
Abstract

The cliffs above the public beaches of the Conero Riviera between Ancona and Portonovo, Italy, are comprised of sedimentary rocks and are subject to copious rainfall and occasional earthquakes. The area has experienced large-scale landslide events, from Portonovo's 14th century landslide to Ancona's more recent 1982 landslide. Though these events have been studied at length, there are no studies on this region's risk of future landslides. Based on the historical and geological evidence, it is important that the Ancona coastline be assessed for landslide risk. This study aimed to determine the role of geologic structures in the area near these two historic landslides using kinematic analysis as well as structural and stratigraphic field data collected between the Ancona shipyard and the southernmost accessible beach of Monte Conero. We collected data from within several different rock units and observed distinct patterns of jointing, faulting, and bedding along the coast. Some of these structures show risk of planar and wedge failure. There is evidence of recent rockfalls and landslides, all of which were smaller than the two historical slides. We conclude that the Conero Riviera coastline is at risk for future landsliding and rockfall, making it dangerous for beachgoers.

Introduction

The cliffs above many public beaches in and around Ancona, Italy, show clear signs of landslides and landslide risk yet. The area of study, the Conero Riviera spanning from Ancona's shipyard to Monte Conero is located in a region with a strong history of earthquakes, heavy rainfall, and large landslides (Figure 1).

The area just north of this field site underwent a massive landslide in 1982 (Crescenti et al, 2005). This event occurred along 1.7 km of the coast, affecting a total of approximately 3.4 km^{2} of the land (Crescenti et al, 2005). The sediments affected by this slide were mid-Pliocene marly clays interbedded with silts and sands, all overlain by Pleistocene silty/marly clays with stratified sand layers (Crescenti et al, 2005). Also, in Portonovo, Italy, just south of Ancona, there was another massive slide in the early 14th century (Montanari et al, 2016). This slide was characterized by the movement of five million cubic meters of the Scaglia Rossa, Marne a Fucoidi, and Maiolica limestone units from up to 400 meters elevation (Montanari et al, 2016).

The lithology of the region is primarily limestone with a small stretch of alternating gypsums and marls (Figure 2). The coast was split into eight analysis regions based on bedrock composition and the orientations of structures (Figure 3). For sections 1a-d, the cliffs are comprised of the Miocene units of Bisciaro limestone overlain with Schlier limestone. The weathering for 1a-c, which is characterized by the formation of friable clumps of rock from silt sized up to cobble sized, pervades up to 10 cm back from the face of the outcrop into the rock. The weathering affects the Bisciaro unit uniformly. The Schlier is comprised of beds of alternating strength, so it weathers differentially with $\sim 0.75 \mathrm{~m}$ difference between the layers that are $1 / 2 \mathrm{~m}$ thick(Figure 4). In section 1d, the jointing is dense, and this section is transforming into a C horizon soil rather than weathering away from the outside in as seen in section 1a-c. South of the Schlier/Bisciaro units in section 2, the cliffs are comprised of Colombacci marls, another Miocene unit. The weathering of this unit is uniform and is similar to the weathering at 1 d , also creating a C horizon soil. The Gessoso-Solfifera unit, section 3, consists alternating beds of Miocene gypsum and marly shales. Some of the beds contain microcrystalline chalk laminae. The gypsum weathers away first, leaving up to 3 meters of steeply dipping marly shale beds
jutting out of the base of the cliff. Further south in section 4, closer to Portonovo, the Schlier and Bisciaro outcrop again. The fifth and final segment of this analysis is Monte Conero. This region is mostly Maiolica limestone (lower Cretaceous) with a small outcrop of Scaglia Rossa limestone (late Cretaceous-middle Eocene) and chert beds at the northernmost end of this section. Weathering in these units was superficial rather than pervasive, consisting primarily of slight surface discoloration.

In the region of study, there are clear indications of frequent small-scale landsliding such as fallen boulders and gravel, fresh detachment faces, and piles of fallen soil and debris. Thus, this area is a prime location for studying landslide risk. Further, while the regions of past large slides have been studied, no research has been done to determine if the Riviera is at risk for a massive sliding event comparable to the two mentioned above. This study aimed to discern the magnitude and nature of the landsliding risk of the region in an effort to predict futures slide locations and styles.

