
SURVIVAL OF INFANTS WITH SPINA BIFIDA DURING THE FIRST YEAR
OF LIFE

Nelson D. Pace

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill 
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 

Department of Epidemiology.

Chapel Hill
2016

Approved by:

Anna Maria Siega-Riz

Robert E. Meyer

Andrew F. Olshan

Stephen R. Cole

Nancy C. Chescheir



c© 2016
Nelson D. Pace

ALL RIGHTS RESERVED

ii



ABSTRACT

Nelson D. Pace: Survival of Infants with Spina Bifida during the First Year of Life.
(Under the direction of Anna Maria Siega-Riz)

Birth defects are a leading cause of infant mortality in the U.S. accounting for 20%

of infant deaths. Spina bifida, a neural tube defect, is characterized by the protrusion of

the spinal cord through a boney defect in the vertebral column. First-year mortality occurs

among 8% of infants with spina bifida, thirteen times higher than the national average risk

of infant mortality for all U.S. births.

Pre-pregnancy obesity (body mass index≥30) is common occurring in more than 1 in 5

pregnant women in the U.S. Furthermore, the average childbearing woman has a diet that is

considered poor quality. We conducted a retrospective cohort study using the National Birth

Defects Prevention Study linked to state death records to examine the role of pre-pregnancy

body mass index and maternal dietary patterns on survival among infants born with spina

bifida. Overall first-year mortality risk among infants with spina bifida was 4.4% (95% CI:

3.52, 5.60%). Infants who had multiple co-occurring defects, were born very preterm, were

one of multiples, had high-level spina bifida lesions, or had non-Hispanic Black mothers

were at highest risk of infant mortality. Maternal pre-pregnancy underweight and obesity

were associated with higher infant mortality risk (15.7% (95% CI: 7.20, 32.30%) and 5.8%

(95% CI: 3.60, 9.35%), respectively) compared to normal weight mothers (2.2% (95% CI:

1.19, 4.18%)).

Cox models adjusted for maternal age, education, race/ethnicity, and folic acid supple-

mentation showed that underweight and obese mothers had greater hazard of infant mor-

tality compared to normal weight mothers (HR: 4.5 (95% CI: 1.08, 16.72) and 2.6 (1.36,
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8.02), respectively). Mothers that scored low (poorer diet quality) in both the Healthy Eat-

ing Index and the Diet Quality Index for Pregnancy had higher hazard of infant mortality

compared to mothers with high (better diet quality) scores (HR: 1.4 (0.54, 4.33) and 2.4

(0.93, 5.78), respectively) though the estimates were imprecise.

Our results support maternal pre-pregnancy body mass index as a modifiable factor that

may help in efforts to improve infant survival. This study provides suggestive evidence

that maternal pre-pregnancy diet may be associated with infant survival among babies born

with spina bifida.
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CHAPTER 1: INTRODUCTION AND SPECIFIC AIMS

Birth defects are the leading cause of infant death in the United States accounting for 

1 in every 5 infant deaths. Neural tube defects (NTDs), defined as the failure of the neu-

ral tube to close normally during development, are the second most prevalent major birth 

defect worldwide. Spina bifida (SB) is the most common NTD occurring in 1 out of every 

3,000 live births. Infant mortality for children born with SB in the United States is 8%, 

thirteen times higher than the national average of 0.6%.

Considerable research has been conducted to identify risk factors and causes of NTDs. 

Notably folic acid supplementation and food fortification has caused a decline in the preva-

lence of SB and NTDs overall. Risk factors such as maternal pre-pregnancy obesity is 

associated with increased risk of spina bifida. Maternal diet plays a key role in embryonic 

and fetal development: NTDs occur with less frequency among mothers with prudent di-

etary patterns compared to other dietary patterns (Western, low-calorie Western, and Mex-

ican). Additional research has investigated risk factors of infant mortality among babies 

born with SB. Identified risk factors include maternal age, race, ethnicity, low birth weight 

for gestational age, co-occurrence of multiple birth defects, nativity, and parity. Moreover, 

one study showed that infants with SB who were born after mandatory food fortification in 

the United States had modestly improved first-year survival compared to infants with SB 

born before the era of fortification. This finding highlights the possibility that folic acid not 

only prevents NTDs but might also ameliorate the severity of SB.

We hypothesize that among infants born with spina bifida (1) pre-pregnancy obe-

sity may increase the risk of infant mortality and (2) higher maternal diet quality or
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certain dietary patterns may reduce infant mortality. This study will use data from the

National Birth Defects Prevention Study (NBDPS), a ten state case-control study which

investigates more than 30 different birth defects. Estimated delivery dates of study partic-

ipants are from October 1997 through December 2011. NBDPS data linked with infant

mortality data collected from each state’s vital records will be used to investigate survival

among infants with SB. All birth defect classifications were reviewed by clinical geneticists

to prevent misclassification of SB. The primary exposure of interest, maternal diet quality,

will be evaluated using data from a shortened food frequency questionnaire. Our primary

outcome of interest is time to infant mortality among infants with SB. The overall objec-

tive of this study is to describe first-year survival of infants born with SB and investigate

whether pre-pregnancy body mass index (BMI), maternal diet quality, and other risk factors

are associated with improved survival. We propose the following study aims.

Aim 1. Investigate first-year mortality among infants born with spina bifida over-

all and by pre-pregnancy BMI. Survival estimates vary by time interval and by mother-

infant characteristics.

Subaim 1. Present cumulative incidence curves for all infants with SB as well by pre-

pregnancy BMI categories. Report estimated survival for the following intervals: one day,

early neonatal (< 7 days), neonatal (<28 days), and infant (< 1 year).

Subaim 2. Calculate survival estimates stratified by key risk factors. We will stratify

results by race/ethnicity, gestational age, isolated/multiple defects, and plurality.

Aim 2. Examine the relationship between maternal diet quality and infant sur-

vival among infants with spina bifida. Using three methods, we will investigate whether

maternal diet is associated with improved survival. We will measure diet quality using the

Diet Quality Index for Pregnancy and the 2010 Healthy Eating Index and examine dietary

patterns through latent class analysis.

Aim 3. Investigate the potential for bias to affect observed survival estimates.
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Non-participation and competing events can produce non-generalizable results and biased

survival estimates.

Subaim 1. Describe differences in mortality between interviewed and non-interviewed

mothers and their infant. Using classification files for both interviewed and non-interviewed

will allow us to compare survival by participation and a number of key characteristics.

Subaim 2. Adjust for competing events caused by the exclusion of induced abortions

and fetal death in survival analyses. Starting follow-up at 20 weeks gestation will allow us

to address competing events.

Note: This subaim was not completed as part of the dissertation though the background

research and planning was done and is included in this document because of its crucial

nature to fully understanding the subject matter.

This study marks the first assessment of the relation between pre-pregnancy BMI, ma-

ternal diet and survival of infants with SB. Conducting this study will extend scientific

understanding of these factors as not only protective against SB but also a potential factor

to improve survival. This research will help inform health education and recommendations

in clinical and population settings to thereby reduce mortality of infants born with spina

bifida.
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CHAPTER 2: BACKGROUND

In this chapter, I present an overview of a category of birth defects, known as neu-

ral tube defects. Frequency of occurrence for each type of neural tube defect as well as 

corresponding infant mortality is then discussed. I then describe how pre-pregnancy body 

mass index (BMI), considered in this study as another fetal exposure, is measured. Mea-

sures of maternal diet, another fetal exposure, are then outlined to convey their differences, 

strengths, and weaknesses. After covering these topics, I describe the different epidemio-

logic and statistical methods needed to appropriately perform the survival analysis for the 

specific aims.

2.1 Neural Tube Defects

Neural tube defects (NTDs) are the second most prevalent major birth defect worldwide 

with congenital heart defects being the most prevalent (1). Defined as the failure of the 

neural tube to close normally during development, NTDs can affect the spinal cord or 

brain and are thought to primarily originate during embryonic development in the first 

trimester of pregnancy. Between approximately weeks 5 and 6 of gestation (3rd and 4th 

week of embryonic life) the neural tube closes beginning at what will later develop into the 

forebrain and closes at the end of the spinal cord within a few days (2). Figure 2.1 illustrates 

the various types of NTDs, of which the major ones include anencephaly, encephalocele, 

and spina bifida. Anencephaly occurs approximately in 1 out of every 5,000 live births (3) 

with a survival period that rarely goes beyond the first year of l ife. Encephalocele occurs 

in approximately 1 out of every 12,000 live births (3) with an infant mortality of 28% (4).
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The most prevalent NTD, spina bifida (excluding infants with co-occurring anencephaly)

occurs in approximately 1 in every 3,000 births though this varies by race/ethnicity and has

an infant mortality of 8% (4). In the US, spina bifida prevalence is higher for Hispanic and

non-Hispanic whites than for African Americans and Asians (5–7).

Several spina bifida subtypes exist, four of which are depicted in the bottom row of

Figure 2.1. The most well-studied and most common, myelomeningocele, is character-

ized by a cystic protrusion of the spinal cord, the meninges (layers of connective tissue

that act as a membrane covering the spinal cord), and cerebrospinal fluid through a ver-

tebral defect (8). Additional spina bifida subtypes include meningocele (Figure 2.1, bot-

tom row, second from the right), myelocele, lipomeningocele, and lipomyelomeningocele.

These subtypes are both less common and less thoroughly studied. Meningocele involves

protrusion of meninges and cerebrospinal fluid only but not of the spinal cord through a

spinal defect. Myelocele, similarly to myelomeningocele, is characterized by a protrud-

ing spinal cord though in this case it is not covered by the meninges. Lipomeningocele

and lipomyelomeningocele are distinguished from myelomeningocele, meningocele, and

myelocele by the presence of excessive lipomatous (fatty) tissue which is connected to the

either the spinal cord or filum terminale (a fibrous strand of tissue that provides support

to the spinal cord) (8). Figure 2.1 (bottom row, second from the left) depicts a form of

lipomeningocele. Etiologies of myelomeningocele, meningocele, and myelocele are hy-

pothesized to be related to one another and to differ from those of lipomyelomeningocele

and lipomeningocele (9). Epidemiologic studies of spina bifida often consider all subtypes

together collectively rather than examining them separately (10–13).

In addition to subtypes, spina bifida can also be characterized by the anatomical location

along the vertebrae of the protrusion, from top to bottom, cervical, thoracic, lumbar, sacral

(see Figure 2.2). The vast majority of spina bifida occurs in the lumbar region of the spine

(8).
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Figure 2.1: Overview of neural tube defects. Schematic representation of several neural
tube defects (NTDs). CSF, cerebrospinal fluid. [Borrowed from Copp et al. 2015 (14).]

As stated previously, some NTDs exhibit high infant mortality and many result in sig-

nificant disability throughout life, therefore prevention is of critical importance. A con-

siderable amount of research has been done to investigate ways to prevent NTDs. Most

notably, the discovery that increased consumption of folic acid can prevent spina bifida

has had a large impact on the occurrence of NTD (15, 16). Clinical recommendations for

prenatal supplementation and policies for food fortification have led to a decline in the

prevalence of spina bifida, anencephaly, and neural tube defects overall (15, 17–21). Ad-

ditional epidemiologic research has shown that a healthy maternal diet is associated with

a decreased risk of NTD and orofacial clefts (22). Also NTDs occur with less frequency

among mothers with prudent dietary patterns compared to other dietary patterns (Western,

low-calorie Western, and Mexican; details of the foods in these diets can be found in the

section: Data-Driven Dietary Patterns Analysis) (23). These studies and accompanying

policy changes have demonstrated the key role of maternal nutrition in embryonic and fetal

development.

Overtime, infant mortality of among infants with spina bifida has greatly improved.
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Prior to the 1960s, only 10 to 12% of infants with spina bifida survived (24). In England,

Lorber et al. observed, among infants treated for spina bifida, a 50% two-year survival from

1959-1963 and a 64% two-year survival from 1967-1968 (24). A twenty-year study of all

live births in New York State had a first-year mortality among infants with spina bifida

of 11.5% on average from 1983 to 2006 (25). While national level data from 1999-2007

had an infant mortality risk of 8.1% among infants with spina bifida (4). Improvements

in clinical care and medical technology have paved the way for this reduction in mortality

(26). The introduction of antibiotics in the 1940s substantially reduced the risk of menin-

gitis which then affected most infants with spina bifida (26). Shunts, developed in the late

1950s, helped prevent hydrocephalus a major contributor to mortality (26). Continuing

technological advancements from the 1960s to the 1990s provided marked improvements

in shunts and management, catheterization protocols to reduce renal complications, more

frequent implementation of early surgery, and the development of spina bifida clinics. All

of which have helped reduce spina bifida related mortality (24, 27). Notably, the fetal

surgery to treat myelomeningocele was shown in the MOMS trial to reduce the need for

postnatal shunts, prevent hindbrain herniation, and preserve neurologic function (28). Un-

fortunately, the MOMS trial suggested no improvement in perinatal mortality comparing

infants with fetal surgery to infants with postnatal surgery. Fetal surgery also increased the

risk of preterm delivery and uterine dehiscence (28). While fetal surgery may not improve

mortality, improvements in prenatal and postnatal care have led to reductions in mortality

for infants born with spina bifida.

Additional research has been conducted investigating risk factors of infant mortality

among infants born with spina bifida. Identified risk factors include maternal age, race,

ethnicity, low birth weight for gestational age, existence of multiple birth defects (non-

isolated defects), nativity, and parity (17, 25, 29–31). Among infants with spina bifida,

lesions high on the spine showed significantly lower survival probability compared to lower
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lesions (29). Moreover, one observational study showed that infants with spina bifida who

were born after mandatory food fortification in the United States had modestly improved

first-year survival compared to infants with spina bifida born before the era of fortification

(30). This finding highlights the possibility that folic acid not only prevents NTDs but

might also ameliorate the severity of spina bifida. Just as folic acid supplementation may

ameliorate the severity of spina bifida, we hypothesize that higher maternal diet quality

may improve survival of infants born with spina bifida.

Figure 2.2: The vertebral column. The major regions of the vertebral column. [Borrowed
from Martini 2005 (32).]

2.2 Pre-pregnancy Body Mass Index

Body mass index (BMI) is a proxy measure for body fatness. First suggested by

Adolophe Quetelet in 1832 (33), BMI is a ratio of height to weight as mass (in kilograms)

divided by height (in meters) squared (kg/m2). While it more accurately represents ex-

cess weight given ones height (34), the measure has long been used as an indicator of risk
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of mortality and morbidity. The measure is inexpensive and easily obtainable (35). BMI

has also been shown to predict body fat percentage well (35, 36). Among women ages

20-39 years old, body mass index explained 83.9% of the variability in percentage of body

fat measured via dual-energy X-ray absorptiometry (DXA) a gold standard for body fat

measurement (Pearson’s r=0.839) (36).

Pre-pregnancy BMI refers to maternal BMI just prior to the start of pregnancy. Recent

estimates indicate that among U.S. women ages 20-39, 24% are overweight and 32% are

obese (37). Pre-pregnancy obesity, defined as a BMI greater than or equal to 30 at the start

of pregnancy, is common, occurring in more than 1 in 5 pregnant women in the U.S. (21%

in 2009) with increases in prevalence during the last decade (38). Maternal obesity is the

number one obstetrical risk factor for a multitude of negative maternal and infant conditions

(39). Overweight and obese pre-pregnancy BMI has been associated with infant mortality,

preterm birth, stillbirth, and longer duration in neonatal intensive care (40). A recent meta-

analysis showed a 42% increased odds of infant mortality among infants born to mother

who were obese relative to normal weight women (95% CI: 1.24-1.63) with an even greater

elevated odds among the most obese category (>35 BMI) (odds ratio (OR): 2.02, 95%

CI: 1.61-2.56). Underweight pre-pregnancy BMI (<18.5) has also been associated with

negative infant outcomes (e.g. indicated preterm delivery, neonatal intensive care, infant

mortality) (40, 41). One large study with data from women in 38 U.S. states found the

association of maternal pre-pregnancy BMI demonstrated a “J” shaped pattern, with infants

of underweight mothers having births with higher infant mortality (5.4/1,000 live births)

compared to births of mothers with normal pre-pregnancy weight (4.2/1,000 live births)

and infant mortality rapidly increasing with severity of maternal pre-pregnancy obesity:

(5.9/1,000 for 30≤BMI<35; 6.8/1,000 for 35≤BMI<40; 8.2/1,000 for BMI≥40 among

live births) (41).

Prior research suggests that maternal pre-pregnancy obesity is associated with increased
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risk of spina bifida (42–46). However, no prior studies, to our knowledge, have examined

the influence of maternal pre-pregnancy BMI in relation to infant mortality among infants

with spina bifida. The purpose of this study is to investigate the first-year survival of in-

fants born with spina bifida and examine the association of pre-pregnancy BMI with infant

mortality.

2.3 Maternal Diet

Pregnancy is a critical period of rapid development and heightened metabolic activ-

ity for a growing fetus. Imbalances in specific nutrient and overall energy intakes during

pregnancy have been associated with adverse pregnancy outcomes (47–55). Increased em-

phasis has been placed on promoting nutrient-rich diets during pregnancy to help offset the

widespread energy-dense yet nutrient-poor food environment and consumption patterns in

the U.S. (56–58). Nutrient rich diets for pregnancy should emphasize consuming fruits and

vegetables, foods rich in iron and calcium, and adequate folic acid/folate consumption (59).

Dietary patterns are utilized to capture the quality and habits of the entire diet consumed

by a given population which may be more informative than isolating specific nutrients or

foods that tend to be highly correlated.

Considering maternal diet as a whole rather than with the examination of individual

foods or nutrients has several distinct advantages. First, biomarker assessments for spe-

cific nutrients are limited and can only assess a single nutrient at a time. Second, people

do not eat specific nutrients but rather foods and combinations of certain foods overtime.

Subsequently, nutrients and foods are highly correlated. Third, the combination of foods

and nutrients can have synergistic effects that are greater than the sum of the effect of each

nutrient. Therefore dietary patterns are an ideal way to assess the overall impact of diet on

health and provide for meaningful interpretation.

Overall measures of diet fall generally into two categories: (1) dietary pattern indexes
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by which maternal diet is assessed against some scale of diet quality and (2) data-driven ap-

proaches by which foods are grouped to represent different seemingly naturally occurring

dietary patterns. The former approach includes the Diet Quality Index for Pregnancy (60)

and Healthy Eating Index (61), Alternative Health Eating Index (62), Recommended Food

Score (56, 63), and Mediterranean Diet Score(22). The scoring systems effectively use the

wealth of data captured by dietary assessment tools (such as food records, food frequency

questionnaires (FFQ), and multiple 24-hour dietary recalls) and produce a composite score

representing overall diet quality (60). The data-driven approach is often broadly termed

dietary pattern analysis. This analytic form takes multidimensional dietary data and forms

groups with similar foods. We next describe in detail the key dietary pattern indexes men-

tioned above and the most pertinent form of data-driven dietary pattern analysis.

