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ABSTRACT

Matthew Quinn Buckner: HYDROGEN BURNING OF THE RARE OXYGEN ISOTOPES
(Under the direction of Christian Iliadis)

At the Laboratory for Experimental Nuclear Astrophysics (LENA), two rare oxygen isotope proton cap-

ture studies were performed at low energies—18O(p,γ)19F and 17O(p,γ)18F. The goal of each study was to

improve thermonuclear reaction rates at stellar plasma temperatures relevant to 18O and 17O destruction,

respectively. The stellar nucleosynthesis temperature regime corresponds to very low proton bombarding

energies. At these low energies, the Coulomb barrier suppresses the reaction yield in the laboratory, and

environmental backgrounds dominate the detected signal, making it difficult to differentiate the γ-cascade

from background. At LENA, the electron cyclotron resonance (ECR) ion source produces intense, low-energy

proton beam, and these high currents boost the reaction yield. LENA, a “sea-level” facility dedicated to

nuclear astrophysics, also has a coincidence detector setup that reduces environmental background contribu-

tions and boosts signal-to-noise. The sensitivity afforded by γγ-coincidence and high beam current allowed

these rare oxygen isotope reactions to be probed at energies that correspond to stellar plasma temperatures.

For stars with masses between 0.8 M⊙ ≤ M ≤ 8.0 M⊙, nucleosynthesis enters its final phase during the

asymptotic giant branch (AGB) stage. This is an evolutionary period characterized by grain condensation

that occurs in the stellar atmosphere; the star also experiences significant mass loss during this period of

instability. Presolar grain production can often be attributed to this unique stellar environment. A subset of

presolar oxide grains features dramatic 18O depletion that can not be explained by the standard asymptotic

giant star burning stages and dredge-up models. An extra mixing process for low-mass asymptotic giant

branch stars, known as cool bottom processing (CBP), was used in the literature to explain this and other

anomalies. Cool bottom processing can also occur during the red giant branch (RGB) phase, but it is

not thought to contribute to the extreme 18O depletion observed within certain stellar environments and

within presolar grain samples. However, intense depletion could result from the 18O + p processes during

cool bottom processing in low-mass AGB stars. A portion of this dissertation describes a study of the

18O(p,γ)19F reaction at low energies performed at LENA. Based on these new results, it was found that the

resonance at ER = 95 keV has a negligible effect on the reaction rate at the temperatures associated with

cool bottom processing when compared to the (p,α) reaction. It was also observed that the direct capture

S-factor is almost a factor of 2 lower than the previously recommended value at low energies. The product
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of this research is a new thermonuclear reaction rate for 18O(p,γ)19F. These results were published in Buckner

et al. (2012) [1].

Classical novae are thought to be among the dominant sources of 17O in the Galaxy. These energetic

events produce 18F that, as it decays to 18O, emits positrons that annihilate with electrons producing 511

keV γ-rays. These emissions occur at timescales that correspond to a transparent nova expansion envelope

making their observation possible and important for constraining nova stellar models. The importance of

the non-resonant component of the 17O(p,γ)18F reaction is well established, and numerous studies have been

performed to analyze this reaction. The experimental tools available at LENA, in addition to a novel spectral

analysis method, allowed the 17O(p,γ)18F reaction to be studied within the classical nova Gamow window,

and new total S-factors were measured. The lowest energy in-beam 17O(p,γ)18F measurement ever made was

collected during this experiment. A new direct capture S-factor was determined, and it was confirmed that

this S-factor is constant at low energies. The ER = 193 and 518 keV resonances were also measured, and new

resonance strengths were determined. New 17O(p,γ)18F thermonuclear reaction rates are reported within

this thesis. The direct capture contribution, combined with updated partial widths and strengths from the

literature, improved reaction rate uncertainties at low temperatures and may also impact 17O overproduction

in asymptotic giant branch stellar models. With the improved direct capture S-factor and new resonance

strengths, rate uncertainties at classical nova temperatures decreased.
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For Megan.
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“Nevertheless I long—I pine, all my days—to travel home and see the dawn of my return. And if a god

will wreck me yet again on the wine-dark sea, I can bear that too, with a spirit tempered to endure. Much

have I suffered, labored long and hard by now in the waves and wars. Add this to the total—bring the trial

on!” (The Odyssey 5:242-48 [2])
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CHAPTER 1: INTRODUCTION

Section 1.1: Astrophysical Motivation

Visualizing stellar evolution is facilitated by a color-magnitude diagram or Hertzsprung-Russell diagram.

By plotting luminosity versus surface temperature (with decreasing temperature from right to left), the

relationship between stellar mass, luminosity, surface temperature, age, and evolutionary stage can be un-

derstood. Figure 1.1 [3] is a common example of a Hertzsprung-Russell diagram because it features a lot of

structure that can be attributed to the different stages of stellar evolution. In this figure, the B−V color

index is used instead of surface temperature, and absolute magnitude is used instead of luminosity. Impor-

tant features are labeled in Fig. 1.1; when a star is burning hydrogen to helium in its core, it lies along the

main sequence (MS). The Sun, for example, is a main sequence star, and at a core temperature of 15 MK,

four protons fuse to helium and release a substantial amount of energy (along with two positrons and two

neutrinos):

4H → 4He + 2e+ + 2ν + 26.7 MeV. (1.1)

Based on the mass of a particular star, it may remain on the main sequence for millions to billions of years—

more massive stars exhaust their supply of core hydrogen and evolve off the main sequence before lower mass

stars. The main sequence turn-off point (TO) is a luminosity versus temperature feature that corresponds

to the age of a cluster. If it can be assumed that the stars in a cluster all formed at the same time, and the

mass is proportional to the time spent on the main sequence (≈ 90% of the star’s lifespan), then the turn-off

point corresponds to the mass/age threshold between core hydrogen burning and envelope expansion, core

contraction, and ascension of the red giant branch (RGB). During the red giant branch phase, core hydrogen

burning has ended, but hydrogen still burns in a shell that surrounds a helium core. Before helium can begin

to fuse in the core, temperatures need to rise dramatically. The core contracts and heats; temperatures

increase in the hydrogen shell, and the convective envelope expands. Hydrogen fuses to helium in the shell

with the help of carbon, nitrogen, and oxygen catalyst isotopes in processes called CNO(F) fusion cycles.

The products of this nucleosynthesis are dredged-up by the convective envelope and brought to the surface

of the star. At a helium core temperature of 100 MK, helium burning to carbon commences, and the star

occupies the horizontal branch (HB) of the color-magnitude diagram. A star ascends the giant branch a

second time, the asymptotic giant branch (AGB) phase, when core helium is exhausted. Shells of helium
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and then hydrogen encase a carbon-oxygen core (an oxygen-neon core in more massive stars). During the

asymptotic giant branch phase, recurrent periods of instability gradually drive off a star’s envelope creating a

planetary nebula and exposing the electron-degenerate core, a stellar corpse called a white dwarf. Stars more

massive than ≈11 M⊙ (where M⊙ is the mass of the Sun) end their lives violently as supernovae producing

a compact remnant—either a black hole or neutron star (depending on the mass of the progenitor).

Figure 1.1: From Ref. [3], the globular cluster M3 is the population of stars shown in this color-magnitude
diagram. The x-axis is the B−V color index. Along the y-axis, the absolute magnitude is shown. The main
sequence branch (MS), the main sequence turn-off point (TO), the red giant branch (RGB), the asymptotic
giant branch (AGB), the horizontal branch (HB), and the post-asymptotic giant brand (P-AGB) are shown
on this plot. These features correspond to different burning stages during stellar evolution. See Ref. [4] for
more information on stellar evolution.

1.1.1: Cool Bottom Processing in Low-Mass AGB Stars

Matter in our solar system has a unique 18O/16O isotopic signature—(2.09+0.13
−0.12)×10−3 [5]. However,

a collection of presolar grain samples features peculiar oxygen isotopic ratios. Presolar grains are dust

particles that condensed in the ejecta of evolved stars, supernovae, or, in some cases, classical novae [6]

(see Fig. 1.2). These grains can be isolated from meteorites and then probed with secondary ion mass

spectrometry (SIMS) or resonance ionization mass spectrometry (RIMS) [7]. Grains can provide insight into

Galactic chemical evolution, stellar nucleosynthesis and evolution, and circumstellar and interstellar dust

formation [8, 6]. Certain alumina (Al2O3) grains are considered outliers with respect to the trove of presolar

grains gathered over the years from primitive meteorites and interplanetary dust particles. The 18O study

presented in this thesis is motivated by observations of presolar grains that nucleated in the atmospheres of

distant, evolved stars before the formation of the Sun. These grains retain the isotopic ratios of the stellar

surface they originated from. During the birth of the Sun, most presolar grains were annihilated as gas and
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Figure 1.2: From Ref. [9], (a) a scanning electron (SE) micrograph image of a 3 µm presolar SiC grain, (b)
a SE image of a 5 µm presolar graphite grain, (c) a SE image of a 0.5 µm presolar Al2O3 grain, and (d) a
high-resolution transmission electron microscope image of presolar nanodiamonds.

dust collapsed to form the nascent star. As the solar system cooled and the Sun ascended the main sequence,

the presolar grains that survived were incorporated into primitive meteorites. The study of their abnormal

isotopic ratios provides crucial constraints for astrophysical models. The 18O(p,γ)19F portion of this thesis

focuses on oxide grains referred to as Group 2 grains, approximately 15% of all presolar oxides [6] (see Fig.

1.3a). They exhibit a characteristic 18O/16O abundance ratio ≤1.5×10−3 [10], reflecting substantial 18O

depletion [7] with respect to the Solar value.

The depletion of 18O may occur due to cool bottom processing (CBP) [6] in low-mass red giant branch

(RGB) and asymptotic giant branch (AGB) stars [10]. This extra mixing process was proposed by Ref.

[12] to account for isotopic anomalies, including 18O depletion, in presolar grains. During cool bottom

processing, material circulates between the convective envelope and the radiative zone that separates the

envelope from the hydrogen burning shell (see Fig. 1.4). The base of the convective envelope remains

cool, thus distinguishing this process from hot bottom burning (HBB) that occurs in 4−7 M⊙ asymptotic

giant branch stars [12, 6]. Hot bottom burning peak temperatures range from 30 MK to about 100 MK

and may be as high as 125 MK [14] (17O + p may impact hot bottom burning at these temperatures

[15] and will be discussed later in Chapter 6). During cool bottom processing, as the circulated matter

approaches the hydrogen shell, it reaches temperatures high enough to destroy 18O via hydrogen burning.

The processed material is then recirculated into the convective envelope and transported to the stellar

surface. The mechanism driving cool bottom processing is not understood, and several explanations have

been proposed, including magnetic buoyancy [16, 17], gravity waves [18], shear instability [19, 20, 21, 22],

meridional circulation [23, 24], molecular weight inversion [25], and thermohaline double-diffusion [26, 27].
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(a)
(b)

Figure 1.3: (a) From Ref. [7], a plot of the different presolar oxide grains with 17O/16O on the y-axis and
18O/16O on the x-axis. The dashed lines represent the Solar values. The solid red circles, Group 2, represent
roughly 15% of all presolar oxides and exhibit extreme 18O depletion [6]. (b) From Ref. [11], a simplified
version where the T54 and C4-8 grains—thought to be produced by classical novae (see Sec. 1.1.2)—are
emphasized. The abbreviations GCE, CBP, and HBB refer to Galactic chemical evolution, cool bottom
processing, and hot bottom burning, respectively.

However, as pointed out by Refs. [28, 29], there is a finite amount of time during an evolutionary stage in

which nucleosynthesis due to extra-mixing processes can occur and produce observed isotopic abundances.

Mechanisms like magnetic buoyancy are fast and could satisfy this constraint [16, 30, 17], while diffusive and

rotational processes are slow and less likely to drive cool bottom processing [31, 32].

For a 1.0 M⊙ ≤ M ≤ 1.5−1.7 M⊙ red giant branch star, moderate 18O depletion might occur due to cool

bottom processing, and this depletion is reflected in the Group 1 grains [33] in Fig. 1.3a [10]. According

to Palmerini et al. (2011a) [10], cool bottom processing in RGB stars is a viable, but moderate, 18O

destruction mechanism if the maximum temperature of the circulated material approaches TP ≈ 24 MK and

the hydrogen-burning shell is (at most) TH ≈ 38 MK. Cool bottom processing in RGB stars can not account

for the Group 2 presolar grains in Fig. 1.3a [10], and there must be another stellar environment where cool

bottom processing occurs [34]. It is hypothesized that low-mass asymptotic giant branch stars are this 18O

depletion site [6, 10].

During the asymptotic giant branch stage—the final phase of nucleosynthesis during the evolution of

a 0.8−8.0 M⊙ star [35, 36]—a star undergoes substantial nucleosynthesis and mass loss. Peeling away

the surface layers enveloping an asymptotic giant branch star reveals numerous burning sites and a complex

interplay between these regions. A stellar core, composed of partially electron-degenerate carbon and oxygen,

is surrounded by alternately burning helium and hydrogen shells. Degeneracy refers to the Pauli Exclusion
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Principle, no more than two spin 1/2 particles can occupy a given quantum state simultaneously. Degenerate

gas resists compression because all lower-lying states are occupied; pressure no longer depends on temperature

[4]. During periods of helium-burning, referred to as thermal pulses, thermonuclear runaway (TNR) occurs

and drives convection between the two burning sites. When the thermonuclear runaway subsides, the star

compensates for this period of activity by expanding and cooling. The hydrogen burning shell is quenched

during expansion, and the convective envelope dredges the products of nucleosynthesis to the surface of the

star (third dredge-up). After this dredge-up event, the star contracts, and the hydrogen shell reignites. This

interplay between the helium and hydrogen shells repeats episodically [35].

The 18O depletion observed in Group 2 presolar oxide grains and AGB stellar atmospheres helped to

motivate the introduction of cool bottom processing into AGB stellar models. These models provided some

insight into the class of asymptotic giant branch stars that might experience cool bottom processing and

the temperature of the stellar plasma at the site of this extra mixing. According to Ref. [10], 18O depletion

by cool bottom processing is possible in M ≤ 1.5 M⊙ asymptotic giant branch stars; temperatures of the

circulated material between TP ≈ 38−48 MK, where the maximum H-burning shell temperature is TH ≈

Figure 1.4: Drawing, from Ref. [13], of the interior of an evolved star where cool bottom processing (CBP)
occurs by some unknown extra mixing mechanism (not drawn to scale). The main regions are the C/O core,
the He region, the H-burning region, the radiative zone, and the convective envelope. Material from the
envelope slowly circulates deep into the radiative zone, and undergoes nuclear processing near the hydrogen
shell. The processed material, now depleted in 18O, circulates back into the envelope. The labels, MBCE,
MP, and MH are the mass coordinates of the convective envelope boundary, the cool bottom processing
region, and the hydrogen shell, respectively. The other labels, TP, TH, and Ṁ refer to the temperature
of the circulated material, the plasma temperature of the hydrogen shell, and the cool bottom processing
circulation rate, respectively.
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60 MK, are necessary to reproduce observed 18O/16O abundances [10]. Group 2 presolar grains nucleate

in the AGB stellar atmosphere depleted in 18O due to processes that occurred deep within the star—the

products of nucleosynthesis were dredged up to the surface of the star. Then, powerful stellar winds inject

these grains into the interstellar medium.

Figure 1.5: M57: the Ring Nebula [37], a planetary nebula with a central white dwarf that was produced
after an asymptotic giant branch star shed its convective envelope [38].

The depletion of 18O in a stellar plasma at low temperatures is driven by 18O(p,α)15N and, to a lesser

extent, 18O(p,γ)19F. These two 18O destruction mechanisms are a part of the CNO cycle (see Fig. 1.6b). The

(p,α) reaction was recently studied indirectly by Ref. [39]. Within the cool bottom processing temperature

regime, the 18O(p,γ)19F reaction rate may be influenced by an unobserved, low-energy resonance at ER

= 95 ± 3 keV [40, 41] (see Fig. 5.1). Note that all bombarding and resonance energies reported in this

thesis are in the laboratory reference frame unless noted otherwise. In the present work, a direct, low-energy

measurement of the 18O(p,γ)19F reaction is reported. The goal of this measurement was to improve our

knowledge of levels in the 19F compound nucleus relevant to nuclear astrophysics.

1.1.2: Explosive Hydrogen Burning During Classical Novae

Classical novae are intriguing astrophysical phenomena, and the study of these energetic explosions

draws upon several different scientific disciplines—nuclear physics, astrophysics, computer science, and cos-

mochemistry [42]. Many stars do not spend their lives isolated and alone like our Sun, and in fact, binary star

systems are quite common. Depending on the initial mass of each star, the system can evolve in interesting

and unique ways. Many massive stars end their lives violently as core collapse supernovae, but as discussed

above, lower mass stars, like our Sun, instead reach a point of instability during their life cycles and shed
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(a) (b)

Figure 1.6: (a) The Hot CNO cycle is activated during explosive hydrogen burning in classical novae. The
main reaction channels are (p,γ), (p,α), and (β+ν). The Hot CNO cycle is shown with red arrows in this
figure, and the 17O(p,γ)18F reaction is highlighted with blue squares. (b) Extreme 18O depletion is possible
if the CNO cycle is activated during cool bottom processing in low-mass asymptotic giant branch stars.
The main destruction channels are the (p,γ) and (p,α) reactions. The CNO cycle of interest is shown with
red arrows in this figure, and the 18O(p,γ)19F reaction is highlighted with blue squares. The competing
18O(p,α)15N path is also shown with a green arrow, and 15N is highlighted in blue.

layers of matter exposing a compact stellar corpse. These remnants, depending on the mass of the original

star, are primarily carbon and oxygen. In a binary star system, this stellar corpse, referred to as a white

dwarf star, can be reanimated by its companion. As the companion evolves, a parasitic white dwarf will

begin to leach hydrogen-rich matter from the host main sequence star by Roche lobe overflow through the

inner Lagrangian point of the binary system. An accretion disk can form around the white dwarf (if the

magnetic field is weak), and layers of accreted hydrogen build up on the surface of the compact remnant.

As more matter is accreted, compression will drive the underbelly of this hydrogen layer into a state of

degeneracy. As stellar plasma temperatures rise, there is no longer a mechanism in place to cool the accreted

material, and a thermonuclear runaway occurs [44, 42]. Thermonuclear reactions will proceed rapidly over a

period of about 100 seconds, and during the outburst, the luminosity can increase by as much as a factor of

10,000 [45]. With luminosities between 1045−1046 ergs [46], classical novae are only surpassed in luminosity

by supernovae, hypernovae, and γ-ray bursts [42]. To put this in perspective, the AN602 hydrogen bomb

(also known as Tsar Bomba), the most powerful nuclear weapon ever detonated, had an estimated yield of

≈2.38×1024 ergs [47]. White dwarfs have diameters that are the same order of magnitude as the diameter of

the planet Venus (but with masses closer to the mass of the Sun). Approximately ninety AN602 hydrogen
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Figure 1.7: An artist’s interpretation of a classical nova ( c⃝ David A. Hardy/www.astroart.org [43]). It
depicts a white dwarf accreting matter from a bloated main sequence star. Roche lobe overflow has formed
an accretion disk around the white dwarf.

bombs would have to detonate on every square centimeter of Venus to match the output of a classical nova

[48].

Unlike supernovae, classical novae are recurrent events—the star system is not disrupted and thermonu-

clear runaway can reoccur with a period of 104−105 years [45]. The most common classical novae involve

a carbon-oxygen (CO) white dwarf that originated from a main sequence star ≤ 9−10 M⊙. Heavier white

dwarf stars from more evolved progenitors are classified as oxygen-neon (ONe) white dwarfs based on the

nuclear ash accumulated during the progenitor’s stellar evolution. Classical novae should not be confused

with dwarf novae or novae-like variables; these recurrent variables are not thermonuclear burning sites. X-

ray novae, on the other hand, are analogous to classical novae, but involve an accreting black hole or neutron

star in a binary system instead of a white dwarf [42]. Classical novae occur in the Milky Way Galaxy at a

rate of 35 ± 11 novae/year [49]. Figure 1.8 is an image taken of the recent nova, Nova Delphini 2013, with

a PlaneWave 17” unit.

Spectroscopic studies of classical nova ejecta can reveal characteristics of the underlying white dwarf and

elemental abundances produced during the nova event. Observed abundance profiles can provide considerable

information about the thermonuclear runaway—peak temperature, envelope expansion timescale, and other

constraints to stellar models [51]. In order for the observed abundances to be produced by this type of

energetic event, CNO nuclei (provided by the underlying white dwarf core material) and a reservoir of protons

(provided by the hydrogen-rich accreted matter) are required. Explosive hydrogen burning can proceed, and

the Hot CNO cycle is the main nucleosynthesis mechanism at play during these events. The Hot CNO cycle

(Fig. 1.6a) runs between the proton drip line and the line of stability, and the nucleosynthesis is limited to
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Figure 1.8: An image taken with a PlaneWave 17” unit, after the average of 10, 10-seconds unfiltered
exposures of Nova Delphini 2013. The classical nova is the bright object dominating the center of the frame
[50].

(p,γ), (p,α), and (β+ν) paths [42]. Because the timescale—100 seconds—is so short, the CNO cycle never

reaches equilibrium [44], and convection transports β+ unstable nuclei to the surface of the envelope. These

nuclei contribute the energy necessary to increase temperature and entropy to the point at which envelope

degeneracy is lifted (the Fermi temperature), halt the thermonuclear runaway, and drive expansion and the

ejection of the products of nucleosynthesis. They are also the slowest paths during the Hot CNO cycle and

are essentially the nova nucleosynthesis bottleneck [42]. Classical nova peak temperatures range between

100−400 MK [52, 53, 54], and this defines the classical nova Gamow window—the temperature regime that

needs to be probed experimentally.

Based on stellar models, reaction networks, and astronomical observations, novae are thought to be

significant sources of Galactic 13C, 15N, and 17O [55, 52, 54], and ≈1/3000 the Galaxy’s disk dust and

gas [42]. Classical novae also produce 7Li, 19F, and 26Al, but CNO elements are the dominant products

[53, 54]. One of the major elements created during the explosion is 18F. It is not a stable fluorine isotope

and decays by emitting a positron. When the positron encounters an electron, they annihilate producing

radiation with a specific energy (511 keV) [56, 57]. Because the half-life of 18F is ≈ 110 minutes, the 511 keV

γ-ray is produced after the classical nova envelope has become transparent to γ-rays. Other β+ unstable

nuclei, like 13N, decay while the envelope is opaque to γ-rays and their associated 511 keV γ-rays drive

envelope expansion. The 511 keV signature from 18F would be important to observe with an astronomical

instrument like integral, because detection could constrain classical nova models [58]. However, detectors

like integral would need to get lucky and be pointed at the right portion of the sky to detect these 18F

signature γ-rays—they do not coincide with the detection of optical frequencies.
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Stellar models could also be constrained by studying nova presolar grains. Presolar grains could form in

the cool, low-density envelope ejected by classical novae [42]. Infrared [59, 60] and ultraviolet [61] observations

of nova light curves indicate dust formation, and suggest that CO-type novae are prolific dust creators [62, 63]

while ONe-novae are not. This may be due to high-velocity ejecta from these novae and lower envelope

densities. These grains should have anomalous carbon and nitrogen ratios [64], and oxygen isotopic ratios

in these grains could constrain the type of nova that produced them, the mass of the white dwarf, and

mixing processes between accreted and core matter [42]. Mixing occurs between core and accreted matter by

some unknown mechanism [65]; candidate mixing methods include shear mixing [66, 67, 68, 69], elemental

diffusion [70, 71], and the Kelvin-Helmholtz instability [72]. Grains that can be attributed to classical novae

are rare (see Fig. 1.3b). The criteria are: (1) observation of 17O enrichment with 17O/16O > 0.004 and (2)

mild 18O depletion [7]. Alumina grain T54 [33] is one grain considered consistent with nova nucleosynthesis

calculations [73]—17O/16O = 1.41×10−2 [11]. Grain C4-8 is another nova grain candidate with 17O/16O

= 4.4×10−2 (an order of magnitude higher than the concentration allowed by low-mass asymptotic giant

branch models) [11]. Both grains are likely from CO-novae because 18O/16O abundance ratios are too high

to attribute the grains to ONe-novae [11]. Nova grains are large compared to grains from the interstellar

medium (ISM); nova grains are typically on the order of ≈ 0.5 µm [74]. The only known nova remnant that

shows any indication of dust and molecules is GK Persei, but it is not thought that these grains are related

to the 1901 nova event [74].

It is clear that thermonuclear reactions that create and destroy 18F are extremely important and need

to be studied experimentally. The most important 18F production mechanism is the capture of a proton by

17O (the rarest stable oxygen isotope). This reaction also affects the destruction of 17O, and classical novae

are thought to be the dominant source of 17O in our Galaxy. However, there is evidence in the literature

that hot bottom burning in asymptotic giant branch stars may also contribute to the synthesis of 17O [15]

where T = 30−100 MK [75].

The importance of 17O proton capture—17O(p,γ)18F—is well established, and numerous studies have

been performed to analyze this reaction experimentally [51, 76]. However, the temperature regime relevant

to explosive hydrogen burning during a classical nova (100−400 MK) corresponds to very low proton bom-

barding energies (Ecm
p = 103−261 keV). At these low energies, the Coulomb barrier suppresses the reaction

yield in the laboratory, and many accelerator facilities do not have the ability to overcome this limitation.

Environmental backgrounds also dominate the detected signal, making it difficult to extract the γ-ray cas-

cade produced when 17O captures a proton. While other groups—Rolfs [77], Newton et al. [78], Hager

et al. [79], Scott et al. [80], Kontos et al. [81], and Di Leva et al. [82] to name a few—had limited or

no success making in-beam measurements within the energy region relevant to explosive hydrogen burning

10



during classical novae, the experimental tools at the LENA facility allow 17O proton capture reaction rates

to be constrained. In particular, direct capture is studied because reaction rate calculations indicate that

direct capture dominates the rate at classical nova temperatures [75, 78]. This is a rare scenario because

generally, narrow resonances at astrophysically relevant temperatures dominate the rate [78].

Section 1.2: Focus

In the following chapters, both (p,γ) experiments are described in detail. Chapter 2 outlines a majority

of the underlying nuclear physics that affects how both experiments were designed and executed, and how

data were analyzed. Chapter 3 describes the laboratory facility, the accelerators, and the detector system.

Within chapter 3, relevant upgrades and modifications are discussed along with calibrations of the key

equipment used in these studies. Target fabrication and characterization for both studies are discussed in

Chapter 4. Then, Chapter 5 focuses specifically on the 18O(p,γ)19F experiment while Chapter 6 is dedicated

to measurement, analysis, and results of the 17O(p,γ)18F direct capture study. The results presented in

Chapter 5 were published in Buckner et al. (2012) [1]. Finally, a host of appendices document key aspects

of these studies, from uncertainty analysis techniques (A) to reaction rate input (B) to angular correlation

calculations (C) to Monte Carlo detector efficiencies (D) to spectra (E).
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CHAPTER 2: NUCLEAR ASTROPHYSICS THEORY

The fundamental nuclear astrophysics concepts and equations outlined in this chapter are adapted from

the text Nuclear Physics of Stars by C. Iliadis [4] and references therein. The equations presented in

this chapter are used throughout the remainder of this dissertation and are key components to the analysis

developed in this work and in preceding studies done at LENA. Note that stellar plasma energies, bombarding

energies, and resonance energies discussed in this chapter are in the center-of-mass frame. In subsequent

chapters, it should be assumed that all energies are in the laboratory frame.

Section 2.1: Thermonuclear Reaction Rates

Thermonuclear reaction rates are a quantitative measure of nuclear reaction probabilities in a stellar

plasma. Thermonuclear reaction rate theory is discussed here as are the applications of this theory to the

study of rare oxygen isotope proton captures.

The physical quantity at the heart of these studies, the main piece of nuclear physics information that

these experiments are dedicated to measuring in the laboratory, is the nuclear cross section. This quantity,

σ, is the probability that a nuclear interaction occurs between target nuclei and incident particles, and it

can be defined as:

σ =
interactions per unit time

incident particles per unit time× target nuclei per unit area
. (2.1)

The cross section is expressed in units of barns (b) where

1 b = 10−24 cm2, (2.2)

and as the units imply, this probability is essentially an area—the interaction area of target nuclei and

incident particles. References to the cross section in this thesis will be limited to radiative proton capture.

This means that the incident particles in the reactions discussed in this dissertation are protons, and when

target nuclei capture these protons, electromagnetic radiation—a γ-ray—is emitted.

The reaction rate can be defined as the number of interactions per unit volume per unit time in a stellar

plasma, and the incident particle and target nucleus have a temperature dependent velocity distribution,
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φ(v). The reaction rate per particle pair is thus a convolution between the cross section and the velocity

distribution where:

< σv >=

∫ ∞

0
φ(v)vσ(v)dv. (2.3)

The velocity distribution is assumed to be a Maxwell-Boltzmann distribution,

φ(v) =

(

µ

2πkT

)3/2

e−µv2/(2kT )4πv2, (2.4)

if the reaction rate describes the interaction of non-degenerate, non-relativistic particles. Where

E =
µv2

2
(2.5)

and

µ =
MpMt

Mp +Mt
(2.6)

is the reduced mass of the target nucleus and incident particle (Mt and Mp, respectively), Eq. 2.3 can be

rewritten as:

< σv >=

(

8

πµ

)1/2 1

(kT )3/2

∫ ∞

0
σ(E)Ee−E/kTdE. (2.7)

In this equation, the Boltzmann constant, k, is equal to 8.6173×10−8 keV/K. The thermonuclear reaction

rate at a specific stellar plasma temperature can be calculated numerically with the following equation:

NA < σv >=
3.7318× 1010

√
µ

T 3/2
9

∫ ∞

0
σ(E)Ee−11.605E/T9dE (cm3mol−1s−1). (2.8)

In this equation, E is the center-of-mass energy in units of MeV, T9 is the temperature in GK, and the

cross section is in barns. The nuclear masses are calculated from the atomic masses listed in Ref. [41] by

subtracting the mass of electrons associated with the projectile and target atoms; all masses are in atomic

mass units.

2.1.1: Non-Resonant Reaction Rates

A non-resonant reaction is a single-step process where a target nucleus captures a proton, emits a γ-

ray, and forms a bound state of a final nucleus. No compound nucleus is formed because interaction with

the electromagnetic field allows the proton to transition from an initial scattering state to a final bound

state. This formalism is referred to as direct capture, and Fig. 2.1 shows a schematic drawing of a direct

capture reaction from Ref. [83]. In the direct capture model, the target nucleus is approximated as an inert
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core instead of a collection of individual nucleons; the reaction is not as sensitive to the nuclear interior

and strong nuclear force as it is to the nuclear exterior and the electromagnetic force. The direct capture

cross section varies smoothly as a function of energy because of this reaction mechanism’s dependence on

the electromagnetic force. The energies of direct capture primary transitions can be calculated with the

equation:

Eγ = Qpγ + Ep − Ex (2.9)

where Eγ is the energy of a single direct capture primary, Qpγ is the proton separation energy of the target

nucleus for a (p,γ) reaction, Ep is the center-of-mass energy of the proton, and Ex is the bound state energy.

Figure 2.1: From Cauldrons in the Cosmos by Rolfs and Rodney [83], an incident particle capturing from
an initial scattering state directly into a final bound state of nucleus “A.”

The E1 transition is the dominant contribution to the direct capture cross section, and it can be described

with the following equation:

σcalc(E1) =0.0716µ3/2

(

Zp

Mp
−

Zt

Mt

)2 E3
γ

E3/2
p

× (2.10)

(2Jf + 1)(2ℓi + 1)

(2jp + 1)(2jt + 1)(2ℓf + 1)
(ℓi010|ℓf0)2R2

ℓi1ℓf . (2.11)

In this equation, Zp, Zt, Mp, and Mt are the charges and masses of the projectile and target, respectively; ℓi

and ℓf are the scattering state initial orbital angular momentum and the bound state final orbital angular

momentum, respectively; Jf , jp, and jt are the spins of the final state, projectile, and target, respectively;

Ep and Eγ are the center-of-mass energy (in MeV) and transition γ-ray energy, respectively [84, 85]; Rℓi1ℓf
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is the radial integral where

Rℓi1ℓf =

∫ ∞

0
uc(r)OE1(r)ub(r)r

2dr (2.12)

and in this equation, OE1(r) is the radial part of the E1 electric dipole operator, and uc and ub are the

continuum and bound state wave functions, respectively [84, 85].

The energy dependence of the direct capture cross section can be attributed to the radial integral, Rℓi1ℓf ,

because the radial wave functions of the initial scattering and final bound states are sensitive to the energy.

This means the scattering and bound state potentials selected to describe the nuclear potential are very

important. If Jf , jp, and jt are known, the initial and final orbital angular momenta can be calculated. These

values were calculated for both the 18O(p,γ)19F and 17O(p,γ)18F reactions, but as an example, 17O(p,γ)18F

coupling calculations are discussed here:

17O+ p+ ℓi → 18F + E1; (2.13)

17O+ p+ ℓf → 18F. (2.14)

Consider 17O proton capture and the formation of a 3+ state in 18F. The proton and 17O have angular

momenta of 1
2

+
and 5

2

+
, respectively, and they can couple to a total momentum of 2+ or 3+. The E1

multipolarity and 18F have angular momenta of 1− and 3+, respectively, and they can couple to 2−, 3−, or

4−. As a result, ℓi must be odd because the final parity is proportional to (-1)ℓ. The possible initial angular

momenta are 1, 3, 5, or 7, but usually, all but the first two ℓ values are excluded from a coupling calculation.

Equation 2.14 can be solved for ℓf with a similar procedure. The formation of the final angular momen-

tum, 3+, requires that ℓf be even, and this allows ℓf = 0 or 2; the final possible combinations are ℓi = 1, 3

and ℓf = 0, 2. The coupling calculations provide the quantities necessary to calculate the initial scattering

and final bound state wave functions. The accepted 17O(p,γ)18F direct capture coupling calculation solutions

are tabulated in Tab. 2.1.

Table 2.1: The 17O + p channel spin, total angular momentum of direct capture states, and the corresponding
initial scattering state and final bound state orbital angular momenta.

s Jπ ℓi ℓf
2 0+ (1,3) 2
3 1+ (1,3) 2
2 2+ (1,3) (0,2)
3 3+ (1,3) (0,2)
2 4+ (1,3) 2
3 5+ (1,3) 2
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For direct capture, the scattering state potential is set to zero [85], and the Woods-Saxon potential:

VWS(r) =
−V0

1 + e
r−R

a

(2.15)

where R = r0A
1/3
t , r0 = 1.25 fm, and a = 0.65 fm [85], is chosen for the bound state potential.

The assumption made in the direct capture formalism—that the target nucleus can be approximated as

a single particle—is not entirely correct. Only a fraction of the total wave function exists as a single particle

state. Spectroscopic factors are an empirical estimate of what fraction of the final state wave function can

be described by a single particle bound in a potential well. The experimental cross section is related to the

theoretical cross section by

σexp =
∑

ℓi,ℓf

C2S(ℓf)σtheo(ℓi, ℓf ). (2.16)

The summation in this equation is over all possible initial and final state orbital angular momenta, ℓi and

ℓf , and C2S(ℓf ) is the spectroscopic factor—the probability of arrangement into a residual nucleus and a

single particle [4].

The smoothly varying direct capture cross section drops dramatically at low energies due to Coulomb

suppression, and this exponential decline makes it difficult to visualize and understand the nuclear physics

at the energies most relevant to nuclear astrophysics. Because of this, non-resonant cross sections are often

rewritten in terms of the astrophysical S-factor, S(E). This representation of the cross section is easier to

grasp conceptually and plot because it excludes the steep energy dependence (1/E) and the Coulomb barrier

transmission probability. It isolates the nuclear contributions to the cross section from the electromagnetic

contributions. This decomposition of the cross section can be expressed as:

σ(E) =
S(E)

E
e−2πη (2.17)

where e−2πη is the Gamow factor and η is the Sommerfeld parameter. The 2πη term in the Gamow factor

can be written numerically as:

2πη = 0.98951013×
(

ZpZt

√

µ

E

)

(2.18)

where E is the center-of-mass energy in units of MeV.

The thermonuclear reaction rate can be rewritten in terms of the astrophysical S-factor by substituting

Eq. 2.17 into Eq. 2.7 and multiplying by Avogadro’s number, NA:

NA < σv >=

(

8

πµ

)1/2 NA

(kT )3/2

∫ ∞

0
S(E)e−2πηe−E/kTdE. (2.19)
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Within this integral is a very important quantity and concept in nuclear astrophysics, the Gamow peak. The

product of the Gamow factor and the Maxwell-Boltzmann distribution, e−2πηe−E/kT , describes an energy

range and stellar plasma temperature regime that contains the non-resonant reactions that dominate the

reaction rate. If the derivative of this product is set to zero, the maximum value, E0 can be calculated:

E0 = 0.122× (Z2
pZ

2
t µT

2
9 )

1/3 (MeV). (2.20)

Assuming the Gamow peak is normally distributed, the 1/e width of the peak can be written as:

∆E = 0.2368× (Z2
pZ

2
t µT

5
9 )

1/6 (MeV). (2.21)

In Fig. 2.2, the Gamow peak is solved and plotted at T = 50 MK (cool bottom processing), T = 125 MK

(hot bottom burning), and T = 300 MK (classical novae).
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Figure 2.2: The products of the Gamow factor (solid black line) and the Maxwell-Boltzmann distributions
(dashed lines) are plotted in this figure. The classical nova (blue), the hot bottom burning (red), and cool
bottom processing (purple) Gamow peaks are shown as dotted lines. These peaks correspond to 300 MK,
125 MK, and 50 MK, respectively.

The astrophysical S-factor can be expanded in a Taylor series at E = 0 [86] because, with respect to

energy, it is a slowly varying function:

S(E) ≈ S(0) + Ṡ(0)E +
1

2
S̈(0)E2 (2.22)
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where Ṡ(0) and S̈(0) are the first and second derivatives of S(E) at E = 0 keV, respectively. An analytical

expression for the non-resonant reaction rate can be written as:

NA < σv >=

(

4

3

)3/2
!NA

πµZpZte2
Seff τ

2e−τ (2.23)

where

τ =
3E0

kT
= 4.2487×

(

Z2
pZ

2
t µ

T9

)1/3

(2.24)

and the effective S-factor [86] is

Seff (E0) = S(0)

[

1 +
5

12τ
+

Ṡ(0)

S(0)

(

E0 +
35

36
kT

)

+
1

2

S̈(0)

S(0)

(

E2
0 +

89

36
E0kT

)]

. (2.25)

If Eq. 2.22 diverges at high energies and fails to reproduce experimental data, the non-resonant reaction

rate is multiplied by a cutoff function,

fcutoff ≈ e−(T9/T9,cutoff )
2

, (2.26)

to dampen its affect at these energies. In this equation,

T9,cutoff = 19.92×

(

E3/2
cutoff

√

Z2
pZ

2
t µ

)

(2.27)

where Ecutoff is in units of MeV.

2.1.2: Resonant Reaction Rates

Resonant captures, as opposed to direct captures, have energy-dependent cross sections—they do not

vary smoothly. Variations in the cross section can span orders of magnitude over very narrow energy ranges.

The total cross section thus resembles a smoothly varying background interspersed with spikes—resonances

superimposed upon the direct capture cross section. Unlike direct capture, the nuclear interior plays a major

role during resonant capture. At energies near the quasi-bound state potential energies, the matching of

solutions to the interior and exterior wave function at the nuclear radius is favorable, and this produces a

large wave function amplitude in the nuclear interior. This matching condition is satisfied when the sum

of the resonance energy, ER, (in the center-of-mass frame) and proton separation energy equals the excited

state energy,

ER +Qpγ = Ex. (2.28)
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Narrow Resonances

Narrow resonances have constant partial widths (Γa,Γb) over the total width (Γ)—the sum of all partial

widths—of the resonance. The total width of a narrow resonance is typically Γ < 1−3 keV. The Breit-Wigner

equation can be used to express a resonant cross section where

σBW (E) =
λ2

4π
ω

ΓaΓb

(E− ER)2 + (Γ/2)2
(2.29)

and

ω =
2J + 1

(2Jp + 1)(2Jt + 1)
. (2.30)

In these equations, Jp is the projectile spin, Jt is the target spin, J is the spin of the resonance state, ER

is the resonance energy in the center-of-mass frame, Γa is the entrance channel partial width, Γb is the exit

channel partial width, Γ is the total resonance width, and λ is the de Broglie wavelength, defined as

λ =
2π!√
2µE

. (2.31)

The single resonance reaction rate then becomes

NA < σv >= NA

√
2π!2

(µkT )3/2
ω

∫ ∞

0

ΓaΓb

(ER − E)2 + Γ2/4
e−E/kTdE (2.32)

when the Breit-Wigner cross section and de Broglie wavelength are substituted into Eq. 2.7 and then

multiplied by Avogadro’s number. If the Maxwell-Boltzmann distribution and partial widths are assumed

to be constant, the narrow resonance reaction rate can be simplified further to

NA < σv >= NA

√
2π!2

(µkT )3/2
e−E/kTω

2ΓaΓb

Γ

∫ ∞

0

Γ/2

(ER − E)2 + Γ2/4
dE. (2.33)

This integral simplifies to π because

∫ ∞

−∞

a

(ER − E)2 + a2
dE = π, (2.34)

and an analytical expression for the narrow resonance reaction rate can be written as

NA < σv >= NA

(
√
2π

µkT

)3/2

!
2e−E/kTωγ (2.35)
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where the resonance strength is defined as

ωγ = ω
ΓaΓb

Γ
. (2.36)

Broad Resonances

The cross section of a broad resonance varies over wider energy ranges than are typical for narrow

resonances. A good rule of thumb for resonances within the Gamow window is: if the total width, Γ, is a

significant fraction of the Gamow peak width, the resonance is a broad resonance. Because of the inherent

energy dependence of the broad resonance cross section, the partial widths, de Broglie wavelength, and the

Maxwell-Boltzmann distribution can not be assumed to be constant, and the broad resonance reaction rate

becomes

NA < σv >= NA

√
2π!2

(µkT )3/2
ω

∫ ∞

0

Γa(E)Γb(E + Sp − Ef )

(ER − E)2 + Γ(E)2/4
e−E/kTdE. (2.37)

In this equation Γb corresponds to the partial width of a single exit channel transition and Sp is the proton

separation energy. Multiple transitions sum incoherently with the cross section, and broad resonance tails

are also included in the rate calculation. The energy dependence of the entrance channel partial width can

be approximated by the penetration factor, Pa(E)—the transmission probability through the Coulomb and

centripetal barriers:

Γa(E) = Γa(ER)
Pa(E)

Pa(ER)
. (2.38)

The exit channel partial width becomes:

Γb(E) = Γb(ER + Sp − Ef )
Pb(E + Sp − Ef )

Pb(ER + Sp − Ef )
. (2.39)

Assuming the exit channel is a γ-ray, as is the case in these experiments,

Γb(E) = Γγ(ER +Qpγ − Ef )

[

E +Qpγ − Ef

ER +Qpγ − Ef

]2L+1

(2.40)

because Γγ ≈ E2L+1
γ (where L is the multipolarity of the emitted γ-ray). Here Sp = Qpγ . By making these

substitutions, the Breit-Wigner cross section for a (p,γ) reaction becomes:

σBW (E) =
π!2ω

2µE

Γa(ER)
Pa(E)
Pa(ER)Γγ(ER +Qpγ − Ef )

[

E+Qpγ−Ef

ER+Qpγ−Ef

]2L+1

(ER − E)2 + Γ(E)2/4
. (2.41)

For sub-threshold resonances (Ecm
R < 0), the proton partial width is calculated with the spectroscopic
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factor, C2S, and the single particle reduced width, θ2sp [87]—the probability of a single nucleon appearing

on the nuclear boundary. Spectroscopic factors are generally well documented in the literature by studies of

stripping reactions—like (d,n) or (3He,d). The particle partial width becomes

Γp(E) =
2!2

µR2
P (E)C2Sθ2sp (2.42)

where the majority of the energy dependence comes from the penetration factor.

