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Abstract 

 

Walter A Schenck: Liquid Crystal Alignment on Embossed Polymer Films 

“(Under the direction of Edward T Samulski)” 

 

Liquid Crystal Displays, LCDs are ubiquitous. At the heart of the display is a polymer 

film which is used to uniformly align the liquid crystal over large areas—the dimensions of 

the LCD itself. First generation alignment layers consist of rubbed PI films fabricated by a 

mechanical rubbing process which produces dust and mechanical damage that is not 

consonant with clean room fabrication. Furthermore, the mechanism of liquid crystal 

alignment on rubbed surfaces is poorly understood. The ability to understand the alignment 

mechanism and develop novel alignment layers may lead to more efficient devices and 

manufacturing processes. 

In this work we employed soft lithography as an alternative fabrication method of 

liquid crystal alignment layers. We study the mechanism of liquid crystal alignment on 

polymer films with variable feature dimensions. One dimensional line gratings were used to 

examine the mechanism of liquid crystal alignment on rubbed surfaces. We determined that 

the physical topography is sufficient to align the liquid crystal director; however, the 

chemical interaction between the mold and the alignment layer during fabrication can affect 

the orientation of the director. If this fabrication method is to be used, either the mold should 

be removed in a manner that reinforces alignment induced by the surface topography, or the 

mold and alignment layer chemistry must be optimized to prevent any unwanted interactions. 

We also fabricated alignment layer features exhibiting four-fold (square and rectangular 



 

iii 

 

patterns), six-fold (triangles in a hexagonal array), and five-fold (Penrose aperiodic patterns) 

symmetries. We observed multi-stable alignment on such surfaces and observed that pattern 

features less than 100nm tall and about 500nm in- plane width have the best optical 

uniformity. 
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1. Significance and History of Liquid Crystals and Liquid Crystal Displays 

1.1. Introduction 

1.1.1. Significance of LCDs 

The invention of the liquid crystal display (LCD) has had significant impact on the 

ability of mankind to communicate. The relatively thin display has made cell phones, digital 

watches, digital music players, and laptop computers possible. With annual revenues of 

approximately $75 billion dollars for LCD TVs in 2008 they have become the dominant 

format for large screen displays.
1
 At the heart of the LCD is a unique class of materials 

known as liquid crystals. 

1.1.2. History of Liquid Crystals 

In 1888 Friedrich Reinitzer was studying cholesteryl benzoate when he observed that 

upon heating it melted into a cloudy liquid at 145.5°C and into a clear liquid at 178.5°. He 

started a collaboration with Otto Lehmann and von Zepharovich which yielded three 

observations about the cholesterol: it had two melting points, it reflected circularly polarized 

light, and it rotated the polarization direction of light. Lehmann continued studying this new 

phase of matter using polarized optical microscopy and a heated stage. 
2
 Research in the field 

was slow, as most considered the new state of matter of little interest, until the1960s when 

optical displays using liquid crystals began to be fabricated. This new application led to 

increased research and the synthesis of stable, room temperature nematic liquid crystals that 

laid the foundation of a new industry. In order to understand how this
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class of materials functions in electro-optical devices it is necessary to examine their physical 

and chemical properties. 

1.2. Physical Properties of LCs 

Varying degrees of microscopic order underlie differences in the material world 

around us. This is especially true for states of matter. Crystalline solids have orientational 

and positional order in three dimensions whereas liquid molecules tumble and flow randomly 

showing no signs of order, i.e. liquids are isotropic. There is another state of matter which 

flows like a liquid, but also possesses orientational and positional order called the liquid 

crystal phase. Liquid crystals are anisotropic.
3
 If a substance possesses a liquid crystalline 

phase, it will be observed upon heating and occur between the crystalline and isotropic liquid 

phases as shown in Figure 1.1. The simplest liquid crystalline materials, termed nematic 

liquid crystals, exhibit one degree of orientational order but no positional order. The order 

found in this phase of matter is derived from the anisotropic intermolecular interactions in the 

fluid which in turn derive from the nature of the chemical structure of these small organic 

molecules. The chemical structure of a common nematic liquid crystal, called 5CB, is shown 

in Figure 1.2. The biphenyl group gives the liquid crystal an anisotropic, rod-like shape and 

steric interactions between biphenyl groups of different molecules drive the one degree of 

orientational order and a corresponding “director” n, an apolar vector specifying the unique 

optical axis of the nematic. The hydrocarbon tail disorders at the solid-LC transition 

providing an increase in entropy to offset the low entropy associated with anisotropic 

packing of the biphenyl axed in the ordered liquid. The cyano end group and the 

polarizability of the biphenyl group contribute to the anisotropic nature of the polarizability, 

when measured along the long axis of the molecule versus the short axis. Hence the dielectric 
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susceptibility is anisotropic (ε || n is not the same as ε ┴ n) which makes it possible to 

manipulate the liquid crystals with electric fields. The anisotropy of the dielectric constant 

derives from the molecular orientational ordering and that in turn is accompanied by a 

difference in the index of refraction when measured along the director n because of the 

difference in polarizability of the long axis versus the short axis of the partially aligned 

molecules.
3
 This anisotropy in index of refraction is known as birefringence and is the basis 

of the optical effects observed in LCDs. 
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Figure 1.1 Temperature transition of crystalline solid to liquid crystal to liquid phase of 

matter as heat is added. The order in the liquid crystal phase is quite small compared to the 

crystalline solid based on the latent heat needed for a typical phase transition is ~250 J/g, 

while a typical liquid crystal to liquid phase transition requires ~ 5 J/g. The letter n represents 

the liquid crystal director or average orientation of the liquid crystal phase. 

 

 

 

 
 

 

Figure 1.2 Schematic and chemical structure of the liquid crystal 5CB. The thermal and 

electro-optical properties of a liquid crystal are directly related to its chemical structure. The 

polarizability of biphenyl group and the dipole of the cyano group contribute to a difference 

in dielectric constant along the long axis of the molecule versus the short axis. This also leads 

to a difference in the index of refraction along the two axes.  
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1.3. Characterization of Liquid Crystals 

1.3.1. Birefringence 

Birefringence is defined as the division of  light into two components (an ordinary, 

n0, and extraordinary, ne) found in materials which have two different indices of refraction in 

different directions (i.e., when light entering certain transparent materials, light splits into 

two beams which travel at different speeds). The quantity known as birefringence is defined 

as Δn= ne - no.
4
 In liquid crystalline materials the extraordinary index of refraction is parallel 

to the director n, the average direction of the long axis of the molecule, the ordinary axis is 

perpendicular, and the birefringence can be related to the thickness of the liquid crystal phase 

by the equation:  

 

t
nnn II

 
                                                                                                   eq. [1.1] 

 

In equation 1.1 Γ is the retardation of light and t is the thickness of the liquid crystal film.
3
 

The birefringence of liquid crystals makes it possible to observe the orientation of the 

director by polarized optical microscopy. 

1.3.2. Polarized Optical Microscopy 

When linearly polarized light enters a birefringent material parallel to one of the 

indexes of refraction, the light remains linearly polarized when it exits the material; however 

if it enters at an angle with respect to the principal indexes, elliptically polarized light exits 

the material, as shown in Figure 1.3. By employing linear polarizers before and after a LC 

sample, we can use this behavior to determine the orientation of the director of the LC. A 

schematic of the microscope setup is shown in Figure 1.4. The polarizer is placed in between 
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the light source and the sample. The analyzer is above the sample and the microscope 

objective. Both polarizer and analyzer can be rotated, but their polarizations are typically 

oriented perpendicular to one another in order to determine the orientation of the liquid 

crystal director. In this configuration, when the liquid crystal director is oriented in the same 

plane and parallel to either the polarizer or the analyzer, the light is extinguished and a dark 

state is observed. This occurs because the light retains its linear polarization and orientation 

such that when it exits the LC and hits the analyzer the polarization of the light and the 

analyzer are orthogonal. When the liquid crystal director is at an angle to either the polarizer 

or the analyzer, then the light is not extinguished, due to the formation of elliptically 

polarized light, and a bright state is observed. The intensity of light observed while rotating 

the liquid crystal director is described by the equation: 

 

   ntAIR   /sin2sin 222

                                                                               eq. [1.2] 

 

In eq. [1.2] A is the amplitude of the light wave, θ is the sample rotation with respect to the 

crossed polarizers, t is the sample thickness, λ is the wavelength of light, and Δn is the 

birefringence of the liquid crystal for the given wavelength of light.
3
 As the initial LC 

director rotates with respect to the static polarizers, the orientation of the major axis of the 

elliptical light rotates giving rise to the observed change in intensity. If the liquid crystal 

director rotates between the bottom and top substrates, the angle of rotation can be measure 

by aligning the liquid crystal director on the bottom substrate parallel (or perpendicular) to 

the polarizer and rotating the analyzer until a dark state is observed. When a film of LC is 

deposited on a substrate, the LC director can orient in any number of directions. Therefore 
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one major and technologically important focus of LC research is the fabrication of substrates 

which induce uniform director alignment. 