To this end, we explored the idea that structural data can be used to determine whether a particular stretch of coast within the field area is at risk of landslides. In addition to structural effects, the effects of stratigraphy on risk magnitude was also examined. Historical slides and rock falls were used to characterize the style of landsliding that the area is at risk of. Standard slope analyses and the characteristics of the rock units were used in resolving the question of how structurally sound each section of coastline is. Structural and stratigraphic analysis was chosen for this project because the field area is highly populated with structures such as joints, bedding, faults, and stylolites.

Methods

Fieldwork was conducted from June 24-July 21, 2016. The process began with the examination of Google Earth maps, bedrock maps, and historical aerial photography obtained from Ancona's cartographic office. From this imagery, we determined the location of slides that occurred in recent history, paths to be able to access these locations, and the extent of the field area. The study area spanned from $379946.39 \mathrm{~m} \mathrm{E}, 4831392.06 \mathrm{~m} \mathrm{~N}$ to 389104.68 m E , 4822365.39 m N (Figure 3). The data collection process consisted of working along the base of this stretch of cliffs, covering as much of the coast as could be reached by foot. We accessed two beaches and several photographic vantage points by boat.

Using a Brunton compass, we obtained and recorded slope, joint, bedding, fault, slickenside, and stylolite measurements. These measurements were analyzed on stereonets using the program Stereonet3D. The density of the fractures and stylolites as well as the depth to which weathering affected the different rock units were also recorded. Whenever evidence of past landsliding was present (such as fallen debris or detachment scarps), the nature of the slide (rockfall versus landslide), dimensions, and detachment location of each slide was noted. Since many of the slides detached from too far up the cliffs to see from the vantage point of the beach and since many of them happened over the course of many years, Google Earth historical images were used to assist in this process where field data was insufficient. At each new rock unit, hand samples of the bedrock were taken for future reference. The European Marine Observation and Data Network (EMODnet) was used to obtain bathymetry data (http://www.emodnet.eu/).

Wyllie and Mah's kinematics analysis served as the basis for determining the risk of rock failure (Wylie et al, 2004). This process gives criteria for determining three different types of failure characterized by different orientations of planar failure surfaces. The three types are plane
failure, wedge failure, and topple failure (Wylie et al, 2004). The criteria for determining these failure depend on the slip envelope of the rock; for this analysis, we used a slip angle of 30 degrees. Tables 1 and 2 contain all the criteria for each form of failure.

Planar failure can occur when the following conditions are met: (1) the dip direction of the planar feature in question is within 20 degrees of the dip direction of the slope face and (2) the dip angle of the feature is greater than the slip envelope but less than the slope-face dip angle (Wylie et al, 2004). Both of these conditions are met when the feature is oriented such that its pole falls in the shaded region in Figure 5. The steeper the dip of the plane, the greater the risk of failure (Wylie et al, 2004).

The next form of failure is wedge failure (Wylie et al, 2004). This form of failure deals with the stability of wedges of rock formed from the intersection of two planes of weakness (Wylie et al, 2004). In this case, the orientation of this intersection line is considered instead of poles to the planes (Wylie et al, 2004). If (1) the plunge of this line falls between the slip envelope and the slope's dip angle and (2) the trend of this line is within 20 degrees of the slope's dip direction, the wedge is at risk of falling (Wylie et al, 2004). The region that the line must fall within to meet these criteria can be seen shaded in Figure 6. The steeper the intersection line, the higher the risk of failure (Wylie et al, 2004).

Topple failure occurs when steeply dipping planes of weakness cause entire columns or sheets of rock to topple over. For this type of failure, (1) the dip direction of the plane must be within 10 degrees of that of the slope face, and (2) the sum of the slip envelope and the complement of the dip angle must be less than the dip angle of the slope face (Wylie et al, 2004). The shaded area in Figure 7 shows where the poles to the plane must fall for this type of failure.

Results

The mean orientations and density of structures for all locations can be seen in Table 3. Six out of the eight regions are at risk of both planar and wedge failure, and one is at risk of planar failure alone. In total, seven out of eight regions exhibit risk of kinematic failure induced landsliding or rockfall. Figures 8a-8m show each region's form(s) of failure and which structural feature is forming the failure planes.