Interfering Resonances

If two or more resonances have the same spin and parity, the amplitudes of these resonances can interfere

either constructively or destructively. For two interfering resonances, the cross sections sum coherently where

the total cross section is defined as

σ(E) = σ1(E) + σ2(E)± 2
√

σ1(E)σ2(E)cos(δ1 − δ2) (2.43)

and the phase shift of each resonance can be generalized as

δi = arctan

[

Γi

2(E− ER,i)

]

. (2.44)

The interference cross section can be substituted into Eq. 2.7, and this single reaction rate replaces the

incoherent sum of the interfering resonances in the total reaction rate calculation. If the total widths of the

interfering resonances are narrow (Γi < 1 eV), an argument can be made for ignoring the interference.

Finally, the total reaction rate is the incoherent sum of the non-resonant (NR), narrow resonance (RN),

broad resonance (RB), and continuum (C) reaction rates:

NA < σv >total= NA < σv >NR +
∑

i

NA < σv >RN
i +

∑

j

NA < σv >RB
j +NA < σv >C . (2.45)

Section 2.2: Monte Carlo Reaction Rates

Reaction rates were calculated in this thesis with the Monte Carlo method developed by Ref. [88] with

the code RatesMC [88]; the analysis description in Appendix A.1 explains why Monte Carlo techniques are

growing in popularity. Each input parameter in the rate calculation is represented by a probability density

function (PDF) that is sampled to construct a PDF for the reaction rate. As explained in more detail in Sec.
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2.2.1, resonance energies are assumed to be normally distributed (Gaussian), resonance strengths, S-factors,

and partial widths are lognormal distributions, and upper limits are treated as Porter-Thomas distributions.

The final reaction rate probability density function is a lognormal distribution where the 0.16, 0.50, and

0.84 quantiles of the cumulative PDF are adopted as the low, median, and high reaction rates, respectively.

The low and high rate are bounds that correspond to 68% coverage or 1σ, and can be referred to as the

uncertainty in the rate. However, this uncertainty is used to describe the reaction rate probability density

function—a continuum that the actual rate lies upon—and is not meant to be considered a hard-cut-off—the

probability that the rate lies above the high rate or below the low rate is non-negligible.

2.2.1: Probability Density Functions

The quantities that factor into these Monte Carlo reaction rate calculations are associated with probability

density functions. However, there are several key caveats that must be considered. Based on the nature and

characteristics of an input parameter, an appropriate probability density function must be selected.

Resonance energies are assumed to be normally distributed (Gaussian), and in general, a Gaussian

distribution is used when the uncertainty associated with a parameter can be considered the sum of many

small contributions. For a continuous random variable x, the Gaussian function is defined as

f(x) =
1

σ
√
2π

e−
1
2

(

x−µ
σ

)2

(2.46)

where µ is the mean and, in this case, expectation value, and σ is the standard deviation (the square-root

of the variance). The expectation value and variance can be generalized as

E[x] =

∫ ∞

−∞
xf(x)dx (2.47)

and

V [x] =

∫ ∞

−∞
(x− E[x])2f(x)dx, (2.48)

respectively.

Resonance strengths, partial widths and direct capture S-factors are all represented as lognormal distri-

butions. In general, a lognormal distribution is assumed when an input parameter is the product of many

small contributions. Additionally, representing an input parameter as a Gaussian distribution implies that

there is a finite probability that the parameter can be negative (-∞ < x < ∞). This scenario is often

unphysical and undesirable, and it is instead necessary to represent the input parameter as a lognormal
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distribution (0 ≤ x < ∞). The lognormal distribution is defined as

f(x) =
1

σ
√
2π

1

x
e−

1
2

(

ln(x)−µ
σ

)2

(2.49)

where

µ = ln(E[x])−
1

2
ln

(

1 +
V [x]

E[x]2

)

(2.50)

and

σ =

√

ln

(

1 +
V [x]

E[x]2

)

. (2.51)

The geometric mean of a lognormal distribution is also the median where

µg = eµ. (2.52)

The geometric standard deviation is a lognormal distribution’s factor uncertainty and is defined as

σg = eσ. (2.53)

Upper and lower bounds, providing 68% coverage, are given by eµ±σ.

Upper limits are often factored into calculations, and the Porter-Thomas distribution is relied upon when

including an upper bound. More information on these functions and their applications in nuclear astrophysics

can be found in Ref. [89] and Refs. [88, 90], respectively.
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CHAPTER 3: ACCELERATORS AND DETECTORS

The Laboratory for Experimental Nuclear Astrophysics (LENA) is located on the campus of Duke Univer-

sity, Durham, NC and operates under the aegis of Triangle Universities Nuclear Laboratory (TUNL). LENA

is a “sea-level” accelerator facility dedicated to the measurement of nuclear cross sections within the energy

regime relevant to nuclear astrophysics. Nucleosynthesis occurs within a stellar environment at energies that

most accelerator facilities are incapable of probing. The main problem is that at low bombarding energies,

the cross section drops dramatically because of decreasing transmission probability through the Coulomb

barrier. As a result, experimental count rates drop below detectable thresholds unless great lengths are taken

to design an experiment that can reduce environmental backgrounds and boost the reaction yield. Figure 3.1,

courtesy of Ref. [4] (with data from Ref. [91]), demonstrates this conundrum quite well. In the figure, the

16O(p,γ)17F cross section decreases by approximately four orders of magnitude over a narrow energy window

(≈ 500 keV). The impact this has on detecting the characteristic fingerprint of a reaction in the laboratory

is staggering; however, LENA is equipped to tackle these complications with its advanced accelerators and

detectors. Note that Fig. 3.1 also shows the astrophysical S-factor. As discussed in Sec. 2.1.1, the S-factor

is related to the cross section; to calculate the S-factor, the energy dependence and transmission probability

are removed from the cross section.

Figure 3.2 shows the layout of the LENA facility including the accelerators, beamline, quadrupole magnets

(blue), analyzing magnet (yellow), and steerers (black). The quadrupoles and steerers are optical elements

that allow the beam to be focused and repositioned, respectively. Beam produced by each accelerator is

transmitted through two sets of quadrupoles and steerers with an analyzing magnet between them. The

analyzing magnet—at least during JN operation—is a key component in a National Instruments LabVIEW

controlled feedback system that uses beam current measurements on horizontal slits downstream from the

magnet to adjust the JN terminal voltage. The following equation determines the calibrated magnetic field:

B =
k

q
(2mc2E + E2)1/2 (3.1)

where B is the field, E is the proton beam energy, q is the proton charge, m is the proton mass, c is the

speed of light, and k is a calibration constant [83]. During ECR ion source operation, the proton beam is

selected by adjusting the current through the analyzing magnet manually.
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Stellar ROI

Figure 3.1: An illustration of the major challenge and motivation behind experimental nuclear astrophysics
from Ref. [4] (with data from Ref. [91]). The 16O(p,γ)17F cross section and S-factor are shown from
0−2.5 MeV. The cross section drops at low energies due to Coulomb suppression; however, the low-energy
regime corresponds to the stellar plasma temperatures at which nucleosynthesis occurs. Experiments must
be designed carefully to boost reaction yield and suppress environmental backgrounds. A typical region of
interest pertinent to stellar nucleosynthesis is highlighted in this figure with red bars.
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The next few sections describe the accelerators and detectors and how they contribute to boosting signal-

to-noise, making the energy regime pertinent to nuclear astrophysics experimentally accessible.

ECR Ion Source 

Acceleration  

Column 

Turbo Pump 

Analyzing 

Magnet 

Object 

Slits 

Image Slits 

Cryogenic 

Pump 

Cryogenic 

Pump Liquid 

Nitrogen 
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Target 

200 kV Platform 

1 MV JN Van de Graaff 

Turbo Pump 

Beam Stop 

Beam Profile 

Monitor 

Magnetic 

Quadrupole  

X-Y Steerer 

Figure 3.2: A schematic drawing of the Laboratory for Experimental Nuclear Astrophysics. The drawing
shows the layout of the ECR Ion Source, the JN Van de Graaff, the beamline, optical elements, and the
location of the target. Figure courtesy of A. E. Champagne.

Section 3.1: The Accelerators

3.1.1: 1 MV JN Van de Graaff

The JN Van de Graaff is an upgraded High Voltage Engineering Corporation (HVEC) 1 MV model

capable of proton beams at the target with energies between ≈0.15−1.00 MeV. Several modifications were

made to this accelerator since its introduction at LENA. These include a terminal that can accommodate a

high-output ion source (and the necessary RF power supply), slit feedback circuitry, a modified generating

voltmeter for improved stability, and a new acceleration column and charging belt. Beam currents at the

target of Ip ≤ 150 µA are achievable at a terminal voltage of 300 keV. The JN can typically be relied upon

for beam energy resolution between 1−2 keV full width at half maximum (FWHM). The JN was used in

both the 18O(p,γ)19F and 17O(p,γ)18F studies that are discussed within this thesis. In both studies, the JN

was a valuable tool for probing and characterizing Ta182 O5 and Ta172 O5 anodized targets and was critical for
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monitoring target degradation at well-established resonances. Additionally, for the 17O(p,γ)18F study, data

were actually collected with JN beam. This will be discussed in more detail in Chapters 4 and 6.

Figure 3.3 is a photo of the plasma bottle secured to the original JN acceleration column and surrounded

by permanent magnets. A radio frequency (RF) oscillator is coupled to the quartz bottle with a capacitor,

and a remotely controlled gas leak injects H2 into the bottle. The RF electric field excites electrons in the

gas, and they gain kinetic energy as they collide with neutral gas particles; a hydrogen plasma is ignited

when electrons have enough energy to ionize the gas. The permanent magnets produce a field that confines

the plasma, and an electric potential from 0−5 kV between the probe tip and ion source base extracts proton

beam.

The beam current was optimized at the target by remotely controlling the H2 gas pressure and the

extraction potential. During the experiments, the JN was run at high voltage in a tank pressurized with a

mixture of N2 and CO2 in order to electrically insulate the terminal.

Figure 3.3: Photo of an optimized hydrogen plasma within the heart of the LENA JN Van de Graaff. The
plasma bottle, permanent magnets, H2 gas line, tuning capacitor, and the original acceleration column are
shown.

3.1.2: ECR Ion Source

The 200 kV electron cyclotron resonance (ECR) ion source was introduced relatively recently to the LENA

facility [92]. The ion source consists of a copper plasma chamber surrounded by a solenoidal permanent

magnet array that produces regions of axial B = 87.5 mT magnetic field where electron cyclotron resonance

is driven by ν = 2.45 GHz input microwaves. The resulting hot electrons collide with and ionize the hydrogen

(H2) gas injected into the plasma chamber. The ECR ion source produced Ep = 50−215 keV beams with

currents at the target of Ip ≤ 1.5 mA after it was assembled and benchmarked [92]. High beam currents
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are critical to the study of stellar nucleosynthesis because the low-energy regime can now be probed—high

currents boost the reaction yield. However, high beam currents do not discriminate between reactive nuclei,

and target purity can become a serious issue. Beam-induced backgrounds will be discussed in later chapters.

Figure 3.4: Schematic drawing of the LENA electron cyclotron resonance ion source courtesy of Ref. [92].
The beam direction down the pre-acceleration column is indicated with a red arrow, the ECR zone is shown
in purple, and the input RF is depicted as green arrows. Other key features are labeled. H+ beam is
extracted with an accel-decel lens system and is then collimated before acceleration.

As can be seen in the schematic in Fig. 3.4, the beam is extracted from the plasma chamber by an

extraction system composed of three main electrodes: the plasma aperture, the acceleration electrode, and

the deceleration electrode. The plasma aperture is biased between 10−15 kV, the acceleration electrode is

biased from -0.3 to -2.5 kV, and the deceleration electrode is grounded. The ECR ion source is mounted on an

insulated high-voltage platform biased by a Glassman 200 kV, 8 kW power supply. The beam is transported

to ground through a 24-gap air-insulated acceleration column manufactured by HVEC and optimized for 200

keV beam transport. The 200 kV electric potential is stepped down between gaps with 10 MΩ resistors, and

at lower potentials, optimal beam focusing is achieved by shorting an appropriate number of downstream

electrode gaps.

During the two experiments described in this dissertation, the ECR ion source was run in two very

different modes—upgraded and deterioration modes.

ECRIS Deterioration Mode

The search for the 18O(p,γ)19F unobserved ER = 95 keV resonance was performed in early 2011 at

a time when the ECR ion source had few remote features, and manual recalibration at the source was a
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constant necessity. At this time, a significant number of hours had already been logged, and the acceleration

column was beginning to show signs of heat and radiation damage due to X-rays produced by bremsstrahlung

radiation from back streaming electrons. Within the plasma chamber, a boron nitride dielectric window,

bucket, and aperture—installed during source assembly—were beginning to exhibit signs of damage. Boron

nitride, though a dielectric that effectively preserves ionization efficiency during electron cyclotron resonance,

is not the optimal material to use if the source constantly needs to be vented to atmosphere for maintenance.

It is hydrophilic and requires baking-out before stable, high-current beam can be achieved. Additionally, the

500 W Micro-Now Instrument Co., Inc. Model 420B1 Microwave Power Oscillator was unstable and would

often drift during operation. Without remote control over this supply, drifting RF power often resulted in

inconvenient downtime for source retuning.

One major upgrade was performed at this stage; remote National Instruments LabVIEW control was

extended to the three-stub tuner. The 2.45 GHz microwaves necessary for electron cyclotron resonance are

produced by the RF supply, and these microwaves are transmitted via a waveguide to a circulator. The

circulator redirects reflected power to a water-cooled dummy load and sends direct power through a three-

stub tuner and an additional waveguide to the plasma chamber. The brass rods within the three-stub tuner

facilitate impedance matching for optimal RF transmission by manual tuning at the source. A new remote

system to handle this tuning was conceived, designed, and installed. An aluminum box containing three

Arcus Technology DMX-ETH model 381-105-0 stepper motors was mounted on the outside of the high-

voltage cage that surrounds the ECR ion source. These motors at ground potential are connected by delrin

rods to the three nubs of the three-stub tuner. Microwave transmission can now be tuned manually by the

traditional method at the source before accelerating beam at high voltage; then at high voltage, a LabVIEW

module, imbedded within the LENA control software allows remote three-stub tuning control. Remote

control helped reduce downtime because any RF supply drift could be carefully corrected by adjusting the

three-stub tuner from the control room, thereby reducing the reflected power.

This upgrade was a major step forward, but the ECR ion source was still on a deteriorating trajectory that

would undoubtedly result in it ceasing to function as a viable tool for experimental nuclear astrophysics.

With that said, during the 18O(p,γ)19F study an average current of Ip ≈ 750 µA was maintained at the

target. However, continuing to operate in deterioration mode in future studies was clearly unsustainable and

undesirable.
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ECRIS Upgraded Mode

Before data acquisition began for the 17O(p,γ)18F study, a major overhaul of ECR ion source hardware

and control mechanisms was performed. The first step involved replacing the old RF supply with a new,

water-cooled, externally mounted 1200 W Alter Model TM-012-52 S/N 510 RF supply. This new supply

is mounted on Thomson Industries, Inc. rods adjacent to the ECR ion source circulator and three-stub

tuner. It was imperative to control this new RF supply both locally and remotely because of the intense

X-ray radiation produced in the vicinity of the ion source—a maximum of ≈750 mrem was recorded during

the 17O(p,γ)18F study at the analyzing magnet. A National Instruments Compact FieldPoint system was

utilized to develop a hardware and software interface to communicate seamlessly between the RF supply,

the LENA control room computer, and the LENA National Instruments LabVIEW virtual instrument (VI).

This interface allows the RF supply to be controlled from a local, digital front panel at the source and from

the LENA facility LabVIEW VI in the control room. It revolutionized how the LENA ECR ion source is

controlled and operated, and several other key tuning parameters were added to the source front panel (local

LabVIEW control) and passed to the LabVIEW control VI (remote LabVIEW control).

The existing three-stub tuner module was added to the new source interface, and additionally, local and

remote LabVIEW control over the injection of H2 into the plasma chamber was added. To achieve this,

control over the ECR ion source mass flow controller was added to LabVIEW and to the new ion source

front panel. The position of the 87.5 mT solenoidal magnetic field was manipulated previously to control

the position of the magnetic bottle within the plasma chamber. A method of remotely tuning the position

of the permanent magnet was developed, and an Arcus Technology DMX-ETH stepper motor was mounted

adjacent to the plasma chamber. An aluminum sleeve was machined to connect the motor to a micrometer

with set screws. The end of the micrometer was then fixed to the permanent magnet. Control of the magnet

stepper motor was then added to the local and remote LabVIEW interface.

This substantial hardware and software upgrade to the ECR ion source led to high, sustainable beam

current at the source, but it also caused tremendous heating of the thin Al2O3 window for the input microwave

power. The power could not be dissipated without severely degrading the dielectric liner—a ceramic window,

bucket, and aperture—internal to the plasma chamber or fracturing the Al2O3 window. The geometry of

the RF waveguide, the plasma chamber, and the permanent magnet severely constrained solutions to the

power dissipation issue. A heat sink was designed that would hug the end of the plasma chamber at the

ceramic window and fit within the permanent magnet (see Fig. 3.5). This heat sink consists of a two-piece

copper collar complete with chilled water channels and fins for both cooling and easy access to ion source

assembly hardware. Copper pipe was soldered to each half of the cooling collar to connect chilled water
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Figure 3.5: (Left) A 3D mock-up of the new ECR ion source plasma chamber heat sink was designed with
Autodesk Inventor. This drawing shows the assembly of the plasma chamber (brown), the new copper mount
for the RF/vacuum window (gold), the boron nitride window (green), and the new copper heat sink collar
(red). (Right) A photo of the machined and assembled ECR ion source plasma chamber heat sink.

channels. Push-to-connect unions were fitted at the source and return of each half of the cooling collar and

connected to the ECR ion source water manifold. An aluminum mount between the plasma chamber and the

RF waveguide was replaced with a copper version of this component to improve the thermal conductivity of

the new heat sink. The new heat sink effectively cools the plasma chamber RF vacuum window such that it

no longer fails with typical incident RF power, PRF ≈ 700 W at 2.45 GHz.

Because the previous dielectric liner inside the plasma chamber was destroyed during initial tests of the

upgraded ion source, it required replacement. Previous designs included BN components [92], and then

Macor R⃝ versions. Both suffered significant damage from heating, and a new robust, durable liner was

needed. An elegant and cost-effective solution was to replace the bucket and aperture with one complete

component: a 2 mm thick aluminum bucket with an aperture (see Fig. 3.6). An aluminum oxide layer forms

naturally on the interior of this new liner, and this insulating layer promotes plasma stability and prevents

electron loss during electron cyclotron resonance [93], thus boosting ionization efficiency. The interior window

at the RF/vacuum interface is boron nitride to allow 2.45 GHz microwaves to enter the chamber.

These substantial upgrades to the LENA ECR ion source led to a significant boost in target beam

current. A maximum proton beam current of Imax
p = 2.05 mA was observed at the target with a current

of Ip = 4.25 mA at the analyzing magnet beam stop at Ep = 175 keV. With Ip = 2.9 mA at the magnet,

beam transmission to target was benchmarked for H+ and H2+, with IH+ = 1.375 mA and IH2+ = 0.175

mA respectively [94]. This boost in beam current was invaluable for the 17O(p,γ)18F experiment detailed in

this dissertation.
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Figure 3.6: Two identical aluminum liners were machined by the UNC Department of Physics and Astronomy
machine shop. These liners are 2 mm thick and simplify the separate ceramic bucket and aperture components
into one cost-effective and easy-to-machine insert. The natural aluminum oxide layer that forms on the cup
is a superb dielectric and maintains the plasma ionization efficiency during operation [93].

Degradation of the LENA ECR ion source continued during the 17O(p,γ)18F experiment and forced the

proton beam energy upper limit on the accelerator to be downgraded to Ep = 190 keV because of conductive

tracks within the acceleration column that resulted from use, age, and damage. This raised the electric field

across the acceleration column gaps causing high-current discharges within the column (see Fig. 3.7). These

disruptive events extinguished the plasma and damaged the column and electronics. To resolve this issue,

accelerator column gaps were shorted on the ion source side. This remedy did not noticeably affect beam

optics and instead allowed ECR ion source data collection to continue; however, with fewer gaps available,

the beam energy upper limit on the ion source was truncated.

Section 3.2: New Beam Rastering System

During the 17O(p,γ)18F experiment, prior to ECR ion source data acquisition, a new beam rastering

system was commissioned and installed between the final quadrupole magnet and the LN2 cold trap. Focused,

high-intensity beam (from either accelerator) can result in non-uniform target degradation regardless of target

type. Target material can be sputtered away exposing the target substrate and leaving the surrounding target

material unused. Also, the risk exists that high beam currents could cause significant target heating; if the

target cooling system can not dissipate this power, the temperature gradient may be sufficient to melt the

target substrate, flooding the beamline with cooling water and venting to atmosphere. The new beam

rastering system moves focused, high-intensity beam continually over the full target area ensuring adequate

heat dissipation and preserving the target surface.
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Figure 3.7: A massive spark along the ECR ion source acceleration column. Incessant sparks of this nature,
at voltages and currents in excess of 175 kV and 6 mA, respectively, increased in frequency during data
acquisition in July 2013. In order to continue the experiment, accelerator column gaps were grounded (on
the ion source side) one after the other until the frequency of sparks decreased. Photo courtesy of S. Hunt.

An existing magnetic beam steerer was modified and mounted≈2 m upstream from the target. Horizontal-

and vertical-motion programmable power supplies are controlled remotely by FieldPoint modules and a

National Instruments LabVIEW VI to vary the steerer coil currents and reposition the beam. During the

17O(p,γ)18F experiment, the rastering system was set to move the beam continuously across the target in

5-loop spirals with an angular frequency of 1◦/100 ms. Ion source optics and transmission to target can vary

between tunes, but generally, the beamspot diameter at the target is between 1.0 and 1.2 cm (determined by

the target chamber collimator, see Fig. 3.9). Rastering allows even coverage of the target and ensures beam

exposure is not disproportionately focused on small areas. The new rastering system allowed an average of

10 extra Coulomb of charge to be collected (in addition to the average 45 C per Ta172 O5 target) during ECR

ion source data acquisition with beam currents at the target that exceeded 2 mA [95].

Section 3.3: Preliminary Investigation into Beam Pulsing

During the summer of 2008, a modification began on the beam extraction system of the LENA ECR ion

source with the goal of reducing experimental limitations introduced by background radiation. Modifications

were aimed at trying to exploit the idea that the average current incident on the target would not change if

the ECRIS extraction system is pulsed with a pulse period of 1 second and a pulse width of 100 milliseconds

(a 10% duty cycle) while simultaneously increasing the intensity of the beam by a factor of ten. The detector

system would be active only when the beam is pulsed. If properly implemented, this procedure could increase

signal-to-noise over a shorter effective running time to increase measurement precision and sensitivity [96].
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Several methods were investigated to pulse the ECRIS extraction system. First, an attempt was made to

pulse the beam by pulsing the hydrogen gas flowing into the chamber of the ion source [97]. A remote pulsing

circuit and a second circuit that powered a small valve were designed and connected with a fiber optic cable;

the valve was pulsed with the required 10% duty cycle. The valve was attached to an unused scattering

chamber at TUNL for tests of its pulsed performance. A vacuum of about 10−6 Torr was achieved, and

bursts of nitrogen gas were pulsed into the chamber. The vacuum change within the chamber was monitored

with a compact full range gauge, and output voltage pulses were compared on an oscilloscope with the pulses

driving the valve. The pressure in the chamber rose sharply when the gas pulse was initiated but degraded

slowly for 900 ms before the next pulse occurred; it did not mirror the rectangular pulse applied to the valve.

An attempt was also made to pulse the RF supply magnetron, but it was found that, at the time with the

500 W Micro-Now Instrument Co. Inc. Model 420B1 Microwave Power Oscillator, pulsing the RF quenched

the ECRIS plasma.

The next approach to produce a pulsed beam was to directly pulse the ion source extraction voltages.

The voltages applied to the ECR ion source plasma chamber and the acceleration electrode were pulsed with

a programming voltage. Pulses were generated with the pulsing circuit originally developed to pulse the gas

valve. This circuit, which incorporated 555 digital timers, was modified using AD5220 potentiometers to

alter both the pulse width and pulse period. The potentiometers also facilitated remote pulse width and

period control utilizing National Instruments LabVIEW hardware and software. Also, 5 V DC SPDT relays

controlled by LabVIEW were included in the circuit design to allow the experimenter to switch remotely

between constant and pulsed beam operation.

Figure 3.8: From Ref. [92], a comparison between (a) the pulsed ECR ion source proton beam (measured
at the first beamstop) and (b) the signal applied to the ion source high voltage supplies.
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To test the beam pulsing, the pulses sent to each power supply, and the pulsed target current produced

by the ECR ion source were monitored together on an oscilloscope (see Fig. 3.8). The pulsed beam current

profile matched the electronic pulse profile produced by the circuit very well. By modifying the voltages sent

to the potentiometers remotely, beam pulse widths between 100 ms and 400 ms and periods between 780

ms and 1180 ms could be achieved. The 555 timer pulsing circuit was eventually substituted for a National

Instruments Pulse Generating FieldPoint module. Additional testing and upgrades were performed at LENA

and a major beam intensity upgrade is underway that is expected to enable pulsed H+ beam operation [98].

Section 3.4: Target Chamber

The end of the LENA beamline and the attached target holder function as a Faraday cup for the measure-

ment of charge accumulation on target and subsequent beam current integration. Targets are mounted in

the chamber and then cooled by chilled water that flows behind the backing during data acquisition. Cooling

the backings is extremely important when performing an experiment with beam currents in excess of Ip ≥

1.0 mA. The target chamber is held under high vacuum (≤ 5×10−7 Torr) with a turbo pump backed by a

scroll pump. This configuration helps ensure that the target chamber remains oil-free (and thus carbon free)

because unlike a mechanical pump, a scroll pump does not require pump oil that can potentially contami-

nate the target chamber. Coupled with the liquid nitrogen cooled copper cold trap situated upstream from

the target, minimal environmental contaminants should be present within the target chamber that could

give rise to the detection of beam-induced backgrounds. Monitoring beam current on a 1.27 cm diameter

copper collimator upstream from the target (downstream from the cold trap liquid nitrogen dewer) allows

beam optics to be fine tuned by adjusting quadrupoles and steerers for optimal beam transmission through

this aperture. A copper shroud biased to -300 V suppresses secondary electron emission from the target

to improve the integrated beam current measurement. See Figure 3.9 for a schematic layout of the LENA

target chamber system.

Section 3.5: Detectors

The detector system used during both the 18O(p,γ)19F and 17O(p,γ)18F experiments exploits γγ-coincidence

to isolate the reaction γ-cascades from environmental backgrounds. This detector array consists of one 135%

coaxial high purity germanium (HPGe) detector, 16 thallium activated sodium iodide, NaI(Tl), scintillating

detector segments, and five plastic scintillating paddles [99] (see Table 3.1 for detector dimensions from

Refs. [100, 101]). In the γγ-coincidence running geometry, the HPGe is oriented at 0◦, with respect to the

beam direction, with the detector end cap right up against the target chamber (1.1 cm from cap to target
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Figure 3.9: A schematic drawing of the LENA target chamber (not to scale). The target is directly cooled
with chilled water (blue). The beamspot is defined by the 1.27 cm diameter collimator, and ceramic standoffs
electrically isolate the Faraday cup from the accelerator beamline. Secondary electron suppression is provided
by a knife-edge copper ring biased to -300 V. A turbo pump backed by a scroll pump ensures a high-vacuum,
low-carbon environment, and a LN2 cooled copper cold trap reduces contamination at the target.

surface). The NaI(Tl) scintillators are optically isolated and distributed in two annular eight-detector halves

surrounding the target-HPGe geometry. An aluminum (Al) structure surrounds the target-HPGe-annulus

configuration upon which 10 mm thick lead (Pb) plates are mounted to passively reduce environmental back-

grounds. Thick plastic scintillating paddles (50 mm thick) surround the lead shield and actively veto muons

produced by cosmic-rays. Figure 3.10 shows a Geant4 [102, 103] rendering, drawn with the Fukui Renderer

DAWN (Drawer for Academic WritiNgs) [104], of the coincidence spectrometer in the running geometry with

the lead, aluminum, scintillator paddles, and HPGe pre-amp electronics removed.

3.5.1: HPGe Peak Efficiency

As will be demonstrated in Chapter 6, HPGe peak efficiencies were implicitly included during novel spec-

tral analysis of 17O(p,γ)18F resonance and direct capture data. However, during the 18O(p,γ)19 F study, the

determination of experimental HPGe peak efficiencies was a critical component of the analysis. The methods

described below were almost exclusively applied to the analysis of resonance and direct capture 18O(p,γ)19F

data (discussed in Chapter 5). The comparison between simulated and experimental peak efficiencies is also

relevant with respect to the 17O(p,γ)18F study; the solid black line labeled “Raw Simulation” in Fig. 3.11

is the implicit peak efficiency for the Monte Carlo template histograms discussed in Sec. 6.3.3.
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Figure 3.10: A Geant4 rendering in DAWN [104] of the γγ-coincidence spectrometer at LENA. The HPGe
crystal is shown in yellow and the NaI(Tl) scintillator segments in green. The photomultiplier tubes attached
to the NaI(Tl) scintillators are shown, as are the HPGe cold finger and end cap. The target chamber, knife-
edge copper electron suppressor, copper collimator, and beamline are also shown. The target is located
upstream from the blue strip at the end of the beamline—the location of chilled cooling-water. The beam
direction is shown coming from the right of the figure as a thick purple arrow. Figure courtesy of C. Howard.

The first step in calculating the peak efficiency of the high purity germanium detector is to use a 60Co

radioactive source and a procedure called the sum-peak method. This technique removes dependence on

the source activity from the efficiency measurement, and produces an absolute efficiency [105]. For a two-

Table 3.1: Dimensions of the LENA 135% HPGe detector and the NaI(Tl) annulus. These dimensions, from
Refs. [100, 101], are incorporated into LENA Geant4 simulations.

HPGe parameters Dimension (mm)
End cap outer diameter 107.95(2)
Distance end cap-crystal 6.2(5)

Crystal length 91.6(10)
Crystal diameter 89.0(5)
Bulletizing radius 7.1(5)

Central hole diameter 8.5(10)
Central hole length 79.1

Central hole bottom radius 4.7
Vertical crystal displacement -1.5(5)

Contact pin diameter 6.9(5)
Contact layer thickness 1.2

NaI(Tl) annulus parameters Dimension
Inner radius 118.0(5) mm
Outer radius 357.0(5) mm
Crystal length 330.0(5) mm

Segment spanning angle 43.0(5)◦
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step decay, like the dominant decay in 60Co(β+νe)60Ni, the detection of both γ-rays in a close geometry is

indistinguishable from the detection of a single γ-ray with an energy equal to the sum of the decay energies.

Nearly 100% of the time, a single 60Co decay produces a two-γ cascade where E21
γ = 1173.228(3) keV and

E10
γ = 1332.492(4) keV [106].

During a source efficiency measurement, the source, housed in a mylar puck, is placed in the beamline

at atmosphere, with the foil side of the puck centered against a tantalum blank mounted in the target

chamber. The NaI(Tl) annulus and the HPGe detector are then positioned in the close, γγ-coincidence

running geometry. For 60Co data acquisition in this geometry, the two photons sum-in producing a E20
γ =

2505.720(5) keV peak in the HPGe spectrum. The sum-peak method from Ref. [105] can now be applied.

If the 60Co decay is represented by the following 2-step decay, 2→1→0, where 2→1 is the primary and

1→0 is the secondary, the peak and total efficiencies can be calculated. The necessary equations are:

ηGe,P
21 =

1

W(θ)

√

N21N2
20

N10N20Nt +N21N2
10

, (3.2)

ηGe,P
10 =

1

W(θ)

√

N10N2
20

N21N20Nt +N10N2
21

, (3.3)

and

ηGe,T =
1

W(θ)
−

1

W(θ)

√

N21N10

N20Nt +N21N10
(3.4)

where N21, N10, and N20 are the primary, secondary, and sum-peak background-subtracted intensities; Nt

is the total intensity; W(θ) is the angular correlation if θ is the angle between the two γ-rays, ηGe,P
21 is

the primary germanium peak efficiency; ηGe,P
10 is the secondary germanium peak efficiency; ηGe,T is the

germanium total efficiency at (E21
γ + E10

γ )/2 [99]. The angular correlation was calculated with the following

equation [107]:

W(θ) = 1 +
5

49
Q10

2 Q21
2 P2(cosθ) +

4

441
Q10

4 Q21
4 P4(cosθ) (3.5)

where Pk(cosθ) is the Legendre polynomial and Qij
k is the solid angle attenuation factor for each γ-ray, γij .

The Q-coefficients and their associated uncertainties were calculated with a post-processing code that was

applied to Geant4 simulations of the detector geometry and the 60Co decay. This code, from Ref. [99],

solves the following equation [100]:

Qij
k =

1

N

N
∑

l=0

Pk(cosθl) (3.6)

where N is the number of detected events in a peak and θ is the emission angle of the lth detected γ-ray.
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Uncertainty associated with the Q-coefficients was calculated by varying the source position within the mylar

puck during subsequent Geant4 simulations of the 60Co decay. The diameter of the HPGe crystal was also

varied during this sensitivity study. The systematic uncertainty associated with the Q2 attenuation factor

amounted to 2% and the uncertainty in the Q4 coefficient was 10%. Adding the systematic and statistical

uncertainties in quadrature yields the uncertainties on the attenuation factors in Table 3.2. From Eq. 3.5,

the angular correlation is W(θ) = 1.0276 ± 0.0010.

Table 3.2: The calculated sum-peak attenuation factors for 60Co at E21
γ = 1173.228(3) keV and E10

γ =
1332.492(4) keV. The secondary attenuation factors agree very well with the factors presented in Ref. [108].
Differences in the primary attenuation factors are likely due to significant improvements in the LENA
Geant4 detector geometry.

Coefficient 1173 (keV) 1332 (keV)
Q1 0.804 ± 0.019 0.83 ± 0.02
Q2 0.495 ± 0.012 0.546 ± 0.013
Q3 0.209 ± 0.005 0.267 ± 0.006
Q4 0.029 ± 0.003 0.069 ± 0.007

Peak and total efficiencies were then calculated, and a Geant4 normalization was applied between simu-

lated source intensity and beam intensity at E10
γ = 1332.5 keV. This normalization is performed because the

Geant4 assembly (target, detectors, etc.) differs slightly if a radioactive source or a beamspot is simulated.

For the radioactive source, a mylar puck and a source volume are included. For a beamspot simulation,

γ-rays are emitted from a two-dimensional surface on the target. Since the experimental peak efficiencies

are for beam-induced reactions, the absolute 60Co efficiency is adjusted by the ratio Nbeamspot
1332 /N source

1332 . The

new absolute peak and total efficiencies were found to be:

ηGe,P (1173) = 0.0406± 0.0008 (2%), (3.7)

ηGe,P (1332) = 0.0383± 0.0008 (2%), (3.8)

and

ηGe,T (1253) = 0.189± 0.004 (2%). (3.9)

Mono-energetic γ-rays emitted from a 1.2 cm diameter beamspot at the target surface were simulated

with Geant4 (the solid line in Fig. 3.11), normalized to the 60Co sum-peak efficiency (Eq. 3.8), and plotted

alongside the 60Co peak efficiencies (see Figs. 3.11). The normalized simulated efficiency is the dashed line in

Fig. 3.11 and differs from the raw, Geant4 peak efficiency curve by 5%. The next steps involve comparing
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experimental relative peak efficiencies to the absolute peak efficiency and the simulated efficiency curve. The

traditional matrix method of Refs. [109, 99] was used to sum-correct experimental peak intensities.

The sum-correction matrix method from Ref. [109] relies on repeatedly solving the following equation

for the corrected peak efficiency:
Sji

Iji
−

Dji

[N(0)c]ji
= ϵPji (3.10)

where ϵPji is the peak efficiency for the deexcitation from level j to level i; Sji is the peak intensity in

the presence of coincidence summing; Iji is the γ-ray emission rate; [N(0)c]ji is a quantity related to the

decay path where c is the branching ratio matrix and N(0) is a feeding fraction matrix; Dji corrects for

coincidence summing. Reference [109] also explains that the following equation can be solved for the number

of disintegrations:

Sji = Rji[N
(0)A(0) +D]ji (3.11)

where Rji is the disintegration rate and A(0) contains branching ratio and peak efficiency information. The

codes sump.c and sum.c, developed by R. Longland, solve Eq. 3.10 and Eq. 3.11 respectively, and they are

described and benchmarked in Ref. [99].

Data were collected with the γγ-coincidence spectrometer for radioactive sources and beam-induced

reactions. A 56Co source was used along with the ER = 278 keV 14N(p,γ)15O resonance [110, 111], the ER

= 151 keV 18O(p,γ)19F resonance [40, 112], and the ER = 406 keV 27Al(p,γ)28Si resonance [110, 113]. The

14N(p,γ)15O and 56Co data were fit independently with the following analytical function from Ref. [114]:

η(E) = ea+bln(E)+cln(E)2. (3.12)

The 56Co data were first normalized with Geant4 to account for the conversion from a source efficiency to a

beamspot efficiency, and the collection of efficiencies was then translated along the y-axis to match the 60Co

sum-peak absolute efficiency at Eγ = 1332 keV. The 14N(p,γ)15O data were also shifted along the y-axis to

match the absolute sum-peak result. This collection of sum-peak-shifted data was then used to adjust the

remaining reaction data. The final experimental peak efficiencies are plotted in Fig. 3.11 and labeled “Data”

in the figure. A systematic uncertainty of 5% is adopted for HPGe peak efficiencies based on the agreement

between raw Monte Carlo efficiencies and the experimental efficiencies.

3.5.2: NaI(Tl) Total Efficiency

Like the HPGe peak efficiencies, NaI(Tl) total efficiencies are taken into account implicitly by the analysis

of 17O(p,γ)18F data described in Chapter 6. The analysis performed during the 18O(p,γ)19F study is very
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Figure 3.11: The absolute 60Co peak efficiency was determined with the sum-peak method from Ref. [105]
(black crosses). The matrix method (Refs. [109, 99]) was used to sum-correct 56Co, 14N(p,γ)15O ER =
278 keV, 18O(p,γ)19F ER = 151 keV, and 27Al(p,γ)28Si ER = 406 keV experimental efficiencies. The
raw simulation (solid line) was determined from Geant4 mono-energetic γ-ray simulations. This simulated
efficiency curve was normalized to the absolute 60Co peak efficiency to produce the dashed line. The raw
and normalized simulated efficiencies differ by 5%.

different from the 17O(p,γ)18F analysis (see Chapter 5)—no 19F deexcitations were detected. The treatment

of the NaI(Tl) total efficiencies presented below was applied exclusively to the analysis of 18O(p,γ)19F

resonance and direct capture data. A separate characterization of NaI(Tl) gated total efficiencies is presented

in Appendix D.2 but is not used in either the 18O(p,γ)19F or 17O(p,γ)18F analyses. A systematic uncertainty

of 5% on the gated total efficiency is derived from this assessment.

The NaI(Tl) annulus is composed of 16 scintillating detector segments, and each is connected to photo-

multiplier tubes (PMTs). During these studies, initial biases for each PMT were selected carefully and tested

because NaI(Tl) detectors have notoriously low energy resolution and calibrations can be very non-linear over

wide energy ranges. Several radioactive sources, 60Co, 22Na, and 137Cs, were used to determine what bias

voltage would provide the best resolution, the best linear energy calibration, and to gain-match the signal

from each PMT. Though the resolution of the annulus is inferior to the resolution of the HPGe detector, it

has better absolute efficiency. The annulus was used as a coincidence counter in these experiments; events

within a software gate would be recorded in a coincidence spectrum if annulus events coincided with events

detected by the HPGe detector. The γ-cascade produced by a beam-induced reaction should be detected

partially in both detectors within reasonable timing and energy windows. These gates can be selected to

exclude a majority of environmental background counts.
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In Fig. 3.12, if a simple, two-step cascade from level 2→1→0 of a hypothetical deexcitation is assumed,

two photons will be produced—γ21 and γ10. If the yellow volume in the figure, the HPGe detector, detects

γ10 and the green volume, the annulus, detects γ21, and the gating condition Elow ≤ EGe
γ10

+ ENaI(Tl)
γ21 ≤

Ehigh is satisfied, a coincidence spectrum will be populated with an Eγ10 count. This is of course the simplest

of scenarios, but it is easy to imagine how this can be extrapolated to complex decay schemes. The γγ-

coincidence spectrometer allows isolation of the characteristic fingerprint of the beam-induced reaction of

interest from the environmental background. The environmental background is unlikely to satisfy the timing

and energy constraints necessary to populate a coincidence spectrum [115].

During these experiments, 60Co and 22Na sources were used every day data were acquired to energy-

calibrate the NaI(Tl) detectors. A code was written to determine quickly the bin number of the peak

intensities detected from these two sources and write an energy calibration file that the jam [116] data

acquisition system could read. Because the annulus is the secondary counter and it is necessary that some

fraction of the reaction γ-cascade be detected to fill coincidence histograms, it is important to be able to

characterize the NaI(Tl) total efficiency. Monte Carlo techniques are the primary method used to calculate

annulus total efficiencies.

Figure 3.12: From the DAWN [104] schematic of the LENA γγ-coincidence spectrometer in Fig. 3.10, the
scenario where two coincident γ-rays can be detected by the spectrometer is shown. The HPGe detector
(yellow) detects the photon labeled γ10 and the NaI(Tl) annulus (green) detects the photon labeled γ21.