 

 

 
 

Figure 1.3 Effect of birefringent material on linearly polarized light. 

Left: When linearly polarized light passes through a birefringent material, such as LCs, if the 

incident plane is parallel to ne or no, then no phase retardation occurs since the light interacts 

with only one index of refraction.  

Right: If however, the incident plane is at an angle with respect to the two indexes of 

refraction the plane of light can be projected as two vectors parallel to the two indexes of 

refraction. Since there is a difference in the speed at which light travels along the two axes, a 

shift in phase occurs and elliptically polarized light is generated. 
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Figure 1.4 Schematic of Polarized Optical Microscopy setup. From bottom to top: light 

passes through a polarizer generating linearly polarized light. Alignment layers are used to 

manipulate the alignment of the liquid crystal director. Light then passes through the 

microscope objective which is located above the liquid crystal cell. A second polarizer, 

called the analyzer, is typically oriented perpendicular to the bottom polarizer. When the 

liquid crystal director is parallel to either the polarizer or the analyzer light is not able to pass 

and a dark state is observed. When the liquid crystal director deviates from being parallel to 

the polarizer or analyzer light is able to pass through and a bright state is observed. 
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1.4. LC Alignment 

1.4.1. Terminology 

When a liquid crystal comes in contact with a surface it chooses an alignment 

orientation in 3-D space based on the chemical and physical properties of the substrate. This 

phenomenon is known as “anchoring” of the director on a substrate—the selection of a 

specific orientation of n relative to the substrate surface. If the liquid crystal director is 

parallel to the plane of the surface it is termed planar alignment, see Figure 1.5. The angle 

between the long axis and the surface is termed the pre-tilt angle. The angle of rotation of the 

liquid crystal director with respect to a reference, such as a polarizer, is called the azimuthal 

orientation. Changes in light intensity are observed while rotating or changing the azimuthal 

orientation of a sample with planar alignment. Homeotropic alignment is achieved by 

increasing the pre-tilt angle to 90°, causing the liquid crystal director to be perpendicular to 

the substrate. Homeotropic alignment is evidenced by a “dark state” under crossed polars 

since the light propagates along the optical axis of the liquid crystal (n) and the birefringence 

of liquid crystal in this unique configuration is no longer able to retard the light passing 

through the sample.
3
 At the heart of LC alignment and anchoring is the study of the chemical 

and physical mechanisms that determine how the LC and a substrate will interact.  
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Figure 1.5 Schematic of different types of liquid crystal alignment, black arrow represents 

the LC director. Planar alignment occurs when the liquid crystal director is parallel to the 

substrate. Often there is a small angle between the substrate and the director; this is termed 

the pre-tilt angle. When viewed from above, the angle between the liquid crystal director and 

a reference line, such as a polarizer, is termed the azimuthal orientation. Homeotropic 

alignment occurs when the pre-tilt angle is 90°, i.e. the director is perpendicular to the 

substrate.  
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1.4.2. Mechanisms 

Bulk liquid crystal alignment is similar to normal crystal growth in that there is a 

nucleation site from whence alignment/crystallization is propagated. For liquid crystals this 

occurs at the interface between the liquid crystal and a surface. Some materials exhibit weak 

anchoring interactions with the liquid crystal phase and multiple domains of different liquid 

crystal director orientation are observed. Other materials interact very strongly and induce 

uniform alignment over large areas and macroscopic distances from the substrate surface. 

These materials are most useful for electro-optical devices. Surfaces typically used to align 

liquid crystals are polymer films which have been mechanically rubbed
5-9

, patterned
10, 11, 11, 

12, 12-21
, or fabricated with polarized light to align polymer chains without changing surface 

topography
22

. Alignment between the surface and the liquid crystals is driven by two possible 

mechanisms 1) the physical topography
5, 6, 16

 of the surface and/or 2) the chemical 

interactions
3, 7, 23

 between the liquid crystals and the aligned chemical moieties of the 

polymer chains. These mechanisms will be discussed in more detail in Chapter 2. While the 

debate over the mechanism of LC director alignment on surfaces continue, industry utilized 

the large scale, uniform alignment observed on rubbed polyimide films to fabricate the first 

generation of LCDs. 

1.5. LCDs 

1.5.1. Anatomy of a device 

LCDs are an electro-optical multi-layered device that utilizes liquid crystals 

susceptibility to electrical fields, and their ability to bend light, to act as an on-off switch for 

an electro-optical pixel. The cross section of a twisted nematic LCD is shown in Figure 1.6. 

TN-LCDs use a white light source that is on whenever the display is in operation. A polarizer 
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is used to gain linearly polarized light. A thin film transistor is used to generate an electric 

field perpendicular to the substrates. Two alignment layers are used to control the orientation 

of the liquid crystal director in the absence of an electrical field. The first alignment layer is 

parallel to the bottom polarizer. The second alignment layer is perpendicular to the previous 

alignment layer, and parallel to the top polarizer. This causes the liquid crystal director to 

twist 90° from the bottom to the top of the device. When no electric field is applied, the 

linearly polarized light is twisted by the liquid crystal film such that it passes through the 

second polarizer. When an electric field is applied between electrodes the liquid crystal 

director aligns homeotropically, is unable to retard the light, and no light passes through due 

to the crossed polarizers.
3
 A second device architecture known as In Plane Switching is 

shown in Figure 1.7. For this architecture the liquid crystals remain in a planar orientation; 

however they are rotated from parallel to one of the crossed polarizers, the dark state, to 45° 

from both polarizers, the bright state. This is typically done with multiple electrodes to 

generate electric fields at the desired angles in order to control the liquid crystal director 

orientation. Another method to obtain the desired orientation is to use multi-stable alignment 

layers. These layers exhibit stable alignment along more than one planar orientation due to 

surface patterning. This allows electric fields to be pulsed to induce switching from one 

orientation to another, instead of being constantly used to maintain the orientation. This 

results in reduced energy requirements.
12, 13, 17, 24

 In order to fabricate and study the next 

generation of alignment layers, it is necessary to control both the chemical and physical 

nature of the surface. In this work we have employed micro and nano-scale fabrication 

methods to accomplish this goal. 
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Figure 1.6 Schematic of a cross section of a twisted nematic LCD. The bottom alignment 

layer is oriented parallel to the bottom polarizer, grey arrows, and the top alignment layer is 

oriented to the top polarizer, called the analyzer. This causes the liquid crystals to twist 90° 

from bottom to top. When light is shown through the bottom polarizer the light is polarized 

parallel to the liquid crystal director at the bottom of the layer. As light progresses through 

the liquid crystal layer the twisting of the liquid crystal rotates the plane of polarization of the 

light allowing it to pass through the top polarizer, the pixel is bright. When an electric field is 

generated perpendicular to the plane of the substrate, the liquid crystal alignment becomes 

homeotropic and is not able to alter the polarization of the light and the top polarizer 

extinguishes the light, the pixel is dark. 
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Figure 1.7 Schematic of a cross section of an IPS-LCD. No twisting occurs in this device. 

The dark state is achieved by making the orientation of the alignment layers parallel to each 

other and one of the polarizers. The bright state is achieved by generating an electric field 

parallel to the substrate, but at an angle of 45° with reference to the polarizers. 
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1.6. Nanoscale Patterning 

The ability to make patterns on the nanoscale, 1nm-1μm, is useful for basic and 

applied research in many fields of science and engineering. The ability to fabricate and study 

materials on the nano-scale has led to the discovery of many interesting phenomenon
25-32

 and 

devices
33-43

. One of the earliest methods for fabricating nano-scale patterns is 

photolithography. Patterns are generated by casting a photo sensitive polymer, called a 

photoresist, onto a substrate, exposing it with UV light that has passed through a patterned 

photomask to chemically alter specific areas of the photoresist, chemically developing and 

removing the unwanted areas of the photoresist, etching the pattern into the substrate, and 

removing the photoresist as shown in Figure 1.8. State of the art photolithography techniques 

can fabricate patterns with dimensions in the plane of the substrate on the order of 100nm, 

and heights as small as 10nm. It is the technique used by the semiconductor industry to 

fabricate the circuitry used in modern electronics. It is also the first step in newer methods of 

pattern generation such as nano-imprint lithography, NIL
44-46

 and soft lithography
47-49

. In 

NIL a pattern that was fabricated by traditional photolithography methods on a hard template, 

such as silicon wafers or glass, is used to directly emboss soft materials, such as polymers, by 

bringing the template into direct contact with a precursor material that is typically photo-

cured with UV light. In soft lithography, a UV or thermally curable prepolymer is cast onto a 

hard master made by traditional photolithography, cured into a cross-linked elastomer, and 

removed to fabricate a mold that is a negative of the original pattern. The mold is then used 

to transfer an ink, in the case of micro contact printing and nano transfer printing, or may be 

used to make a replica of the master template by molding a liquid prepolymer that is cured 

with UV light or heat. 



 16 

 

 

 
 

Figure 1.8 Schematic of the photolithography process. A photosensitive material is exposed 

with light that is passed through a patterned mask. Depending on the nature of the material 

the area exposed to light either stays or is removed. The pattern is then etched into the 

substrate and the photosensitive material is removed.  