Section 1a and 1b

These areas had two sets of pervasive joints. Several instances of block falls caused by the two joint families were found (Figure 9, Figure 10). Two types of past landsliding can be seen in this area: falls of large boulders and cobbles from various heights on the cliff and low volume landslides of sand to cobble sized clasts.

Section 1c

This section was characterized by a lack of homogeneity in jointing. We found a higher concentration of faults here than elsewhere in the Schlier/Bisciaro. The landsliding in this area was largely small landslides with few large blocks falling.

Section 1d

The jointing pattern becomes similar to the intersecting joints pattern seen in 1a, but with much greater fracture density. There was also a landslide which detached from approximately 100 m elevation on the cliff face. This slide was comprised of a mud matrix with some limestone pebbles and gravel. It spanned 125 m wide at the toe and 135 m around the perimeter of the toe. It
appeared to be recent since it contained undecomposed plant matter and since it had not yet been compacted.

Section 2

There were two more landslides similar in style to the one at 1 d , though smaller and less recent. They were roughly 50 and 75 meters wide at the toe. There are two families of joints which are oriented for wedge failure. Section 2 is also similar to section 1 in that the joint spacing is narrow.

Section 3

This section's planar features are bedding and three faults. None of these features are oriented in a way that is suitable for any type of failure. The bedrock is only visible at the bottom of the cliffs as the top is covered by debris.

Section 4

While the bedrock is the same as section 1 , the bedding orientation changes. The jointing lacks clustering. They dip between 50-90 degrees. The jointing is oriented such that this area is prone to plane, wedge, and topple failures. We found large planar failure blocks that had detached that were similar to the ones at 1a. There were also several small slides. Like section 3, the bedrock only outcrops at the bottom of the cliff due to the top being covered in debris.

Section 5

The bedding here is oriented for plane failure. Tens of square meters of bedding planes are exposed at a time along the slope, creating its shape. A small proportion (less than one third)
of the joints and stylolites are oriented for wedge failure. The remains of two large landslides were present.

Discussion

Relative landslide risk levels

Based on the number of failure types at each location, locations 1a-d, 4, and 5 are the highest landslide risk regions as they show both planar and wedge failure risk. Within locations $1 \mathrm{a}-\mathrm{d}, 1 \mathrm{a}$ and 1 d are at higher risk levels than 1 b and 1 c because a larger total proportion of their joints are oriented for failure than the joints in 1b-c. Locations 2 is at moderate risk level with planar failure risk of its joints. Location 3 has no structures oriented for kinematic failure. Relative landslide risk can be seen in Figure 11.

To further differentiate locations by their relative risk level, additional factors such as landsliding history, weathering patterns, cliff heights, and the density of planes of weakness should be considered. Based on additional factors, locations 3 and 5 appear to be at higher risk than the kinematic analysis alone can indicate.

Implications of past slides

North of location 5 at Portonovo, there was a historic massive landslide in the early 14th century (Montanari et al, 2016). This slide originated from a much greater height than the slides in sections 1-4 (maximum of 400 m height in Portonovo versus maximum of 85 m in this region), but at a similar height to location 5. It also affected similar limestone rock units rock units (Scaglia Rossa, Marne a Fucoidi, and Maiolica), and location 5 is comprised of Scaglia Rossa and Maiolica. While section 5 only shows risk of planar failure of bedding, the height of

Monte Conero (360-530 m in the region analyzed) combined with its similar composition, its clustering of failure planes, its cleavage, and its close proximity to the 14th century slide are cause for added concern. There are also other detachment scars that appear to be from large planar failures. Thus, section 5 appears to be a larger risk than the kinematic analysis can illustrate alone and should be further inspected using additional analysis that incorporate more than kinematics.

The area just north of the total study area underwent a massive landsliding event in 1982. This slide started at the toe of the slope that failed and worked its way farther inland to fail in one massive slump of land. This is not congruent with the characteristics of slides seen in this field area, which are characterized by relatively small amounts of the cliff crumbling away at a time without directly causing other areas farther inland to slide as well. The bathymetry of the region also does not lend itself to allowing this sort of failure. The slope of the seafloor east of the cliffs out into the sea is too shallow to permit it. The seafloor slopes just under 20° on average based on the EMODnet bathymetric maps, making the rock under the cliffs a low risk zone for underwater slides because this slope is too shallow for structures to form many failure planes. Instead, only the subaerial units of the steep cliffs are prone to failure. Ultimately, it is unlikely a landslide similar to the 1982 slide would occur in this region.

