∞, 30.00] and [−∞, 32.92] degree.

Each provides a respective 5% and 95% chance for including all the joint components.

This provides a clear indication that the number of joint components should be r̂J = 1.

The corresponding first right singular vector of M will be taken as the joint score vector.

Score Space Segmentation: Multi-Block

To generalizing the above idea to more than two blocks, they key is to focus more

on singular values than on angles in equation (3.7). In other words, instead of finding

an upper bound on an angle, we will focus on a lower bound on the remaining energy

as expressed by the sum of the squared singular values. Hence, an analogous SVD will

be used for studying the closeness of multiple initial signal score subspace estimates.

Similarly, for the vertical concatenation of right singular vector matrices {Ṽ T
k , k =
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1, . . . ,K}, we have

M ,













Ṽ T
1

...

Ṽ T
K













= UMΣMV T
M .

Once again, SVD sorts the directions within these K subspaces in increasing order of

amount of deviation from the theoretical joint direction. The squared singular value

σ2
M,i indicates the total amount of variation explained in the common direction V T

M,i in

the score subspace ⊂ Rn. A large value of σ2
M,i (close to K) suggests that there is a set

of basis vectors within each subspace close with each other and thus are potential noisy

versions of a common joint score vector. A threshold on singular values is needed to

segment the joint components. This is done in Lemma 2.

Lemma 2. Let φk be the bound on the principal angles between the theoretical subspace

row(Ak) and its perturbation row(Ãk) for K data blocks from Theorem (Wedin, 1972).

The squared singular values (σ2
M,i) corresponding to the estimates of joint components

should satisfy

σ2
M,i ≥ K −

K
∑

k=1

sin2 φk ≥ K −
K
∑

k=1

(max(‖EkṼk‖, ‖ET
k Ũk‖)

σmin(Σ̃k)

)2
. (3.8)

The proof is provided in the Appendix. This lower bound is independent of the

variation magnitudes. This property gives some robustness against heterogeneity across

each block when extracting joint variation information.

As above, the terms ‖EkṼk‖, ‖ET
k Ũk‖ are resampled to derive a point estimate and

confidence interval for the threshold. As for the two-block case, if there were r̂J singular

values selected, the first r̂J right singular vectors are used as the basis of the estimate

of row(J).

The right panel of Figure 3.9 depicts the first 2 singular values of the vertical con-

catenated matrix M for the toy example. This is an analysis of the same data, but

performed on the scale of squared singular values instead of principal angles. The as-

sociated squared singular values are labeled next to the these two component as 1.98

and 1.68. The estimated threshold (using median) is 1.85 for the toy example. This

threshold together with its 5% and 95% one sided confidence intervals, [1.86, +∞] and

[1.84, +∞] respectively, suggest that the number of joint components r̂J should be 1.
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The corresponding right singular vector is taken as the estimate of the orthonormal basis

of the joint score subspace.
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Figure 3.9: Left panel: Principal angles between the initial estimates of signal row spaces. The
bound for the largest angle is 31.29 degree, suggesting the existence of one joint component. To
indicate the uncertainty, the 5% and 95% one-sided confidence intervals of the angle threshold
are also shown. Right panel: Squared singular values plot of the vertical concatenated matrix
M for the toy example. Both thresholds correctly capture the underlying structure of this toy
example with the selection of one joint component.

Final Decomposition

Based on the estimate of the joint row space, matrices containing joint variation in

each data block can be reconstructed by projecting Xk onto this estimated space. Define

the matrix V̂J as [vM,1, . . . ,vM,r̂J ], where vM,i is the ith column in the matrix VM . The

projection matrix is

PJ = V̂J(V̂
T
J V̂J)

−1V̂ T
J

and the estimates of joint variation matrices in each block are

Ĵk = XkPJ , k = 1, . . . ,K.

The row space of joint structure is orthogonal to the row spaces of each individual

structure. Therefore, the original data blocks are projected to the orthogonal space of

row(Ĵ). The projection matrix onto the orthogonal space of row(Ĵ) is P⊥
J = I−PJ and

the projections of each data block are denoted as X⊥
k respectively for each block i.e.

X⊥
k = XkP

⊥
J
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Finally we threshold this projection by performing SVD on {X⊥
k , k = 1, . . . ,K}. The

components with singular values larger than the first thresholds from Section 3.3.5 are

kept as the individual components, denoted as {Î⊥k , k = 1, . . . ,K}. The remaining

components of each SVD are regarded as an estimate of the noise matrices.

By taking a union of the estimated row spaces of each type of variation, the estimated

signal row spaces are

row(Âk) = row(Ĵ)⊕ row(Îk)

with rank r̂k = r̂J + r̂Ik respectively for k = 1, . . . ,K.

Due to the adjustment of directions of joint components, these final estimates of

signal row spaces may be different from those obtained in the initial signal extraction

step. Note that even the estimates of rank r̂k might also differ from the initial estimates

r̃k.

3.4 Post JIVE Data Representation

Given the variation decompositions of each data block, several types of post JIVE

analyses are available for exploring the joint and individual score variation patterns.

The estimates of joint matrices within each data block can be represented by SVD

Ĵk = Ûk
J Σ̂

k
J V̂

k
J , k = 1, . . . ,K

in which V̂ k
J are the r̂J × n score matrices of the estimated joint score space row(Ĵ).

Note that the singular values Σ̂k
J can be completely different, since they are driven by

the score variation pattern and can reflect very different amounts of variation between

the blocks. The loading matrices Ûk
J (dk× r̂J) respectively specify distinct r̂J -dimension

loading subspaces of Rdk for each block k.

There are three important matrix representations of the information in the joint

score space, with differing uses in post JIVE analyses.

1. Full Matrix Representation. For applications where the original features are the

main focus (such as finding driving genes) the full matrix representations Ĵk (dk×

n), k = 1, . . . ,K are most useful. These are shown in Figure 3.5.
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2. Block Specific Score (BSS). For applications where the relationships between sub-

jects are the main focus (such as discrimination between subtypes) large compu-

tational gains are available for using the much lower dimensional representations

Σ̂k
J V̂

k
J (r̂J × n). This results in no loss of information when rotation invariant

methods are used.

3. Common Normalized Score (CNS). When it is desirable to study the component of

joint behavior that is separate from the within block variation (such as evaluating

the relationship between data objects), the analysis should focus on a common

basis of row(Ĵ), namely V̂J (r̂J × n) from Section 3.3.5.

The relationship between BSS and CNS is analogous to that of the traditional co-

variance (i.e PLS) and correlation (i.e CCA) modes of analysis.

Furthermore, different representations have different ways to study the loadings. The

full matrix representation and BSS naturally obtain the information from the loading

matrix Ûk
J . CNS gives a different representation of the loadings. Given the common

basis of row(Ĵ), one can perform regression for Ĵk on each score vector in V̂J , from

which the standardized coefficient vector can be taken as the CNS loading. By doing

this, there is no guarantee of orthogonality between CNS loading vectors. However, the

loadings are linked across blocks by their common scores. Therefore, in this CNS case,

the standardized regression coefficients are recommended for use instead of the classical

loadings.

The individual variation within blocks can be similarly analyzed resulting in both

BSS and CNS analyses for the individual components. When original features are im-

portant, the full matrix

Îk = Ûk
I Σ̂

k
I V̂

k
I , k = 1, . . . ,K

with dimension dk×n are available. Otherwise large computational savings are available

from the BSS version Σ̂k
I V̂

k
I (r̂Ik × n), k = 1, . . . ,K. For studying scale free behaviors,

use the Individual Normalized Score (INS) V̂ k
I (r̂Ik × n). For individual components,

the matrix Ûk
I can be taken as loadings for all three representations as INSs cannot be

the same.
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CHAPTER 4: NON-ITERATIVE JIVE DATA ANALYSIS

In this chapter, we apply Non-iterative JIVE to two real data sets, Spanish

mortality as analyzed in Marron and Alonso (2014) and TCGA breast cancer data

set (Network et al., 2012). Detailed analyses are given in Section 4.1 and Section 4.2

respectively.

4.1 Spanish Mortality Data

A data set from the Human Mortality Database is studied here, which is consist

of both male and female Spanish people. This data set demonstrates the advantage of

JIVE in gaining insights. For each gender data block, there is a matrix of mortality,

defined as the number of people who died divided by the total, for a given age group

and year. Because mortality varies by several orders of magnitude, the log10 of the

mortality is studied here. Each row represents an age group from 0 to 95, and each

column represents a year between 1908 and 2002. In order to associate the historical

events with the variations of mortality, columns (i.e. mortality as a function of age) are

considered as the common set of data objects of each gender block. Marron and Alonso

(2014) performed analysis on the male block and showed interesting interpretations

related to Spanish history. Here we are looking for a deeper analysis which integrates

both males and females by exploring joint and individual variation patterns.

Non-iterative JIVE is applied to the two gender blocks centered by subtracting the

mean of each age group, since the mean structure contains essential variation informa-

tion. The most interesting JIVE analysis comes from 3 male and 3 female components.

The resulting JIVE gives 2 joint components and 1 of each individual component. Since

the loading matrices provide important information of the effect of different age groups,

BSS analysis together with loading matrices is most informative here.

Figure 4.1 shows a view of the first joint components for the males (left) and females

(right) that is very different from the heat map views used in Section 3.1.1 for the toy

example. While these components are matrices, additional insights come from plotting



the rows of the matrices as curves over year (top) and the columns as curves over age

(bottom). The curves over year (top) are colored using a heat color scheme, indexing

age (black = 0 through red = 40 to yellow = 95 as shown in the vertical color bar on the

bottom left). The curves over age (bottom) are colored using a rainbow color scheme

(magenta = 1908 through green = 1960 to red = 2002, shown in the horizontal color

bar in the top) and use the vertical axis as domain with horizontal axis as range to

highlight the fact that these are column vectors. Additional visual cues to the matrix

structure are the horizontal rainbow color bar in the top panel, showing that year indexes

columns of the data matrix and the vertical heat color bar (bottom) showing that age

indexes rows of the component matrix. Because this is a single component, i.e. a rank

one approximation of the data, each curve is a multiple of a single eigenvector. The

corresponding coefficients are shown on the right. In our terminology, the upper BSS

coefficients are the loadings, and are in fact the entries of the left eigenvectors (colored

using the heat color scale on the bottom). Similarly, the lower coefficients are the scores

and are the entries of the right eigenvectors, colored using the rainbow bar shown in the

top.

The scores plots together with the rows as curves plots in Figure 4.1 indicate a

dramatic improvement in mortality after the 1950s for both males and females. The

scores plots are bimodal indicating rapid overall improvement in mortality around the

the 1950s. This is also visible in the rows as curves plot. Thus the first mode of

joint variation is driven by overall improvement in mortality. In addition to the overall

improvement, the rows as curves and scores plot also show the major mortality events,

the global flu pandemic of 1918 and the Spanish Civil war in the late 1930s. The

loading plots together with the columns as curves plots present the different impacts

of this common variation on different age groups for males and females. The loadings

plot for males suggests the improvement in mortality is gradually increasing from older

towards younger age groups. In contrast, the female block has a bimodal kernel density

estimate of the loadings. This shows that female of child bearing age have received large

benefits from improving health care. This effect is similarly visible from comparing the

female versus male columns as curves.