 

 
 

Figure 1.9 Schematic of the nano imprint lithography (NIL) method for fabricating nano-

patterned uv curable materials. The grey template is typically fabricated by photolithographic 

methods as shown in figure 1.7. A uv curable material is cast onto a substrate and exposed to 

UV light while under physical pressure from the template. Upon removal of the template the 

nanopattern remains. 

 

 

Pressure and uv or  heat 
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Figure 1.10 Schematic of nano transfer printing. A thermally or uv curable elastomer is used 

to mold the template. The mold is then brought into contact with an ink which can be a 

polymer solution, alkyl silanes, alkyl thiols, or any desired liquid formulation that will 

physically absorb onto the surface of the stamp and then be transferred to a new surface as 

illlustrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 18 

1.7. Research Objectives 

Two main goals motivated this research. First, we wanted to understand the 

mechanism of liquid crystal alignment on the prototypical alignment layer of rubbed 

polyimide in order to use that knowledge to develop a new alignment layer fabrication 

method that is more conducive to a clean room environment, i.e. avoid the mechanical 

rubbing step. Second, we wanted to study the effect of complicated surface patterns on liquid 

crystal alignment in order to develop multi-stable and planar degenerate alignment layers. 

Chapter two discusses soft lithography as a tool for determining the mechanism of liquid 

crystal alignment on rubbed polyimide by embossing polymer films with line grating 

structures similar to those found on the surface of rubbed polyimide. We found that the 

interactions between the mold and the embossed polymer film have significant influence over 

liquid crystal alignment in the finished device. Chapter three discusses the effect of triangles 

in a hexagonal array, squares and rectangles in a square array, and Penrose tiling surface 

patterns on liquid crystal alignment. By frustrating the liquid crystal alignment with these 

patterns we found that we could make multi-stable devices and planar degenerate alignment 

layers.  

Chapter four describes the microfabrication techniques used to fabricate the patterned 

silicon masters and inter-digitated electrodes used in the LC devices in the previous chapters. 

Chapter five is based on an earlier project where we employed nanoparticles synthesized in 

our lab into polymer based photovoltaics. We wanted to examine the relationship between 

aspect ratio of the nanoparticles and device performance, but found the size of the 

nanoparticles to inhibit the fabrication of properly working devices.  
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2. LC Alignment on Polymer Line Gratings 

2.1. Introduction 

2.1.1. Rubbed PI: Topography versus Chemical Interactions 

Liquid crystal alignment layers fabricated by soft lithography represent an appealing 

alternative to the current mechanical rubbing process for future device fabrication due to a 

possible reduction in defects and the ability to use more complex surface patterns. However, 

since liquid crystal alignment is very sensitive to the chemical properties of the surface, the 

interaction between the mold and embossed polymer during fabrication must be carefully 

studied. Soft lithography has been used as a method to examine the alignment mechanism of 

LCs on rubbed polyimide (PI). Berreman
1, 2

 originally posited that rubbing resulted in 

mechanical scoring of the substrate, and the resulting corrugated topography aligned the LC 

director n in the low-elastic-energy configuration (n || corrugation grooves) and was 

dependent on the amplitude and wavelength of the topography according to the following 

equation. 
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                                                                                                      Eq. [2.1]     

In equation [2.1], wB is the surface anchoring energy, K is the elastic constant of the liquid 

crystal, λ is the wavelength of the surface topography, and A is the amplitude. This 

explanation of the origin of director alignment was somewhat verified by using soft 

lithography to emboss microscopic grooves in polyimide to align n
3
; varying the amplitude 
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of the embossed corrugation affects the LC alignment suggesting that the Berreman 

mechanism is operative. However, the amplitude of those embossed features was 10 to 100 

times larger than those produced by the rubbing process calling into question the Berreman 

mechanism for rubbed PI. Rogers et al
4
 successfully aligned LCs by molding rubbed PI with 

PDMS and embossing UV and thermally curable polymers such as polyurethane and SU-8. 

However, since they did not emboss PI, the industry standard for alignment layers, it is still 

unclear whether the Berreman mechanism exclusively applies in rubbed PI LC alignment 

cells.  

Others disagreed with the Berreman elasticity based explanation of director alignment 

and claim liquid crystal alignment on rubbed PI is driven by chemical interactions between 

the liquid crystal and PI functional groups which in turn were aligned by the mechanical 

rubbing process. X-ray scattering
5, 6

 and polarized infrared
7, 8

 experiments have shown that 

rubbing does align the polymer chains suggesting that functional groups may exhibit 

preferential orientation and contribute to specific interactions with the LC. LC alignment 

layers have also been made by methods such as bulk cold-drawing 
9
, Langmuir-Blodgett, and 

photo-alignment
10, 11

 that do not create any surface topography. These results suggest that 

alignment of the polyimide chains is sufficient to initiate LC alignment, but does not rule out 

contributions from the surface topography.  
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Figure 2.1 Schematic representation of LCs aligning perpendicular to (top) and parallel to 

(bottom) a line grating. Top: The arrows represent localized LC directors and illustrate how 

when perpendicular to the substrate the elastic tendency of the LCs to overlap in orientation 

would be distorted by the surface topography. Bottom: The circles represent LC directors 

perpendicular to the plane of the image and parallel to the line grating. The overlap of LC 

directors minimizes elastic strain. It would require significantly more energy to orient LCs 

perpendicular to the line gratings according to Berreman’s hypothesis. 
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One of the problems with the fabrication method of mechanical rubbing is that 

physical contact between the felt roller and the polymer film is the main source of defects, 

i.e. dust and surface defects. It has also been observed that PDMS brought into physical 

contact with oligomeric cinnamate based photo-alignment layers can affect the pretilt angle 

upon removing the PDMS by peeling.
12

 When developing a new fabrication method for LC 

alignment where physical contact with the alignment layer is involved, such as soft 

lithography, it is likely that the interaction between the mold and the alignment layer will 

have some effect of LC alignment. Herein we report the simultaneous existence of two LC 

alignment mechanisms in devices having embossed polymer line gratings and flat surfaces 

generated by soft lithography. The two alignment mechanisms are 1) alignment layer 

topography and 2) chemical surface modification during peel-off. The dominant mechanism 

is dependent on the line grating dimensions, the chemical properties of the alignment layer 

polymer, and the chemical properties of the mold. 

2.2. Experimental Section 

2.2.1. Materials and Instrumentation 

Glass substrates were cleaned by sequential sonication in soapy water, acetone, and 

isopropanol for 10 minutes each, dried with nitrogen, and stored in an oven at 110°C. Silicon 

wafers were purchased from Silicon Quest. Flat Silicon wafers were cleaned with Piranha 

solution before molding. Polyimide precursor solutions were used as received. 

Pentaerythritol tetrakis(3-mercaptopropionate) and triallyl-1,3,5-triazine-2,4,6-(1H,3H,5H)-

trione were purchased and used as received from Sigma-Aldrich,.Norland optical adhesive 

73, polyurethane, was used as received. PFPE prepolymer formulation OMU-01, OMU-02, 

and OAE-01 from Liquidia Technologies, Inc. was used with added DEAP photoinitiator. 
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AFM images were measured with an Asylum MFP 3D, POM images were captured with an 

Olympus BX-61 polarized light setup. 

2.2.2. Fabrication of Embossed polymer LC alignment devices via PRINT 

Three PFPE prepolymer formulations were used for mold fabrication. All three have 

surface energy of ~15-20 dyne/cm, but OMU-02 has a modulus of 30 MPa compared to 8-10 

MPa for OMU-01 and OAE-01. The chemical differences between the formulations are 

proprietary. Figure 2 schematically illustrates the soft lithography process PRINT
13

 (Pattern 

Replication In Non-wetting Template) used to emboss polymer LC alignment films and the 

fabrication of the LC cells. Three types of masters were fabricated to serve as the template, 

line grating example shown in step A:  

 First, silicon line gratings were fabricated using standard photolithographic 

techniques and reactive ion etching with chlorine plasma which are described 

in more detail in Chapter 4.  

 Second, conventional rubbed PI films were fabricated by spin coating PI 

precursor solution onto cleaned glass slides, baking at 90°C for 30 minutes 

and 180°C for 30 min, and rubbing the PI-coated glass with a rotating felt 

roller at room temperature while the substrate was translated normal to the 

roller axis. 

 Third, a cleaned silicon wafer was used as a master for flat polymer films. In 

step B and C, PFPE prepolymer was drop cast onto a template, cured under 

nitrogen with UV light for 3 minutes, and then peeled off of the template.  