Future slides

The style of landsliding at locations 1a-c is similar despite these locations having different orientations of joints. The weathering style of the Schlier layer, which leaves every other bed jutting out of the cliff without support, plays a part in the gravel to boulder sized rock falls which detach from varying heights on the cliffs (Figure 9 and Figure 10). As the weak
layers erode away, larger and larger volumes of the strong layers are left jutting out of the cliff side with no underlying support. These areas are prone to rockfall events from any height up the cliffs.

Location 1 d and 2 have been more weathered than 1a-c and are partially weathered to C horizon soils. Still, they are each populated by two distinct families of joints. The joints are spaced $8-30 \mathrm{~cm}$ apart in section 1 d and $10-30 \mathrm{~cm}$ apart in section 2 . The past slides seen in this area are soil slides rather than rockfalls. Further analysis into how far this soil pervades inland is needed before we can estimate the volume of futures slides at 1d and 2, but future failure should be expected to be landslides rather than rock falls.

Locations 3 is the only location without risk of kinematic failure. The slope above the outcrop, however, is covered in old landslide deposits. It is likely that non-kinematic factors are causing these slides, and this stretch needs further investigation before its risk level can be completely understood.

The landslide that partially covers location 3 also covers the upper part of location 4 . While location 4 has planes oriented for both wedge and planar failure, these features are only exposed near the bottom of the cliff. They are not seen further up on the cliff. The current landslide deposit would have to be eroded away entirely to reveal a fresh cliff face before wedge or planar failure could occur from the top of the cliff. The nature of slides in the immediate future will be rockfalls from less than 15 m height.

Location 5 shows risk of planar failure along bedding planes. There are detachment scars up to approximately 275 m elevation above hundreds of square meters of exposed bedding planes
(Figure 12). While this region is at risk of both planar and wedge failure, the majority of failure planes are oriented for planar failure. Almost all of the bedding planes are oriented for planar failure, while only about one third of the joints and stylolites are oriented for wedge failure. Thus, a planar failure slide is more likely to occur here than a wedge failure slide. This area is susceptible to cobble to boulder sized pieces of rock as well as large sheets of bedding planefailing from high elevation. Since the cliffs here are much higher than anywhere else in the study area, location 5 could produce a slide of a much larger volume of rock than the other locations exhibiting two failure types.

Conclusions

Of the eight sub-regions of study, all except one show an elevated risk for landslides. The two most hazardous regions are the coast along the northeast edge of the city of Ancona and the coast at the base of Monte Conero. The shoreline near Ancona is the most crowded of all the beaches in the region of study. There is a high risk of large blocks falling in this area due to planar and wedge failure created by joint planes. These blocks could seriously injure people on the beach. Until preventative measures to stabilize the area are taken, beachgoers should avoid these cliffs. Monte Conero is the region at risk of the largest volume and highest energy landslide in the area due to the high elevation. The dense concentration of bedding planes oriented for planar failure along with the wedge-failure-forming joints and stylolites make Monte Conero unstable. These factors combined could create a high-volume slide similar to the $14^{\text {th }}$-century Portonovo slide. Overall, this entire region is unstable due to orientations of joints, stylolites, and bedding.

Bibliography

Crescenti, U., M. Calista, M. Mangifesta, and N. Sciarra. Giornale Di Geologia Applicata 1 (2005) 53 -62, Doi: 10.1474/GGA.2005-01.0-06.0006 The Ancona Landslide of December 1982 53.62 (2005): 53-62. Associazione Italiana Di Geologia Applicata E Ambientale. 2005. Web. 3 Dec. 2016.

Montanari, Alessandro, Maurizio Mainiero, Rodolfo Coccioni, and Gaia Pignocchi. "Catastrophic landslide of medieval Portonovo (Ancona, Italy)." Geological Society of America Bulletin. N.p., 2 June 2016. Web. 4 June 2016.

Montanari, Alessandro, Maurizio Mainiero, and Rodolfo Coccioni. "The Little Big History of Medieval Porto Novo and Its Landslide."Osservatorio Geologico Coldigioco (2015): n. pag. Print.