2.4 Measures of Diet Quality during Pregnancy

2.4.1 Recommended Food Score

Developed by Kant et al., the Recommended Food Score (RFS) focuses on the con-

sumption of healthy foods and awards points to an individual’s overall score for each rec-

ommended (i.e. healthy) food consumed at a given frequency (e.g. weekly) (56). Foods

considered recommended or healthy on the scoring system are fruit, vegetables, whole

grains, lean meats or meat alternates, and low-fat dairy products. For instance, as origi-

nally published (56), the RFS included the following 23 foods items:

1. apples or pears

2. oranges

3. cantaloupe

4. orange or grapefruit juice

5. grapefruit

6. other fruit juices

7. dried beans

8. tomatoes

9. broccoli

10. spinach

11. mustard, turnip, or collard greens

12. carrots or mixed vegetables with car-

rots

13. green salad
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14. sweet potatoes, yams

15. other potatoes

16. baked or stewed chicken or turkey

17. baked or broiled fish

18. dark breads like whole wheat, rye, or

pumpernickel

19. cornbread, tortillas, and grits

20. high-fiber cereals, such as bran, gra-

nola, or shredded wheat

21. cooked cereals

22. 2% milk and beverages with 2% milk

23. 1% or skim milk

The RFS is calculated by awarding 1 point for each recommended food that is con-

sumed at least weekly and then summing the points for a maximum score of 23. Consump-

tion of non-recommended foods do not contribute to or take away from the score. This

list of foods was intended to reflect the, then current, dietary guidelines. To implement

the RFS, now, more than 15 since years since its development, investigators should adapt

the list to reflect current dietary guidelines as their tool for capturing diet as has been done

previously (64). The RFS, differently from the other diet scoring systems, only considers

healthy elements of a subject’s diet ignoring the consumption of unhealthy foods. One

can imagine, that a subject who consumes well beyond the guidelines for caloric intake of

both recommended and non-recommended foods can have a higher RFS than a subject with

more prudent eating habits that only consumes recommended foods but with less variety.

Such nuances of this scoring system need to be carefully considered when implemented.

2.4.2 Mediterranean Diet Score

Dietary indices for the Mediterranean diet show adherence to the traditional Mediter-

ranean diet first described by Trichopoulou et al. (65) and further specified to include fish

(66, 67). Briefly, as described by Trichopoulou et al., the traditional Mediterranean diet is

characterized by a high intake of vegetables, legumes, fruits and nuts, and cereals (that in

the past were largely unrefined), and a high intake of olive oil but a low intake of saturated

lipids, a moderately high intake of fish (depending on the proximity of the sea), a low-to-

moderate intake of dairy products (and then mostly in the form of cheese or yogurt), a low
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intake of meat and poultry, and a regular but moderate intake of ethanol, primarily in the

form of wine and generally during meals. (66) Differently from other dietary indices, this

diet placed greater emphasis on the consumption of fish over other forms of meat, healthy

fats, nuts, and wine.

The Mediterranean diet has been scored for dietary adherence in multiple ways (22, 65,

66, 68). Here we describe the scoring specification given in Feldkamp et al. 2014, called the

Mediterranean Diet Score (MDS), which was adapted for use in a population of pregnant

women. The MDS consist of 9 component scores each equally weighted with 0-9 range

based on decile of consumption with total scores ranging from 0 to 81; 81 indicating the

highest possible adherence to this dietary pattern. For beneficial components (fruits, veg-

etables, legumes, fish, grains, and fat ratio (high monounsaturated fatty acids to saturated

fatty acids) higher scores are given for greater consumption. For less favorable compo-

nents (meat, dairy, and sweets), higher scores are given for lesser consumption. Alcohol

consumption is notably excluded from the MDS as it is not recommended for consumption

during pregnancy.

Use of the MDS in the NBDPS has shown a trend of decreasing risk of gastroschisis

with increasing MDS among Hispanics and all ethnicities collectively (68). A weak pro-

tective association was found between higher MDS and anencephaly(22). No association

was found between MDS and spina bifida(22), cleft lip(22), cleft plate(22), microtia(69)

and hypospadias (70).

2.4.3 Diet Quality Index for Pregnancy

The Diet Quality Index for Pregnancy (DQI-P), developed by Bodnar and Siega-Riz,

is a diet score uniquely adapted for pregnancy based on recommendations from the 2000

Dietary Guidelines for American (DGA) and the Food Guide Pyramid from the U.S. De-

partment of Agriculture (USDA) (71), the Dietary Recommended Intakes (RDA, EAR and
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AI) for pregnancy by the Food and Nutrition Board (72), and the Institute of Medicine 1992

report, Nutrition during Pregnancy and Lactation: An Implementation Guide (60, 73).

The DQI-P is an ordinal score based on consumption of 8 components (60). Implemen-

tation of the DQI-P was first done using data collected from a food frequency questionnaire

(FFQ) but can be implemented using other dietary assessments such as from 24-hour re-

calls. The DQI-P consists of 8 components, each component having equal weight with a

maximum of 10 points for a maximum total score of 80 points. DQI-P scores as calculated

in the NBDPS are typically grouped into quantiles (tertiles or quartiles) to compare the

highest to the lowest quantile of DQI scores for a given outcome (22, 68). The components

are: % recommended servings of grains, vegetables, and fruits, % of recommended dietary

allowances (RDA) for folate and iron, % of adequate intake for calcium, % of energy from

fat, and a meal/snack patterning score (see Table 2.1 from Bodnar et al. 2002)(60).

Table 2.1: Dietary components included in the Diet Quality Index for Pregnancy. [Bor-
rowed from Bodnar et al. 2002 (60).]
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Of the 8 components; three measure adequate consumption of important food groups

(grains, vegetables, and fruits), 3 measure adequate intake of key vitamins and minerals

(folate, iron, and calcium), 1 reflects moderation in consumption of a macronutrient (fat),

and the final component captures the frequency and type (meal/snack) of food consumed.

The first three components’ requirements are based on recommended daily servings (71).

Components 4, 5, and 6 relate to satisfying the RDA and AI guidelines. Component 7,

like components 1 through 3, follows the recommendation given by Dietary Guidelines

for Americans 2000 to consume ≤30% of total calories from fat (71). Like many recom-

mendations provided for pregnant women, the recommendation applicable to all adults.

Meal/snack pattern score is incorporated in the DQI-P to reflect the Institute of Medicine

(73) recommendations for the number of eating occasions during pregnancy.

Notably missing from the DQI-P is a component related to dietary variety and dietary

moderation. These aspects of diet while important are not part of the DQI-P as the original

authors of the index felt that such scores would create burdensome complexity for those

wishing to implement the measure (a strength of which is its simplicity) in public health

settings. (60)

The DQI-P is consistent with other indices in that it does not include nutrient intake

from dietary supplements. The goal of creating the DQI-P was to assess diet in its most

traditional sense (60). If one’s objective is to measure total nutrient intake, nutrient intake

from supplements should then also be included in the assessment.

Use of the DQI-P in the National Birth Defects Prevention Study (NBDPS) has shown

higher diet quality to be associated with a reduced risk of some conotruncal and septal heart

defects (74), anencephaly (22), cleft lip (22), and cleft palate (22). No association was

found between DQI-P and hypospadias (70). A trend of decreasing risk with increasing

DQI-P score was found for both spina bifida and microtia but precision was lacking and

resulting confidence intervals included the null value. A statistically significant trend of
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decreasing risk of gastroschisis with increasing DQI-P among Hispanics and all ethnicities

together was also shown(68). Among Hispanics, every quartile of DQI-P scores had a

statistically significant reduced risk of gastroschisis when compared to the referent lowest

quartile of scores (68).

While the DQI-P was published in 2002 and does not implement the most recent Dietary

Guidelines for Americans (75), many of the underlying components recommendations re-

main unchanged. RDAs for folate and iron are the same as well as adequate intake (AI)

for calcium. The meal pattern recommendations from the Institute of Medicine are also the

same today. Noteworthy updates to the DQI-P to reflect the most recent DGA would be

the emphasis on whole grain consumption rather than all grains in general. Furthermore,

recommendations to limit saturated fat consumption rather than simply overall total fat is a

major change to dietary recommendations that has occurred since 2000. To allow for com-

parison of results to numerous other studies using the original DQI-P published as recently

as August 2015, we will use the DQI-P as it was originally proposed by Bodnar and Siega-

Riz (60). To complement this approach and address how updated dietary guidelines may

improving our understanding of how dietary patterns may play a role in the development of

NTDs, we employ the Health Eating Index 2010 score as our alternative dietary exposure.

2.4.4 Healthy Eating Index

The Healthy Eating Index (HEI) is a measure of diet quality that assesses adherence to

the Dietary Guidelines for Americans (DGA). The DGA is national dietary guidance ap-

plicable uniformly to all individuals ages 2 and over including pregnant women. The DGA

serves as the foundation for all nutrition guidance and policies provided by the United

States government. The HEI is a scoring metric based on the DGA that can be applied

to any defined set of foods, such as dietary data collect from 24-recalls or food frequency

questionnaires, a specific menu, or a selection of grocery items. The DGA are issued every
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5 years by the USDA and U.S. Department of Health and Human Services. A correspond-

ing HEI is updated approximately every five years by a federal working group, led by

Center for Nutrition Policy and Promotion (CNPP) with members from the National Can-

cer Institute and the USDA Food and Nutrition Service. The most recently publish HEI is

that the HEI-2010 based off the 2010 DGA.

To take the DGA from a set of recommendations to a scoring systems based on quan-

tified standards of consumption requires the USDA Food Patterns. The USDA Food Pat-

terns translates the recommendations of the DGA into specific, quantified recommended

standards for types and amounts of foods. The HEI scoring system directly reflects the

standards set forth in the USDA Food Patterns.

The HEI-2010 has 12 components: 9 adequacy and 3 moderation components (see

Table 2.2). The score for each adequacy component increases as more is consumed. The

score for each moderation component decreases as less is consumed. Standards for scores

are density-based (i.e. servings divided by calories). For DGA recommendations that

vary by energy level, sex, and/or age, the corresponding component is the least-restrictive

among the varying recommendations. Therefore the consumption level needed to obtain

the maximum score for that component is the least-restrictive. Possible composite scores

range from 0 to 100 with individual components with maximum scores of 5, 10, or 20. For

all components, a higher scores indicates closer adherence to dietary guidance and ideally

also indicating a healthier diet.

The HEI is designed for the principal purpose of monitoring diet quality in the overall

U.S. population as well as low-income subpopulations. The Center for Nutrition Policy

and Promotion (CNPP) routinely gathers national survey data via 24-hour recalls of dietary

intake and uses the HEI for this very purpose. Importantly, the HEI is also used evaluate the

US food supply, examine relationships between diet and health-related outcomes (77–81)

including mortality (82–84) and between diet cost and diet quality (85, 86), to determine
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Table 2.2: Healthy Eating Index components and scoring system. [Borrowed from Guen-
ther et al. 2013 (76).]
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the quality of nutrition intervention programs (87) and food assistance packages (88), and

to assess how diet quality changes over time (89).

Table 2.3: The Alternative Healthy Eating Index 2010 scoring method1. [Borrowed from
Chiuve et. al 2012 (62).]

2.4.5 Alternate Healthy Eating Index 2010

First created in 2002 by McCullough et al., the Alternative Healthy Eating Index was

designed as diet quality score to include foods and nutrients associated with chronic disease

risk with particular emphasis on cardiovascular disease. The index serves as an alternative

to the HEI and stresses the role of nuts and types of fats in a diet. Prior research has

shown higher AHEI scores associated with lower risk of broad categories of major chronic

diseases (90), diabetes (91), colorectal cancer (92), cardiovascular disease (90, 93, 94), and

overall mortality (94). Neither the HEI nor AHEI has been used to determine the risk of

birth defects by diet score.

1For the extensive clarifications and details referenced by the superscripts in the table, please see Alterna-
tive Dietary Indices Both Strongly Predict Risk of Chronic Disease by Chiuve et al. 2012.
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The Alternate Healthy Eating Index 2010 (AHEI-2010) (62) is an update to the original

AHEI that incorporates scientific evidence that has emerged to support the role of partic-

ular dietary factors in the prevention of chronic disease. Unlike the HEI, the AHEI is not

based on the Dietary Guidelines for Americans but rather other research (62). Similarly to

the HEI, it is composed of several component scores and is used to calculate an overall diet

score with a higher score indicating a healthier diet. The AHEI is made up of 11 compo-

nents: six adequacy components with greater consumption resulting in a higher score, one

component (alcohol) for which moderate intake results in the highest score ideal, and four

components for which the lower the consumption, the higher the score. Scores from all

components are summed to obtain a total AHEI score ranging from worst (0) to best (110).

Scoring criteria are further outlined in Table 2.3.

The discussion of these five diet quality scoring systems highlights the strengths and

weaknesses of each method for capturing dietary patterns. Among these scoring systems,

we have selected the DQI-P and HEI 2010 as measures to employ in this study due to their

unique applicability to the pregnancy period. The DQI-P was specifically designed for to

assess diet quality during pregnancy by including measures of adherence to pregnancy-

specific recommendations. Furthermore, several NBDPS studies have confirmed the rele-

vance of the DQI-P diet score as a measure being associated with reduced risk of a number

of birth defects. The HEI is designed in such away to be applicable to both pregnant and

non-pregnant adults. Additionally, the HEI is a national standard that has wide applicabil-

ity and use. For these reasons, we will use these two systems to study how maternal diet

quality can have an impact of infant mortality.

We now describe the most relevant form of data driven analysis for studying the effect

of dietary patterns.
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2.4.6 Data-Driven Dietary Patterns Analysis

The full complexity of the relationship between diet and health outcomes cannot be

appreciated by examining the impact of individual nutrients and foods on health outcomes

(67). Further, collinearity of many nutrients and foods make it difficult to attribute effects

to a specific component of a diet. The creation of dietary patterns via latent class analy-

sis (LCA) inherently accounts for interactions between single nutrients and foods that are

unobserved and thereby not anticipated in dietary patterns based on diet quality scoring

systems. Such a method can provide a more robust means of determining proper exposure-

outcome associations.

An alternative yet complementary approach, to capturing overall diet via some speci-

fied measure of diet quality, is to examine data-driven dietary patterns. Compared to diet

quality indexes, which are based on prevailing hypotheses and guidance from current di-

etary recommendations for scoring (95), LCA, factor, and cluster analysis are data driven

approaches used to derive dietary patterns. These methods allow dietary data to determine

variables or groups that represent a variety of diets existing in a study population. Data

driven statistical method include: factor analysis, principal component analysis, mixture

modeling, and latent class analysis. Latent class analysis (LCA) can be used to identify

a set of discrete and exclusive latent (unmeasured, unknown) classes among participants

based on their responses to a set of observed (measured and known) categorical variables.

LCA is particularly useful methodologic approach to understanding diet as it can identify

patterns within the collective dietary data of participants. Each pattern can be considered a

given exposure type and examined in relation to the health outcome of interest.

Consider Figure 2.3, what we observe from initially collected data are statistical associ-

ations that are present between several measured variables, here labeled components. Basic

statistical analyses show that the components are related to one another, for instance, more

21



frequent consumption of component 1 (tortillas) is associated with more frequent consump-

tion of component 2 (beans). While this statistical association exists, eating tortillas does

not cause one to eat beans, but rather there is often an underlying latent variable of a di-

etary pattern (faded cicles of classes 1, 2, and 3)that can capture the true relationship of

these components as well as many other food items. Figure 2.4 reveals the true relationship

between the components that is due to latent classes, which in our context, are different di-

etary patterns. The relationship between tortilla and bean consumption could be explained

by a Mexican dietary pattern such as was identified in Sotres-Alvarez et al. (23).

Figure 2.3: Statistical associations among components with unidentified (hidden) latent
classes.

LCA takes into account how variables are related to one another. Each is not given

equal weight (e.g. lettuce maybe given less weight than avocados in determining a dietary
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Figure 2.4: Incorporation of latent classes to determine true relationships between compo-
nents.
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pattern). In LCA, the underlying latent variables are classes which are discrete and cat-

egorical. LCA is especially useful to classify subjects into groups when there is no gold

standard for these classifications as is the case with dietary patterns.

To date, there have been 2 studies that have examined the association between dietary

patterns and neural tube defects (23, 96). Specifically, Sotres-Alvarez et al. investigated

NTDs collectively and Vujkovic et al. investigated spina bifida alone. In the US-based

study by Sotres-Alvarez et al. using data from the NBDPS, a prudent dietary pattern (char-

acterized by consuming fruits, yogurt, reduced-fat milk, whole-wheat bread, fortified ce-

real, and fish) was found to be protective and used as a referent group. Specifically, women

who did not take a folic acid containing supplement in the Mexican2 (characterized by

high intake of chili peppers, avocados, salsa, tortillas, refried beans, and chicken or beef

by-products), Western, and low-calorie Western classes (both Western diets were charac-

terized by low intakes of fruits and vegetables and high intake of French fries, white bread,

soda, potato chips, and bacon), which were also identified via LCA, were significantly more

likely (AOR (95%CI): 1.6 (1.15-2.19), 1.5 (1.10-1.90), and 1.4 (1.05-1.83) respectively) to

have offspring born with NTDs than were those in the prudent class. These associations

were not significant among supplement users.

In the Netherlands-based study, by Vujkovic et al., data-driven principal component

analysis identified a dietary pattern similar to a Mediterranean diet. This Mediterranean-

like diet was high in vegetables, vegetable oil, legumes, fruits, fish, cereal products, butter

and alcohol, and low in sugars, potatoes and sweets. Mothers were grouped into quartiles

of observance to this dietary pattern. Mothers who followed this dietary pattern the most

(i.e. highest quartile) showed a reduced risk of 63% (95% CI: 16.7-83.6%) for having a

child with spina bifida compared to the lowest quartile of mothers over the study period

2Current research is moving away from giving different derived patterns names but rather identifying the
food components in these patterns to emphasize that what is important about the diet are the foods that are in
it.
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(96). In both of these studies, the healthier dietary patterns characterized by higher intake

of fruits, vegetables, and fish, were associated with reductions in the risk of NTDs.

While there is great of importance in identifying health benefits of specific nutrients,

humans eat a variety of foods that contain a variety of nutrients as well as non-nutrients that

cannot be captured individual nutrients. Further, data driven dietary patterns can describe

patterns that are born of the data and represent unique features of a population which are

not likely to be fully captured by a pre-defined score (i.e DQI-P, HEI, AHEI, etc.), thus

identifying data-driven dietary patterns has potential to expand upon our knowledge of

spina bifida, complementing diet quality scores, and improve survival. We seek to examine

the influence of dietary patterns on spina bifida mortality. We hypothesize that mothers with

data-driven dietary patterns characterized by energy-dense and nutrient-poor or processed

foods will be associated with poorer infant survival compared to mothers with healthy

dietary patterns during pregnancy.

The following section provides a background of the survival analysis techniques and

methods needed to address the aims of this study. A description of external validity, as it

relates to this study, is also covered.

2.5 Survival Analysis

2.5.1 Kaplan-Meier Estimate

Epidemiology, as a science, is concerned with the occurrence and distribution of disease

or other health related events in a population. Survival analysis focuses on the “when” of

the outcome’s occurrence if it occurs at all (i.e. time to an event). Survival analysis is

therefore inherently longitudinal. Subjects are followed over time. Time to event data

could be: time to death, time to onset of disease or reoccurrence (e.g. cancer), length of

hospital stay, time to full recovery. With such data, drop-out or loss-to-follow-up often

occurs for a variety of reasons. This is commonly termed censoring. Due to this censoring,
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we can only observe the survival experience up to a certain point in time. When and if

the outcome occurs is unknown. We only know that they survived to a certain point, but

we do not know the exact time of failure (i.e. time at which they experienced the event).

To still be able to calculate survival probabilities for the event at given time points despite

censoring, Kaplan and Meier proposed a way to non-parametrically estimate survival, even

in the presence of censoring, using the method of maximum likelihood (97). This survival

probability is called the Kaplan-Meier or product-limit estimate. A survival function (i.e.

survival curve) can be constructed from the Kaplan-Meier estimates across the study period

(Figure 2.5).

Figure 2.5: Example of survival curves calculated using the Kaplan-Meier estimate.