The 18O(p,γ)19F study discussed in this thesis was performed with the LENA γγ-spectrometer at 0◦ (with

respect to the beam). In this configuration, shown in Figs. 3.10 and 3.12, a coincidence correction factor,

fγ(B, η,W), must be calculated where B represents branching ratios for γ-rays detected in the annulus, η

is the total efficiency of the annulus at these γ-ray energies, and W is the associated angular correlation.

For the simple case described above where the cascade proceeds from hypothetical levels 2→1→0, the peak
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intensity of γ10 in the coincidence spectrum can be expressed as:

N c
10 = NRη

Ge,P
10 B10B21[1− (1 − ηNaI(Tl),T

21 )] (3.13)

where N c
10 is the γ10 intensity in the coincidence spectrum, NR is the number of disintegrations, ηGe,P

10 is

the peak efficiency of γ10, B10 is the branching ratio of the 1→0 transition, B21 is the branching ratio of the

2→1 transition, and ηNaI(Tl),T
21 is the total efficiency of γ21. This equation can be generalized to:

N c
lm = NRη

Ge,P
lm Blmfγ(Bl′m′,n, η

NaI(Tl),T
l′m′,n ) (3.14)

where the l → m transition is detected by the HPGe detector, and from Refs. [4, 117], the coincidence

correction factor, fγ , is defined as:

fγ(Bl′m′,n, η
NaI(Tl),T
l′m′,n ) =

∑

n

{[

∏

l′>m′

Bl′m′,n

][

1−
∏

l′>m′

l!m

(

1− ηNaI(Tl),T
l′m′,n

)

]}

. (3.15)

In Eq. 3.15, B is the branching ratio for a l′ → m′ transition detected by the annulus, and ηNaI(Tl),T is the

total efficiency for the same transition. It is assumed here that W = 1. In this dissertation, the correction

factor will be referred to as fγ .

For very complex decay schemes, Eq. 3.15 can become intractable. Since the number of disintegrations

is set manually during a Geant4 simulation and all efficiencies are a product of the simulation (the user

defined geometry), a new PrimaryGeneratorAction.cc class was written for the LENA Geant4 simulation

to generate resonance and direct capture γ-cascades. The input file for this new class reads in a list of

energy levels and decay logic (including branching ratios) for the deexcitation of interest. The contents of

the root tree generated by Geant4 can be sorted with the root sort routine, sort.cxx. This sort routine

bins simulated Monte Carlo data into histograms that mirror the spectra created during data acquisition

with jam [116] (see Sec. 6.3.1 for more information on sorting data with root and the code sort.cxx).

Coincidence logic was carefully coded into sort.cxx, and the coincidence spectra generated with the root

sort routine agree with spectra generated during data acquisition (see Refs. [101] and [1]). Armed with this

tool, for a single decay of interest—the 1→0 transition for example—fγ can be isolated without having to

calculate meticulously each term in Eq. 3.15. The only stipulation is that the branching ratios and decay

scheme included in the Geant4 input file be well known. The following equation, from Ref. [1], can then

be solved for fγ :

N c
10 = N ′

Rη
Ge,P
10 B10fγ (3.16)
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where N c
10 is the simulated peak intensity of the 1→0 transition, N ′

R is the simulated (user defined) number

of disintegrations, ηGe,P
10 is the experimental peak efficiency of the 1→0 transition in the HPGe detector, B10

is the branching ratio for this transition, and fγ contains the remaining branching ratio and total efficiency

terms for the γ-rays coincident with 1→0 but detected by the NaI(Tl) annulus.

During the 18O(p,γ)19F study, handling the NaI(Tl) annulus total efficiency in this manner was sufficient

because the resonance of interest was not detected and the decay scheme was unknown. Instead, fγ was

used as the basis of a complex argument that constrained the upper limit on the resonance strength for the

ER = 95 keV resonance. This analysis is discussed in Chapter 5 of this dissertation.

3.5.3: Scintillating Muon Veto Paddles

When the HPGe detector and NaI(Tl) annulus are placed in the running geometry, the entire γγ-

coincidence spectrometer is surrounded on five sides by lead sheets and plastic scintillating muon veto

paddles—10 mm and 50 mm thick, respectively. The lead sheets provide passive shielding of low-energy

environmental background radiation, and the scintillating paddles actively veto cosmic-ray induced muons.

The muon veto is configured by setting a software anticoincidence condition during data acquisition between

the paddles and the HPGe detector. These events are thus excluded from the analysis.

3.5.4: γγ-Coincidence Electronics

Between the 16 individual NaI(Tl) crystals, the HPGe detector, and the five muon veto paddles, the

γγ-coincidence spectrometer has a total of 22 energy and timing signals that must be processed. Nuclear In-

strument Modules (NIM) and VME-bus modules were used to process these signals. The HPGe detector has

an on-board pre-amplifier; a spectroscopy amplifier and a timing filter amplifier (TFA) receive preamplified

signals straight from the detector. The energy signal from the spectroscopy amplifier is sent to an analog-to-

digital converter (ADC). The timing signal leaves the TFA and is then discriminated by a constant fraction

discriminator (CFD). A gate-delay generator downstream from the CFD converts the discriminated timing

signal into the master timing gate. A pulser is used to inject a pulse signal into the HPGe’s preamplifier to

monitor deadtime. Meanwhile, the signals from the annulus are amplified by a spectroscopy amplifier for

energy and a fast amplifier for timing. The energy signals are sent to an ADC while the timing signals are

sent to a CFD and a 500 ns delay before proceeding to a time-to-digital converter (TDC). The master gate

set by the HPGe timing signal is used to start the TDC while the annulus signals stop it. Wide TDC gates

were used during both experiments. The 19F nucleus deexcites preferentially through the 197 keV second

excited state, and this level has a τm = 128.8 ± 1.5 ns lifetime [40]. Narrow TDC gates, on the order of 20
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ns, would prevent the detection of the 197 keV γ-ray by the γγ-coincidence spectrometer. The TDC gate

was widened by an additional ≈400 ns prior to the TDC peak. Likewise, in the 18F nucleus, the fourth

excited state, 1121 keV, has a τm = 234 ± 10 ns lifetime [40], and narrow TDC gates could not be used

during data acquisition. The TDC gate was widened by an additional ≈700 ns after the TDC peak.

The scintillator paddle signals are also sent to a spectroscopy amplifier and an ADC; however, their

timing signals go to a leading-edge discriminator (LED). A time-to-amplitude converter (TAC) is used to set

up the anticoincidence condition between the paddles and the HPGe detector. The HPGe master gate is the

start condition, and the LED’s ‘or’ signal is used as the stop. A detailed electronics schematic is shown in

Fig. 3.13. The NaI(Tl) annulus ADC and TDC are CAEN devices. They are installed in a VME-bus crate

and queried by a VME single board computer. The data acquisition system jam [116] is used to process the

signals from the electronics system, and data are stored event-by-event. Coincidence and anticoincidence

conditions are governed by a Java sort routine that runs during data acquisition but can also be run offline

to resort data or to modify timing, and a record of raw ADC and TDC intensities (by channel number)

is saved to a text file. This file can then be parsed and sorted with the root sort routine, sort.cxx, to

sort experimental data into the same histogram hierarchy that Geant4 data are sorted. This histogram

hierarchy mirrors the gating and logic structure assembled in jam during data acquisition, and sorted jam

histograms match sorted sort.cxx histograms. See Sec. 6.3.1 for more details on the jam to root conversion.
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Figure 3.13: Electronics diagram for the γγ-coincidence spectrometer. The HPGe detector is the primary
counter and the NaI(Tl) annulus is the secondary counter. The electronics necessary for the scintillator
muon veto are also shown.
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CHAPTER 4: OXYGEN ENRICHED TARGETS

To boost the signal-to-noise ratio and extract the signature γ-cascade for the nuclear reaction of interest,

LENA features the accelerators and detectors necessary to perform these experiments at “sea-level.” However,

beam-induced background contaminants are another potentially overwhelming source of noise that could

hinder or prevent detection. Steps were taken to reduce these potential sources of background, but several

contaminants were unavoidable for reasons that will soon be apparent. Contaminant reactions observed

during the present studies are listed in Table 4.1. As Ref. [80] pointed out, 19F contamination in anodized

targets is unavoidable—this is because fluorine is used during the production of thin tantalum foils. Another

unavoidable contaminant is 18O, because it is not possible to buy isotopically pure H17
2 O. The 18O(p,γ)19F

resonance at ER = 150.82 ± 0.09 keV [118] is a strong resonance, ωγ = 0.97 ± 0.05 meV [4] (the weighted

average of strengths reported by Refs. [112], [119] and [120]), and at low beam energies, this contaminant will

show up. For both of these cases, 19F and 18O, the experiment must be tailored to avoid these resonances.

The beam energies selected for the 17O(p,γ)18F study were selected in order to be as far off resonance as

possible. This will be discussed further later in Chapter 6.

Table 4.1: The contaminants that were observed during the 17O(p,γ)18F study. The 18O(p,γ)19F study
was significantly less affected by beam-induced backgrounds because it was conducted at beam energies well
below contaminant Q-values.

Reaction Type Ep (keV) Q-value (keV) Source
11B(p,γ)12C Resonance 162.5(9)1 15956.9(4) Vacuum System
12C(p,γ)13N Direct Capture 175−3252 1943.49(27) Vacuum System
14N(p,γ)15O Resonance 278.4(7)1 7296.8(5) Previous Experiment
16O(p,γ)17F Direct Capture3 175−3252 600.27(25) Enriched Water
18O(p,γ)19F Resonance 150.82(9)4 7993.6(0)5 Enriched Water
19F(p,αγ)16O Resonance 340.46(4)6 8113.61(0)5 Ta Foil Production
1 Calculated from Refs. [41] and [121].
2 17O(p,γ)18F study energy range.
3 Ref. [122].
4 Resonance energy reported in Ref. [118].
5 Q-value uncertainty less than significant figures in Ref. [41].
6 Resonance energy reported in Ref. [123].
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Figure 4.1: A schematic drawing of the target substrates machined from thin tantalum foils, typically 0.5
mm thick, for the rare oxygen isotope studies discussed in this thesis. The major improvement over previous
target fabrication was the inclusion of a small hole in the target backing that allowed easy retrieval during
acid etching. This hole was placed just outside the perimeter of the target chamber o-ring seal. As can be
seen from the drawing, initial tantalum substrate dimensions are ≈1.5”×1.5”.

Section 4.1: Target Preparation

Figure 4.1 shows a typical target backing used at LENA, regardless of the substrate material. Target

backings are machined carefully from sheets of ≈ 0.5 mm thick foils into 1.5”×1.5” pieces. A hole is

drilled well outside the diameter of the target chamber o-ring seal to make it easier to chemically etch the

substrate material. For the studies discussed in this dissertation, ultra-pure tantalum (Ta) was used for

all target backings because tantalum is stable, resistant to corrosion, capable of being chemically etched

to remove surface contaminants, will not interact with the beam at the experimental energies, and can be

anodized to produce oxide targets. The anodic oxidation of tantalum targets was first outlined by Ref.

[124]. The anodization process allows target thicknesses to be reproduced consistently, and it also allows the

production of robust oxygen targets that remain stable when exposed to intense H+ beam. Additionally, the

stoichiometry of the oxide produced by anodization, Ta2O5, is well established [125].

4.1.1: Chemical Etching

Thin tantalum foils were ordered from Alfa Aesar and were 0.5 mm thick at a purity of annealed 99.95%

metal basis excluding niobium. Target backings were machined from this foil at the Duke University machine

shop to the specifications shown in Fig. 4.1. Before a target backing makes it to the anodization stage, the

machined tantalum substrate is acid etched in a bath. The tantalum acid etching recipe used in these

experiments comes from Ref. [126] and is tailored specifically for the preparation of anodized oxide films.
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The acid bath consists of 5 parts 95% H2SO4, 2 parts 70% HNO3, and 2 parts 50% HF. Typical batch volumes

were 75 mL H2SO4, 30 mL HNO3, and 30 mL HF. Acids were combined carefully under a fume hood in a

teflon beaker. This beaker was placed in a ice bath during etching because the etching process is exothermic.

Each target backing was dipped in the acid bath three times for a period of 20 seconds. Backings were

dipped in distilled water in between etching sessions and after three dips, backings were cleaned in ethanol

and allowed to dry. Typically three targets were etched in each batch of acid with an average final target

thickness of 0.3 mm.

Figure 4.2: All tantalum backings were etched in an acid bath of 5 parts 95% H2SO4, 2 parts 70% HNO3,
and 2 parts 50% HF. Etching was performed in a teflon beaker under a fume hood. The necessary safety
precautions were taken while etching backings and handling acids.

Tefzel R⃝ ethylene tetrafluoroethylene (ETFE) tongs were ordered specifically for these rounds of acid

etching because the acid bath proved too caustic for TUNL’s supply of teflon tongs. One end of the new

Tefzel R⃝ ETFE tongs was drilled and tapped for a replaceable teflon screw. The combination of the tongs

and the screw made it easy to dip targets in the acid bath by hooking the screw through the hole in the

tantalum backing (shown in Fig. 4.1) without losing the backing in the acid bath. Additionally, the new

tongs are longer than the previous generation of teflon tongs allowing the experimenter to safely distance

hands from the acid bath without sacrificing dexterity.

Etched backings were stored in a lucite target chamber under high vacuum (typically 50 mbar) until the

next stage in the target production process.
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4.1.2: Resistive Heating

The next step in the contamination reduction process is resistive heating in a vacuum. A new, oil-free

evaporation chamber was built by J. M. Cesaratto and is discussed in detail in Ref. [108]. The etched

backings were secured between copper electrodes within the evaporation station and a bell jar was placed

over the system. The volume was evacuated with a scroll pump and a cryogenic vacuum pump to achieve high

vacuum (<10−6 Torr). The vacuum pump selection was an important, conscious decision made to reduce

contamination. Other evaporation stations use diffusion and mechanical pumps to achieve high vacuum,

but these pumps require pump oil that can potentially contaminate the chamber. If these contaminants

come in contact with the target, observed 11B, 12C, and 19F concentrations could reach unacceptable levels.

However, this evaporation chamber is intentionally an oil-free environment, thus preserving the contaminant

reduction achieved by etching and the additional reduction gained by outgassing the target.

Figure 4.3: After acid etching, tantalum backings are resistively heated under high vacuum to further reduce
contamination.

Under high vacuum, a current is applied across the target backing. This current is raised gradually until

the tantalum backing starts to glow red hot (typically ≈275 A). Current and the observed blackbody color

are monitored because, if the target becomes white hot, the tantalum backing may approach and exceed its

melting point. A spike in vacuum pressure indicates that contaminants are boiling off the target surface.

The vacuum system removes these contaminants from the evaporation chamber, and after several minutes,

the chamber pressure decreases. Backings are typically resistively heated for 15 minutes after the initial

outgassing event. The current is then decreased gradually and the backing is allowed to cool for an hour.

Outgassed backings are then anodized immediately.

50



4.1.3: Anodic Oxidation

Anodization is a well-understood and well-established process, and it produces stable targets with known

stoichiometry. During this process, isotopically enriched water is dissociated, and the O2− ions combine with

the ionized metal (Ta). The chemical reaction is [127]:

2Ta + 5H2O = Ta2O5 + 5H2. (4.1)

A new anodization chamber was designed and assembled for the measurements described in this thesis

according to the description in Ref. [128] (see Figs. 4.4 and 4.5). The impetus behind designing a new

chamber as opposed to using the existing chamber featured in Ref. [129] was to achieve improved retention

of expensive, rare oxygen isotope enriched water ($2535 per gram for H17
2 O enriched to 88 atom %). The

new design features a tantalum anode (target) and cathode (blank) sealed with o-rings and held in place by

bolting copper electrodes to both surfaces. Entry and exit holes were bored through the top of the lucite

chamber to allow displaced air and the products of disassociation to escape. These holes also allow enriched

water to be easily inserted and reconstituted from the chamber. A switch was added between the chamber

Figure 4.4: A schematic drawing of the new anodization chamber assembly. This new chamber streamlines
the injection of rare oxygen isotope enriched water and optimizes the recovery of water after anodization. The
average loss of enriched water per target was reduced to <0.5 mL/target. Previous anodization chambers
lost as much as 1.0−1.5 mL/target. This new design is based on the chamber described in Ref. [128].

and the high voltage supply to avoid any voltage and current perturbations that might be introduced as the

high voltage supply is biased. During anodization, a positive voltage is applied to an etched and outgassed
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tantalum backing secured to the target chamber anode. Electrons are pulled off the target surface forming

Ta5+ ions, and the anodizing voltage also dissociates the isotopically enriched water within the chamber

producing O2− ions. The tantalum and oxygen ions combine to form the well-defined compound, Ta2O5.

Potassium iodide crystals were added to the enriched water before anodization to boost current flow from the

anode to the cathode. The following equation was used to tune the target thickness produced by anodization

[129]:

∆E = 1.5347 + 0.26565×V (4.2)

where∆E is the target thickness in keV and V is the anodizing voltage in volts. This equation was determined

by former LENA post-doctoral associate C. Fox, and it is a sufficient method to determine approximate 17O

and 18O target thicknesses before collecting a yield curve.

Figure 4.5: A photo of the new anodization chamber designed and assembled for these experiments. The
key feature of this new chamber is the high retention of rare oxygen isotope enriched water between anodic
oxidation sessions. Copper electrodes clamp down on the anode (the target backing) and the cathode (a
tantalum blank). Compression allows o-rings to seal the chamber. Two holes in the top of the chamber
allow enriched water to be injected—or extracted—with a syringe and displaced air—or the products of
dissociation—to escape the chamber.

Target thicknesses near the experimental laboratory energies were estimated with well-known 18O(p,γ)19F

and 17O(p,γ)18F resonances and the relationship [4]:

∆E(resonance)

ϵeff (resonance)
=

∆E(Ep)

ϵeff (Ep)
(4.3)

where ∆E is the measured target thickness in keV, and ϵeff is the effective stopping power, derived from
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Figure 4.6: A photo of a pristine anodized target. The yellow/gold region is a thin film of Ta2O5 produced
by anodic oxidation within the anodization chamber shown in Fig. 4.5. Target thickness as a function of
stopping power (keV) is dependent upon the voltage used during anodization.

Bragg’s rule [75, 4]:

ϵeff =
MXO

Mp +MXO

( NO

NXO
ϵXO +

NTa

NXO
ϵTa
)

(4.4)

where Mp and MXO are the mass of the proton and the oxygen isotope of interest (either 17O or 18O),

ϵXO and ϵTa are the laboratory stopping powers of protons in the oxygen isotope of interest and tantalum

(calculated with srim [130]), respectively, and Ni are number densities (NO = N16O + N17O + N18O).

Section 4.2: 18O Targets

For the 18O study, 2 grams of 18O-enriched water were purchased from Icon Isotopes with the following

enrichments: 99.3 atom % 18O, 0.5 atom % 16O, and 0.2 atom % 17O.

Excitation functions were collected during the 18O(p,γ)19F experiment at the well-known ER = 150.82 ±

0.09 keV [118] resonance with the LENA 1 MV JN Van de Graaff. Target thicknesses were estimated with

Eq. 4.4. It was found that targets could withstand proton accumulations of Q > 45 C without significant

degradation at IECRIS
p = 0.5−1.0 mA.

Targets produced for the 18O(p,γ)19F study are listed in Tab. 4.2. This table includes their initial

thicknesses with respect to the 151 keV resonance and the amount of charge accumulated on- and off-

resonance. A Markov Chain Monte Carlo (MCMC) code written by R. Longland in r, YCurveFit.R, was

used to analyze the yield curves collected on each target. Based on the excitation function, this code can

calculate parameters such as thickness, resonance energy, straggling constant, and beam width; it converges

on a fit to the target profile through a minimization procedure. Excitation functions collected for each target
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used during the 18O(p,γ)19F study are shown in Fig. 4.7 and labeled by target designation from Tab. 4.2.

Excitation functions were produced by monitoring and recording the intensity of the R→3908 transition in

19F from Ep = 148−172 keV.

Table 4.2: The 18O targets fabricated for the 18O(p,γ)19F study and the target thicknesses at the ER = 151
keV resonance. Charge accumulation on- and off-resonance (the ER = 95 keV resonance), pertinent to the
18O(p,γ)19F experiment, are also shown.

Target Designation Thickness (keV) On-Res. Charge (C) Off-Res. Charge (C)
α1 18.1 ± 0.2 44.8 −
α2 18.1 ± 0.2 3.1 16.0
α3 17.69 ± 0.19 21.0 24.0
α4 17.63 ± 0.17 11.1 −

Section 4.3: 17O Targets

During the 17O study, 2 grams of 17O-enriched water were purchased from Icon Isotopes with the following

enrichments: 87.7 atom % 17O, 11.6 atom % 16O, and 0.7 atom % 18O. Of the stable oxygen isotopes, 17O

is the rarest; the abundance percentage, 17O/16O, is 0.038% in our Solar system [131]. The scarcity of this

isotope increases the cost of 17O-enriched water dramatically—$2535 per gram.

Yield curves were gathered during the 17O(p,γ)18F direct capture study at the well-known ER = 518.3 ±

1.2 keV (see Tab. B.2) resonance (Γ = 0.24 ± 0.03 keV [121]). However, mechanical complications associated

with the JN Van de Graaff during the experiment required that yield curves during ECR ion source data

acquisition be taken at ER = 151 keV with the 18O(p,γ)19F resonance. These yield curves reduced target

longevity because 0.5 C was necessary to collect decent statistics at each point along the excitation function.

High charge accumulations were necessary because the anodized 17O targets were depleted in 18O (see

above). For this reason, the yield curves were sparsely populated intentionally to reduce target wear. Enough

points were collected to assess degradation and for the Markov Chain Monte Carlo code to calculate target

parameters. Target thicknesses were calculated with Eq. 4.4 but thicknesses were then converted carefully

from the 18O(p,γ)19F center-of-mass frame to the 17O(p,γ)18F center-of-mass frame. With the additional

target longevity afforded by rastering the beam (see Sec. 3.2), it was found targets could withstand proton

accumulations of Q > 55 C at IECRIS
p = 2.0 mA without losing the maximum yield (ideal for resonance

experiments). However, degradation (between 0.07−0.22 keV per Coulomb) proved to be significant enough

to require some additional steps during the analysis of direct capture data. Target thicknesses decreased, on

average, from 15.7−11.6 keV at ER = 151 keV over approximately 30 C. To account for degradation, the
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Figure 4.7: Yield curves were collected at the well-known 18O(p,γ)19F resonance ER = 151 keV with the
LENA JN Van de Graaff accelerator. The MCMC fit is shown in red in these figures. The x-axis is the
H+ bombarding energy in keV in the laboratory frame, and the y-axis is in units of Counts/BCI (beam
charge integration). In these experiments, beam charge integration results in units of 10−6 C. Each figure
is labeled by target designation and can be cross-referenced with Tab. 4.2 for additional target information.
The R→3908 primary transition was used to generate these excitation functions.
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target thickness determined from yield curve measurements was corrected by the amount of charge collected

on a particular target, and this allowed a mean thickness to be calculated. The mean target thickness during

data acquisition at Ep = 190 keV was ∆E = 11.9 keV, and during Ep = 175 keV data acquisition, the

mean thickness was ∆E = 13.4 keV. A systematic uncertainty in the mean thickness of 3.2% was determined

based on the maximum degradation rate and the uncertainty in the target thickness associated with the

Markov Chain Monte Carlo code. It was only necessary to account for target degradation while collecting

direct capture data with the ECR ion source. Targets exposed to JN beam did not exhibit any observable

degradation because the beam current at the target was over an order of magnitude lower. Data were

collected at the 17O(p,γ)18F resonance ER = 193.2 ± 0.9 keV [75] with the ECR ion source at Ep = 200 keV

with a charge accumulation of Q = 14 C. No degradation was observed during this period of ECRIS data

acquisition because beam currents were relatively low, predominantly 800−1000 µA.

Table 4.3: The 17O targets fabricated for the 17O(p,γ)18F study and the target thicknesses at the ER =
518 keV resonance. These “βx” targets were monitored with the JN Van de Graaff accelerator for target
thickness and degradation. The “γx” targets were monitored with the ECR ion source for target thickness
and degradation at the 18O(p,γ)19F resonance ER = 151 keV. Yield curves collected with the ECR ion
source were expensive with respect to accumulated charge—0.5 C per point. The yield curves were sparsely
populated to reduce degradation due to collection. The total charge accumulated on each target is also
listed.

Target Designation Thickness (keV) Off-Res. Charge (C) On-Res. Charge (C)
β1 12.20 ± 0.10 8.0 −
β2 10.8 ± 0.5 10.0 −
β3 11.15 ± 0.16 15.0 14.0

γ1 15.9 ± 0.3 38.7 −
γ2 15.7 ± 0.3 30.3 −
γ3 15.5 ± 0.3 25.7 −
γ4 15.8 ± 0.3 29.4 −
γ5 15.8 ± 0.3 29.7 −

Targets probed during the JN portion of the experiment are itemized in the top portion of Tab. 4.3

while targets used during ECRIS data acquisition are listed in the bottom portion. Both tables include

initial target thicknesses and the total accumulated charge on each target. The JN target thicknesses in

Tab. 4.3 are with respect to the 17O(p,γ)18F resonance ER = 518 keV, and the ECRIS thicknesses are with

respect to the 18O(p,γ)19F resonance ER = 151 keV. Excitation functions collected near 518 keV with the

JN Van de Graaff accelerator are shown in Fig. 4.8 while yield curves collected with the ECR ion source

near 151 keV are shown in Fig. 4.9. The yield curves are labeled by the target designations listed in Tabs.

4.3 for the JN and ECRIS portions of the experiment, respectively. Note that the ECRIS yield curves are

sparsely populated to reduce target degradation due to the high-intensity H+ beam. For the JN yield curves,
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excitation functions were produced by monitoring and recording the intensity of the R→1121 transition in

18F from Ep = 517−538 keV. For the ECRIS yield curves, the same transition and energy range probed

during the 18O(p,γ)19F study were used. It is clear from Figs. 4.8 and 4.9 that the energy resolution of the

ECR ion source is superior to the energy resolution of the JN Van de Graaff.
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Figure 4.8: Yield curves were collected at the well-known 17O(p,γ)18F resonance, ER = 518 keV, with the
LENA JN Van de Graaff accelerator. The MCMC fit is shown in red in these figures. The x-axis is the
laboratory beam energy in keV, and the y-axis is in units of Counts/BCI. Each figure is labeled by target
designation and can be cross-referenced with Tab. 4.3 for additional target information. The R→1121
primary was used to generate these excitation functions. The energy resolution of the JN Van de Graaff
accelerator is clearly inferior to the energy resolution of the ECR ion source (compare with Fig. 4.9).

57



150 155 160 165 170

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

γ1

150 155 160 165 170

1e-04

2e-04

3e-04

4e-04

γ2

150 155 160 165 170

1e-04

2e-04

3e-04

4e-04

γ3

150 155 160 165 170

1e-04

2e-04

3e-04

4e-04 γ4

150 155 160 165 170

0e+00

1e-04

2e-04

3e-04

4e-04
γ5

Ep (keV)

Ep (keV)

C
ou

nt
s
/
B
C
I

C
ou

nt
s
/
B
C
I

C
ou

nt
s
/
B
C
I

C
ou

nt
s
/
B
C
I

C
ou

nt
s
/
B
C
I

Figure 4.9: Yield curves were collected during the 17O study at the well-known 18O(p,γ)19F resonance ER

= 151 keV with the ECR ion source. The MCMC fit is shown in red in these figures. The x-axis is the
laboratory beam energy in keV, and the y-axis is in units of Counts/BCI. Each figure is labeled by target
designation identifier and can be cross-referenced with Tab. 4.3 for additional target information. The
R→3908 primary was used to generate these excitation functions.
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CHAPTER 5: 18O(p,γ)19F PROTON CAPTURE

Section 5.1: Previous Experiments

Within the cool bottom processing temperature regime in asymptotic giant branch stars (≈50 MK), the

18O(p,γ)19F reaction rate may be influenced by an unobserved, low-energy resonance at ER = 95 ± 3 keV

[40, 41] (see Fig. 5.1). In the competing 18O(p,α)15N reaction, a strength of ωγpα = (1.6 ± 0.5)×10−7 eV

at ER = 95 keV was measured directly by Lorenz-Wirzba et al. (1979) [133]. Ref. [133] used two silicon (Si)

surface barrier detectors positioned 7 cm from the target at 90◦ and 135◦. Their tantalum pentoxide targets

were enriched to 99.9 atom % 18O, and they collected data at the University of Münster using a 350 keV

accelerator. In the 18O(p,γ)19F reaction, the ER = 95 keV resonance has never been observed, and none of

the γ-ray decays from the resonance level are known. Upper limits were placed on the resonance strength in

the past, first by Wiescher et al. (1980) [112] with ωγpγ ≤ 5×10−8 eV and then by Vogelaar et al. (1990)

[120] with ωγpγ ≤ 4×10−8 eV.

The Wiescher et al. (1980) [112] experiment spanned a wide energy range, Ep = 80−2200 keV, but the

portion pertinent to the 95 keV resonance was performed at the University of Münster using a 350 keV

accelerator with beam currents between Ip = 250−300 µA. They produced Ta182 O5 targets enriched to 99

atom % in 18O, and their detector array was a 40 cm3 Ge(Li) detector with no active or passive shielding.

To calculate their upper limit, Ref. [112] assumed a 100% deexcitation through the 19F second excited

state—the Ex = 197 keV level.

The Vogelaar et al. (1990) [120] experiment used Ta targets anodized in 97 atom % 18O-enriched water.

They used four 15×15×25 cm3 NaI scintillators stacked in a 4π geometry, cosmic-ray veto paddles, and lead

(5 cm thick) and paraffin (20 cm thick) shielding. They collected 400 mC of charge with ≈ 40 µA beam over

2.9 hours of data acquisition.

With a proton separation energy of Qpγ = 7993.5994 ± 0.0011 keV [41], the ER = 95 keV resonance

corresponds to the Ex = 8084 ± 3 keV [40] level in the 19F nucleus. The previous experimental information

regarding the structure of this compound nucleus level is summarized in Tab. 5.1. From the 18O(3He,d)19F

experiment performed by Ref. [134], it is clear that the proton orbital angular momentum transfer for the

8084 keV level is restricted to ℓp = (2,3) (see Fig. 5.2a). In Ref. [39], the Trojan Horse Method was used to

investigate this level with the 2H(18O,α15N)n reaction. They determined that J = 3/2 and ℓα = 1 (see Fig.
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Figure 5.1: The 19F level diagram and 18O + p resonances [132, 133, 112, 120, 40, 118] through ER = 1999
keV. The ER = 95 keV resonance corresponds to the Ex = 8084 keV excited state. Dashed arrows indicate
unobserved resonances and solid arrows indicate observed resonances with known γ-ray decays. The proton
threshold, Qpγ = 7994 keV, was taken from Ref. [41].
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5.2b). Consequently, based on the angular momentum coupling rules, the spin-parity and orbital angular

momentum amount to Jπ = (3/2)+ and ℓp = 2, respectively. An incorrect spin and parity of Jπ = (3/2)−

was assumed previously for this level in Ref. [135].

(a)

(b)

Figure 5.2: (a) From Ref. [134], the angular distribution of the 18O(3He,d)19F reaction for the 8084 keV
19F energy level (8.086 MeV). The fits shown are from distorted-wave Born approximation (DWBA) curves.
(b) From Ref. [39], the angular distribution of the 18O(p,α)15N reaction for the Ecm

R = 20, 90, and 144 keV
resonances. The fit of the 90 keV resonance gives a ℓα = 1 angular momentum for the exit channel.

Table 5.1: Ex = 8084 keV level parameters.

Parameter Value (eV) Reference
ωγpα 1.6×10−7(5) [133]

ωγpγ,UL ≤ 4.0×10−8 [120]
ωγpγ,LL ≥ 1.3×10−11 present

Γγ 6.0×10−1(25)1 [112]
Γ ≤ 3.0×103 2 [133]

1 Private communication from K. Allen quoted
in Ref. [112].

2 Total width determined from slope of front
edge of thick-target yield curve.

The remainder of this chapter documents a new search for the ER = 95 keV resonance in 18O(p,γ)19F

with significantly improved sensitivity compared to previous studies, Refs. [112, 120]. New reaction rates

are reported in Sec. 5.4.
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Section 5.2: Measurement

From April to May 2011, an 18O(p,γ)19F study was conducted at the Laboratory for Experimental

Nuclear Astrophysics (LENA) with high-intensity proton beam from the lab’s ECR ion source. In order to

search for the ER = 95 keV resonance, 80 C of charge was accumulated on-resonance at a bombarding energy

of Ep = 105 keV, and 40 C were accumulated off-resonance at Ep = 85 keV. The average beam current on

target amounted to Ip = 754 µA during the on-resonance portion of the experiment and Ip = 695 µA during

the off-resonance phase. Tab. 4.2 shows additional target details. Yield curves collected with the LENA 1

MV JN Van de Graaff are shown in Fig. 4.7.

Gates were constructed in jam [116] to produce γγ-coincidence spectra, uncover the γ-ray decay finger-

print of the resonance, and reduce background contributions. Note that the second excited state in the 19F

nucleus, 197 keV, has a τm = 128.8 ± 1.5 ns lifetime [40], and narrow TDC gates were not used during

data analysis. In Fig. 5.3, the on-resonance (ungated) singles HPGe spectrum is shown in blue and the

coincidence gated spectrum is in red from Eγ = 85−575 keV. For the latter spectrum, only events in the

HPGe detector that are coincident with events in the NaI(Tl) counter of energy 4.25 MeV ≤ ENaI(Tl)
γ ≤ 10.0

MeV are accepted. It can be seen in Fig. 5.3 that this condition suppresses the environmental background

by two orders of magnitude. The prominent peak in the figure is the 511 keV background associated with

e+e−-annihilation. Most 19F levels decay by γγ-cascades through the first (110 keV) excited state, and all

19F levels (with known decay schemes) deexcite through the second (197 keV) excited state. In Fig. 5.3,

vertical dashed lines indicate anticipated locations of the γ-rays originating from the deexcitation of the first

excited state (110 keV) and second excited state (197 keV). Note that because of their low energy, the 110

keV photons would be attenuated significantly. No peaks were observed for these two secondary decays. In

fact, although a considerably improved detection sensitivity compared to previous studies (by about half an

order of magnitude; see below) was achieved, no γ-rays from the decay of the ER = 95 keV resonance were

observed in any of the singles or coincidence spectra. This means that the strength of this resonance is much

smaller than previously thought. Comparisons between the on-resonance and off-resonance coincidence data

confirm this assertion.

Section 5.3: Analysis

Since no direct observation of the 18O(p,γ)19F resonance was made, complex analysis steps were taken to

constrain the resonance strength and place an upper limit on the direct capture astrophysical S-factor. These

constraints were made on coincidence spectra collected at 0◦, and the fγ correction played an important role

in this analysis (see Sec. 3.5.2 and Eqs. 3.13, 3.14, and 3.15).
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5.3.1: Resonant Capture

An improved upper limit on the resonance strength of the unobserved ER = 95 keV resonance was

determined relative to the strength of the well-known resonance at ER = 151 keV. The resonance strength

is given by Refs. [136, 4]:

ωγ =
2ϵeff
λ2

Nmax

NpBγηW
(5.1)

where ϵeff is the effective stopping power at the resonance energy as defined in Eq. (4.4); λ is the de Broglie

wavelength, where [4]:
λ2

2
=

4.125× 10−18

µEcm
R

(cm2); (5.2)

Nmax is the total number of detected γ-rays if the target is considered infinitely thick; Np is the number of

incident protons:

Np =
Q

e
(5.3)
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Figure 5.3: Measured HPGe singles spectrum (blue) and γγ-coincidence spectrum (red) from the 18O(p,γ)19F
study. Background reduction amounts to a factor of 100. The prominent background peak at 511 keV arises
from the annihilation of pair-produced positrons. Dashed lines indicate the anticipated locations of the 1 →
0 (110 keV) and 2 → 0 (197 keV) transitions in 19F. The spectra shown represent on-resonance data, with
a total charge accumulation of 80 C at Ep = 105 keV. Based on these spectra, clearly a detection was not
achieved and steps must be taken to constrain the (p,γ) strength upper limit.
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where Q is the accumulated charge on target and e is the unit charge in Coulomb; Bγ is the branching ratio;

η is the efficiency of the detector; W is the angular correlation. The ratio of resonance strengths is then [4]:

ωγ95
ωγ151

=

(

ϵeffNmax

λ2NpBγηW

)

95

×

(

ϵeffNmax

λ2NpBγηW

)−1

151

. (5.4)

In this equation, the resonance strength, ωγ151 = (9.7 ± 0.5)×10−4 eV [4], comes from the weighted mean

of the resonance strengths reported in Refs. [112, 119, 120]. All 19F levels decay through the second excited

state (2 → 0), and the possibility that the 8084 keV level decays with a substantial primary ground state

branch was also included in the analysis. Therefore, the following expression was used to estimate an upper

limit for the number of 19F compound nuclei produced [115, 4]:

(

Nmax

BγηW

)

95

=
NR0

ηGe,P
R0

+
N20

ηGe,P
20 fγ

(5.5)

where NR0 is the upper limit on the intensity of the ground state transition in the singles HPGe spectrum;

N20 is the upper limit on the intensity of the decay from the 19F second excited state to the ground state

(2 → 0; see Fig. 5.1) in the coincidence-gated HPGe spectrum; ηGe,P
R0 is the HPGe peak efficiency for the

ground state transition; ηGe,P
20 is the HPGe peak efficiency of the 2 → 0 transition; fγ is a γγ-coincidence

correction factor that depends on the γ-ray decay scheme and the coincidence gate selected.

To calculate the correction factor, fγ , a Geant4 simulation was run that, for a given energy level, used

known branching ratios to predict the total number of detected γ-rays arising from the 2 → 0 transition for

a variety of coincidence gates. The new experimental upper limit was extracted by requiring a rectangular

energy gate of 4.25 MeV ≤ ENaI(Tl)
γ ≤ 10.0 MeV in the two-dimensional NaI(Tl) vs. HPGe coincidence

energy spectrum. The simulated coincidence histograms could then be sorted with the same energy gates

and conditions that were used to analyze the experimental data. The correction factor, fγ , was calculated by

solving Eq. 3.16 for the 2→0 transition. This procedure was tested at the ER = 151 keV resonance, where

the simulated intensities agreed with the experimental values within uncertainty (4% for the 2→0 decay in

a rectangular coincidence spectrum).

The ER = 95 keV resonance has no known decay scheme. Therefore, the decays that are known for all

other 19F states were analyzed. The results were then used to estimate the possible decays of the ER =

95 keV resonance. This procedure relies on statistical analysis and is reasonable, considering the lack of

information regarding this resonance. The fγ correction factor was calculated, according to the procedure

described above, for all bound and unbound 19F levels with known decay schemes [40]. A reasonable average

from the ensemble of values was adopted. The statistical analysis was restricted to levels with J < 9/2
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Figure 5.4: The γγ-coincidence correction factors (fγ) for all 19F energy levels with J < 9/2 (open blue
circles) and Ex ≥ 5500 keV; levels with high ground state decay modes were excluded. Additionally, correction
factors for levels with Jπ = (3/2)+ are indicated by solid red circles. These correction factors were estimated

with Geant4 simulations that were gated with the 4.25 MeV ≤ ENaI(Tl)
γ ≤ 10.0 MeV condition. The mean

fγ value for the entire distribution, fγ = 0.17 ± 0.09, is represented by the solid blue line. The two dashed
blue lines represent the uncertainty (in this instance, the standard deviation).

(open blue circles in Fig. 5.4) and Ex ≥ 5500 keV. The constraint on the spin was chosen to associate the

calculated mean fγ value with low-spin states, while the energy threshold was set so that the fγ values were

associated with complex γ-ray decay routes to the 19F second excited state. As an additional constraint, no

level with a ground state branching ratio that exceeded the total probability of emission to the 19F second

excited state was included in the analysis. This final constraint was added because the ground state decay

mode is already included in the strength upper limit calculation—see Eq. 5.5. Results of this analysis for

a 4.25 MeV ≤ ENaI(Tl)
γ ≤ 10.0 MeV gate are shown in Fig. 5.4. An average value of fγ = 0.17 ± 0.09

represents a reasonable γγ-coincidence correction factor estimate for the ER = 95 keV resonance. The quoted

uncertainty of the mean correction factor is the standard deviation of the distribution. In Fig. 5.4, the Jπ =

(3/2)+ levels (levels with the same spin and parity as the ER = 95 keV resonance level) are indicated with

solid red circles. The Jπ = (3/2)+ levels agree with the mean value.

The peak intensity upper limit for the 2→0 transition (197 keV) was obtained from the HPGe coinci-

dence spectrum using the Bayesian statistical approach outlined in Ref. [137]. According to this method,

conditional, non-informative posterior probability density functions (PDFs) were generated for each energy
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region, and peak intensity upper limits were calculated. The conditional PDF is assembled so that

p(n|s) = e−(s+b) (s+ b)n

n!
(5.6)

where s is the unknown number of signal events, b is the number of background events, and n is the total

number of events. A non-informative prior PDF is constructed so that

π(s) ∝
1

(s+ b)m
, s ≥ 0, 0 ≤ m ≤ 1 (5.7)

where m = 0.5 leads to a versatile choice for the prior that provides reasonable mean coverage for the

confidence interval and upper limit. Next, a conditional, non-informative posterior PDF is constructed

where

h(s|m) =
(s+ b)n−me−(s+b)

Γ(n−m+ 1, b)
(5.8)

where Γ(n−m+1,b) is an incomplete gamma function defined as

Γ(x, b) =

∫ ∞

b
sx−1e−sds, x > 0, b > 0. (5.9)

A separate conditional PDF that includes background uncertainty can be assembled so that

q(n|s) =
∫ ∞

0
p(n|s)b′fb′(b,σb)db

′ (5.10)

where fb′(b,σb) is the background component and p(n|s)b′ is the conditional PDF in Eq. 5.6. The final

posterior is

h(s|n) =
q(n|s)bπ(s)

∫∞
0 q(n|s)bπ(s)ds

. (5.11)

The upper limit on the unobserved 197 keV coincidence peak intensity can be found by solving

1− α =

∫ SUP

0
h(s|n)ds (5.12)

where SUP is the upper limit and 1 − α is the confidence level. A code written in r by R. Longland was

used to calculate the Ex = 197 keV peak intensity upper limit from the on-resonance, 4.25 MeV ≤ ENaI(Tl)
γ

≤ 10.0 MeV coincidence spectrum. This code reads in spectra and solves Eq. 5.12 for the peak intensity

upper limit. Modifications were made to the original code to randomly sample the background bounding

the region of interest [108].
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Armed with intensity upper limit PDFs, the ER = 95 keV resonance strength upper limit was deter-

mined by generating normally distributed probability density functions for all of the other quantities that

entered into the resonance strength calculation—Eqs. (5.2−5.5). All probability density functions were then

randomly sampled (see the description of Monte Carlo analysis in Appendix A.1), and this process produced

a resonance strength probability density function that was then integrated to the 90% confidence level (see

Fig. 5.5). Figure 5.5 shows a truncated probability distribution for the resonance strength calculated with

the Monte Carlo analysis code. The intensity upper limit, from the Bayesian statistical analysis discussed

above, produces a truncated intensity PDF (emphasizing the point that there was no detection), and this

structure propagates through the analysis to the resonance strength PDF [89]. A new resonance strength

upper limit of

ωγ95 ≤ 7.8× 10−9 eV (90% CL) (5.13)

was obtained for the ER = 95 keV resonance in the 18O(p,γ)19F reaction. This new upper limit improves

upon the upper limit presented in Ref. [120] by about a factor of 5.
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Figure 5.5: The resonance strength probability density function generated by solving repeatedly the reso-
nance strength equation and populating a histogram. Normal distributions were constructed for each value
that entered into the strength calculation; these distributions were then randomly sampled. The histogram
created was then integrated to the 90% confidence level, and a new upper limit of ωγ ≤ 7.8×10−9 eV was
extracted.
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5.3.2: Direct Capture

Data collected during this study at Ep = 105 keV are also important for obtaining improved estimates for

the direct capture cross section of 18O(p,γ)19F. The experimental 18O(p,γ)19F direct capture cross section

at Ep = 1850 keV was measured previously by Ref. [112].