Polymer replicas were fabricated as shown in steps D and E by two different 

methods. First, PI films were made when PI precursor solution was spun coat onto cleaned 
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glass slides, the PFPE mold was placed on the wet film, pressure was applied, and the film 

was soft baked at 90°C (30 min) and hard baked at 180°C (30 min). Second, mercapto-

allyl(MA) and polyurethane(PU) films were made by drop casting precursor formulations 

onto cleaned glass slides, the PFPE mold was placed on the wet film, and cured under 

nitrogen with UV light for 5 minutes. For all films, the molds were peeled at 45° relative to 

the line grating/rubbing direction as shown in steps F and G. The embossed films were 

characterized by tapping mode AFM. LC cells were fabricated by dispersing ~5µm diameter 

polymer bead spacers onto one of the embossed films and placing a second (embossed) film 

on top of the spacer-coated film such that the peeling direction of both films on the interior of 

the cell was parallel and shown in step G. The cells were heated to 90°C and the LC 5CB 

was added by capillary force in its isotropic state, and then cooled to room temperature when 

LC alignment spontaneously formed in the cell. LC alignment cells were characterized by 

polarized optical microscopy. 
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Figure 2.2 Schematic of the fabrication process for LC alignment cells. The master template 

is replicated by drop casting PFPE precursor and curing with UV light. The PFPE mold is 

then placed on a UV or thermally curable film and the mold is filled by capillary force. The 

mold is peeled off the cured polymer replica at a 45° angle with respect to the line grating; 

the red arrows represent the peeling direction. Two replicas are then aligned with line grating 

and peeling directions parallel and the cell is filled with LC by capillary force.  
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2.3. Results and Discussion 

2.3.1. LC Alignment Dependence on the Chemical Nature of the Embossed Polymer  

Figure 3 shows representative AFM height images of PU line gratings (AFM images 

of all line gratings are shown at the end of the chapter in figures 2.10-2.12). PU and MA 

exhibit very good fidelity to the line grating dimensions of the silicon master, but PI line 

gratings exhibit shrinkage in comparison due to the evaporation of solvent. During the 

fabrication of the alignment films, the molds were removed by peeling at 45° relative to the 

line grating direction in order to determine if this affected liquid crystal alignment. Figure 3 

shows POM images of PI, MA, and PU line gratings, made with OMU-01 molds, taken with 

the line grating aligned parallel to the polarizer. Dark states indicate n is parallel to the line 

grating, while bright states indicate n is aligning, to some degree, with the peeling direction. 

PI alignment layers show alignment parallel to the peeling direction for all feature 

dimensions fabricated. For MA alignment layers the Berreman mechanism is evident in that 

the surface topography dominates for 95 nm deep grooves; however, as the depth of the 

embossed grooves is decreased, the alignment relative to the grating direction begins to 

deviate towards the peel-off direction. For 2 and 3 µm groove widths the transition appears to 

be gradual for all line heights, whereas the smaller groove widths have a sharp transition at a 

line height of 25nm. PU films show very little dependence on the peeling direction until a 

line height of 10nm, where the alignment depends strongly on the peeling direction. 

Assuming any alignment effects from peeling the mold from the surface are constant, the 

alignment trend agrees with Berreman’s equation in that the strength of the alignment from 

the surface topography is proportional to the amplitude and disproportional to the 

wavelength. Clearly alignment is caused by the line gratings when the topographical features 
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are sufficiently deep while alignment caused by the peeling is secondary. However, it is 

important to note that the depth that is sufficient to overcome peeling varies depending on the 

polymer that is embossed indicating that the alignment strength of the peeling effect is 

material dependent. 

 

 
 

Figure 2.3 Representative AFM height images of PU line gratings fabricated by the PRINT 

soft lithography method. All line widths are 250nm. The lines in the top left image are 10nm 

tall and have 250nm wide grooves. The lines in the top right are 25nm tall and have 750nm 

wide grooves. The lines in the bottom left image are 50nm tall and have 1500nm wide 

grooves. The lines in the bottom right image are 95nm tall and have 3000nm wide grooves. 
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Figure 2.4 POM images of line grating replicas made from PI, MA, and PU outlined in 

green, red, and blue. The line gratings were aligned parallel to the polarizer. The bright states 

indicate the liquid crystal director alignment is being influenced by the peeling direction of 

the mold removal. The dark states indicate the line grating topography is controlling the 

alignment of the liquid crystal director. These results agree with Berreman’s formula’s 

prediction that liquid crystal alignment by surface topography is dependent on the amplitude 

and periodicity. It also illustrates sensitivity to surface interactions during fabrication are 

material dependent.  
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2.3.2. LC Alignment Dependence on the Chemical Nature of the Mold 

To observe the effect of mold chemistry on LC alignment two additional PFPE 

formulations, OMU-02 and OAE-01, were used to fabricate line gratings with 500 and 2000 

nm groove widths. POM images of line gratings aligned parallel to the polarizer is shown in 

Figure 4, the data for OMU-01 was taken from Figure 3. Even though there are only slight 

differences in surface energy and modulus between the PFPE formulations, it is significant 

enough to fabricate line gratings that show little or no dependence on the peeling direction 

for PU films. This gave evidence that it should be possible to replicate the topography of 

rubbed PI and observe LC alignment with no peeling effects. 

 

 
Figure 2.5 POM images of PU line grating replicas made from OMU-01, OMU-02, and 

OAE-01 molds. 500nm groove widths are outlined in orange and 2000nm groove widths are 

outline in purple. The images for OMU-01 are taken from Figure 3. Devices made using 

OMU02 and OAE-01 molds align with the line gratings as evidenced by the dark states. Only 

the 10 nm heights and 2000nm groove width gratings show a slight peeling effect as 

evidenced by the slightly lighter shade of black.  
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To verify further that the mold chemistry could affect the peeling effect on LC 

alignment, flat polymer films were fabricated and AFM height images are shown in Figure 6. 

PI films exhibit relatively large surface roughness values for all mold formulations, whereas 

MA and PU films exhibit relatively smooth films. We believe this may be caused by solvent 

evaporation during the baking process. Figure 6 shows POM images of LC devices with the 

peeling direction parallel to the polarizer. Devices made from OMU-01 show uniform LC 

alignment parallel to the peel direction for PI and MA; however PU films exhibit a 

fingerprint like texture. This reinforces our observations from the line grating topographies 

that OMU-01 has a strong peeling effect. We are unsure as to the cause of the interesting 

texture observed for the PU films. OMU-02 shows LC alignment parallel to the peel 

direction for PI, however MA and PU films exhibit a mixture of alignment domains. LC 

alignment in these devices seem to be more sensitive to surface defects, since most of the 

observed disclinations coincide with optically observable defects in the polymer film. OAE-

01 shows a very fine random LC alignment texture for PI films, whereas MA and PU films 

show larger domains of random LC orientation with many defects. As observed with the line 

grating topographies OAE-01 seems to have the least peeling dependence. 
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Figure 2.6 AFM height images of flat PI, MA, and PU replicas highlighted as green red, or 

blue. Insets are the surface roughness. PI films were quite rough most likely due to the 

evaporation of solvent during the curing process.  
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Figure 2.7 POM images of flat PI, MA, and PU replicas highlighted as green red, or blue. 

The peeling direction was aligned parallel to the polarizer. PI and MA films from OMU-01 

and OMU-02 molds show significant alignment from the removal of the mold, the other 

films showed non-uniform alignment. 
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2.3.3. Rubbed PI Replica LC Alignment Layers 

AFM height images, shown in Figure 7, of rubbed PI replicas show good fidelity for 

all MA and PU films, but the PI films tend to lose some of the smaller line features. This is 

most likely due to shrinkage from solvent evaporation as noted for the line grating alignment 

layers. POM of LC alignment devices shown in Figure 8 were taken with the rubbed line 

direction parallel to the polarizer. Devices made from OMU-01 show a bright state indicating 

dependence on peeling for PI, MA, and PU films. The PU films still exhibit the fingerprint 

texture seen in the flat devices. OMU-02 devices are a random mixture of domains indicating 

that in the dark domains the surface topography dominates while in the bright domains 

peeling removal of the mold is affecting the LC alignment. This suggests the alignment 

strength of the surface topography and the surface modification due to peeling is roughly 

equivalent, but is not uniform throughout the entire device. OAE-01 devices show a bright 

state for PI films, indicating peeling dependence, but a dark state is observed for MA and PU 

indicating the LC alignment is dictated by the surface topography. This shows that the 

topography observed on rubbed PI is sufficient to uniformly align LCs, however it also 

shows that it is quite sensitive to the materials used during fabrication by soft lithography. 
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Figure 2.8 AFM height images of rubbed replicas made of PI, MA, and PU highlighted as 

green red, or blue and the template rubbed PI in black. All films show good fidelity to the 

surface topography observed in the template. 
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Figure 2.9 POM images of PI, MA, and PU replicas of rubbed PI highlighted as green red, or 

blue. The rubbed line direction was aligned parallel to the polarizer and the peeling direction 

at a 45° angle with respect to the polarizer. Bright states indicate alignment along the peeling 

direction and dark states indicate alignment along the rubbed line direction. All films made 

with OMU-01 molds show alignment along the peeling direction. All OMU-02 films show a 

mixture of domains that follow either the peeling or rubbed line direction. The PI film made 

from OAE-01 mold follows the peeling direction, but the MA and PU films follow the 

rubbed lines. This data illustrates that it is possible for the surface topography found on 

rubbed PI can align LCs, but it is sensitive to the interactions between the mold and the 

embossed film. 
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2.4. Conclusions 