Independence of events is a key assumption for Kaplan-Meier estimate and for survival

analysis in general. Specifically we assume that the event of interest (e.g. death) occurs
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Figure 2.6: Example of cumulative incidence curves.
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independently of other events (i.e. deaths). Further, we assume that censoring is indepen-

dent of survival time, i.e. we assume that at any time patients who are censored have the

same survival prospect of survival as those who continue to be followed. For example, the

assumption implies that if a subject becomes lost to follow up, this lost subject is not at any

greater risk of the outcome occurring than those that remain in the study under observation.

Independent censoring is key to having the Kaplan-Meier estimate reflect truth as censored

data is assumed to behave as uncensored data. If censoring is related to having event of

interest (e.g. censored observations are near end-of-life) this can leader to bias survival es-

timates (e.g. overestimated infant mortality rate). Further consideration to this assumption

being violated will be given later on.

2.5.1.1 Comparison of Kaplan-Meier Survival Curves

Survival data can be stratified by variables to examine survival curves within levels

of that variable. Two or more survival curves can be compared both formally through

statistical tests and visually. The two options are complementary and should be used in

tandem. Visual inspection can reveal distinct differences in survival though without the

accompanying statistical testing, in some cases, it can be hard to tell whether differences

should be attributed to chance variation or not. Statistical tests for comparing survival

curves are built around the null hypothesis that the two curves are equivalent (S1(t) =

S2(t)) and the alternative hypothesis that the curves are not equivalent (S1(t) 6= S2(t)). For

formal comparison of survival curves, the standard test is the log-rank test (98, 99).

The log-rank test compares estimates of each group’s hazard function (instantaneous

risk of the event as it depends on survival time) (100) at each unique failure time. In

addition to the assumptions inherent to the use of Kaplan-Meier estimates, the log-rank

test also assumes proportional hazards across the two survival functions. This test has

great statistical power if the assumption is upheld though the test is still valid when the

assumption is violated. The assumption can be assessed by examining the survival curves.
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If the survival curves cross the proportional hazards assumption is violated and the power

of the test is reduced (101).

Alternative tests, include Gehan’s Wilcoxon, Tarone-Ware, Fleming-Harrington, and

Peto-Prentice among others. The Wilcoxon test is of particular importance in studies of

highly lethal birth defects, as it weighs failures by the observed number currently at risk

for the event. In other words, as survival decreases, weights decrease to reflect the reduced

amount of information available. Such weighting can assess exposures that might matter

more earlier on and that might be less influential later on.

2.5.2 Cox Proportional Hazards Model

Kaplan Meier methods allow for non-parametric examination of survival but does not

have the flexibility to consider multiple variables at once. The Cox Proportional hazards

model for survival data, developed by David Cox (102), is analogous to linear regression

for cross-sectional data with a continuous outcome. Cox proportional hazard model can

investigate how survival varies across treatment or exposure levels while controlling for

potential confounding. From the model hazard ratios are produced comparing the hazard

among the exposed to the hazard among the unexposed. The hazard is instantaneous rate of

experiencing the event of interest conditional on surviving up to the given time. The hazard

ratio (HR) is the ratio of the hazard in the exposed compared to the unexposed. In practice,

one can roughly consider hazards as incidence rates, hazard ratios as incidence rate ratio,

and both can be interpreted accordingly (103). The average hazard over the study period is

equivalent to the incidence rate over the study period.

Key assumptions of the Cox model include: (1) independence of events, (2) non-

informative censoring, conditional on explanatory variables, and (3) proportional hazards.

New to this model is the proportional hazards assumption. Hazards are assumed to be pro-

portional over time (i.e. constant hazard ratio). For instance, if the hazard of infant death

29



is in one group is 3 times that of another group in the first week of life (HR = 3.0), this

modeling assumption implies that the hazard ratio is the same at 8 months old. The hazard

ratio, therefore, should be independent of time (104). This assumption can be tested graph-

ically and by use of interaction terms for time. No assumption is made directly about the

hazard itself only that the hazard ratio is constant. For this reason the model is considered

semi-parametric and estimates are determined using partial maximum likelihood.

2.5.3 Competing Events Analysis

The perinatal window involves the time surrounding birth. Here we will defined peri-

natal mortality as an encompassing term to refer to death in utero after 20 weeks gestation

(fetal death) or within the first year of life (infant mortality). Prior literature has mistakenly

assumed the absence of competing events among studies of perinatal mortality (105). In the

study of naturally occurring perinatal mortality, induced abortions preclude the observation

of the natural perinatal death. While there are 3.5 infants born with spina bifida per 10,000

live births in the U.S., the actual prevalence of spina bifida is difficult to determine due

to prenatal diagnosis and often subsequent elective termination of pregnancy (3). Among

infants prenatally diagnosed with spina bifida, the approximate percent of electively termi-

nated pregnancies in the North America is 50% (95% CI: 35-64%) (106).

This is a situation of competing events. Commonly in longitudinal studies, one event’s

observation may preclude the observation of another event. We call these events, competing

events.

We will distinguish competing event from competing risks. A competing event refers

to the occurrence of the outcome of interest or any other event that preclude another event

from occurring or being observed. A competing risk refers only to an event (that is not the

outcome of interest) that can preclude the outcome of interest from being observed. In nat-

ural perinatal mortality (i.e. death via fetal death or infant mortality), induced abortions are
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a competing risk. Induced abortions and fetal death are competing events for one another.

Integral to the calculation of Kaplan-Meier estimates and their corresponding survival

curves is the assumption of non-informative censoring. When a competing risk occurs, that

observation would be censored as it can no longer experience the event of interest. This may

lead to biased results as the censoring is informative (107). There are methods to address

this in a non-parametric (Kaplan-Meier) paradigm (108, 109). For semi-parametric models,

such as the Cox proportional hazard model, additional methods exist to address competing

events in this context (110). Survival analysis studies are complicated by competing events

which are by nature exclusive and dependent. We address how this problem is addressed in

non-parametric and semi-parametric settings in the following sections.

2.5.3.1 Nonparametric Handling of Competing Events

The Kaplan-Meier method does not yield valid estimates and survival curves for a given

outcome when failures due to competing risks are consider censored observations like sub-

jects who are lost to follow-up or choose to remove themselves from the study. A common

mistake in the analysis of competing risks is to compute Kaplan-Meier based results for

event of interest while treating failures from other causes as censored events. This typi-

cally results in the overestimation of cumulative incidence estimates (111). The cumulative

incidence function for the event of interest, accounting for competing risk events, is esti-

mated in a two-step process (112, 113). First, one calculates the KaplanMeier estimate of

the overall survival from any competing event (i.e. failure due to the event of interest or

any competing risk). Second, the conditional probabilities of experiencing only the event

of interest are calculated. These conditional probabilities correspond directly to the cause-

specific hazard function. The cause-specific cumulative incidence curve is then estimated

using these two quantities (109).(108)

Automated methods for calculating the cause-specific cumulative incidence curve have

been developed. The SAS %CIF macro use the method described above and can be used
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to compare cause-specific cumulative incidence across exposures or other variables (109).

In the context of competing events, the log-rank test is no longer valid. The log-rank test

compares the effect of the levels of one variable on the cumulative incidence function (the

null hypothesis being that the cumulative incidence functions are the same across levels of

the tested variable). In order to test differences across exposures or other variables, a test

equivalent to the log-rank test, but for scenarios with competing risks, was developed by

Gray in 1988 (114). This test can likewise be performed use the SAS %CIF macro (109).

2.5.3.2 Cox Proportional Hazard Model and Competing Events

Cox proportional hazard models, in the presence of competing risks, can be used to cal-

culate two key and distinct survival analysis quantities: (1) the cause-specific hazard ratio

(csHR) and (2) the subdistribution hazard ratio (sdHR). Which type of hazard ratio that

should be reported depends upon the scientific question at hand. The Cause-Specific Haz-

ard model lends itself more to etiologic research, while the subdistribution hazard model

more closely reflects individual risk and can be helpful for allocating resources (110). We

describe each method and its uses in greater detail below.

The Cause-Specific Hazard Model.

Consider the following illustration from Lau et al. 2009 to describe the cause-specific

hazard in discrete time (Figure 2.7). The black circles represent the at-risk individuals in

the population. The gray squares represent individuals that experience event 1 (the event

of interest) at a given time. The triangles represent individuals that experience event 2 (the

competing risk) at a given time. The risk-set for the cause-specific hazard only includes

individuals that have not experienced previously either event (i.e. the event of interest or

the competing risk).
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Figure 2.7: Cause-specific Hazard: In Discrete Time. [Borrowed from Lau et al. 2009
(110).]
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A proportional hazard model can be constructed for the event of interest in the pres-

ence of competing risks. Individuals that experience a competing risk are treated as cen-

sored making this model mathematical the same as a model constructed by an investiga-

tor who ignored competing risks altogether. With this treatment of competing risks and

censored observations, comes the assumption of non-informative censoring which now in-

cludes cases of a competing risk, drop-out, or loss to follow-up. Further independence of

competing events is necessary to be able to use cumulative incidence to quantify the risk of

the event of interest. Moreover, the interpretation of the cause-specific hazard ratio can be

stated as: the relative change in the cause-specific hazard of a given event corresponding

to a 1-unit increase in the exposure. This interpretation, given the prior assumptions hold,

applies to the hazard ratio we would observe in hypothetical world in which the competing

risk is eliminated, all else being equal (110).

The cause-specific hazard ratio is automatically report by default through common sta-

tistical survival analysis procedures like PROC PHREG (SAS) or coxph() (R console). As

a result, the cause-specific hazard ratio is more frequently reported than its counterpart, the

subdistribution hazard ratio.

The Subdistribution Hazard Model.

To model survival data in the presence of competing risks, Fine and Gray developed

the subdistribution proportional hazard model (also known as the Fine and Gray regression

model or competing risks regression) (115, 116). Consider the following illustration from

Lau et al. (2009) to describe the subdistribution hazard in discrete time (Figure 2.8). The

black circles represent the at-risk individuals in the population. The gray squares represent

individuals that experience event 1 (the event of interest) at a given time. The triangles

represent individuals that experience event 2 (the competing risk) at a given time. The

subdistribution hazard includes in its denominator individuals that have not experienced

previously event 1 (i.e. the event of interest) as well as individuals that have experienced
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event 2 previously (i.e the competing risk) even though they are not eligible to experience

event 1.

Figure 2.8: Subdistribution Hazard: In Discrete Time. [Borrowed from Lau et al. 2009
(110).]

Given that individuals who experience event 2 (the competing risk) are retained in the

risk-set, survival probabilities for the subdistribution proportional hazards model are either

equal to or greater than the survival probabilities for the cause-specific proportional hazards

model. This message is portrayed by the comparison of the different hazard calculations

that occur at the bottom of Figure 2.8. The cause-specific hazard is increasingly greater

than the subdistribution hazard even though the competing events occur at the same time

and the same frequency in the example.
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The subdistribution proportional hazard model provides a means of estimating cumu-

lative incidence and hazard ratios without assuming independence of competing events. A

proportional hazard model can be constructed for the event of interest. Moreover, the inter-

pretation of the subdistribution hazard ratio from this model can be stated as: the relative

change in the subdistribution hazard of a given event corresponding to a 1-unit increase in

the exposure. This interpretation, given the model assumptions hold, applies to the haz-

ard ratio we would predict to observe in real world in which the competing risks captured

are observed (110). This interpretation lends itself to more clinical relevance to consider

cost-effectiveness and the allocation of resources.

The subdistribution hazard ratio can be calculated through statistical survival analysis

procedures like PROC PHREG (SAS) by means of recently added features in version SAS

9.4 (117) or the R Console package ‘cmprsk’ (118).

The two modeling approaches treat competing events differently and therefore answer

different questions. Cause-specific hazard ratios show the pure effect of an exposure on

an outcome while the subdistribution hazard ratios more closely represents the predicted

risk of the outcome (110, 117). The presentation of both of these models provides an

understanding of how an event such as an induced abortion can act as a competing risk

when natural perinatal mortality is the outcome of interest.

2.6 External Validity

Bias due to confounding typically arises when factors that affect both exposure and

outcome are not accounted for adequately. This leads to a lack of internal validity, i.e. the

exposure-outcome relation is not true for your study sample. While confounding frequently

is the most-often cited source of bias in health research, selection bias nearly universally

affects studies to various degrees depending both on study design and data collection. Se-

lection bias refers to differential exclusion or inclusion of study participants that leads to
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results that incorrectly reflect the exposure-outcome relationship of your target population.

To understand selection bias, we first define four key terms: target population, source pop-

ulation, study sample, study sub-sample. The target population refers to the population to

which you wish to generalize the results of the study. The source population is the popu-

lation the investigator chooses to represent the target population. The study sample refers

only to those individuals you attempt to recruit into or invite to participate in the study. The

study sub-sample refers only to the individuals that actually participate in the study. Study

sub-sample can also refer more specifically to individuals for whom you have complete

data on covariates needed for analysis. Participation thereby refers to providing a complete

record of requested information for the study. To illustrate the difference of these terms,

consider the following example. You are part of a regulatory body of the United States

government that wishes to understand the effect of hypertension among adults on health-

care costs. To investigate the effect on the U.S. population you choose to conduct a study

in the state of Colorado. You randomly select 20,000 addresses obtained from driver li-

cense records to which you send an invitation to participate in a survey on your study topic.

Participants are told they will receive an incentive of $20 for completing the survey. Five

thousand individuals complete and return the survey. In this example, the target population

is the entire adult U.S. population. The source population is residents of Colorado. The

study sample is all Colorado residents that receive a survey (20,000; residents that have a

current Colorado driver’s license and up to date mailing address). The sub-sample is the

residents that completed and returned the survey (5,000).

At the core of epidemiologic research is the idea that there is a well-defined population

of interest, to which the results are intended to be generalized. The ideal is to be able to

generalize our results to the target population. This requires external validity, i.e. a lack

of selection bias. Selection biased results do not accurately represent the population of

interest and therefore are not generalizable to the target population. Informally, addressing
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selection bias requires answering the following question: why do we have data from some

of the study sample and others not? (119) Selection bias causes a disconnect between

our results and results that would be seen in the population of interest (i.e. the target

population).

Selection bias is important to avoid or control for because there is some well-defined

population of interest we wish to generalize results to. Selection bias can occur at mul-

tiple levels. Results from our sub-sample may well represent the sample and the sample

may well represent the source population, but the selection of the source population is not

representative of the target population. Likes wise, results from our sub-sample may well

represent the sample, but the sample may poorly represent the source population. Lastly,

results from the sub-sample may not represent the sample and therefore selection bias is

present and the result cannot be generalized to the target population. The situation that is of

concern in this study is the last. Results obtained from the sub-sample of participants have

not been investigated to provide evidence whether the study sub-sample is representative

of the study sample.

2.6.1 Appropriate Incorporation of Non-participant Data

The composition of the study sample is all invited mothers of children born with Spina

Bifida. The exhaustive and exclusive groups in the study sample are the non-participants

and participants. To check that complete data available for participants reflects the data

from the non-participants as well, a few strategies can be used. First, available covariate

from both groups can be compared, this includes distribution of covariate values as well

as exposure and outcome. For survival analysis, Kaplan-Meier curves can be compared.

Ideally, group estimates would be the same. If group estimates for key covariates are rea-

sonably similar, results using data from both groups combined can be presented in addition

to results for the two groups separately.
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Next, in Chapter 3, we describe in detail the study design and methodology employed

in this study.
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CHAPTER 3: STUDY DESIGN AND METHODS

3.1 National Birth Defects Prevention Study (NBDPS)

Due to the rarity of most birth defects, case-control study designs are commonly em-

ployed to study exposure-outcome relationships for birth defects. This study was conducted 

using data from the National Birth Defects Prevention Study (NBDPS),(120) a ten state, 

population-based, case-control study of more than 30 major birth defects (Figure 3.1). In-

fants in the NBDPS had an estimated date of delivery between October 1, 1997 and De-

cember 31, 2011.

Figure 3.1: States participating in the National Birth Defects Prevention Study.(121)
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NBDPS captured birth defects occurring among live births and, in the majority of par-

ticipating states, birth defects among fetal deaths (stillborn) and induced abortions as well.

Figure 3.2 from Reefhuis et al., provides a visual representation of how states participated

in identifying birth defects over the length of the study. For simplicity, the term infant used

Figure 3.2: Inclusion of birth defects among live births, stillbirths, and induced abortions,
and data sources used specifically to ascertain prenatal diagnoses, by estimated year of
delivery and study center. [Borrowed from Reefhuis et al. 2015 (120)]

in regard to cases encompasses all three categories (live birth, stillbirth, induced abortion)

unless otherwise specified. Active population-based surveillance programs in each partic-

ipating state (Arkansas, California, Georgia, Iowa, Massachusetts, North Carolina, New

Jersey, New York, Texas, and Utah) were used to identify cases. Cases included infants

with 1 or more of the major birth defects captured in this study. Infants recognized or

strongly suspected to have defects directly related to a single-gene defect or chromosomal

abnormalities were excluded from the NBDPS as the purpose of the study was to deter-

mine unknown causes of birth defects. Controls were only recruited from among live born
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infants and were not matched to cases by design. Controls were sampled at random from

birth certificate records and hospital birth records to represent the underlying population

from which cases came. Additional details on the study design, sampling framework, and

the birth defect surveillance systems for NBDPS have been previously published (120).

The NBDPS study was approved by the institutional review boards of the University of

North Carolina at Chapel Hill, the Centers for Disease Control and Prevention, as well as

those of the other collaborating study centers.

3.2 Data Sources

This study used data from the following three sources.

CATI, DAT10. These analyses used data from the NBDPS Computer Assisted Tele-

phone Interview (CATI) questionnaire for exposure and covariate information (e.g. age,

education, race/ethnicity), the food frequency questionnaire section, the cereal and supple-

ment sections, and beverage/soda questions. For our analysis, we used the NBDPS analytic

data file version 10.0 (DAT10) corresponding to a study period of October 1, 1997 to De-

cember 31, 2011 which is the entire length of the NBDPS.

Infant mortality data. After active data collection ended for NBDPS in 2011, each

study center (except New Jersey) submitted state-level vital records data on infant mortal-

ity corresponding to all infants eligible to participate in the NBDPS. This data included

key mortality information (date of death, underlying cause of death, etc.) for both inter-

viewed and non-interviewed cases. Among all infants with spina bifida, 1854 mothers

(58%) participated and completed the interview compared to 1334 mothers (42%) who did

not participate in the NBDPS.

Birth defect case classification data. In the process of determining whether an in-

fant was eligible for the NBDPS, infants were first identified as having a birth defect by

their health care provider. An initial classification was then done by study personnel for
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eligible cases. An additional and more extensive birth defect classification was done for

infants of mothers that chose to participate in the NBDPS. Those mothers then went on to

be interviewed for additional data. The infants corresponding to non-interviewed mothers

were later reviewed for the same level of birth defect classification using available med-

ical record data. This was done so that interviewed and non-interviewed cases could be

compared with the information available for both groups.

Birth defect case classification and covariate data was used in conjunction with linked

infant mortality data that had already been provided by all study centers (NBDPS project

#9547). Survival analysis, using nonparametric Kaplan-Meier survival functions and Cox

proportional hazards models, was performed with SAS 9.4 to produce survival and cumu-

lative incidence curves and calculate the overall infant mortality rate, parameter estimates,

and corresponding hazard ratios.