While the second excited state transition fγ estimation explained in Sec. 5.3.1 relied upon a statistical

argument, this assumption was not necessary to determine the direct capture coincidence correction factor,

fDC
γ , because branching ratios can be estimated. These branching ratios must first be determined in order to

calculate fDC
γ with Geant4 [102, 103] (see Sec. 5.3.1). To calculate the branching ratios, the experimental

cross section was extrapolated to Ep = 105 keV for all direct capture transitions observed in Ref. [112]. Two

different direct capture codes were used; the code tedca [138] was used to compute the direct capture cross

section for a zero scattering potential. The bound state and scattering state potential parameters used were

adopted from Ref. [85]. The code dircap [85] was utilized to perform the same calculation with a hard-

sphere scattering potential. The calculated cross sections (from Ecm
p = 0.03−1.99 MeV) were normalized to

the measured direct capture cross sections at Ep = 1850 keV [112].

Though no direct capture transitions were observed in the singles or coincidence spectra populated at Ep

= 105 keV, the spectra are more sensitive than any previous measurements. It is interesting to compare the

measured upper limit values with direct capture model calculations. An experimental upper limit on the

total direct capture cross section was obtained from [4]:

Y =
N20

NpηGe,P fDC
γ

=
1

ϵeff

∫ Ecm
p

Ecm
p −∆E

σDC(E) dE (5.14)

where Y is the measured yield upper limit; N20 is the intensity upper limit of the 2 → 0 transition from

the Bayesian treatment discussed in Sec. 5.3.1; ηGe,P is the experimental HPGe peak efficiency; σDC(E) is

the direct capture cross section. This expression assumes that the effective stopping power is approximately

constant over the target thickness, because the target was relatively thin. The cross section can be rewritten

in terms of the astrophysical S-factor with Eq. 2.17. It was assumed that the S-factor was nearly constant

over the target thickness because the non-resonant direct capture S-factor varies very slowly with energy.

With these conditions, the yield equation can be integrated numerically to extract σ(E) or S(E). This set of

calculations was performed for the same γγ-coincidence gate used in Sec. 5.3.1. For the total experimental

astrophysical S-factor, an upper limit of

SDC(105) ≤ 8.1 keV b (90% CL), (5.15)
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corresponding to a direct capture cross section upper limit of

σDC(105) ≤ 1.8 pb (90% CL). (5.16)

Note that these values are nearly independent (within 2%) of the direct capture code used to calculate the

branching ratios at Ep = 105 keV.

The experimental total S-factor upper limit (90% CL) at Ep = 105 keV is shown in Fig. 5.6, along with

the values corresponding to the 95% and 99% confidence levels. The black solid curve represents the total

S-factor reported by Ref. [112], while the red and blue solid lines were calculated in the present work using

the codes tedca [138] and dircap [85], respectively. The latter two were normalized to the previously

measured direct capture cross section at Ep = 1850 keV [112]. At Ep = 105 keV, the measured upper limits

are smaller than the prediction of Ref. [112] by about a factor of 2. The dircap S-factor (blue line) was only

marginally consistent with the experimental upper limit (90% CL) while the extrapolation derived from the

code tedca (red line) fell within the 90% confidence level. Previous reaction rates used the Wiescher et al.

(1980) [112] direct capture S-factor which is off by a factor of 2 at Ep = 105 keV.
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Figure 5.6: The total direct capture S-factor for 18O(p,γ)19F. The solid lines represent direct capture model
calculations: (black) Ref. [112]; (blue) using the code dircap [85]; (red) using the code tedca [138]; the
latter two results are normalized to the measured direct capture cross section at Ep = 1850 keV [112]. The
measured upper limits (90%, 95%, 99% confidence levels) at Ecm

p = 99.4 keV (Ep = 105 keV) are displayed
as three black arrows.
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Section 5.4: Reaction Rates

Thermonuclear reaction rates for 18O(p,γ)19F were calculated with the Monte Carlo method of Ref. [88]

(see Sec. 2.2). In the Monte Carlo calculation, the nuclear physics input from Ref. [139] was adopted, except

for the ER = 95 keV resonance strength, the total direct capture S-factor, the separation energy [41], and

the resonance energies.

Based on Ref. [85], the tedca extrapolation of the total direct capture S-factor, normalized at Ep =

1850 keV [112], was used. For bombarding energies below Ecm
p = 2.0 MeV, the adopted total S-factor was

expanded around E = 0, with the result:

S(E) ≈ S(0) + Ṡ(0)E +
1

2
S̈(0)E2 (5.17)

= 7.06 + 2.98× 10−3E − 2.60× 10−7E2 (keV b),

where E is the center-of-mass energy. At low energies, the new direct capture S-factor is significantly smaller

than the result reported in Ref. [112]. Note that the Ṡ(0) coefficient presented in Ref. [112] was reported

incorrectly and should in fact be Ṡ(0) = −0.34×10−3 b [140]. This correction is already applied to the black

line in Fig. 5.6.

In the present work, an improved upper limit of the ER = 95 keV resonance strength is reported, ωγ

≤ 7.8×10−9 eV (90% CL). For this particular 19F level, a lower limit on the resonance strength can be

estimated based on the available resonance properties (see Tab. 5.1). The ratio of resonance strengths in

the (p,γ) and (p,α) channels, according to Eq. (2.36), is given by:

ωγpγ
ωγpα

=
Γγ

Γα
. (5.18)

The (p,α) strength was measured by Ref. [133], with the result ωγpα = (1.6 ± 0.5)×10−7 eV. An upper limit

for the total width of Γ < 3×103 eV was obtained from the slope of the low-energy edge of the thick-target

yield curve [133], implying an upper limit of Γα < 3×103 eV for the α-particle partial width. Finally, a value

of Γγ = (6.0 ± 2.5)×10−1 eV was reported for the γ-ray partial width in Ref. [112]. With these input values

and their associated uncertainties, from Eq. 5.18, a lower limit on the (p,γ) strength of ωγpγ ≥ 1.3×10−11

eV was calculated.

Since both an upper and a lower limit on the strength were calculated, a recommended value and a factor
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Figure 5.7: (Left) the reaction rate probability density functions (red) for 18O(p,γ)19F at 0.02 GK, 0.2
GK, and 2.0 GK populated with the RatesMC Monte Carlo code [88]. The lognormal approximations
are overlaid in black. (Right) The corresponding cumulative probability functions used to define the low,
median, and high rates as 0.16, 0.5, and 0.84 quantiles, respectively. These histograms were generated with
a 10,000-sample calculation.
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uncertainty were estimated using the following equations [88]:

ωγ =
√
ωγLL × ωγUL = 3.2× 10−10 eV, (5.19)

f.u. =

√

ωγUL

ωγLL
= 25. (5.20)

The Monte Carlo reaction rate code, RatesMC [88], was used to calculate the rate contribution of the ER =

95 keV resonance strength by randomly sampling a lognormal distribution constructed from the mean value

and factor uncertainty (see Sec. 2.2.1).

The new low, median, and high 18O(p,γ)19F reaction rates (corresponding to 0.16, 0.50, and 0.84 quan-

tiles, respectively, of the cumulative reaction rate distribution) are tabulated in Tab. 5.2 over a stellar

plasma temperature range of 0.01−10.00 GK. Reaction rate probability density functions at a few sample

temperatures (0.02, 0.2, 2.0 GK) are displayed as red histograms in Fig. 5.7 (left panel), with the lognormal

approximations shown as black solid lines. On the right, the corresponding cumulative probability functions

are shown with the dashed lines indicating the low, median, and high rates. It can be seen that a lognormal

function approximates the actual Monte Carlo distribution well.

Figure 5.8 compares the new reaction rate with the one published by Ref. [139]. The new (solid lines)

and previous (dotted lines) high and low rates are normalized to the previous recommended rate [139]. Note

that the previous rates contained two small mistakes: (1) an erroneous assignment of Jπ = (3/2)−, and (2)

the incorrectly reported value of Ṡ(0) = 0.34×10−3 b from Ref. [112]. The dashed vertical line at 50 MK

indicates the location of the temperature region at which, according to Ref. [10], cool bottom processing can

occur in AGB stars. The vertical dashed line at 5.5 GK represents the stellar temperature beyond which the

rates must be found with the aid of Hauser-Feshbach calculations. This cutoff is necessary because in many

reactions, there is an energy upper limit beyond which no more measurements can be made. This is due to

high level densities beyond this energy threshold. This threshold was computed based on the methodology

outlined by Ref. [141]. Reaction rates above 5.5 GK were matched to theoretical rates from bruslib [142].

The matched rates are included in Tab 5.2. The lognormal-µ and -σ for each reaction rate probability

density function are also listed; Anderson-Darling statistics, A−D, are included in the table and represent

the agreement between the PDF generated by the Monte Carlo and a lognormal probability density function

with the listed lognormal-µ and -σ [88].

The difference in Fig. 5.8 between new and previous rates at temperatures below 50 MK can be explained

by the lower estimates both for the contributions from direct capture and the resonance at ER = 95 keV.

Since the new rates are smaller at cool bottom processing threshold temperatures compared to the previous

results, it is even less likely that the 18O(p,γ)19F reaction contributes significantly to the depletion of 18O
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observed in stellar atmospheres and presolar grain samples. The slight increase in the rate near 50 MK is

dependent upon the calculated ER = 95 keV strength upper limit and can not account for observed 18O

depletions. The difference at temperatures in excess of 5 GK is caused solely by the treatment of the direct

capture contribution: the S-factor expansion was cut off artificially at Ecm
p = 1.0 MeV in previous work

[112, 139], while in the present work the S-factor is calculated up to energies of Ecm
p = 2.0 MeV (Fig. 5.6),

resulting in a much higher cutoff value and a significantly increased direct capture contribution. In Fig. 5.9,

the new rate (solid black line) is plotted alongside the old rate (dashed black line); the low, median, and high

rates normalized separately to the median rate. The new (solid black line) high rate uncertainty increases by

as much as 5% at cool bottom processing temperatures. In this case, the new recommended value and factor

uncertainty in Eq. 5.19 were used to calculate the ER = 95 keV rate contribution analytically—Eq. 2.35.

In this work, the new upper limit (and thus an analytical solution for the ER = 95 keV rate contribution)

is adopted instead of performing the numerical calculation—Eq. 2.8—from Ref. [135] for the ER = 95 keV

resonance rate contribution.

The fractional contributions to the total 18O(p,γ)19F reaction rates are shown in Fig. 5.10. These

contributions were calculated during the RatesMC rate calculation. During a reaction rate Monte Carlo

calculation, a contribution from a single resonant or non-resonant reaction is divided by the total contribution
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Figure 5.8: The present (solid lines) and previous [139] (dotted lines) high and low reaction rates, normalized
to the recommended previous rates. The vertical dashed line at 50 MK represents the plasma temperature of
circulated material during cool bottom processing in low-mass AGB stars according to Ref. [10]. The vertical
dashed line at 5.5 GK represents the temperature at which the experimental rates need to be extrapolated
with the aid of bruslib Hauser-Feshbach results [142].
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(the sum of all contributions). Each fractional rate populates a probability density function until the Monte

Carlo calculation finishes (in this case, after 10,000 samples). The low (0.16 quantile), median (0.5 quantile),

and high (0.84 quantile) fractions are then calculated for each of these PDFs. The colored bands in Fig.

5.10 represent the region bounded by the low and high fractional rate. The labels in this figure are the

center-of-mass energies of the resonances and the direct capture contribution (“A-Rate 1”). The dotted

black line is the sum of fractional rates that contribute less than 15% to the total rate. In Fig. 5.10, it can

be seen that the lower estimate for the direct capture process (yellow solid line) contributes significantly

(>10%) at temperatures of 0.011−0.05 GK. The high estimate for the ER = 95 keV resonance (maroon solid

line) contributes as much as 45%. This means the present work reduced the importance of the unobserved

resonance to less than 50% of the total reaction rate. If a direct measurement is made, the ER = 95 keV

resonance will not increase the rate enough to effect cool bottom processing in low-mass AGB stars.

The ratio of 18O(p,α)15N (from Ref. [143]) and 18O(p,γ)19F high and low rates is shown in Fig. 5.11.

The dotted lines are based on the results of Ref. [143] alone, while the solid lines incorporate the new

18O(p,γ)19F rates. This figure does not account for correlations between the (p,α) and (p,γ) rates—the ratio

is calculated but disregards the relationship between the nuclear physics input to both rate calculations.

For the temperature region relevant to cool bottom processing, the established (p,α) rate [143] exceeds the

(p,γ) rate by a factor of 5100−1700 over the temperature range 0.03−0.05 GK. The improved ER = 95 keV
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Figure 5.9: The reaction rate from this work (solid line) is compared to the rate from the 2010 reaction rate
compilation, Ref. [143]. The uncertainty in the rate increases by as much as 5% at cool bottom processing
temperatures. The difference comes from how the two rates are calculated; the new reaction rate includes
an analytic calculation (Eq. 2.35) of the rate contribution from ER = 95 keV (with the results of this work)
while Ref. [135] calculated this contribution numerically (Eq. 2.8).
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resonance strength upper limit and the refined direct capture S-factor support the conclusion that the (p,γ)

reaction does not contribute significantly to the overall 18O destruction at temperatures suggested for cool

bottom processing to occur in low-mass AGB stars. Therefore, future efforts to study 18O depletion by cool

bottom processing in asymptotic giant branch stars should focus on direct measurement of the 18O(p,α)15N

reaction at low energies.

Table 5.2: Experimental Monte Carlo-based 18O(p,γ)19F reaction rates (in units of cm3mol−1s−1). For T ≥
5.5 GK, rates were matched to bruslib Hauser-Feshbach results [142] according to the procedure described
in Ref. [141]. The lognormal-µ and -σ for the reaction rate probability density functions are also tabulated.
The Anderson-Darling, A−D, statistics are shown [88].

T (GK) Low Rate Median Rate High Rate Lognormal µ Lognormal σ A−D

1.000×10−02 2.923×10−24 4.967×10−24 8.785×10−24 -5.363×10+01 5.487×10−01 7.333×10+00

1.100×10−02 2.581×10−23 4.222×10−23 7.344×10−23 -5.149×10+01 5.179×10−01 1.118×10+01

1.200×10−02 1.719×10−22 2.676×10−22 4.468×10−22 -4.964×10+01 4.784×10−01 1.634×10+01

1.300×10−02 9.299×10−22 1.370×10−21 2.181×10−21 -4.800×10+01 4.284×10−01 2.330×10+01

1.400×10−02 4.223×10−21 5.973×10−21 8.985×10−21 -4.653×10+01 3.832×10−01 2.600×10+01

1.500×10−02 1.709×10−20 2.321×10−20 3.309×10−20 -4.519×10+01 3.395×10−01 2.099×10+01

1.600×10−02 6.180×10−20 8.151×10−20 1.113×10−19 -4.393×10+01 3.014×10−01 1.471×10+01

1.800×10−02 6.283×10−19 8.027×10−19 1.041×10−18 -4.166×10+01 2.542×10−01 6.808×10+00

2.000×10−02 4.820×10−18 6.045×10−18 7.721×10−18 -3.964×10+01 2.403×10−01 6.734×10+00
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Figure 5.10: The fractional contribution of non-resonant and resonant reactions. The colored bands represent
the region bounded by the low and high fractional rate. The high bound on the ER = 95 keV resonance
contribution is as much as 45%. This work reduced the importance of the unobserved resonance to less
than 50% of the total rate and excludes the possibility that the resonance will increase the rate enough to
effect cool bottom processing. The center-of-mass energies of the resonances are shown. “A-Rate 1” refers
to the direct capture contribution to the rate. The contribution shown as a dotted black line is the sum of
fractional reaction rates that contribute less than 15% to the total rate.
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Table 5.2 – continued

T (GK) Low Rate Median Rate High Rate Lognormal µ Lognormal σ A−D

2.500×10−02 3.235×10−16 4.041×10−16 5.168×10−16 -3.543×10+01 2.441×10−01 1.467×10+01

3.000×10−02 8.728×10−15 1.093×10−14 1.402×10−14 -3.212×10+01 3.294×10−01 2.409×10+02

4.000×10−02 1.206×10−12 1.555×10−12 2.340×10−12 -2.701×10+01 7.516×10−01 1.057×10+03

5.000×10−02 9.349×10−11 1.227×10−10 2.056×10−10 -2.259×10+01 8.583×10−01 1.066×10+03

6.000×10−02 9.553×10−09 1.274×10−08 1.818×10−08 -1.809×10+01 5.776×10−01 5.999×10+02

7.000×10−02 3.573×10−07 4.764×10−07 6.503×10−07 -1.452×10+01 4.144×10−01 2.160×10+02

8.000×10−02 5.495×10−06 7.304×10−06 9.891×10−06 -1.181×10+01 3.462×10−01 5.981×10+01

9.000×10−02 4.553×10−05 6.049×10−05 8.137×10−05 -9.706×10+00 3.179×10−01 1.740×10+01

1.000×10−01 2.437×10−04 3.239×10−04 4.347×10−04 -8.031×10+00 3.053×10−01 6.392×10+00

1.100×10−01 9.505×10−04 1.263×10−03 1.692×10−03 -6.673×10+00 2.992×10−01 2.813×10+00

1.200×10−01 2.921×10−03 3.880×10−03 5.191×10−03 -5.551×10+00 2.958×10−01 1.391×10+00

1.300×10−01 7.484×10−03 9.946×10−03 1.330×10−02 -4.610×10+00 2.938×10−01 8.234×10−01

1.400×10−01 1.663×10−02 2.211×10−02 2.957×10−02 -3.812×10+00 2.926×10−01 5.508×10−01

1.500×10−01 3.300×10−02 4.386×10−02 5.867×10−02 -3.127×10+00 2.918×10−01 4.284×10−01

1.600×10−01 5.970×10−02 7.942×10−02 1.062×10−01 -2.533×10+00 2.912×10−01 3.574×10−01

1.800×10−01 1.581×10−01 2.102×10−01 2.814×10−01 -1.560×10+00 2.905×10−01 3.073×10−01

2.000×10−01 3.388×10−01 4.507×10−01 6.033×10−01 -7.970×10−01 2.901×10−01 2.947×10−01

2.500×10−01 1.274×10+00 1.694×10+00 2.266×10+00 5.265×10−01 2.894×10−01 2.872×10−01

3.000×10−01 2.932×10+00 3.903×10+00 5.212×10+00 1.360×10+00 2.886×10−01 2.796×10−01

3.500×10−01 5.153×10+00 6.853×10+00 9.134×10+00 1.923×10+00 2.874×10−01 2.714×10−01

4.000×10−01 7.695×10+00 1.020×10+01 1.360×10+01 2.322×10+00 2.855×10−01 2.688×10−01

4.500×10−01 1.037×10+01 1.370×10+01 1.819×10+01 2.616×10+00 2.826×10−01 2.732×10−01

5.000×10−01 1.303×10+01 1.715×10+01 2.269×10+01 2.842×10+00 2.786×10−01 2.909×10−01

6.000×10−01 1.841×10+01 2.387×10+01 3.123×10+01 3.175×10+00 2.657×10−01 3.858×10−01

7.000×10−01 2.464×10+01 3.121×10+01 3.988×10+01 3.445×10+00 2.431×10−01 7.541×10−01

8.000×10−01 3.356×10+01 4.137×10+01 5.129×10+01 3.727×10+00 2.144×10−01 1.303×10+00

9.000×10−01 4.759×10+01 5.709×10+01 6.938×10+01 4.050×10+00 1.906×10−01 3.356×10+00

1.000×10+00 6.916×10+01 8.167×10+01 9.819×10+01 4.412×10+00 1.787×10−01 1.133×10+01

1.250×10+00 1.719×10+02 2.000×10+02 2.380×10+02 5.312×10+00 1.732×10−01 3.372×10+01

1.500×10+00 3.630×10+02 4.213×10+02 4.975×10+02 6.053×10+00 1.683×10−01 2.349×10+01

1.750×10+00 6.403×10+02 7.430×10+02 8.726×10+02 6.619×10+00 1.631×10−01 1.335×10+01

2.000×10+00 9.921×10+02 1.149×10+03 1.342×10+03 7.053×10+00 1.580×10−01 8.269×10+00

2.500×10+00 1.842×10+03 2.129×10+03 2.487×10+03 7.668×10+00 1.519×10−01 4.135×10+00

3.000×10+00 2.798×10+03 3.230×10+03 3.769×10+03 8.086×10+00 1.529×10−01 7.123×10+00

3.500×10+00 3.777×10+03 4.369×10+03 5.130×10+03 8.389×10+00 1.550×10−01 1.054×10+01

4.000×10+00 4.758×10+03 5.507×10+03 6.507×10+03 8.625×10+00 1.632×10−01 2.026×10+01

5.000×10+00 6.600×10+03 7.729×10+03 9.353×10+03 8.968×10+00 1.796×10−01 2.771×10+01

6.000×10+00 8.727×10+03 1.056×10+04 1.277×10+04 9.265×10+00 1.903×10−01 −
7.000×10+00 1.167×10+04 1.411×10+04 1.707×10+04 9.555×10+00 1.903×10−01 −
8.000×10+00 1.452×10+04 1.757×10+04 2.125×10+04 9.774×10+00 1.903×10−01 −
9.000×10+00 1.718×10+04 2.078×10+04 2.514×10+04 9.942×10+00 1.903×10−01 −
1.000×10+01 2.032×10+04 2.458×10+04 2.974×10+04 1.011×10+01 1.903×10−01 −

The unobserved 18O(p,γ)19F resonance, ER = 95 keV, was studied at LENA with high-intensity ECR

ion source beam and a γγ-coincidence detector configuration. With these tools, data were collected at Ep =

105 keV (on-resonance) and Ep = 85 keV (off-resonance). The upper limit on the ER = 95 keV resonance

was constrained further to ωγ95 ≤ 7.8×10−9 eV (90% CL)—a factor of 5 improvement over the result from
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Ref. [120]. A new upper limit was also calculated for the direct capture astrophysical S-factor that was a

factor of 2 lower than the result from Ref. [112]. From the literature [39, 134], it was found that the parity

of the ER = 95 keV resonance level had been reported incorrectly in Ref. [135]. Also, Ṡ(0) from Ref. [112]

was found to have been reported with the incorrect sign.

The new reaction rates determined in this work were published in Buckner et al. (2012) [1]. From these

rates, it was determined that the 18O(p,γ)19F resonance, ER = 95 keV, can not account for 18O depletion

during cool bottom processing in low-mass asymptotic giant branch stars.
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Figure 5.11: The ratios between (p,α) low and high reaction rates from Ref. [139] and the present (p,γ)
high and low reaction rates, respectively (solid black lines). The corresponding ratios based solely on the
previous rates [139] are shown as dotted lines. The vertical dashed line at 50 MK represents the plasma
temperature of circulated material during cool bottom processing in low-mass AGB stars according to Ref.
[10]. It should be noted that correlations between the (p,α) and (p,γ) rates are not taken into account.
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CHAPTER 6: 17O(p,γ)18F DIRECT CAPTURE

Section 6.1: Previous Experiments

Over the past several decades, numerous experiments were performed dedicated to studying 17O(p,γ)18F

direct capture. Table 6.1 summarizes these experiments and they are described below. Careful examination of

this table reveals the narrative that unfolded in the literature over the past forty years. The study performed

by Ref. [77] presented an astrophysical S-factor that disagreed dramatically with future observations made

by other groups; while Ref. [77] observed a constant S-factor, others noticed a distinct energy dependence.

Fox et al. (2005) [75] asserted, and then verified, that this energy dependence is influenced by the tails of

broad resonances, specifically the Ecm
R = 556 keV and 676 keV resonances. The model calculations presented

in Ref. [75] verified this hypothesis and experimental data accumulated by numerous groups over the past

decade supported this conclusion.

One of the first, recent studies of the 17O(p,γ)18F reaction was performed at LENA by Fox et al. (2004)

[51]. They were able to tune Ip = 100 µA beam from the LENA 1 MV JN Van de Graaff accelerator to

target. With targets enriched to 83.8 atom % in 17O, they made the first observation of the ER = 193.2 ±

0.9 keV resonance and provided the first strength reported in the literature for this resonance, ωγ = 1.2 ±

0.2 µeV.

Chafa et al. (2005) [76] probed 17O and 18O targets implanted in 0.3 mm tantalum sheets for the

17O(p,γ)18F reaction near 194.1 keV (lab). They used activation techniques by placing targets bombarded

for ≈ 5 hours with Ip = 70 µA proton beam between two germanium detectors. Beam was supplied by the

PAPAP electrostatic accelerator at the CSNSM Laboratory (Orsay). Reference [144] arrived at a ER = 193

keV resonance strength of ωγ = 2.2 ± 0.4 µeV. The strength was reported originally as ωγ = 3.4 ± 0.6 µeV

in Ref. [76], but after accounting for a coincident summing correction, the strength was revised in Ref. [145].

A more recent study at LENA was performed by Newton et al. (2010) [78] with the 1 MV JN Van de

Graaff accelerator. They used a 55◦ detector configuration (with respect to the beam) and the LENA 140%

(updated recently to 135% [101]) HPGe detector. With 91.2 atom % enriched 17O targets and Ip = 120 µA,

they arrived at a direct capture S-factor of SDC(0) = 4.6 ± 1.1 keV b. Reaction rates calculated during this

study indicated that the direct capture rate dominates the total reaction rate at classical nova temperatures.

An experiment was performed in inverse kinematics—1H(17O,18F)γ—on the DRAGON recoil separator

78



at ISAC at TRIUMF in Vancouver, Canada by Hager et al. (2012) [79]. A hydrogen gas target at 7 Torr

± 3% was used, and 17O beam was supplied by the Supernanogan ECR ion source (Imax = 1.5×1012 parti-

cles/second). A 30 BGO (bismuth germanate) detector array was set up, and a direct capture astrophysical

S-factor of SDC(0) = 5.3 ± 0.8 keV b was calculated from their total S-factor by the Notre Dame group,

Ref. [81].

At Notre Dame, Kontos et al. (2012) [81] studied the 17O(p,γ)18F reaction from Ep = 600−1800 keV

using their 4 MV KN Van de Graaff accelerator and Ep = 365−700 keV using their 1 MV JN Van de Graaff

accelerator. They manually rastered (by steering the beamspot back and forth across the target) their H+

beam at currents between 20−40 µA at the target. Their targets were anodized with water enriched in 17O

to 90.1 atom %. Reference [81] arrived at a direct capture astrophysical S-factor of SDC(0) = 4.9 ± 1.1 keV

b.

The Laboratory for Underground Nuclear Astrophysics (LUNA) at Laboratori Nazionali del Gran Sasso

[80] performed an underground experiment with both activation and prompt γ-ray measurements. They used

the LUNA 400 kV accelerator and achieved 200 µA H+ beam at the target. Their targets were enriched in

66 atom % 17O and 4 atom % 18O. The LUNA detector array consisted of a 115 % HPGe detector in a 55◦

configuration. Their initial claim in the Scott et al (2012) [80] publication was a ER = 193 keV resonance

strength of ωγ = 1.70 ± 0.14 µeV with the addition of one new primary transition (Fox et al. [75] only

observed two transitions) from prompt γ-ray measurements. Activation techniques gave LUNA a strength

of ωγ = 1.65 ± 0.13 µeV. They reconciled their results to ωγ = 1.67 ± 0.12 µeV and calculated a direct

capture S-factor of SDC(0) = 4.4 ± 0.4 keV b. Di Leva et al. (2014) [82] reiterates most of the previous

LUNA results but reports a total S-factor of S(0) = 4.8 ± 0.4 keV b. They also claim that they observe nine

ER = 193 keV resonance primary transitions.

The total S-factors from the literature are plotted in Fig. 6.1. In the figure, the grey, cross-hatched

energy region (Ecm
p = 103−261 keV) is the classical nova Gamow window. The LUNA total S-factors are

plotted in blue. Note that their lowest energy data points come from the activation portion of their analysis.

A summary of previous experiments can be found in Tab. 6.1.

Section 6.2: Measurement

For the 17O(p,γ)18F direct capture study presented in this thesis, the experiment was performed at

LENA, a “sea-level” accelerator facility. Underground experiments dramatically reduce cosmic-ray induced

environmental backgrounds; however, the Laboratory for Experimental Nuclear Astrophysics has the tools to

perform these studies above ground (see Sec. 3). High current, low-energy accelerators and γγ-coincidence
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Figure 6.1: Total S-factors from the literature. The classical nova Gamow window is highlighted by the
grey, cross-hatched energy region (Ecm

p = 103−261 keV). Contributions made by LUNA are in blue; a
combination of prompt γ-ray and activation measurements. Note that their lowest energy data points are
activation measurements. See Table 6.1 for more details on previous S-factor measurements.

techniques allow the γ-cascade of interest to be isolated and studied and environmental backgrounds to be

reduced. Additionally, a novel spectral analysis method was developed (see Sec. 6.3).

The 17O(p,γ)18F experiment was performed between March and August 2013 at the Laboratory for

Table 6.1: Previous 17O(p,γ)18F measurements from the literature. Previous approaches include in-beam,
activation, and inverse kinematics measurements. Activation studies were performed by several research
groups. It is important to note the beam energy ranges probed (the classical nova Gamow window is
103−261 keV) and the beam currents available to these different research groups.

Reference Facility Accelerator Ep (keV) Ip (µA)
[77]1 University Toronto 1 MV JN Van de Graaff 270−440 120

McMaster University 3MV JN Van de Graaff 880−1780 150−200
[75]1 LENA−TUNL 1 MV JN Van de Graaff 180−540 100
[76]2 CSNSM Orsay Electrostatic PAPAP < 250 ≈ 70
[78]1 LENA−TUNL 1 MV JN Van de Graaff 275−500 75
[79]3 TRIUMF DRAGON 260−505 —
[81]1 NSL−Univ. Notre Dame 1 MV JN Van de Graaff 365−700 20−40

4 MV JN Van de Graaff 600−1800 20−40
[80]1,2 LUNA−Gran Sasso 400 kV LUNA II 212−392 200
[82]1,2 LUNA−Gran Sasso 400 kV LUNA II 169−392 200

1 prompt γ-ray
2 activation
3 inverse kinematics
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Experimental Nuclear Astrophysics. The experiment was split into two parts: the higher energy portion and

the lower energy portion. Beam was supplied by the 1 MV JN Van de Graaff accelerator during the higher

energy portion. Target thickness and longevity were monitored with the JN Van de Graaff by collecting

17O(p,γ)18F yield curves at the ER = 518.3 ± 1.2 keV resonance (see Sec. 4.3). See Tab. 6.2 for laboratory

energies, beam current range, charge accumulation, and live time. The beam energies, Ep = 250, 275, 300

and 325 keV, were selected to overlap with the Newton et al. (2010) [78] study and to avoid the strong

19F(p,αγ)16O resonance at ER = 340 keV [123]. On-resonance data were collected with the ECR ion source

at Ep = 200 keV for the ER = 193 keV resonance with a total charge accumulation of Q = 14 C. The final

two direct capture sets of data were also collected with high-intensity ECR ion source beam. The beam was

rastered with the new rastering system (see Sec. 3.2). Major ion source upgrades responsible for the boost

in ECR ion source H+ current at the target are discussed in Sec. 3.1.2. JN Van de Graaff accelerator issues,

discussed in Sec. 4.3, lead to 17O targets being monitored with the ECR ion source during this phase of the

experiment. Target thickness and degradation were assessed with the well-known 18O(p,γ)19F resonance ER

= 150.82 ± 0.09 keV [118]. See Tab. 6.2 for bombarding energies, ECR ion source currents at the target,

accumulated charge, and acquisition live time. The direct capture beam energies, Ep = 175 and 190 keV,

were selected to avoid the 18O(p,γ)19F resonance at ER = 151 keV and the 17O(p,γ)18F resonance at ER =

193 keV.

Table 6.2: Laboratory bombarding energies, target beam currents, charge accumulation, and live time are
listed in the top portion of this table for the sets of data collected with ECR ion source beam. Data were
collected on-resonance for the ER = 193 keV resonance at Ep = 200 keV. The same parameters are tabulated
in the bottom portion for the sets of data collected with H+ beam from the JN Van de Graaff.

Ep (keV) Imin
p (µA) Imean

p (µA) Imax
p (µA) Tlive (hrs) Q (C)

175 809 1186 2047 23 100
190 789 1125 1851 13 54
200 796 1030 1360 4 14

250 46 85 116 49 15
275 28 53 64 53 10
300 66 78 86 18 5
325 42 67 80 12 3

The 18F level diagram in Fig. 6.2 shows all of the known energy levels and their associated spins and

parities. The γ-ray transitions and intensities observed and attributed to 18F deexcitations for each direct

capture laboratory energy are listed in Tab. 6.3. Both the HPGe singles intensities (including the muon veto

condition) and the γγ-coincidence intensities are tabulated; these intensities were determined with a code

written specifically for extracting net areas from root histograms (see Appendix A.3). Spectra with peak
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17O+ p

18F

Ec.m.

R

[keV]

Ex

[keV]

Jπ

0 1+

937 3+
1042 0+

1081 0−
1121 5+

1701 1+

2101 2−

2523 2+

3062 2+
3134 1−

3358 3+

3724 1+
3791 3−

3839 2+

4116 3+

4226 2−

4360 1+
4398 4−
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Figure 6.2: Truncated 18F level diagram and 17O + p resonances [40, 144] through Ecm
R = 676 keV. The

proton threshold, Qpγ = 5607 keV, was taken from Ref. [41]. The classical nova Gamow window is shown
right of the diagram in blue.
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labels can be found in Appendix E along with a table of observed environmental backgrounds.

Table 6.3: Intensities for the observed 18F transitions in both the muon-vetoed HPGe singles spectrum and

the gated coincidence spectrum (3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ ≤ 9.0 MeV). The muon veto condition was also
applied to the coincidence spectrum.

Intensity (cts) by Ep (keV)
Transition 175 190 250 275 300 325

HPGe Singles Intensities
937→0 1300(200) 1120(190) 4100(200) 5000(200) 4720(140) 5370(120)
1042→0 − − − − − 470(110)
1081→0 − − − − − 290(90)
1121→937 − − − − − −
2101→0 − − − − − −
2101→937 − − − − − −
2523→0 − − − − − 100(30)
3062→0 − 41(16) 180(20) 210(20) 220(20) 210(20)
3062→937 240(50) 730(60) 1040(80) 930(80) 740(70) 740(40)
3791→2101 − − − 180(60) − −
3839→0 − − 120(16) 160(20) 160(20) 220(20)
3839→937 − − − 51(17) 41(15) 63(14)
3839→3062 − − − − 380(130) 610(120)
4116→3062 − − 480(180) − 380(100) −
4652→1121 − − − − 61(14) 54(14)
4964→0 − 30(10) 94(15) 148(17) 160(20) 144(13)
R/DC→0 49(12) 25(7) 124(18) 170(19) 142(18) 410(30)
R/DC→937 93(16) 112(14) 450(30) 550(30) 540(20) 590(40)
R/DC→1121 − 23(8) 132(18) 210(20) 180(30) 210(30)
R/DC→2523 − − − 90(20) 116(19) −
R/DC→3062 − − 180(30) 170(40) 190(30) 150(20)
R/DC→3791 − − − − − 111(12)
R/DC→3839 − 110(40) − 340(110) 410(80) 400(70)
R/DC→4116 − − − − 350(40) 160(50)
R/DC→4652 − − − − − −
R/DC→4964 − − − − − −

γγ-Coincidence Intensities
937→0 420(30) 470(30) 1770(50) 2310(50) 2180(50) 2610(50)
1042→0 − 31(10) − 91(17) 42(15) 82(18)
1081→0 − − − − − −
1121→937 − − 119(19) 120(20) 110(20) 200(20)
2101→0 − − − − 63(14) −
2101→937 − − − − − 36(12)
2523→0 − − 51(13) − 72(16) 54(14)
3062→0 − 48(13 146(18) 155(17) 165(18) 172(18)
3062→937 82(14) 97(14) 310(20) 390(20) 390(30) 410(20)
3791→2101 − − − 44(12) 51(15) 53(16)
3839→0 − − 85(13) 126(16) 94(17) 149(19)
3839→937 − − − 46(12) 34(12) 53(11)
3839→3062 70(30) 50(14) 210(20) 250(30) 250(20) 250(30)
4116→3062 46(12) 49(12) 140(20) 210(20) 184(19) 226(19)
4652→1121 − − − − 44(12) −
4964→0 − − 59(11) 87(13) 124(15) 94(11)
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Table 6.3 – continued

Intensity (cts) by Ep (keV)
Transition 175 190 250 275 300 325

R/DC→0 − − − − − −
R/DC→937 43(11) 64(10) 260(20) 310(20) 314(18) 350(30)
R/DC→1121 − − 80(14) 108(17) 94(19) 130(20)
R/DC→2523 − − − 70(18) 90(16) 49(16)
R/DC→3062 − − 100(20) 110(20) 140(20) 96(17)
R/DC→3791 − − − 64(16) 47(13) 59(7)
R/DC→3839 59(12) 41(10) 160(20) 200(20) 240(20) 260(20)
R/DC→4116 36(11) − 100(20) 80(20) 39(12) 119(18)
R/DC→4652 − − − − 73(19) −
R/DC→4964 − − 130(20) 130(30) 50(13) −

Section 6.3: Analysis

Previous direct capture studies were performed at 55◦ [129, 78] because at this angle, angular correlation

effects are suppressed—P2[cos(55◦)] = 0. During this experiment, ultra-pure tantalum targets were used in a

carbon-free target chamber to reduce beam-induced backgrounds (see Sec. 4). The γγ-coincidence spectrom-

eter was used to isolate the direct capture γ-cascade and reduce environmental background contributions to

the analyzed spectra (see Sec. 3.5.2). Utilizing coincidence requires that the experiment be performed at 0◦,

and as a result, angular correlations can not be neglected. Sensitivity calculations were performed and are

documented in Appendix C to assess what 18F transitions would produce anisotropic angular correlations.

These anisotropies were finally built into the Geant4 [102, 103] analysis and are discussed here in Sec. 6.3.6.

A novel spectral analysis technique was developed and implemented to extract partial and total reaction

numbers from HPGe singles and coincidence spectra. This analysis method relies on root’s TFractionFitter

class. A c++ code, solver.cxx, was written that accepts data sorted into singles or coincidence histograms

with root. Environmental backgrounds (experimental), beam-induced backgrounds (simulated), and in

this case, 18F deexcitations (simulated) were sorted into template histograms. The TFractionFitter class

determines the fractional contribution of each template to the data histogram.

Section 6.3.1 introduces sorting experimental and simulated data with root. Using the 56Co(β+νe)56Fe

decay as an example, Sec. 6.3.2 introduces the derivation of total reaction numbers through the comparison of

simulated and experimental spectra. Section 6.3.3 describes the TFractionFitter class in detail and provides

an example calculation of the total number of 56Co disintegrations. In Sec. 6.3.4, the analysis code, solver.cxx

is introduced. In this section, 18F deexcitation templates are simulations of individual 17O(p,γ)18F primaries

(and the secondaries associated with each primary). The ER = 193 and 518 keV resonances are used to test
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the new analysis method before it is applied to direct capture data in Sec. 6.3.7.

6.3.1: Sorting Data with root

The data analysis for this experiment started at the data acquisition stage. To streamline data analysis,

data collected with jam [116] had to be transferred from jam user interface and event files into a format that

could be analyzed with computer codes written in c++ and root. To accomplish this, several lines were

added to the jam sort routine—a code written in Java that governs how signals from the data acquisition

electronics are sorted into spectra (histograms). These extra lines of code in the sort routine fill a text file

with ADC (analog-to-digital converter) and TDC (time-to-digital converter) intensities by channel number

(see Sec. 3.5.4) from the γγ-coincidence spectrometer—the HPGe detector, the NaI(Tl) annulus, and the

scintillator paddles. Note that the fourth excited state in the 18F nucleus, 1121 keV, has a τm = 234 ±

10 ns lifetime [40], and narrow TDC gates were not used during data analysis. jam allows data to be

sorted online and offline, and these text files can also be created online and offline if necessary. A new sort

routine, sort.cxx, was written in c++ and root to sort the data into spectra and store them as root

histograms. Detector energy calibrations were collected and stored each day data were collected, and these

calibrations were applied to the new root spectra. The root spectra were also binned the same way jam

bins spectra—all spectra have 4,096 bins. The new spectra stored in root files were compared to spectra

created by jam and the Java sort routine; because the binning and energy calibrations agreed, the root

sort routine reproduced the jam spectra.

Additional functionality was added to sort.cxx so that Geant4 simulations of γ-cascades in the LENA

γγ-spectrometer (also stored in root files) could be sorted the same way experimental data were sorted.