Berreman’s hypothesis of surface topography being able to align LCs was supported 

by the results of our experiments; however, the sensitivity of LC alignment to surface 

modification by physical contact with and controlled removal of a mold during fabrication 

removal of the PFPE molds by peeling illustrates that chemical interactions between the LC 

and the alignment surface can align LCs as strongly as the line gratings. It is reasonable to 

conclude that in rubbed PI the surface topography and the aligned chemical functional groups 

of the PI work in concert to align LCs. Soft lithography is a good method for fabricating LC 

alignment layers, but care must be taken to use the right combination of alignment layer and 

mold to avoid any peeling effect or design the alignment layer in such a way that the two 

mechanisms can work in concert.  
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Figure 2.10 AFM height images of embossed PI line gratings. The line gratings in the left 

column are 25nm tall, and 70nm tall in the right column. The groove widths from top to 

bottom are 3μm, 2µm, 1.5µm, 1µm, 750nm, 500nm, and 250 nm. 
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Figure 2.11 AFM height images of MA line gratings. Line heights of 10nm, 25nm, 50nm, 

and 95nm from left to right. The groove widths from top to bottom are 3μm, 2µm, 1.5µm, 

1µm, 750nm, 500nm, and 250 nm. 
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Figure 2.12 AFM height images of PU line gratings. Line heights of 10nm, 25nm, 50nm, and 

95nm from left to right. The groove widths from top to bottom are 3μm, 2µm, 1.5µm, 1µm, 

750nm, 500nm, and 250 nm. 
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3. Multi-Stable Liquid Crystal Alignment Layers 

3.1. Introduction 

Liquid crystal alignment on surfaces is the subject of much research in both academia 

and industry. The ability to uniformly align liquid crystals is essential for LCD devices to 

operate properly. First generation displays required LC director alignment in only one 

direction, and rubbed polyimide films are typically used in such devices. Next generation 

devices may require more complicated director alignment modes, sub-pixel alignment, in 

conjunction with fabrication of multi-stable configurations, i.e. alignment layers which 

exhibit more than one stable orientation of azimuthal alignment. Multi-stable states allow the 

use of a pulsed electric field to turn the pixel on and off as opposed to keeping an electric 

field across the LCD cell for maintaining the “off” state as done in current LCDs. This will 

lead to a reduction in power usage, especially in computer monitors and static displays
1-6

.  

Theoretical modeling of this type of multi-stable alignment has been worked out by 

Fukuda et al, and others
7
 for surfaces with four-fold and six-fold symmetry. The main 

conclusions from their work are that, for a fixed amplitude and periodicity of the surface 

pattern on the alignment layer, the (apolar) nematic director n will typically decide to align 

either 1) parallel to the periodic grooves on the surface (area (i) in the phase diagrams) or 2) 

at an angle bisecting the grooves (area (ii) in the phase diagrams), as shown in Figure 3.1. 

The orientation that is chosen is dependent on the elastic constants, 
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which are similar in nature to spring constants, of the liquid crystals. When you stretch, or 

deform, a spring along its axis the spring constant dictates the force required to stretch it. The 

LC director can be deformed in three dimensions, which creates multiple elastic constants 

(K1 splay, K2 twist, K3 bend, and K24 saddle splay). In Figure 3.1, the phase diagrams are 

based on ratios of elastic constants. In this chapter we discuss LC director alignment on 

surfaces embossed with multiple degrees of symmetry-related alignment features, ranging 

from bi-stable square and rectangular features, four-fold symmetry, to tri-stable hexagonally-

arrayed features, six-fold symmetry. We then examine an aperiodic Penrose pattern (Figure 

3.2) with five-fold symmetry. The grooves that make up the sides of the rhombuses are at 

five unique angles, enabling long-range orientational order, but there is no long range 

translational order in the pattern. 
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Figure 3.1 Schematic of LC constants and how they influence alignment on patterned 

surfaces. Top: Illustration of a) splay, b) twist, and c) bend elastic deformations.
8
  

Bottom: LC director orientation due to surface patterning as predicted by theory developed 

by Fukuda et al. for four-fold (left) and six-fold (right) symmetries. There are three sets of 

possible orientations, although one is highly improbable: i) bisecting the pattern and ii) 

parallel to the grooves. According to the Fukuda theory the elastic constants of the LC 

determines which alignment is chosen. The variables plotted are ratios of elastic constants.  
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Figure 3.2 Orientation of grooves on Penrose pattern, black arrows. While no rotational or 

translational symmetry is present, the orientations of the grooves persist throughout the 

pattern. The theory has not been extended to such a pattern, but presumably the influences 

observed in the square and triangular patterns will be operative and enable us to qualitatively 

interpret the observations.   
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3.2. Experimental details 

3.2.1. Materials  

Glass substrates were cleaned by sequential sonication in soapy water, acetone, and 

isopropanol for 10 minutes each, dried with nitrogen, and stored in an oven at 110°C. Silicon 

wafers were purchased from Silicon Quest. Norland optical adhesive 73, polyurethane, was 

used as received. PFPE prepolymer formulation OAE-01 from Liquidia Technologies, Inc. 

was used with added DEAP photoinitiator.  

3.2.2. Instrumentation 

AFM images were captured with an Asylum MFP 3D, POM images were captured 

with an Olympus BX-61 polarized light setup. 

3.2.3. Alignment Layers via PRINT 

The fabricated masters were used as templates to fabricate patterned polymer films by 

a soft lithography method called PRINT as shown in Chapter 2 Figure 2.2. PFPE liquid 

oligomeric precursor was drop cast onto a template, cured with UV light under nitrogen gas 

for 3 minutes, and then removed from the template. PU precursor solution was drop cast onto 

glass cover slips, the mold applied with pressure from a roller, and exposed to UV light for 5 

minutes.  

3.2.4. LC device fabrication 

In the previous chapter the orientation of the top and bottom alignment layer were 

parallel to one another creating a LC film with a single orientation of its director. In this 

chapter we fabricate devices using two different alignment layers. The bottom alignment 

layer is rubbed PI and the top alignment layer is embossed PU. The two alignment layers are 
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oriented such that rubbing direction on the bottom of the cell is perpendicular to one of the 

patterned grooves of the embossed pattern on the top of the cell.   

3.3. Results and Discussion 

3.3.1. AFM of Alignment Layers 

AFM height images of embossed PU films show good fidelity to the template as 

shown in Figure 3.3. The triangles, squares, and rectangles are about 100nm tall while the 

Penrose a periodic patterns with five-fold symmetry are about 70 nm tall. 
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Figure 3.3 AFM height images of multi-stable patterns: Top: 500nm squares with 500nm 

groove widths and widths.1μm x 500nm rectangles with 500nm groove width, Middle: 

triangles with 1µm, 500nm, and 250nm side lengths and groove widths, Bottom:  Penrose 

patterns with 3μm, 1µm, and 500nm groove widths. Square, rectangle, and triangle patterns 

are ~100nm tall, Penrose patterns are ~70nm tall. 
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3.3.2. POM  

PU alignment layers were embossed on 0.2 mm thick microscope coverslips and 

paired with a rubbed PI film on the bottom of the cell (1x1” glass slide). The rubbing 

direction was aligned such that it was perpendicular to one groove direction for the 

triangles
99

, squares, and Penrose patterns and perpendicular to the long axis of the rectangles. 

The rubbing direction was then aligned perpendicular to the polarizer and the analyzer was 

rotated from its crossed position in order to measure the twist of the director from the 

unidirectionally-rubbed PI cell bottom to the patterned (square, rectangle, triangle, or 

Penrose) top in the LC cell as illustrated in Figure 3.4. 
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Figure 3.4 Schematic of device configuration for measuring the orientation of the LC 

director caused by the patterned top surface of the cell. Device structure on left, from bottom 

to top: unpolarized light passes through the polarizer (dashed blue arrow) and is transformed 

into linearly polarized light (dashed red arrow). The rubbing direction (dashed black arrow 

on rubbed PI, bottom of cell) is aligned parallel (or perpendicular) to the polarizer such that 

the polarized light is now aligned parallel with either ne or no, the indexes of refraction  

parallel to the long and short axis of the liquid crystal. As the LC director twists from bottom 

to the patterned top of the cell, the rotation of ne and no causes the linearly polarized light to 

rotate (solid red arrow). In the above example the polarized light is initially parallel to no, and 

remains parallel to no as the LC director rotates. The twist angle can be measured by rotating 

the analyzer (grey arrows) from the crossed position (dashed grey arrows) until it is 

perpendicular to the linearly polarized light exiting the device (solid grey arrows) indicated 

by a dark state, i.e. a dark state is achieved when θanalyzer  = θrot, as shown in the vector 

diagram on the right.  
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3.3.2.1. Square and Rectangular Alignment Patterns 

POM images of the square pattern in Figure 3.5 show LC orientations at 45° and -45°, 

corresponding to the diagonals of the square pattern. At 10x magnification, the macroscopic 

alignment appears uniform and the boundaries between macroscopic domains with different 

twist angles (45° and -45° see Figure 3.5) are smooth. At 100x and with digital 

magnification, it is clear the boundary follows in detail the rectilinear pattern in a pixilated 

manner (See red squares on Figure 3.5). The distinct line at the boundary between 

orientations is caused by a thin wall of LC that is transitioning from a clockwise (+45°) to 

counter-clockwise (-45°) twist of the director from the bottom to top of the cell. At the point 

where the LC layer exhibits no twist (0°), a dark line is observed under crossed polarizers, 

because the LC director is oriented perpendicular to the analyzer, similar to the behavior of 

the line gratings in chapter two. As the analyzer is rotated this line becomes bright with a 

maximum intensity at 90°; the polarizer, linearly polarized light, and analyzer are all parallel 

at this point.  
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Figure 3.5 POM images of 100nm tall, 500nm groove width square pattern. Blue squares 

represent orientation of the square pattern and the black arrow represents the rubbed PI 

orientation. The blue arrow is the polarizer and the grey arrow is the analyzer orientation. 