3.3 Outcome Assessment

As infants were initially identified by their health care provider, they were further re-

viewed by clinical geneticists who collaborated on the NBDPS. Cases at this stage are

classified into one of the following categories: isolated (infants with only 1 defect or with

2 or more defects that are developmentally related), multiple (infants with ≥2 major un-

related birth defects), or complex (infants with ≥2 birth defects that are suspected to be

pathogenetically related yet for which the underlying defect is not clear) (44, 122). De-

tailed guidelines for case classification can be found in Rasmussen et al. 2003. Three pri-

mary NBDPS categories of neural tube defects were captured in this study: anencephaly,

encephalocele, spina bifida. The hierarchical classification was first anencephaly, second

encephalocele, and third spina bifida. In other words, if an infant was born with all three

defects, they would be classified as an anencephaly case only. If an infant was born with

encephalocele and spina bifida, the infant was be classified as an encephalocele case only.
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Spina bifida cases were infants in which spina bifida was the only neural tube defect.

Outcomes of Interest: Mortality (for calculating the overall infant mortality), Time to

Infant Mortality (for survival analysis)

Our primary outcome of interest was time to infant mortality among infants with spina

bifida. Mortality of cases is specific to the day of death as recorded by state death records.

3.4 Exposure Assessment

Demographic, behavioral, and dietary data were all gathered through an interview with

the case infant’s mother. Maternal interviews were conducted primarily via telephone us-

ing a standardized computer-based interview available in either English or Spanish. Antic-

ipated length of an interview was less than 1 hour. Interviews were administered after 6

weeks or more had passed since the infant’s estimated date of delivery (EDD) and no later

than 2 years after the EDD. Average time to interview for all infants with a birth defect

cases was 11.7 months (11.0 months for infants with spina bifida).

Exposure 1 of Interest: Maternal Pre-pregnancy Body Mass Index

Body mass index was calculated from self-reported pre-pregnancy height and weight as

mass (kilograms, kg) divided by height (meters, m) squared (kg/m2) (123). Height was

recorded in either feet and inches or centimeters according to the preference of the mother.

The interview question for height was: What is your height without shoes? Weight was

recorded in either pounds (lbs) or kilograms (kg) according to the preference of the mother.

The interview question for weight was: How much did you weigh before your pregnancy?

Appropriate unit conversions (U.S. standard units to metric units) were done as needed.

BMI was then calculated as a continuous number. BMI was categorized into four groups

used by the National Heart Lung and Blood Institute: Underweight (BMI<18.5), Normal

weight (18.5≤BMI<25), Overweight (25≤BMI<30) and Obese (BMI≥30) (123). Both

categorical and continuous measures of BMI were used in our statistical analysis though
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our primary analyses identified results based on categorized BMI.

Pre-pregnancy BMI, calculated from self-reported recall of height and weight, has been

shown to be a valid measure of BMI; prior research has shown that pre-pregnancy weight by

recall is highly correlated with weight recorded in clinical records (124). Height typically

remains constant from the start of pregnancy to the time of interview, so we anticipate

recalled height to be prone to very little measurement error. This measure while not a

perfect proxy for body fatness was inexpensive, easily obtainable, and consistently predicts

body fat percentage well on average (35).

Exposure 2 of Interest: Maternal Diet Quality

The primary exposure of interest, maternal diet quality, was evaluated in three ways using

data collected from the food frequency questionnaire as well as questions from the cereal

and supplement sections, and beverage/soda questions. Next we explain how the three

methods of measuring diet quality were implemented using the NBDPS data.

3.4.1 Method 1: Diet Quality Index for Pregnancy (DQI-P).

The DQI-P, developed by Bodnar and Siega-Riz, is an ordinal score based on 8 dietary

components (60). Our intention was to follow as closely as possible the original scoring

method for the DQI-P restricting changes to those required by data limitations. In doing

so we follow the same DQI-P calculation presented in Carmichael et al (22). Notably, the

original DQI-P includes a component capturing the frequency of meals and snacks. Since

such data were not requested in the NBDPS questionnaire, we excluded this part of the

DQI-P from our assessment. We added intake of sweets as an additional component as

was done in by Carmichael et al. and Feldkamp et al. (22, 68). Sugary foods and sugar

sweetened beverages (SSB) were recommended for limited consumption in the 2000 and

2005 Dietary Guidelines for Americans (71, 125).

Each of the 8 components has a minimum score of 0 and a maximum score of 3. Total
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scores can therefore range from 0 to 24, a higher score indicating a healthier diet for preg-

nancy. The first six components listed (grains, vegetables, fruits, folate, iron, and calcium)

were scored by quartile of consumption compared to other mothers. Participants who con-

sumed an amount in the lowest quartile of consumption received a score of 0, while partic-

ipants who consumed an amount in the highest quartile of consumption received a score of

3. This scoring method exactly follows the method presented in Carmichael et al.(22) and

results in a range of scores (0-24) close to one-third the score range (0-80) of the original

DQI-P.

For the three food groups (grains, vegetables, and fruits), we will use the mapping of

food items from the FFQ items to specific food groups in the DQI-P given by Carmichael

et al (126). See Appendix 1 for a reproduced copy of this table. To calculate servings per

day for these components, we used the following formula.

∑
(servings/day × gm/serving for each food item in the group)

(mean gm/serving of all the foods in the component)

For the sweets component, a slight modification is made to that formula to incorporate

soda.

∑
(servings/day× gm/serving for each non-soda sweet food item)

(mean gm/serving of all foods in the component) + servings/day of soda

Dividing the summed grams per day by mean grams per serving sizes of all food items

in each component provides a way to account for variability in portion sizes of various

food items within each component (e.g. cookie vs. cake). Nutrient values, for folate, iron,

and calcium, were previously calculated by NBDPS researchers using the USDA nutrient

database, version 19 (127). Dietary folate intake takes into account folic acid from fortified

foods by calculating dietary folate equivalents (DFEs). Folic acid from fortified foods is

multiplied by 1.67 in order to account for its greater bioavailability when compared to

46



folate1(130).

Percentage of calories from fat was scored in a categorical manner. Percent of calories

from fat has four categories: ≤ 30%, > 30% and ≤ 35%, > 35% and ≤ 40%, > 40% with

corresponding scores 3, 2, 1, and 0 points respectively. Sugar intake was ranked by quar-

tile, based on the distribution among participants. Lowest to highest quartiles corresponded

to scores of 3 and 0 respectively. This rank order of scores based on consumption is just

the opposite of the other food groups. Therefore those in the lowest quartile of sweets con-

sumption will receive a score of 3 and the highest quartile a score of 0. We next calculated

DQI-P total scores by summing the component scores and then grouped participants into

three score categories (low/medium/high) to compare the high to the low scoring DQI-P

groups.

3.4.2 Method 2: Health Eating Index 2010 (HEI-2010).

The HEI-2010 is a measure of diet quality that assesses adherence to the 2010 Dietary

Guidelines for Americans. It consists of 12 component scores. Possible total HEI-2010

scores range from 0-100. Our implementation of the HEI-2010 was similar to the ap-

proach taken by the University of Minnesota: Nutrition Data System for Research (131)

and followed the guidance provided by the National Cancer Institute (132). The steps to

calculating the HEI-2010 were:

1. Map each of the 63 food items from the FFQ to their corresponding component in

the HEI-2010.

2. Convert all food items from the serving units used in FFQ to the servings units used

by the HEI-2010 (e.g. 2 carrots per day converted to 1.6 cup equivalents). We used

the Food Patterns Equivalents Database (FPED) 2011-12 produced by the USDA to

1When consumed with food, as is the case with fortified foods, 85% or more of the synthetic vitamin,
folic acid is estimated to be bioavailable, while approximately only 50% of naturally occurring folate in food
is bioavailable.(128, 129)
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accurately preform these conversions (133). This database translates the amounts of

foods, as eaten (which is how the FFQ asks for the information), into cup and ounce

equivalents, the measurement units used for the HEI scoring system (132).

3. Calculate the cumulative servings for each component by summing the servings from

each of the corresponding FFQ items.

4. Determine the portion of the maximum score obtained by each component to assign

a component score.

5. Sum the 12 component scores to calculate the HEI-2010 overall score.

For example, if a subject recorded on the FFQ eating 3 apples per week, 2 bananas per

week, and 1 small glass of orange juice per day for all of her consumption of fruit items,

the “Whole Fruit” component score would be calculated as follows.

1. For calculating the score for “Whole Fruit” component, the 3 apples and 2 bananas

would be mapped to this component.

2. Using the FPED, we convert 3 apples per week to (0.91 cup/equivalents × 3)/7 =

0.39 cup/equiv per day and 2 bananas per week to 0.67 cup/equiv ×2)/7 = 0.19 cup/equiv per day.

3. Sum the servings: 0.39 + 0.19 = 0.58 cup/equiv. per day

4. Since 0.58 cup/equiv. exceeds the 0.40 cup/equiv. for the maximum score of 5. This

subject then receives a maximum score of 5 for the “Whole Fruit” component.2

5. Assuming the subject’s other eleven components score sum to 80. The HEI-2010

score for this subject would be 85.

3.4.3 Method 3: Latent Class Analysis (LCA).

LCA was used to assign mother-infant pairs into exclusive data-driven and derived di-

etary patterns, called classes, based on a mother’s consumption of food items adjusted for

caloric intake. Infants within each dietary class have similar maternal food intakes while

2If the subject only ate bananas in the same amount but no apples so the sum of servings was 0.19 rather
than 0.58, the score would be (0.19/0.40)× 5 = 2.38 for the “Whole Fruit” component.
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variability in maternal diet is greatest when compared across the different dietary classes.

This study follows closely the implementation of LCA by Sotres-Alvarez et al. (23), a

prior LCA conducted examining the risk of neural tube defects by dietary class. Briefly,

Sotres-Alvarez et al. used LCA to form classes based on dietary patterns of 64 food items

using data solely from controls. Intake of each food item (gram/day) was divided by the

total dietary consumption in grams per day in order to quantify the amount consumed of

the food item relative to the total dietary consumption. The relative food item consumption

was categorized into 4 levels to address statistical challenges presented by nonconsump-

tion. The four categories were no consumption and then tertiles of nonzero consump-

tion. Rare and less commonly consumed foods had a binary categorization (consumed and

nonconsumed). Ubiquitously consumed foods lacked a nonconsumption category and had

quartiles of nonzero consumption. They interpreted and named the dietary classes based

on the conditional food intake probabilities. The number of classes was specified to four

after assessing feedback from trial and error using statistics from fit statistics such as the

Bayesian information criteria (BIC) and the Lo-Mendel-Rubin likelihood ratio test. While

not truly a measure of diet quality rather a grouping of dietary patterns, we anticipated that

the patterns would reflect diets of varying quality and that survival would be better among

infants with mothers that had high quality diets.

Using a variety of methods allowed for us to see if a particular type of dietary index

(Method 1 or 2) or data-presented pattern (Method 3) was associated with improved sur-

vival. Methods 1 and 2 consider comparing categories-levels of exposure. While a specific

categorization was given, this is the anticipated use of categories. Choice of the number

of categories (2, 3, 4, etc.) used when comparing highest exposure category to lowest ex-

posure for Methods 1 and 2 was based on what best represents the actual distribution of

the exposure and deaths so as to maintain sufficient statistical power. Continuous forms of

DQI-P and HEI-2010 as exposures were also assessed.
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3.4.4 Additional exposures.

In addition to assessing the impact of maternal diet on survival, we also examined a

number of exposures many of which have been previously referenced in prior literature on

the topic of birth defect mortality. The following is a list of secondary exposures that we

examined but with limited depth in comparison to the primary exposures, pre-pregnancy

BMI and maternal diet.

Secondary Exposures of Interest: See list below.

• Maternal age

• Maternal race/ethnicity (Black, Hispanic, White, Other)

• Maternal education (<high school, completed high school, attended college)

• Maternal use of alcohol or cigarettes (B1-P3)

• Maternal nativity (US born, non-US born)

• Infant sex (male, female)

• Birth weight

• Region (by study center)

• Gestational age at birth

• Plurality (singleton vs. multiples)

• Isolated, multiple, all defects

• Time period (1998-2000, 2001-2003, 2004-2006, and 2007-2011)

Secondary exposures were investigated simply by calculating survival estimates stratified

by the different levels of exposures. Year periods selected above where determined to

provide three or more years of data for each time segment. Some stratified survival curves

were produced.
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3.5 Statistical Analysis

3.5.1 Aim 1. Infant mortality overall and by pre-pregnancy BMI

Infant mortality among babies born with spina bifida was calculated as one minus the

Kaplan-Meier survival probability at one year of life since birth. Early neonatal and neona-

tal mortality was calculated by the same method for seven days and twenty-eight days since

birth respectively. The standard error and corresponding pointwise confidence intervals for

the Kaplan-Meier survival probabilities were estimated using Greenwood’s formula (134).

We further constructed and plotted overall Kaplan-Meier survival curves (SKM ) (see ex-

ample Figure 2.5) and cumulative incidence curves (1-SKM ) (see example Figure 2.6).

Confidence bands were constructed for the survival and cumulative incidence curves.

Using the same methods as above, stratified survival estimates and cumulative inci-

dence curves were presented by pre-pregnancy BMI and exposure status for the secondary

exposures and by variations of spina bifida clinical classification (i.e. spina bifida subtypes

and anatomical location). Survival was compared by visual inspection of cumulative in-

cidence curves and by use of the log-rank test. To consider more extensively the effect

of pre-pregnancy BMI on survival we used Cox proportional hazards models adjusted for

potential confounding and reported the corresponding hazard ratios and 95% confidence

intervals for our results.

3.5.2 Aim 2. Examine maternal diet quality and infant survival

The three methods for measuring maternal diet quality were implemented as explained

in the exposure assessment section. Method 3 required a unique statistical approach, latent

class analysis (LCA). LCA was implemented using MPlus version 7.4 (135). The number

of latent classes was determined after reviewing goodness of fit statistics such as Bayesian

information criteria (BIC) and the Lo-Mendel-Rubin likelihood ratio test.
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To consider the effect of maternal dietary patterns on the survival we used Cox pro-

portional hazards models and report the corresponding hazard ratios and 95% confidence

intervals for our results. The proportional hazards assumption for adjusted models was

assessed by visual inspection of log-log cumulative hazard.

Models included a minimally sufficient set of covariates (e.g. confounders) to allow

for theoretically unbiased estimation of hazard ratios representing the exposures effect on

survival dependent on the validity of our assumptions. This set of covariates waw deter-

mined using a Directed Acyclic Graph (DAG) (136, 137) constructed based on evidence

from background scientific literature and subject matter expertise. A preliminary DAG is

represented in Figure 3.3.

A possible minimally sufficient set (MSS) of covariates would be access to care, drug

use, income, race/ethnicity, and prenatal care. Selection of what MSS was used corre-

sponded to the available data and its quality (e.g. missingness). For instance, we anticipated

data challenges such as non-response on questions related to household income.

3.5.3 Aim 3. Investigate the potential effect of bias on survival estimates

Subaim 1. Appropriate Incorporation of Non-participant Data.

During the data collection phase of the NBDPS, mothers whose child had a birth defect

were routinely identified and invited to participate in the study. Some mothers were not

able to be contacted or chose not to participate (32%). Reasons for not participating in the

study were not collected; however medical record data and some vital records data from

birth certificates are available for the non-participants. Detailed birth defect classification

for these infants has also been done. Using the information available on non-participating

cases linked with the infant mortality data, we compared survival among participants and

non-participants. Comparing the two groups presented a relevant and generalizable picture
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Figure 3.3: Direct Acyclic Graph showing the relation of maternal diet (M) to survival (S)
for infants born with spina bifida. Other variables represented are: AtC: access to care, C:
classification type of neural tube defect, D: drug use (specifically alcohol and tobacco), E:
maternal education, I: income, GA: gestational age at birth, O: occupation, PC: prenatal
care, PD: prenatal diagnosis, R: race/ethnicity.
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of survival among infants with spina bifida. It also allowed us to detect whether differences

between these populations could cause results from study participant only data to not be

generalizable to the overall population from which they were sampled.

Substantial missingness due to non-participation merits investigation of the represen-

tativeness of the sample and for potential selection bias (119). We inspected the data in

two stages. First, we will present a cumulative incidence curve with: (1) participant and

non-participant data combined, (2) participant-only data, (3) non-participant-only data to

allow for visual comparison. Cumulative incidence curves (2) and (3) were then tested for

equivalence via a log-rank test. If curves (2) and (3) appear equivalent by visual inspection

and via the log-rank test, we would, secondly, compare available maternal and infant char-

acteristics (e.g. maternal age, race, infant sex, etc.) to see whether values of these variables

had similar distributions in both groups. We would test whether there were statistically

significant (p-value<0.05) differences in two proportions between the two samples (par-

ticipants and non-participants) for binary variables (t-test), and Cochran-Mantel-Haenszel

test statistics of general association for nominal variables and mean score differences for

ordinal variables. If variable distributions were similar, non-participant data will be com-

bined with the participant data to the extent possible. Further, when analyses incorporate

data unavailable for non-participants, only study participant data will be used (i.e. Aim

1: subaim 1 and Aim 2). When inspection at either the first or second stage yielded re-

sults that indicated non-participant mother-infant pairs were different from participants, we

would incorporate non-participant and participant data to the extent possible (i.e. when

analyses use variables available in both groups). For Aim 2, where exposure data on diet

was unavailable for non-participants, we would weight participant data to reflect the com-

bined sample of both non-participants and participants. Weighting would involve the use of

inverse probability weights (IPW) to make study participants reflect the overall population

based on variables observed in both populations from which they were sampled. To check
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the weighting process, we compared survival curves for participants and non-participants

combined to the weighted participant data.

Subaim 2. Adjustment for competing events.

Note: While the work for this subaim was planned, it was not completed and upon agree-

ment from all dissertation committee members this subaim was considered a separate

project that could be completed after the dissertation itself.

Induced abortions are considered a competing event for studies of perinatal mortality

with time understudy beginning at 20 weeks of completed gestation.

Non-parametric handling of competing events.

The cumulative incidence function is an estimate of the cumulative probability of failure

from a specific cause over time. The SAS macro %CIF can be used to implement accurate

methods for nonparametric survival analysis to estimate cumulative incidence functions in

the presence of competing risks as well as in situations with no competing risks. We will

use %CIF to construct cumulative incidence curves for perinatal mortality among spina bi-

fida cases. To test whether differences between cause-specific cumulative incidence curves

are significant, we will apply Gray’s method (114) available through the SAS macro %CIF.

Additional details in on implementation of the macro to address competing risks can be

found in Lin et al. 2012 (109). Further we will present cumulative incidence curves of peri-

natal mortality, based on Kaplan-Meier survival estimates, with time starting at 20 weeks

gestation to demonstrate the role of fetal death and induced abortions on infant survival.

Semi-parametric handling of competing events.

Using Fine and Gray’s methodology (115), we will construct subdistribution propor-

tional hazard models and report corresponding hazard ratios for the Aim 2 analysis to

represents the predicted risk of the outcome to complement the more etiologically-focused

cause-specific proportional hazards model presented as part of Aim 2. The subdistribution

hazard ratio will be calculated through PROC PHREG (SAS) by means of recently added
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features in SAS version 9.4 (117).
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     CHAPTER 4: SURVIVAL OF INFANTS WITH SPINA BIFIDA AND THE
ROLE OF MATERNAL PRE-PREGNANCY BODY MASS INDEX

Objective: To investigate first-year survival of infants born with spina bifida, and exam-

ine the association of maternal pre-pregnancy body mass index (BMI) on infant mortality.