The gating logic applied to data to fill coincidence spectra could also be applied to the histograms produced

by the Monte Carlo to simulate coincidence spectra. The Geant4 simulations have no energy resolution, so

the Monte Carlo spectra are convolved with a Gaussian function to match simulated spectra to experimental

spectra. The full width at half maximum (FWHM) of a direct capture primary depends on the target

thickness and will be affected by Doppler-broadening; as a result, a separate Gaussian function must be

used to match simulated and measured direct capture primaries and their associated first and second escape

peaks. The FWHM of an observed primary or secondary was determined with jam, and then Gaussian-σ,

the standard deviation, was calculated where [146]:

FWHM = 2σ
√

2ln(2). (6.1)

As an example, Fig. 6.3 shows the two resolution fits determined for the direct capture data at Ep = 250
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keV. The red squares represent the standard deviation for direct capture primaries and the blue circles are

the secondaries; they are plotted versus excitation energy. The red dashed line is the adopted fit used to

convolve simulated direct capture primaries and the blue dashed line is the fit applied to all other simulated

peaks (direct capture secondaries and beam-induced backgrounds). Linear resolution functions were also
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Figure 6.3: Separate resolution functions for Ep = 250 keV direct capture primaries (red dashed line) and
secondaries (blue dashed line) were applied to convolve simulated spectra. The full width at half maximum
was determined with jam for each primary and secondary, and Gaussian-σ, the standard deviation, was
calculated with Eq. 6.1. The standard deviation is plotted versus excitation energy for direct capture
primaries (red squares) and secondaries (blue circles).

determined for each of the sixteen NaI(Tl) energy spectra. The 22Na energy calibrations that were collected

each day data were accumulated were summed and fit for each experimental data set. Simulated NaI(Tl)

energy spectra were then convolved with these Gaussian functions.

The flowchart in Figure 6.4 summarizes the jam to root conversion and the steps taken to sort Monte

Carlo histograms into simulated spectra.

6.3.2: Total Number of Reactions from Normalized Histograms

The next step in the analysis was to compare simulated radioactive source and beam-induced reactions

with experimental data in order to calculate the number of disintegrations (reactions), NR. A radioactive

source, 56Co, with an initial activity of Ai = 37,851 Bq and a current activity of Af = 1461 Bq was placed

within the target chamber (at atmosphere) against the surface of the target. The LENA γγ-coincidence

spectrometer was placed in the running geometry, and data were acquired for a live time of tlive = 7469
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Figure 6.4: To analyze experimental data with root and c++, ADC (analog-to-digital converter) and TDC
(time-to-digital converter) intensities were sorted with the jam data acquisition system but were also written
to text files for analysis with root. A new root and c++ sort routine, sort.cxx, was written to sort ADC
and TDC signals into spectra. Analogous logic was used to sort Geant4 Monte Carlo histograms with
sort.cxx to assemble simulated spectra.

seconds. The number of disintegrations was calculated from the activity with the equation:

NR = Af tlivee
− ln(2)tlive

th (6.2)

where th is the half-life of 56Co. From Ref. [147], th = 77.31 ± 19 days for 56Co. The number of disintegra-

tions was found to be NR(56Co) = (10.90 ± 0.16)×106.

Next, seventy-five million 56Co disintegrations were simulated with Geant4 and the Monte Carlo his-

togram was sorted into a HPGe singles spectrum. From Ref. [148], γ-ray and β-decay branching ratios

were used in the simulation. The collected 56Co experimental data and environmental background data

were also sorted into HPGe singles spectra. Scalars collected during data acquisition (real time, pulser area,

and the number of pulser gates) were used to calculate the live times for both experimental data sets. The

background spectrum was then normalized to the 56Co live time. After this step, the background singles

spectrum was subtracted from the experimental 56Co HPGe singles spectrum. Then the areas of the back-

ground subtracted 56Co spectrum and the Monte Carlo singles spectrum were calculated between 800−1500

keV. These areas were used to normalize the Monte Carlo spectrum to the background subtracted 56Co

spectrum. Finally, the number of disintegrations was calculated from these areas and the simulated number
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of disintegrations:

Ndata
R =

NMC
R Asub

AMC
(6.3)

where NMC
R is the user specified number of Monte Carlo disintegrations, Asub is the area (from 800−1500

keV in this case) of the background subtracted 56Co singles spectrum, and AMC is the area (from 800−1500

keV in this case) of the simulated 56Co singles spectrum. This calculation yielded NR(56Co) = (11.0 ±

0.2)×106 disintegrations, and this result agrees well with the number of disintegrations calculated above

from the source activity.

6.3.3: Total Number of Reactions from a TFractionFitter Code

A new code was written to test the root class TFractionFitter. The idea was, that instead of background

subtracting the experimental data, the TFractionFitter class could be used to determine what fraction of the

data were contributions from the reaction of interest. The TFractionFitter class accepts a histogram that

contains experimental data and then a user specified number of template histograms. These templates can be

an environmental background spectrum, Monte Carlo simulations of beam-induced backgrounds that have

been sorted into histograms, or a Geant4 simulation of the reaction of interest that has also been sorted.

For primary transitions, Doppler and recoil shifts affect the γ-ray energy emitted by a recoiling nucleus. The

LENA Geant4 simulation does not automatically include these effects; therefore, in addition to the decay

scheme, the centroids of shifted primary transitions must be provided as input to the Geant4 simulations;

otherwise, the TFractionFitter class will not be able to match Monte Carlo templates to data histograms.

The TFractionFitter class relies on a standard likelihood fit using Poisson statistics. The template his-

tograms are varied within statistics, and produce additional contributions to the overall likelihood. Many

fit parameters are included in the analysis (one per bin per template), but an analytical approach to the

minimization—with respect to these additional parameters—is favored instead of introducing them as formal

fit parameters. The TFractionFitter routine calls the hmcmll subroutine [149], and it is this subroutine that

fits the data with this binned maximum likelihood approach. The hmcmll subroutine uses minuit [150]—a

numerical minimization code—to perform a log-likelihood fit and return the fraction with its associated

uncertainty. The uncertainty from TFractionFitter takes both Monte Carlo and experimental statistical un-

certainties into account. Two conditions are applied when comparing template histograms to an experimental

data histogram with the TFractionFitter class to produce, according to Ref. [151], unbiased fit uncertain-

ties: (1) the number of events in the template (or templates) must be sufficiently large enough that Poisson

uncertainties can be ignored; and (2) template bin content exceeds the bin content of the experimental data

histogram.
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A code that calls TFractionFitter must read in a sorted data histogram as well as the template histograms.

The templates are normalized to the data with the ratio Adata/Atemp
i where Adata is a user specified area in

the data histogram (from some low energy to some higher energy), and Atemp
i is the area of the same energy

range in the ith template histogram. The data histogram and the normalized template histograms are then

passed to root’s TFractionFitter class. The energy range used to normalize the templates is also supplied

to TFractionFitter—this range limits what bins will be assessed in each histogram. When the calculation

is complete, the fractional contribution of each template histogram to the experimental data histogram is

returned, where V temp
i is the fractional contribution of the ith template histogram—a scaling factor. Before

plotting the histograms, the normalized templates must all be scaled by their respective fractions, V temp
i .

If a template is the sorted histogram from a Monte Carlo simulation, an initial number of disintegrations,

NMC
R , was specified by the user when the simulation was performed. The template was normalized to

the data, so to determine the number of experimental disintegrations, NMC
R is normalized by the same

ratio—Adata/Atemp
i . Before the normalized template was plotted, it was scaled by its associated fractional

contribution scaling factor, V temp
i , and as a result, NMC

R is multiplied by V temp
i . Therefore, to calculate the

number of experimental disintegrations with TFractionFitter:

Ndata
R =

NMC
R AdataV temp

i

Atemp
i

. (6.4)

This equation is very similar to Eq. 6.3 except now Asub = AdataV temp
i ; the area of the experimental data

histogram is scaled by the fractional contribution of the ith template, and the total number of experimental

disintegrations can be calculated.

The sorted 56Co data were analyzed with a new TFractionFitter code. A HPGe data histogram, an

environmental background template histogram, and a 56Co Geant4 simulated template histogram (sorted

into a HPGe singles spectrum) were passed to root’s TFractionFitter class. From Eq. 6.4, the calculation

yielded Ndata
R (56Co) = (10.90 ± 0.14)×106 disintegrations. This result agrees well with the results from Sec.

6.3.2—the source activity and the number of reactions calculated by normalizing histograms. This agreement

lends some credence to using root’s TFractionFitter class to calculate the number of reactions. Rigorous

tests with beam-induced reactions at established resonance energies are presented in the next section.

6.3.4: Partial Number of Reactions from a TFractionFitter Code

The type of TFractionFitter code described thus far provides one way to calculate the total number

of experimental reactions, but the code described above requires a well-known decay scheme with known

branching ratios in order to produce a template histogram that can be matched to the data. The 17O(p,γ)18F
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direct capture reaction does not have a well-known decay scheme, and the branching ratios are expected

to change with bombarding energy. Additionally, the tails of broad resonances, Ecm
R = 556 keV and 676

keV, contaminate the direct capture signal with resonance contributions. A modified TFractionFitter code,

solver.cxx, that makes no assumptions about the decay scheme other than what primary transitions are

theoretically possible, was written. Model calculations, for the direct capture, and Breit-Wigner calculations,

for the broad resonance contributions, were performed to estimate the expected primary transition branching

ratios; however, solver.cxx relies on Geant4 simulations of each primary transition decay chain (including

the secondaries associated with each primary) independently, and it assigns a 100% branching ratio to each

primary—no prior knowledge of the branching ratio is assumed or necessary.
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Figure 6.5: A flowchart of how solver.cxx operates. The code fits all possible primary→secondary templates
to the data histogram. The scaling factors returned by the fitter are used to derive the partial number of
reactions associated with each primary transition. These partial values are summed to the total number of
reactions. The ratio between each partial number of reactions and the total number of reactions is a primary
branching ratio.

Now, instead of fitting one Monte Carlo template of interest to the data histogram (along with background

templates), all possible decay channels are simulated independently, and these primary→secondary templates

are passed, with the backgrounds, to the TFractionFitter class. The scaling factors, Vtemp
i , returned by

TFractionFitter can then be used to calculate the partial number of experimental reactions. Equation 6.4
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described above still holds except the calculated Ndata
R is the number of reactions associated with a single

primary transition. For “n” primaries, the total number of reactions is calculated by summing the partial

reaction numbers:

N total
R = Npartial

R,1 +Npartial
R,2 + ...+Npartial

R,n . (6.5)

Branching ratios can then be calculated where, for example, the branching ratio, B1, of primary “1” is:

B1 =
Npartial

R,1

N total
R

. (6.6)

A flowchart that summarizes the operation of the solver.cxx code is shown in Fig. 6.5.

This new analysis technique was tested with the 17O(p,γ)18F resonances at ER = 518 keV and ER =

193 keV. Data collected at Ep = 525 keV during a ER = 518 keV yield curve on target β1 (see Fig. 4.8)

were sorted into coincidence and singles data histograms. This data—charge accumulation of Q = 0.02

C—were then compared to simulated primary→secondary templates and overnight background templates.

Angular correlations were built into the Geant4 simulations of the primary→secondary deexcitation chains.

Theoretical angular correlations are listed for each primary transition in Tab. 6.4. Mixed angular correlations

for the primaries R→3791 and R→4398 were excluded from the simulations but are listed in the Tab. 6.4

along with their associated γ-ray multipolarities. Partial reaction numbers were determined with Eq. 6.4

Table 6.4: Theoretical angular correlations were calculated for the 17O(p,γ)18F resonance ER = 518 keV. The
R→3791 and R→4398 primaries have mixed emission patterns. For both transitions, the M1 and E2 angular
correlations are opposite in sign and will not impact significantly the intensity of these two low-branching
ratio primaries at 0◦. The R→3791 and R→4398 angular correlations were not included in the Geant4

simulations used to calculate the partial reaction numbers in Tab. 6.5.

Transition Theoretical W(θ) γ mult.
R→937 1 − 0.196P2(cos θ)
R→1121 1 − 0.100P2(cos θ)
R→2101 1 − 0.281P2(cos θ)
R→3791 1 − 0.196P2(cos θ) M1
R→3791 1 + 0.028P2(cos θ) E2
R→4116 1 − 0.196P2(cos θ)
R→4398 1 + 0.275P2(cos θ) M1
R→4398 1 − 0.165P2(cos θ) E2
R→4652 1 + 0.275P2(cos θ)

for the seven resonance primaries with both coincidence and singles data histograms. The total number of

reactions was then calculated with Eq. 6.5, and these results are shown in Tab. 6.5. New branching ratios

were then calculated with Eq. 6.6 based on primary→secondary templates fit independently to singles and
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Table 6.5: Seven 17O(p,γ)18F resonance ER = 518 keV template histograms—the resonance’s constituent pri-
maries and their associated secondaries—were simulated. These primary→secondary templates were passed,
along with an environmental background template, to root’s TFractionFitter class. Results from the coinci-
dence and singles spectra are shown. Theoretical angular correlations were built into the Geant4 simulation
(see Tab. 6.4).

Npartial
R

Transition coincidence singles
R→937 41000(2000) 46000(3000)
R→1121 423000(7000) 485000(8000)
R→2101 196000(4000) 200000(3000)
R→3791 9400(900) 16500(1000)
R→4116 12000(900) 15500(800)
R→4398 6100(800) 9100(1000)
R→4652 40400(1600) 42800(1400)
Ntotal

R 728000(9000) 815000(9000)

coincidence data histograms with root’s TFractionFitter class. These branching ratios are listed in Tab.

6.6 alongside the ER = 518 keV branching ratios from Kontos et al. (2012) [81] and Tilley et al. (1995) [40].

The resonance strength was then calculated with the total number of reactions, N total
R , from the coincidence

and singles data histograms in Tab. 6.5 and the following expression:

ωγ =
2ϵeff
λ2

N total
R

Np
(6.7)

where λ, the de Broglie wavelength, was defined in Eq. 5.2; ϵeff is the effective stopping power defined in

Eq. 4.4; Np is the number of incident particles defined in Eq. 5.3. Systematic uncertainties adopted during

Table 6.6: Branching ratios for the 17O(p,γ)18F resonance, ER = 518 keV, primary transitions were calculated
from the partial and total number of reactions in Tab. 6.5. They are compared here to the branching ratios
from Kontos et al. (2012) [81] and Tilley et al. (1995) [40]. Independent results from the coincidence and
singles spectra are shown.

Branching Ratio (%)
Transition Ref. [81] Ref. [40] coincidence singles
R→937 4.2(5) 4.9(9) 5.7(3) 5.7(4)
R→1121 58.6(23) 55(3) 58.1(12) 59.5(11)
R→2101 25.1(11) 27(2) 26.9(6) 24.5(5)
R→3791 1.3(2) 1.4(3) 1.29(13) 2.02(13)
R→4116 1.8(3) 1.8(3) 1.65(12) 1.90(10)
R→4398 2.2(3) 0.7(3) 0.83(11) 1.12(12)
R→4652 6.8(3) 8.7(7) 5.6(2) 5.25(18)

this calculation are listed in Tab. 6.7. New resonance strengths for the ER = 518 keV resonance are listed

92



Table 6.7: The systematic uncertainties present during the 17O(p,γ)18F direct capture study.

Source Uncertainty (%)
Geant41 1.3

17O-enriched water 3.0
Charge integration2 3.0
Target degradation3 3.2
Stopping power4 4.0

HPGe peak efficiency 5.0
NaI(Tl) total efficiency 5.0
1 From Ref. [101].
2 In agreement with Ref. [152].
3 From maximum degradation rate and target
thickness uncertainty.

4 From Ref. [153].

in Tab. 6.8 from the coincidence and singles data histograms. They are tabulated alongside the literature

strengths from Kontos et al. (2012) [81] , Newton et al. (2010) [78], Fox et al. (2005) [75], and Rolfs,

Charlesworth, and Azuma (1973) [77]. The weighted mean of the literature resonance strengths and the new

Table 6.8: The resonance strength, ωγ, for the 17O(p,γ)18F resonance ER = 518 keV was determined from
the total number of reactions in Tab. 6.5. This strength is compared to the strength from Kontos et al.
(2012) [81], Newton et al. (2010) [78], Fox et al. (2005) [75], and Rolfs, Charlesworth, and Azuma (1973)
[77].

ER = 518 keV Resonance Strength (meV)
Ref. [81] Ref. [78] Ref. [75] Ref. [77] coincidence singles
13.0(15) 13.7(22) 12(3) 13.0(17) 12.9(9) 14.5(10)

strength from the coincidence spectrum, ωγ = 12.9 ± 0.9 meV, was found to be

ωγ = 13.0± 0.7 meV; (6.8)

the weighted mean was adopted for the reaction rate calculations reported at the end of this chapter (see

Tab. B.2).

At the beginning of ECR ion source data acquisition, on-resonance charge accumulation, Q = 14 C, on

target β3 was performed at Ep = 200 keV. Coincidence and singles spectra are shown in Appendix E, Fig.

E.7; the observed primaries, secondaries, and escape peaks are labeled. These ER = 193 keV resonance data

were also used to test the TFractionFitter analysis technique. Based on the observed primary transitions,

the resonance γ-cascade was decomposed into ten primary→secondary Monte Carlo template histograms.
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Theoretical angular correlations were built into the Geant4 simulation for the resonance primaries (see Tab.

6.9), but a direct capture primary, R/DC→3839, was also observed. The angular correlation calculations

presented in Appendix C and discussed further in Sec. 6.3.6 were used to include the anisotropic emission

pattern for this direct capture primary. Mixed angular correlations for the R→2101, R→3134, and R→3791

resonance primaries were excluded from the analysis. The total number of reactions from the coincidence

data histogram differed by ≈0.7% if all transitions were assumed to have an isotropic emission pattern. The

total number of reactions from the singles data histogram differed by ≈1.2% if isotropy was assumed. Partial

reaction numbers were determined with Eq. 6.4 for the nine resonance primaries and the one (hypothesized)

direct capture primary with both coincidence and singles data histograms. The total number of reactions was

then calculated with Eq. 6.5. However, at Ep = 200 keV the observed direct capture primary, R/DC→3839,

has not previously been associated with the ER = 193 keV resonance (according to Ref. [82]). The partial

number of direct capture reactions at Ep = 200 keV must be calculated. The total S-factor at Ep = 190 keV,

discussed in the next few sections, was used to calculate the partial number of reactions that contaminate the

ER = 193 keV spectra. To calculate the partial number of direct capture (and broad resonance)—DCBR—

reactions for the ith primary at Ep = 200 keV, NDCBR
R,i (200) is defined as:

NDCBR
R,i (200) = Np(200)

∆E(200)

ϵeff(200)

Stotal(190)

E(200)
Bγ,i(190)e

−2πη(200). (6.9)

In this equation, Np(200), ∆E(200), ϵeff (200), E(200), and 2πη(200) are the number of incident particles, the

target thickness, the effective stopping power, the center-of-mass bombarding energy, and the Sommerfeld

parameter, respectively, at Ep = 200 keV. However, Stotal(190) and Bγ,i(190) are the total S-factor and the

branching ratio of the ith primary, respectively, at Ep = 190 keV. The total S-factor can be found in Tab.

6.20 and the branching ratios of the primaries are listed in Tab. 6.19. The partial number of direct capture

(and broad resonance) reactions was then subtracted from the partial number of reactions determined with

TFractionFitter where the partial number of resonance reactions is:

NResonance
R,i = NTFF

R,i −NDCBR
R,i (6.10)

where TFF stands for TFractionFitter. The R→0, R→937, R→1042, R→2523, and R/DC→3839 primaries

were found to have contributions from direct capture (and the Ecm
R = 556 and 676 keV broad resonances).

These contributions were subtracted according to Eq. 6.10. These results are tabulated in Tab. 6.10. The

coincidence and singles total resonance reaction numbers, partial resonance reaction numbers, and Eq. 6.6

were used to calculate the ER = 193 keV branching ratios. These branching ratios are tabulated alongside
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the Rolfs, Charlesworth, and Azuma (1973) [77] and Di Leva et al. (2014) [82] branching ratios in Tab. 6.11.

The coincidence and singles total resonance reaction numbers, and Eq. 6.7 were used to calculate the ER

= 193 keV resonance strength. The results are tabulated alongside the Di Leva et al. (2014) [82], Chafa

et al. (2007) [144], and Fox et al. (2005) [75] resonance strengths in Tab. 6.12. Systematic uncertainties

Table 6.9: Theoretical angular correlations were calculated for the 17O(p,γ)18F resonance ER = 193 keV. The
R→2101, R→3134, and R→3791 primaries have mixed emission patterns. The mixed angular correlations
were not included in the Geant4 simulations used to calculate the partial reaction numbers in Tab. 6.10.

Transition Theoretical W(θ) γ mult.
R→0 1 − 0.1000P2(cos θ)

R→937 1 − 0.0285P2(cos θ)
R→1042 1 + 0.1428P2(cos θ)
R→1081 1 + 0.1428P2(cos θ)
R→2101 1 + 0.1000P2(cos θ) M1
R→2101 1 − 0.0306P2(cos θ) E2
R→2523 1 + 0.1000P2(cos θ)
R→3134 1 − 0.1000P2(cos θ) M1
R→3134 1 + 0.0714P2(cos θ) E2
R→3358 1 − 0.0285P2(cos θ)
R→3791 1 − 0.0285P2(cos θ) M1
R→3791 1 − 0.0816P2(cos θ) E2

Table 6.10: The 17O(p,γ)18F resonance ER = 193 keV primary→secondary templates were passed, along
with an environmental background template, to root’s TFractionFitter class (TFF). The template scaling
factors were used to calculate the partial number of reactions for each primary transition. These were then
summed to determine the total number of ER = 193 keV reactions. Results from the coincidence and singles
spectra are shown. The direct capture S-factor at Ep = 190 keV, discussed later, was used to determine the
direct capture (and broad resonance) component to these measured partial reaction numbers (DCBR); these
direct capture reactions were subtracted from the measured partial reaction numbers to arrive at the partial
number of resonance reactions.

Npartial
R TFF DCBR Resonance

Transition coincidence singles Eq. 6.9 coincidence singles
R→0 4500(600)1 4500(600) 1000(300) 3500(700) 3500(700)

R→937 42300(1400) 43700(1500) 12000(2000) 30000(3000) 31000(3000)
R→1042 4100(500) 4200(600) 1000(400) 3100(700) 3300(800)
R→1080 57100(1600) 53800(1400) − 57100(1600) 53800(1400)
R→2101 12800(1000) 13400(1000) − 12800(1000) 13400(1000)
R→2523 9400(700) 8600(600) 800(400) 8700(800) 7900(700)
R→3133 5700(700) 4800(600) − 5700(700) 4800(600)
R→3356 3100(600) 3700(700) − 3100(600) 3700(700)
R→3791 6900(700) 6900(900) − 6900(700) 6900(900)
R→3839 9200(900) 7400(1100) 6700(1500) 2500(1700) −
Ntotal

R 155000(3000) 151000(3000) 22000(3000) 133000(4000) 129000(4000)
1 Adopted from g.s. transition fit in HPGe singles spectrum.
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adopted during this calculation are listed in Tab. 6.7. The weighted mean of the LUNA resonance strength,

Table 6.11: Branching ratios for the 17O(p,γ)18F resonance, ER = 193 keV, primary transitions were isolated
from direct capture contributions and calculated from the partial and total number of reactions in Tab. 6.10.
They are compared here to the branching ratios from Rolfs, Charlesworth and Azuma (1973) [77] and Di
Leva et al. (2014) [82]. Results from the coincidence and singles spectra are shown.

Branching Ratio (%)
Transition Ref. [77] Ref. [82] coincidence singles

R→0 − 2.9(4) 2.7(5) 2.8(6)
R→937 40(8) 24.5(8) 22(2) 24(2)
R→1042 − 3.4(4) 2.3(5) 2.5(6)
R→1080 60(8) 40.8(7) 42.9(18) 41.9(16)
R→2101 − 11.8(8) 9.6(8) 10.4(8)
R→2523 − 5.5(6) 6.5(7) 6.1(6)
R→3133 − 4.3(4) 4.2(5) 3.8(5)
R→3356 − 2.3(3) 2.3(4) 2.9(6)
R→3791 − 4.5(4) 5.2(5) 5.3(7)
R→3839 − − 1.8(13) −

Table 6.12: The resonance strength, ωγ, for the 17O(p,γ)18F resonance ER = 193 keV was determined from
the total number of reactions in Tab. 6.10. This strength is compared to the strength from Di Leva et al.
(2014) [82], Chafa et al. (2007) [144], and Fox et al. (2005) [75].

ER = 193 keV Resonance Strength (µeV)
Ref. [82] Ref. [144] Ref. [75] coincidence singles
1.67(12) 2.2(4)1 1.2(2) 1.89(15) 1.82(14)
1 Strength from Ref. [76], ωγ = 3.4(6) µeV, revised in Refs. [145,
144].

ωγ = 1.67 ± 0.12 µeV, and the new strength determined from the coincidence spectrum, ωγ = 1.89 ± 0.15

µeV, was found to be

ωγ = 1.76± 0.09 µeV ; (6.11)

the weighted mean was adopted for the reaction rate calculations reported at the end of this chapter (see

Tab. B.2).

The remaining 17O(p,γ)18F data at Ep = 175, 190, 250, 275, 300, and 325 keV have both direct capture

and broad resonance components that must be taken into account. The branching ratios were first approxi-

mated based on direct capture model and Breit-Wigner calculations. These calculations are discussed next

in Sec. 6.3.5. Anisotropic angular correlations may also affect the observed peak intensities. Calculation and

assessment of 17O(p,γ)18F angular correlations are presented in Appendix C. Anisotropies could result from
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interference between the resonances and the direct capture reaction (see Appendix C.1), different bound

state orbital angular momenta (see Appendix C.2), or interference between different scattering state orbital

angular momenta (see Appendix C.3). The results were written into the Geant4 simulations producing

17O(p,γ)18F primary→secondary template histograms for the solver.cxx code. This is discussed in more

detail in Sec. 6.3.6.

6.3.5: Estimated Direct Capture and Broad Resonance Branching Ratios

The code tedca [138] was used to perform direct capture model calculations, and reacnumeric.f [154]

was used for the Breit-Wigner calculations. The direct capture model calculations were based on the decay

scheme observed by Ref. [84] at Ep = 1625 keV. The decay schemes of the two broad resonances come

from Refs. [40, 81]. Figure 6.6a shows the direct capture decay scheme from Ref. [84] as thick red arrows.

The decay scheme for the Ecm
R = 556 keV resonance from Refs. [40, 81] is shown in Fig. 6.6b. The thick

black and red arrows are the 18F decays due to the resonance; however, the red arrows indicate that certain

Ecm
R = 556 keV resonance decays are also direct capture decays. Figure 6.6c shows a decay scheme for

the Ecm
R = 676 keV resonance from Refs. [40, 81]. Again, the thick black and red arrows are due to the

resonance, but the red arrows mean that some of the resonance decays are also direct capture decays. The

hatch marks in the three level diagrams are meant to represent an arbitrary proton bombarding energy. The

direct capture primaries will have γ-ray energies Eγ = Qpγ + Ep − Ex (as discussed in Sec. 2.1.1), but so

will the primaries from the broad resonance tails. The branching ratios of the broad resonances are listed

in Tab. 6.13, and differences between the emission probabilities presented in Refs. [40, 81] were reconciled

with the procedure discussed in Appendix A.2. The partial widths used in the Breit-Wigner calculations

are tabulated in Appendix B.1.1, Tab. B.2. Coupling calculations (an example calculation is discussed in

Sec. 2.1.1) were performed for 17O(p,γ)18F direct capture, and the orbital angular momenta (listed in Tab.

2.1) were used as input to tedca [138]. A zero scattering state potential and the bound state potential

parameters, r0 = 1.25 fm and a = 0.65 fm [85], were also used as tedca input. The model calculations

were computed for each experimental bombarding energy, and the tedca cross sections were multiplied by

the spectroscopic factors, C2S, according to Eq. 2.16 in Sec. 2.1.1. The spectroscopic factors used from

Refs. [155, 156, 81] are listed in Tab. 6.14. Differences between the literature values were reconciled with

the procedure outlined in Appendix A.2. The direct capture model S-factor, calculated with tedca [138] is

shown in Fig. 6.7 as a dashed black line. The broad resonance contribution to the S-factor is plotted as a

dotted black line, and the incoherent sum of the two calculations is a solid black line (the total S-factor).

From the direct capture model and Breit-Wigner calculations, estimates of the convolved branching ratios
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Figure 6.6: (a) Direct capture [84], (b) Ecm
R = 556 keV, and (c) Ecm

R = 676 keV broad resonance tail [40, 81]
decay schemes. In the broad resonance tail level diagrams, transitions that can also be attributed to direct
capture are red arrows. Transitions that are just from the broad resonance tails are black arrows. The hatch
marks above Ecm

p = 183 keV in all three diagrams represents an arbitrary proton bombarding energy where
Eγ = Qpγ + Ep − Ex
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Table 6.13: Discrepancies between broad resonance branching ratios presented in Refs. [40, 81] are resolved
by calculating weighted and reconfigured means. Branching ratios are tabulated as percentages (%).

Transition Ecm
R = 556 keV Ecm

R = 676 keV
[81] [40] adopted [81] [40] adopted

R → 0 − 0.2(2) 0.2(2) 0.38(2) 0.3(1) 0.38(2)1

R → 937 50.3(6) 51(3) 51(2)1 65.73(35) 67(3) 66.2(17)1

R → 1042 − − − 0.69(7) 1.3(1) 1.0(3)2

R → 1121 2.1(2) 1.0(1) 1.5(6)2 − − −
R → 1701 − − − 5.67(13) 5.7(6) 5.67(13)1

R → 2101 − − − 1.74(9) 1.2(3) 1.5(3)2

R → 2523 7.0(2) 5.5(4) 6.3(8)2 0.73(6) 0.3(2) 0.6(2)2

R → 3062 2.3(1) 1.3(3) 1.8(5)2 − − −
R → 3134 − − − 1.29(6) 0.7(3) 1.1(3)2

R → 3358 − − − 2.10(5) 2.3(3) 2.11(5)1

R → 3724 − − − 2.51(5) 1.4(5) 2.1(5)2

R → 3791 10.2(2) 11.6(13) 10.3(4)2 − − −
R → 3839 22.0(3) 25.0(16) 23.1(14)2 13.28(10) 15.8(14) 14.2(12)2

R → 4116 2.2(3) 1.5(3) 1.9(4)2 3.73(6) 3.9(2) 3.74(6)1

R → 4226 1.4(2) 0.9(3) 1.2(2)2 − − −
R → 4360 − − − 2.14(6) 0.5(4) 1.4(8)2

R → 4398 2.5(1) 2.0(2) 2.3(3)2 − − −
1 Weighted mean.
2 Reconfigured mean.
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Figure 6.7: Direct capture model calculations were performed with the code tedca [138] and the result is
shown here as a dashed black line. The Breit-Wigner calculation performed with the code reacnumeric.f
[154] is shown as a dotted black line. The incoherent sum of the two is a solid black line. Spectroscopic
factors and partial widths used in these calculations can be found in Tables 6.14 and B.2, respectively.
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Table 6.14: Spectroscopic factors presented in Refs. [155, 156, 81] were reconciled with the procedure
discussed in Appendix A.2. Spectroscopic factors from Refs. [155, 156] were determined from transfer
reactions, and the spectroscopic factors from Ref. [81] were calculated from R-matrix fits.

Ex (keV) ℓf C2S [155] C2S [156] C2S [81] C2S adopted
0 2 0.62(16)1 − − 0.62(16)
937 0 0.27(7)1,2 0.102(15)3 − 0.17(8)4

937 2 − 0.306(46)3 − 0.31(5)
1042 2 0.96(24)1 0.96(14)3 − 0.96(12)5

1121 2 0.83(21)1 0.89(13)3 − 0.87(11)5

1701 2 − 0.035(5)3 − 0.035(5)
2523 0 0.021(5)1,2 0.014(2)3 − 0.017(8)4

2523 2 − 0.0110(17)3 − 0.0110(17)
3062 0 0.13(3)1 0.21(3)3 0.32(16)6 0.18(4)4

3062 2 0.61(15)1 0.62(9)3 0.37(19)6 0.58(7)5

3358 0 − 0.014(2)3 − 0.014(2)
3358 2 − − − 0.040(10)7

3839 0 0.41(10)1,2 − 0.42(21)6 0.42(9)5

3839 2 − − 0.19(10)6 0.19(10)
4116 0 0.11(3)1 0.17(3)3 − 0.14(3)4

4116 2 0.63(16)1 0.68(10)3 − 0.66(9)5

4360 2 − 0.074(11)3 − 0.074(11)
4652 2 0.8(2)1 1.04(16)3 1.6(8)6 0.97(12)5

4753 2 − 0.18(3)3 − 0.18(3)
4964 0 0.18(5)1 0.17(3)3 0.17(9)6 0.17(2)5

4964 2 0.41(10)1 0.51(8)3 0.5(3)6 0.47(6)5

5298 2 − 0.120(18)3 − 0.120(18)
5603 2 − 0.120(18)3 − 0.120(18)

1 25% uncertainty adopted from Ref. [85].
2 Mean of upper and lower limit.
3 15% uncertainty adopted from Ref. [85].
4 Reconfigured mean.
5 Weighted mean.
6 50% uncertainty adopted from Ref. [81].
7 Extrapolated from direct capture cross section at Ep = 1625 keV in Ref. [84].

(the direct capture branching ratios with the broad resonance contributions included) at each bombarding

energy were calculated with the following equation:

Bij =
σ556
ij + σ676

ij + σDC
ij

σ556
total + σ676

total + σDC
total

. (6.12)

In this equation, Bij is the branching ratio for transition i → j; σ556
ij is the cross section of the i → j

transition in the Ecm
R = 556 keV resonance; σ676

ij is the cross section of the i → j transition in the Ecm
R =

676 keV resonance; σDC
ij is the cross section of the i → j transition in the direct capture reactions; σ556

total is

the total cross section of Ecm
R = 556 keV resonance; σ676

total is the total cross section of the Ecm
R = 676 keV

resonance; σDC
total is the total cross section of the direct capture reaction. The estimates of the convolved
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branching ratios for every possible transition are listed in Tab. 6.15.

Table 6.15: The incoherent sum of the computed cross sections is used to calculate the branching ratios for
all possible 17O(p,γ)18F direct capture and broad resonance levels (see Eq. 6.12). These calculations were
performed for each experimental bombarding energy, and branching ratios are tabulated as percentages (%).
These branching ratios are estimates and are not used by the solver.cxx analysis code.

Branching Ratio (%) by Ep (keV)
Transition 175 190 250 275 300 325
R/DC→0 4.2(11) 4.1(11) 4.0(10) 3.8(10) 3.7(9) 3.6(9)

R/DC→937 26(4) 26(4) 28(4) 29(4) 30(4) 32(3)
R/DC→1042 1.17(16) 1.16(16) 1.11(15) 1.08(15) 1.05(14) 1.01(13)
R/DC→1121 11.1(14) 11.0(14) 10.5(14) 10.2(13) 9.9(13) 9.5(12)
R/DC→1701 0.21(2) 0.22(2) 0.26(3) 0.28(3) 0.30(3) 0.32(3)
R/DC→2101 0.054(12) 0.057(13) 0.067(15) 0.073(16) 0.078(17) 0.083(18)
R/DC→2523 1.6(4) 1.7(4) 1.9(4) 2.1(4) 2.2(4) 2.4(4)
R/DC→3062 10.2(16) 10.1(16) 9.6(14) 9.3(14) 9.0(13) 8.6(13)
R/DC→3134 0.035(10) 0.036(11) 0.044(13) 0.048(14) 0.051(15) 0.056(16)
R/DC→3358 1.17(16) 1.16(16) 1.11(15) 1.08(14) 1.05(13) 1.00(13)
R/DC→3724 0.058(15) 0.061(16) 0.074(19) 0.08(2) 0.09(2) 0.10(2)
R/DC→3791 1.16(10) 1.24(11) 1.66(14) 1.92(16) 2.18(17) 2.51(19)
R/DC→3839 19(3) 19(3) 19(3) 19(3) 19(3) 19(2)
R/DC→4116 11.6(18) 11.5(18) 10.9(17) 10.5(16) 10.2(15) 9.7(14)
R/DC→4226 0.12(2) 0.13(2) 0.17(3) 0.20(4) 0.23(4) 0.27(5)
R/DC→4360 0.17(3) 0.17(3) 0.17(3) 0.17(3) 0.17(3) 0.17(4)
R/DC→4398 0.21(3) 0.23(3) 0.31(5) 0.37(6) 0.42(6) 0.50(7)
R/DC→4652 4.0(6) 3.9(5) 3.8(5) 3.7(5) 3.5(5) 3.4(4)
R/DC→4964 7.8(9) 7.6(9) 7.0(8) 6.6(8) 6.3(7) 5.9(7)

6.3.6: Accounting for Anisotropic Angular Correlations

The 17O(p,γ)18F direct capture study was performed at θ = 0◦ with respect to the beam direction. The

γγ-coincidence spectrometer can only be used at this angle. Previous studies performed this experiment at

θ = 55◦ because the P2(cosθ) Legendre polynomial is zero at this angle and angular correlation calculations

can be simplified. References [84, 157] outline how to calculate angular correlations for resonant and direct

capture reactions. Three possible scenarios were considered: (1) the broad resonance tails and direct capture

interfere, R,D interference, and the angular correlation for a transition is the coherent sum of resonance and

direct capture components; (2) the direct capture scattering state orbital angular momenta interfere, and

the angular correlation contains a coherent sum due to this interference; (3) the direct capture bound state

orbital angular momenta contribute a component to the incoherent sum of angular correlations for each

transition. Appendix C documents each of these three scenarios and the assessment of their impact on the

total angular correlation. After careful assessment, the angular correlations calculated for R,D interference
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and scattering state orbital angular momenta interference were excluded from the final analysis because

they do not introduce anisotropies, and the terms computed are consistent with unity. For each known

direct capture primary [84], an expression for the included angular correlations was calculated, and these

expressions are tabulated in Tab. 6.16. In this table, the angular correlations are defined as [84]:

Wℓf∗ (θ) = Wℓi(θ) = Wp→d(θ) = 1−
1

10
P2(cosθ), (6.13)

Wℓf (θ) = Wp→s(θ) = 1− P2(cosθ), (6.14)

and

Wℓi∗ (θ) = Wf→d(θ) = 1−
2

5
P2(cosθ). (6.15)

In these equations p and f refer to p-wave (ℓi = 1) and f -wave (ℓi∗ = 3) formation, respectively; d refers to

the d-shell (ℓf∗ = 2) orbital; s refers to the s-shell (ℓf = 0) orbital. A z-factor and y-factor are defined as

[84]:

z =
σp→d(E)

σp→s(E)
, (6.16)

and

y =
σf→d(E)

σp→d(E)
. (6.17)

The z-factor is the ratio between the (p → d) and (p → s) cross sections for a particular direct capture

transition, and the y-factor is the ratio between the (f → d) and (p → d) cross sections.

It can be assumed that the angular correlations of direct capture secondaries are isotropic due to the

detector geometry—the NaI(Tl) annulus provides nearly 4π coverage. As a result, contributions to the

angular correlation by direct capture secondaries are not included in the final analysis.

These angular correlation terms can now be incorporated into Geant4 reaction simulations for 17O(p,γ)18F.

From Sec. C, σℓf∗ (E), σℓf (E), σℓi∗ (E), σ556(E), and σ676(E) are calculated with a direct capture model code

(tedca [138]) and a Breit-Wigner code (reacnumeric.f [154]) at each experimental beam energy. In Geant4,

the angular correlation is constructed so that:

W(E, θ) =
σ556(E)W556(θ) + σ676(E)W676(θ) + σℓf∗ (E)Wℓf∗ (θ) + σℓf (E)Wℓf (θ) + σℓi∗ (E)Wℓi∗ (θ)

σtot(E)
(6.18)

where

σtot(E) = σ556(E) + σ676(E) + σℓf∗ (E) + σℓf (E) + σℓi∗ (E). (6.19)

Note that according to Ref. [84], W556(θ) = 1 and W676(θ) = 1 because all 17O(p,γ)18F resonances with
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Table 6.16: The angular correlation terms considered for each 17O(p,γ)18F transition. As demonstrated
in Sections C.1 and C.3, interference between resonances and direct capture is negligible, and interference
between scattering state orbital angular momenta is negligible.

Ex (keV) bound state W(θ) scattering state W(θ)
0 Wℓf∗ (θ)

1
1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

937 1
1+z

(

Wℓf (θ)+zWℓf∗ (θ)
)

1
1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

1042 Wℓf∗ (θ)
1

1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

1121 Wℓf∗ (θ)
1

1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

2523 1
1+z

(

Wℓf (θ)+zWℓf∗ (θ)
)

1
1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

3062 1
1+z

(

Wℓf (θ)+zWℓf∗ (θ)
)

1
1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

3358 1
1+z

(

Wℓf (θ)+zWℓf∗ (θ)
)

1
1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

3839 1
1+z

(

Wℓf (θ)+zWℓf∗ (θ)
)

1
1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

4116 1
1+z

(

Wℓf (θ)+zWℓf∗ (θ)
)

1
1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

4360 Wℓf∗ (θ)
1

1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

4652 Wℓf∗ (θ)
1

1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

4964 1
1+z

(

Wℓf (θ)+zWℓf∗ (θ)
)

1
1+y

(

Wℓi(θ)+yWℓi∗ (θ)
)

spin J ≤3 give rise to isotropic emission patterns.

Geant4 spectra generated with the theoretical angular correlations built into the Monte Carlo were

compared with spectra that assumed that every 18F transition is isotropic. For the primaries, this ratio

N corr.
γ /Nno corr.

γ is equal to the experimental angular correlation associated with the transition. Experimental

angular correlations are derived from the integral of theoretical angular correlations over the finite solid angle

subtended by the detector. In general, expressions for the theoretical angular correlations remain the same

except for the inclusion of attenuation coefficients, Qn. For example, the experimental angular correlation

becomes [4]:

Wexp(θ) =
1

a0

nmax
∑

n=0

anQnPn(cosθ) (6.20)

as opposed to the theoretical expression:

Wtheo(θ) =
1

a0

nmax
∑

n=0

anPn(cosθ). (6.21)

Peak intensities were calculated from Geant4 spectra for both scenarios, N corr.
γ and Nno corr.

γ , and the

intensity ratio was plotted for each bombarding energy. Figure 6.8 shows the ratio between Monte Carlo

HPGe singles peak intensities collected from spectra with the 18F angular correlations included and without

the correlations for each experimental beam energy. Only the ratios for observed γ-rays (see Tab. 6.3) are

shown. The conclusion that N corr.
γ /Nno corr.

γ = W(θ) can be verified by comparing the order of magnitude of

the primary experimental angular correlations in Fig. 6.8 with experimental direct capture primary angular
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Figure 6.8: Ratios of 18F HPGe singles peak intensities from spectra generated with Geant4. Simulated
intensities from the deexcitation of the 18F nucleus with theoretical angular correlations included were
compared to simulated intensities where all transitions were assumed to be isotropic. Primaries are shown
as open blue circles and secondaries are shown as open red squares in these figures. For the primaries, the
ratio is equivalent to the experimental angular correlation of that particular primary transition and can be
compared to the preliminary experimental angular correlations due to different direct capture bound state
orbital angular momenta in Fig. C.6. Only ratios for observed γ-rays (see Tab. 6.3) are plotted.
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correlations in Appendix C.2, Fig. C.6. As discussed in Appendix C, the incoherent sum of angular corre-

lations due to different bound state orbital angular momenta is the primary source of anisotropic emission

patterns. At all six bombarding energies, the experimental angular correlation amounts to ≈ 0.5 for the seven

transitions that contribute to the direct capture portion of the emission (see Tab. 6.16). Incorporating the

theoretical angular correlations in Fig. C.6 into Eq. 6.19 yields theoretical convolved angular correlations.

