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ABSTRACT 
 

Kati Lynn Healey: An Examination of D-serine Augmentation on the Behavioral and Cellular 
Mechanisms of Cocaine Seeking 

(Under direction of Kathryn Reissner) 
 

Withdrawal from chronic cocaine use is characterized by cellular adaptations and 

structural remodeling within the brain’s reward circuitry, which are believed to drive persistent 

drug seeking and relapse. In particular, glutamatergic projections onto nucleus accumbens 

medium spiny neurons (MSNs) exhibit synaptic strengthening but a loss of plasticity in 

preclinical animal models of cocaine abuse. Recent evidence suggests that levels of D-serine, 

an astrocyte derived co-agonist of the NDMA receptor, are reduced in the accumbens following 

withdrawal from chronic non-contingent cocaine exposure, and that administration of D-serine 

can reverse these synaptic changes. Moreover, we have found that astrocytes in the nucleus 

accumbens (NAc) core make fewer synaptic connections following cocaine self-administration 

and extinction, suggesting reduced D-serine tone on NMDA receptors through volume diffusion.  

Thus, the overarching goal of this dissertation was to investigate the ability of D-serine 

augmentation to attenuate cocaine seeking following a cocaine plus cue-primed reinstatement 

event and then to characterize the mechanism by which D-serine augmentation attenuated this 

cocaine seeking. Using the self-administration and extinction model of cocaine abuse, the 

present series of experiments found that systemic and intra-accumbal D-serine augmentation 

attenuated cocaine seeking, and that systemic D-serine augmentation depotentiated the 

synapse and enhanced NMDA receptor activation in the NAc core. Interestingly, the 

experiments presented here conclude that there are no changes in surface protein expression 

of glutamatergic ionotropic subunits from the NMDA and AMPA receptors following D-serine 
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augmentation. Therefore, the experiments were unable to determine the direct mechanism of 

action by which D-serine augmentation is reducing relapse to cocaine seeking. However, it can 

be concluded that NMDA receptor induced internalization of AMPA receptors is not likely the 

mechanism of the D-serine augmentation effect. Together, these data enhance the current 

understanding of NMDA receptor involvement in cocaine relapse behaviors, such that NMDA 

receptors oppose reinstatement of cocaine seeking. We also provide a detailed characterization 

of NMDA and AMPA receptor expression and synaptic function after enhancing the NMDA 

receptor co-agonist D-serine.  
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CHAPTER 1: 

 General Introduction. 

 

Cocaine Use and Abuse: Then and Now 

Over 4 centuries ago (3000-2000 BC) in Ecuador is the earlies indication of coca use by 

humans (Van Dyke, C 1984 PMID 7043731). The first documented cultivation and use of the 

coca leaf was in 700 BC in the Andes (Calatayud & González, 2003). The Incas would chew 

coca leaves thought to be given to them by the gods, the first reported use of cocaine(Calatayud 

& González, 2003; Goldstein, DesLauriers, & Burda, 2009). Chewing coca leaves or brewing 

them in tea gives an energy boost and has long been used to treat headaches, toothaches and 

intestinal cramps in the Andes and other areas of South America. They also are high in calcium 

and can relieve altitude sickness, possibly why this tradition, started many centuries ago, is still 

common practice in the Andes. Native Peruvians had strict rules to chew coca only during 

religious ceremonies, however this changed in 1500 AD when the Spanish invaded and forced 

the natives to work in their silver mines. The Spanish started requiring the workers to chew coca 

leaves to make them easier to control and exploit in their mines.  

In 1860, the main active ingredient in coca leaves was extracted by German Chemist 

Albert Niemann, but it wasn’t until 1898 that cocaine was synthetically produced by Dr. Richard 

Willstatter. Shortly after Niemann improved the purification process, cocaine received a famous 

champion in Dr. Sigmund Freud when he was completing his doctoral work in Austria. Dr. Freud 

was enthusiastic about the implications of using cocaine as a numbing agent for surgeries, and 

even became a proponent for recreational use, using the drug himself copiously. He advocated 
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that cocaine could be used as a tonic to cure depression and sexual impotence and even went 

so far as to write a document on the “magical” substance’s benefits entitled Uber Coca in 1884.  