Methods: This is a retrospective cohort study of 1,533 infants born with non-syndromic

spina bifida with estimated dates of delivery from 1998-2011 whose mothers were eligible

for participation in the National Birth Defects Prevention Study (NBDPS). Via maternal in-

terview, pre-pregnancy body mass index (BMI, kg/m2) was calculated from self-reported

height and weight. Inverse probability weights were used to make data from study par-

ticipants representative of the eligible base population of infants with spina bifida regard-

less of participation in the NBDPS. Data from NBDPS was linked to death certificates

to conduct survival analyses. Kaplan-Meier survival functions were fit to estimate one-

day, early neonatal (<7 days), neonatal (<28 days), and infant (<1 year) mortality risk.

Cox Proportional Hazards models were used to estimate hazard ratios (HRs) for maternal

pre-pregnancy BMI categorized as underweight (<18.5), normal (18.5-24.9), overweight

(25-29.9), and obese (≥30) adjusted for potential confounding by maternal age, education,

race/ethnicity, and periconceptional folic acid supplementation.

Results: Overall infant mortality risk among infants with spina bifida was 4.4% (95%

CI: 3.52, 5.60%). Infants with multiple co-occurring defects, very preterm delivery, mul-

tiples, high-level spina bifida lesions, or non-Hispanic Black mothers were at highest risk

of infant mortality. The distribution of BMI in our sample was 3.3% underweight, 39.9%

normal weight, 24.1% overweight, and 25.4% obese. Maternal pre-pregnancy underweight
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and obesity were associated with higher infant mortality risk (15.7% (95% CI: 7.20, 32.30%)

and 5.82% (95% CI: 3.60, 9.35%), respectively). Hazard ratio estimates adjusted for po-

tential confounding showed underweight and obese mothers had greater hazard of infant

mortality compared to normal weight mothers (HR: 4.5 (1.08, 16.72) and 2.6 (1.36, 8.02),

respectively).

Conclusion: The overall risk of infant mortality for infants born with spina bifida was

lower than most prior estimates in the literature. Infants born with spina bifida to mothers

who were underweight or obese pre-pregnancy were at higher risk of infant mortality. This

study provides additional evidence of the importance of healthy maternal weight prior to

pregnancy. It also highlights indicators of elevated mortality risk among infants born with

spina bifida including early gestational age at delivery and the existence of multiple co-

occurring defects.

4.1 Introduction

Birth defects are a leading cause of infant mortality in the U.S. accounting for 1 in every

5 infant deaths (138). Spina bifida is a congenital anomaly characterized by the protrusion

of the spinal cord through a boney defect in the vertebral column. It is the most common

neural tube defect (NTD), occurring in approximately 1 out of every 3,000 live births (3).

Over time, mortality among infants with spina bifida has greatly declined; however, recent

estimates of approximately 8% (4) are still thirteen times higher than the national average

for all U.S. births (139).

Identified risk factors for infant mortality among infants born with spina bifida include

young maternal age, non-Hispanic Black race, low birth weight for gestational age, ex-

istence of multiple co-occurring birth defects (non-isolated defects), nativity, and parity

(17, 25, 29–31). Further, lesions located higher on the spine are associated with higher

mortality compared to lower lesions (29).

Recent estimates indicate that among U.S. women ages 20-39, 24% are overweight and
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32% are obese (37). Pre-pregnancy obesity, defined as a body mass index (BMI) greater

than or equal to 30 at the start of pregnancy, is common, occurring in more than 1 in 5

pregnant women in the U.S. (21% in 2009) with increases in prevalence during the last

decade (38). Overweight and obese pre-pregnancy BMI has been associated with infant

mortality, preterm birth, stillbirth, and longer duration in neonatal intensive care (40). A re-

cent meta-analysis showed a 42% increased odds of infant mortality among infants born to

mother who were obese relative to normal weight women (95% CI: 1.24-1.63) with an even

greater elevated odds among the most obese category (>35 BMI) (odds ratio (OR): 2.02,

95% CI: 1.61-2.56). Underweight pre-pregnancy BMI (<18.5) has also been associated

with negative infant outcomes (e.g. indicated preterm delivery, neonatal intensive care, in-

fant mortality) (40, 41). One large study of the association of maternal pre-pregnancy BMI

in women from 38 U.S. states demonstrated a “J”-shaped pattern, with infants of under-

weight mothers having births with higher infant mortality (5.4/1,000 live births) compared

to births of mothers with normal pre-pregnancy weight (4.2/1,000 live births) and infant

mortality rapidly increasing with severity of maternal pre-pregnancy obesity: (5.9/1,000

for 30≤BMI<35; 6.8/1,000 for 35≤BMI<40; 8.2/1,000 for BMI≥40 among live births)

(41).

Prior research suggests that maternal pre-pregnancy obesity is associated with increased

risk of spina bifida (42–46). However, no prior studies, to our knowledge, have examined

the influence of maternal pre-pregnancy BMI in relation to infant mortality among infants

with spina bifida. The purpose of this study is to investigate the first-year survival of in-

fants born with spina bifida and examine the association of pre-pregnancy BMI with infant

mortality.
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4.2 Materials and Methods

We conducted a retrospective cohort study using data on live born infants with spina bi-

fida from the National Birth Defects Prevention Study (NBDPS), a multi-state, population-

based, case-control study of more than 30 major structural birth defects to define our cohort.

Population-based surveillance programs in each participating site (entire state: Arkansas,

Iowa, and Utah; selected counties: California, Georgia, Massachusetts, North Carolina,

New York, and Texas) were used to identify eligible cases of spina bifida among livebirths,

stillbirths, and induced abortions. Details of the NBDPS design and data collection proto-

col are published elsewhere (120). This analysis used only data from liveborn infants with

spina bifida born between January 1, 1998 and December 31, 2011.

In the NBDPS, maternal interviews were conducted via telephone using a standardized

computer-assisted interview available in either English or Spanish. The interview collected

self-reported socio-demographic, health, and dietary information, among other exposures,

before and during pregnancy. Interviews were administered after 6 weeks or more had

passed since the infant’s estimated date of delivery and no later than 2 years after the es-

timated date of delivery. Of all invited/eligible mothers of infants with spina bifida, 68%

of mothers participated. Average time to interview for these mothers was 11.0 months

postpartum.

4.2.1 BMI Assessment

Body mass index was calculated from self-reported pre-pregnancy height and weight

as mass (kilograms) divided by height2 (meters2) (123). Height was recorded in feet and

inches or in centimeters in response to the interview question: What is your height without

shoes? Weight was recorded in pounds or kilograms in response to the question: How

much did you weigh before your pregnancy? Appropriate unit conversions were done to

then calculate BMI. BMI was categorized into four groups: Underweight (BMI<18.5),
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Normal weight (18.5 ≤ BMI <25), Overweight (25≤ BMI<30) and Obese (BMI≥30)

(123). Both categorical and continuous measures of BMI were used in the analysis. Only

7% of infants born with spina bifida had mothers missing responses to one or both of the

height and weight questions.

4.2.2 Spina Bifida Classification

Potential cases of spina bifida were ascertained by the population-based birth defect

surveillance registry of each NBDPS center. Potential cases were screened for eligibility

by clinical geneticists at each center. Data collection for eligible cases involved compre-

hensive abstraction of medical records to capture detailed clinical information including

spina bifida phenotype and diagnostic test results. Eligible cases were then recruited to

participate in the NBDPS. Following recruitment, spina bifida cases from all centers were

systematically reviewed a second time by a team of study-wide clinical geneticists to en-

sure consistency across study sites and to provide a detailed clinical classification. Each

spina bifida case was assigned to one of the following categories: isolated defect (1 major

birth defect), multiple (≥2 major yet unrelated birth defects), or complex (≥2 major birth

defects which are suspected to be related) (122). For spina bifida co-occurring with other

NTDs, there was an established hierarchy in which each infant was only classified under

the highest ranking NTD. The hierarchy was, highest to lowest: anencephaly, encephalo-

cele, and spina bifida. Infants with spina bifida in this study did not have co-occurring

anencephaly or encephalocele. Details were also provided on anatomical location of the

lesion along the vertebral column: cervical, thoracic, lumbar, and sacral. Cases with chro-

mosomal abnormalities or with recognized or strongly suspected single-gene disorders or

syndromes were excluded from the NBDPS by design (120).
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4.2.3 Infant Death Ascertainment

Our primary outcome of interest was time to infant mortality, defined as death in the first

year of life, among infants with spina bifida. We also assessed neonatal mortality and early

neonatal mortality, defined as death before 28 days of age and before 7 days of age, respec-

tively, as well as death within the first 24 hours. NBDPS data and accompanying clinical

files containing medical record data were linked to vital statistics data from each partici-

pating study center to provide infant mortality data. When the medical record, NBDPS,

or vital statistics data were discordant in regard to the primary outcome, that record was

examined carefully to determine whether death did occur and if so when. In situations in

which two sources agreed on this information, the conclusion shared by the two sources

was considered the correct information in the analytic dataset. For most discordant infor-

mation, the correct conclusion was obvious (i.e. the discordant record indicated the date

of death was prior to the date of birth). Cause of death was recorded for some infants

though this information was missing for most records and therefore infant mortality in this

analysis was defined as all-cause mortality during the first year of life. There were two

infants for whom records indicated that the infant had died though no exact date of death

was recorded. For these two observations the date of death was imputed using fully con-

ditional specification (140) which has been shown to be generally less subject to bias than

complete-case analysis (141).

4.2.4 Statistical Analysis

Infant mortality among infants with spina bifida was calculated as the complement of

the Kaplan-Meier survival probability at one year of life. Twenty-four hour, early neona-

tal (<7 days) and neonatal (<28 days) mortality was calculated by the same method. We

further constructed and plotted cumulative incidence (1-SKM ) curves from the Kaplan-

Meier survival estimate (SKM ) for the entire study sample as well as by interview status
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and, among women who were interviewed, prepregnancy BMI. Stratified infant mortality

estimates are presented by isolated vs. multiple defect(s), BMI category, gestational age

category, maternal race, plurality, and spina bifida anatomical location. The standard error

and corresponding pointwise confidence intervals for the Kaplan-Meier survival probabil-

ities were estimated using Greenwoods formula (134). The log-rank test was used to test

infant mortality differences across strata.

We used Cox proportional hazards models to adjust for potential confounding. We re-

port corresponding hazard ratios (HRs) and 95% confidence intervals (CIs) for the associa-

tion of BMI with infant survival at one year. Cox models included a semi-Bayes approach

by including a weak Bayesian prior of no association (i.e. a null prior) for BMI with in-

fant survival via data augmentation (142). This approach allowed us to reduce potential

sparse-data bias (143). Spare-data bias arises from a lack adequate events (i.e. deaths) for

one or more combinations of the exposure (i.e. BMI) and the outcome (i.e. survival) (144).

The proportional hazards assumption for all covariates in the model was assessed by visual

inspection of log cumulative hazard by BMI categories. The plot showed parallel lines for

all the BMI categories suggesting no issues of non-proportional hazards. Cox models in-

cluded a minimally sufficient set of covariates (i.e. confounders) to reduce the potential for

bias in estimation of hazard ratios representing BMIs association with survival. Covariates

(maternal age, education, race/ethnicity, smoking, alcohol consumption, periconceptional

folic acid consumption, gestational age) were selected using a Directed Acyclic Graph

(DAG) (136, 137) constructed based on evidence from the scientific literature and subject

matter expertise (Figure S1). To address limited sample size, covariate selection was com-

plemented by backward selectionremoving variables contributing less than a 10% change

in the main effect estimate are dropped from the model (145). When determining appro-

priate covariates for the adjusted Cox model, we examined maternal smoking and binge

alcohol consumption. These variables had no substantial impact on the parameter estimate
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Figure 4.1: Directed Acyclic Graph (DAG) for the effect of maternal pre-pregnancy body
mass index (BMI) on infant survival (S). Other variables represented: C: confounders (ma-
ternal age, education, race/ethnicity, smoking, alcohol consumption), FA: maternal peri-
conceptional folic acid consumption, GA: infant gestational age, SB: spina bifida, U: po-
tential unmeasured confounders
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(change<10%) and were therefore excluded from the adjusted model.

As part of a sensitivity analysis to test the robustness of the relation between pre-

pregnancy BMI and infant survival, we used Cox proportional hazards models with contin-

uous BMI and allowed for model flexibility with first and second order polynomials as well

as cubic splines. We also tested models without the weak null prior to check consistency

of results.

Among 1,793 infants with clinically eligible spina bifida whose mothers were recruited

for the NBDPS interview, for 31.5% their mothers were either unable to be contacted or

declined participation in the interview. Though self-reported information on BMI and other

factors collected via interview were thus not available for infants whose mothers were not

interviewed, clinical information from abstracted medical records of clinically eligible in-

fants were used to apply the same systematic case classification to infants with spina bifida

whose mothers were not interviewed, as was done for infants for whom there was a mater-

nal interview. Likewise, the infants born with spina bifida for whom no maternal interview

was conducted were linked to vital statistics data to ascertain first-year deaths. To address

the potential for selection bias due to participation status and to produce estimates repre-

sentative of the underlying population (119), we weighted data from infants with maternal

interview data to reflect the combined sample of both subjects with and without mater-

nal interview. Weighting involved the use of inverse probability weights (IPWs) (146) to

make interviewed study participants reflect the overall population based on variables avail-

able in both groups (i.e. birth defect classification, gestational age, plurality, maternal age,

race/ethnicity) (Appendix 1). Corresponding 95% confidence intervals were then generated

for weighted model parameter estimates using Efrons nonparametric bootstrap (147).

The National Birth Defects Prevention Study and this analysis, which used data from

both interviewed and non-interviewed mothers and their infants, were approved by the in-

stitutional review boards of the Centers for Disease Control and Prevention, the University
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of North Carolina at Chapel Hill, and all other participating study centers.

4.3 Results

All analyses excluded infants with spina bifida classified as having a complex birth

defect (n=9) or not a live birth (n=252; i.e. fetal death, induced abortion, spontaneous abor-

tion, or missing pregnancy outcome information). Based on these restrictions, we reduced

our sample size to 1,533 infants (1,080 (70%) with maternal interview and 453 (30%) with-

out maternal interview) from the original sample size of 1,793 infants (1,228 (68%) with

maternal interview and 565 (32%) without maternal interview). In our analytical sample,

1,336 (87%) infants had isolated spina bifida and 197 (13%) infants had non-isolated spina

bifida. The first aim of this study was to estimate first year mortality among infants with

spina bifida. For this aim, we included both interviewed and non-interviewed mothers. The

second aim was to assess whether pre-pregnancy BMI is associated with infant mortal-

ity. For this aim, data were limited only to interviewed mothers and their infants, but we

accounted for possible selection bias using IPW.

Three percent of interviewed mothers were underweight prior to pregnancy, 40% had

normal BMI, 24% were overweight, and 25% were obese; seven percent of mothers did

not supply information that allowed us to calculate body mass index (Table 4.1) and were

excluded from analyses requiring BMI. Slightly more than half of mothers had greater

than a high school education and the majority of mothers (82%) took folic acid sometime

between two months prior to pregnancy and the first trimester.

Similar distributions of maternal age, sex, gestational age, and plurality were observed

for infants with maternal interview data and those without. Interviewed mothers were more

likely to be non-Hispanic White and to have infants with isolated spina bifida compared to

non-interviewed mothers and their infants. Overall infant mortality at one year was 4.4%,
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Table 4.1: Characteristics of infants born with spina bifida eligible for the National Birth
Defects Prevention Study by maternal interview status, 1998-2011.
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though infant mortality was 3.7% among infants whose mothers were interviewed com-

pared to 6.2% among infants whose mothers were not interviewed (log-rank test: p=0.03,

Figure 4.2).

Figure 4.2: Crude risk of infant mortality during the first year of life among infants born
with spina bifida by interview status (National Birth Defects Prevention Study, 1998-2011)

There were 68 infant deaths among infants with and without maternal interview data;

among infants with maternal interview data there were 40 infant deaths. We observed that

approximately half of infant deaths among infants born with spina bifida occurred within

the first 24 hours after birth (n=35). Infant mortality differed by maternal pre-pregnancy

BMI. Compared to normal weight mothers, underweight and obese mothers had 7 times

and 2.6 times the risk of infant mortality, respectively (Table 4.2). A less distinct but

also elevated risk for infant mortality was seen in overweight mothers. Cumulative inci-

dence curves showed clearly different mortality risk by BMI category (Figure 4.3; log-rank

test, p< 00.01). The greatest difference in survival between maternal BMI categories was

observed for 24-hour survival while afterwards similar incidence curves were followed

(see Figure 4.3). Infants with spina bifida with another co-occurring defect (multiple/non-

isolated defects) had higher infant mortality (17.9%; 95% CI: 13.23, 24.09%) than infants
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Figure 4.3: Crude risk of infant mortality during the first year of life among infants born
with spina bifida by maternal category of pre-pregnancy body mass index (National Birth
Defects Prevention Study, 1998-2011)

with isolated spina bifida (2.5%; 95% CI: 1.76, 3.46%), more than seven times the risk

of death at 1 year. Infant mortality was much greater among very preterm (<32 weeks)

infants (38.0%; 95% CI: 27.89, 50.35%) compared to preterm (32-36 weeks) and term

(≥37 weeks) infants (7.2%; 95% CI: 4.17, 12.38% and 1.6%; 95% CI: 1.06, 2.52%, re-

spectively). Among race/ethnicity groups, infants of non-Hispanic Black mothers had the

highest infant mortality (7.7%; 95% CI: 4.34, 13.46%) and infants of non-Hispanic White

mothers had the lowest (3.3%; 95% CI: 2.22, 4.74%). This racial/ethnic disparity was evi-

dent in the first day and week of life and gradually grew over the first year. Twins had infant

mortality four times that of singletons after one day (8.7% vs. 2.1%) though this difference

narrowed at one year after birth to slightly more than double the risk. Anatomical location

of the lesion was strongly related to morality risk with infants with thoracic lesions having

notably elevated risk of infant mortality compared to lumbar and sacral lesions; there was

only one infant death among those with a cervical lesion. We also noted temporal trends

of improving survival. Infants with an estimated day of delivery within the following year
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categories, 1998-2000, 2001-2003, 2004-2006, 2007-2011, experienced 5.5, 4.3, 4.0, and

3.0% infant mortality respectively (data not shown).
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Table 4.2: Number of deaths (n) and infant mortality (IM) estimates (IM=1-SKM ) with 95% CIs by selected maternal and infant
characteristics among infants born with spina bifida, National Birth Defects Prevention Study, 1998-2011.
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Among all infants with spina bifida for whom maternal interview data were available,

unadjusted estimates indicated that infants with underweight mothers had a hazard of in-

fant mortality 7.6 times (95% CI: 2.20, 21.80) that of infants with normal weight mothers

during the first year of life (Table 4.3). Infants born to obese mothers also had a hazard

of infant mortality significantly greater (HR: 2.6; 95% CI: 1.25, 6.94) than normal weight

mothers. After adjusting estimates for potential confounding by maternal age, education,

race/ethnicity, and periconceptional folic acid supplementation, infants with spina bifida

born to underweight and obese mothers still had significantly greater hazard of infant mor-

tality compared to infants with spina bifida born to normal weight mothers (HR: 4.5; 95%

CI: 1.08, 16.72 and HR: 2.6; 95% CI: 1.36, 8.02, respectively). The estimates were impre-

cise as indicated by the wide confidence intervals. Use of a cubic spline modeling of BMI

showed a similar pattern of exposure-outcome relation (Figure 4.4) with a sharp increase

of the hazard ratio with greater severity of underweight and a progressively more gradual

increase in the hazard ratio as BMI exceeds 22, although the lower bound included the null

value of 1 across most BMI values over 20. When looking at infants with isolated spina bi-

fida only, we found a similar pattern of results, though with less precision due to decreased

sample size. Infants with isolated defects in underweight mothers had 4.7 times the hazard

of infant mortality compared to normal weight mothers (HR: 4.7; 95% CI: 1.21, 29.48).