Regione Marche - Territorio E Ambiente. CARTA GEOLOGICA REGIONALE 1:10.000. DotNetNuke Corporation, 2010. Web. 24 Apr. 2017.

Wyllie, Duncan C., Christopher W. Mah, and Evert Hoek. "Chapter 2." Rock Slope Engineering: Civil and Mining. London: Spon, 2004. 22-42. Print.

Figures and Tables

Figure 1 Field area of the coastline between Ancona and Monte Conero.

Figure 2 Geologic map of the field area.

Figure 3 Sub-regions of study. These regions were created based on their lithology and the orientations of the structures.

Figure 4 The Miocene Schlier limestone unit above boat houses carved into the cliffs of the Conero Riviera.

Figure 5 For a cliff slope striking due North and dipping 60 degrees East, the planar failure region (green hatched area) is the area determined by the pole to the plane in question trending within 20 degrees of the pole of the slope in this example (red) and plunging less than or equal to the slope's pole.

Figure 6 The green region represents the area in which the line of intersection between two planes must lie in order to be susceptible for wedge failure for a cliff face striking North and dipping 60 East. This line must be within 20 degrees of the dip direction of the slope. The dip of this line must be greater than the angle of friction but less that the slope's dip angle.

Figure 7 The green area represents the region that the pole to a given plane has to lie within to fulfill the criteria for topple failure for a cliff face striking North and dipping 60 East. The pole must trend within 10 degrees of the dip direction of the slope face.

Variable	Definition
ψ	Slip envelope
α_{s}	Dip direction of the slope face
α_{p}	Dip direction of the plane
θ_{s}	Dip angle of the slope face
θ_{p}	Dip angle of the plane
β_{l}	Trend of line of intersection of two planes
μ_{l}	Plunge of line of intersection of two planes

Table 1: Variables for kinematic analysis equations

Planar Failure

- $\alpha_{s}-20 \leq \alpha_{p} \leq \alpha_{s}+20$
- $\psi \leq \theta_{p} \leq \theta_{s}$

Wedge Failure

- $\alpha_{s}-20 \leq \beta_{l} \leq \alpha_{s}+20$
- $\psi \leq \mu_{l} \leq \theta_{s}$

Topple Failure

- $\alpha_{s}-10 \leq \alpha_{p} \leq \alpha_{s}+10$
- $90-\theta_{p}+\psi \leq \theta_{s}$

Table 2: Equations of the criteria for different forms of failure.

Location	Unit(s)	Bedding	Joints (a)	Joints (b)	Joints (c)	Joint density (m)	Slope	Cliff height (m)
1a	Schlier/ Bisciaro	$127 / 28$	$305 / 56$	$215 / 78$		$0.05-4$	$295 / 55$	$40-85$

1b	Schlier/ Bisciaro	$127 / 28$	$015 / 85$	$269 / 69$	$330 / 76$		$304 / 71$	$50-110$
1 c	Schlier/ Bisciaro	$127 / 28$					$337 / 61$	$80-170$
1 d	Schlier/ Bisciaro	$127 / 28$	$303 / 63$	$198 / 86$		$0.08-0.3$	$326 / 54$	$180-$ 210
2	Colombacci	$112 / 40$	$359 / 78$	$269 / 68$		$0.1-0.3$	$340 / 60$	$150-$ 160
3	Gessoso- Solfifera	$108 / 66$ and $285 / 32$					$340 / 60$	$130-$ 150
4	Schlier/ Bisciaro	$093 / 40$				$265 / 90$	$90-120$	
5	Scaglia Rossa/ Maiolica	$318 / 53$				$313 / 53$	$360-$	
530								

Table 3: Mean structural data for structures that formed families

Location 1a.
Figure 8a

Figure 8c

Location 2.
Figure 8e

Figure 8d

Location 4.
Figure 8f

Location 5.

Figure 8g
Figure 8a-8f Planar failure analysis for locations 1a-d, 2, 4, and 5. Poles to structures (black), poles to cliff face (red) and average cliff face (red plane) for each location. Structures oriented for failure are circled in green. The failure planes in Figure 8 f are bedding. All other planar failure planes are joints.

Figure 8h

Figure 8h-8m Wedge failure analysis for locations 1a-d and 4. Planes of structures (black), poles to cliff face (red) and average cliff face (red plane) for each location. Intersections lines of structures oriented for failure are circled in green. All wedge failure planes are joints except for Figure 8m--these are joints and stylolites.