Across the pond, an American surgeon also became enamored with cocaine, Dr. William 

Stewart Halsted. He was one of the first surgeons to emphasize a strict aseptic technique during 

surgeries (we can thank him for surgical gloves) and was a proponent of early anesthetics. He 

often used himself as a test subject, and encouraged other doctors to do the same, however, a 

result of these experimentations was that Dr. Halsted battled addiction to cocaine, and later 

morphine, until the end of his life  (Imber).  

Parallel to these medical interests in cocaine, cocaine and opium-laced elixirs, tonics and wines 

became broadly used by all social classes. John Pemberton included coca leaves in his new 

soft drink, creating Coca-Cola in 1886. The drink had immediate popularity, and continued using 

the coca leaves until 1901 when they were removed due to pressure from the increasing health 

crises of cocaine addiction, at which time caffeine was substituted for cocaine (Karch, 2005). 

Icons such as Jules Verne, Thomas Edison and Sara Bernhardt advocated for Vin Mariani, a 

cocaine laced wine, in advertisements and Bernhardt’s endorsement is an example of the pro-

cocaine sentiment from Hollywood that influenced millions.  

By 1905 it was discovered that cocaine did not need to be in a solution and that snorting the 

drug could give a more potent high. Within 5 years nasal damage from snorting cocaine was 

seen in hospitals and was reported in medical journals (Karch, 2005). In 1914, the use of 

cocaine was outlawed by the Harrison Narcotics Tax Act. However, modern criminal laws that 

are enforced today come from the Controlled Substances Act of 1970. 

In 1961 an international treaty was enacted entitled the Single Convention on Narcotic 

Drugs requiring countries to make recreational use of cocaine and other narcotics a crime 

(Room & Reuter, 2012). Soon after the international treaty and the Controlled Substances Act, 

cocaine became a serious problem in the United States of America (US). Colombian drug 

traffickers began setting up elaborate trafficking networks in the 1970’s to ship their cocaine to 
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the US. As a result, by 1990 drug cartels produced and exported tons of cocaine per year to the 

US and also to Europe and Asia. In retaliation, law enforcement targeted and dismantled the 

Columbian drug cartels throughout the 1990s. Today, smaller cartels remain, and as of 2008 

cocaine had become the second most illegally long-distance trafficked drug in the world 

(UNODC, 2010).  

In 2009 the NDIC reported that intercartel fighting and expanding drug markets in Europe 

and elsewhere has lowered cocaine availability in the US, driving a 69% increase in cocaine 

prices in the 3rd quarter of 2010 (STRIDE, 2010). Along with this decrease in availability and 

increased costs, it was also reported in 2009 by the National Survey on Drug Use and Health 

(NSDUH) that the rate of cocaine use among individuals 12 and older declined to 1.9% from 

2.5% in 2006 (NSDUH, 2011) and that trend has continued in 2016 with prevalence of use in 

the last 12 months of cocaine in ages 12 or older at 1.9% (NSDUH 2016 (NSDUH, 2016).  

Societal costs of cocaine abuse remain high, despite the plateau of drug use. In 2006 there 

were 7,475 fatal cocaine poisonings in the US, approximately 20% of all drug related deaths 

(SAMHSA, 2012). However, this may be a conservative estimate, as other studies have 

reported cocaine related deaths make up 40% of all drug related deaths, costing the US an 

estimated $13 billion in cocaine related premature deaths (UNODC, 2010). Further, the Drug 

Abuse Warning Network (DAWN) reported in 2011 that of the nearly 1.3 million emergency 

room visits for drug use or misuse, cocaine was present in over 500,000 of these visits 

(NSDUH, 2011).  