We do not report hazard ratios and confidence intervals for infants with non-isolated spina

bifida (multiple defects) due to model non-convergence because of a limited sample size.

4.4 Discussion

Mortality in the first year of life among infants with spina bifida has greatly improved

in the past several decades. Lorber et al. observed a 50% two-year infant mortality from

1959-1963, a 36% two-year infant mortality from 1967-1968(24). A study from 1999-

2007 showed an infant mortality of babies with spina bifida of 8.1% (4). Improvements
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Figure 4.4: Hazard ratio and 95% confidence intervals for infant mortality by pre-
pregnancy body mass index compared relative to a body mass index of 20 (National Birth
Defects Prevention Study, 1998-2011)

Table 4.3: Hazard ratios and 95% CIs for mortality of infants born with spina bifida by cat-
egory of pre-pregnancy maternal body mass index in the National Birth Defects Prevention
Study, 1998-2011.
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in clinical care and medical technology have paved the way for this reduction in mortality

(26). In this study a temporal trend of reduced infant mortality was also seen. Overall infant

mortality in this study of 4.4% (95% CI: 3.52, 5.60%) represents one of the lowest infant

mortality risks reported to date. The exclusion of infants with chromosomal anomalies or

with recognized or strongly suspected single-gene disorders or syndromes may relate to the

differences in infant mortality estimates between this study and others covering similar time

periods without such exclusions (4, 30, 124). We found that infants with spina bifida born

to mothers with pre-pregnancy underweight or obesity had poorer survival trajectories than

infants of normal weight mothers. This association was strongest for underweight mothers.

If this relation where found to be causal, the mechanism by which pre-pregnancy BMI

could alter the risk of infant mortality in infants born with spina bifida is uncertain and may

be different for underweight versus obese women. If the association we observed is of a

causal nature, one pathway by which maternal adiposity might increase mortality risk is

through stored yet less accessible nutrients in obese mothers or deficient nutrients in un-

derweight mothers, such as reduced folate or iron levels among women at extreme BMI

categories (148, 149). Both extremes of BMI would be related to greater risk of nutritional

deficiency increasing both the risk of certain birth defects and setting up an infant for poorer

chance of survival. Other mechanisms may include compromised immune system function-

ing or inflammation related to maternal adiposity that thereby also effects the health of the

developing fetus. The effect of maternal prepregnancy BMI on survival among infants with

spina bifida may be mediated by higher risk of preterm birth. Underweight mothers are at

higher risk of spontaneous preterm birth (Liu 2016) and obese women are at higher risk for

indicated preterm birth due to co-morbidities such as gestational hypertension and diabetes

(150). A basic mediation analysis, in our data, examining mediation by length of gestation

showed only minor attenuation of the hazard ratio which may suggest only some of the

association of BMI with survival is attributable to gestational age at birth (data not shown).
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Type 2 diabetes is strongly associated with obesity (151). The incidence of type 2 diabetes

often follows weight gain (152–154) and can be thought of as another potential mediator in

this analysis. Using the same mediation technique for diabetes resulted in a slight increase

in the hazard ratio estimates and similar precision of confidence intervals (data not shown).

This suggests diabetes may not mediate the association of BMI with survival.

This analysis had several limitations, including the self-reported nature of the ques-

tionnaire, which may have led to misclassification due to inaccurate recall. The exposure,

pre-pregnancy BMI, calculated from self-reported recall of height and weight, has been

shown to be a valid measure of BMI; prior research has shown that pre-pregnancy weight

by recall was highly correlated with weight recorded in clinical records (124). Also, while

BMI is used as a proxy for body fatness, it more accurately represents excess weight given

ones height (34). That said, this measure is inexpensive, easily obtainable, and predicts

body fat percentage well (35). BMI was missing for 7.3% of mothers and as BMI is more

likely to be missing for Hispanic women, underrepresentation of Hispanic mothers may

have resulted (155). Residual confounding may also be present due to imperfect covariate

measures and unknown confounders. Induced abortions could impact our analysis. For in-

stance, one might anticipate that fetuses with more severe spina bifida were more likely to

be aborted than those with less severe spina bifida. In addition, prenatal detection of spina

bifida by ultrasound could be more difficult in obese women (156), though obese women

are at greater risk of an affected pregnancy and may therefore be more likely to receive

prenatal testing. We recognize the potential impact on survival if BMI is associated with

prenatal ascertainment of spina bifida and subsequent pregnancy termination. That said,

prior research suggests that the impact on infant survival would likely be minimal if this

were truly the underlying relation (157).

Some of our estimates were imprecise and limited sample size prevented us from exam-

ining mortality by subtype (meningocele, myelocele, myelomeningocele lipomeningocele,
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and lipomyelomeningocele). Lastly, due to the fairly large number of models that were fit,

the chance of a type 1 error owing to multiple comparisons is elevated above 5%, however,

the consistent trend of association we saw of increasing risk and hazard as BMI goes from

normal weight to overweight to obese would not be likely if significant associations were

due to chance.

This study had several strengths. NBDPS data, which combine data from population-

based birth defects surveillance and a comprehensive maternal questionnaire, allow for

pre-pregnancy BMI to be examined in relation to the risk of infant mortality among infants

with spina bifida. NBDPS data used in this analysis are from sites covering 9 distinct

regions of the U.S., increasing the generalizability of results to multiple regions of the U.S.

Second, inverse probability weighting applied to the interviewed sample corrected for

some of the bias due to non-participationmaking the results more representative of the

source population (e.g. non-Hispanic Blacks were underrepresented among participating

mothers though IPWs made estimates more accurately representative). While IPW allowed

for more representative results, an accompanying assumption was made that known char-

acteristics about non-participating mothers were sufficient to weight participating mothers

to accurately represent them. Clear differences in key characteristics between infants with

and without maternal interview substantiated this approach.

Third, the spina bifida case definition was based on strict inclusion or exclusion criteria.

Individual case review by a clinical geneticist limits the potential for outcome misclassifi-

cation. Exclusion of infants with recognized or strongly suspected single gene disorders or

syndromes makes our study sample more homogeneous with respect to underlying etiology

and presence of major comorbid conditions.

Analyses in which our models included a continuous measure of BMI allowed for ad-

ditional flexibility of exposure modelling, demonstrating stability of the exposure-outcome
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relation. When the null prior was removed from the proportional hazards model, conclu-

sions remained the same. Only in one case did the determination of a statistically significant

relation change (i.e. the hazard ratio for underweight compared to normal weight among

infants with isolated spina bifida no longer included the null value of one) suggesting very

minor sparse data bias if results omitted the inclusion of a null prior.

Other results from our analysis support previous observations. The disparities in infant

mortality among infants born with spina bifida by race and ethnicity followed patterns

recorded in prior literature (4) with non-Hispanic White having the lowest infant mortality,

followed by Hispanics, and with non-Hispanic Blacks having the highest infant mortality.

Prior literature also indicated an increased risk of mortality with higher anatomical location

(29). To our knowledge, information on infant mortality of spina bifida cases has not

previously been presented by plurality.

Currently maternal obesity is the number one obstetrical risk factor for a multitude of

negative maternal and infant conditions (39). Given that the risk of spina bifida is increased

among obese women (42–46) as well as an increased risk of many other negative health

outcomes (150), there is a critical need to promote at a population level a shift towards

healthier weight for women of reproductive age, and while underweight women represent

a small fraction of the population with prevalence around 3%, the benefits of achieving a

healthy weight may be greatest in this group. Shifts towards a healthier pre-pregnancy BMI

may both prevent spina bifida incidence (158) as well as reduce mortality among infants

born with spina bifida.

In conclusion, findings from this analysis suggest that infants born with spina bifida

to mothers considered underweight or obese prior to pregnancy have an elevated risk of

infant mortality, particularly for underweight mothers. These findings add further evidence

to the importance of a womens periconceptional health in reducing the occurrence of poor

neonatal and infant outcomes. Further investigation of potential causal mechanisms by
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which maternal pre-pregnancy BMI may increase mortality risk in infants with spina bifida

is warranted. We recommend replication of this research in other studies to examine the

consistency of results.
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      CHAPTER 5: MATERNAL DIETARY PATTERNS AND FIRST-YEAR
MORTALITY AMONG INFANTS BORN WITH SPINA BIFIDA

Objective: To investigate the potential impact of pre-pregnancy maternal dietary pat-

terns on one-year survival among infants born with spina bifida.

Methods: We analyzed data from mothers and their infants with spina bifida (n=1,487)

in the National Birth Defects Prevention Study (1999-2011) linked to vital records for in-

fant mortality. Using data from self-reported food frequency questionnaires (completed

on average 11 months after delivery) that referred to consumption one year prior to preg-

nancy, we examined maternal dietary patterns via three methods: the Healthy Eating Index

(HEI), the Diet Quality Index for Pregnancy (DQI-P), and latent class analysis (LCA).

Kaplan-Meier survival functions were fit to estimate infant mortality by dietary patterns.

Cox proportional hazards models were used to estimate hazard ratios by three levels of

the HEI and DQI-P scores (low/medium/high) and four latent classes adjusted for potential

confounding.

Results: Among 1,487 infants born with spina bifida, 66 died during the first year of life

(4.43%). One year risk of death for infants born with spina bifida did not vary significantly

across maternal dietary patterns. After adjusting estimates for potential confounding by

maternal age, education, race/ethnicity, and periconceptional folic acid supplementation,

mothers that scored low (poorer diet quality) in both the HEI and DQI-P had higher hazard

of infant mortality compared to mothers with high (better diet quality) scores (HR: 1.44

(0.54, 4.33) and 2.36 (0.93, 5.78) for HEI and DQI-P, respectively) though the estimates

were imprecise.
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Conclusion: This study provides suggestive evidence that maternal pre-pregnancy diet

is associated with infant survival among babies born with spina bifida. Nonetheless, adher-

ence to dietary guidelines and healthy eating patterns have been associated with reduced

risks of adverse pregnancy outcomes such as birth defects and improved maternal health.

5.1 Introduction

Pregnancy is a critical period of rapid development and heightened metabolic activ-

ity for a growing fetus. Imbalances in specific nutrient and overall energy intakes for

the mother prior to and during pregnancy have been associated with adverse pregnancy

outcomes (47–55). Further, certain dietary patterns and poor diet quality during pre-

conception and prenatal periods have been associated with several adverse birth outcomes

(159–164) including neural tube defects and other birth defects (22, 68, 74). Notably, in

the U.S., the average childbearing woman has a diet that is considered poor quality (165)

(HEI-2010 avg. score=49.3, out of 100 possible points. For example, womens consump-

tion of greens, beans, and whole grains are markedly lower than national recommendations

(15-20% of recommended amount) (165).

One out of every 5 infant deaths in the U.S. can be attributed to birth defects, a leading

cause of infant mortality(166). Spina bifida, a congenital anomaly marked by the spinal

cord and meninges protruding from a defect of the vertebral column, is the most common

neural tube defect, and occurs in 1 out of every 3,000 live births in the U.S. (3). Despite

incredible improvements in infant survival among those born with spina bifida in the last

60 years when infant mortality was 90% (24), recent infant mortality estimates range from

4.4 to 8.0% (4, 167), seven to thirteen times higher than the national average for all U.S.

births of 0.6% (139).

Identified risk factors of infant mortality among infants born with spina bifida include

maternal age, race, ethnicity, low birth weight for gestational age, existence of multiple co-

occurring birth defects, nativity (U.S. born or non-U.S. born), and parity (17, 25, 29–31).
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Further, lesions high on the spine showed significantly lower survival probability compared

to lower lesions (29).

Maternal diet and nutrition play a key role in embryonic and fetal development. Folic

acid supplementation and fortification in the periconceptional period has led to a decline

in the prevalence of spina bifida and neural tube defects overall (15, 17–21). Neural tube

defects occur with less frequency among mothers with prudent preconception dietary pat-

terns compared to other dietary patterns (Western, low-calorie Western, and Mexican) (23).

However, no prior studies have examined the influence of maternal dietary patterns in re-

lation to infant mortality among infants with spina bifida. The purpose of this study is to

investigate the potential association of maternal dietary patterns on one-year survival of

infants born with spina bifida.

5.2 Materials and Methods

5.2.1 Study Design

This analysis used data from the National Birth Defects Prevention Study (NBDPS),

a multi-state, population-based, case-control study of more than 30 major structural birth

defects. Active population-based surveillance programs in each participating state (entire

state: Arkansas, Iowa, New Jersey, Utah; selected counties: California, Georgia, Mas-

sachusetts, North Carolina, New York, Texas) were used to identify eligible cases of birth

defects as well as liveborn infants without a birth defect (controls). Details of the NBDPS

design and data collection protocol are published elsewhere (120). Infants in the NBDPS

had an estimated date of delivery between October 1, 1997 and December 31, 2011. Cases

were eligible whether born as live births, stillbirths, or prenatally diagnosed terminations.

This study uses the case infants only from the original case-control study (i.e. spina bifida

cases) that were liveborn between 1998 and 2011 from all centers except New Jersey.
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5.2.2 Maternal Interview

Maternal interviews were conducted via telephone using a standardized computer-assisted

interview available in either English or Spanish. The interview collected socio-demographic,

health, dietary information and other data by maternal recall. Interviews were administered

after 6 weeks or more had passed since the infant’s estimated date of delivery and no later

than 2 years after the estimated date of delivery. Average time to interview for mothers

of infants with spina bifida was 11.0 months. Among all NBDPS cases, 67% of eligible

mothers participated (120).

5.2.3 Food Frequency Questionnaire

As part of the maternal interview, dietary information was collected. Average intake of

foods was captured using a semi-quantitative food frequency questionnaire (FFQ) devel-

oped by Willett et al. for The Nurses Health Study (168, 169). The FFQ was shortened from

153 to 63 items for purposes of the NBDPS. For each of the food items, mothers reported

average frequency of consumption for food items in the year prior to becoming pregnant (6

months prior for seasonal foods). For example, one question would read, “How often, on

average, did you eat fresh apples or pears? followed by 16 frequency options ranging from

“Never or less than once a month to “6 or more times per day. In addition to the FFQ, data

on breakfast cereals, sodas, food supplements, and caffeinated tea and coffee consumption

were captured via a separate series of detailed question asking about intake during the 3

months prior to pregnancy. Nutrient intake estimates were calculated after dietary data was

collected using the U.S. Department of Agriculture (USDA) release 25 nutrient database

(170). Vitamin supplements and food supplements (e.g. meal replacement bars or shakes)

were not included in nutrient calculations (with the exception of folic acid) because con-

sumption among participating mothers was rare and nutrient data for many products were

not available. Dietary folate equivalents (DFEs), calculated as DFE = [(folic acid from
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fortified foods)*1.7 + (total natural folate from foods)], were used to estimate folate intake.

5.2.4 Maternal Dietary Patterns

Measures of overall dietary patterns fall generally into two approaches: (1) dietary

pattern indexes where maternal diet is assessed against some pre-determined scale of diet

quality, typically conveyed as a score, and (2) data-driven approaches where an automated

statistical method identifies exclusive dietary pattern groups based on the foods consumed

by their frequency of consumption. The primary exposure of interest, maternal dietary pat-

terns, was evaluated in three ways using data collected during the maternal interview from

the FFQ as well as questions from the cereal and supplement sections, and beverage/soda

questions: two diet indices, the Healthy Eating Index (171) and the Diet Quality Index for

Pregnancy (60), and one data-driven approach, latent class analysis (LCA) (172, 173). All

three of these methods were used to quantify maternal dietary patterns well after the initial

dietary data was collected via maternal interview questionnaires.

5.2.4.1 Method 1: Healthy Eating Index 2010 (HEI-2010)

The HEI-2010 is a measure of diet quality that assesses adherence to the 2010 Dietary

Guidelines for Americans (75). It consists of 12 component scores with a possible total

HEI-2010 score ranging from 0-100. The HEI-2010 had not previously been implemented

using the NBDPS data. Our implementation was similar to the overall approach taken by

the University of Minnesota: Nutrition Data System for Research (ref: NDSR) and follows

the guidance provided by the National Cancer Institute (ref: NCI).

The HEI-2010 was calculated using the following steps. (1) Each of the 63 FFQ food

items was mapped to their corresponding component(s) in the HEI-2010. (2) All food items

were converted from the common serving units used in FFQ to the servings units used by

the HEI-2010 (e.g. 2 carrots per day converted to 1.6 cup equivalents). We used the USDAs

Food Patterns Equivalents Database (FPED) 2011-12 to perform these conversions (133).
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(3) Cumulative servings were calculated for each component by summing the servings

from each of the FFQ items corresponding to that component. (4) Component scores were

determined by calculating the portion of the maximum component score obtained. (5) The

12 component scores were then summed to calculate the HEI-2010 overall score.

Once calculated, HEI scores were compared using low (≤61), medium (62-78), and

high (≥79) HEI score categories with low to high scores indicating poorer to better diet

quality, respectively. Category thresholds were decided upon by 1), allocating a similar

number of mortality events in to each category to allow for greater statistical power and, 2),

making differences in categories substantively meaningful (i.e. a difference of 2 between

categories would not be substantively meaningful).

5.2.4.2 Method 2: Diet Quality Index for Pregnancy (DQI-P)

The DQI-P, developed by Bodnar and Siega-Riz, is an ordinal score based on 8 dietary

components (60). The DQI-P has been implemented by NBDPS collaborators (22, 68)

but with modifications due to data limitations. These include removal of the meal pattern

component (no data on this was captured in the NBDPS) and the addition of a sweets com-

ponent. The DQI-P score implemented in the NBDPS then consists of 6 positively scored

components (grains, vegetables, fruits, folate, iron, and calcium) and 2 negatively scored

components (percentage of calories from fat and sweets). Scores for each component were

based on quartiles of consumption/intake (differently from the original DQI-P which based

scores on absolute value). Consumption was estimated from FFQ information as well as

responses to a cereal and beverage supplemental questionnaire in the NBDPS. Component

scores were assigned 0, 1, 2, or 3 based on quartile of consumption and the cumulative

score then ranges from 0 to 24, poorest diet to best diet (22).

Once calculated, DQI-P scores were compared using low (≤8), medium (9-13), and

high (≥14) DQI-P score categories. Category thresholds were decided upon by based on

the same principles as the HEI score categories, namely, a similar number of mortality
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events occurred in each category and differences in categories were substantively meaning-

ful.

5.2.4.3 Method 3: Latent Class Analysis (LCA)

LCA was used to assign cases into exclusive data-driven and derived dietary patterns,

called classes, based on a participants consumption of food items adjusted for caloric in-

take. Mothers within each dietary class have similar food intakes while variability in ma-

ternal diet is greatest making comparisons between different dietary classes. This studys

implementation of LCA mirrored that done by Sotres-Alvarez et al. (23), a prior LCA that

examined the risk of neural tube defects by dietary class in the NBDPS.

Briefly, we used LCA to form classes based on dietary patterns from 58 FFQ items

available from the interviewed mothers of infants with spina bifida. Intake of each food

item (grams/day) was divided by the total dietary consumption in grams per day in order

to quantify the amount consumed of the food item relative to the total dietary consump-

tion. The relative food item consumption was categorized into 4 levels to address statistical

challenges presented by nonconsumption. The four categories were no consumption and

then tertiles of nonzero consumption. Rare and less commonly consumed foods had a bi-

nary categorization (consumed and nonconsumed). Ubiquitously consumed foods lacked

a category solely for nonconsumption but rather had categories based on quartiles of con-

sumption.