The second BSS components of joint variation within each gender are similarly

visualized in Figure 4.2. This common variation reflects the contrast between the years
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Figure 4.1: The first BSS joint components of male (left panel) and female (right panel) contain
the common modes of variation caused by the overall improvement across different age groups,
as can be seen from the scores plots in the right bottom of each panel. The dramatic decrease
happened around the 1950s shown in the column projection plot. The decrease degrees vary
from age groups.

around 1950 and the years around 1980 which can be told from the curves in the left

top and the colors in the right bottom subplots in both male and female panel. In

the scores plot, the green circles, seen on the left end, represent the years around 1950

when the automobile penetration started. And the orange to red circles on the right

end correspond to years around 1980, after seat belt legislation was first introduced in

Spain. These modes of variation can be interpreted as the increase in fatalities caused

by automobiles and later improvements in safety such as seat belts and safer roads. The

upper left loadings plot of males shows that these automobile events had a stronger

influence on the 20-45 males in terms of both larger values and a second peak in the

kernel density estimate. Although this contrast can also be seen in the loadings plot

of females, it is not as strong as for the male block. The JC2 loadings plots show

an interesting outlier, the babies of age zero. We speculate this shows an effect in

improvement of post-natal care that coincidently happened around the same time.

Another interesting result comes from the studying first individual components (IC1)

of males and females, shown in Figure 4.3. In the scores plot of males (left), the blue

circles stand out from the rest, corresponding to the years of the Spanish civil war when

a significant spike can be seen in the rows as curves plot. Young to middle age groups are

affected more than the others which can be found in the loadings plot and columns as

curves plot. Such year variation pattern, however, cannot be detected in the individual

variation component of females. The columns as curves plot on the lower left suggest
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Figure 4.2: The second joint components of male (left) and female (right) contain the common
modes of variation driven by the increase in fatalities caused by automobile penetration and
later improvement due to safety improvements. This can be seen from the scores plots in the
right bottom. The loadings plots show that this automobile event exerted a significantly stronger
impact on the 20-45 males.

some type of 5-year age rounding effect, which is seen to occur mostly during the earlier

years as indicated both in the rows as curves plot and the colors of the peaks in the

columns as curves plot. Note that the plot scales show that the individual female effects

are much smaller in magnitude than the male effects.
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Figure 4.3: The individual component of male (left) contains the variation driven by Spanish
civil war which can be seen from the blue circles on the right end of right bottom plot. The
Spanish civil war mainly affected the young to middle age male.

4.2 TCGA Data Analysis

A prominent goal of modern cancer research, of which TCGA is a major resource,

is the combination of biological insights from multiple types of measurements made

on common subjects. JIVE is a powerful new tool for gaining such insights. Here
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gene expression, copy number, reverse phase protein arrays and gene mutation features

measured on a common set of 616 breast cancer samples are taken as an example. A

preliminary analysis and visualization of each data type is given in Section 4.2.1 and

the JIVE results are discussed in Section 4.2.2.

4.2.1 Visualization

Gene Expression

Gene expression (GE) is the process by which information from a gene is used in the

synthesis of a functional gene product (e.g. protein). The measurement of expression

is typically done by detecting messenger RNA (mRNA). Studies of gene expression

profile have revealed its power in predicting disease outcome and selecting therapies for

individual patients (Van’t Veer et al., 2002). For such a high dimensional data set (16615

features), PCA is applied to study important variation components. In Figure 4.4, the

diagonal plots display the 1-dimensional distributions of the gene expression data block

onto the first 4 principal component (PC) directions i.e. scores using the same format

as in Figure 2.1. The off-diagonal plots show the 2-dimensional projections onto the

subspaces generated by each pair of these 4 PC directions. Each symbol represents a

patient and is colored by subtypes red for Luminal A, magenta for Luminal B, cyan for

HER2 and blue for Basal-like.

From the diagonal plots, the first PC shows a clear subtype difference between Basal-

like, HER2 and Luminal. The second PC presents a separation between Luminal A and

the other subtypes. The third PC contains little subtype information. The fourth shows

some but not strong evidence of separation between Basal-like and HER2. This strong

connection between gene expression variations and class differences is mainly due to the

fact that these subtypes are determined based on gene expression.

Copy Number Variation

The copy number variation (CN) are a form of structural variation of the two copies

of a genome. It has been well known that differences in the DNA sequence of genomes

have important impacts to personal traits. However, some recent studies have shown

that copy number data also play an important role in characterizing individual risk of

cancers and drug responses, e.g. Sebat et al. (2007); Xu et al. (2008). In Figure 4.5,
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Figure 4.4: The first 4 PC projections of the gene expression data block. The first PC presents
strong evidence of subtype differences between Basal-like, and the union of the others. The
second PC shows a separation between Luminal A and the other subtypes.

the first 4 PC projections of the copy number data block are displayed similarly as in

Figure 4.4. The first two largest variation PCs show little correlation with subtypes

differences. The third PC presents strong evidence of differences between Basal-like and

the other subtypes and the fourth PC shows some differences between Luminal A and

the others.

Reverse Phase Protein Array

Reverse phase protein (micro)arrays (RPPA) is a new, sensitive, high-throughput

technology for obtaining protein micro-arrays which provide quantitative profiling of

disease associated proteins (Charboneau et al., 2002). A broad assessment of quanti-

tative protein changes in diseased and healthy tissue can be offered by RPPA data.

This protein profiling has the potential for detecting meaningful protein and pathway

interactions of known proteins (Tibes et al., 2006). Figure 4.6 suggests that the first

PC contains useful information for distinguishing the Basal-like from the Luminial B.

The second PC presents the differences between Basal-like and Luminal which can be

similarly found in the PCs of gene expression and copy number. The fourth displays
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Figure 4.5: The first 4 PC projections of the copy number data block. The third PC presents
a strong evidence of differences between Basal-like and the other subtypes and the fourth PC
shows some differences between Luminal A and the others.

separation between HER2 and the other subtypes which is not clearly presented in the

first 4 PCs of gene expression and copy number.

Gene Mutation

Gene mutation is a permanent alteration of the nucleotide sequence of the genome,

which might result in different types of change in sequences and thus alter the product of

a gene, or prevent the gene from functioning properly or completely. Mutations in certain

genes, described as high penetrance, are often associated with high risk of developing

some types of cancer e.g. breast cancer (Tung et al., 2015). Figure 4.7 visualizes the first

4 PC projections of the Mutation data block. It can be seen that each PC tends to be

driven by several influential data points and is not useful for revealing their associations

with subtype differences.

Such observation is due to the low frequency of mutations of most patients, which

can be observed in the left panel of Figure 4.8. Each dot corresponds to one patient, with

colors based on breast cancer subtypes as in Figure 4.7. Less than 10 patients carry

more than 5% mutations among the 18256 genes and these patients are the samples
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Figure 4.6: The first 4 PC projections of the RPPA data block. The second PC presents
differences between Basal-like and Luminal. The fourth PC displays separation between Her2-
like and the other subtypes.
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Figure 4.7: The first 4 PC projections of Mutation data block. Each PC is driven by several
influential data points and is not useful for revealing their associations with subtype differences.
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driving the largest 4 variations presented in Figure 4.7. To reveal additional insights

of this gene mutation data, a bar plot in the right panel of Figure 4.8 presents the top

25 genes with highest chance of having mutations. The height of each bar represents

the percentage of patients having a mutation in the corresponding gene with the name

labeled in the bar. As can be seen, TP53 and PIK3CA are the major players which are

known for greatly increasing the risk of developing breast cancer (Network et al., 2012).
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Figure 4.8: The left panel shows percentages of mutations among 18256 genes for each patient.
The right panel presents the major set of genes having mutations.

4.2.2 Multi-Block JIVE Analysis

Here we perform our JIVE on gene expression, copy number, reverse phase protein

arrays (RPPA) and gene mutation (Mutation) measured on a common set of 616 breast

cancer samples. A most interpretable and insightful analysis is generated from low rank

approximations of dimensions 11 (gene expression), 6 (copy number), 8 (RPPA) and 12

(Mutation) selected in the first step of JIVE. Figure 4.9 displays the scree plots with

singular values in log10 scale for each data block. The red dashed lines indicate the

thresholds for selecting initial signal components. These thresholds are mainly deter-

mined by the size of jump between adjacent singular values as discussed in Section 3.3.5.

Figure 4.10 presents the second JIVE step. The one sided 95% confidence interval

suggests to select two joint components, resulting at least 95% to include all the joint

signals. The threshold from the one-sided 5% confidence interval is 2.58 which is very

close to the second squared singular value 2.61. For a conservative selection of joint

components, this 5% threshold suggests to select only one joint component since the

second component is very possible to be the combination of close individual components.
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(b) Copy Number.
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(c) RPPA.
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(d) Mutation.

Figure 4.9: The scree plots. The components with log
10

of singular values above the dashed
red line are selected as initial signal components in the first step of JIVE.
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Both selections of joint rank, 1 and 2, are tried in the following reconstruction step.

When using the joint rank 2, the second singular value of the reconstructed joint matrix

of mutation is smaller than the singular value threshold selected in the step 1. This

further suggests that one joint variation component should be extracted from these four

data types.

The association between the common normalized scores (CNS) of this joint compo-

nent and genetic subtype differences is visualized in Figure 4.11. For a better under-

standing of this variation pattern, the dots are a jitter plot of the patients, using colors

and symbols to distinguish the subtypes (Blue for Basal-like, cyan for HER2, red for

Luminal A and magenta for Luminal B). Each symbol is a data point whose horizontal

coordinate is the value and vertical coordinate is the height based on data ordering. The

curves are Gaussian kernel density estimates i.e. smoothed histograms, which show the

distribution of the subtypes.
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Figure 4.10: The second step of JIVE. The circles indicate the singular values from the second
SVD. The dashed red line corresponds to the median estimate of the threshold and the dashed
green lines indicate the thresholds from the 5% and 95% one sided confidence intervals. A
conservative selection suggests one joint component across the four data types.

The clear separation among density estimates suggest that this joint variation com-

ponent is strongly connected with the subtype difference between Luminal A versus the

other subtypes. To quantify this subtype difference, a test is performed using the CNS
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of this joint component evaluated by the DiProPerm hypothesis test (Wei et al., 2015)

based on 100 permutations. Strength of the evidence is usually measured by permuta-

tion p-values. However, in this context empirical p-values are frequently zero. Thus a

more interpretable measure of strength of the evidence is to provide DiProPerm z-score.

This is 29.32 for this CNS. An area under the ROC curve (AUC) (Hanley and McNeil,

1982) of 0.915, is also obtained to reflect the classification accuracy. These numbers

confirm the strong Luminal A property shared by these four data types.
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Figure 4.11: The kernel density estimation of the common normalized score (CNS) among
gene expression, copy number, RPPA and mutation. The clear separation between Luminal A
versus the other subtypes indicates that these four data blocks share a very strong Luminal A
property captured in this joint variation component.

A further understanding can be obtained by identifying the feature set of each data

type which jointly work with each other in characterizing the Luminal A property.