Substance abuse in all classes of drugs cost the US over $700 billion annually (National 

Institute on Drug Abuse [NIDA], 2015), as such investment in addiction treatment should be a 

high priority to reduce these costs. Summarized by the NIH, assessments state that for every $1 

invested in addiction treatment $5-7 can be returned in savings of drug related crimes, criminal 

justice cost and theft (NIDA, 2016). A modest cocaine abuse disorder medication, that would 

reduce 1995 cocaine intake levels by 1% was approximated in 2000 to save the US $259 million 
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(Cartwright, 2000), further a modest medication that could increase abstinence by 10% would 

have a cost benefit ratio between 1.59-5.79 (Cartwright, 2000). Accordingly, development of 

novel effective pharmacotherapeutics that combat addiction are necessary to offset the societal 

costs of substance abuse disorders. Unfortunately, however, there are currently no FDA-

approved medications to combat psychostimulant use disorders. 

 

Cocaine pharmacology and the physical effects of cocaine use 

Cocaine is a Schedule II drug, indicating that it has a high abuse potential but also has 

legitimate medical uses, which include applications as a local anesthetic in eye, ear, nose, 

throat and dental surgeries. Cocaine is the second most widely abused illegal drug globally, 

after cannabis (Karila et al., 2014; UNODC, 2010). People abuse cocaine in two forms: soluble 

cocaine hydrochloride salt and insoluble cocaine base (freebase; (NIDA, 2016)).  Processing 

cocaine hydrochloride further with ammonia or sodium bicarbonate yields cocaine freebase or 

crack cocaine, which can be smoked (Goldstein et al., 2009). Abusers most often use cocaine in 

binge patterns, escalating their dose to maintain a potent high and counteract tolerance. 

Unfortunately, street dealers mix cocaine with other products to increase profit. They use things 

such as cornstarch, talcum powder or flour or can mix with other drugs like amphetamine or 

fentanyl, potentially lethal combinations. 

Cocaine easily crosses the blood brain barrier, allowing for the euphoric effects of the drug 

to set in quickly. The drug effects last for 15-30 minutes after snorting cocaine powder and the 

high from inhalation through smoking or other means lasts for 5-10 minutes. Physical symptoms 

include: fast heart rate, sweating, dilated pupils, high blood pressure or body temperature, 

nausea, constricted blood vessels, tremors and muscle twitches, and restlessness (NIDA, 2016). 

Cognitive symptoms include: alertness, extreme happiness and energy, hypersensitivity to 

sound, sight and touch, irritability, and paranoia ((NIDA, 2016).  
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Long-term effects of cocaine use can lead to loss of smell, nosebleeds, frequent runny nose, 

and problems swallowing in individuals who snort cocaine. Consumption of cocaine by mouth 

can lead to severe bowel decay due to reduced blood flow in the intestines (NIDA, 2016) and 

intravenous cocaine users have a higher risk of contracting Human Immunodeficiency Virus 

(HIV), hepatitis C, and other blood borne diseases. Use of cocaine in all forms leads to impaired 

judgment, which can lead to risky sexual behaviors that are associated with high risk of sexually 

transmitted infections (STI;(NIDA, 2016)). Other long-term effects of cocaine use are 

malnourishment, movement disorders (or disorders of dopamine), severe paranoia where the 

abuser loses touch with reality and auditory hallucinations and importantly impaired 

cardiovascular function and risk of heart disease (NIDA, 2016).  

The chemical name for cocaine is benzoylmethylecgonine and its mechanism of action is to 

inhibit the reuptake of serotonin, norepinephrine and dopamine. Cocaine binds to the dopamine 

reuptake transporter (DAT, NET and SERT) and blocks the transporter from removing 

neurotransmitter, particularly dopamine, from the synapse. Accordingly, dopamine remains in 

the synapse longer, activating the reward pathway for an extended period of time. Prolonged 

use of cocaine leads to numerous neuroadaptations in the reward pathway, including 

disruptions of glutamate homeostasis (Kalivas, 2009) and glucose metabolism (Volkow, Wang, 

Fowler, Tomasi, & Telang, 2011), the former to be discussed in further detail later. These lasting 

neuroadaptations and high prevalence of cocaine abuse in the US and around the world, 

combined with the medical and socioeconomic consequences mandate a better understanding 

of the mechanisms responsible for reward, dependence and addiction. Developments in animal 

models of addiction have and continue to facilitate this endeavor, in a search for 

pharmacotherapies to combat psychostimulant addiction.  
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Modeling intravenous cocaine administration in the laboratory. 