Experimental convolved angular correlations can be calculated from the detector geometry or by performing

Geant4 simulations. The deviations between the experimental angular correlations in Fig. C.6 and Fig.

6.8 are justified by the geometry of the simulated Geant4 γγ-coincidence spectrometer and the convolution

of the direct capture and broad resonance angular correlations (Eq. 6.19).

6.3.7: Direct Capture 17O(p,γ)18F Partial Reaction Numbers

The convolved direct capture and broad resonance decay scheme, a combination of the broad resonance

contributions in Tab. 6.13 and Figs. 6.6b and 6.6c from Refs. [40, 81] and the direct capture contributions

in Fig. 6.6a from Ref. [84], can be decomposed into nineteen primary→secondary template histograms.

The total, convolved, branching ratio estimates are listed in Tab. 6.15, and this table shows the nineteen

contributions that the solver.cxx code passes to root’s TFractionFitter class. In addition to environmental

background templates, assembled from overnight background runs after each day data were acquired, beam-

induced background templates were included in the analysis where applicable. The centroids of beam-induced

background primaries and secondaries were used to produce Geant4 simulated spectra that were then passed

to TFractionFitter. Resolution functions, separate from the functions used for 17O(p,γ)18F primaries and

secondaries, were applied to the beam-induced background simulations by sort.cxx before they were sorted

into singles and coincidence template spectra. Table 6.17 shows what beam-induced background templates

were considered at each direct capture bombarding energy.

Table 6.17: Beam-induced template histograms included by the TFractionFitter analysis code, solver.cxx.
A “×” indicates that a template was included at a particular bombarding energy while “−” means it was
excluded.

Beam-Induced Templates by Ep (keV)
Reaction 175 190 250 275 300 325

11B(p,γ)12C × × − − − −
14N(p,γ)15O − − − × × ×
18O(p,γ)19F × − − − − −
19F(p,αγ)16O − − × × × ×

The analysis code, solver.cxx, was used to fit simulated 17O(p,γ)18F primary→secondary templates,
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along with environmental and beam-induced background templates, to coincidence and HPGe singles data

histograms. The partial number of reactions for each primary transition at each direct capture bombarding

energy is listed in Tab. 6.18. The fitting routine had difficulty converging if the TFractionFitter energy

threshold was set below Emin = 2650 keV for the HPGe singles histograms. Slight variations in the envi-

ronmental background templates, the sum of several overnight background runs collected daily after data

were acquired, are responsible for these fitting issues at low energies in the singles spectra. Environmental

backgrounds are suppressed significantly in the coincidence spectra, and the fitting routine was able to con-

verge over wide energy regions (≈200−8000 keV). As a result, the inclusion of partial reaction numbers from

the analysis of HPGe singles spectra is kept to a minimum, and they were sparingly used for the ground

state transition (a γ-ray that will not be in coincidence with the other constituents of the γ-cascade). At Ep

= 275, 300, and 325 keV, strong first and second escape peaks associated with the ground state transition

were present in the coincidence spectra and the HPGe singles histogram was ignored completely. At Ep =

190 and 250 keV, the HPGe singles spectrum was analyzed in order to determine the number of ground

state reactions; the ground state transition and its associated escape peaks fall within the 2650−6000 keV

TFractionFitter energy region. The analysis code did not identify a ground state contribution appreciably

above background at Ep = 175 keV. Therefore, a majority of the partial reaction numbers listed in Tab.

6.18 are from the analysis of coincidence spectra with the coincidence condition 3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ

≤ 9.0 MeV. Any exceptions that rely on the analysis of HPGe singles spectra are noted.

At Ep = 325 keV, an abnormal enhancement in the number of ground state reactions was observed. The

trend in the relative intensity of the ground state transition (see Tab. 6.3) and the observation of strong first

and second escape peaks in the coincidence spectrum corresponding to this transition (see Fig. E.6) indicate

that this enhancement is physical and not an artifact of the analysis. No narrow 17O(p,γ)18F resonances are

known at this energy and no beam-induced background could be identified that might be responsible for this

enhancement. As a result, the number of ground state reactions measured at Ep = 325 keV were excluded

from the final analysis. The total number of reactions was calculated for each direct capture bombarding

energy with Eq. 6.5 and are tabulated in Tab. 6.18. The number of incident protons at each beam energy

is also shown in Tab. 6.18. As an illustration, Fig. 6.9 shows the Ep = 250 keV coincidence spectrum (data

are black) with the sum of all template histograms (red) overlaid with each primary→secondary template

identified as a contribution to the data histogram (varying shades of blue).

The total number of reactions at each bombarding energy can now be used to calculate the astrophysical

S-factor because the reaction yield can be expressed in terms of the total number of reactions, NR in this
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Figure 6.9: The code solver.cxx was used to fit nineteen primary→secondary 17O(p,γ)18F template histograms
to coincidence data collected at Ep = 250 keV. Environmental background and 19F(p,αγ)16O templates are
included but are not shown separately here. The black spectrum is the data, the red spectrum is the sum of
all templates, and the blue spectra are the 17O(p,γ)18F templates that were found to contribute at Ep = 250
keV. The partial and total number of 17O(p,γ)18F reactions are tabulated in Tab. 6.18. Branching ratios

are listed in Tab. 6.19. The coincidence condition 3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ ≤ 9.0 MeV was applied to
the data and template histograms.
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expression, and the cross section:

Y =
NR

Np
=

∫ Ecm
p

Ecm
p −∆E

σ(E)

ϵeff (E)
dE (6.22)

where Y is the yield, Ecm
p is the center-of-mass H+ bombarding energy, ∆E is the target thickness, σ(E) is

the cross section, and ϵeff (E) is the effective stopping power. The cross section can be replaced with the

astrophysical S-factor as shown in Sec. 2.1.1, Eq. 2.17. The code sfactor.cxx uses Eq. 6.22 and 2.17 to

solve for the astrophysical S-factor at each experimental beam energy. The calculation of the effective beam

energy is also discussed in Sec. 6.3.8.

Table 6.18: Each 17O(p,γ)18F Monte Carlo spectrum was decomposed into nineteen individual
primary→secondary templates. These templates were then fit to each coincidence data histogram along
with environmental and beam-induced background templates. The scaling factor returned for each
primary→secondary template was used to calculate the partial number of 17O(p,γ)18F reactions. These
partial values were summed to determine the total number of reactions. Unless noted otherwise, the ground
state transition contribution was also determined from coincidence spectra. The number of incident protons,
Np are also listed. An enhancement in the ground state transition at Ep = 325 keV was excluded from the
analysis.

Partial Number of Reactions by Ep (keV)
Transition 175 190 250 275 300 325
R/DC→0 − 900(300)1 6200(1100)1 9000(2000) 7000(1900) 29000(4000)2

R/DC→937 11900(1200) 11900(1000) 44000(2000) 59000(2000) 66000(2000) 77000(3000)
R/DC→1042 − 900(400) − 1200(800) 1100(500) 400(300)
R/DC→1121 2400(1000) 1400(800) 11500(1600) 18000(2000) 11600(1600) 17000(2000)
R/DC→1701 700(500) − − 1100(600) − −
R/DC→2101 1100(600) − − − 700(600) 1500(700)
R/DC→2523 − 700(400) 4200(700) 4400(900) 7000(900) 5800(800)
R/DC→3062 2800(1000) 3100(800) 11900(1500) 11500(1700) 12600(1500) 10400(1700)
R/DC→3134 − − − 1000(600) 700(600) 1600(600)
R/DC→3358 − − − 2300(900) 1400(800) 1400(700)
R/DC→3724 1000(500) − − 1100(600) 1500(500) 1800(500)
R/DC→3791 − − − 5000(900) 7100(800) 7000(1000)
R/DC→3839 7800(1100) 6500(900) 22300(1600) 29400(1700) 34200(16000 37500(1700)
R/DC→4116 4000(800) 3000(700) 11000(1200) 15300(1200) 14900(1100) 17000(1200)
R/DC→4226 − − 1200(700) 1300(700) 1100(600) −
R/DC→4360 − − − − − 800(500)
R/DC→4398 − − 1000(700) 2500(800) 2000(600) 2800(700)
R/DC→4652 − 1000(500) − 1800(700) 5100(800) 3200(600)
R/DC→4964 1000(500) 500(500) 7200(900) 10000(1000) 8400(900) 2800(900)

Ntotal
R 33000(3000) 30000(2000) 120000(4000) 174000(5000) 183000(5000) 188000(5000)

Np (×1020) 6.23(19) 3.37(10) 0.93(3) 0.624(19) 0.312(9) 0.187(6)
1 Adopted from g.s. transition fit in HPGe singles spectrum.
2 Ground state transition enhancement excluded from the analysis.
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Table 6.19: Branching ratios were calculated from the partial and total number of reactions in Tab. 6.18.
Each partial value was divided by the total number of reactions to determine the branching ratio.

Branching Ratio (%) by Ep (keV)
Transition 175 190 250 275 300 325
R/DC→0 − 3.1(10) 5.1(9) 5.0(11) 3.9(10) −

R/DC→937 37(5) 40(5) 36(2) 33.8(17) 36.2(16) 40.9(19)
R/DC→1042 − 3.1(13) − 0.7(4) 0.6(3) 0.2(1)
R/DC→1121 7(3) 5(3) 9.6(14) 10.6(12) 6.4(9) 9.2(11)
R/DC→1701 2.2(16) − − 0.6(3) − −
R/DC→2101 3.3(19) − − − 0.4(3) 0.8(4)
R/DC→2523 − 2.3(15) 3.5(6) 2.5(5) 3.9(5) 3.1(4)
R/DC→3062 9(3) 10(3) 9.9(13) 6.6(10) 6.9(9) 5.6(9)
R/DC→3134 − − − 0.5(3) 0.4(3) 0.8(3)
R/DC→3358 − − − 1.3(5) 0.8(5) 0.7(4)
R/DC→3724 3.0(14) − − 0.6(4) 0.8(3) 0.9(2)
R/DC→3791 − − − 3.0(5) 3.9(4) 3.7(6)
R/DC→3839 24(4) 22(3) 18.6(14) 16.9(11) 18.7(10) 19.9(10)
R/DC→4116 12(3) 10(2) 9.1(10) 8.8(7) 8.2(6) 9.0(7)
R/DC→4226 − − 1.0(6) 0.8(4) 0.6(3) −
R/DC→4360 − − − − − 0.4(3)
R/DC→4398 − − 0.8(6) 1.5(4) 1.1(3) 1.5(4)
R/DC→4652 − 3.5(15) − 1.1(4) 2.8(4) 1.7(3)
R/DC→4964 3.0(16) 1.6(15) 6.0(8) 5.7(6) 4.6(5) 1.5(5)

6.3.8: Astrophysical S-Factor Calculations

The analysis code, sfactor.cxx, uses the Monte Carlo technique described in Appendix A.1 to solve an

analytical expression of the astrophysical S-factor at each experimental energy. All input parameters are

defined as probability density functions. To accomplish this calculation, an analytical expression for the

S-factor must be derived from the numerical equations, Eq. 6.22, with the substitution from Eq. 2.17:

σ(E) =
S(E)

E
e−2πη. (6.23)

This is accomplished through the calculation of effective energies (described below). The code sfactor.cxx

solves for the effective energy utilizing the formalism explained by Ref. [158]. In this paper, the authors make

the case that a generalized energy deconvolution procedure can be derived if adjustments to the experimental

cross section are considered in addition to the energy [158]:

σexp(Eeff ) =
Y (E0)

fn∆x
(6.24)
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where Eeff is the effective energy, f is the adjustment factor, n is the number density of target atoms, ∆x is

the linear target thickness, E0 is the incident beam energy in the center-of-mass frame, and Y is the reaction

yield. The effective energy is the energy at which the following expression is true [159]:

σ(Eeff )

∫ E0

E0−∆E

dE

ϵ(E)
=

∫ E0

E0−∆E

σ(E)

ϵ(E)
dE (6.25)

where ∆E is the target thickness and ϵ(E) is the effective stopping power. The authors of Ref. [158] go on to

present several acceptable deconvolution procedures and their analytical expressions; however, the procedure

that best resembles the technique described by Ref. [4] is the median energy. Within this dissertation, the

effective beam energy is in fact the median energy according to the deconvolution procedure outlined by

Ref. [158] and Eeff = Em. To calculate the median energy, the energy dependence of the cross section is

assumed to be at most quadratic. The median energy is then defined as:

Eeff = Em = E0 −
1

2
∆E +

[1 +R2
1(∆E)2/4]1/2 − 1

R1
(6.26)

where R1 is defined as:

R1 =
1

σh

( dσ

dE

)

Eh

. (6.27)

In this equation, Eh = E0 − ∆E/2 and σh = σ(Eh) where it is assumed (based on the observed energy

dependence in the literature) that the cross section is quadratic. The median adjustment factor can be

calculated with the following equation [158]:

f−1
m = [1 +

1

4
R2

1(∆E)2]1/2. (6.28)

Equation 6.24 can then be rewritten in terms of the effective stopping power, the target thickness, and the

astrophysical S-factor as:

S(Eeff ) =
Y (E0)ϵ(E0)Eeff e2πη

fm∆E(E0)
(6.29)

where the number density of target atoms and linear target thickness was written as n∆x = ∆E(E0)/ϵ(E0)

and fm is the median adjustment factor. This expression assumes the effective stopping power is constant

and the cross section does not vary drastically (e.g. narrow resonances) over the target thickness [4].

Next, the Ecm
R = 556 and 676 keV resonance parameters listed in Tabs. B.2 and 6.13 are inputed into

the Breit-Wigner code reacnumeric.f [154]. All input parameters are assigned probability density functions

and the Breit-Wigner equation is solved by sampling these PDFs. This procedure gives the S-factor for

each broad resonance at each beam energy. The Breit-Wigner code was imbedded within the sfactor.cxx
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analysis code to extract the resonance S-factors. Because the total S-factor is the incoherent sum of the direct

capture S-factors and the broad resonance S-factors, the difference between a total S-factor and the broad

resonance S-factor yields the direct capture S-factor at each bombarding energy. The total astrophysical

S-factor calculated at each beam energy is listed in Tab. 6.20 alongside the effective (median) energy. These

S-factors are plotted as solid red circles in Fig. 6.10 along with the literature values from Fig. 6.1.

Table 6.20: The effective (median [158]) energy is tabulated for each laboratory bombarding energy alongside
the corresponding total astrophysical S-factor and direct capture S-factor. S-factors were calculated with
the analysis code sfactor.cxx.

Ep (keV) Ecm
eff (keV) Stotal (keV b) SDC (keV b)

175 160.1(10) 5.2(6) 4.4(6)
190 174.5(15) 4.9(6) 4.1(6)
250 228.1(19) 6.0(5) 4.9(5)
275 255.1(13) 6.1(5) 4.8(5)
300 276.4(19) 6.7(5) 5.2(6)
325 300.7(16) 6.9(5) 5.0(5)
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Figure 6.10: The new total S-factors are added to the plot of the literature values shown in Fig. 6.1. The
Gamow window for classical novae is shown as a grey, cross-hatched energy region (103−261 keV). The
experimental total S-factors from the present work are shown as solid red circles. Note that energy data
points from the present work are prompt γ-ray measurements, and the present work contains the lowest
in-beam measurement within the classical nova Gamow window.

The direct capture S-factor is also tabulated at each experimental energy in Tab. 6.20 and plotted as solid

black squares in Fig. 6.11. In Fig. 6.11, the black dotted line represents the resonance tail contribution from

the Ecm
R = 556 and 676 keV resonances. The total S-factors are represented by solid red circles. Based on the
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assertion of Ref. [75], it was assumed that the direct capture S-factor is constant, and this assumption was

bolstered by direct capture model calculations performed with the code tedca [138]. A new direct capture

S-factor curve, the solid purple line in Fig. 6.11, was determined from the average of the extracted direct

capture S-factor data points.

The uncertainty in this new S-factor curve has three contributions: statistical, systematic, and broad

resonance uncertainties. Statistical uncertainties arise from experimental and Monte Carlo counting statis-

tics. Systematic uncertainties come from Geant4, stopping powers, charge integration, target thickness,

peak and total efficiencies, and the 17O-enriched water (see Tab. 6.7 for the accepted systematic uncertainty

percentages).

Broad resonance S-factor uncertainties were calculated by the reacnumeric.f [154] code imbedded within

sfactor.cxx, as discussed above. The input to this new code, partial widths and branching ratios, can be

found in Tabs. B.2 and 6.13, respectively. The accepted partial widths and branching ratios were reconciled

from the literature with the reconfigured mean procedure detailed in Appendix A.2 (unless otherwise noted).

Partial widths were associated with lognormal probability distributions according to the prescription outlined

in Section 2.2.1. For more information on calculating uncertainties with a Monte Carlo approach, see

Appendix A.1.

The statistical uncertainty on each of the six direct capture data points was used to weight the new direct

capture S-factor. The average of the systematic uncertainties and of the broad resonance tail uncertainties

for each data point were added in quadrature with the uncertainty on the weighted average. This gives a

final, constant direct capture S-factor value at low energies of:

SDC(0) = (4.82± 0.41) keV b (6.30)

for Ecm
eff < 305 keV. This corresponds to an uncertainty of 8.6% on the new direct capture S-factor.

Section 6.4: Reaction Rates

The goal of this research was to reduce the uncertainty on the 17O(p,γ)18F thermonuclear reaction rate at

stellar plasma temperatures that correspond to explosive hydrogen burning during classical novae. Addition-

ally, it was anticipated that rate might improve within the temperature regime relevant to hot bottom burning

in asymptotic giant branch (AGB) stars. New reaction rates were calculated with the Monte Carlo method

developed by Ref. [88]; this method is based on the analysis argument discussed in Appendix A.1 and

described in more detail in Section 2.2. Figure 6.12 shows some of the histograms (in red) populated by
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RatesMC during this reaction rate calculation. The black line in each panel is not a fit but is in fact

the lognormal probability density function corresponding to lognormal-µ and lognormal-σ calculated by the

Monte Carlo code at each temperature. These values were calculated with Eqs. 2.49−2.51. Histograms and

probability density functions are shown for T9 = 0.04, 0.07, 0.1, 0.25, 0.4, and 0.7 to provide a decent sample

of RatesMC output over the classical nova and hot bottom burning AGB star Gamow windows.

Input to the reaction rate Monte Carlo code, RatesMC, can be found in Appendix B.2.2 where resonance

parameters were reconciled from the literature with the procedure explained in Appendix A.2 and tabulated

in Tabs. B.1 and B.2.

The computed Monte Carlo reaction rates were examined carefully because Di Leva et al. (2014) [82]

asserts that the LUNA collaboration was able to improve the reaction rate presented by Refs. [143, 78] within

the classical nova Gamow window by a factor of 4. This requires some clarification that is not provided by

the authors in Ref. [82]. In Iliadis et al. (2010) [135], the ER = 193 keV resonance interference is taken

into account; the 193 keV resonance interferes with the 1098 keV (lab) resonance because both levels have

spin and parity of Jπ = 2−. The rate is sampled over the unknown interference sign. The reaction rate

code, RatesMC, integrates numerically, Eqs. 2.8 and 2.43, to solve for the reaction rate if interference
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Figure 6.11: Broad resonance S-factor contributions from resonances at Ecm
R = 556 and 676 keV were

calculated with a Breit-Wigner code (dotted black line). These S-factors were subtracted from the total
experimental S-factor (solid red circles) to arrive at the experimental direct capture S-factors (solid black
squares). The mean of the six experimental direct capture S-factors, weighted by their statistical uncer-
tainty, was calculated (purple line). Systematic, statistical and broad resonance uncertainties were added in
quadrature to calculate the pink error band. The total S-factor (dashed blue line) is shown to illustrate the
energy dependence of the total S-factor—first proposed by Ref. [75].
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Figure 6.12: Reaction rate probability density functions calculated by the reaction rate Monte Carlo code,
RatesMC [88], at T = 0.04, 0.07, 0.1, 0.25, 0.4, and 0.7 GK. The red histograms are the Monte Carlo
rates and the solid black lines are lognormal probability density functions (not fits to the histograms).
Anderson-Darling statistics are shown in each figure.
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considerations are included. There is no option to solve for the rate analytically (Eq. 2.35) if the strength of

one of the resonances is known. The resonance strength of the ER = 193 keV resonance was first determined

by Ref. [51] to be ωγ = 1.2 ± 0.2 µeV by in-beam measurement. Reference [76] used activation techniques

to arrive at a final resonance strength of ωγ = 2.2 ± 0.4 µeV [145, 144]; these strengths are excluded from

the analysis. The recent publication by Ref. [82] identified nine primary transitions associated with the 193

keV resonance (as opposed to the two transitions identified by Ref [75] that Ref. [82] argues only contribute

65% of the total strength). The strength determined by the LUNA collaboration in Refs. [80, 82] was ωγ

= 1.67 ± 0.12 µeV. The authors then claim they utilized a Monte Carlo method similar to the calculations

performed here with RatesMC to determine the reaction rate. Though little is known about the LUNA

analysis code, it must be assumed they solved for the rate analytically with their new resonance strength,

but it is not clear if they accounted for interference between the 193 keV and 1098 keV resonances. This

means that their claim that their reaction rate is an improvement of a factor of 4 over the Iliadis et al.

(2010) reaction rate is an error of omission; LUNA is not comparing rates that are calculated the same

way—Ref. [135] solved numerically for the rate, accounted for interference and used all partial widths (with

their associated uncertainties) while Ref. [82] solved for the rate analytically with a resonance strength that

has a 7% uncertainty associated with it. This difference alone accounts for the factor of 4 decrease in the

reaction rate uncertainty within the classical nova Gamow window.

To proceed with the reaction rate calculation here, the sensitivity of the rate to the interference between

the 193 and 1098 keV resonances must be assessed with RatesMC. The reaction rate was calculated numer-

ically with the partial widths and their associated uncertainties two different ways: (1) assuming that the

interference affects the rate, and (2) assuming that the interference between the 193 and 1098 keV resonances

has a negligible impact on the total rate. Fig. 6.13 shows the result of this sensitivity assessment. The top

plot shows the ratio between the median rate and the high and low rate for each case. The solid black

line represents the reaction rate ratio where the interference between the two resonances is not assumed

to affect the rate, and the dashed line assumes that interference should be considered. The bottom plot

shows the ratio between the two rates—the low, median, and high rates without interference are compared

to the recommended rate with interference. As the figures show, the rates do not differ significantly, and

any observed difference is within the uncertainty associated with the Monte Carlo calculation (< 1%). The

193 and 1098 keV resonances interference is ignored here because it does not affect the total reaction rate

appreciably.

Next, the assertion made above, that it is illegitimate to compare the reaction rate presented in Refs.

[143, 139] with the rate in Ref. [82], was assessed. The reaction rate was again calculated twice: (1) the

193 keV contribution was calculated numerically with the available partial widths listed in Tab. B.2 and (2)
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Figure 6.13: A comparison between the reaction rate ratios if the interference between the ER = 193 and
1098 keV resonances is assumed to have an appreciable impact on the reaction rate (dashed line) and if
interference between these resonances does not influence the rate dramatically (solid line). Reaction rates
calculated with and without this interference condition are indistinguishable within the uncertainty of the
RatesMC Monte Carlo code. Interference between these two Jπ = 2− resonances was not included in the
final rate calculation. The top figure shows the high and low rates normalized to the median rate in each
scenario. The bottom figure represents the ratio between the rate calculated without this interference and
the rate calculated with this interference.
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the 193 keV contribution was calculated analytically with ωγ = 1.76 ± 0.09 µeV, the weighted mean of the

strength determined in the present work and the strength from Refs. [80, 82]. The normalized uncertainty

in the rate decreases by as much as 15% within the classical nova Gamow window if the resonance strength

is used instead of solving for the rate contribution numerically with partial widths and their associated

uncertainties. This confirms that it is disingenuous to claim a factor of 4 reduction in the reaction rate

between Refs. [143, 135, 139] and Ref. [82] without first clarifying that the rates are being calculated

very differently and certain experimental uncertainties are either being included or excluded. Figure 6.14

compares the reaction rate calculated with the 193 keV resonance strength (analytically, Eq. 2.35) or with

the partial widths associated with this level (numerically, Eq. 2.8). The solid black line in the top figure

represents the ratio between the rate limits and the median rate where the 193 keV resonance strength is

used. The dashed black line is the reaction rate ratio if the 193 keV resonance partial widths are used and

the contribution to the total rate is calculated numerically. The bottom plot shows the ratio between the

rate calculated with the strength versus without it. The reaction rate calculated with the weighted mean of

the present and LUNA 193 keV resonance strengths was adopted here for this analysis.

The new 17O(p,γ)18F reaction rate was then compared to the NACRE reaction rate from Ref. [91].

This was included because surprisingly, many in the nuclear astrophysics community still use and cite this

dated rate compilation. It is important to clarify and emphasize how out of date NACRE rates are. The

new rates presented in this thesis improve upon the NACRE rates with a 30% reduction in the normalized

rate uncertainty within the classical nova Gamow window and a reduction of 23% in this uncertainty within

the AGB hot bottom burning Gamow window. Figure 6.15 shows the ratio between the uncertainties and

median recommended rate for both the new rate (solid line) and the NACRE rate (dashed line) in the top

plot. In the bottom plot, the ratio between the new low, high, and median rates and the recommended

NACRE rate are shown. There is a slight spike in the new 17O(p,γ)18F reaction rate within the hot bottom

burning temperature regime compared to the NACRE rate (see the bottom plot in Fig. 6.15). Reference [15]

studied the evolution of isotopic ratios in the solar neighborhood with detailed stellar models. In this paper,

the authors likely used the NACRE 17O(p,γ)18F reaction rate, and they observed an overproduction of 17O

by their AGB stellar models that disagrees with solar abundances. While direct measurement of the Ecm
R

= 65 keV resonance will likely improve the reaction rate uncertainty, the new rates presented in this thesis

clearly improve the rate uncertainty over the NACRE rates. This improvement comes from the assessment

of the literature partial widths discussed in Appendix B.1.1 and listed in Tab. B.2. As will be shown later

in Fig. 6.19, direct capture also contributes to that rate at hot bottom burning temperatures. The increase

in the reaction rate observed at hot bottom burning stellar plasma temperatures could account for observed

solar abundances that Ref. [15] could not reconcile with the reaction rates they had at the time; an increase
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Figure 6.14: Monte Carlo reaction rates were compared for two scenarios; in the first scenario, the ER = 193
keV and 1098 keV resonances are assumed to interfere and the calculation was performed numerically with
Eq. 2.8 (dashed line). The second scenario disregards the interference and uses the strength from Eq. 6.11
to calculate the rate analytically with Eq. 2.35 (solid line). Uncertainty in the normalized rate decreases by
15% if the analytical calculation is performed. This is because fewer terms with inherent uncertainties are
being used in the rate calculation. The top figure shows the high and low rates normalized to the median
rate in each scenario. The bottom figure represents the ratio between the rate calculated analytically and
the median rate calculated numerically.
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in the rate destroys 17O and decreases the 17O contribution made by this class of AGB star.

It is important to compare the new reaction rates from this thesis with the original rates from the 2010

LENA rate compilation, Refs. [88, 143, 135, 139], because this was the introduction of RatesMC and

the first time Monte Carlo techniques were used to calculate thermonuclear reaction rates. Input to the

reaction rate Monte Carlo code was updated for these new calculations based on the literature (see Tab.

B.2), the direct capture astrophysical S-factor measured during this experiment, and the ER = 193 and 518

keV resonance strengths measured in this study. It was discussed numerous times in this dissertation how

the resonance input was reconciled from the literature and the new direct capture S-factor can be found

in Eq. 6.30. The new ER = 193 and 518 keV resonance strengths can be found in Eqs. 6.11 and 6.8,

respectively. With all of these changes and improvements accounted for, the normalized rate uncertainty

improves by 18% in the classical nova Gamow window (note that as explained above, Ref. [135] used a

numerical calculation of the 193 keV resonance contribution to the rate while an analytical calculation is

performed here). The uncertainty in the normalized rate decreased by 7% in the temperature regime relevant

to hot bottom burning in AGB stars. Figure 6.16 shows the ratio between the uncertainties and median

value for both the new rate (solid line) and the 2010 LENA rate (dashed line) in the top plot. In the bottom

plot, the ratio between the new low, median, and high rate and the recommended LENA rate are shown.

Finally, the new rate from this dissertation is compared to the rate from the recent papers by the LUNA

collaboration [82, 80]. By using the weighted mean of the present and LUNA resonance strength for the ER

= 193 keV resonance, the new normalized reaction rate uncertainty presented here is as much as 2% lower

than the LUNA rate within the classical nova Gamow window at high temperatures (near 400 MK). The

new rate from the present study features a reduction in the normalized reaction rate uncertainty by as much

as 6% at temperatures relevant to hot bottom burning in AGB stars. Fig. 6.17 shows the ratio between the

uncertainties and median value for both the new rate (solid line) and the LUNA rate (dashed line) in the

top plot. In the bottom plot, the ratio between the new low, median, and high rates and the recommended

LUNA rate are shown.

Figure 6.18 plots the new, normalized 17O(p,γ)18F thermonuclear reaction rate from 0.01−10 GK. A

black-red-yellow color scheme is used to differentiate between the different quantiles of this two-dimensional

probability density function (reaction rate versus temperature). The reaction rate is normalized to the

median rate. The 1σ contour is shown as a thick black line and the 2σ contour is a thin black line. The

low, median, and high rates with their associated lognormal-µ and lognormal-σ are tabulated in Tab. 6.21.

Anderson-Darling statistics, a measure of how well the Monte Carlo reproduces a particular probability

density function (in this case a lognormal distribution) [88], are also tabulated. The experimental data

determine the rates over the full temperature range of 0.01−10 GK, and no extrapolations using nuclear
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Figure 6.15: The reaction rate from this work (solid line) is compared to the rate from the NACRE reaction
rate compilation, Ref. [91]. The uncertainty in the normalized rate decreases by as much as 30% within
the classical nova Gamow window (0.1−0.4 GK) and 23% within the hot bottom burning Gamow window
(0.03−0.1 GK). The top figure shows the rate normalized to the median rate from the present study and the
NACRE recommended rate [91]. The bottom figure represents the ratio between the new low, median, and
high rates and the NACRE recommended rate.
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Figure 6.16: The reaction rate from this work (solid line) is compared to the rate from the 2010 LENA
reaction rate compilation, Refs. [88, 143, 135, 139]. The uncertainty in the normalized rate decreases by as
much as 18% within the classical nova Gamow window (0.1−0.4 GK) and 7% within the hot bottom burning
AGB star Gamow window (0.03−0.1 GK). The top figure shows the rate normalized to the median rate for
the present study (solid line) and the 2010 LENA rate (dashed line) [143, 90]. The bottom figure represents
the ratio between the new low, median, and high rates and the recommended LENA rate.
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Figure 6.17: The reaction rate from this work (solid line) is compared to the LUNA reaction rate, Refs.
[80, 82]. The uncertainty in the normalized rate is as much as 2% lower within the classical nova Gamow
window (0.1−0.4 GK) in this work. Within the hot bottom burning AGB star Gamow window (0.03−0.1
GK) the normalized rate uncertainty is as much as 6% lower than the recent LUNA rate. The top figure
shows the rate normalized to the median rate for the present study (solid line) and the LUNA experiment
(dashed line) [82]. The bottom figure represents the ratio between the new low, median, and high rate and
the recommended LUNA rate.
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theory were necessary.
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Figure 6.18: The reaction rate probability density as a function of temperature. The black-red-yellow color
scheme is meant to illustrate that the high and low rates are not hard cutoffs. The low, median, and high
rates represent the 0.16, 0.5, and 0.84 quantiles of the probability density function, respectively. The thick
black lines represent 1σ coverage and the thin black lines represent 2σ coverage.

The reaction rate can also be broken up into its fractional contributions—the direct capture and individual

resonant contributions to the total rate. Figure 6.19 shows the contribution from each resonance and from

direct capture (labeled “A-Rate 1” in this figure). The high and low rate contributions (0.16 to 0.84 quantiles

or 1σ) are plotted producing the colored bands shown in the figure. In Fig. 6.19, the interference contribution

from the Ecm
R = 65 and -2 keV resonances (Jπ = 1−) is labeled Intf 1. The interference between Ecm

R = 676

and 778 keV resonances (Jπ = 2+) is labeled Intf 2. The reaction rate is still clearly dominated by the direct

capture contribution at classical nova temperatures. This confirms the assessment of rate contributions made

by Newton et al. (2010) [78]. Also, in the figure it is clear that direct capture, though not the dominant

contribution, contributes almost 20% of the total reaction rate at hot bottom burning temperatures.

Table 6.21: The final 17O(p,γ)18F reaction rates from this study calculated with the reaction rate Monte
Carlo code, RatesMC [88].

T (GK) Low Rate Median Rate High Rate Lognormal µ Lognormal σ A−D

1.000×10−02 3.578×10−25 3.858×10−25 4.167×10−25 -5.621×10+01 7.738×10−02 3.922×10−01

1.100×10−02 3.797×10−24 4.094×10−24 4.420×10−24 -5.385×10+01 7.675×10−02 3.013×10−01

1.200×10−02 3.068×10−23 3.310×10−23 3.573×10−23 -5.176×10+01 7.633×10−02 7.062×10−01

1.300×10−02 1.995×10−22 2.149×10−22 2.320×10−22 -4.989×10+01 7.620×10−02 1.837×10−01

1.400×10−02 1.073×10−21 1.159×10−21 1.250×10−21 -4.821×10+01 7.720×10−02 4.710×10−01
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Table 6.21 – continued

T (GK) Low Rate Median Rate High Rate Lognormal µ Lognormal σ A−D

1.500×10−02 4.957×10−21 5.357×10−21 5.787×10−21 -4.668×10+01 7.744×10−02 7.944×10−01

1.600×10−02 2.014×10−20 2.173×10−20 2.349×10−20 -4.528×10+01 7.697×10−02 3.988×10−01

1.800×10−02 2.405×10−19 2.596×10−19 2.802×10−19 -4.280×10+01 7.654×10−02 3.651×10−01

2.000×10−02 2.073×10−18 2.233×10−18 2.407×10−18 -4.064×10+01 7.534×10−02 2.710×10−01

2.500×10−02 2.100×10−16 2.251×10−16 2.418×10−16 -3.603×10+01 7.061×10−02 2.853×10−01

3.000×10−02 1.068×10−14 1.164×10−14 1.272×10−14 -3.208×10+01 8.782×10−02 6.060×10−01

4.000×10−02 2.723×10−12 2.978×10−12 3.258×10−12 -2.654×10+01 8.993×10−02 7.191×10−01

5.000×10−02 8.170×10−11 8.915×10−11 9.714×10−11 -2.314×10+01 8.639×10−02 2.877×10−01

6.000×10−02 8.015×10−10 8.707×10−10 9.488×10−10 -2.086×10+01 8.447×10−02 7.617×10−01

7.000×10−02 4.269×10−09 4.607×10−09 4.988×10−09 -1.919×10+01 7.836×10−02 1.336×10+00

8.000×10−02 1.612×10−08 1.732×10−08 1.864×10−08 -1.787×10+01 7.284×10−02 2.855×10−01

9.000×10−02 5.035×10−08 5.375×10−08 5.740×10−08 -1.674×10+01 6.549×10−02 3.780×10−01

1.000×10−01 1.417×10−07 1.505×10−07 1.599×10−07 -1.571×10+01 6.010×10−02 6.531×10−01

1.100×10−01 3.736×10−07 3.964×10−07 4.207×10−07 -1.474×10+01 5.925×10−02 3.326×10−01

1.200×10−01 9.386×10−07 9.912×10−07 1.049×10−06 -1.382×10+01 5.609×10−02 1.377×10+00

1.300×10−01 2.226×10−06 2.348×10−06 2.478×10−06 -1.296×10+01 5.415×10−02 9.502×10−01

1.400×10−01 4.982×10−06 5.237×10−06 5.527×10−06 -1.216×10+01 5.256×10−02 1.321×10+00

1.500×10−01 1.041×10−05 1.095×10−05 1.152×10−05 -1.142×10+01 5.038×10−02 6.370×10−01

1.600×10−01 2.049×10−05 2.152×10−05 2.259×10−05 -1.075×10+01 4.872×10−02 7.693×10−01

1.800×10−01 6.663×10−05 6.979×10−05 7.316×10−05 -9.570×10+00 4.707×10−02 7.577×10−01

2.000×10−01 1.784×10−04 1.868×10−04 1.956×10−04 -8.585×10+00 4.638×10−02 5.905×10−01

2.500×10−01 1.174×10−03 1.229×10−03 1.287×10−03 -6.701×10+00 4.595×10−02 7.356×10−01

3.000×10−01 4.986×10−03 5.210×10−03 5.450×10−03 -5.256×10+00 4.461×10−02 7.121×10−01

3.500×10−01 1.954×10−02 2.041×10−02 2.136×10−02 -3.890×10+00 4.466×10−02 2.987×10+00

4.000×10−01 7.779×10−02 8.178×10−02 8.666×10−02 -2.499×10+00 5.612×10−02 2.430×10+01

4.500×10−01 2.822×10−01 2.992×10−01 3.209×10−01 -1.201×10+00 6.602×10−02 3.034×10+01

5.000×10−01 8.695×10−01 9.254×10−01 9.972×10−01 -7.115×10−02 7.014×10−02 3.145×10+01

6.000×10−01 5.099×10+00 5.426×10+00 5.846×10+00 1.698×10+00 7.047×10−02 3.329×10+01

7.000×10−01 1.843×10+01 1.955×10+01 2.099×10+01 2.980×10+00 6.725×10−02 3.293×10+01

8.000×10−01 4.820×10+01 5.098×10+01 5.455×10+01 3.938×10+00 6.389×10−02 3.231×10+01

9.000×10−01 1.011×10+02 1.066×10+02 1.137×10+02 4.675×10+00 6.074×10−02 3.129×10+01

1.000×10+00 1.814×10+02 1.909×10+02 2.029×10+02 5.257×10+00 5.792×10−02 3.110×10+01

1.250×10+00 5.053×10+02 5.296×10+02 5.597×10+02 6.276×10+00 5.272×10−02 2.715×10+01

1.500×10+00 9.699×10+02 1.013×10+03 1.066×10+03 6.924×10+00 4.878×10−02 2.636×10+01

1.750×10+00 1.508×10+03 1.572×10+03 1.649×10+03 7.363×10+00 4.604×10−02 2.276×10+01

2.000×10+00 2.063×10+03 2.145×10+03 2.246×10+03 7.675×10+00 4.402×10−02 2.353×10+01

2.500×10+00 3.075×10+03 3.192×10+03 3.329×10+03 8.071×10+00 4.089×10−02 1.992×10+01

3.000×10+00 3.863×10+03 4.003×10+03 4.168×10+03 8.297×10+00 3.874×10−02 1.606×10+01

3.500×10+00 4.414×10+03 4.565×10+03 4.747×10+03 8.429×10+00 3.741×10−02 1.473×10+01

4.000×10+00 4.756×10+03 4.919×10+03 5.109×10+03 8.503×10+00 3.647×10−02 1.318×10+01

5.000×10+00 5.000×10+03 5.166×10+03 5.363×10+03 8.552×10+00 3.546×10−02 1.212×10+01

6.000×10+00 4.905×10+03 5.073×10+03 5.263×10+03 8.533×10+00 3.546×10−02 8.505×10+00

7.000×10+00 4.682×10+03 4.841×10+03 5.025×10+03 8.487×10+00 3.558×10−02 8.726×10+00

8.000×10+00 4.419×10+03 4.571×10+03 4.744×10+03 8.429×10+00 3.565×10−02 6.461×10+00

9.000×10+00 4.155×10+03 4.298×10+03 4.461×10+03 8.367×10+00 3.576×10−02 5.858×10+00

1.000×10+01 3.897×10+03 4.031×10+03 4.186×10+03 8.303×10+00 3.595×10−02 5.770×10+00

The lowest energy in-beam measurement of the 17O(p,γ)18F direct capture reaction was performed at
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Figure 6.19: The fractional contributions made by 17O(p,γ)18F resonances and direct capture (labeled “A-
Rate 1”) to the total reaction rate. The contribution ranges (low to high) are shown as thick uncertainty
bands. Direct capture (red in this figure) clearly dominates the rate over broad resonance tails and the
narrow Ecm

R = 183 keV (ER = 193 keV) resonance within the classical nova Gamow window (0.1−0.4 GK).
The combined rate contribution from interfering resonances are labeled Intf.

LENA, and a new direct capture S-factor of SDC(0) = 4.82 ± 0.41 keV b was measured. The novel spectral

analysis techniques applied to direct capture data also allowed ER = 193 and 518 keV resonance strengths

to be determined—ωγ = 1.89 ± 0.15 µeV and ωγ = 12.9 ± 0.9 meV, respectively. Combined with partial

widths and resonance strengths reconciled from the literature, new reaction rates were calculated with this

direct capture S-factor and these new strengths. The new reaction rates determined in this thesis will be

prepared for publication.
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CHAPTER 7: CONCLUSION

Two proton capture studies involving the destruction of rare oxygen isotopes were performed at the

LENA accelerator facility with high-intensity, low energy beam. Improved thermonuclear reaction rates

were calculated for both the 18O destruction mechanism—18O(p,γ)19F—and 17O destruction mechanism—

17O(p,γ)18F.

For the 18O(p,γ)19F reaction, a new resonance strength upper limit of ωγ ≤ 7.8×10−9 eV (90% CL)

for the ER = 95 keV resonance was measured; it improves upon the previous (p,γ) upper limit published

by Ref. [120] by about half an order of magnitude. The data also allow for a significant improvement of

the total direct capture S-factor prediction. At SDC(105) ≤ 8.1 keV b (90% CL), this S-factor amounts to

about half of the previously accepted value at low energies [112]. The combination of this new experimental

information allowed improved Monte Carlo-based reaction rates for 18O(p,γ)19F to be determined. It was

found that the new reaction rates in the hypothesized cool bottom processing temperature regime are even

smaller than assumed previously. It is clear that 18O depletion in low-mass AGB stellar atmospheres and

some presolar oxide grains is dominated by the competing 18O(p,α)15N reaction.