LCA was implemented using Mplus version 7.4 (135). The number of latent classes

was determined using goodness of fit statistics: Bayesian information criteria (BIC) and the

Lo-Mendel-Rubin likelihood ratio test. Most probable class assignment was then extracted

from Mplus output and implemented as an exposure with all other analyses in SAS software

version 9.4 (Cary, NC).

0Only 58 FFQ items used in this analysis method because we have data on all 58 of these items for the
vast majority of participants. The FFQ originally had 58 questions and then at a later year of the study 5 more
items were added.
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5.2.5 Spina Bifida Classification

Infants born with spina bifida were first identified by population-based birth defect

surveillance registries at each NBDPS site. An initial eligibility screening was done by

clinical geneticists at their respective site for each potential participant. Detailed clinical

information including spina bifida phenotype and diagnostic test results were obtained for

eligible infants through comprehensive abstraction of medical records. Mothers of eligi-

ble infants were then invited to participate in the NBDPS. After recruitment, spina bifida

diagnoses from all centers were systematically reviewed a second time by a study-wide

team of clinical geneticists to ensure consistency across study sites and to provide a de-

tailed clinical classification. The classification included information such as lesion level

(defined as the upper most level of the disrupted portion of the vertebral column): cervi-

cal, thoracic, lumbar, and sacral vertebra. This detailed classification was also completed

for infant spina bifida diagnoses corresponding to mothers who did not complete the ma-

ternal interview (i.e. non-interviewed cases). As part of the clinical classification, birth

defects were grouped in one of the following categories: isolated defect (1 major birth de-

fect), multiple (≥2 major yet unrelated birth defects), or complex (≥2 major birth defects

which are suspected to be related) (Rasmussen 2003). For spina bifida co-occurring with

another NTD, there was an established hierarchy in which each infant was only considered

a case under the highest ranking NTD (ranked highest to lowest: anencephaly, encephalo-

cele, spina bifida). Therefore, infants with spina bifida in this study, by definition, did

not have co-occurring anencephaly or encephalocele. By design, birth defects suspected

to arise from chromosomal abnormalities or with recognized or strongly suspected single-

gene disorders or syndromes were excluded from the NBDPS (120).
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5.2.6 Infant Death Ascertainment

In this study of infants born with spina bifida, our outcome of interest was time to infant

death. Infant death and its timing were determined by linking data from three sources: ma-

ternal interview data (for mothers that participated), clinical data from the comprehensive

medical record abstraction, and vital statistics (birth and infant death) records from each

participating study site. Records were matched by staff at each of the NBDPS study sites

and transmitted to the Centers for Disease Control and Prevention. Matched records pro-

vided information on (1) whether the baby had died (from medical records and maternal

interview, yes/no), the exact date of death (from vital records), (3) approximately how old

the baby was when he/she died (from maternal interview). Cause of death was recorded

for some infants though this information was missing or very limited for most records and

therefore infant mortality in this analysis was defined as all-cause mortality during the first

year of life. When the three sources were conflicting in regard to the occurrence of or tim-

ing of infant death, that infants record was inspected to ascertain whether infant death did

occur and if so when. In situations in which two of the three sources agreed on this infor-

mation, the conclusion shared by the two sources was considered correct for our analysis.

The correct conclusion was also often obvious (i.e. the discordant record indicated a date

of death prior to the date of birth). For two occurrences of infant death, sources indicated

the infant died though the date of death was missing. The date of death was imputed for

these records using fully conditional specification (140), an imputation method which on

average is less subject to bias than complete-case analysis (141).

5.2.7 Statistical Analysis

Infant mortality among babies born with spina bifida cases is the cumulative incidence

of death (one minus the Kaplan-Meier survival probability (SKM ) at one year of life since

birth). Using the same calculation method, early neonatal (7 days) and neonatal mortality
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(28 days) were reported. Corresponding point-wise confidence intervals were estimated

from standard errors based on Greenwoods formula (134). Plotted cumulative incidence

curves (1-SKM ) were used to depict mortality incidence over time. The stratified infant

mortality estimates and cumulative incidence curves were presented by HEI and DQI-P

score categories (low/medium/high) as well as by latent class. The log-rank test was used

to test for statistically significant differences of infant mortality across strata of maternal

diet categories.

To investigate the association of maternal dietary pattern with survival and adjust for

potential confounding, we used Cox proportional hazards models and reported correspond-

ing hazard ratios (HRs) and 95% confidence intervals (CIs). Sparse-data bias is of concern

due to the small number of events (i.e. deaths) for one or more combinations of the expo-

sure (i.e. maternal diet) and the outcome (i.e. time to infant mortality) (144). To reduce

sparse data bias (143), we took a semi-Bayes approach by adding a weak Bayesian prior

via data augmentation (142). This prior was one of no association (i.e. a null prior). The

proportional hazards assumption for the adjusted Cox model was assessed by visual in-

spection of the log cumulative hazard by maternal diet classification. The plot showed

approximately parallel lines for all the maternal diet categories suggesting no major issues

due to non-proportional hazards.

To reduce confounding, hazard ratios were estimated from models adjusted for a set of

covariates. This set of covariates were determined using a Directed Acyclic Graph (DAG)

(136, 137) constructed based on evidence from background scientific literature and subject

matter expertise. This DAG is represented in Figure 5.1. To address limited sample size,

covariate selection through the use of a DAG was complemented by backward selection

to where variables with less than a 10% change in main effect estimate are dropped from

the model (145). From the DAG, the following variables were considered: maternal age at
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conception (continuous), education (completed high school, yes/no), race/ethnicity (Non-

Hispanic White, Non-Hispanic Black, Hispanic, other), prenatal care (yes/no), any use of

supplements containing folic acid (2 months prior to pregnancy through the first trimester),

maternal smoking (any smoking 1 month prior to conception through the first trimester,

yes/no), and maternal alcohol consumption (no alcohol, drinking but no binge drinking, or

binge drinking of five or more alcohol drinks on one or more days). As part of a sensitivity

analysis, we ran Cox models with continuous measures of the diet indices (linear, quadratic,

cubic splines).

During the data collection phase of the NBDPS, mothers whose child had a birth defect

were identified and invited to participate in the study. Some mothers did not participate

(32% of mothers of infants with spina bifida). Reasons for not participating in the study

were not collected; however abstracted medical record data and vital records mortality data

were available for the non-interviewed mother-infant pairs, as were detailed spina bifida

classifications. Maternal diet and other information gathered during the interview were

not available for these mother-infants pairs. To avoid potential selection bias and to pro-

duce estimates representative of the underlying population (119), we weighted participant

data to reflect the combined sample of both those interviewed and those not interviewed.

Weighting involved the use of inverse probability weights (IPWs) (146) that, in effect,

made interviewed participants reflect the underlying population based on variables avail-

able in both groups (i.e. birth defect classification, gestational age, plurality, maternal age,

race/ethnicity). Efrons nonparametric bootstrap method (147) was used to calculate appro-

priate 95% CIs for weighted model parameter estimates.

The National Birth Defects Prevention Study and this analysis, using data from both

interviewed and non-interviewed mothers and their infants, were approved by the institu-

tional review boards of the Centers for Disease Control and Prevention, the University of

North Carolina at Chapel Hill, and all other participating study centers.
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Figure 5.1: Directed Acyclic Graph (DAG) for the potential effect of maternal dietary pat-
terns (Diet) on infant survival (S). Other variables represented: AtC: access to health care,
C: confounders (maternal age, education, race/ethnicity, smoking, alcohol consumption),
FA: maternal periconceptional folic acid consumption, GA: infant gestational age, PC: pre-
natal care, PD: Prenatal diagnosis of spina bifida, SB: spina bifida, U: potential unmeasured
confounders
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5.3 Results

All analyses excluded observations classified as a complex birth defect (n=9) or if

the delivery was not a live birth (n=252; i.e. fetal death, induced abortion, spontaneous

abortion, missing). We further restricted analyses to mothers who had little to no miss-

ing data on food items (4 items, 32 excluded) and had caloric intake greater than the 1st

percentile and lower than the 99th percentile (40 excluded). Based on the following restric-

tions, we reduced our sample size to 1,487 liveborn infants with spina bifida (1,034 (70%)

interviewed and 453 (30%) non-interviewed) from the original sample size of 1,793. In

our restricted sample, 1,298 (87%) infants had isolated spina bifida and 189 (13%) infants

have non-isolated spina bifida (i.e. cases of spina bifida with additional co-occurring birth

defects).

Interviewed and non-interviewed mothers had similar distributions of maternal age,

gestational age, and singletons to multiples ratio (Table 5.1). Interviewed mothers had

a smaller percent of non-Hispanic Blacks and multiple defect cases compared to non-

interviewed mothers. Among interviewed cases, slightly more than 50% of mothers had

greater than a high school education and the majority of mothers took folic acid starting

during the periconceptional window, defined as two months prior to pregnancy through the

first trimester.

The mean HEI score was 70.2 (±11.2). Low HEI scores (≤61) were reported by 20.8%

of the sample while high HEI scores (≥79) were reported by 23.5% of mothers. Scores

were high across all individual HEI components though no one had a perfect score of

100 (maximum=93.6) and the minimum score earned was 27.1. More than 75% of all

participants had a maximum score for the total protein component. The lowest component

scores were seen for the fatty acid component (ratio of healthy to unhealthy fats) and the

whole grains component (data not shown).

The mean DQI-P score was 11.6 (±5.15). Low DQI-P scores (≤8) made up 29.0 % of
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participants while high scores (≥14) were 36.9% of mothers. Only one participant had the

minimum score of 0, and only 2 participants scored the maximum score of 24.

Four latent classes were derived with 14.9 to 34.8% of mothers in each class. Proba-

bility of high intake for certain food items for each class can be seen in (Figure 5.2) as the

percent of class members consuming the highest quantile of consumption for a given food

item. Of note, class one had the highest consumption of hot dogs, hamburgers, French fries

and potato chips; class two had the highest relative consumption of carrots, wheat bread,

and nuts and high consumption of fish; class three had the highest consumption of avo-

cadoes, chile peppers, tortillas, and refried beans; class four had the highest consumption

of rice/pasta and comparable consumption to classes 2 and 3 for many items (e.g. apples,

tomatoes, broccoli). In regards to estimated energy intake, class 3 had the highest mean

energy intake (1987.7 kcal) then class 2 (1573.7 kcal) and classes 2 and 4 had similar in-

take (1484.1 and 1463.8 respectively). Nutrient intake also differed between classes. Class

1 had the lowest intake of calcium and iron and the highest sugar intake, while class 2

had the highest intake of calcium, iron, and mono/poly-unsaturated fatty acids. Class 3

had the lowest sugar consumption but sodium consumption more than 33% greater than

all other classes. Class 4 had moderate levels of most nutrients and the lowest levels of

mono/poly-unsaturated fatty acids (data not shown).

Overall infant mortality was 4.4% with 66 deaths total. Infant mortality was 3.7%

among interviewed cases compared to 6.2% among non-interviewed cases. A log-rank test

of different survival curves was statistically significant (p=0.03) indicating that the inter-

viewed mothers and their infants did not adequately represent the intended study sample.

Analyses limited to interviewed data only were therefore weighted to represent the charac-

teristics of the entire sample of eligible cases.

Infant mortality estimates by maternal dietary pattern are presented by 1 day, early

neonatal (7 days), neonatal (28 days), and infant mortality (1 year) time points (Table 5.2).
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For all three measures of dietary pattern, the poorest diets (low HEI, low DQI-P, class 1 of

LCA) had the highest infant mortality. Mortality estimates as well as cumulative incidence

curves (Figure 5.3 and Figure 5.4) seemed to indicate that improved survival was aligned

with higher diet quality, but a closer look at confidence intervals and statistical tests yielded

no clear differences in mortality between high, medium, and low scoring categories for

both the HEI and DQI-P measures (log-rank: p 0.10). Cumulative incidence curves by

latent classes were also found not to differ (log rank: p 0.10).

We calculated the hazard of infant mortality by maternal dietary pattern. Mothers with

low HEI scores had a 42% increased hazard (HR: 1.42; 95% CI: 0.74, 3.00) of their infant

dying in the first year of life compared to mothers with a high score. Low DQI-P score

was also associated with a 95% increased hazard (HR: 1.95; 95% CI: 0.78, 5.60) of infant

mortality compared to a high score. Infant of mothers in latent class 1 had a 54% increased

hazard (HR: 1.54; 95% CI: 0.70, 3.63) of infant mortality compared to infants of mothers

in latent class 2. All unadjusted HRs included the null value of 1. The Cox proportional

hazards model adjusted for the following factors: maternal age, education, race/ethnicity,

prenatal care, folic acid supplement use and maternal smoking. Alcohol consumption,

though considered a potential confounder, had no substantial impact on the parameter esti-

mate (change10%) and was therefore excluded from the adjusted model. After adjustment

for potential confounding, mothers that scored low in both the HEI and DQI-P had a higher

hazard of infant mortality compared to mothers with high scores (HR: 1.44 (0.54, 4.33) and

2.36 (0.93, 5.78) for HEI and DQI-P respectively) though confidence intervals were wide

and included the null. Adjusted models examining the association between latent classes

and survival did not provide significant evidence to indicate that latent classes were associ-

ated with differences in survival and estimates lacked precision. Sensitivity analyses using

cubic splines of continuous measures of HEI and DQI yielded results consistent with those

in Table 5.3 (data not shown).
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When stratifying infants by defect classification group (isolated defect v. non-isolated

(multiple) defects), we found similar results, i.e., mothers with medium scoring diets had

HRs similar to high scoring diet mothers and mothers with low scoring diets had more

striking differences when compared to mothers with high scoring diets (Table 5.3) though

again there was a lack of precision in these estimates. Latent classes provided no evidence

for relative differences in hazard ratios. These estimates were very imprecise as evidenced

by the wide confidence intervals.

Figure 5.2: Probability of highest level of consumption for selected foods by latent class.
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Table 5.1: Characteristics of infants born with spina bifida eligible for the National Birth
Defects Prevention Study by interview status, 1998-2011.a
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Figure 5.3: Crude risk of mortality among infants with spina bifida by HEI category during
the first year of life, National Birth Defects Prevention Study (1998-2011).
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Table 5.2: Cumulative number of deaths (n) among infants born with spina bifida and Kaplan-Meier infant mortality estimates (IM=1-
SKM ) with 95% CIs presented by maternal dietary pattern measures during the first year of life, National Birth Defects Prevention
Study (1998-2011).
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Figure 5.4: Crude risk of death among infants with spina bifida by DQI-P category during
the first year of life, National Birth Defects Prevention Study (1998-2011).

5.4 Discussion

Spina bifida, a defect once associated with high infant mortality (90%) as recently

as the 1960s (24), is now survived by the vast majority with the condition (8.0% infant

mortality)(4). This drastic improvement has paralleled advances in clinical care and med-

ical technology (26) such as the use of antibiotics, shunts, and the standard practice of

early surgery for nearly all cases of spina bifida. Overall infant mortality in this study of

4.4% (95% CI: 3.52, 5.60) is similar to an estimate reported previously (167) that used

this dataset with slightly different exclusion criteria. Differences between this estimate and

others from different studies covering similar time periods (4, 30, 124) may have been due

to the exclusion of syndromic cases, including those with chromosomal anomalies, of spina

bifida.
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Figure 5.5: Crude risk of death among infants with spina bifida during the first year of life
by latent class, National Birth Defects Prevention Study (1998-2011).
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Table 5.3: Hazard Ratios and 95% CIs for survival of infants born with spina bifida by HEI,
DQI-P, and LCA categories in the National Birth Defects Prevention Study, 1998-2011.
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Infants born with a major congenital anomaly face an inherently elevated risk of in-

fant mortality, especially during the first day, week, and month of life. Spina bifida poses

risk through infection at the site of the defect or in the placement of a shunt, respiratory

failure with infants that have co-occurring Arnold-Chiari II malformation, premature birth,

renal failure (174, 175), and complications resulting from other co-occurring defects. All

these risks can be fatal. We aimed in this research to further improve infant survival by

considering lifestyle factors such as diet.

Healthy maternal dietary patterns are thought to prevent spina bifida through the folate

pathway (15). When healthy maternal diet alone might not be sufficient to prevent spina

bifida or when another determinant might be the cause of spina bifida, we hypothesized

that healthier maternal dietary patterns could set up an infant for better health overall once

born. A superior level of health at birth, we suspected, would thereby enable the child

to better overcome the inherent risks that accompany spina bifida. Results suggest that

infants born with spina bifida whose mothers had higher diet quality had better survival

trajectories than infants of mothers with lower diet quality though these effect estimates

were imprecise. Further, healthier dietary patterns derived by latent class analysis showed

no clear difference in mortality from less healthy dietary patterns. Because our results

suggest no clear association, it is questionable whether maternal diet has any meaningful

impact on first-year survival among infants born with spina bifida.

The role of maternal diet in infant mortality among babies with spina bifida had not

been investigated. This study examined the relation between maternal dietary patterns and

mortality of infants born with spina bifida. However, it has limitations. HEI scores are

typically calculated using one or two 24-hour food recalls as had been done for national

HEI estimates (171) though this study was limited to data from a shortened FFQ. Scores

in this study were 18 points higher on average than national estimates. However, the HEI

here follows patterns as seen in similar research where HEI scores were calculated with
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greater accuracy (171). The HEI scores vary by age (greater maternal age is correlated

with a higher score), by education (higher education associated with higher score), smokers

have significantly lower scores than non-smokers, and scores vary by geographic region

being higher in northeast and lower in the south. We therefore find it reasonable to assume

that scores estimated in this study accurately differentiate healthier from poorer dietary

patterns (internal validity for within study comparison), but the actual magnitude of the

scores themselves cannot be compared to other studies (i.e. lack external validity). This

is most likely due to the limited nature of the shortened FFQ used to estimate HEI scores

which led to a systematic overestimation of scores and their variability.

The self-report of maternal characteristics and food consumption may have led to non-

differential misclassification due to inaccurate recall. The average time from delivery to

interview completion was 11 months. Because mothers were providing dietary informa-

tion the year prior to pregnancy, a substantial amount of time had elapsed. Dietary recall

research has shown correlated results comparing diets records with values from a question-

naire administer three to four years later about food intake during the same period (176).

Further research has shown recall for close to 20 years previous to be suitable for ranking

individuals by intake of overall food groups (177). Based on this work we believe that

maternal recall from this study is sufficiently accurate to capture overall diet and dietary

behaviors.

Other limitations include limited sample size (number of infant deaths among inter-

viewed mothers, 38). This resulted in imprecise effect estimates. Further, it is difficult to

fully tease apart maternal diet from other factors that may influence infant survival. For

instance, one could imagine that it is not maternal diet as a causal factor but that those who

are more health conscious in regard to their diet might also be health conscious in new-

born care pursuing and providing the best care possible. Though we expect our adjustment

for socioeconomic variables (e.g. age, education) to reduce possible residual confounding.
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Our ability to account for clinical care was limited by our collected data. Models adjusted

for prenatal care (yes/no). We also could not to account for important post-natal factors

such as access to care though we do not consider these factors to confound our results but

rather predict survival.