It wasn’t until the 20th century that scientists began to explore a new type of learning apart 

from the established associative learning, stimulus-response learning. The first to study 

stimulus-response learning was Dr. E.L. Thorndike, who for his doctoral thesis set up puzzle 

boxes that hungry cats could escape from to get to food located outside the box by various 

behavioral responses (e.g. pulling a cord or a lever; (THORNDIKE, 1898)). These were discrete 

trails, because the cat could only escape the box once to consume the reward and then the trial 

was completed. Following Dr. Thorndike, Dr. B.F. Skinner came up with a more continuous way 

to study stimulus-response learning, in what is called free-operant conditioning. In these 

experiments animals are allowed to repeat the response over and over without constraint or 

removal from the apparatus until the designated end of the trial. This allows for study of 

continuous behavior in a way that mazes and puzzle boxes are unable to do, due to the nature 

of the discrete trial design.  

Free-operant conditioning allows for the study of behavior in the context of the probability of 

future occurrences. The operant response is defined by how the behavior operates on the 

environment, rather than what the behavior is itself. In contrast, the instrumental response is 

what is necessary to produce the desired consequence or outcome. Newer models of reinforced 

behavior emphasize that actions of reinforcement need to be considered and understood in a 

broader context relating learning and memory (Hyman, 2005; N. M. White, 1996), instead of the 

simpler Skinnerian view that events following a response solely guide the probability of future 

occurrences of that response.  

Simple schedules of operant conditioning can be used to elucidate mechanisms of relapse 

to drugs of abuse and other aspects of substance use disorders. A hallmark of addiction in the 

clinical population is compulsive drug seeking and relapse to drug use; these features separate 

addiction from recreational use. In preclinical experiments, operant training for drug delivery 

schedules is an example of positive reinforcement in which the drug of abuse is the reinforcer, 
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increasing the instrumental response to self-administer the reward. The route of self-

administration is important, and in preclinical cocaine research intravenous administration is the 

most prevalent. An operant chamber (“Skinner box”) is necessary to perform intravenous self-

administration behavior. The configuration of theses boxes can be adjusted for the needs of the 

experiment, and most commonly have levers for responding, however other more “naturally” 

occurring behaviors such as nose poke (rodents) or key pecking (pigeons) can be incorporated 

in these boxes. They also allow for programmed events such as lights, tones and smells that 

can be paired with drug delivery and be used as discrete stimuli or secondary reinforcers. 

The most common model of self-administration in drug literature is using a fixed-ratio (FR) 

schedule of drug delivery. Under this schedule the subject must perform the operant response a 

certain number of times to obtain the reward, and this number is fixed throughout the self-

administration session. Generally, experiments use an FR1 schedule (or continuous 

reinforcement) where the operant response must be performed one time to receive the 

reinforcer (drug). There is generally a time out period (often 20 seconds) following completion of 

the schedule to prevent overdose.  It is important to note, that this time out period has an effect 

on the behavior of the animal, and makes the protocol not a true continuous reinforcement 

schedule.  

After achieving stable drug delivery, animals are then placed into extinction training sessions, 

where the drug is no longer available. This period of abstinence allows for the instrumental 

response to extinguish and a period of abstinence from the drug. This training usually lasts 1-2 

weeks and then reinstatement to drug seeking is triggered using cues associated with the drug 

such as lights and tones (discrete stimuli), contextual stimuli and/or administration of a dose of 

the drug. Separately, stress can also increase seeking behavior after the response has been 

extinguished (for a review see (Mantsch, Baker, Funk, Le, & Shaham, 2016)). Interestingly, 

different ways to prime reinstatement (stress, cue, or drug injection), show little overlap in their 



 8 

neurobiological mechanisms to induce seeking behavior (Sutton et al., 2003), and are even 

additive when combined (X. Liu & Weiss, 2002).  