Figure 4.12 presents the top 25 features with largest absolute loading coefficients for

each data block. In each panel, each bar represents a feature with its name labeled

accordingly. The length of a bar corresponds to the importance in driving this joint

variation. A careful look at the sign of CNS vector shows that, a positive loading

value indicates that the Luminal A subtype group tends to have a higher level of the

corresponding variable than the others, while the negative loading value means the

opposite.
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The large mutation loading for TP53 is known from previous studies, as our TTN and

PIK3CA. Similarly the dominants of GATA3 in RPPA is well known, and is connected

with the large GATA3 mutation loading. The copy number loadings are nearly constant,

which is related to the strong correlation in this data. A less well known result of this

analysis is the genes appearing with large gene expression loadings. Many of these are

not dominant in earlier studies, which had focused on subgroup separation, instead of

joint behavior.
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(a) Gene expression loadings.
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(b) Copy number loadings.
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(c) RPPA loadings.
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(d) Mutation loadings.

Figure 4.12: Loadings plot of the joint common normalized score. Top 25 features with largest
absolute loading coefficients are displayed for each data block.

Next step is to study the individual variation of each data block. Figure 4.13,

Figure 4.14, Figure 4.15 and Figure 4.16 show the first 3 individual score vectors i.e.

individual normalized scores (INSs), colored by subtypes.

Note that the individual variation of gene expression, copy number and RPPA

present apparently common and subtype related variation for further analysis. In their

figures, the diagonal plots are the INS distribution and the off-diagonal plots are the

scatter plots of pairwise INSs. The first INS of gene expression data presents an ap-

parent separation between Basal-like and the other subtypes. Such subtype differences
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can also been found in the third INS of copy number and the first INS of RPPA. This

suggests that these components may still contains common variation patterns which can

be explained by some subtype differences e.g Basal-like versus the others. We explic-

itly investigate this potential 3–way joint structure using JIVE analysis on the 3 block

concatenation of the individual variation matrices of gene expression, copy number and

RPPA. The individual variation of Mutation, however, is mainly driven by several in-

fluential points and does not seem to contain apparent subtype properties as the other

three blocks. Therefore the individual variation of Mutation is not considered for the

further JIVE study.
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Figure 4.13: The first 3 individual normalized scores (INSs) of gene expression. The first INS
presents the subtype differences between Basal-like and the others.

Such observation is also consistent with the joint rank selection shown in Fig-

ure fig:tcgamultijive:step2. The individual score spaces of gene expression, copy number

and RPPA have components that are very close with each other; however, the individual

score space of mutation does not have such components. Therefore, the second squared

singular values is slightly above the 5% threshold as three data blocks have one more

joint component; and the reconstruction step suggests that this component is not a joint

signal for mutation.
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Figure 4.14: The first 3 individual normalized scores (INSs) of copy number. The third INS
presents the subtype differences between Basal-like and the others.
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Figure 4.15: The first 3 individual normalized scores (INSs) of RPPA. The first INS presents
the subtype differences between Basal-like and the others.
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Figure 4.16: The first 3 individual normalized scores (INSs) of Mutation which are mainly
driven by several influential points and seem not to be clear subtype–related variation.

Hierarchical JIVE Decomposition

The JIVE analysis on the gene expression, copy number and RPPA individual ma-

trices results in one joint variation component displayed in Figure 4.17. This joint

variation component clearly shows the differences among Basal, HER2 and Luminal

subtypes. In particular, a subtype difference between Basal-like versus the others is

quantified using DiProPerm z-score (29.82) and the AUC (0.998). Considering the fact

that the AUC of the classification between Basal-like versus the others using all the

original separate GE features is 0.999, this single joint component contains almost all

the variation information for separating Basal-like from the others.

This hierarchical application of JIVE reveals an important joint component that is

specific to gene expression, copy number and RPPA but not to Mutation. This analysis

provides motivation for further extension of JIVE which will be discussed in Section 4.3.

4.2.3 Pairwise TCGA Data

Additional understandings can be obtained by pairwise analyzing these data types

of which the analysis of gene expression and copy number data blocks is described here.
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Figure 4.17: The common normalized score (CNS) from applying JIVE to the individual
matrices of gene expression, copy number and RPPA. The clear separation between kernel density
estimations indicates that the individual matrices of gene expression, copy number and RPPA
contains a joint variation component explaining the subtype difference between Basal versus the
others.

Genetic subtypes have proven to be fundamental to precision medicine, so insights about

these will be used to interpret the variation contained in each data type and also the joint

and individual variation extracted by JIVE. Based on the visualizations in Section 4.2.1,

we perform JIVE for several selected subsets of the data for gaining more insights about

subtype differences, which includes all tumors, HER2 and Luminal, and Luminal alone.

Table 4.1 states the variation explained by JIVE decomposition for each subset. As

shown in the table, most of the copy number variation (about 80%) is joint with gene

expression for all of these subsets. On the other hand, the gene expression data contains

a much larger percentage of individual variation (about 60%) that differs from copy

number. This observation is consistent with expected biology because copy number

variation tends to generate variation in gene expression, while there are many other

sources of variation that also drive gene expression.

The classification directions between the studied two subtypes are obtained by Dis-

tance Weight Discrimination(DWD) (Marron et al., 2007) which is useful because of the

high dimensional nature of these data. Class differences are quantified by DiProPerm

hypothesis tests (Wei et al., 2015) based on 100 permutations. Strength of the evidence
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Data source Comparison Joint Individual

All Tumors
Gene expression 35% 65%
Copy number 80% 20%

HER2 & Luminal
Gene expression 34% 66%
Copy number 73% 27%

Luminal Only
Gene expression 41% 59%
Copy number 81% 19%

Table 4.1: Percentage of variation explained by joint block specific score (BSS) structure,
individual BSS structure for gene expression and copy number data. Shows that copy number
variation mainly associates with gene expression, but gene expression is more diverse as expected.

is usually measured by permutation p-values. However, in this context most p-values are

zero. Thus a more interpretable measure of strength of evidences is to provide DiProP-

erm z-scores. We also report the area under the ROC curve (AUC) (Hanley and McNeil,

1982), to show the classification accuracy.

Additional biological insights come from post analysis of these JIVE decompositions.

Subtype differences are explored by performing classifications on both joint and individ-

ual variation. This was done using both the common normalized score/individual nor-

malized score and the block specific score (BSS) data representations. Results are similar

so only common normalized score results are shown here. This gives a straightforward

joint analysis because it is based on the common set of joint scores. The classification

directions are obtained by Distance Weight Discrimination(DWD) (Marron et al., 2007)

which is useful because of the high dimensional nature of these data. Class differences

are quantified by DiProPerm hypothesis tests based on 100 permutations. Strength of

the evidence is measured by DiProPerm z-scores together with permutation p-values

and AUC for showing the classification accuracy.

Figure 4.18 presents the results of classification analysis of joint variation within the

three data subsets. Each panel shows a separation of subtypes by projecting the common

normalized score of joint structure onto the DWD discrimination direction. The dots

are a jitter plot of the data, using colors and symbols to distinguish the subtypes. Each

symbol is a data point whose horizontal coordinate is the value and vertical coordinate

is the height based on data ordering. The curves are Gaussian kernel density estimates

i.e. smoothed histograms, which show the distribution of the subtypes.

The left plot of Figure 4.18 presents a clear visual separation between Basal-like and

other tumor subtypes. The high value z-score of 37.6 and AUC also suggest a strongly
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Figure 4.18: One dimensional projection of joint structures onto the DWD discriminant di-
rection. Basal-like vs. the other tumor subtypes (left), HER2 vs. Luminal(center) and Luminal
A vs. B (right). A strong separation is apparent between Basal and the other tumor subtypes,
while there is more overlap for the other two classifications. This contrast indicates different
discriminatory power of joint variations between these different subsets of gene expression and
copy number.

significant class difference. The middle plot visualizes the discrimination between HER2

and Luminal. Although the z-score of 10.0 from DiProPerm indicates a significant

difference, the visual separation is not as large. The separation between Luminal A

and B, depicted in the right plot, is still not as strong as the Basal-like vs. the other

tumor subtypes but has stronger evidence than HER2 and Luminal suggested by the

DiProPerm z-score of 14.6. The contrast of separations in Figure 4.18 indicates the

distinct discriminant powers of the joint signals within different data subsets. The joint

signal between gene expression and copy number shows strong power for distinguishing

Basal-like from the other tumor subtypes but is not quite as powerful for the other two

class comparisons. This contrast is consistent with the known biological fact that the

Basal-like subtype has much stronger copy number variations than the Her2 subtype.

A similar study is conducted for the individual variation within gene expression

and copy number, which reveals a contrast with the joint variation. Table 4.2 gives

the DiProPerm z-scores and AUCs for the individual normalized scores of each individ-

ual variation. Differing from the joint variation, the individual variations within copy

number do not have power for distinguishing Basal-like from Other tumors, and Lu-

minal A from B. The table shows that the DiProPerm z-scores are not significant and

the AUCs are almost equivalent to random guessing(around 0.5). For these two class

comparisons, the individual variation within gene expression still present substantial dis-

criminant power but much weaker than the joint variation. The insignificant separation

of individual variation within copy number and the dramatic decrease in discriminant

power of individual variation within gene expression suggest that the class differences
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are mostly explained by the joint variation between gene expression and copy number.

Besides, in view of the fact shown in Table 4.1 that gene expression contains a large

proportion of individual variation, this is a strong indicator that the individual structure

of gene expression may be driven by some additional biological components. A further

investigation could be a clustering analysis of these individual variations to identity new

subtypes which might lead to better treatments.

The discrimination between HER2 and Luminal tells a different story. The in-

dividual variations within both gene expression and copy number present significant

discriminatory power; in particular, the individual gene expression has an even better

classification than its joint variation. This suggests that copy number features may not

work jointly with gene expression features to distinguish HER2 and Luminal.

Data source Data Type Z-score (P-value) AUC

All Tumors
Gene expression 9.61 (0) 0.7829
Copy number 1.1 (0.145) 0.5663

HER2 & Luminal
Gene expression 20.64 (0) 0.9643
Copy number 9.37 (0) 0.7551

Luminal Only
Gene expression 11.77 (0) 0.8052
Copy number 0.67 (0.267) 0.5704

Table 4.2: Z-scores and AUC of individual structure in classifying different pairwise classes.
Except HER2 versus Luminal, the other two comparisons indicate a less significant discrimination
in the individual variation.

A further understanding of these genomic sources can be obtained by looking at the

loading plots given by each classification. In particular, we have identified a set of gene

expression features associated with a set of copy number features that work together to

separate the compared classes.

4.3 JIVE Discussion

Our proposed Non-iterative JIVE method targets decompositions for each data block

result in two types of variation structure, joint over all data blocks and individual, as

defined in Section 3.3.1. Besides extracting the joint structure across all data blocks

together, additional insights may come from another type of decomposition based on

the joint variation structure within different subsets of the data blocks. For instance, in

the TCGA analysis, after applying JIVE on the four data blocks and extracting the joint
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variation, the individual variation matrices of gene expression, copy number and RPPA

still contain joint variation within that subset, which revealed by another hierarchical

JIVE decomposition. Figure 4.19 illustrates this for a three block data set.