From left to right, the analyzer is rotated 0°, -45°, 90°, and 45°. From top to bottom the 

images are taken at 10x, 100x, and digital zoom of area outlined by the red boxes.  
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Images of the rectangle patterned top cell substrate in Figure 3.6 show similar 

behavior except that the major director orientations are now ~+60° and -60°, corresponding 

to the diagonals of the patterned rectangular features. A similar LC wall at the boundary is 

observed indicating the transition between twist directions. At 10x magnification, the 

macroscopic alignment appears uniform and the boundaries between macroscopic domains 

with different twist angles (60° and -60°) are smooth.  At 100x and with digital 

magnification, it is clear the boundary follows in detail the rectilinear pattern in a pixilated 

manner (See red squares on Figure 3.6), similar to what is seen with the square pattern. 

The mechanism of director alignment on an array of square posts proposed in the 

literature
5
 states that the diagonal is the average of the (orthogonal) director orientations in 

the surface grooves that propagates into the bulk LC layer as shown in Figure 3.7. This is 

also observed in our devices. The square pattern exhibits two director orientations one at 

+45° the other at -45°, and in the case of the rectangular pattern, we find two director 

orientations at +60° and -60° relative to the rubbed PI orientation. This would correspond to 

area (i) of the four-fold symmetry phase diagram predicted by Fukuda et al.
7
, as shown in 

Figure 3.1. 
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Figure 3.6 POM images of 100nm tall, 500nm groove width rectangle pattern.  Blue 

rectangles represent orientation of the square pattern and the black arrow represents the 

rubbed PI orientation. The blue arrow is the polarizer and the grey arrow is the analyzer 

orientation. From left to right, analyzer rotated 0°, -60°, 90°, and 60° from the crossed 

position. From top to bottom the images are taken at 10x, 100x, and digital zoom of area 

outlined by the red boxes. 
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Figure 3.7 Schematic of LC director orientation on square and rectangular patterned 

surfaces. The dashed line represents localized LC director orientations, the red and yellow 

arrows represent long-range LC director orientations. At the surface the LC director aligns 

parallel to the walls of the pattern in between parallel faces, area A. Area B assumes an 

orientation that averages the orientation of the grooves, i.e. the diagonals of the pattern, 45° 

for the squares and ~60° for the rectangles. Different domains will choose to follow one 

diagonal versus the other as represented by the red and yellow arrows.  
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3.3.2.2. Triangular Alignment Patterns 

If Fukuda’s theory is correct, it is unclear whether a surface with six-fold symmetry 

should align parallel to the grooves or the bisecting angle, since areas (i) and (ii) of the six-

fold symmetry plot overlaps with area (ii) of the four-fold symmetry plot in Figure 3.1. The 

device imaged for Figure 3.8 was made from a 1µm groove width triangular pattern with 

~800nm tall features in combination with a rubbed PI alignment layer; there was no spacer 

determining the thickness of the LC layer. As a result, the alignment displayed by this device 

is dominated by the surface of the pattern. This is the case because the thickness of the LC 

film is of the same order of magnitude as the height of the pattern itself, i.e., the LC is 

essentially contained in the grooves of the triangular pattern with minimal material above the 

pattern before it encounters the rubbed polyimide surface. Rotation of the analyzer, -30°, 30°, 

and 90° from the crossed position revealed three different orientations of the LC director, 

each parallel to a groove direction in the patterned alignment layer. The zoomed image 

(Figure 3.8) helps to visualize the relationship between the embossed pattern and the LC 

domains of varying director orientations. The area between two parallel facing walls of a pair 

of triangles aligns the liquid crystal director parallel to the walls or along the grooves 

defining the pattern as illustrated in the schematic in Figure 3.9. The hexagonal centroid area 

in the triangle pattern is not directly influenced by the walls of the triangles, but is influenced 

by the oriented domains of LC surrounding the centroid and typically one such domain 

dictates the director orientation in that region. In the schematic, the black areas control the 

alignment in the hexagonal region. It is also evident from the POM image that even though 

one orientation is influencing LC alignment in the hexagonal region, the other LC 

orientations are still present. The simultaneous presence of three director orientations affects 
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the quality of the appearance of the macroscopic alignment as evidenced in the 10x images 

from Figure 3.8; it is apparent that while the majority of a domain may appear dark, bright 

spots associated with director alignment between remain very visible. Apparently the 1μm 

area between opposing triangle faces control the director orientation locally leading to the 

appearance of these bright spots. A LC wall at the boundaries is observed indicating the 

transition between twist directions, similar to what was observed in the square patterned 

devices. 
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Figure 3.8 POM images of 800nm tall, 1μm triangles with analyzer rotated, from left to 

right, 0°, -30°, 90°, and 30° from the crossed position, polarizer is the blue arrow and 

analyzer is the grey arrow. These angles correspond to the orientation of the LC director in 

different domains. The zoomed in image shows the hexagonal array of triangles as well as 

the three different domains present. 
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Figure 3.9 Schematic of liquid crystal alignment domains on a triangular pattern. (left) The 

square regions between two parallel faces of triangles are fixed in alignment, θtwist = -30° for 

the green, θtwist = 90° for the red, and θtwist = 30° for the black regions, whereas the hexagonal 

area in the center of a hexagonal formation of triangles arbitrarily chooses to align with one 

of the fixed orientations, in this case θtwist = 30°, and dictates the macroscopic orientation of 

the liquid crystal layer. Right: POM image of 1µm triangles that are ~800nm tall, coupled 

with a rubbed PI substrate and analyzer rotated 150° from crossed position. 
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For the remaining triangular devices the height of the patterned features is reduced to 

~100nm and its influence is further attenuated because 5µm polymer bead spacers are used to 

maintain a fixed thickness of the LC film above the features. This should minimize the bright 

spots, since the bulk of the LC thickness is above the features and is able to more strongly 

influence the director above surface areas of fixed director orientation. This also provides a 

way to determine if the ratio of pattern height to LC layer thickness influenced the 

orientation of the LC director, i.e. parallel to the grooves or the bisecting angle. Figure 3.10 

contains POM images of the 100nm tall, 1µm groove width triangular pattern. The device 

displays only two orientations of the LC director, +30° and -30°, with respect to the rubbed 

PI orientation. A possible explanation for the absence of the 90° orientation of the LC 

director is that the elastic energyis higher for a twist of 90° versus 30°. In the 100nm feature 

height device, the LC film is much thicker than the pattern features and the director is able to 

select the lowest elastic energy state. Whereas, the 800nm tall triangular device was 

dominated by the surface pattern features, anchoring the LC director so that any alignment 

grooves that are 90° to the rubbed PI are trapped in that high energy orientation and unable to 

overcome the boundary conditions and adopt the lower energy orientations, +/- 30°. At 10x 

magnification, the macroscopic alignment appears uniform and the boundaries between 

macroscopic domains with different twist angles (+30° and -30° see Figure 3.10) are smooth. 

At 100x and with digital magnification, it is clear the boundary follows in detail the 

triangular pattern in a pixilated manner (See magnified red regions on Figure 3.10). The 

bright spots observed for the 800nm tall pattern are not visible at 10x magnification for the 

100nm tall features, but are still observed at100x plus magnifications, indicating an increase 

in optical uniformity compared to the 800nm tall, 1µm groove width trianglular device. A 
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inversion wall at the boundaries is observed, indicating the transition between twist 

directions, similar to what was observed in the square patterned devices.  

 

 

 

Figure 3.10 POM images of 100nm tall, 1um groove width trianglular pattern, from left to 

right, analyzer rotated 0°, -30°, 90°, and 30° from the crossed position. From top to bottom 

the images are taken at 10x, 100x, and digital zoom on area outlined by the red boxes. A dark 

state at θ = 0 was difficult to find in these devices. 
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The liquid crystal response to the 100nm tall, 500nm groove width triangular pattern 

shown in Figure 3.11 also only exhibits two director orientations at 30° and -30°. At 10x 

magnification, the macroscopic alignment appears uniform and the boundaries between 

macroscopic domains with different twist angles (+30° and -30° see Figure 3.9) are smooth. 