Preclinical research uses reinstatement to model drug relapse; however, reinstatement can 

differ greatly from the clinical population’s relapse events. In the clinical population, relapse is 

considered consumption after a period of abstinence, and the drug is not always consumed in 

preclinical relapse models. This has led some to point out that these preclinical models are not 

modeling relapse (Sanchis-Segura & Spanagel, 2006), however they also argue that this 

doesn’t negate their value as a model.  

 

Drug induced alterations of astrocyte biology and morphology.  

As referenced above, one of the fundamental cellular consequences of withdrawal from 

cocaine self-administration is disruption in glutamate homeostasis, mediated by decreased 

expression and function of GLT-1 and system xC- (Baker et al., 2003; Baker, Shen, & Kalivas, 

2002; Kalivas, 2004, 2009; Knackstedt, Melendez, & Kalivas, 2010). Moreover, pharmacological 

restoration of these systems is associated with decreased reinstatement and behavioral 

measures of cocaine craving (Knackstedt et al., 2010; Reissner et al., 2014; Reissner et al., 

2015; Sepulveda-Orengo et al., 2017). Both of these systems are primarily expressed in 

astrocytes, suggesting functional significance of cocaine-induced adaptations in astrocytes 

(Danbolt, 2001; Lehre, Levy, Ottersen, Storm-Mathisen, & Danbolt, 1995; Y. Zhang et al., 2014).  

Out of the three types of glial cells (including oligodendrocytes and microglia), astrocytes are 

the most numerous, outnumbering neurons (Volterra & Meldolesi, 2005) (Allen & Barres, 2009) 

(Sofroniew & Vinters, 2010)). Astrocytes are star-shaped cells that have multiple functions from 

nourishing and supporting neurons to roles in synaptic development and signaling, and 

transmitter uptake and release (for a review, see(Sofroniew & Vinters, 2010)). Astrocytes are 

classified based on morphology and astrocyte-specific biomarkers such as glial-fibrillary acid 

protein (GFAP), glutamine synthetase (GS), connexin, and the aquaporin receptor (AQP4). The 
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most common way to identify astrocytes is GFAP expression, however, not all astrocytes 

express GFAP (Kimelberg, 2004) (Kettenmann & Ransom, 2012) and GFAP expression is brain 

region specific (Sofroniew, 2009; Sofroniew & Vinters, 2010). In fact, GFAP is a reliable marker 

for reactive astrocytes and many astrocytes in healthy CNS do not have detectable levels of 

GFAP.  

Despite similarities in their biomarkers, astrocytes remain a diverse cell type. Astrocytes are 

heterogeneous cells and the two most prominent types are protoplasmic and fibrous. Despite 

similarities, they are morphologically and biochemically distinct (Miller & Raff, 1984). 

Protoplasmic astrocytes are characterized by a large number of branching projections and are 

primarily located in grey matter, whereas fibrous astrocytes have longer, thinner processes with 

fewer branches and are primarily located in white matter (Miller & Raff, 1984). Both types make 

connections with blood vessels through astrocytic end feet and exhibit gap junction coupling 

with neighboring astrocytes (Kettenmann & Ransom, 2012; Peters, Palay, & Webster, 1991). 

However, fibrous processes interact with nodes of Ranvier in the white matter tissue, whereas 

the protoplasmic astrocytes ensheath neuronal synapses in grey matter (Khakh & Sofroniew, 

2015). The ends of the astrocytic processes tightly hug the synapse, forming what is known as 

the tri-partite synapse (Araque, Parpura, Sanzgiri, & Haydon, 1999) (Heller & Rusakov, 2015), 

engaging in neuronal signaling through the uptake and release of transmitters and trophic 

factors (Allen, 2014; Appel, Kolman, Kazimirsky, Blumberg, & Brodie, 1997). 