Figure 4.19: A three-block data set example shows a generalized Non-iterative JIVE decompo-
sition. Besides the joint variation structure across all the three data blocks, the joint variation
structures of each pair of the blocks are taken into consideration, depicted within the dashed
rectangle.

Figure 4.19 starts with the same signal matrices AX , AY , AZ . As before there are

joint components JX , JY , JZ and fully individual components IX , IY , IZ . In addition

there are 2–block pairwise joint components. In the current JIVE, these are all treated

as part of the individual components. This more generalized signal decomposition model

gives more insights into the data in the spirit of that discovered in the three block TCGA

analysis above.
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CHAPTER 5: FUSION LEARNING FOR INTERLABORATORY

COMPARISON

5.1 Introduction

As noted in Hannig et al. (2015b). Interlaboratory trials are often conducted by

leading metrology laboratories in the world to compare each others’ capabilities for

measuring various fundamental properties of substances. Such a trial typically involves

two or more participants each of whom measures the (nominally) same unknown value

(called measurand) and provides the result along with an assessment of the uncertainty

in the result. The results are meant to be the best estimates of the measurand the par-

ticipating laboratories are able to provide. Often the same or very similar protocols are

used by the participating laboratories. In some cases different subsets of participants

use different methods for measuring the same unknown quantity. This is particularly

so when specific laboratories have special expertise in particular measurement methods.

The results from such experiments are used to gauge how comparable the measurement

capabilities are across the participating laboratories. In some cases such experiments

lead to the creation of certified reference materials (CRMs) and a consensus value for

the measurand is arrived at by combining the results from the participating laborato-

ries. This consensus value is used as the certified value for the CRM. The uncertainty

associated with this certified value is used to provide an interval estimate of the value

for the CRM.

Key Comparisons

There is a particular class of interlaboratory trials which takes on international sig-

nificance. With the signing of the Mutual Recognition Arrangement (MRA) (CIPM,

1999) in 1999, National Metrology Institutes (NMI’s) and Regional Metrology Organi-

zations (RMO’s) around the world have undertaken the task of examining the degree

of equivalence of their measurement standards. The CIPM (Comité international des

poids et mesures – The International Committee on Weights and Measures), an en-



tity whose principal task is to promote world-wide uniformity in units of measurement,

works with member countries on issues related to the creation of measurement standards

and comparisons of measurement capabilities of various national metrological laborato-

ries (such as the National Institute of Standards and Technology (NIST) in the U.S,

the National Physical Laboratory (NPL) in Great Britain, and Physikalisch-Technische

Bundesanstalt (PTB) in Germany), and oversees the conduct of interlaboratory exper-

iments by participating NMIs to evaluate the relative measurement capabilities of each

other and also to establish standard reference values (called Key Comparison Reference

Value(s) or KCRV) for many important fundamental measurements and standards. The

results obtained by the different laboratories are combined to arrive at the consensus

KCRV value. Such comparisons provide for the mutual recognition of calibration and

measurement certificates issued by NMIs and thereby to provide governments and other

parties with a secure technical foundation for wider agreements related to international

trade, commerce and regulatory affairs.

During any interlaboratory trial it is generally the case that the results from one or a

few laboratories differ noticeably from the rest even though all participating laboratories

are considered to be more or less equally competent. It is natural to think that these

apparently nonconforming values should perhaps be excluded from the calculation of a

consensus value. There are at least two problems with this thinking. First, since the true

value of the measurand is not known, one cannot say, based on any objective evidence,

that one result is more believable than another. Second, there are political overtones

associated with leaving out measured results of a laboratory since all participating labo-

ratories are considered to be competent in their own right. Although discrepant results

are subjected to further scrutiny to make sure such discrepancies are not the result of

identifiable errors, when no errors are identified, each laboratory stands behind its re-

sult and the associated uncertainty. Hence the problem of arriving at a consensus value

takes on a greater level of significance when it comes to International Key Comparison

Studies.

Gauge Blocks

A gauge block (Thalmann, 2002) is a length standard having flat and parallel op-

posing surfaces. The cross-sectional shape is not very important, although the stan-
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dard does give suggested dimensions for rectangular, square and circular cross-sections.

Gauge blocks have nominal lengths defined in either the metric system (millimeters) or

in the English system (1 inch = 25.4 mm). The length of the gauge block is defined at

standard reference conditions:

temperature = 20 ◦C (68 ◦F )

barometric pressure = 101,325 Pa (1 atmosphere)

water vapor pressure = 1,333 Pa (10 mm of mercury)

CO2 content of air = 0.03%.

The length of a gauge block is defined as the perpendicular distance from a gauging

point on one end of the block to an auxiliary true plane wrung to the other end of the

block, as shown in Figure 5.1.

Figure 5.1: The length of a gauge block is the distance from the gauging point on the top
surface to the plane of the platen adjacent to the wrung gauge block.

Figure 5.2 shows a portion of the results from an international key comparison study

(CCL-K1) involving the measurement of the central length of steel gauge blocks (nom-

inal length 1.01 mm) using interferometry according to ISO 3650. Detailed results are

available from the website of the International Bureau of Weights & Measures (BIPM).

The URL for the website is http://kcdb.bipm.org/. For instance, one can see, given

the reported uncertainties, VNIIM (D.I. Mendeleev All-Russian Institute for Metrology)

appears to deviate the most from the rest of the measurements.
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Figure 5.2: Gauge Block Measurements by 11 National Metrological Laboratories. Nominal
length is 8 mm. The horizontal axis shows deviations (in nm) from the nominal value.

One of the issues that needs to be resolved is “how to treat this apparent outlier?”

Alternatively, how much weight should be given to this particular measurement if one

were using a weighted average approach to arrive at the KCRV?

The Key Comparison Study also considered gauge blocks of other nominal lengths

besides the 8 mm gauge block. The estimates and uncertainties for the full set of steel

gauge blocks for the 11 NMIs is given in Table 5.1. The entire array of issues related to

this problem is more involved than what we are able to present here.

Although the potential of Fiducial methods in this area has been investigated in the

literature (Iyer et al., 2004b,a), a systematic and thorough treatment of Robust Fiducial

Methods has not been carried out. In this Chapter we propose the use of a generalized

fiducial model averaging approach to finding a robust consensus value.

When combining information in the labs together we use fusion learning techniques

(CD combination techniques) based on the Generalized Fiducial Inference Ideas of

(Hannig and Xie, 2012). This is described in Section 5.3. A highly computationally

efficient algorithm for model averaging is presented in Section 5.3.1. We show good

small sample properties of the proposed method in Section 5.4. Finally, we demonstrate

the new technique on the steel gauge block data and measurements of Newton’s constant

of gravitation (G) in Section 5.6.
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Nominal Lengths (in mm)
Lab 0.5 1.01 6 7 8 15 80 90 100

OFMET 17 ± 9 34± 9 52± 8 31± 8 −1± 8 16 ± 8 22± 11 -21 ± 12 -96 ± 13
NPL 20 ± 14 25.5 ± 14 54.5 ± 14 33.5 ± 14 1.5 ± 14 22.5 ± 15 38.5 ± 28 -14 ± 31 -140 ± 33
LNE 15 ± 10 25 ± 10 54 ± 10 35 ± 10 4 ± 10 20 ± 10 28 ± 14 -24 ± 15 -110 ± 16
NRC 29 ± 13 28 ± 13 36 ± 14 30 ± 14 2 ± 14 14 ± 14 9 ± 21 -37 ± 22 -126 ± 24
NIST 26 ± 8.9 42 ± 9 57 ± 9.4 34 ± 9.5 9 ± 9.6 30 ± 10.3 33 ± 16.1 -23 ± 17 -117 ± 17.9

CENAM 15 ± 7 20 ± 7 47 ± 7.1 26 ± 7.1 -3 ± 7.2 13 ± 7.4 21 ± 15.6 -19 ± 17.3 -119 ± 18.7
VNIIM * 60 ± 8 68 ± 8 25 ± 8 32 ± 8 36 ± 12 25 ± 14 -32 ± 15 - 104 ±
CSIRO 28 ± 9 46 ± 9 53 ± 9 37 ± 9 12 ± 9 51 ± 9 27 ± 14 -20 ± 15 -114 ± 16
NRLM 23.9 ± 8.6 17.7 ± 10.3 44.1 ± 10.3 27 ± 8.7 -2.2 ± 10.3 15.1 ± 10.9 47.3 ± 13.5 9.1 ± 14.3 -89.4 ± 16.3
KRISS 18.7 ± 13.1 20.3 ± 12.2 22.1 ± 13.6 12.8 ± 11 -24.2 ± 11 8.1 ± 13.2 30.4 ± 17 -18.4 ± 18.9 -104.3 ± 20.6
NIM 30 ± 5.4 48 ± 5.4 56 ± 5.5 42 ± 5.5 12 ± 5.5 28 ± 5.6 44 ± 8.9 18 ± 9.6 -90 ± 10.3

Table 5.1: CCL-K1 Measured results by 11 NMIs and combined standard uncertainties for
steel gauge blocks for 9 different nominal lengths. The nominal lengths are in millimeters (mm).
The values shown in the table are deviations from the nominal values (in nm) plus or minus the
combined standard uncertainty (also in nm)

5.2 Background

5.2.1 Generalized Fiducial Inference

Fiducial inference was originally proposed by R.A. Fisher in 1930 to address the

need to select a prior when none is available. Concepts of fiducial inference was never

fully accepted by other statisticians. Since 2000, there has been a resurgence of fiducial

inspired approaches (Berger and Bernardo, 1992; Martin and Liu, 2013; Xie and Singh,

2013; Hannig et al., 2015c). One of these approaches Hannig et al. (2015c) was termed

generalized fiducial inference (GFI).

The key idea of GFI is to define a data dependent measure on the parameter space

without the use of Bayes theorem; this data dependent distribution is called the gener-

alized fiducial distribution (GFD). GFD can be used to derive approximate confidence

intervals for parameters of interest. The transference of randomness from the model

space to the parameter space is done by an inverse of a deterministic data generating

equation (DGE), also known as the structural equation. Take a simple example for illus-

tration. Define a random variable Y ∼ N(µ, 1) i.e. a normal distribution with unknown

mean parameter µ and standard deviation 1. The random variable W can be written as

Y = µ+Z where Z follows a standard normal distribution. This equation is the DGE in

this context. If a realization of Y say y is given e.g. y = 5, we can solve the equation to

get µ expressed as µ = y−Z which defines a distribution called the fiducial distribution

of the parameter µ. The known distribution of Z is used to deduce the distribution of

mu through the inverse of the DGE.
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The DGE, expressing the relationship between data Y and the parameters θ, is

generally represented as

Y = G(U,θ), (5.1)

where G is a deterministic function, and U represents the random component with

completely known and independent of parameter distributions. Examples include the

random variable Z in the simple example above.

After observing a realization y, the inverse of the data generating equation can be

defined in the parameter space as

Qy(U) = {θ : G(U,θ) = y}. (5.2)

The inverse image Qy(U) induces to a distribution on θ from the randomness of U .

However, the distribution might be ill-defined for two possible reasons (Hannig, 2013).