For the 17O(p,γ)18F reaction, the lowest energy in-beam measurement of the total astrophysical S-factor

was achieved. From the measured total S-factors, an improved direct capture S-factor of SDC(0) = 4.82 ±

0.41 keV b was determined. Additionally, the analysis techniques developed for the direct capture study

allowed a new ER = 193 keV resonance strength, ωγ = 1.89 ± 0.15 µeV, and a new ER = 518 keV resonance

strength, ωγ = 12.9 ± 0.9 meV, to be determined. Based on this new S-factor and these new strengths,

updated reaction rates were calculated that showed an improvement in uncertainties at stellar temperatures

relevant to 17O destruction in AGB stars and during classical novae. At classical nova temperatures, the

uncertainty in the rate improves with respect to the NACRE [91], LENA [88, 143, 135, 139], and LUNA

[80, 82] recommended rates. This study demonstrates that an experiment can be designed and executed

at a “sea-level” facility to probe low-energy reactions suppressed by the Coulomb barrier. High-intensity

proton beam to boost signal-to-noise, γγ-coincidence techniques to reduce environmental backgrounds, and a

sophisticated new spectral analysis toolkit, allow the fingerprints of the reactions that synthesize the elements

found in Nature to be uncovered in the laboratory.

Thermonuclear reaction rates of proton captures by rare oxygen isotopes allow us to improve our under-

standing of Galactic chemical evolution and how the isotopic abundances observed in our Solar neighborhood
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came about, but they also allow us to learn a little bit more about ourselves. “The atoms of our bodies

are traceable to stars that manufactured them in their cores and exploded these enriched ingre-

dients across our Galaxy, billions of years ago. For this reason, we are biologically connected

to every other living thing in the world. We are chemically connected to all molecules on

Earth. And we are atomically connected to all atoms in the Universe. We are not figuratively,

but literally stardust.” —Neil deGrasse Tyson
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APPENDIX A: UNCERTAINTY ANALYSIS

Appendix A.1: Monte Carlo Uncertainty Analysis

Propagation of uncertainty is historically handled a number of different ways. These different approaches

include (i) differential analysis, (ii) variance decomposition procedures, (iii) response surface methodology,

(iv) fast probability integration, and (v) Monte Carlo, sampling-based, techniques [160].

In sampling-based procedures, the uncertainty analysis formalism involves generating and exploring a

probabilistic map between analysis input and results [161, 162, 163, 164, 165, 166, 167, 168, 169, 170,

171]. Probability density functions (PDFs) are constructed for all parameters inputted into a calculation.

These functions are then randomly sampled and a histogram with the sampled solution to the calculation

is populated. This procedure allows a new probability density function—the solution—to be constructed.

The final PDF is assessed based upon key characteristics (such as skewness) to determine what type of PDF

it can be classified as (see section 2.2.1). The adopted value and uncertainty hinges upon this randomly

assembled PDF’s classification.

Monte Carlo uncertainty analysis is a popular and appealing technique because it is easy to understand

and implement, and it disregards intermediate models. However, it can be computationally expensive de-

pending on which sampling formalism is applied [160]. Regardless, myriad applications of these techniques

have found their way into the literature, and Monte Carlo uncertainty analysis procedures are now utilized

in numerous scientific fields [171]. These techniques were applied recently to calculations relevant to nu-

clear astrophysics; these include the determination of thermonuclear reactions rates [88, 143, 135, 139, 90],

resonance strengths and direct capture S-factors [1], and reduced widths [172].

Appendix A.2: Reconciling Differences in the Literature

When trying to resolve disparities between conflicting observations, a simple weighted average often

skews the final result towards the measurement with the highest precision. If measurements are separated

by several sigma, this average is unreasonable—it is not representative of either of the observations. To

solve this problem, it is common to expand the weighted uncertainty by a factor of
√

χ2/ν; however, the

mean value is predisposed to favor measurements with narrow uncertainties and will remain unchanged.

Another technique is postulated by Ref. [173] specifically to address the controversy in the world average

of the neutron lifetime. This technique assumes that for all measurements i of quantity x, there exists an

unknown, identical systematic uncertainty σu, which is added in quadrature to each reported uncertainty
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σi, such that:

σ′
i =

√

σ2
u + σ2

i (A.1)

where σ′
i is the expanded uncertainty for measurement i. Then the weighted average, x, and its uncertainty,

σ, become an implicit function of the unknown uncertainty:

x(σu) =

∑

i xi/σ′2
i

∑

i 1/σ
′2
i

; σ(σu) =

√

1
∑

i 1/σ
′2
i

(A.2)

χ2/ν is then also a function of σu:

χ2

ν
(σu) =

(

∑

i

(xi − x(σu))2

σ′2
i

)

/(n− 1) (A.3)

where n is the number of measurements. An iterative process determines what value of σu reduces χ2/ν to

1. This methodology produces a more realistic uncertainty that is representative of the data spread, and it

also prevents dominant, high-precision measurements from skewing the average. This process produces what

will be referred to in this thesis as the reconfigured mean [90, 174].

Appendix A.3: Net Areas—Calculating Peak Intensities with root

Peak intensity can be calculated by selecting background and peak areas in the jam [116] user interface,

and jam then calculates the net area of the peak. However, jam can not be used to determine peak intensities

in spectra generated with the sort.cxx sort routine discussed in Sec. 6.3.1—a root and c++ code. A net

area code, fitter.c from Ref. [175], was tested and adapted to calculate net areas in spectra sorted with

sort.cxx.

There is some background contribution within the gross area of a peak, and the rate of the background flux

needs to be estimated. Usually the background is assumed to be a constant; fitter.c assumes the background

is a linear function. To determine the coefficients of this 1st order polynomial, a region before and after the

peak are used to estimate the background. If the background rate is constant on both sides of this function,

the 1st order polynomial will reduce to a 0-order polynomial. However, usually this function is linear, and a

slope and intercept can be calculated. The areas of the two background regions are found with the following

equations:

B1 =

∫ c2

c1

(mx+ b)dx (A.4)
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and

B2 =

∫ c4

c3

(mx+ b)dx. (A.5)

In these equations, B1 and B2 are the areas of the background regions on either side of the peak; m is the

slope of the linear function; b is the intercept of the linear function; c1 and c2 are the lower and upper bound

channel numbers on B1, respectively; c3 and c4 are the lower and upper bound channel numbers on B2,

respectively. When root solves these equations, it is summing the bin content of each background region.

Equations A.4 and A.5 are integrated to solve for the slope and intercept, and this yields:

B1 =
m

2
(c22 − c21) + b(c2 − c1) (A.6)

and

B2 =
m

2
(c24 − c23) + b(c4 − c3). (A.7)

These equations can then be rearranged to solve for the slope and intercept:

b =
B1 − m

2 (c
2
2 − c21)

c2 − c1
, (A.8)

b =
B2 − m

2 (c
2
4 − c23)

c4 − c3
, (A.9)

and

m =
2(B1 − uB2)

v
(A.10)

where

u =
c2 − c1
c4 − c3

(A.11)

and

v = (c22 − c21)− u(c24 − c23). (A.12)

The estimate of the background contribution to the peak is calculated with an equation analogous to Eqs.

A.6 and A.7:

Npeak =
m

2
(c2b − c2a) + b(cb − ca) (A.13)

where Npeak is the background contribution to the peak, and ca and cb are the lower and upper bound
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channel numbers on Npeak. With Eqs. A.8, A.9, and A.10, Eq. A.13 becomes:

Npeak =
wB1

v
+B2

(

cb − ca
c4 − c3

−
uw

v

)

(A.14)

where

w = (c2b − c2a)−
c24 − c23
c4 − c3

(cb − ca). (A.15)

A partial differential equation is used to calculate the uncertainty associated with the background contribu-

tion to the peak:

∂N2
peak =

(

∂Npeak

∂B1

)2

∂B2
1 +

(

∂Npeak

∂B2

)2

∂B2
2 (A.16)

which reduces to:

∂N2
peak = ∂B1

w

v
+ ∂B2

(

cb − ca
c4 − c3

−
uw

v

)

. (A.17)

For data, ∂B1 =
√
B1 and ∂B2 =

√
B2. For sorted Geant4 histograms, ∂B1 =

√

B1 + ∂B2
1,sys and ∂B2

=
√

B2 + ∂B2
2,sys where, in this case, the subscript sys refers to the 1.3% systematic uncertainty associated

with LENA Geant4 simulations [101]. The gross area of the peak, from bins cb − ca, is calculated with

root, and then Npeak is subtracted from this gross area to yield a net area. The uncertainty of the gross

area is added in quadrature with the uncertainty of the background contribution to the peak.

These net area calculations were tested by comparing jam peak intensities to the intensities calculated

with this routine. It was found that peak intensities from jam and fitter.c agreed within 0.05%.

Even a reliable routine like fitter.c can be misused, so to arrive at the correct peak intensities from spectra

sorted with sort.cxx, histogram bins were selected carefully to make sure the code did not accidentally miss

the peaks of interest. The user inputs the required bins manually before a calculation, and the user can

inspect histograms that show what bins were considered in a peak intensity calculation.
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APPENDIX B: THERMONUCLEAR REACTION RATES

Appendix B.1: Rate Calculation Input

B.1.1: 17O(p,γ)18F

The 17O(p,γ)18F reaction rate calculation includes 16 resonances with energies Ecm
R ≤ 1270 keV [143].

A majority of the resonance energies are calculated with the proton separation energy Qpγ = 5607.1±0.5

keV [41] and the energies of excited states presented in Ref. [40]. Two sub-threshold resonances, Ecm
R =

-2.2 keV (Jπ = 1−) and Ecm
R = -3.7 keV (Jπ = 1+), are also included in the rate calculation. The sub-

threshold resonances and their associated level parameters are tabulated in Table B.1. The product of the

spectroscopic factor and the reduced width, C2Sθ2sp, is substituted for the proton partial width in this table

and in the reaction rate calculations (see Ref. [143]). The remaining 14 resonances are tabulated alongside

resonance level parameters in Table B.2. These parameters—including the (p,γ) resonance strength, proton

partial width, α-particle partial width, and γ-ray partial width—were collected from the literature. The

following set of equations are a generalization of equations presented in Ref. [129] and are used here to solve

for unknown parameters not included in the literature:

Γp =
(2Jtp + 1)(2Jp + 1)

(2J + 1)

[

(2Jtp + 1)(2Jp + 1)

(2Jtα + 1)(2Jα + 1)

ωγpγωγpα
ωγαγ

+ ωγpα + ωγpγ

]

(B.1)

Γα =
(2Jtα + 1)(2Jα + 1)

(2J + 1)

[

ωγαγωγpα
ωγpγ

+ ωγαγ +
(2Jtp + 1)(2Jp + 1)

(2Jtα + 1)(2Jα + 1)
ωγpα

]

(B.2)

Γγ =
(2Jtα + 1)(2Jα + 1)

(2J + 1)

[

ωγαγωγpγ
ωγpα

+ ωγαγ +
(2Jtp + 1)(2Jp + 1)

(2Jtα + 1)(2Jα + 1)
ωγpγ

]

(B.3)

In these equations, Jtp is the spin of the (p,γ) and (p,α) target nucleus, Jtα is the spin of the (α,γ) target

nucleus, Jp is the proton spin, Jα is the α-particle spin, and J is the spin of the 18F excited state. In Tables

B.1 and B.2, discrepancies between parameters reported in different publications are reconciled generally with

the weighted mean unless the reconfigured mean (see Section A.2) is applicable. Note that for the higher

energy resonances, the strengths extracted from Ref. [77] are renormalized to the correct 27Al(p,γ)28Si

resonance strength of the Ecm
R = 609 keV resonance [176]. The resonance strengths reported by Sens et al.

[177] are excluded here because they disagree consistently with the results presented in Refs. [77], [75], and

[81] by about a factor of 2. This inconsistency may be due to the use of unpublished stopping power values,

according to Ref. [81]. Refer to Tables B.1 and B.2 for a detailed catalog of adopted resonance state values

and what literature was either evaluated or reconciled to arrive at the adopted parameters.
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Table B.1: Resonance parameters for sub-threshold 17O(p,γ)18F resonances were collected from the literature.
The product of the spectroscopic factor and single-particle reduced width is substituted for Γp in this table.
The resonance energies are calculated from the revised proton separation energy presented in Ref. [41] and
the energy of the 18F excited state reported in Ref. [40].

Source Ecm
R (keV) C2Sθ2sp Γγ (eV) Γα (eV)

Ref. [129] -3.12(57) 0.054(18)1 − −
Ref. [178] − − 0.485(46) 42.8(16)
adopted -3.7(6) 0.054(18) 0.485(46) 42.8(16)
Ref. [129] -1.64(57) ≤0.00821 − −
Ref. [178] − − 0.891(74) 32.0(21)
adopted -2.2(6) ≤0.0082 0.891(74) 32.0(21)
1 Estimated from reduced widths in Ref. [87] and spectroscopic fac-
tors in Refs. [156, 85].

Table B.2: Resonance parameters for the 17O(p,γ)18F reaction were collected from the literature. The recon-
figured mean was calculated when necessary to account for uncertainties associated with these parameters.
Otherwise, the weighted mean is used. Unless noted, the resonance energies are calculated from the revised
proton separation energy presented in Ref. [41] and the energy of the 18F excited state reported in Ref. [40].

Source Ecm
R (keV) ωγpγ (eV) Γp (eV) Γγ (eV) Γα (eV)

Ref. [119]1 − 1.6×10−11(3) 1.9×10−8(3) 0.45(2) −
Ref. [178] − − − − 130(5)
Ref. [179]1 − 1.7×10−11(4) 1.9×10−8(3) 0.46(6) −
Ref. [77]1 60(2) 1.7×10−11(5) 1.9×10−8(3) 0.47(10) −
Ref. [180]1 − 1.6×10−11(3) 1.9×10−8(3) 0.45(5) −
adopted 64.5(5)2 1.65×10−11(18)3 1.89×10−8(16)3 0.453(18)3 130(5)
present − 1.89×10−6(15) 0.0040(4) 0.009(4) 8(3)
Ref. [80]4 183 1.67×10−6(12) 0.0040(4) 0.009(4) 9(4)
Ref. [181] 183.5+0.1

−0.4 − − − −
Ref. [182] 183.2(6)5 − − − −
Ref. [75]4 182.4(8)5 1.2×10−6(2) 0.0040(4) 0.009(4) 13(6)
adopted 183.4(2)3 1.76×10−6(9)7 0.0040(3)7 0.009(3)7 9(3)7

present − 0.0129(9) − − −
Ref. [81] 490 0.0130(15) − − −
Ref. [78] 490 0.0137(22) − − −
Ref. [75] 489.9(9) 0.012(3) − − −
Ref. [77] 488.3(18) 0.0130(17)8 − − −
adopted 489.3(12) 0.0130(7)3 − − −
Ref. [77] 529.2(16) 0.11(3)8 − − −
adopted 529.4(6) 0.11(3) − − −
Ref. [81] 557 0.37(5) 1.41×104(3) 0.594(6)9 8(1)
Ref. [183] 558(4)10 − 1.40×104(5) − 5.0(6)
Ref. [77] 554.9(16) 0.33(8)8 − 0.57(13)11 −
adopted 556.1(10) 0.36(4)3 1.41×104(3)3 0.594(6)3 6.4(15)6

Ref. [77] 632.1(16) 0.16(3)8 − − −
adopted 633.3(9) 0.16(3) − − −
Ref. [81] 677 0.58(7) 1.13×104(2) 1.235(19)9 30(4)
Ref. [183] 677(4)10 − 1.0×104(5) − 27(3)
Ref. [77] 674.9(16) 0.45(10)8 − 1.1(2)11 −
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Table B.2 – continued

Source Ecm
R (keV) ωγpγ (eV) Γp (eV) Γγ (eV) Γα (eV)

adopted 676.1(10) 0.53(6)6 1.07×104(7)6 1.234(19)3 28(2)3

Ref. [77] 701.4(14) 0.032(7)8 − − −
adopted 703.4(9) 0.032(7) − − −
Ref. [81] 780 0.0323(25) − 0.281(69)9 −
Ref. [183] 782(4)10 − 109(11)12 − 286(87)
Ref. [77] 774(3) 0.030(8)8 − 0.26(9)11 −
adopted 778.4(18) 0.032(2)3 109(11) 0.27(6)3 286(87)
Ref. [81] 878 0.0194(18) − − −
Ref. [77] 871(2) 0.018(7)8 − − −
adopted 877.8(16) 0.0193(17)3 − − −
Ref. [81] 1037 0.297(33) − 1.16(17)11 −
Ref. [184] 1036.5 0.31(4) − 1.21(19)11 −
Ref. [183] 1044(4)10 − 368(61)12 − 231(40)
Ref. [84] 1033.9(19) 0.32(6)13 − 1.2(3)11 −
Ref. [77] 1033.9(19) 0.21(5)8 − 0.8(2)11 −
adopted14 1036.6(9) 0.30(2)3 368(61) 1.20(11)3 231(40)
Ref. [77] 1168(2) 0.14(3)8 − − −
adopted 1169.9(15) 0.14(3) − − −
Ref. [77] 1193.9(19) 0.027(9)8 − − −
adopted 1196.0(16) 0.027(9) − − −
Ref. [77] 1269(2) 0.050(19)8 − − −
adopted 1270.3(18) 0.050(19) − − −
1 All parameters calculated with this ωγαγ , ωγpα from Refs. [185, 75], Γα from [178], and Eqs. B.1,
B.2, and B.3.

2 Resonance energy calculated from correct excited state energy in Ref. [144] and proton separation
energy in Ref. [41].

3 Weighted mean.
4 Partial widths calculated with this ωγpγ , ωγαγ from Ref. [77], ωγpα from Ref. [186], and Eqs.
B.1, B.2, and B.3.

5 Calculated with atomic masses from Ref. [41] and mass of electron in amu (atomic mass converted
to nuclear mass).

6 Reconfigured mean.
7 Weighted mean of present value and value from Ref. [80].
8 Strength renormalized with incorrect 27Al(p,γ)28Si strength in Ref. [187] and correct ER = 632
keV resonance strength in Ref. [188].

9 Sum of primary γ-ray decay partial widths from Ref. [81].
10 Ref. [183] used excited state energies and Q-value from Ref. [177].
11 Calculated with partial widths from Ref. [183].
12 Sum of partial widths reported in Ref. [183].
13 Includes (2Jt+1)(2Jp+1) because only (2J+1)ΓpΓγ/Γt reported in Ref. [84].
14 Ref. [77] excluded as outlier.

Appendix B.2: RatesMC Input Files

Section B.2.1 contains the RatesMC input file used in the 18O(p,γ)19F reaction rate calculations in this

work. This input file is similar to the input file from Ref. [91]. The Ecm
R = 20.4 keV proton width is from

Refs. [189, 190] while total and radiative widths come from a private communication cited within Ref. [112].

The Ecm
R resonance strength expectation value and variance come from this work [1] as does the adopted

direct capture S-factor. A new cutoff temperature is used because the S-factor was calculated through 2500
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keV in this work. The remainder of the input comes from Refs. [120, 118, 133, 191, 119, 132, 192] and was

not reconciled or updated for this study. Rates are extrapolated using the Hauser-Feshbach rate from Ref.

[142] above T = 5 GK. Reaction rate output and comparisons between the new rates and the literature can

be found in Sec. 5.4 of this thesis. This input file was made available on the starlib reaction rate library

website and is include in Ref. [90].

In Sec. B.2.2, the RatesMC input file used for 17O(p,γ)18F reaction rate calculations in this work is

presented. This input file was updated dramatically since reaction rates were calculated originally with

RatesMC [88] and the results from Ref. [78] in Refs. [143, 135, 139]. Nuclear masses were calculated by

subtracting the mass of electrons from the atomic mass presented in Ref. [41]. Resonance energies, partial

widths, and strengths were reconciled from the literature using the methodology outline in Appendix A.2 and

the results of reconciliation are tabulated in Tab. B.2. The new astrophysical S-factor and factor uncertainty

come directly from the experiment presented in this thesis (see Eq. 6.30). The literature value for the cutoff

energy was selected [88, 78]. Reaction rate output and comparisons between the new rates and the literature

can be found in Sec. 6.4 of this thesis.

B.2.1: 18O(p,γ)19F

18O(p,g)19F

****************************************************************************************************************

1 ! Zproj

8 ! Ztarget

2 ! Zexitparticle (=0 when only 2 channels open)

1.0078 ! Aproj

17.999 ! Atarget

4.0026 ! Aexitparticle (=0 when only 2 channels open)

0.5 ! Jproj

0.0 ! Jtarget

0.0 ! Jexitparticle (=0 when only 2 channels open)

7993.6 ! projectile separation energy (keV)

4013.8 ! exit particle separation energy (=0 when only 2 channels open)

1.25 ! Radius parameter R0 (fm)

2 ! Gamma-ray channel number (=2 if ejectile is a g-ray; =3 otherwise)

****************************************************************************************************************

1.0 ! Minimum energy for numerical integration (keV)

10000 ! Number of random samples (>5000 for better statistics)

0 ! =0 for rate output at all temperatures; =NT for rate output at selected temperatures

****************************************************************************************************************

Non-Resonant Contribution

S(keVb) S’(b) S’’(b/keV) fracErr Cutoff Energy (keV)

7.06e0 2.98e-3 -5.20e-7 0.5 2500.0 ! BU12

0.0 0.0 0.0 0.0 0.0

****************************************************************************************************************

Resonant Contribution

Note: G1 = entrance channel, G2 = exit channel, G3 = spectator channel !! Ecm, Exf in (keV); wg, Gx in (eV) !!

Note: if Er<0, theta^2=C2S*theta_sp^2 must be entered instead of entrance channel partial width

Ecm DEcm wg Dwg Jr G1 DG1 L1 G2 DG2 L2 G3 DG3 L3 Exf Int

20.4 0.7 0 0 2.5 2.3e-19 0.5e-19 2 2.3 1.0 1 2.5e3 1.0e3 3 0.0 1

90.4 3.0 5.3e-8 9.0e-6 0 0 0 0 0 0 0 0 0 0 0.0 0

142.8 0.1 0 0 0.5 1.67e-1 0.12e-1 0 0.72 0.15 1 1.23e2 0.24e2 1 0.0 1

205.4 1.0 5.0e-6 1.0e-6 0 0 0 0 0 0 0 0 0 0 0.0 0
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260.7 2.6 3.7e-5 0.5e-5 0 0 0 0 0 0 0 0 0 0 0.0 0

316.4 1.3 0 0 2.5 1.9e-2 0.3e-2 2 0.78 0.34 1 47.0 19.0 3 0.0 1

589.9 1.7 1.0e-2 0.2e-2 0 0 0 0 0 0 0 0 0 0 0.0 0

598.3 1.2 0 0 1.5 1.4e2 0.7e2 1 0.71 0.39 1 2.0e3 0.1e3 2 0.0 1

799.6 1.6 0 0 0.5 24.6e3 1.4e3 0 2.5 0.4 1 20.e3 1.0e3 1 0.0 1

933.1 2.8 0 0 1.5 76.0 7.0 1 0.34 0.06 1 3.5e3 0.3e3 2 0.0 1

1106.1 4.0 0.29 0.03 0 0 0 0 0 0 0 0 0 0 0.0 0

1173.4 1.5 0 0 0.5 0.38e3 0.03e3 0 1.4 1.0 1 5.4e3 0.38e3 1 0.0 1

1324.4 2.1 0.08 0.01 0 0 0 0 0 0 0 0 0 0 0.0 0

1327.4 1.2 0 0 0.5 0.22e3 0.02e3 0 3.4 1.7 1 4.7e3 0.4e3 1 0.0 1

1542.8 2.1 0.025 0.005 0 0 0 0 0 0 0 0 0 0 0.0 0

1572.4 3.0 0.041 0.010 0 0 0 0 0 0 0 0 0 0 0.0 0

1581.4 4.0 0.06 0.01 0 0 0 0 0 0 0 0 0 0 0.0 0

1592.4 3.0 0.025 0.004 0 0 0 0 0 0 0 0 0 0 0.0 0

1673.9 1.6 0 0 1.5 2.0e3 0.6e3 2 1.0 0.4 1 1.4e3 0.4e3 1 0.0 1

1826.4 1.2 2.8 0.7 0 0 0 0 0 0 0 0 0 0 0.0 0

1880.4 1.9 0.13 0.04 0 0 0 0 0 0 0 0 0 0 0.0 0

1893.4 3.0 0 0 0.5 11.e3 3.0e3 0 0.36 0.20 1 18.0e3 5.4e3 1 0.0 1

****************************************************************************************************************

Upper Limits of Resonances

Note: enter partial width upper limit by choosing non-zero value for PT, where PT=<theta^2> for particles and...

Note: ...PT=<B> for g-rays [enter: "upper_limit 0.0"]; for each resonance: # upper limits < # open channels!

Ecm DEcm Jr G1 DG1 L1 PT DPT G2 DG2 L2 PT DPT G3 DG3 L3 PT DPT Exf Int frac

!0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0

****************************************************************************************************************

Interference between Resonances [numerical integration only]

Note: + for positive, - for negative interference; +- if interference sign is unknown

Ecm DEcm Jr G1 DG1 L1 PT DPT G2 DG2 L2 PT DPT G3 DG3 L3 PT DPT Exf

!+-

0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0

0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0

****************************************************************************************************************

Reaction Rate and PDF at NT selected temperatures only

Note: default values are used for reaction rate range if Min=Max=0.0

T9 Min Max

0.01 0.0 0.0

0.1 0.0 0.0

****************************************************************************************************************

B.2.2: 17O(p,γ)18F

17O(p,g)18F

****************************************************************************************************************

1 ! Zproj

8 ! Ztarget

2 ! Zexitparticle (=0 when only 2 channels open)

1.00727645232054 ! Aproj [Wan12] - Zp*Me

16.9947431172243 ! Atarget [Wan12] - Zo*Me

4.00150609431108 ! Aexitparticle (=0 when only 2 channels open) [Wan12] - Zhe*Me

0.5 ! Jproj

2.5 ! Jtarget

0.0 ! Jexitparticle (=0 when only 2 channels open)

5607.1 ! projectile separation energy (keV) [Wan12]

4415.23 ! exit particle separation energy (=0 when only 2 channels open) [Wan12]

1.25 ! Radius parameter R0 (fm)

2 ! Gamma-ray channel number (=2 if ejectile is a g-ray; =3 otherwise)

****************************************************************************************************************

1.0 ! Minimum energy for numerical integration (keV)

10000 ! Number of random samples (>5000 for better statistics)

0 ! =0 for rate output at all temperatures; =NT for rate output at selected temperatures

****************************************************************************************************************

Non-Resonant Contribution
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S(keVb) S’(b) S’’(b/keV) fracErr Cutoff Energy (keV)

4.82 0.0 0.0 0.086 1200

****************************************************************************************************************

Resonant Contribution

Note: G1 = entrance channel, G2 = exit channel, G3 = spectator channel !! Ecm, Exf in (keV); wg, Gx in (eV) !!

Note: if Er<0, theta^2=C2S*theta_sp^2 must be entered instead of entrance channel partial width

Ecm DEcm wg Dwg Jr G1 DG1 L1 G2 DG2 L2 G3 DG3 L3 Exf Int

-3.70 0.6 0 0 1 5.4e-2 1.8e-2 2 4.85e-1 0.46e-1 1 4.28e1 0.16e1 0 0.0 1

183.4 0.2 1.76e-6 0.09e-6 0 0 0 0 0 0 0 0 0 0 0.0 0

489.3 1.2 1.3e-2 0.07e-2 0 0 0 0 0 0 0 0 0 0 0.0 0

529.4 0.6 1.1e-1 0.3e-1 0 0 0 0 0 0 0 0 0 0 0.0 0

556.1 1.0 0 0 3 1.41e4 0.03e4 0 5.94e-1 0.06e-1 1 6.4 1.5 2 0.0 1

633.3 0.9 1.6e-1 0.3e-1 0 0 0 0 0 0 0 0 0 0 0.0 0

703.4 0.9 3.2e-2 0.7e-2 0 0 0 0 0 0 0 0 0 0 0.0 0

877.8 1.6 1.93e-2 0.17e-2 0 0 0 0 0 0 0 0 0 0 0.0 0

1036.6 0.9 0 0 2 3.68e2 0.61e2 1 1.20 0.11 1 2.31e2 0.40e2 1 0.0 1

1169.9 1.5 1.40e-1 0.3e-1 0 0 0 0 0 0 0 0 0 0 0.0 0

1196.0 1.6 2.7e-2 0.9e-2 0 0 0 0 0 0 0 0 0 0 0.0 0

1270.3 1.8 5.0e-2 1.9e-2 0 0 0 0 0 0 0 0 0 0 0.0 0

****************************************************************************************************************

Upper Limits of Resonances

Note: enter partial width upper limit by choosing non-zero value for PT, where PT=<theta^2> for particles and...

Note: ...PT=<B> for g-rays [enter: "upper_limit 0.0"]; for each resonance: # upper limits < # open channels!

Ecm DEcm Jr G1 DG1 L1 PT DPT G2 DG2 L2 PT DPT G3 DG3 L3 PT DPT Exf Int frac

!0.0 0.0 0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0

****************************************************************************************************************

Interference between Resonances [numerical integration only]

Note: + for positive, - for negative interference; +- if interference sign is unknown

Ecm DEcm Jr G1 DG1 L1 PT DPT G2 DG2 L2 PT DPT G3 DG3 L3 PT DPT Exf

+-

-2.2 0.6 1 8.2e-3 0.0 1 4.5e-3 0.0 8.91e-1 0.74e-1 1 0.0 0.0 3.20e1 0.21e1 1 0.0 0.0 0.0

64.5 0.5 1 1.89e-8 1.6e-9 1 0.0 0.0 4.53e-1 0.18e-1 1 0.0 0.0 1.30e2 0.05e2 1 0.0 0.0 0.0

+-

778.4 1.8 2 1.09e2 0.11e2 0 0.0 0.0 2.7e-1 0.6e-1 1 0.0 0.0 2.86e2 0.87e2 2 0.0 0.0 0.0

676.1 1.0 2 1.07e4 0.07e4 0 0.0 0.0 1.234 0.019 1 0.0 0.0 2.8e1 0.2e1 2 0.0 0.0 0.0

****************************************************************************************************************

Reaction Rate and PDF at NT selected temperatures only

Note: default values are used for reaction rate range if Min=Max=0.0

T9 Min Max

0.01 0.0 0.0

0.1 0.0 0.0

****************************************************************************************************************
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APPENDIX C: ANGULAR CORRELATIONS

Appendix C.1: Direct Capture and Broad Resonance Interference

As explained in Ref. [75], the tails of broad resonances have a significant impact on the total 17O(p,γ)18F

cross section at low bombarding energies. Fox et al. [75] pointed out that the total astrophysical S-factor

is, in actuality, the incoherent sum of the direct capture S-factor and the S-factor associated with these two

broad resonances. From calculations prepared for this dissertation (see Appendix B), the adopted center-

of-mass energies of these two resonances are Ecm
R = 556 keV and Ecm

R = 676 keV. Aside from complicating

analysis and the extraction of the direct capture astrophysical S-factor at low bombarding energies, the

broad resonances increase the complexity of angular correlation calculations. Interference between broad

resonance and direct capture primaries require the calculation of angular correlation interference terms. The

sensitivity of the total cross section to these interference terms is an integral component in the assessment

of angular correlations and whether they are included in the final analysis.

Rolfs (1973) [84] and Ferguson (1965) [157] set forth a handful of key equations for the determination of

angular correlation resonant/direct capture (R,D) interference terms. From Ref. [84]:

σ(E, θ) = σR(E)WR(θ) + σD(E)WD(θ) ± 2
√

σR(E)σD(E)cos(φR − φD)Wint
R,D(θ) (C.1)

where σ(E,θ) is the total differential cross section for a transition [193]; σR(E) is the cross section of the

broad resonance; WR(θ) is the angular correlation associated with the resonance; σD(E) is the direct capture

cross section; WD(θ) is the direct capture angular correlation; φR and φD are the resonant and direct capture

phase shifts, respectively, and Wint
R,D(θ) is the interference term. Note that according to Ref. [84], WR(θ) =

1 (isotropic) for all 17O(p,γ)18F resonances with spin J ≤3 due to poor alignment during the reaction. The

two broad resonances of interest, Ecm
R = 556 keV and Ecm

R = 676 keV, have spins and parities of Jπ = 3+

and 2+, respectively [40]. From Ref. [157], the resonant phase shift is:

φR = arctan

(

Γ

2(E0 − E)

)

− arctan

(

Fℓ

Gℓ

)

+
ℓ
∑

n=1

arctan

(

η

n

)

(C.2)

where Γ is the total width, E0 is the resonant energy, E is the bombarding energy, Fℓ is the regular radial

wave function, Gℓ is the irregular radial wave function, and η is the Coulomb parameter. Also from Ferguson

[157], the non-resonant phase shift is:

φD = − arctan

(

Fℓ

Gℓ

)

+
ℓ
∑

n=1

arctan

(

η

n

)

. (C.3)
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The interference term is calculated with the following equation from Rolfs [84]:

W int
R,D(θ) = (−)P Ĵ2ℓ̂fW (ℓRLRJ1J3; ℓfJ2)

∑

k

(ℓR0ℓD0|k0)Z1(LRℓRLDℓD; ℓfk)Pk

(

cos(θ)
)

(C.4)

where J1 and J3 are the initial and final state spins, respectively, and J2 is the spin of the resonance

state. The formation of the resonance state occurs due to the partial ℓR wave capture (J2 + ℓR + J1); the

quantum numbers ℓD and ℓf are the scattering and bound state direct capture orbital angular momenta,

respectively. Additionally, LR is the γ-ray multipolarity of the resonance primaries, LD is the direct capture

γ-ray multipolarity, and k is the order of Legendre polynomial. In this equation,

P = J2 + J3 + ℓR + ℓD + LD +
1

2
(ℓD + ℓR + LD + LR) + PLDLR , (C.5)

the interfering multipole transitions are represented by PLDLR = LD, LD+ 3
2 ,

1
2 and 0 for (ELD, ELR), (ELD,

MLR), (MLD, ELR), and (MLD, MLR), respectively. Note that for 17O(p,γ)18F direct capture, it is only

necessary to consider E1 γ-ray transitions because additional calculations indicate negligible contributions

from higher order γ-ray multipoles [84, 78, 85]. Also, from Ref. [183], calculating the angular correlation

interference terms is simplified dramatically by the fact that the broad resonances, Ecm
R = 556 keV and Ecm

R

= 676 keV, only form by s-wave capture. Finally, it is important to note that in Eq. C.4, terms in the Z1

coefficient are rearranged to resolve differences in the definition of this function between Refs. [157] and [84].

The Z1 coefficient, Racah coefficient, and Clebsch-Gordan coefficient are defined below.

It is clear from Eq. C.4 that the input can undergo a staggering number of permutations; however, due

to the selection rules associated with the Clebsch-Gordan coefficient, Racah coefficient, and Z1 coefficient,

only a handful of these permutations satisfy Eq. C.4 producing a non-zero solution for an angular correlation

interference term. A code was written to solve for the allowed Clebsch-Gordan coefficients, Racah coefficients,

and Z1 coefficients. The non-zero results are tabulated below and combined finally in Table C.4. As expected,

only a handful of direct capture decays actually interfere with resonant capture primaries producing a non-

zero angular correlation R,D interference term.

From Ferguson [157], the Clebsch-Gordan coefficient is defined, in terms of the Wigner 3−j symbol, as:

(aα, bβ|cγ) = ĉ(−)a−b+γ

⎛

⎜

⎝

a b c

α β −γ

⎞

⎟

⎠
(C.6)

where α + β = γ and the triangle condition (abc) is satisfied. For the angular correlation interference

calculation, the Clebsch-Gordan coefficients can immediately be simplified to (00ℓD0|k0) because the two
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broad resonances in question are only formed by s-wave capture and ℓR = 0 [84, 183]. See Tab. C.1 for

the complete set of Clebsch-Gordan coefficients allowed to contribute to the angular correlation interference

term.

Table C.1: Clebsch-Gordan coefficients allowed due to the interference between Ecm
R = 556 keV and direct

capture or Ecm
R = 676 keV and direct capture. These resonances are only formed by s-wave capture [183],

ℓR = 0.

Ex (keV) ℓD (00ℓD0|10) (00ℓD0|30)
0 3 − 1
0 1 1 −

1042 3 − 1
1042 1 1 −
1121 3 − 1
1121 1 1 −

Ferguson [157] defines the Racah coefficient in terms of the Wigner 6−j symbol as:

W (abcd; ef) = (−)a+b+c+d

⎧

⎪

⎨

⎪

⎩

a b e

d c f

⎫

⎪

⎬

⎪

⎭

(C.7)

where the (abe), (cde), (acf), and (bdf) triangles must be satisfied in order to obtain a Racah coefficient that

does not vanish. Again, because of resonance state formation by s-wave capture, the Racah coefficients in Eq.

C.4 simplify immediately to the formW(0LRJ1J3;ℓf3) for the Ecm
R = 556 keV resonance andW(0LRJ1J3;ℓf2)

for the Ecm
R = 676 keV resonance. See Tab. C.2 for the Racah coefficients that are allowed to contribute to

the angular correlation interference terms.

Table C.2: In the top portion, Racah coefficients allowed due to the interference between Ecm
R = 556 keV (J2

= 3) and direct capture. In the bottom portion, Racah coefficients allowed due to the interference between
Ecm
R = 676 keV (J2 = 2) and direct capture. These resonances are only formed by s-wave capture [183], ℓR

= 0.

Ex (keV) LR J1 J2 J3 ℓf W(0LRJ1J3;ℓfJ2)
0 2 3 3 1 2 1√

35
1121 2 3 3 5 2 1√

35

1042 2 2 2 0 2 1
5

Finally, Ferguson [157] defines the Z1 coefficient as:

Z1(LbL
′b′; ck) = (−)k−L+L′−1L̂L̂′b̂b̂′(L1, L′ − 1|k0)W(LbL′b′; ck). (C.8)
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The Z1 coefficients that survive selection rules are tabulated for each broad resonance in Table C.3.

Table C.3: In the top portion, Z1 coefficients allowed due to the interference between Ecm
R = 556 keV and

direct capture. In the bottom portion, Z1 coefficients allowed due to the interference between Ecm
R = 676

keV and direct capture. These resonances are only formed by s-wave capture [183], ℓR = 0.

Ex (keV) LR LD ℓD ℓf Z1(LR0LDℓD;ℓf1) Z1(LR0LDℓD;ℓf3)

0 2 1 3 2 − -
√

3
5

0 2 1 1 2 - 3√
10

−

1121 2 1 3 2 − -
√

3
5

1121 2 1 1 2 - 3√
10

−

1042 2 1 3 2 − -
√

3
5

1042 2 1 1 2 - 3√
10

−

The Clebsch-Gordan coefficients tabulated in Tab. C.1, the Racah coefficients in Tab. C.2, and the

Z1 coefficients in Tab. C.3 were plugged into Eq. C.4 to calculate the angular correlation interference

coefficients. The results of this calculation are tabulated in Tab. C.4 for the Ecm
R = 556 keV and Ecm

R = 676

keV broad resonances.

Table C.4: In the top portion, angular correlation terms allowed due to interference between Ecm
R = 556 keV

(J2 = 3) and direct capture. In the bottom portion, angular correlation terms allowed due to interference
between Ecm

R = 676 keV (J2 = 2) and direct capture. These resonances are only formed by s-wave capture
[183], ℓR = 0. The coefficients associated with Legendre polynomials of order k = 1 and k = 3, a1 and a3
respectively, are tabulated.

Ex (keV) LR LD ℓD ℓf J1 J3 a1 a3

0 2 1 3 2 3 1 − -
√

3
5

0 2 1 1 2 3 1 3√
10

−

1121 2 1 3 2 3 5 − -
√

3
5

1121 2 1 1 2 3 5 3√
10

−

1042 2 1 3 2 2 0 − -
√

3
5

1042 2 1 1 2 2 0 3√
10

−

Based on these results, it is clear that only (p → d) and (f → d) direct capture contributions interfere with

a handful of resonant capture primaries. In order to compare the individual interference terms and gauge

their affect on Eq. C.1, fragments of this equation were assessed, computed, and plotted. The interference
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terms were removed and the following fragment of Eq. C.1 was plotted in Fig. C.3:

σfrag
R,D (E, θ) = σR(E)WR(θ) + σp→d(E)Wp→d(θ) + σf→d(E)Wf→d(θ) (C.9)

where p and f refer to p-wave (ℓD = 1) and f -wave (ℓD = 3) formation, respectively, and d refers to the d-shell

(ℓf = 2) orbital. Next, the two interference fragments were calculated and plotted alongside σfrag
R,D (E,θ):

σfrag
R,p→d(E, θ) = 2

√

σR(E)σp→d(E)cos(φR − φp→d)W
int
R,p→d(θ) (C.10)

and

σfrag
R,f→d(E, θ) = 2

√

σR(E)σf→d(E)cos(φR − φf→d)W
int
R,f→d(θ). (C.11)

The phase shifts in these two equations become:

φR − φp→d = arctan

(

Γ

2(E0 − E)

)

− arctan

(

Fs

Gs

)

+ arctan

(

Fp

Gp

)

− arctan

(

η

1

)

(C.12)

and

φR − φf→d = arctan

(

Γ

2(E0 − E)

)

− arctan

(

Fs

Gs

)

+ arctan

(

Ff

Gf

)

− arctan

(

η

1

)

− arctan

(

η

2

)

− arctan

(

η

3

)

. (C.13)

The cross sections used in this calculation are plotted in Fig. C.1. The direct capture cross sections were

calculated with the computer code tedca [138]. The resonant capture cross sections were computed with

a numerical code [154] and input reconciled from the literature and tabulated in Tabs. B.2 and 6.13.

The calculated direct capture cross sections are multiplied by their associated spectroscopic factors—also

reconciled from the literature and tabulated in Tab. 6.14 in order to arrive at experimental cross sections:

σexp =
∑

ℓi,ℓf

C2S(ℓf )σcalc. (C.14)

Also, note that from Ref. [84],

Wp→d(θ) = 1−
1

10
P2

(

cos(θ)
)

(C.15)

and

Wf→d(θ) = 1−
2

5
P2

(

cos(θ)
)

. (C.16)
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Figure C.1: Equation C.14 was solved to determine the experimental direct capture and resonant capture
cross sections computed with tedca [138] and a numerical code [154], respectively. Spectroscopic factors,
branching ratios, and resonance parameters are reconciled from the literature and tabulated in Tabs. 6.14,
6.13, and B.2. The dotted blue line represents the combined direct capture (p → d) and (f → d) cross
sections (ℓf = 2). The solid blue line is the cross section of the broad resonance for a particular transition.
Red asterisks indicate the experimental proton bombarding energy in the center-of-mass frame.
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Additionally, absorption coefficients for the LENA HPGe (135%) detector are taken from Longland et al.

[99], and Q-coefficients Q1, Q2, and Q3 are shown in Fig. C.2. These values are used to perform these

calculations, because during the evaluation stage of selecting the appropriate angular correlation terms, the

HPGe absorption coefficients at 0◦ are reasonable approximations.