At 100x and with digital magnification, it is clear the boundary follows in detail the 

triangular pattern in a pixilated manner (See red squares on Figure 3.11).The bright spots 

observed in 1μm groove width devices are no longer visible at any magnification and the 

inversion at the boundaries is observed indicating the transition between twist directions, 

similar to what was observed in the square patterned devices.  
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Figure 3.11 POM images of 100nm tall, 500nm groove width trianglular pattern, from left to 

right, analyzer rotated 0°, -30°, 90°, and 30° from the crossed position. From top to bottom 

the images are taken at 10x, 100x, and digital zoom on area outlined by the red boxes. The 

boundaries are much smoother and the alignment is more optically uniform at higher 

magnification than the 1µm triangle pattern due to a decrease in the domain size between 

triangle faces. A dark state at θ = 90° was difficult to find in these devices. 
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POM images of devices made with the 250nm groove width triangular pattern, shown 

in Figure 3.12, mainly exhibit one director orientation at 15°, with some areas exhibiting a 

director orientation at 0°. This indicates the director is mainly orienting parallel to the rubbed 

PI hence the triangle pattern is effectively exhibiting planar degenerate alignment and the 

features exhibit no anchoring bias. This means the patterned surface aligns LCs parallel to 

the substrate, but the azimuthal orientation follows the more strongly aligning substrate, in 

this case rubbed PI. This may be due to the small dimensions of the domain size, ~250nm x 

250nm for this pattern, which are unable to influence the hexagonal centroid areas more 

strongly than the rubbed PI. The walls of the triangle pattern are also not completely flat, as 

seen in Figure 3.2, due to the limitations of the photolithographic process that was used to 

fabricate the master.  

The mechanism of director alignment on a hexagonal array of triangular posts has not 

been proposed in the literature, but it should be straight forward to apply conclusions from 

square and rectangular patterns. As previously stated, Fukuda’s theory offers no real 

prediction for the triangular pattern based on the results for the square pattern. In the 

hexagonal array of triangular features the director aligns parallel to the grooves, at -30°, 

+30°, and 90° with respect to the rubbed PI orientation. Figure 3.13 shows a schematic of the 

LC director orientations on the triangular patterned surface. The LC director aligns parallel to 

triangle walls, similar to the square pattern, and attempts to curve around a corner. As it does 

this the director rotates through orientations that are parallel to all three groove orientations. 

This allows the LC director in the hexagonal centroid to align parallel to one of the groove 

directions. Based on the POM images, we believe the boundary follows a fairly complicated 

pattern as shown in Figure 3.13.  
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Figure 3.12 POM images of 100nm tall, 250nm groove width trianglular pattern, from left to 

right, analyzer rotated 0°, -15°, 0°, and -15° from the crossed position, polarizer is the blue 

arrow and analyzer is the grey arrow. From top to bottom the images are taken at 10x, 100x. 

The two images on the top left show two domains of LC alignment that differ in orientation 

by ~15 degrees. The small twist angles indicate that the triangle pattern is not strongly 

influencing LC alignment and is exhibiting some planar degenerate qualities, meaning it 

duplicates the alignment of the rubbed PI substrate.  
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Figure 3.13 Schematic of localized LC directors and the boundary between two director 

orientations at the surface of triangular patterned surfaces. Based on POM images, the LC 

director above the top of the triangles to follow the orientation of the LC director in the 

hexagonal centroid.  
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3.3.2.3.   Penrose Patterns 

The hexagonal array of triangle features increased the complexity of director 

alignment options from bistable orthogonal options to tri-stable patterns.  We were interested 

to see how an aperiodic pattern would influence alignment. Penrose patterns arise from 

nonperiodic tiling of a surface with an aperiodic set of prototiles which sometimes exhibit 

five-fold symmetry.  In our work, the pattern is based on two rhombuses with different angle 

sets. Traditional five-fold symmetry is not present; however, the grooves forming the 

rhombuses are oriented at five different angles creating a type of broken symmetry, as shown 

in Figure 3.2. The grooves in the devices studied are located at 90°, +54°, +18°, -18°, and -

54° with respect to the rubbed PI. Figure 3.14 shows POM images of 3μm groove width 

Penrose tiling devices. Only two macroscopic orientations of LC director were observed at -

18° and +18° at 10x magnification. Small domains of LC directors oriented in other 

directions were apparent making the optical uniformity quite poor compared to what was 

observed on the previous patterns. At 100x magnification, we observe that LCs align parallel 

to the walls of the rhombohedral features and that even though macroscopic alignment is 

observed, the mixture of alignment domains observed at high magnification suggest the 

contrast ratio of such a device would be quite low. The digital zoom shows distant dependent 

LC orientation parallel to the walls of the features, i.e. the further from the walls the more 

susceptible the LC director is to other aligning influences.  
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Figure 3.14  POM images of 70nm tall, 3 µm groove width Penrose pattern, from top to 

bottom, analyzer rotated 0°, -18°, -54°, -90°, 54°, and 18° from the crossed position. From 

left to right the images are taken at 10x and 100x. Macroscopic alignment is observed with 

two twist angles observed at +18° and -18°, but the optical uniformity is quite low, especially 

at higher magnification. Digital zoom, red box, of the device viewed with crossed polars 

reveals how the LC directors are initially oriented parallel to the walls of the rhombuses and 

then follow the macroscopic alignment further into the grooves.  
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Figure 3.13 shows 1μm groove width pattern.  At 10x magnification, five 

macroscopic LC director orientations are observed parallel to the grooves, as expected; 

however, at 100x magnification, it is still obvious that these domains consist of a mixture of 

smaller domains oriented in different directions. There appear to be wandering snakelike 

domains which may correspond to parts of the Penrose pattern where the faces of the 

rhombuses are able to reinforce a given alignment, i.e. the faces of the rhombuses along these 

domains are oriented parallel to one another. Figure 3.14 shows the 500nm groove width 

pattern. These devices behave in the same manner as the 1μm devices in that, at 10x 

magnification, five macroscopic LC director orientations are observed parallel to the 

grooves, and at 100x magnification, it is still obvious that these domains consist of a mixture 

of smaller domains oriented in different directions. The snakelike domains are smaller and 

more difficult to resolve, but this is because the feature size of the patterns are smaller. 
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Figure 3.15 POM images of 70nm tall, 1 µm groove width Penrose pattern, from top to 

bottom, analyzer rotated 0°, -18°, -54°, -90°, 54°, and 18° from the crossed position. From 

left to right the images are taken at 10x and 100x. Five twist angles are observed in this 

device corresponding to the orientations of the lines in the pattern. 
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Figure 3.16  POM images of 70nm tall, 500nm groove width Penrose pattern, from top to 

bottom, analyzer rotated 0°, -18°, -54°, -90°, 54°, and 18° from the crossed position. From 

left to right the images are taken at 10x and 100x. Five twist angles are observed in this 

device corresponding to the orientations of the lines in the pattern. 
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3.4. Conclusions 

Multi-stable LC alignment was observed on square, rectangle, triangle, and Penrose 

patterned PU surfaces. In the LC domains between two parallel, vertical faces of the pattern 

features, the director is aligned parallel to the vertical face of the pattern and the bottom of 

the groove. These micro-domains of LC alignment are oriented at various angles depending 

on the symmetry of the pattern. These local domains then compete to orient the LC on a 

macroscopic. The square and rectangle patterns aligned LCs in a manner predicted by theory 

and previous experiments. Theory predicting the orientation of 1µm and 500nm groove width 

triangular patterns was unspecific. 250nm groove width triangular patterns yielded planar 

degenerate alignment due to a decrease in micro-domain size. The Penrose patterns exhibited 

multi-stable alignment parallel to the grooves, despite the broken symmetry of the pattern. 

Micro-domain sizes of ~500nm x 500nm displayed the best optical uniformity by creating 

domains near the size of the average wavelength of light while maintaining adequate LC 

alignment strength. 
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4. Microfabrication Procedures 

4.1. Introduction 

Microfabrication techniques have been an integral part in the development of 

consumer electronics by facilitating the fabrication of integrated circuits (ICs) and micro-

electromechanical systems (MEMS). They are also being applied to advance current research 

in materials science, chemistry, physics, engineering, and biology. Microfabrication 

techniques include controlled deposition of materials, photolithography, and etching.
1
 

Because of the sensitivity of these techniques to dust, temperature, and humidity they are 

typically done in clean rooms. 
2
 

4.1.1. Vapor Deposition 

There are two types of vapor deposition, chemical vapor deposition (CVD)
3
, and 

physical vapor deposition (PVD)
4
. CVD is a chemical process used to produce high-purity, 

high-performance solid materials. The process is often used in the semiconductor industry to 

produce thin films. In a typical CVD process, the wafer (substrate) is exposed to one or 

more volatile precursors, which react and/or decompose on the substrate surface to produce 

the desired deposit. Frequently, volatile by-products are also produced, which are removed 

by gas flow through the reaction chamber. CVD is used to deposit materials in various forms, 

including: monocrystalline, polycrystalline, amorphous, and epitaxial. These materials 

include: silicon, carbon fiber, carbon nanofibers, filaments, 

http://en.wikipedia.org/wiki/Thin_film
http://en.wikipedia.org/wiki/Wafer_(electronics)
http://en.wikipedia.org/wiki/Volatility_(chemistry)
http://en.wiktionary.org/wiki/precursor
http://en.wikipedia.org/wiki/Chemical_reaction
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carbon nanotubes, SiO2, silicon-germanium, tungsten, silicon carbide, silicon nitride, silicon 

oxynitride, titanium nitride, and various high-k dielectrics. PVD is a general term used to 

describe any of a variety of methods to deposit thin films by the condensation of a vaporized 

form of the material onto various surfaces (e.g., onto semiconductor wafers). The coating 

method involves purely physical processes such as high temperature vacuum evaporation or 

plasma sputter bombardment. 