One is that there are multiple solutions of θ which might be caused by discrete dis-

tributions. The other is that there may be no solution satisfying the equation. One

remedy for this is to remove the realizations U⋆ resulting in non-existence of a solution.

A conditional distribution

Qy(U
⋆) | {Qy(U

⋆) 6= ∅}

is introduced as a result of this adjustment. However, when the condition has a prob-

ability zero, the conditional probability is not well defined due to the non-uniqueness

known as the Borel paradox. In response to this, Hannig et al. (2015c) proposes an

attractive definition of generalized fiducial distribution via the limit of discretization of

the conditional distribution.

Definition 5.1. A probability measure on the parameter space Θ is called a generalized

fiducial distribution (GFD) if it can be obtained as a weak limit

lim
ǫ→0

{

argmin
θ
⋆

‖y −G(U⋆,θ⋆)‖
∣

∣

∣

∣

min
θ
⋆
‖y −G(U⋆,θ⋆)‖ ≤ ǫ

}

(5.3)

If there are multiple choices of argmin
θ
⋆

‖y−G(U⋆,θ⋆)‖, one of them is potentially selected

at random.
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With this definition, a closed form of the limit in 5.3 was derived by Hannig (2013)

under the l∞ norm and a generalized result is provided in Hannig et al. (2015c), which

is applicable to many practical situations.

Theorem 5.2. Assume that the parameter θ ∈ Θ is p-dimensional, the data y are

n-dimensional. Suppose the assumptions A.1 to A.3 in Appendix A of Hannig et al.

(2015c), the limiting distribution in 5.3 has a density

r(θ|y) = f(y,θ)J(y,θ)
∫

Θ f(y,θ
′

)J(y,θ
′

)dθ
′

(5.4)

where f(y, θ) is the likelihood and the function

J(y,θ) = D
( d

dθ
G(U,θ)|u=G−1(y,θ)

)

(5.5)

1. If n = p then D(A) = |detA|. Otherwise the function D(.) depends on the norm

that is used;

2. The l∞ norm makes D(A) =
∑

i=(i1,...,ip)
|det(A)i| where the sum spans over

(n
p

)

p-tuples of indices i = (1 ≤ i1, < · · · < ip ≤ n);

3. Under an additional assumption A.4, the l2 norm gives D(A) = (detATA)1/2

GFI has increasingly attracted interest and has been demonstrated to be inferentially

meaningful in many practical applications without the need for subjective prior infor-

mation. See Hannig et al. (2003), Iyer et al. (2004c), McNally et al. (2003), Wang et al.

(2012), Wang and Iyer (2005) for examples. This chapter focuses on one practical usage

of GFI; the fusion learning of key comparisons.

5.2.2 Confidence Distributions

A Confidence Distribution (CD) is a way to summarize information about a pa-

rameter contained in the data. It is similar to a Bayes posterior distribution but is

grounded in frequentist methodology. Heuristically speaking, the CD function is ob-

tained by stacking up one-sided confidence intervals of all levels. Schweder and Hjort

(2002); Singh et al. (2005) provide the following formal definition of a CD function
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Definition 5.3. A function H(·|x) on Θ×X → [0, 1] is called a confidence distribution

(CD) for a parameter θ, if it follows two requirements:

R1) For each given X ∈ X , H(·) is a continuous cumulative distribution function

on Θ;

R2) At the true parameter value θ = θ0, H(θ0) ≡ H(X, θ0), as a function of the

sample X, follows the uniform distribution U [0, 1].

Also, the function H(·) is an asymptotic CD (aCD), if the U [0, 1] requirement is

true only asymptotically (as sample size goes to infinity) and the continuity requirement

on H(·) is dropped.

In general, fiducial distributions, objective Bayes distributions, inversions of one

sided confidence intervals are all examples of CDs. As a particular example consider a

sample of size n from a N(θ, σ2) distribution with sample mean x̄ and sample standard

deviation s. The corresponding CD is the location-scale t distribution with distribution

function

H(θ|x) = F t
n−1

(

θ − x̄

s/
√
n

)

,

where F t
n−1 is the distribution function of the Student’s t distribution with n−1 degrees

of freedom.

A useful graphical tool for visualizing a confidence distribution is a confidence curve

(Birnbaum, 1961). For a given confidence distribution H(θ,x), its corresponding confi-

dence curve is defined as CV (θ) = 2|H(θ,x)− 0.5|. On a plot of CV (θ) versus θ, a line

across the height (y-axis) of α, for any 0 < α < 1, intersects with the confidence curve

at two points, and these two points correspond (on the x-axis) to a α level, equal tailed,

two sided confidence interval for θ. Thus, a confidence curve is a graphical device that

shows confidence intervals of all levels; see, e.g. Birnbaum (1961); Bender et al. (2005).

The minimum of a confidence curve is the median of the confidence distribution. It pro-

vides a point estimator which is typically median unbiased (Birnbaum, 1961). Figure 5.3

shows an example of a confidence curve.

5.3 Method

Let us assume that there are K labs and lab i measures the object ni times, i =

1, . . . ,K, and reports the mean, Xi, of these n measurements. We assume that the data
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Figure 5.3: Confidence curve for the mean of the normal distribution based on a sample of
size 8 with mean x̄ = 1.1 and sample standard deviation s = 2.1. The interval between the two
points where the dotted line intersects the CD is the 95% confidence interval.

generating equation for these measurements is

Xi = µ+Bi +
σAi√
ni

Zi, i = 1, . . . ,K (5.6)

Here µ is the true value of the measurand, ni
−1/2σAiZi are measurement errors assumed

to have N(0, σ2
Ai
/ni) distribution and Bi are lab specific unknown systematic errors.

The Bi cannot be measured directly. However it is assumed that there is some prior

information available for it. This prior information often differs significantly from lab

to lab, so modeling it as a random effect with a common distribution across labs is not

appropriate.

Typically, Bi is modeled as a random variable with zero mean and known standard

deviation σB,i often referred to as type-B uncertainty. Hence, the variance ofXi, denoted

as σ2
Ci
, is given by

σ2
Ci

= σ2
Bi

+
σ2
Ai

ni
.

The inferences for µ are performed separately by each lab and reported as the

triple (xi, ui, di) where xi is the realized value of Xi, ui is an estimate of σCi and di

is an effective degrees of freedom associated with ui. The quantity ui is called the

combined standard uncertainty (GUM, 1995). The value of di is generally determined
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using the Satterthwaite approximation (Satterthwaite, 1946) for a linear combination of

independent χ2 random variables.

In particular, the estimate of the combined variance σ2
Ci

is

u2i = σ2
Bi

+
s2i
ni

where si is the sample standard deviation of the ni observations from lab i whose mean is

Xi. It is assumed that diu
2
i /σ

2
Ci

is distributed (approximately) as a χ2 random variable

with di degrees of freedom. The approximate combined degrees of freedom

di = (ni − 1)
u4i

s4i /n
2
i

(5.7)

is based on the Satterthwaite (1946) approximation using the fact that we assume the

type B error has a known variance. The labs therefore report what is essentially a

conservative Confidence Distribution given by the location-scale t distribution with dis-

tribution function

Hi(µi | Xi) = F t
di

(

µi − xi
ui

)

.

We take these lab reported CDs as a starting point for our model averaging. Trying to

improve the lab reported CDs goes beyond the scope of this work and will be subject of

future work.

Because the labs are measuring the same quantity, it is reasonable to assume that

most, if not all, of the labs are actually providing unbiased estimates of µ. However,

it is not uncommon for a handful of labs to provide discrepant results. This may be

the consequence of incorrect adjustments by the labs to account for systematic errors or

incorrect specification of σBi . Our goal is to provide a combined confidence distribution

for the common value µ that is robust to discrepant results. We first provide a formula

assuming that E(Xi) = µ for all labs.

Hannig and Xie (2012) provide a simple formula based on Dempster’s rule of recom-

bination (Dempster, 2008) and generalized fiducial distribution (Hannig et al., 2015a).

The density of the combined CD for µ is

h(µ | x) =
∑K

i=1
∂
∂µHi(µ | xi)

∏

j 6=iDxjHj(µ | xj)
∫∞
−∞

∑K
i=1

∂
∂µHi(µ̄ | xi)

∏

j 6=iDxjHj(µ̄ | xj) dµ̄
(5.8)
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where DxjHj(θ|xj) = ‖∇xjHj(θ|xj)‖2 is the norm of the gradient of the Hj(θ|xj) com-

puted with respect to the observed measurements xj .

Calculations similar to Hannig and Xie (2012) show that

DxjHj(µ|xj) = tdj

(

µ− xj
uj

)

1

n
1/2
j uj

(

1 +
(µ− xj)

2

((nj − 1)dj)1/2u2j

)1/2

, (5.9)

where tdj (s) is the density of the T distribution with dj degrees of freedom.

To numerically compute the confidence interval based on the combined general-

ized fiducial distribution (5.8) we can use the following importance sampling algorithm

from Robert and Casella (2004, Section 3.3).

1. Generate Ri,l, a sample of size m from each of the generalized fiducial distributions

Hi(µ|xi), using Ri,l = xi−uiTi,l where Ti,l, l = 1, . . . ,m are independent standard

T random variables with di degrees of freedom.

2. For each Ri,l, i = 1, . . . K, l = 1 . . . ,m, compute unnormalized weights Wi,l =

∏

j 6=iDxHj(Ri,l|xj) using (5.9).

3. Compute the importance sampling estimate of the distribution function of (5.8)

by

Ĥ(µ) =

∑K
i=1m

−1
∑m

l=1 Wi,lI[Ri,l,∞)(µ)
∑K

i=1 m
−1
∑m

l=1Wi,l

, (5.10)

where the indicator I[Ri,j ,∞)(µ) = 1 if Ri,j ≤ µ and I[Ri,j ,∞)(µ) = 0 otherwise. To

form approximate confidence intervals use the appropriate quantiles of Ĥ(µ).

Finally notice that the normalizing constant in (5.10) is an estimate of the normalizing

constant in (5.8).

5.3.1 Model Selection

Let us now consider the situation where most of the labs are measuring the same

correct value µ while each remaining lab is measuring some incorrect value. We are

interested in making inferences about the true value µ without making any a priori

assumptions about which labs are correct. There are 2K − 1 possible such models

ranging from only a single lab measuring the true value to all the labs measuring the

correct value.
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Hannig and Lee (2009) have introduced model selection into the generalized fidu-

cial paradigm. Their results have been used for a multivariate normal model by

Wandler and Hannig (2011, 2012). The idea is to include the various models as a param-

eter in the setup of the problem and has been formalized in Theorem 3.1 of Hannig et al.

(2015a) where a formula for fiducial probability of each model is described.

In our situation we consider as a model i ⊂ {1, . . . ,K}, with i ∈ i if the lab i was

measuring µ and s /∈ i if the lab measured some other value. The joint fiducial density

of the common mean µ and the discrepant means µs, s /∈ i is proportional to





∑

i∈i

∂

∂µ
Hi(µ | xi)

∏

j∈i, j 6=i

DxjHj(µ | xj)





∏

s/∈i

∂

∂µ
Hs(µs | xs).