With all of the input defined, the three fragment equations, Eqs. C.9, C.10, and C.11, are compared to

probe the sensitivity of the differential cross section to (p → d) and (f → d) partial direct capture cross

sections. If either Eq. C.10 or C.11 impact Eq. C.9 substantially, these terms must be analyzed further and

perhaps included in the angular correlation analysis. From Fig. C.3, it is clear that Eq. C.10 contributes

±10% to the differential cross section, but Eq. C.11 does not contribute significantly enough to warrant

additional scrutiny. Note that Eq. C.11 approaches zero at ≈40◦ due to its dependence on the P3 Legendre

polynomial. Pure transitions were assumed during these calculations because mixing ratios are not known;

this is consistent with what Fox et al. [75] did when faced with angular correlation calculations for the Ecm
R

= 183 keV resonance.

In order to verify whether the additional 10% introduced by Eq. C.10 is significant enough to deserve

inclusion in the analysis, Eq. C.1 is modified so that

σR,p→d(E, θ) = σR(E)WR(θ) + σp→d(E)Wp→d(θ) + 2
√

σR(E)σp→d(E)cos(φR − φp→d)W
int
R,p→d(θ). (C.17)

The approximation

WR,p→d(θ) ≈
σR,p→d(E, θ)

σR(E) + σp→d(E)
(C.18)
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Figure C.2: TheQ-coefficients used in the R,D interference angular correlation calculation. TheQ3 coefficient
is a blue line, the Q2 coefficient is a dashed blue line, and the Q1 coefficient is a dash-dotted blue line. These
values are extracted from Ref. [99] for the LENA high-purity germanium detector. While evaluating several
angular correlation terms, it is assumed that the absorption coefficients at 0◦ are reasonable approximations
while assessing which correlation terms to include in the analysis.

144



θ

0 10 20 30 40 50 60 70 80 90

 b
)

µ
) (θ

(E
,

R
,D

C
ex

p
σ

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

 d)→(p 
 d)→(f 

0→R/DC 
 = 175 keVpE
 = 190 keVpE
 = 248 keVpE
 = 277 keVpE
 = 300 keVpE
 = 325 keVpE

 = 556 keVR
c.m.E

θ

0 10 20 30 40 50 60 70 80 90
 b

)
µ

) (θ
(E

,
R

,D
C

ex
p

σ
-910

-810

-710

-610

-510

-410

-310

-210

-110

1

 d)→(p 
 d)→(f 

1121→R/DC 
 = 175 keVpE
 = 190 keVpE
 = 248 keVpE
 = 277 keVpE
 = 300 keVpE
 = 325 keVpE

 = 556 keVR
c.m.E

θ

0 10 20 30 40 50 60 70 80 90

 b
)

µ
) (θ

(E
,

R
,D

C
ex

p
σ

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

 d)→(p 
 d)→(f 

1042→R/DC 
 = 175 keVpE
 = 190 keVpE
 = 248 keVpE
 = 277 keVpE
 = 300 keVpE
 = 325 keVpE

 = 676 keVR
c.m.E

Figure C.3: Equations C.10 and C.11 are solved to determine if the differential cross section is affected by the
angular correlation terms associated with direct capture and broad resonance interference. Eqs. C.9 (solid
lines), C.10 (dashed lines), and C.11 (dotted lines) are plotted for all experimental bombarding energies over
the angular range θ = 0−90◦. It is clear from these plots that the (p → d) interference terms contribute an
additional ≈ ±10% to the cross section, and the contributions due to (f → d) terms are negligible at θ =
0◦. These contributions diminish with increasing angle. The (f → d) contribution drops off at around 40◦

due to the dependence of Eq. C.11 on the P3 Legendre polynomial.
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can now be made. From this calculation, the total angular correlation term due to interference between

direct capture transitions and broad resonance primaries is not distinguishable from unity; as a result, no

anisotropies are included in the analysis due to R,D interference (see Fig. C.4).

Appendix C.2: Bound State Orbital Angular Momenta Terms

Bound state orbital angular momenta can also produce angular correlation terms. From Refs. [84,

78, 85], only E1 γ-ray transitions are considered for 17O(p,γ)18F direct capture. After performing coupling

calculations for all of the known direct capture primaries [84]—keeping the dominance of the E1 multipolarity

in mind—the only possible interfering bound state orbital angular momenta come from capture into s-shell

and d-shell orbitals (ℓf = 0 and ℓf∗ = 2, respectively). The coupling calculations reveal that several of these

transitions only capture into d-shell orbitals. From Rolfs [84], the s-shell and d-shell angular correlation
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Figure C.4: Equation C.18 was solved to assess whether angular correlation terms calculated for interference
between the two broad resonances, Ecm

R = 556 keV and Ecm
R = 676 keV, and (p → d) direct capture are

anisotropic. In each figure, Eq. C.18 (solid lines), is plotted on a log-scale for all experimental bombarding
energies over the angular range θ = 0−90◦. It is clear from the figures that the (p → d) interference terms
produce an isotropic angular correlation, and R,D interference can be neglected from the analysis.
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terms are:

Wℓf (θ) = Wp→s(θ) = 1− P2

(

cos(θ)
)

(C.19)

and

Wℓf∗ (θ) = Wp→d(θ) = 1−
1

10
P2

(

cos(θ)
)

, (C.20)

respectively. These two terms are incorporated into the calculation as an incoherent sum, defined by Ref.

[84] as:

W (θ) =
1

1 + z

(

Wℓf (θ) + zWℓf∗ (θ)

)

(C.21)

where

z =
σp→d

σp→s
. (C.22)

This z-factor is the ratio between the (p → d) and (p → s) cross sections for a particular direct capture

transition.

The direct capture cross section code tedca [138] was used to calculate each direct capture primary’s

contribution to the total cross section (see Fig. C.5). In this figure, the (p → d) contributions are shown

as dotted blue lines and the (p → s) contributions are depicted as dashed blue lines. Spectroscopic factors,

reconciled from the literature and tabulated in Tab. 6.14, are not included in the cross sections presented

in Fig. C.5; however, spectroscopic factors were introduced in the angular correlation calculations and are

folded into the results displayed in Fig. C.6 (the solid red lines incorporate experimental values including the

spectroscopic factors). The inclusion of the spectroscopic factors satisfies the definition of the experimental

cross section from Eq. C.14. It is clear from Fig. C.5 that the DC→0, 1042, 1121, 4360, and 4652 keV

transitions do not have (p → s) components. This can easily be demonstrated with the coupling calculations.

It is evident from Fig. C.6 that these five transitions do not introduce anisotropies and can be disregarded

from the final analysis; the angular correlations do not deviate from unity over the angular range 0◦−90◦.

The remaining seven transitions do have (p → s) components and anisotropies are present. In Fig. C.6,

the dashed lines represent (p → d) contributions (Eq. C.20), dotted lines represent (p → s) contributions

(Eq. C.19), and solid lines represent the incoherent sum (Eq. C.21). Blue lines are strictly theoretical

calculations while red lines include absorption coefficients from Longland et al. [99] (shown in Fig. C.2) and

the spectroscopic factors tabulated in Tab. 6.14. The same assumptions made in Section C.1 with respect

to the adoption of the absorption coefficients from Ref. [99] apply here.

Very minor deviations between angular correlation terms were observed between different beam energies

for the seven transitions with anisotropic angular correlations. These deviations are represented in the

figure by overlapping the final experimental incoherent sum at each beam energy for each DC primary. The
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thickness associated with the solid red line in each plot shows that there is only a slight deviation between

correlation terms over the beam energy range for each DC primary. Uncertainty was handled independently

and is not incorporated into these plots. Uncertainty was sampled carefully at 0◦ and the method employed

is described in more detail in Appendix A.1. The uncertainties calculated have little bearing on the final

analysis because the Geant4 simulations do not incorporate the Longland et al. absorption coefficients and

instead solve Eq. C.21 each time an event is generated.

Appendix C.3: Scattering State Orbital Angular Momenta Interference

Finally, scattering state orbital angular momenta will produce interfering angular correlation terms if

multiple partial waves form a particular bound state. From the coupling calculations, it is clear that only

p-wave and f -wave captures are relevant for 17O(p,γ)18F direct capture. These two partial waves correspond

to orbital angular momenta ℓi = 1 and ℓi∗ = 3, respectively. From Rolfs [84], the angular correlations are:

Wℓi(θ) = Wp→d(θ) = 1−
1

10
P2

(

cos(θ)
)

(C.23)

and

Wℓi∗ (θ) = Wf→d(θ) = 1−
2

5
P2

(

cos(θ)
)

, (C.24)

respectively. Interference between these angular correlations can be resolved with a coherent sum, defined

by Rolfs as:

W (θ) =
1

1 + y

(

Wℓi(θ) + yWℓi∗ (θ) ± 2
√
ycos(ϵ)Wint

ℓiℓi∗
(θ)

)

(C.25)

where

y =
σf→d

σp→d
(C.26)

This y-factor is the ratio between the (f → d) and (p → d) cross sections for a particular transition. In the

coherent sum,

ϵ = φℓi∗ − φℓi + δℓi∗ − δℓi = ξℓi∗ − ξℓi . (C.27)

Eq. C.27 refers to both the Coulomb phase shift (φ) and the nuclear phase shift (δ), and they can be

rewritten in terms of the Sommerfeld parameter and the Coulomb wave functions, respectively. From Ref.

[157], the combination of nuclear and Coulomb phase shifts becomes:

ξℓ = − arctan
Fℓ

Gℓ
+

ℓ
∑

n=1

arctan
η

n
. (C.28)
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Figure C.5: Cross sections (in µb) calculated for each 17O(p,γ)18F DC primary with tedca [138] for ℓf = 0
(p → s) and ℓf∗ = 2 (p → d) over the energy range Ecm

p = 50−500 keV. Beam energies Ep = 175, 190, 250,
275, 300, and 325 keV are shown as red asterisks.
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Figure C.6: For the known 17O(p,γ)18F DC primaries, ℓf∗ = 2 (dashed lines), ℓf = 0 (dotted lines), and
summed (solid lines) angular correlations were calculated from 0◦−90◦. Blue lines are theoretical calculations
and red lines include spectroscopic factors and absorption coefficients.
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For interference between p-wave and f -wave scattering,

ξℓi∗=3 − ξℓi=1 = arctan
F1

G1
− arctan

F3

G3
+ arctan

η

2
+ arctan

η

3
. (C.29)

From Rolfs [84], the interference portion of the coherent sum becomes:

W int
ℓi=1,ℓi∗=3(θ) =

3

5

√

3

2
P2

(

cos(θ)
)

. (C.30)

To solve these equations and assess whether these orbital angular momenta cause anisotropic angular corre-

lations, (p → d) and (f → d) cross sections were calculated with the direct capture code tedca [138] for the

known direct capture primaries [84]. In Fig. C.7, the (p → d) cross sections are shown as dashed blue lines

and the (f → d) cross sections are shown as dotted blue lines. Red asterisks represent the six experimental

bombarding energies, ER = 175, 190, 250, 275, 300, and 325 keV. Eq. C.25 was then solved over the angular

range, 0◦−90◦ for each transition at each experimental bombarding energy (see Fig. C.8). In the figure,

the solutions to Eqs. C.23 and C.24 are plotted as dashed and dotted lines, respectively. The coherent

sums are plotted as solid lines. Blue lines indicate theoretical input (excluding spectroscopic factors and

absorption coefficients) and red lines represent experimental correlations terms (with absorption coefficients

from Longland et al. [99], see Fig. C.2, included). Once again, the absorption coefficients from Ref. [99]

were adopted as reasonable approximations for the purposes of assessing the possible angular correlation

terms. From the results presented in Fig. C.8, it is evident that scattering state orbital angular momenta

are not responsible for angular correlation anisotropies, and the correlation terms do not deviate from unity.

Uncertainties in the angular correlations were calculated and assessed using the methodology explained in

Appendix A.1. The isotropic angular correlations that result from the coherent sum of p-wave and f -wave

contributions are not included in the final analysis.
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Figure C.7: Cross sections (in µb) calculated for each observed 17O(p,γ)18F DC primary with tedca [138]
for ℓi = 1 and ℓi∗ = 3 over the energy range Ecm

p = 50−500 keV. Beam energies Ep = 175, 190, 250, 275,
300, and 325 keV are shown as red asterisks.
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Figure C.8: For the known 17O(p,γ)18F DC primaries, ℓi∗ = 3 (dotted lines), ℓ1 = 1 (dashed lines), and inter-
ference (solid lines) angular correlations were calculated from 0◦−90◦. Blue lines are theoretical calculations
and red lines include absorption coefficients.
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APPENDIX D: MONTE CARLO DETECTOR EFFICIENCIES

Appendix D.1: Monte Carlo HPGe Peak Efficiencies

A new analysis method from Ref. [194] was tested to sum-correct experimental peak intensities. This

new sum-correction method is accomplished by complicated book-keeping of the energy deposition during

a Geant4 [102, 103] simulation. When an event occurs in the simulated LENA Geant4 detector system,

a ParentID is assigned to that event. A ProcessID describes the event: if it is Compton scattering, the

photoelectric effect, pair production, etc. Additionally, Geant4 keeps track of the creation direction of the

original event (in three dimensions). These attributes, unique ParentIDs and a record of creation directions,

allow the user to track events through the detector and group related events—here related events will be

referred to as groups. For example, 60Co decays preferentially via a two step γ-cascade, 2→1→0, where E21
γ

= 1173 keV and E10
γ = 1332 keV. The two γ-rays will not be considered a part of the same group—they will

have different ParentIDs, different creation directions, and are considered “unrelated.” Only the chronological

energy depositions within the detector, associated with a single γ-ray, are considered the constituents of each

γ-ray’s group. In a group, the related events are each depositing a portion of the total event energy (so either

1173 keV or 1332 keV in this example). At this point, the progenitor event (the first instance that a portion of

Eγ is deposited in the detector) can not be identified, but Geant4 keeps track of when during a simulation

an event occurs—thus deposition can be tracked chronologically. Geant4 stores a time stamp for each

deposition event that can be queried for each member of a group, and in a given group, the event with

the lowest time stamp is the progenitor (the first instance of energy deposition in the crystal). Starting

with the progenitor event, energy deposited in the detector by subsequent (related) events can be summed

to calculate the total energy deposited in the detector by the incident γ-ray. With a post-processing sort

routine, a new spectrum is populated with γ-ray energies calculated by tracking deposition events instead of

the traditional way—populating a HPGe singles spectrum during a simulation with a “snapshot” of detected

energies. Because each γ-ray’s energy deposition is individually being followed from start to finish, there

will not be any summing in the new spectrum—these counts are decoupled from simultaneous detections.

To summarize, for the 60Co decay, every instance of a 1173 keV γ-ray detected by the HPGe detector

deposits some initial portion of its energy in the crystal. This instance is identified as the progenitor

event and all subsequent deposition events are summed that share a ParentID, creation direction, and

occur chronologically after the progenitor. The 1332 keV secondaries are also individually distinguished

in this manner as energy is deposited in the detector. Geant4 stores events chronologically so the post-

processing code that sorts Monte Carlo events into spectra—sort.cxx discussed in more detail in Sec. 6.3.1—

can discriminate between the 1173 keV and 1332 keV γ-rays and will not misinterpret them as a single 2505
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keV γ-ray. Figure D.1 is a simplified illustration of how Geant4 interprets the detection of 1173 and 1332

keV γ-rays from the 60Co decay. A pink source puck was drawn in the DAWN [104] schematic of the LENA

γγ-coincidence spectrometer in Fig. 3.10. Thick arrows labeled “1173” and “1332” represent the two 60Co

γ-rays. In this example, the 1173 keV progenitor event deposits 500 keV in the HPGe detector while the

1332 keV progenitor event deposits 1000 keV. The 1173 keV group contains two more depositions, 500 keV

and 173 keV. The 1332 keV group terminates after a final 332 keV deposition in the crystal. The regular

HPGe singles histogram would be populated with a 2505 keV γ-ray while the new sum-corrected spectrum

records separate 1173 and 1332 keV γ-rays.

Figure D.1: From the DAWN [104] schematic of the LENA γγ-coincidence spectrometer in Fig. 3.10, a
simplified illustration of how Geant4 handles a 60Co decay. A pink source puck was added against the
target surface. Thick arrows labeled “1173” and “1332” represent the primary and secondary, respectively.
The red arrows are subsequent energy depositions by dislodged electrons. The negative values labeled within
the crystal indicate energy deposition sites and what portion of the total γ-ray energy has been deposited.
When filling a regular HPGe singles spectrum, Geant4 interprets this example of a simultaneous detection
as a single, 2505 keV γ-ray. With the Geant4 sum-correction method, these separate γ-rays initiate two
distinct energy deposition chains. The sum of the energy deposited by each chain individually populate a
sum-corrected singles spectrum.

By comparing a peak intensity in the regular HPGe singles spectrum and the same intensity in the new

spectrum, a sum-correction factor (the ratio between the two intensities) can be determined for a particular

γ-ray. This correction factor can then be multiplied by the experimental peak intensity to sum-correct the

data. The equation for the number of disintegrations from Ref. [4] becomes:

NR =
Nγr

BγηGe,PW(θ)
(D.1)

where NR is the number of disintegrations, Nγ is the experimental HPGe singles peak intensity (subject
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to summing), Bγ is the branching ratio, ηGe,P is the germanium peak efficiency, and W(θ) is the angular

correlation. The new term, r, is the sum-correction factor where:

r =
NMC

n.s.

NMC
γ

(D.2)

when NMC
n.s. is the Monte Carlo peak intensity with summing removed and NMC

γ is the Monte Carlo peak

intensity with summing handled naturally by Geant4.
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Figure D.2: The absolute 60Co peak efficiency from the sum-peak method [105] (black crosses) is plot-
ted alongside the experimental efficiencies from Fig. 3.11, raw simulated efficiencies (solid line), normal-
ized Monte Carlo efficiencies (dashed line), and Geant4 sum-corrected efficiencies [194]. The Geant4

sum-correction method [194] was used to calculate source and reaction peak efficiencies for 56Co and the
14N(p,γ)15O resonance ER = 278 keV, respectively. They are labeled “Mixed” in this figure because they
contain experimental and simulated components. Note that these experimental components are independent
from the data that were sum-corrected with the matrix method (see Sec. 3.5.1). Mixed efficiencies are not
included in either the 18O(p,γ)19F or 17O(p,γ)18F analyses.

To calculate experimental efficiencies with this sum-correction technique, the only additional information

needed is the number of disintegrations. A routine was written that relies upon root’s TFractionFitter

class to compare Geant4 and experimental spectra. The TFractionFitter class calculates what fractions

of background and Monte Carlo spectra make up the total experimental singles (or coincidence) spectrum.

Figure D.2 includes the HPGe 56Co and 14N(p,γ)15O peak efficiencies calculated with the new methods

outlined in this section and are labeled “Mixed” because they contain both simulated and experimental

components. They are plotted alongside the 60Co absolute peak efficiency, determined with the sum-peak

method, Geant4 mono-energetic γ-ray raw and normalized efficiencies, and the experimental efficiencies
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that were sum-corrected with the matrix method from Fig. 3.11. They were shifted to match the absolute

peak efficiency at E10
γ = 1332 keV. Before this shift was applied, the “Mixed” 14N(p,γ)15O peak efficiency

and the absolute efficiency differed only by 1.3% at E10
γ = 1332 keV. The 56Co “Mixed” peak efficiency

agreed with the absolute efficiency within 2.2%. The “Mixed” efficiencies, the “Data” efficiencies, and the

absolute efficiency agree well; this is the first indication that root’s TFractionFitter class can be used to

calculate total reaction numbers. Determining total reaction numbers with TFractionFitter is tested and

discussed in detail in Sec. 6.3.

Appendix D.2: Monte Carlo NaI(Tl) Gated Total Efficiencies

As discussed in the previous section, Geant4 simulations are used to calculate coincidence correction

factors—complex quantities that depend on the NaI(Tl) total efficiency—because the Monte Carlo method

can easily account for events summing into the software gate. The analytical method described in Refs.

[108, 117] is an alternative that has some difficulty accounting for this summing. In Fig. D.2, mono-

energetic γ-rays were simulated with Geant4 to produce the Monte Carlo HPGe peak efficiency curve. The

goal here was to produce an analogous plot of NaI(Tl) total efficiencies using Geant4. For a two step decay

scheme, like the deexctiation of the 15O nucleus from the 14N(p,γ)15O ER = 278 keV resonance, Eq. 3.13

can be rewritten for a primary detected in a coincidence spectrum:

N c
21 = NRη

Ge,P
21 B21B10η

NaI(Tl),T
10 . (D.3)

In this equation, B10η
NaI(Tl),T
10 is fγ . In a HPGe singles spectrum, the intensity of the 2→1 primary

transition, Ns
21, is simply:

Ns
21 = NRη

Ge,P
21 B21. (D.4)

The procedure discussed in Appendix D.1 provides a Monte Carlo-based method of sum-correcting peak

intensities in simulated Geant4 spectra. If the peak intensities in Eqs. D.3 and D.4 are sum-corrected, the

ratio of the two equations should yield:

N c
21r

c

Ns
21r

s
= B10η

NaI(Tl),T
10 = fγ (D.5)

where rc and rs are the sum-correction factors calculated for the 2→1 peak in the coincidence and singles

spectra, respectively:

rc =
NMC,c

n.s.

NMC,c
γ

(D.6)
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and

rs =
NMC,s

n.s.

NMC,s
γ

. (D.7)

Now, a Geant4 simulation can be performed analogous to the mono-energetic γ-ray simulations that are

run for peak efficiencies. In order to solve for ηNaI(Tl),T
10 in Eq. D.5, an arbitrary two-step decay scheme

can be assembled. In this decay scheme, B10 can be set to “1.0” to simplify the calculation—all secondaries

in this artificial decay scheme will have a 100% probability of emission. The primaries can also be set to

any value. Five artificial two-step decay schemes were run; each had eight primaries, with B21 = 0.125, and

eight secondaries, with B10 = 1.0, for a total of forty two-step decays (these were run separately to reduce

the likelihood of overlapping peaks in the artificial spectra). A high value for NR was selected by the user to

improve the statistics of the Monte Carlo output. The coincidence gate 3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ ≤ 9.0

MeV was selected. The artificial excited state in all five decay schemes was set to Ex = 8900 keV so that

all transition pairs would satisfy this coincidence condition. The five simulations were run and the Geant4

output was sorted into HPGe singles sum-corrected histograms and coincidence sum-corrected histograms

(because experimental data are not being sum-corrected here, multiplying by r becomes an unnecessary

step). The ratio for each primary intensity, N c
21/N

s
21 with sum-corrections applied, can then be plotted with

respect to the energy of the secondary, E10 = ENaI(Tl)
γ , because this is the energy detected by the NaI(Tl)

annulus—satisfying the coincidence condition. In this case, where a two step decay is used and branching

ratios of all secondaries are 100%, the plot of N c
21/N

s
21 versus E10 is the total efficiency of the NaI(Tl) annulus

and the fγ correction factor. The result is plotted as a dashed black line in Fig. D.3 and labeled “Arbitrary

Geant4.” There is a noticeable turn-off point in the slope that is discussed below.

This procedure was then tested with the 14N(p,γ)15O ER = 278 keV resonance. The same steps were

followed—five artificial decay schemes—however the excited state was set to Ex = 7567.14 keV for the ER

= 278 keV resonance [121, 41]. The result is plotted in Fig. D.3 as a dashed blue line. Here the turn-off

point has shifted to a lower energy (discussed below). Experimental ER = 278 keV resonance primary peak

intensities were sum-corrected with the technique described in Appendix D.1 and plugged into Eq. D.5 and

secondaries were plugged into the analogous equation:

N c
10r

c

Ns
10r

s
= B21η

NaI(Tl),T
21 (D.8)

where now B21 can not be neglected (primary emission probabilities are not 100% for the ER = 278 keV

resonance). The blue squares in Fig. D.3 are the calculated NaI(Tl) gated total efficiencies of the ER = 278

keV primaries and secondaries from the experimental data. The ground state transition is excluded from the
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figure because it is not coincident with any other γ-ray and will not appear in a gated coincidence spectrum.

A total efficiency uncertainty of 5% is adopted based on the analysis of these efficiencies.
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Figure D.3: The new Geant4 sum-correction method was used to calculate gated NaI(Tl) total efficiencies
for the 14N(p,γ)15O ER = 278 keV resonance. The 14N(p,γ)15O gated efficiencies are labeled “Mixed” because
they contain experimental and simulated components. Forty artificial two-step decays from Ex = 7567.14
keV were simulated in five 8-decay sets. Then Eq. D.8 was solved to calculate the gated total efficiency for
each transition. The gated total efficiency was also calculated from experimental ER = 278 keV resonance
data and is plotted as blue squares in this figure. An arbitrary decay scheme from Ex = 8900 keV (dashed
black line) and a decay scheme from 17O(p,γ)18F direct capture reaction where Ex = 5772 keV (dashed red
line) are also plotted. The coincidence conditions here are Elow = 3500 keV and Ehigh = 9000 keV.

Next, a NaI(Tl) gated total efficiency versus detected NaI(Tl) energy plot was generated for the 17O(p,γ)18F

direct capture reaction where Ex = 5772 keV (Ep = 175 keV) [121, 41]. This curve is plotted as a dashed

red line in Fig. D.3.

All three curves in Fig. D.3 feature a turn-off point at progressively higher energies. Recall that these

curves are plotted with respect to ENaI(Tl)
γ so high energies in this figure correspond to low energies in the

HPGe detector, EGe
γ . The dip in each plot comes from the coincidence gate. The γ-rays detected by the

annulus at high energies are coincident with γ-rays in the HPGe where EGe
γ <Elow, but the condition Elow

≤ EGe
γ + ENaI(Tl)

γ ≤ Ehigh is still satisfied. This was tested with the artificial decay from Ex = 8900 keV

sorted through three different coincidence gates: Elow = 3500, 5500, and 7500 keV. The Ehigh = 9000 keV

threshold was held constant. The dip in the three curves shifted due to the change in the Elow coincidence

condition.

The gated total efficiency, like the peak efficiency, was calculated to illustrate the agreement between

simulations and experimental results. It was important to demonstrate that Monte Carlo simulations of the
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LENA γγ-coincidence spectrometer agree well with experimental results.
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APPENDIX E: SPECTRA

Spectra collected with the high purity germanium detector and gated coincidence spectra from the

17O(p,γ)18F study are shown in this section (all spectra include the muon veto anticoincidence condition).

Peaks associated with the deexcitation of the 18F nucleus are labeled on each figure by transition. Transition

intensities can be found in Tab. 6.3. First and second escape peaks are labeled “FE” and “SE,” respectively,

and only correspond to the 18F deexcitations. Environmental backgrounds are not labeled, save for the

1460 keV 40K, the 2614 keV 208Tl peak, and the 511 keV e+e−-annihilation peak; however, the observed

environmental backgrounds are itemized in Tab. E.1 [195]. Beam-induced backgrounds are also labeled by

reaction, but there is no differentiation between the first and second escape peaks from the beam-induced

background resonance transitions. The beam-induced reactions are tabulated in Tab. 4.1.

Table E.1: The environmental backgrounds observed during these experiments. The dominant decay chains
include 226Ra and 232Th daughter nuclei, and the γ-ray energies from Ref. [195] are tabulated.

Decay Eγ (keV) Decay Eγ (keV)
226Ra(α)222Rn 186.211±0.013 214Bi(β−νe)214Po 1280.96±0.02

212Pb(β−νe)212Bi 238.632±0.002 24Na(β−νe)24Mg 1368.626±0.005
214Pb(β−νe)214Bi 295.224±0.002 214Bi(β−νe)214Po 1377.669±0.012
214Pb(β−νe)214Bi 351.932±0.002 214Bi(β−νe)214Po 1407.98±0.04
208Tl(β−νe)208Pb 510.77±0.10 40K(β+νe)40Ar 1460.830±0.005
208Tl(β−νe)208Pb 583.191±0.002 228Ac(β−νe)228Th 1495.91±0.02
214Bi(β−νe)214Po 609.312±0.007 214Bi(β−νe)214Po 1509.228±0.015
228Ac(β−νe)228Th 726.863±0.015 228Ac(β−νe)228Th 1588.20±0.03
212Bi(β−νe)212Po 727.330±0.009 212Bi(β−νe)212Po 1620.50±0.10
214Bi(β−νe)214Po 768.356±0.010 228Ac(β−νe)228Th 1630.627±0.010
228Ac(β−νe)228Th 794.947±0.005 214Bi(β−νe)214Po 1661.28±0.06
208Tl(β−νe)208Pb 860.564±0.005 214Bi(β−νe)214Po 1729.595±0.015
228Ac(β−νe)228Th 911.204±0.004 214Bi(β−νe)214Po 1764.494±0.014
214Bi(β−νe)214Po 934.061±0.012 214Bi(β−νe)214Po 1847.42±0.025
228Ac(β−νe)228Th 964.766±0.010 214Bi(β−νe)214Po 2118.55±0.03
228Ac(β−νe)228Th 968.971±0.017 214Bi(β−νe)214Po 2204.21±0.04
228Ac(β−νe)228Th 1000.69±0.15 214Bi(β−νe)214Po 2293.40±0.12
214Bi(β−νe)214Po 1120.287±0.010 214Bi(β−νe)214Po 2447.86±0.10
214Bi(β−νe)214Po 1238.11±0.012 208Tl(β−νe)208Pb 2614.533±0.013
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Figure E.1: Muon vetoed HPGe spectrum compared with muon vetoed γγ-coincidence spectrum at Ep = 175

keV. A 3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ ≤ 9.0 MeV coincidence gate was used. Deexcitations of 18F are indicated
by transition. First and second escape peaks are labeled “FE” and “SE,” respectively. Beam-induced
contaminants are labeled, and the remaining peaks are environmental backgrounds (see Tab. E.1).
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Figure E.2: Muon vetoed HPGe spectrum compared with muon vetoed γγ-coincidence spectrum at Ep = 190

keV. A 3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ ≤ 9.0 MeV coincidence gate was used. Deexcitations of 18F are indicated
by transition. First and second escape peaks are labeled “FE” and “SE,” respectively. Beam-induced
contaminants are labeled, and the remaining peaks are environmental backgrounds (see Tab. E.1).
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Figure E.3: Muon vetoed HPGe spectrum compared with muon vetoed γγ-coincidence spectrum at Ep = 250

keV. A 3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ ≤ 9.0 MeV coincidence gate was used. Deexcitations of 18F are indicated
by transition. First and second escape peaks are labeled “FE” and “SE,” respectively. Beam-induced
contaminants are labeled, and the remaining peaks are environmental backgrounds (see Tab. E.1).

In
te
n
si
ty

(c
ou

nt
s/
2.
5
ke
V
)

In
te
n
si
ty

(c
ou

nt
s/
2.
5
ke
V
)

Energy (keV)

Energy (keV)

164



500 1000 1500 2000 2500 3000 3500
-210

-110

1

10

210

310

410

510

610

710

810

 5
11

 k
eV

←

O
15 ) γ

N
(p

,
14   

←

→
 0

 
→

93
7 

K
40   

←

→
 2

10
1 

→
37

91
 

 3
83

9
→

 R
/D

C
 

←

→
 9

37
 

→
30

62
 

N
13 ) γ

C
(p

,
12   

←

Tl
20

8
  

←

 3
06

2
→

 R
/D

C
 

←

 9
37

→
 3

83
9 

←

 0
→

 3
06

2 
←

 2
52

3
→

 R
/D

C
 

←

HPGe Spectrum

500 1000 1500 2000 2500 3000 3500
-210

-110

1

10

210

310

410

510

610

 9
37

→
 1

12
1 

←

 5
11

 k
eV

←

 3
06

2
→

 3
83

9 
←

 4
96

4
→

 R
/D

C
 

←
 0

→
 9

37
 

←

 0
→

 1
04

2 
←

→
 3

06
2 

→
41

16
 

O
15 ) γ

N
(p

,
14   

←

 2
10

1
→

 3
79

1 
←

 4
11

6
→

 R
/D

C
 

←

 3
83

9
→

 R
/D

C
 

←
 3

79
1

→
 R

/D
C

 
←

 9
37

→
 3

06
2 

←

O
15 ) γ

N
(p

,
14   

←

 3
06

2
→

 R
/D

C
 

←

 9
37

→
 3

83
9 

←

 0
→

 3
06

2 
←

 2
52

3
→

 R
/D

C
 

←

Coincidence Spectrum

3500 4000 4500 5000 5500 6000 6500 7000
-210

-110

1

10

210

310

410

510

610

710

810

 0
→

 3
83

9 
←

 F
E

←

 F
E

←
 F

E
←

 1
12

1
→

 R
/D

C
 

←

 9
37

→
 R

/D
C

 
←

 0
→

 4
96

4 
←

 F
E

←

O
16 ) γ

α
F(

p,
19   

←

 0
→

 R
/D

C
 

←

O
16 ) γ

α
F(

p,
19   

←
O

15 ) γ
N

(p
,

14   
←

HPGe Spectrum

3500 4000 4500 5000 5500 6000 6500 7000
-210

-110

1

10

210

310

410

510

610

 0
→

 3
83

9 
←

 F
E

←

 F
E

←
 F

E
←

 1
12

1
→

 R
/D

C
 

←

 9
37

→
 R

/D
C

 
←

 0
→

 4
96

4 
←

 F
E

←

O
16 ) γ

α
F(

p,
19   

←
O

15 ) γ
N

(p
,

14   
←

O
15 ) γ

N
(p

,
14   

←

O
15 ) γ

N
(p

,
14   

←

Coincidence Spectrum

Figure E.4: Muon vetoed HPGe spectrum compared with muon vetoed γγ-coincidence spectrum at Ep = 275

keV. A 3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ ≤ 9.0 MeV coincidence gate was used. Deexcitations of 18F are indicated
by transition. First and second escape peaks are labeled “FE” and “SE,” respectively. Beam-induced
contaminants are labeled, and the remaining peaks are environmental backgrounds (see Tab. E.1).
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Figure E.5: Muon vetoed HPGe spectrum compared with muon vetoed γγ-coincidence spectrum at Ep = 300

keV. A 3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ ≤ 9.0 MeV coincidence gate was used. Deexcitations of 18F are indicated
by transition. First and second escape peaks are labeled “FE” and “SE,” respectively. Beam-induced
contaminants are labeled, and the remaining peaks are environmental backgrounds (see Tab. E.1).
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Figure E.6: Muon vetoed HPGe spectrum compared with muon vetoed γγ-coincidence spectrum at Ep = 325

keV. A 3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ ≤ 9.0 MeV coincidence gate was used. Deexcitations of 18F are indicated
by transition. First and second escape peaks are labeled “FE” and “SE,” respectively. Beam-induced
contaminants are labeled, and the remaining peaks are environmental backgrounds (see Tab. E.1).
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Figure E.7: Muon vetoed HPGe spectrum compared with muon vetoed γγ-coincidence spectrum at ER =

193 keV. A 3.5 MeV ≤ EGe
γ + ENaI(Tl)

γ ≤ 9.0 MeV coincidence gate was used. Deexcitations of 18F are
indicated by transition. First and second escape peaks are labeled “FE” and “SE,” respectively. Beam-
induced contaminants are labeled, and the remaining peaks are environmental backgrounds (see Tab. E.1).
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[52] J. José and M. Hernanz. Nucleosynthesis in classical novae: CO versus ONe white dwarfs. ApJ,
494(2):680, 1998.

[53] D. Prialnik and A. Kovetz. An extended grid of multicycle nova evolution models. ApJ, 445:789, 1995.

[54] S. Starrfield, J. W. Truran, M. C. Wiescher, and W. M. Sparks. Evolutionary sequences for Nova
V1974 Cygni using new nuclear reaction rates and opacities. MNRAS, 296(3):502, 1998.

[55] A. Kovetz and D. Prialnik. The composition of nova ejecta from multicycle evolution models. ApJ,
477(1):356, 1997.
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Z. Fülöp, G. Gervino, et al. The 14N(p,γ)15O reaction studied with a composite germanium detector.
Phys. Rev. C, 83(4):045804, 2011.

[112] M. Wiescher, H. W. Becker, J. Görres, K.-U. Kettner, H. P. Trautvetter, W. E. Kieser, C. Rolfs, R. E.
Azuma, K. P. Jackson, and J. W. Hammer. Nuclear and astrophysical aspects of 18O(p, γ)19F. Nucl.
Phys. A, 349:165, 1980.

[113] D. C. Powell, C. Iliadis, A. E. Champagne, S. E. Hale, V. Y. Hansper, R. A. Surman, and K. D. Veal.
Low-energy resonance strengths for proton capture on Mg and Al nuclei. Nucl. Phys. A, 644:263, 1998.

[114] K. Debertin and R. G. Helmer. Gamma- and X-ray Spectrometry with Semiconductor Detectors.
Elsevier Science Publisher B. V., 1988.

[115] C. Rowland, C. Iliadis, A. E. Champagne, A. K. Dummer, R. Fitzgerald, E. C. T. Harley, J. Mosher,
and R. Runkle. Studies of weak capture-γ-ray resonances via coincidence techniques. Nucl. Instrum.
Methods A, 480:610, 2002.

[116] K. B. Swartz, D. W. Visser, and J. M. Baris. A java-based data acquisition system for nuclear physics.
Nucl. Instrum. Methods A, 463(1):354, 2001.

[117] J. M. Cesaratto, A. E. Champagne, M. Q Buckner, T. B. Clegg, S. Daigle, C. Howard, C. Iliadis,
R. Longland, J. R. Newton, and B. M. Oginni. Measurement of the Ec.m.

r = 138 keV resonance in
the 23Na(p,γ)24Mg reaction and the abundance of sodium in AGB stars. Phys. Rev. C, 88(6):065806,
2013.

[118] H. W. Becker, M. Bahr, M. Berheide, M. Buschmann, C. Rolfs, G. Roters, S. Schmidt, W. H. Schulte,
G. E. Mitchell, and J. S. Schweitzer. Hydrogen depth profiling using 18O ions. Z. Phys. A, 351:453,
1995.

[119] H. W. Becker, W. E. Kieser, C. Rolfs, H. P. Trautvetter, and M. Wiescher. Resonance strengths of
some light nuclei. Z. Phys. A, 305:319, 1982.

[120] R. B. Vogelaar, T. R. Wang, S. E. Kellogg, and R. W. Kavanagh. Low-energy reaction yields for
18o(p,γ) and 18o(α,γ). Phys. Rev. C, 42:753, 1990.

[121] D. Tilley, C. Cheves, J. Godwin, G. Hale, H. Hofmann, J. Kelley, G. Sheu, and H. Weller. Energy
Levels of Light Nuclei, A= 3-20. URL http://www.tunl.duke.edu/nucldata, 2007.

[122] H. C. Chow, G. M. Griffiths, and T. H. Hall. The 16O(p,γ)17F direct capture cross section with an
extrapolation to astrophysical energies. Canadian J. Phys., 53(17):1672, 1975.

[123] K. Spyrou, C. Chronidou, S. Harissopulos, S. Kossionides, and T. Paradellis. Cross section and res-
onance strengths of the 19F(p,αγ)16O reaction in the energy range Ep = 0.8–3.6 MeV. Z. Phys. A,
357(3):283, 2007.

[124] G Amsel. Semiconductor Detector Spectroscopy of the Nuclear Reactions 16O+d, 18O+p. Ann. Phys.
(Paris), 13, 1964.

[125] D. Phillips and J. P. S. Pringle. Preparation of isotopic oxygen targets via the anodic oxidation of
tantalum. Nucl. Instrum. Methods A, 135(2):389, 1976.

[126] D. A. Vermilyea. The kinetics of formation and structure of anodic oxide films on tantalum. Acta
Metallurgica, 1(3):282, 1953.

[127] S. N. Wosu. Anodic oxidation of tantalum in water and biological solutions using current limiting
constant voltage method. J. Mater. Sci., 42(11):4087, 2007.

175



[128] G. Amsel, J. P. Nadai, C. Ortega, and J. Siejka. Precision absolute thin film standard reference targets
for nuclear reaction microanalysis of oxygen isotopes: Part II: 18O and 17O standards. Nucl. Instrum.
Methods, 149(1):713, 1978.

[129] J. R. Newton. Hydrogen burning of oxygen-17. PhD thesis, The University of North Carolina at Chapel
Hill, 2010.

[130] J. F. Ziegler. Srim-2003. Nucl. Instrum. Methods B, 219:1027, 2004.

[131] J. Hoefs. Stable isotope geochemistry. Springer, 2008.

[132] T. J. M. Symons, L. K. Fifield, M. J. Hurst, F. Watt, C. H. Zimmerman, and K. W. Allen. A study
of the 15N(α,γ)19F reaction for bombarding energies between 5.2 and 8.4 MeV. I. Yield curves and γ
decay schemes. J. Phys. G Nucl. Phys., 4:411, 1978.

[133] H. Lorenz-Wirzba, P. Schmalbrock, H. P. Trautvetter, M. Wiescher, C. Rolfs, and W. S. Rodney. The
18O(p, α)15N reaction at stellar energies. Nucl. Phys. A, 313:346, 1979.

[134] C. Schmidt and H. H. Duhm. The 18O(3He, d) 19F reaction at E3He = 16 MeV. Nucl. Phys. A,
155:644, 1970.

[135] C. Iliadis, R. Longland, A. E. Champagne, and A. Coc. Charged-particle thermonuclear reaction rates:
Iii. nuclear physics input. Nucl. Phys. A, 841:251, 2010.

[136] H. E. Gove. Resonance Reactions, Experimental. North-Holland, Amsterdam, 1959.

[137] Y. Zhu. Upper limit for poisson variable incorporating systematic uncertainties by bayesian approach.
Nucl. Instrum. Methods A, 578:322, 2007.

[138] H. Krauss, K. Grün, T. Rauscher, and H. Oberhummer. computer code TEDCA. TU Wien, Vienna,
Austria, 1992.

[139] C. Iliadis, R. Longland, A. E. Champagne, and A. Coc. Charged-particle thermonuclear reaction rates:
IV. Comparison to previous work. Nucl. Phys. A, 841:323, 2010.

[140] M. Wiescher. PhD thesis, Universität Münster, 1980.

[141] J. R. Newton, R. Longland, and C. Iliadis. Matching of experimental and statistical-model thermonu-
clear reaction rates at high temperatures. Phys. Rev. C, 78(2):025805, 2008.

[142] S. Goriely, S. Hilaire, and A. J. Koning. Improved predictions of nuclear reaction rates with the TALYS
reaction code for astrophysical applications. A&A, 487:767, 2008.

[143] C. Iliadis, R. Longland, A. E. Champagne, A. Coc, and R. Fitzgerald. Charged-particle thermonuclear
reaction rates: Ii. tables and graphs of reaction rates and probability density functions. Nucl. Phys.
A, 841:31, 2010.

[144] A. Chafa, V. Tatischeff, P. Aguer, S. Barhoumi, A. Coc, F. Garrido, M. Hernanz, J. José, J. Kiener,
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