 

Figure 4.1 CVD and PVD schematics. Left: Schematic of CVD chamber. In this type of 

CVD, plasma is used to enahnce the chemical reaction of the precursor materials. 

Right: Schematic of sputter PVD: plasma is used to physically remove atoms from a target 

material that is then deposited onto a substrate at a controlled rate. 
3, 4
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4.1.2. Photolithography 

Photolithography, is a process used to selectively remove parts of a thin film or the 

bulk of a substrate. It uses light to transfer a geometric pattern from a photo mask to a light-

sensitive chemical photo resist, or simply "resist," on the substrate. A series of chemical 

treatments then engraves the exposure pattern into the material underneath the photo resist, as 

described in more detail in the etching section and Figure 4.2. In complex integrated circuits, 

for example a modern CMOS, a wafer will go through the photolithographic cycle up to 50 

times.
5
 

4.1.3. Etching 

Etching is the process which transfers the pattern from the resist into the substrate. 

There are two important figures of merit in these processes: selectivity and isotropy. 

Selectivity refers to the ratio of etch rates of the substrate versus the resist. Isotropy refers to 

the direction in which the etchant removes the substrate as shown in Figure 4.3. There are 

two types of etching processes: wet and dry. In wet etching, liquid acids or bases are used. 

Selectivity and isotropy are controlled by changing the chemistry, temperature, and exposure 

time of the etchant. Dry etching employs halogenated plasmas at low pressure to remove 

material. Selectivity and isotropy are controlled by chemistry, gas pressure, power used to 

generate the plasma, and exposure time. Dry etching typically yields higher anisotropy than 

wet etching.
6
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Figure 4.2 Schematic of the photolithography process. A photo-resist (PR), red, is exposed 

with light that is passed through a patterned mask. Depending on the nature of the material 

the area exposed to light either stays or is removed by a developer. The pattern is then etched 

into the substrate and the PR is removed.  

exposure 

development 

etching 

PR strip 
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Figure 4.3 Schematic of selectivity and isotropy 

Left: Yellow: layer to be removed; blue: layer to remain 

1. A poorly selective etch removes the top layer, but also attacks the underlying material. 

2. A highly selective etch leaves the underlying material unharmed. 

Right: Red: masking layer; yellow: layer to be removed 

1. A perfectly isotropic etch produces round sidewalls. 

2. A perfectly anisotropic etch produces vertical sidewalls. 
6
 

selectivity isotropy 
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4.2. Experimental 

4.2.1. Materials 

Chrome on quartz reticules were fabricated by Benchmark Technologies according to 

the specifications we provided and used with no modifications. Chrome on glass photomasks 

were fabricated by Infinite Graphics and used as provided. Silicon wafers were purchased 

from Silicon Quest and used as provided. ITO coated glass slides were purchased from Delta 

technologies and sequentially sonicated in soapy water, acetone, and isoporpanol for 10 

minutes, and dried with nitrogen. S1813 photoresist, adhesion propmoter, and developer was 

provided by CHANL and used as provided. Concentrated HCl was purchased from Fisher 

Scientific and diluted with deionized water at a 1:1 ratio.  

4.2.2. Instrumentation 

Wafer patterning was performed at the Triangle Nano Lithography Center at NCSU. 

Photolithography was done using a 193nm ASML scanner by Dave Vellenga. Plasmatherm 

RIE was used to etch the square, rectangle, triangle, line grating, and Penrose features of 

150nm tall or less. DRIE was used to etch taller features. Asher oxygen plasma was used to 

strip the photoresist. ITO coated glass patterning was performed in the CHANL cleanroom at 

UNC using the mask aligner. 

4.2.3. Silicon Master Fabrication 

Dave Vellenga performed photolithography on the silicon wafers. Chlorine plasma 

was used to etch the silicon wafer and the photoresist was stripped by oxygen plasma. The 

etch time and power used to generate the plasma was adjusted to obtain patterns with varied 

feature heights as shown in Table 4.1. The photoresist was then stripped by oxygen plasma 

under the conditions listed in Table 4.1.  
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Table 4.1 RIE Processes 

Process BARC 70 40.10 40.50 40 100b 150 250 

Step 1 1 2 1 2 1 2 1 2 1 2 1 2 

Time(s) 70 30 40 30 40 30 40 30 100 30 150 30 250 

Pressure(mTorr) 40 15 15 15 15 15 15 15 15 15 15 15 15 

Power(W) 50 100 10 100 50 100 100 100 100 100 100 100 100 

Cl2(sccm) 0 20 20 20 20 20 20 20 20 20 20 20 20 

O2(sccm) 8 0 0.6 0 0.6 0 0.6 0 0.6 0 0.6 0 0.6 

 

4.2.4. Electrode Fabrication 

Electrodes for multi-stable devices were fabricated following a thin film transistor 

configuration (TFT). Adhesion promoter was drop cast onto cleaned ITO coated glass slides 

and left for 10s, after which they were spun coat at 3k rpm for 40s and baked at 115°C for 

60s. S1813 was then spun coat at 3k rpm for 40s and baked at 115°C for 60s. The mask 

aligner was then used in hard contact mode with 100μm spacing and 7.5s exposure followed 

by a 90s post-exposure bake. The exposed resist was developed for ~20s, rinsed with DI 

water, and dried with nitrogen. ITO was then etched in diluted HCl for 10 minutes, rinsed 

with DI water, and dried with nitrogen. It is anticipated that silicon nitride will be evaporated 

onto the patterned ITO, followed by sputtering of aluminum, which will undergo similar 

photolithography steps to fabricate the inter-digitated electrode illustrated in Figure 4.2. 

 

 

 

4.3. Results and Discussions 

Patterned silicon masters were successfully patterned with feature heights ranging 

from 10 to 800nm, as listed in Table 4.2 and Figure 4.4. Only the 250nm triangular pattern 
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exhibits defects from the photolithography process. There is rounding of the triangles due to 

the wavelength of light used to expose the photoresist being similar to the size of the pattern. 

RIE was useful to fabricate patterns of 200nm or less. Attempts to achieve taller features 

resulted in complete removal of the photoresist and redeposition onto the substrate, which in 

some cases coated the wafer with an insoluble polymer film. For taller features DRIE was 

required, but the 250nm triangles were completely removed by this process, i.e. no pattern 

remained. Patterning of ITO was straight forward, but there are possible problems with the 

process. The developers and photoresist are subject to degradation over time, and over 

exposure leads to less photoresist will remain after development. It is useful to perform 

quality control using a reflective optical microscope after developing the resist and a multi-

meter was used to verify removal of ITO. It is also important to test all patterning parameters 

in a serial manner before attempting mass production.  
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Table 4.2 Patterned Silicon Wafer Dimensions and Patterns 

Wafer ID Feature Height(nm) Feature Pattern 

40.10 10 tri., rec., sq., line gratings 

40.50 25 tri., rec., sq., line gratings 

40 50 tri., rec., sq., line gratings 

100b 95 tri., rec., sq., line gratings 

250 200 tri., rec., sq., line gratings 

45D 800 tri., rec., sq., line gratings 

P40.50 25 Penrose, conc. circles 

P100 70 Penrose, conc. circles 

P150 120 Penrose, conc. circles 
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Figure 4.5 Wafer layout of etched patterns. Wafers with different feature heights were 

fabricated with the same layout, see Table 4.2 for more details. 
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9. 1μm line grating 
10. 750 nm line grating 
11. 500nm line grating 
12. 250nm line grating 
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Figure 4.6 Wafer layout of etched patterns. Wafers with different feature heights were 

fabricated with the same layout, see Table 4.2 for more details. 
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1. Array of concentric circles with 
500nm duty cycle 

2. 3μm groove width(left) 
3. 1µm groove width(middle) 
4. 500nm groove width(right) 
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4.4. Conclusions 

Microfabrication techniques developed by the semiconductor industry are useful in 

fabricating patterned silicon wafers as pattern templates for embossed polymer films. The 

features sizes accessible through these methods allow the study of mechanistically relevant 

LC alignment layers. The only downside to master fabrication using these methods is the 

tools utilized frequently require maintenance and repair which can be a major source of time 

delays.  
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