Notice that
∫∞
−∞

∂
∂µHs(µs | xs) dµs = 1 and therefore the marginal combined density for

the common parameter µ and model i is

hi(µ|x) =
∑

i∈i
∂
∂µHi(µ | xi)

∏

j∈i, j 6=iDxjHj(µ | xj)
∫∞
−∞

∑

i∈i
∂
∂µHi(µ̄ | xi)

∏

j∈i, j 6=iDxjHj(µ̄ | xj) dµ̄
.

Theorem 3.1 of Hannig et al. (2015a) gives a generalized fiducial probability of each

model. After integrating out the nuisance parameters this simplifies to

h(i|x) =
qK−|i|+1

∫∞
−∞

∑

i∈i
∂
∂µHi(µ̄ | xi)

∏

j∈i, j 6=iDxjHj(µ̄ | xj) dµ̄
∑

ī∈21,...,K qK−|̄i|+1
∫∞
−∞

∑

i∈ī
∂
∂µHi(µ̄ | xi)

∏

j∈ī, j 6=iDxjHj(µ̄ | xj) dµ̄
,

where q is a penalty term to be specified below. The combined confidence distribution

for µ obtained by model averaging based on the fiducial probabilities of the model is

given by

h(µ | x) =
∑

ī∈21,...,K qK−|̄i|+1hi(µ|x)h(i|x)
∫∞
−∞

∑

ī∈21,...,K qK−|̄i|+1hi(µ̄|x)h(i|x) dµ̄
.

The sum above is over 2K − 1 summands which would be prohibitively large even

for medium values of K. However, by rearranging the terms and combining them into a

product we get the following computationally friendly version of the combined density

h(µ | x) =
∑K

i=1
∂
∂µHi(µ | xi)

∏

j 6=i

(

1 + q−1DxjHj(µ | xj)
)

∫∞
−∞

∑K
i=1

∂
∂µHi(µ̄ | xi)

∏

j 6=i

(

1 + q−1DxjHj(µ̄ | xj)
)

dµ̄
. (5.11)
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The penalty term q is required to offset the propensity of the generalized fiducial dis-

tribution to select models with a larger number of parameters. We propose to use the

following penalty

q = MSE

(

k
∑

i=1

u−2
i

)−1/2( k
∑

i=1

ni

)−1/2

(5.12)

where the type A mean square error MSE = K−1
∑K

i=1 niu
2
i

√

(ni − 1)/di. This penalty

is inspired by the Minimum Description Length principle (Lee, 2001) with the addition

of the MSE factor that is meant to make the method scale invariant.

Based on (5.11) we propose the following importance sampling algorithm that is

usable for practical computations:

1. Generate Ri,l, a sample of size m from each of the generalized fiducial distribution

Hi(µ|xi), using Ri,l = x̄i−uiTi,l where Ti,l, l = 1, . . . ,m are independent standard

T random variables with di degrees of freedom.

2. For each Ri,l, i = 1, . . . K, l = 1 . . . ,m, compute unnormalized weights

W̃i,l =
∏

j 6=i

[

1 +DxjHj(Ri,l|xj) q
−1
]

,

where DxjHj is given in (5.9) and q is in (5.12).

3. Compute the importance sampling estimate of the distribution function of (5.11)

by

Ĥ(µ) =

∑K
i=1

∑M
l=1 W̃i,lI[Ri,l,∞)(µ)

∑K
i=1

∑M
j=1 W̃i,l

.

To form approximate confidence intervals use the appropriate quantiles of H̃(µ).

Remark 5.3.1. The combined confidence distribution in (5.11) treats all the labs

equally. However in some situations we want to combine results that are similar to

a particular lab. This is achieved by making sure that this lab is included in all the

models considered. If the lab r is preferred, this exhibits itself in (5.11) and the corre-

sponding part of the importance sampling algorithm by replacing “1+” in the formula

with “I{j 6=r}+”.
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5.4 Simulation Study

To demonstrate the small sample performance of our proposed algorithm, we con-

ducted a simulation study consisting of measurements from 7 labs generated from each

of three different scenarios listed below.

� Scenario 0 : All 7 labs provide unbiased estimates of the true value µ. We take

µ = 45 for concreteness.

� Scenario 1 : Six labs provide unbiased estimates of the true value µ = 45 and while

one lab provides a biased estimate whose expectation is µ + 3 = 48. This mimics

the situation where one lab may incorrectly estimate the lab bias Bk and/or the

standard deviation of lab bias σB,k.

� Scenario 2 : Two clusters of labs. One cluster of size 4 make measurements with

expected value equal to 45 and the other cluster of size 3 make measurements with

expected value equal to 48. This setting simulates the situation where labs use

fundamentally different methods for measurement and it is impossible to know

which of the labs, if any, are providing unbiased estimates of the true value µ.

Thus, there is no answer to which value is the truth.

For each scenario, we assume each lab makes the same number of measurements ni

and thus same type A degrees of freedom ni − 1. Two values ni = 5, 15 are used in

the simulation study. To model the heterogeneity among the labs, different standard

deviations of type A error and type B error, σA,i and σB,i respectively, are generated

from a Gamma distribution for each lab, i.e.

σA,i ∼ Γ(ni,
1

ni
), σB,i ∼ Γ(ni,

R

ni
)

in which R is the ratio of the mean of σB,is over the mean of σA,is. Four different

ratios are considered (R = 0, 1/3, 1, 2) for generating the data sets. Note that R = 0

implies type B error is not present. For each collection of σB,is, the type B errors Bi

are simulated, one per lab, from normal distribution Bi ∼ N(0, σ2
B,i).

One hundred parameter sets of {σA,i, σB,i, Bi, i = 1, · · · , 7} are simulated follow-

ing this procedure. For each fixed parameter set, 1000 repetitions of the laboratory
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measurements, type A and combined standard errors are generated using

Xi = µi +Bi +
σA,i√
ni

Zi, si = σA,i

√

Wi

(ni − 1)
, ui =

√

s2i
ni

+ σ2
B,i,

where Zi ∼ N(0, 1) and Wi ∼ χ2
ni−1 are independent.

In addition to the proposed method we also used classical methods, the arithmetic

mean and the variance weighted mean, for calculating a consensus value for the sim-

ulated data. These two classical methods are commonly used in metrology (GUM,

1995). Detailed results for each scenario are discussed in Section 5.4.1, Section 5.4.2

and Section 5.4.3, respectively.

5.4.1 Scenario 0

The expected values for the measurements by the 7 labs are all equal to µ = 45. For

illustration, Figure 5.4 provides an example of the fiducial distribution of the consensus

value for one of the datasets generated for d.f. = 4 and R = 0. The blue curves in the

left panel are kernel density estimates for the fiducial density for each lab. It can be

seen that the expected result for each lab deviates slightly from the true value of 45 with

different amounts of dispersion. The top black kernel density estimator shows that the

center of the consensus value distribution is around the true value 45. The top black

confidence curve in the right panel depicts the median estimate as 44.9 and 95% fiducial

confidence interval as [44.4, 45.4] which successfully covers the truth.

For each of the 100 parameter sets, we compute the coverage and lengths of the 95%

confidence intervals based on the 1000 simulated data sets. Box-plots shown in Figure 5.5

summarize the results for the 100 parameter sets under different ratios R and d.f.. The

blue boxes display the coverages for fiducial method, while the green and yellow boxes,

respectively, show the coverages of arithmetic mean and weighted mean. Results are

grouped by ratios for d.f. = 4 (left) and d.f. = 14 (right). The average coverages are

given underneath each box. When only type A error is present (R = 0), the coverage of

fiducial estimates and arithmetic mean are around 95%, while the weighted mean has

a much lower coverage, especially when d.f. = 4 (with median coverage being around

80%). When type B error exists and increases (larger R), all three methods tend to get
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42 43 44 45 46 47 48

Kernel Density Estimator

42 43 44 45 46 47 48

Median =44.884; 95% Confidence Interval: (44.413,45.413)

Figure 5.4: Fiducial estimate of one simulated data with σA,i, σB,i, Bi generated from d.f. = 4
and R = 0 of scenario 0. The top left black curve shows the kernel density estimate for the
consensus value with mode around 45. The top right black curve shows that the confidence
curve covers the true value 45 at 95% confidence level.

100% coverage. However, the arithmetic mean and the weighted mean are less robust

in the sense that they might get 0 coverage for certain parameter sets.
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Scenario 0 (d.f = 4): Coverage of 95% CI
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Scenario 0 (d.f. = 14): Coverage of 95% CI

Figure 5.5: Coverage Comparison for Scenario 0 grouped by ratios R for d.f. = 4 (left) and
d.f. = 14 (right). The results of fiducial method are given in the blue boxes with average
coverage written underneath. The green and yellow boxes present the results of arithmetic and
weighted mean, respectively.

Additionally, we compute the average length of 95% confidence intervals of 1000

simulated data sets for comparing the three methods. As before, Figure 5.6 displays

the box-plots of fiducial method (blue), arithmetic mean (green) and weighted mean
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(yellow) for different choices of d.f. and R. The confidence intervals gets wider with

an increase in the ratio R and gets shorter when the degree of freedom increases for

all three methods. In general, the fiducial intervals are wider than the others which is

consistent with the coverage comparison in Figure 5.5.
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Scenario 0 (d.f. = 4): Length of 95% CI
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Figure 5.6: 95% CI length comparison, under Scenario 0, for d.f.= 4 (left) and d.f. = 14
(right) with different ratios R: fiducial method (blue), arithmetic mean (green), weighted mean
(yellow). The CI gets wider with the increase in the ratio and gets narrower with the increase
in degree of freedom for all three methods.

5.4.2 Scenario 1

In this scenario, we try to mimic the consensus value estimation with a single ap-

parently discrepant lab. Again, Figure 5.7 provides an illustration of the GFD of the

consensus value for one simulated data set with d.f. = 4 and R = 0. The bottom blue

curves in both panels indicates the presence of a discrepant lab. The black curves on

the top show that the consensus value estimate from the fiducial approach is around 45

and appears to be uninfluenced by the apparently discrepant lab. The 95% confidence

interval is [44.40, 45.18] which covers the true value of the six nondiscrepant labs. It can

be seen that the fiducial consensus estimate is robust against an outlier measurement

from a discrepant lab.

We similarly compute the coverage of the 95% confidence interval for the true value

µ = 45. Box-plots for different choices of d.f. and R are shown in Figure 5.8. The fidu-

cial method stays robust against the discrepant lab measurement and obtains similar
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42 43 44 45 46 47 48 49 50

Kernel Density Estimator

42 43 44 45 46 47 48 49 50

Median =44.986; 95% Confidence Interval: (44.57,45.543)

Figure 5.7: One simulated data with σA,i and σB,i generated from d.f. = 4 and R = 0. The
kernel density estimates (left) indicate an apparently discrepant measurement from the last lab.
The black kernel density estimate and confidence curves for the consensus value demonstrate
the robustness of our proposed method against discrepant measurements.

coverages as Scenario 0. Both arithmetic mean and weighted mean are adversly influ-

enced by the discrepant lab. When d.f. = 4, the coverages are only around 40% with no

type B error or a small ratio of type B error. Differing from Scenario 0, the coverages

get worse with an increase in degree of freedom since the evidence of the outlier lab gets

stronger. The median coverages even drop to near 0 when R = 0 and d.f. = 14. When

type B error dominates, both arithmetic and weighted mean are unstable with some

zero coverages as in the previous scenario.