For many years it was considered that astrocytes only function was to structurally support 

and provide nourishment for neural tissue, and that astrocyte reactivity was a marker of 

diseased tissue, a response to a pathology. It was not considered, until more recently, that 

astrocyte reactivity could be a causal factor behind these pathologies. Further, Pekny and 

colleagues (2015) have proposed that there are two pathways of astrogliopathology: (i) the 

commonly known reactive astrogliosis where astrocytes can have neuroprotective effects or 

anisomorphic/severe scar forming effects, and (ii) the newer category astrocytopathy that 
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includes the atrophy/degeneration with loss of function and pathological remodeling of 

astrocytes (classifications proposed in Pekny review (Pekny et al., 2016), fig 2). Atrophic 

astrocytes are smaller, do not ensheath the synapse as tightly and have reduced expression of 

GFAP, AQP4 and glutamate transporter 1 (GLT-1) (for a review see (Pekny et al., 2016)). The 

consequences of these morphological and biochemical changes include an inability to mediate 

glutamate homeostasis at the synapse, reduced tone of signaling molecules and trophic factors 

due to volume distribution and reduced production, altered glucose metabolism and reduced 

network connectivity of astrocytes (Pekny et al., 2016) (Q. Wang, Jie, Liu, Yang, & Gao, 2017). 

Interestingly, this pattern closely resembles cellular adaptations that are caused by cocaine. 

Cocaine-induced adaptations in astrocytes have recently begun to emerge among the 

cellular mechanisms which mediate cocaine seeking. The functional consequence of drug-

induced adaptations to astrocytes remains largely unknown, and what has been investigated 

focuses on GFAP expression, which, as stated above, may not be a measure of all astrocytes. It 

has been reported that short (24 hr) withdrawal from acute administration of non-contingent 

cocaine increased GFAP expression in the nucleus accumbens shell (NAc shell) but not the 

core, and both regions had no change in GFAP expression at 1 or 3 week(s) of withdrawal 

(Bowers & Kalivas, 2003). Also, our laboratory has reported that GFAP is downregulated in the 

NAc core following cocaine self-administration and extinction (Scofield, Li, et al., 2016). These 

limited experiments begin to give a picture of dynamic GFAP expression following contingent 

cocaine exposure, where at early withdrawal points GFAP is increased and at prolonged 

withdrawal time points we see reduced GFAP expression. These are the first studies with 

insight into morphological and structural changes that could be occurring in nucleus accumbens 

astrocytes following cocaine exposure and withdrawal. Further investigation is necessary to 

make any conclusions on drug-induced astrocyte adaptations.  

Of importance, there is some evidence that astroglial asthenia (or atrophy) is characteristic 

of neuropsychiatric disorders such as frontotemporal dementia, stress, major depressive 
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disorders, schizophrenia and substance use disorders (Brebner et al., 2005; Niciu, Henter, 

Sanacora, & Zarate, 2014)  (Scofield, Li, et al., 2016) (Braun, Antemano, Helmeke, Büchner, & 

Poeggel, 2009) (Czeh, Simon, Schmelting, Hiemke, & Fuchs, 2006; Rajkowska & Stockmeier, 

2013); for a review see (Scofield, Heinsbroek, et al., 2016; A. Verkhratsky, Nedergaard, & Hertz, 

2015), indicating this may be a rich area for future study. There are currently a limited number of 

pharmacological therapies available for opioid, alcohol and nicotine use disorders, however as 

stated above there are no FDA approved medications for psychostimulant or cannabis use 

disorders (NIH, Treatment Approaches for Drug Addiction, Revised July 2016). Accordingly, it is 

of considerable interest to investigate the potential of psychostimulant-induced adaptations to 

astrocytes, for the potential development of pharmacotherapies aimed at reducing relapse in 

substance abuse disorders. 