There were several strengths to this study. Due to the rarity of many birth defects, in-

cluding spina bifida, extensive surveillance paired with thorough questionnaire data, the

NBDPS allows for maternal diet to be examined in relation to the risk of infant mortality

for infants with spina bifida which has not been investigated previously. Second, the rep-

resentative nature of the study through population-based sampling in 9 states lends itself

to readily generalizable results for multiple regions of the US. Further, corrective weight-

ing of the interviewed sample provided estimates that more accurately represent the source

population. Differences in key characteristics between interviewed and non-interviewed

cases substantiated this approach. Third, the spina bifida case definition was based on strict

inclusion or exclusion criteria. Individual case review by a clinical geneticist limits the

potential for outcome misclassification. The thorough nature of the dietary patterns assess-

ment looked at both diet quality by standardized measures (HEI, DQI-P) as well as patterns

and habits identified by data driven methods (LCA). Further, considering maternal diet as

a whole rather than with the examination of individual foods or nutrients captures potential

synergistic effects that are greater than the sum of individual item effects.

In conclusion, findings from this study do not indicate that infants born with spina bifida

to mothers with healthier diets are at lower risk of infant mortality. That said, we did ob-

serve some non-significant patterns suggesting that healthier diets could be associated with

a better chance of survival. Nonetheless, adherence to dietary guidelines and healthy eating

habits in other studies have been associated with reduced risks of adverse pregnancy out-

comes and improved maternal health (159–164, 178–180). Further research is warranted,

as this is the first study to investigate the potential impact of maternal pre-pregnancy diet
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quality on survival of infants with spina bifida.
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CHAPTER 6: CONCLUSIONS

The goal of this dissertation was to describe mortality among infants born with spina bi-

fida during the first year of life. In addition to reporting overall mortality, we examined the 

association of infant mortality with previously identified risk factors, and then preformed a 

detailed analysis to understand the potential influence of pre-pregnancy BMI and maternal 

dietary patterns on mortality. This chapter concludes the dissertation by highlighting key 

findings, important strengths and l imitation, public health implications, and future direc-

tions for research.

Our sample consisted of mother-infant pairs identified through the National Birth De-

fects Prevention Study (NBDPS), a multi-state, population-based, case-control study of 

more than 30 major structural birth defects (120). Infants with spina bifida f rom any of 

the 9 participating states between January 1, 1998 and December 31, 2011 were part of 

our study. Analyses excluded infants with spina bifida classified as having a complex birth 

defect (n=9) or not a live birth (n=252; i.e. fetal death, induced abortion, spontaneous 

abortion, or missing pregnancy outcome information). There were 1,533 infants with spina 

bifida included in our study of which 70% participated in NBDPS interview and its corre-

sponding questionnaires. When studying dietary patterns, we further restricted the analysis 

to mothers who had little to no missing data on food items and had caloric intake greater 

than the 1st percentile and lower than the 99th percentile for a reduced sample of 1,487
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infants with spina bifida.

6.1 Key Findings

Mothers who participated in the NBDPS interview and their infants were distinct from

non-interviewed mothers and their infants. Non-interviewed mothers were more likely to

be non-Hispanic Black and to have infants with spina bifida accompanied by other birth

defects compared to interviewed mothers and their infants. Overall infant mortality at

one year was 4.4% (95% CI: 3.5, 5.6%), though infant mortality was 3.7% among infants

whose mothers were interviewed compared to 6.2% among infants whose mothers were not

interviewed (log-rank test: p = 0.03). Analyses limited to interviewed mother and their

infants were weighted to make these mothers-infant pairs representative of entire intended

sample (both interviewed and non-interviewed mothers; i.e. all eligible infants born with

spina bifida) in regard to known characteristics.

Our first aim was to report survival among infants born with spina bifida overall and

by key risk factors and investigate the relation of infant mortality and pre-pregnancy BMI.

Overall infant mortality risk among infants with spina bifida was 4.4% which is lower than

estimates reported in prior studies. Infants with multiple co-occurring defects, very preterm

delivery, multiples, high-level spina bifida lesions, or non-Hispanic Black mothers were the

groups at highest risk of infant mortality. Prior to pregnancy, 3% of interviewed mothers

were underweight, 40% had normal BMI, 24% were overweight, and 25% were obese;

7% of mothers had missing BMI information. Pre-pregnancy BMI appeared to be associ-

ated with infant mortality such that underweight and obese mothers had infants with higher

infant mortality risk (15.7% (95% CI: 7.20, 32.30%) and 5.82% (95% CI: 3.60, 9.35%), re-

spectively). After adjustment for confounding, hazard ratio estimates showed underweight,

overweight, and obese mothers had a greater hazard of infant mortality compared to normal

weight mothers (HR: 4.2 (1.08, 16.72), 1.9 (0.68, 5.44), and 2.6 (1.36, 8.02), respectively).
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Our second aim was to examine the relation between maternal dietary patterns and mor-

tality during the first year of life among infants born with spina bifida. We assessed overall

diet using three measures. The Healthy Eating Index (HEI-2010) is a measure of diet qual-

ity that assesses adherence to the 2010 Dietary Guidelines for Americans (75). It consists

of 12 component scores with a possible total HEI-2010 score ranging from 0-100. The Diet

Quality Index for Pregnancy (DQI-P), developed by Bodnar and Siega-Riz, is an ordinal

score based on 8 dietary components that assess diet quality based on professional dietary

guidelines and behaviors (60). The DQI-P was adapted for the NBDPS with scores ranging

from 0-24. Latent Class Analysis (LCA) was used to assign mothers into exclusive data-

driven and derived dietary patterns, called classes, based on a participants consumption of

food items adjusted for caloric intake. Mothers within each dietary class have similar food

intakes while variability in maternal diet is greatest making comparisons between different

dietary classes.

The mean HEI score was 70.2 (±11.2). Low HEI scores (≤61) made up 20.8% of the

sample while high scores (≥79) were 23.5% of mothers. The mean DQI-P score was 11.6

(±5.15). Low DQI-P scores (≤8) made up 29.0 % of participants while high scores (≥14)

were 36.9% of mothers. Four latent classes were derived with 14.9 to 34.8% of mothers in

each class. Class one had the highest consumption of hot dogs, hamburgers, French fries

and potato chips; class two had the highest relative consumption of carrots, wheat bread,

and nuts and high consumption of fish; class three had the highest consumption of avo-

cadoes, chile peppers, tortillas, and refried beans; class four had the highest consumption

of rice/pasta and comparable consumption to classes 2 and 3 for many items (e.g. apples,

tomatoes, broccoli).

The one-year risk of death for these infants did not vary significantly across levels of

adherence to the Diet Quality Index for Pregnancy (DQI-P) or the Healthy Eating Index

(HEI) and was not distinguished by latent classes. After adjusting estimates for potential
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confounding, mothers with low scores on the HEI or the DQI-P had a higher hazard of

infant mortality compared to mothers with high scores (HR: 1.44 (0.54, 4.33) and 2.36

(0.93, 5.78) for HEI and DQI-P, respectively) though the estimates were imprecise.

Our findings indicate that infants born with spina bifida to underweight or obese moth-

ers are at higher risk of infant mortality compared to infant of normal weight mothers. We

did not, however, find clear evidence that maternal diet is associated with infant mortality

among babies born with spina bifida. Our results give additional evidence of the impor-

tance of healthy maternal weight prior to pregnancy. And even though maternal diet was

not associated with survival, adherence to dietary guidelines and healthy eating patterns

has been associated with a reduced risk of birth defects and improved maternal health in

general.

6.2 Research Limitations

This project had several limitations. First, the self-reported nature of responses to the

NBDPS maternal interview, may have led to misclassification of BMI and dietary informa-

tion due to inaccurate recall. That said, pre-pregnancy BMI, calculated from self-reported

recall of height and weight, has been shown to be a valid measure of BMI; prior research

has shown that pre-pregnancy weight by recall was highly correlated with weight recorded

in clinical records (Shin 2014). Also, while BMI is used as a proxy for body fatness, it

more accurately represents excess weight given ones height (34). That said, this measure is

inexpensive, easily obtainable, and predicts body fat percentage well (35). In regard to diet

measurement, HEI and DQI-P scores are typically calculated using one or more 24 hour

recalls but were computed based off data from a shortened FFQ likely leading to inaccu-

rate estimates of absolute intake. Since the calculated scores do follow know patterns and

are probably systematically inaccurate, it is reasonable to use the measure for within study

comparisons.
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Second, residual confounding may also have been present due to imperfect covariate

measures and unknown confounders. For instance, household income, a driver of appro-

priate medical care access and use, was often not reported by choice of interviewee.

Third, induced abortions as a competing event to perinatal morality could have altered

the picture of infant mortality we observed. This bias is common in studies of infant mor-

tality. One might anticipate that fetuses with more severe forms of spina bifida, who would

also be more likely to die in the first year of life, were more likely to be aborted than those

with less severe spina bifida. If this were the case, the risk of infant mortality we observed is

deflated, compared to historical estimates, due in part to the practice of elective termination

of pregnancy.

Fourth, sample size was limited principally by the number of infant deaths. Many esti-

mates were therefore imprecise, manifest in wide confidence intervals. The rarity of infant

death, not only limited study-wide precision but prevented us from examining mortality by

spina bifida subtype (meningocele, myelocele, myelomeningocele lipomeningocele, and

lipomyelomeningocele) and other less common risk factors.

Lastly, due to the fairly large number of models that were fit, the chance of a type 1

error owing to multiple comparisons is elevated above 5% overall, however, the consistent

trend of association we saw of increasing risk and hazard as BMI goes from normal weight

to overweight to obese would not be likely if significant associations were due to chance

alone.

6.3 Research Strengths

This study is unique in that it was the first to examine the relation between maternal

pre-pregnancy BMI and maternal dietary patterns with mortality of infants born with spina

bifida. This study had several important strengths. First, the NBDPS combined data from

population-based birth defects surveillance and a comprehensive maternal questionnaire,
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allowing for pre-pregnancy BMI to be examined in relation to the risk of infant mortality

among cases of spina bifida. Also, the study design included 9 sites that covered distinct

regions of the U.S., increasing the generalizability of results to multiple regions of the

country. Clinical geneticists, further provided individual case review of screened spina

bifida cases for further classification and determined eligibility based on strict inclusion or

exclusion criteria limiting the potential for outcome misclassification.

Second, inverse probability weighting (IPW) applied to the interviewed sample cor-

rected for some of the bias due to non-participationmade results more representative of the

source population (i.e. non-Hispanic Blacks were underrepresented among non-participating

mothers though IPWs made estimates more accurately representative). Clear differences

in key characteristics between interviewed and non-interviewed cases substantiated this

approach.

Lastly, the thorough nature of the dietary patterns assessment explored both diet quality

by standardized measures (HEI, DQI-P) as well as patterns and habits identified by data

driven methods (LCA). Considering maternal diet as a whole rather than with the exami-

nation of individual foods or nutrients captured potential synergistic effects that could be

greater than the sum of individual food of nutrient effects.

6.4 Research and Public Health Implications

Pre-pregnancy obesity is common (1 in 5 pregnant women in the U.S.)(38) and has

been associated with infant mortality, preterm birth, and stillbirth (40). Underweight pre-

pregnancy BMI, though much less common, has also been associated with preterm delivery,

neonatal intensive care, and infant mortality (40, 41). Infants born with spina bifida to un-

derweight and obese mothers were at higher risk of infant mortality compared to infants

of normal weight mothers. In light of the obesity epidemic as a major public health con-

cern, our results adds further evidence to the importance of healthy maternal weight prior to
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pregnancy. Though our results provide little to no evidence that maternal diet is associated

with infant mortality among babies born with spina bifida, healthy dietary patterns precon-

ceptionally continue to be associated with a reduced risk of having a child with certain birth

defects: high DQI-P scores are associated with a reduced risk of anencephaly and orofacial

clefts (22) and prudent diets are associated with a reduced risk of neural tube defects and

some congenital heart defects (23).

In planning to investigate the association of pre-pregnancy BMI and maternal diet with

infant survival we recognized that both these factors were associated with the prevalence

of spina bifida at birth. By examining the association of these factors with infant survival

we could potentially find factors that are related to both prevention of birth defects as well

as survival of a birth defect. We found this to be the case for pre-pregnancy BMI. Normal

weight mothers compared to obese mothers, prior to pregnancy, have a reduced risk of

having an infant born with spina bifida and should that baby still have spina bifida, the

baby is at a reduced risk of infant death. Should this causal relation mirror the association

we have found, both burdens of disease could be reduced through health pre-pregnancy

weight.

In comparing participating mother-infant pairs to non-participating pairs, we discov-

ered that participants and non-participants differed significantly. To account for this, we

used inverse probability weights based on participation which, when applied to our sam-

ple, made results reflect the characteristics of the entire eligible study population. This

example reiterates the need for all clinical and public health research to recognize poten-

tial sources of selection bias and address that bias to produce results that can be externally

valid. This is particularly true for future studies that will use this data source.
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6.5 Future Directions

As in all good research, in the pursuit of answering questions new question arise that can

expand our knowledge and understanding on a topic. New questions include: What is the

impact of elective terminations on infant survival estimates? What is the risk of fetal death

among fetuses with spina bifida? Is the potential effect of pre-pregnancy BMI on survival

mediated by prenatal diagnosis or gestational age? Limitations of both time and resources

have prevented some of these questions from being answered here. Further investigation

is needed to understand the etiology of birth defect related mortality, mediators, and the

impact of maternal diet on mortality as well as prevention. The following areas of research

are promising and can help answer novel, pertinent questions.

6.5.1 Competing Events Analysis

The proposal of this dissertation originally set out, in a third aim, to describe the impact

of competing events (i.e. fetal death and induced abortions) on infant mortality. Prior liter-

ature has mistakenly assumed the absence of competing events among studies of perinatal

mortality (105). In the study of naturally occurring perinatal mortality, induced abortions

preclude the observation of a natural perinatal death (i.e fetal death or infant death). While

there are 3.5 cases of spina bifida per 10,000 live births in the U.S., the actual prevalence

of spina bifida is difficult to determine due to prenatal diagnosis and sometimes subse-

quent elective termination of pregnancy. The presence of competing events can lead to

non-generalizable results and survival estimates. Starting follow-up at 20 weeks gestation

would allow us to address competing events. The potential for competing events to affect

observed survival estimates needs to be investigated.
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6.5.2 Examining survival of other birth defects

This is the first mortality study using data from the National Birth Defects Prevention

Study. Subsequent studies will follow. Collaborations have been formed to examine the

survival of infants born with congenital diaphragmatic hernia. Infant mortality of critical

congenital heart defects will also be examined using this data set. These analyses can glean

techniques and anticipate challenges, as well as how to address them, from the research

presented.

6.5.3 HEI and Birth Defects Prevention

A large amount of work went into estimating the Health Eating Index (HEI) scores

for study participants, and while HEI scores were not associated with infant survival, high

scores on a previously created measure of diet quality, the Diet Quality Index for Pregnancy

(DQI-P), have been associated reduced risk of some birth defects. The HEI should be used

in like manner to see if the measure is related to a reduced risk of birth defects.

6.5.4 Updating the DQI-P

The Diet Quality Index for Pregnancy (DQI-P) since being published in 2002 has been

employed in numerous studies. In birth defects research, higher scores have been associated

with a reduced risk of several birth defects. That said, this measure needs to reflect our

expanded understanding of maternal nutrition that has come since the DQI-P was created

more than a decade ago. An update would be advantageous. Many components would

remain the same. Others would change. The component for grains should be changed

to emphasize whole grains and the component for fat should consider both healthy and

unhealthy fats. An updated DQI-P could then be studied in relation to birth defects or other

pregnancy outcomes. Comparison of results between the original DQI-P and an updated

version could substantiate its use moving forward.
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6.5.5 Mediation of Pre-pregnancy BMI and Infant Survival

In understanding the strong association we observed between pre-pregnancy BMI and

survival, one must considered what could mediate this potential causal relationship. Medi-

ation by gestational age or diabetes was touched upon in Chapter IV but deserves further

investigation and more sophisticated mediation methods. A thorough mediation analysis by

these factors and other potential factors could bring to light why extremes of pre-pregnancy

BMI are closely tied to elevated risk of infant mortality for babies born with spina bifida.

6.6 Final Remarks

This dissertation has shown the importance of (1) recognizing and accounting for non-

participation in studies of birth defects research and (2) pre-pregnancy BMI as a risk factor

for first-year mortality among infants with spina bifida. Maternal dietary patterns while

not associated with improvements in infant survival probability remains a promising, mod-

ifiable factor to prevent the occurrence of birth defects. Future research should further

investigate competing events, mediating factors, and other specific birth defects that we

may understand how to reduce mortality among this highly vulnerable population.

114



115



Table 1: Mapping of Food Frequency Questionnaire items to DQI-P Food Groups
Food item in Food Frequency Questionnaire Diet Quality Index food group*
Skim or low fat milk (8 oz. glass) -
Whole milk (8 oz. glass) -
Yogurt (1 cup) -
Ice cream (1/2 cup) Sw
Cottage or ricotta cheese (1/2 cup) -
Other cheese e.g., American, cheddar, etc., plain or as part of a dish (1 slice or 1 oz. serving) -
Margarine (pat), added to food or bread; exclude use in cooking -
Butter (pat), added to food or bread; exclude use in cooking -
Fresh apples or pears (1) F
Oranges (1) F
Orange juice (small glass) F
Peaches, apricots, plums, or nectarines (1 fresh or 1/2 cup canned) F
Bananas (1) F
Cantaloupe (1/4 melon) F
Avocado (1) or guacamole (1 cup) F
Other fruits, fresh, frozen, or canned (1/2 cup) F
Tomatoes (1) or tomato juice (small glass) V
String beans (1/2 cup) V
Broccoli (1/2 cup) V
Cabbage, cauliflower, or brussel sprouts (1/2 cup) V
Carrots, raw (1/2 carrot or 2-4 sticks) V
Carrots, cooked (1/2 cup) V
Corn (1 ear or 1/2 cup frozen, canned) V
Peas or lima beans (1/2 cup frozen, canned) V
Yams or sweet potatoes (1/2 cup) V
Spinach or collard greens, cooked (1/2 cup) V
Refried beans (1 cup) -
Beans or lentils, baked or dried (1/2 cup) -
Yellow (winter) squash (1/2 cup) V
Raw Chile peppers, Jalapeno (1) V
Salsa (1 cup) V
Eggs (1) -
Chicken or turkey (4-6 oz.) -
Bacon (2 slices) -
Hot dogs (1) -
Processed meats, e.g., sausage, salami, bologna, chorizo, etc. (piece or slice) -
Liver (3-4 oz.) -
Chicken livers (1 oz.) -
Organ meats Barbacoa, Menudo, sweetbreads, tongue, intestines (3-4 oz.) -
Hamburger (1 patty) -
Beef, pork, lamb or cabrito as a sandwich or mixed dish, e.g., stew, casserole, lasagna, etc. -
Beef, pork, lamb or cabrito as a main dish, e.g., steak, roast, ham, etc. (4-6 oz.) -
Fish (3-5 ozs.) -
Chocolate (1 oz.) Sw
Candy without chocolate (1 oz.) Sw
Pie (slice) Sw
Cake (slice) Sw
Cookies (1) Sw
White bread (slice), including pita bread G
Dark bread (slice), including wheat pita bread G
French fried potatoes (4 ozs.) -
Potatoe baked, boiled (1) or mashed (1 cup) V
Rice or pasta e.g., Spanish rice, spaghetti, noodles, etc. (1 cup) G
Tortilla (1) G
Potato chips or corn chips (small bag or 1 oz.) -
Nuts (small packet or 1 oz.) -
Peanut butter (1 tbs) -
Oil and vinegar dressing e.g., Italian (1 tbs) -

Food items not in food frequency questionnaire
Cereal G
Non-diet sodas (12 oz) Sw
*F=Fruits, V=Vegetables, Sw=Sweets, G=Grains
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