5.4.3 Scenario 2

We consider two clusters of labs in this scenario for simulating the situation where

labs might use different measuring methods. Recall that the true value of 4 labs is equal

to 45 and the true value of the other 3 labs is equal to 48. In this situation, it is not

clear which of the two, 45 or 48, should be the consensus value. This is illustrated in

Figure 5.9 where GFD of the consensus value for two simulated data sets generated

with d.f. = 4 and R = 0 are shown. The first four blue curves are centered around

45 representing the first cluster and the last three blue curves are centered around 48

from the second cluster. In the first row, the top black density estimate curve suggests

that the estimate of the consensus value is about 45 which is dominated by the cluster

whose true value is 45. A small peak can be seen around 48 indicating the impact from
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Scenario 1 (d.f. = 4): Coverage of 95% CI
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Figure 5.8: Coverage Comparison for Scenario 1: fiducial estimate (blue), arithmetic mean
(green), weighted mean (yellow). Fiducial estimate is robust against the apparent discrepancy
of one of the labs, while the other methods are strongly influenced, especially in the case without
type B error (R = 0).

the other cluster. Besides, the black confidence curve shows the 95% confidence interval

is [44.6, 47.9] which stretches towards the true value of the other cluster of labs. The

second row shows an example of a situation where the value of 48 dominates. One of

the labs in the second cluster has much smaller uncertainty compared with the other

labs. This is enough to move the mode of the fiducial distribution of the consensus

value to 48. The confidence curve suggests the 95% confidence interval is [44.6, 48.4],

successfully covering both true values.

The assessment of coverage is tricky in the current situation since there is no single

correct value. We evaluate two different coverage probabilities – (a) probability that

at least one of the two values (45 or 48) will be covered, and (b) the probability of

covering both 45 and 48. Results are shown in Figure 5.10 and Figure 5.11. The fiducial

confidence intervals (blue boxes) cover at least one of the two values nearly 100% of

the time under the different parameter settings. However, both arithmetic mean and

weighted mean fail to capture any of the true values when ratio R = 0 and R = 1/3.

When it comes to simultaneous coverage of both values, 75% of the fiducial confi-

dence intervals have a coverage around or above 60% for R = 0 and R = 1
3 . This should

not be surprising because our method was designed to capture the most dominant value,
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42 43 44 45 46 47 48 49 50

Kernel Density Estimator

42 43 44 45 46 47 48 49 50

Median =45.06; 95% Confidence Interval: (44.587,47.947)

42 43 44 45 46 47 48 49 50

Kernel Density Estimator

42 43 44 45 46 47 48 49 50

Median =48.006; 95% Confidence Interval: (44.561,48.358)

Figure 5.9: Two simulated data sets under Scenario 2 with σA,i and σB,i generated from
d.f. = 4 and R = 0. The first example shows that the first cluster with 4 labs dominate the
consensus value estimation. The second example presents the strong record from one lab in the
cluster with true value being 48. Therefore, the consensus estimate is shifted towards 48.
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not both values. The other two methods are unable to simultaneously cover both of the

true values for any of the cases.
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Scenario 2 (d.f. = 4): Coverage (At Least One Cluster) of 95% CI
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Scenario 2 (d.f. = 14): Coverage (At Least One Cluster) of 95% CI

Figure 5.10: Coverage Comparison (At Least One Cluster) for Scenario 2 for different ratios
and degrees of freedom.
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Figure 5.11: Coverage Comparison (Both Clusters) for Scenario 2 for different ratios and
degrees of freedom.

5.5 Discussion of Simulation Results

Below is a brief summary of some main observations from the simulation study.

84



� In Scenario-0 and Scenario-1 the fiducial intervals cover the true µ with confidence

level greater than or equal to the nominal value of 95%. For Scenario-2 the coverage

probability for covering at least one of the two cluster means is greater than or

equal to the nominal value.

� For arithmetic mean and weighted mean approaches the coverage is nowhere near

nominal in most situations examined. For scenarios 1 and 2 the coverage is par-

ticularly bad. These methods are unsuitable for situations when there may be

discrepant labs.

� Although the arithmetic mean and the weighted mean provide 95% confidence

intervals of shorter expected length this is meaningless since their coverages are

highly inadequate.

5.6 Data examples

We illustrate our method with two real data examples. The first example is taken

from a key comparison study called CCL-K1 which involved length measurements of

steel gauge blocks. The second example involves measurements, by many different labs,

of the Newton’s constant of gravitation, called big G (to distinguish it from g, the

acceleration due to gravity). The details follow.

5.6.1 Steel Gauge Blocks

In order to establish the metrological equivalence of national measurement stan-

dards and of calibration certificates issued by national metrology institutes a set of key

comparisons are chosen and organized by the Consultative Committees of the CIPM or

by the regional metrology organizations in collaboration with the Consultative Com-

mittees (Thalmann, 2002). In September 1997, the Consultative Committee for Length,

CCL, decided upon a key comparison on gauge block measurements by interferometry,

named CCL-K1, starting in spring 1998, with the Swiss Federal Office of Metrology

(OFMET) as the pilot laboratory. The results of this international comparison con-

tribute to the mutual recognition arrangement (MRA) between the national metrology

institutes of the Metre Convention.
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Ten gauge blocks of steel and 10 gauge blocks of tungsten carbide, of varying nom-

inal lengths, were circulated to 11 different NMIs. For the purpose of illustration we

considered one particular set of gauge block measurements corresponding to the nomi-

nal value of 8 mm. The results along with their associated uncertainties are shown in

Figure 5.2. What is actually reported by each participating lab is the deviation (in nm)

of the measured length from the nominal value.

The published reports did not clearly spell out the degrees of freedom. In order

to apply the proposed method we selected the total degrees of freedom d = 60 which

correspond to the usual multiplier of 2. The type B to type A standard deviation ratio

is typically 1.5 in these problems and (5.7) gives the corresponding type A degrees of

freedom as n − 1 = 6. Figure 5.12 presents the estimates of kernel density curve (left)

and confidence curves (right). The 95% confidence interval is [−31.6, 37.3] nm with

the median estimate being 4.08 nm. The consensus value estimate mainly picks up

the measurements of the labs with mode around 0. The confidence interval takes the

uncertainty caused by two discrepant labs into consideration.

-50 -40 -30 -20 -10 0 10 20 30 40 50

Kernel Density Estimator

-50 -40 -30 -20 -10 0 10 20 30 40 50

Median =4.0777; 95% Confidence Interval: (-31.617,37.285)

Figure 5.12: Results of CCL data set with total degrees of freedom equal to 60 and type A
degrees of freedom equal to 6.

The arithmetic mean −0.2± 3.5 nm and the weighted mean 0.1± 3.2 nm are given

in Thalmann (2002) as the reference value. These results exclude the values of VNIIM

and NIM based on the decision of the CCL Working Group Dimensional Metrology

(WGDM). Hence their confidence intervals are narrower as VNIIM is the one most

different from the others.

86



5.6.2 Newton’s Constant of Gravitation, G

Newton’s constant of gravitation G is a key constant that is needed for much funda-

mental research in physics. Many advanced scientific labs measure G and report a value

and an uncertainty. The data set contains the values from 11 labs shown in Table 5.2.

See Mohr et al. (2012) for details.

Combined
Organization Result Standard Uncertainty

NIST-82 6.67248 0.00043
TR&D-96 6.6729 0.00050
LANL-97 6.67398 0.00070
UWash-00 6.674255 0.000092
BIPM-01 6.67559 0.00027
UWup-02 6.67422 0.00098
MSL-03 6.67387 0.00027
HUST-05 6.67228 0.00087
UZur-06 6.67425 0.00012
HUST-09 6.67349 0.00018
JILA-10 6.67234 0.00014

Table 5.2: Summary of the results of measurements of the Newton’s constant of gravitation G.
The units are 10−11m3kg−1s−2.

It turns out that the confidence interval for G from some labs exclude values from

other labs, so there is some inconsistency. This is perhaps due to severe underestimation

by some or all the labs of uncertainties in their results. The community seeks a consensus

value that uses all available information. We applied the proposed method and obtained

an estimate depicted in Figure 5.13 computed using the default values of d = 60 and

n− 1 = 6.

The blue curves show that two labs, with small uncertainties, perhaps coincidently,

have nearly the same mode around 6.674 × 10−11m3kg−1s−2. Besides, there are several

labs whose results are near this value with varying levels of uncertainties. The consensus

estimate is therefore pulled towards this number with 95% confidence interval being

[6.6740, 6.6743] × 10−11m3kg−1s−2.

The value of G given by Mohr et al. (2012) is 6.67384 × 10−11m3kg−1s−2. The

uncertainty is 0.00080 × 10−11m3kg−1s−2 which is the weighted mean of the 11 values

in Table 5.2 multiplied the factor 14. The multiplication is intended to cover all the 11

values of G as none of them has an apparent issue besides the disagreement. Hence,
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although the confidence interval in the report better covers all the measurements, it

might not be robust due an arbitrary magnification of uncertainty.

6.67 6.671 6.672 6.673 6.674 6.675 6.676 6.677

Median =6.6741; 95% Confidence Interval: (6.674,6.6743)

Figure 5.13: Results of Big-G data set with total degrees of freedom equal to 60 and type A
degrees of freedom equal to 6.
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APPENDIX A: NON-ITERATIVE JIVE PROOF

Proof of Theorem 3.1. Define the row subspaces respectively for each matrix Ak as

row(Ak) ⊆ Rn. For each row subspace, there exists a corresponding projection ma-

trix Pk (n × n) which is idempotent and symmetric. For non-trivial cases, define a

subspace row(J) 6= {0} as the intersection of row spaces of {row(Ak), k = 1, . . . ,K} i.e.

row(J) ,

K
⋂

k=1

row(Ak).

The projection matrix of subspace row(J), PJ , can thus be represented as PJ =
∏K

k=1 Pk.

Then for each matrix Ak, two matrices Jk, Ik can be obtained using projection matrix

PJ and its orthogonal complement PIk , Pk − PJ i.e. Jk = AkPJ and Ik = AkPIk . The

two matrices satisfy Jk + Ik = Ak and their row subspaces are orthogonal with each

other row(J) ⊥ row(Ik), k = 1, . . . ,K.

Moreover, the intersections of row subspaces {row(Ik), k = 1, · · · ,K},
K
⋂

k=1

row(Ik),

has a projection matrix written as

K
∏

k=1

PIk =

K
∏

k=1

Pk(I − PJ) =

K
∏

k=1

Pk

K
∏

k=1

(I − PJ) = 0

Therefore, we have
K
⋂

k=1

row(Ik) = {0} satisfied and obtain a set of matrices simultane-

ously satisfying the stated constraints.