Figure 9 Planar failure along a joint plane of a Schlier limestone block near the Ancona shipyard.

Figure 10 Planar failure along a joint plane of a block of Bisciaro limestone near the Ancona shipyard.

Figure 11 Relative risk map. Red outlines indicate highest risk of kinematic failure induced landslides. Yellow indicates intermediate risk, and green indicates low risk. Areas in red are at risk of wedge and planar failure. The area in yellow is at risk of planar failure. And the area in green has no kinematic risk.

Figure 12 Exposed bedding planes oriented for planar failure, detachment scars, and joints on Monte Conero at the southernmost end of the field area.

Appendix: Structural Data

Key	
b	bedding
j	joints
s	slope
ps	pressure solution
f	fault without sense of motion
nf	normal fault
tf	thrust fault
sf	sinistral fault
df	dextral fault

Stop	Structure	Strike	Dip	Rake
1	b	75	43	
		80	38	
		49	18	
		86	40	
		95	49	
2	b	75	62	
		70	48	
		72	52	
	j	195	42	
		128	88	
3	b	62	49	
		60	52	
	j	181	68	
		174	60	
		169	52	
		184	54	
		194	54	
4	b	266	79	
		262	79	
		258	75	
		256	73	
	j	148	87	
		5	82	
		330	84	

		164	84	
		165	69	
		165	71	
5	j	148	89	
		240	50	
		250	51	
		244	55	
		304	43	
		171	87	
6	b	264	74	
		244	70	
		260	71	
		261	71	
7	j	9	66	
		324	57	
		338	90	
6	landslide face	260	90	
		270	90	
	j	252	89	
		328	90	
8	j	174	54	
		284	73	
		181	68	
		276	42	
		276	58	
		205	61	
		255	72	
		274	48	
		233	43	
	b	94	40	*
		94	72	*
9	b	112	40	
		111	28	
		115	48	
		114	35	
		102	32	
		110	55	
		104	50	
	J	345	79	

		286	48
		284	63
		171	90
		200	82
		207	90
		220	82
		338	74
		286	44
		308	50
		40	78
11	j	150	62
		245	79
		250	64
	b	145	30
10	j	343	76
		284	85
		152	74
		58	70
		204	75
		236	70
12	b	110	36
		101	40
		97	25
		113	27
		105	28
	j	323	62
		290	68
		346	74
		301	66
		341	49
		318	60
		175	84
		270	60
		344	58
		281	52
		301	55
		253	60
		251	70
		290	72

14	b	120	61
		105	80
		111	68
		93	48
		105	70
		109	58
		286	58
		285	61
		285	61
		284	70
15	TF	285	10
16	j	321	58
		372	65
		224	72
		228	82
		335	54
		221	80
		335	66
		282	52
		214	79
		222	79
		339	68
		225	78
		282	49
		333	60
		270	65
	b	114	38
		105	35
		123	35
		116	35
		135	32
17	b	126	26
18	b	135	20
		119	24
19	b	115	37
		129	31
20	j	24	88
		218	86
		25	86

		30	80
21	s	328	87
		304	60
	b	112	18
		130	40
		135	33
	j	20	85
		205	89
		306	4
		314	78
		320	60
		260	70
		334	61
		288	58
		29	80
		323	65
22	b	120	31
	j	333	81
		314	86
		274	85
		299	82
		256	73
		254	62
		17	68
		321	55
		283	90
	S	280	60
		291	62
23	s	126	73
	b	149	24
	J	11	71
		354	87
		233	65
		173	70
		27	85
		257	89
		353	90
		235	82
24	j	263	60

		349	70
		280	64
		270	69
		291	61
		81	90
		288	55
		39	77
		291	50
		41	82
		287	65
		296	55
		68	88
		255	75
		311	49
		288	58
		60	88
		291	52
25	s	132	65
	b	150	22
	j	205	85
		336	75
		286	69
		252	78
		285	58
		271	67
27	nf	128	58
29	b	298	47
30	b	103	34
	j	4	73
		256	69
		355	82
		282	68
31	j	193	48
		155	90
32	f	190	40
33	b	142	16
	j	8	90
		318	45
		235	68