 

Adaptations in the nucleus accumbens during prolonged withdrawal represent cellular 
mechanisms that contribute to cocaine seeking. 

 
Use of the rodent self-administration and reinstatement model has yielded considerable 

information regarding the neurocircuitry and cellular mechanisms associated with cocaine 

relapse. In particular, the nucleus accumbens (NAc) represents a limbic-motor integrator of the 

reward circuitry, translating motivation into behavioral output (Mogenson, Jones, & Yim, 1980; 

Roitman, Wheeler, & Carelli, 2005). As such, the NAc is a particularly salient nucleus for 

investigation of cellular mechanisms of cocaine seeking, where cocaine-induced adaptations 

guide cocaine-seeking behavior (Kalivas & Volkow, 2011; Stuber, Hopf, Tye, Chen, & Bonci, 

2010; Wolf, 2010). Among these, glutamate homeostasis in the NAc core is disrupted following 

cocaine experience. Glutamate homeostasis is a balance between glutamate levels in the 

synaptic and extra-synaptic space, and maintenance of glutamate homeostasis is integral to 

cellular function (Kalivas, Lalumiere, Knackstedt, & Shen, 2009). Importantly, after cocaine 

experience and withdrawal, basal extracellular glutamate levels are reduced; however, during 
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subsequent administration of drug or presentation of drug-associated cues in cocaine-withdrawn 

animals, glutamate release is transiently, significantly increased (Baker et al., 2003; McFarland, 

Lapish, & Kalivas, 2003). These disruptions in glutamate homeostasis are largely mediated by 

reduced expression and activity of glutamate uptake and exchange via system xc- and the high 

affinity family of glutamate transporters, in particular GLT-1 (Baker et al., 2003; Baker et al., 

2002; Fischer-Smith, Houston, & Rebec, 2012; Knackstedt et al., 2010; Pierce, Bell, Duffy, & 

Kalivas, 1996). The consequence of these disruptions is that during a relapse event, clearance 

of glutamate from the synapse is impaired, leading to increased tone on glutamatergic receptors 

in the synaptic and extra-synaptic space, in particular α-amino-3-hydroxy-5-methyl-4-

isoazolepropionic acid (AMPA) receptors, driving motivation to seek drug (Backstrom & Hyytia, 

2007; Ping, Xi, Prasad, Wang, & Kruzich, 2008; Wolf & Tseng). Supporting this, drugs that 

upregulate xc-/GLT-1 and normalize glutamate homeostasis attenuate cocaine seeking 

behaviors after self-administration and extinction (Baker et al., 2003; Knackstedt et al., 2010; 

Reissner et al., 2014; Reissner et al., 2015; Sepulveda-Orengo et al.). 

Additionally, synaptic strength and plasticity are disrupted in NAc medium spiny neurons 

(MSN) following cocaine experience, including long-term potentiation (LTP) and long-term 

depression (LTD), which are considered cellular indices of learning and memory (Kasanetz et 

al., 2010; Martin, Chen, Hopf, Bowers, & Bonci, 2006; Moussawi et al., 2009). Interestingly, 

despite the resistance to induction of adaptive forms of plasticity following cocaine self-

administration and extinction, NAc core synapses are chronically potentiated, as measured by 

AMPA:NMDA ratios, and become further potentiated after re-exposure to drug-associated cues 

(Gipson et al., 2013) or the drug itself (Shen, Gipson, Huits, & Kalivas, 2014). Also, inhibition of 

prelimbic cortical afferents to the NAc attenuates this cue-induced transient potentiation and 

attenuates cocaine seeking (Stefanik, Kupchik, & Kalivas, 2016). A possible mechanism for this 

potentiation is increased surface expression of AMPA receptors in the NAc core and shell 

(Conrad et al., 2008). AMPA receptors in the NAc are integral for cocaine seeking (Briand, 
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Kimmey, Ortinski, Huganir, & Pierce, 2014; Cornish, Duffy, & Kalivas, 1999; S. L. White et al., 