Next we show the sets of matrices {Jk (dk×n), k = 1, . . . ,K} and {Ik (dk×n), k =

1, . . . ,K} are uniquely defined. Assume the row subspace of matrices Jk, row(Jk) =

row(J), is spanned by a set of bases {v1, . . . ,vJ} and the row subspaces of Ik, row(Ik),

is spanned by a set of bases {w1, . . . ,wIk}. The row subspace row(Ak) is thus spanned

by their union i.e. {v1, . . . ,vJ ,w1, . . . ,wIk}, since row(Jk) = row(J) ⊥ row(Ak) for all

k. Hence, given an arbitrary vector v ∈ row(J), we always has v ∈ row(Ak) for all k,

which indicates

row(Jk) = row(J) * row(Ak), k = 1, . . . ,K,

and therefore

row(J) ⊆
K
⋂

k=1

row(Ak).



Furthermore, suppose there exist a non-zero vector a ∈
K
⋂

k=1

row(Ak) but a /∈ row(J) and

a ⊥ row(J). This vector should have a ∈ row(Ik), k = 1, . . . ,K and thus a ∈
K
⋂

k=1

row(Ik)

which contradicts the constraint
K
⋂

k=1

row(Ik) = {0}. This implies that the row subspace

row(J) is uniquely defined as

row(J) =

K
⋂

k=1

row(Ak).

Accordingly, the matrices Jk and Ik for k = 1, . . . ,K are also uniquely defined. Other-

wise assume there have another set of matrices Ak = J̃k + Ãk and PJ is the projection

matrices of row(J), we have Jk = AkPJ = J̃k.

Proof of Lemma 1. Let P1 and P2 be the projection matrices onto the individually per-

turbed joint row spaces. And let P be the projection matrices onto the common joint

row space J . Thus, we have

sin θ = ‖(I − P1)P2‖ (A.1)

≤ ‖(I − P1)(I − P )P2‖+ ‖(I − P1)PP2‖ (A.2)

≤ ‖(I − P1)(I − P )‖‖(I − P )P2‖+ ‖(I − P1)P‖‖PP2‖ (A.3)

in which ‖(I − P1)P‖ = sinφ1, ‖(I − P1)(I − P )‖ = cosφ1, ‖(I − P2)P‖ = sinφ2 and

‖(I − P2)(I − P )‖ = cosφ2. Therefore,

sin θ ≤ cosφ1 sinφ2 + sinφ1 cosφ2 = sin(φ1 + φ2).

Proof of Lemma 2. Denote the spanning basis for the estimates of each signal score

spaces row(Ãk) as {Ṽk, k = 1, · · · ,K} and M as the vertical concatenation of right

singular vector matrices {Ṽ T
k , k = 1, · · · ,K} (denoted as M) for SVD.

M ,













Ṽ T
1

...

Ṽ T
K













= UMΣMV T
M .
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For each singular value, it can be formulated as a sequential optimization problem i.e

σ2
i = max‖MQ‖2F = max

K
∑

k=1

‖Ṽ T
1 Q‖2F ,

in which Q is a rank 1 projection matrix that is orthogonal to the previous i− 1 optima

i.e. Q1, . . . , Qi−1. For the one that maximizing the Frobneius norm of M projected onto

it i.e. σi, we denote as Qi.

For an arbitary component in the theoretical joint score subspace row(J), write its

projection matrix as PJ . The Frobneius norm of M projected onto PJ is

‖MPJ‖2F =













Ṽ T
1 PJ

...

Ṽ T
KPJ













2

F

≥













cosφ1

...

cosφK













2

F

=

K
∑

k=1

cos2 φk (A.4)

Considering the mechanism of SVD, σ2
1 is the maximal norm obtained from the

optimal projection matrix Q1 ⊆ ⋃K
k=1 row(Ãk) ⊆ Rn. Assuming the low rank approx-

imations Ãk are correctly given for each data, we have row(J) ⊆ ⋃K
k=1 row(Ãk) and

therefore

σ2
1 ≥ ‖MPJ‖2F ≥

K
∑

k=1

cos2 φk

to be considered as a component of joint score subspace.

Sequentially such argument can be applied to the following projection matrices Qi.

For the Q2 ∈ Q⊥
1 ∩ {⋃K

k=1 row(Ãk)}, there exist a non-empty joint subspace (⊆ row(J))

and therefore an joint component with projection matrix P
(2)
J such that

σ2
2 ≥ ‖MP

(2)
J ‖2F ≥

K
∑

k=1

cos2 φk

This will continue until the rJ joint components are extracted and no such compo-

nent for optimization in SVD. Therefore, the right singular values should larger than

∑K
k=1 cos

2 φk to be considered as the estimates of joint components.
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Miguel de la Guardia, Máximo Vento, Eric F Lock, and Guillermo Quintás. Analysis
of multi-source metabolomic data using joint and individual variation explained (jive).
Analyst, 2015.

R. Leadbetter, G. Lindgren, and H. Rootzen. Extremes and Related Properties of Ran-
dom Sequences and Processes. Springer Series in Statistics. Springer New York, 2011.
ISBN 9781461254515.

Thomas C. M. Lee. An introduction to coding theory and the two–part minimum
description length principle. International Statistical Review, 69:169–183, 2001.

Eric F Lock and David B Dunson. Bayesian consensus clustering. Bioinformatics, page
btt425, 2013.

Eric F Lock, Katherine A Hoadley, JS Marron, and Andrew B Nobel. Joint and indi-
vidual variation explained (jive) for integrated analysis of multiple data types. The
annals of applied statistics, 7(1):523, 2013.

J Steve Marron and Andrés M Alonso. Overview of object oriented data analysis.
Biometrical Journal, 56(5):732–753, 2014.

JS Marron, Michael J Todd, and Jeongyoun Ahn. Distance-weighted discrimination.
Journal of the American Statistical Association, 102(480):1267–1271, 2007.

Ryan Martin and Chuanhai Liu. Inferential models: A framework for prior-free posterior
probabilistic inference. Journal of the American Statistical Association, 108(501):301–
313, 2013.

Gregoria Mateos-Aparicio. Partial least squares (pls) methods: Origins, evolution, and
application to social sciences. Communications in Statistics-Theory and Methods, 40
(13):2305–2317, 2011.

Richard J McNally, Hari Iyer, and Thomas Mathew. Tests for individual and population
bioequivalence based on generalized p-values. Statistics in medicine, 22(1):31–53,
2003.

Jianming Miao and Adi Ben-Israel. On principal angles between subspaces in Rn. Linear
algebra and its applications, 171:81–98, 1992.

Jayson Miedema, James Stephen Marron, Marc Niethammer, David Borland, John
Woosley, Jason Coposky, Susan Wei, Howard Reisner, and Nancy E Thomas. Im-
age and statistical analysis of melanocytic histology. Histopathology, 61(3):436–444,
2012.

Qianxing Mo, Sijian Wang, Venkatraman E Seshan, Adam B Olshen, Nikolaus Schultz,
Chris Sander, R Scott Powers, Marc Ladanyi, and Ronglai Shen. Pattern discovery
and cancer gene identification in integrated cancer genomic data. Proceedings of the
National Academy of Sciences, 110(11):4245–4250, 2013.

P.J. Mohr, B.N. Taylor, and D.B. Newell. Codata recommended values of the funda-
mental physical constants: 2010. Reviews of Modern Physics, 84(4):1527–1605, 2012.

94



Cancer Genome Atlas Network et al. Comprehensive molecular portraits of human
breast tumours. Nature, 490(7418):61–70, 2012.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer
Texts in Statistics. Springer-Verlag, New York, second edition, 2004. ISBN 0-387-
21239-6.

R. M. Sakia. The box–cox transformation technique: a review. Journal of the Royal
Statistical Society. Series D (The Statistician), 41(2):169–178, 1992.

Franklin E Satterthwaite. An approximate distribution of estimates of variance compo-
nents. Biometrics bulletin, pages 110–114, 1946.

Tore Schweder and Nils Lid Hjort. Confidence and Likelihood. Scandinavian Journal of
Statistics. Theory and Applications, 29(2):309–332, 2002.

Jonathan Sebat, B Lakshmi, Dheeraj Malhotra, Jennifer Troge, Christa Lese-Martin,
TomWalsh, Boris Yamrom, Seungtai Yoon, Alex Krasnitz, Jude Kendall, et al. Strong
association of de novo copy number mutations with autism. Science, 316(5823):445–
449, 2007.

Kesar Singh, Minge Xie, and William E. Strawderman. Combining Information from
Independent Sources Through Confidence Distributions. The Annals of Statistics, 33
(1):159–183, 2005.

Age K Smilde, Johan A Westerhuis, and Sijmen de Jong. A framework for sequential
multiblock component methods. Journal of chemometrics, 17(6):323–337, 2003.

Michael A Stephens. Edf statistics for goodness of fit and some comparisons. Journal
of the American Statistical Association, 69(347):730–737, 1974.

G.W. Stewart and Ji-guang Sun. Matrix Perturbation Theory. Computer science and
scientific computing. Academic Press, 1990. ISBN 9780126702309.

R Thalmann. Ccl key comparison: calibration of gauge blocks by interferometry.
Metrologia, 39(2):165, 2002.

Raoul Tibes, YiHua Qiu, Yiling Lu, Bryan Hennessy, Michael Andreeff, Gordon B Mills,
and Steven M Kornblau. Reverse phase protein array: validation of a novel proteomic
technology and utility for analysis of primary leukemia specimens and hematopoietic
stem cells. Molecular cancer therapeutics, 5(10):2512–2521, 2006.

Johan Trygg and Svante Wold. O2-pls, a two-block (x±y) latent variable regression
(lvr) method with an integral osc® lter2. J. chemometrics, 17:53–64, 2003.

Nadine Tung, Chiara Battelli, Brian Allen, Rajesh Kaldate, Satish Bhatnagar, Karla
Bowles, Kirsten Timms, Judy E Garber, Christina Herold, Leif Ellisen, et al. Fre-
quency of mutations in individuals with breast cancer referred for brca1 and brca2
testing using next-generation sequencing with a 25-gene panel. Cancer, 121(1):25–33,
2015.

Willem Rutger van Zwet. Convex transformations of random variables. Mathematisch
centrum, 1964.

Laura J Van’t Veer, Hongyue Dai, Marc J Van De Vijver, Yudong D He, Augustinus AM
Hart, Mao Mao, Hans L Peterse, Karin van der Kooy, Matthew J Marton, Anke T
Witteveen, et al. Gene expression profiling predicts clinical outcome of breast cancer.
nature, 415(6871):530–536, 2002.

95



Matt P Wand and M Chris Jones. Kernel smoothing. Crc Press, 1994.

D. V. Wandler and J. Hannig. Fiducial Inference on the Maximum Mean of a Multi-
variate Normal Distribution. Journal of Multivariate Analysis, 102(1):87–104, 2011.

Damian V. Wandler and Jan Hannig. A Fiducial Approach to Multiple Comparisons.
Journal of Statistical Planning and Inference, 142(4):878–895, 2012.

CM Wang and Hari K Iyer. Propagation of uncertainties in measurements using gener-
alized inference. Metrologia, 42(2):145, 2005.

CM Wang, Jan Hannig, and Hari K Iyer. Fiducial prediction intervals. Journal of
Statistical Planning and Inference, 142(7):1980–1990, 2012.
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