		234	44	
34	s	297	68	
		346	58	
		300	55	
	j	303	75	
		260	51	
		1	65	
		279	74	
		15	89	
		284	72	
35	j	335	47	
		197	86	
36	s	267	68	
	b	114	30	
	j	316	68	
		277	71	
		280	71	
		251	79	
		1	75	
		285	60	
37	b	125	14	
	j	22	80	
		284	75	
		318	80	
		295	79	
		271	79	
		181	90	
		257	85	
		288	89	
		254	82	
		26	84	
		301	89	
		291	87	
		201	90	
		284	81	
		10	85	
		269	82	
38	b	171	18	
		141	28	

	j	189	79
		215	89
		294	78
		269	75
		38	88
		184	86
		355	68
		16	86
		197	82
		290	66
		9	87
		24	90
		255	64
		5	87
39	S	312	87
		295	56
	j	324	65
		332	77
		352	79
		338	86
		278	78
		324	75
		258	61
40	b	144	12
	j	297	65
		221	89
		12	33
		327	52
		274	48
41	s	340	55
	b	149	15
		157	14
		164	22
		132	30
	j	89	51
		300	89
		227	72
		264	72
		316	58

		51	88	
		326	58	
		274	57	
		358	51	
		35	68	
		47	72	
		276	32	
		257	71	
		81	90	
		217	85	
		317	60	
		267	90	
42	S	6	68	
		305	66	
	b	154	13	
		147	25	
	j	16	76	
		13	78	
		292	78	
		12	80	
		331	58	
		11	50	
		301	64	
43	nf	219	35	15E
	nf	229	28	22E
	nf	58	73	27E
	b	155	33	
	j	330	63	
		27	72	
		286	90	
		268	90	
44	df	310	55	0
	j	32	89	
		114	87	
		210	84	
		32	72	
		82	81	
		177	88	
		221	86	

45	nf	189	70	20N
	j	36	78	
		51	53	
		244	67	
		84	64	
46	s	338	64	
	b	134	32	
		140	32	
47	s	315	60	
	b	119	18	
	j	319	71	
		247	28	
		20	65	
		343	58	
		245	81	
49	b	116	31	
		117	32	
	j	344	25	
		200	79	
		223	86	
		331	70	
		214	44	
	nf	127	74	55E
	nf	110	59	84W
	sf	347	31	14 S
50	s	325	43	
	b	137	34	
	j	30	85	
		303	61	
		329	50	
		252	79	
		205	89	
51	s	220	47	
	b	115	39	
		119	31	
	j	304	50	
		309	53	
		304	53	
		196	84	

		214	87	
53	s	330	73	
	b	114	40	
	j	194	88	
		301	64	
		202	85	
		29	80	
		304	62	
61	S	10	47	
	b	15	69	
		26	69	
	j	274	47	
		271	59	
		290	47	
		272	56	
		265	57	
north	b	347	77	
		356	55	
		350	66	
		351	71	
62	b	350	32	
		350	74	
		344	32	
		341	32	
		358	36	
		357	36	
		270	78	
	j	163	42	
		40	80	
		25	90	
		87	86	
	tf	158	45	
	f	86	90	21E
	f	217	70	20E
63	tf	54	64	
	b	337	42	
		320	22	
		303	19	
		303	34	

		335	28	
	ps	120	57	
		87	84	
		162	80	
		180	75	
		178	74	
		260	85	
64	b	323	41	
		322	46	
	ps	81	70	
		190	51	
		277	77	
		146	67	
		236	85	
		184	45	
		74	86	
65	b	314	67	
	ps	247	85	
		224	90	
		222	85	
		210	55	
		16	87	
		78	58	
		69	63	
		157	85	
		63	73	
		345	67	
		220	85	
		231	48	
		61	45	
66	b	314	52	
		309	32	
		306	43	
	j	204	49	
		57	66	
		175	52	
		60	61	
		256	85	
		201	87	

		59	74
		229	81
	ps	113	55
		108	90
		28	45
		111	57
		279	6
		115	63
		108	90
		271	63
		6	53
		355	53
67	b	333	27
		312	34
		317	22
		323	54
		326	58
	j	174	82
		183	72
		110	67
		174	82
	ps	52	86
		74	58
		60	82
		47	90
		70	87
		18	62
	s	110	80
68	b	310	43
		328	64
		320	56
		322	58
		325	53
	j	114	37
		80	87
		30	66
		86	83
		155	72
		258	59

		170	77
	ps	74	88
		174	60
		76	65
		76	58
		192	39
		262	76
		245	45
		47	65
		186	77
		315	86
		70	75
		84	84
		290	79
69	b	325	48
		318	42
		327	55
		329	45
		325	50
	j	150	28
		319	47
		84	79
		10	73
		108	66
		165	66
		70	85
		181	30
		219	81
		237	60
	ps	41	50
		211	59
		36	69
		32	69
		32	68
		220	77
		335	57
		145	45
		72	77
		216	58

		219	66	
		95	25	
		221	69	
		79	87	
		81	81	
		82	81	
		255	83	
		183	60	
	S	305	41	
70	FA	54	35	50W
		45	43	45W
		70	27	61W
		70	30	70W
		102	39	88W
		101	40	84W
	FB	292	87	
		292	90	
	FC	100	86	29W
	JA	246	82	
		40	84	
	BA	291	41	
		304	44	
	JB	61	68	
		29	86	
	BB	285	35	
	b	248	62	
		348	60	
71	b	337	65	
72	b	334	82	
		336	73	
		337	7	
		350	66	
		8	56	
	S	320	68	
	j	82	79	
		310	82	
		283	62	
		94	72	
73	J	216	81	

		217	90
		205	84
		205	88
		210	84
		210	84
74	J	193	82
		218	85
		62	86
		224	74
		210	77
		214	80
		302	60
		294	74
		209	84
		214	82
		219	87
		215	81
		214	83
		214	85
		294	50
		276	56
		214	83
		200	84
		303	58
		202	78
		201	86
		210	86
		327	65
		187	75
		214	86
		310	51
		220	89
		313	72
		204	89
		274	61
		200	79
		160	65
		195	72
75	b	120	26

		125	20
	s	280	54
	j	204	85
		212	68
		222	77
		220	84
		216	86
		216	79
		325	55
		219	74
		220	79
		214	74
		229	73
		335	71
		227	80
		295	46
		217	80
		314	54
		220	86
		313	56
		220	72
		315	61
		221	76
		315	52
		221	80
		315	60
		236	71
76	j	220	80
		280	78
		320	61
		224	80
		292	45
		219	83
		324	60
		224	80
		276	54
		219	81
		275	57
		220	80

		220	80
		291	45
		221	81
		314	58
		293	45
		225	73
		322	61
		284	55
		256	59
		228	72
		330	51
		228	78
		225	78
		230	70
		226	77
		320	56
		224	79
		329	63
		226	76
		269	53
		281	42
	b	115	32
		110	31
		110	32
77	b	115	40
		127	38
	j	150	88
		189	89
		280	53
		157	82
		360	71
		330	57
		295	46
		172	39
		27	90
		310	53
		19	83
		343	50
		150	71

78	b	131	26
		129	37
	j	20	87
		300	36
		232	80
		327	60
		30	87
		296	53
		204	90
		323	87
		291	68
		315	53
		287	58
		290	55
		26	55
		315	56
		296	57
		8	90
		290	51
		351	70
		325	59
		303	57
		316	57
		296	39
		300	40
		321	57
		245	44
		235	40
		322	60
		210	36
		319	56
		324	64
		30	58
		284	52
		305	53
		346	68
		310	56
		200	87
		288	56

		322	56
		314	51
		34	69
		236	56
79	j	334	53
		323	55
		233	56
		310	56
		214	70
		325	58
		2	70
		295	38
		291	52
		287	42
		201	79
		302	41
		277	38
		313	55
		208	89
		294	36
		329	55
		309	41
		25	72
		280	50
		297	45
		30	90
80	b	116	33
		119	31
	S	304	53
	j	324	62
		193	85
		6	74
		322	51
		300	40
		336	40
		10	80
		294	45
		18	87
		216	62

		308	57	
		282	44	
		226	71	
		294	71	
		304	42	
		5	83	
81	b	119	29	
	s	286	55	
	j	295	40	
		45	86	
		259	58	
		294	54	
82	b	116	33	
	j	326	61	
		38	87	
		332	63	
		303	63	
		32	72	
		330	60	
		228	53	