2016) and either pharmacological blockade (Backstrom & Hyytia, 2007; Cornish & Kalivas, 

2000; Xie et al., 2012) or reduced surface protein expression (Famous et al., 2008; Ping et al., 

2008) attenuates reinstatement to cocaine seeking. However, an intriguing mechanism of AMPA 

receptor removal that has not been studied in cocaine reinstatement is NMDA receptor triggered 

endocytosis of AMPA receptors (Biou, Bhattacharyya, & Malenka, 2008; T. C. Brown, Tran, 

Backos, & Esteban, 2005; Casimiro et al., 2011; Luscher et al., 1999).  

 

Astroglial modulators restore cocaine-induced alterations of synaptic strength and 
plasticity and influence behavior. 
 

Astroglial modulators that upregulate glutamate transporters GLT-1 and xc- have 

demonstrated potential as addiction pharmacotherapeutics to restore synaptic strength and 

plasticity (Reissner et al., 2014; Reissner et al., 2015, Sepulveda-Orengo 2017; Scofield, Li, et 

al., 2016; Trantham-Davidson, LaLumiere, Reissner, Kalivas, & Knackstedt, 2012). Ceftriaxone 

(Knackstedt et al., 2010; Trantham-Davidson et al., 2012), N-Acetyl-cysteine (Knackstedt et al., 

2009), Propentofylline (Reissner et al., 2015) and Riluzole (Carbone, Duty, & Rattray, 2012) 

upregulate GLT-1, which is responsible for clearing approximately 90% of all synaptically 

released glutamate (Kalivas et al., 2009; Tanaka, Ichikawa, Watanabe, Tanaka, & Inoue, 1997), 

and attenuate cocaine seeking. N-Acetyl-cysteine (NAC) increases both GLT-1 and xc- and 

attenuates cocaine seeking (Baker et al., 2003; Knackstedt et al., 2010), yet this effect is 

dependent only on restored GLT-1 expression (Reissner et al., 2015). Likewise, propentofylline 

(Reissner et al., 2014) and ceftriaxone (Knackstedt & Kalivas, 2009; LaCrosse et al., 2017; 

Trantham-Davidson et al., 2012)attenuate cocaine seeking by upregulation of GLT-1, however 

the effect of ceftriaxone is also dependent on restored xc- (LaCrosse et al., 2017).  

Extending on these studies, we have shown that astrocytes exist in a retracted state and 

make fewer synaptic connections following two weeks of extinction from cocaine self-
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administration, and that the glial modulator ceftriaxone rectifies this deficit (Scofield, Heinsbroek, 

et al., 2016). These findings expand the appreciation of astrocytes as a component of the model 

of cocaine-induced deficits in synaptic signaling and plasticity in the NAc and raises the 

potential of astrocytes as a pharmacotherapeutic target.   

Adding to these results, astrocyte derived amino-acid D-serine has been well established as 

a modulator of learning and memory. D-serine is an important co-agonist of NMDA receptors, 

which can rescue impairments in learning and memory (H. Han, Peng, & Dong, 2015; Labrie, 

Wang, Barger, Baker, & Roder, 2010), and facilitate extinction of fear memories (Bai, Zhou, Wu, 

& Dong, 2014; Labrie et al., 2010; Matsuda et al., 2010), cocaine conditioned place preference 

(Z. Q. Liu et al., 2016) and cocaine self-administration (Hafenbreidel, Rafa Todd, Twining, 

Tuscher, & Mueller, 2014; Kelamangalath, Seymour, & Wagner, 2009; Kelamangalath & 

Wagner, 2010).  

We have recently shown that astrocytes retract from synapses in the NAc core following 

cocaine self-administration and withdrawal (Scofield, Li, et al., 2016), creating a potential barrier 

for volume transmission of D-serine to the synapse (Panatier et al., 2006). A reduction of D-

serine at the synapse may thus impair NMDA receptor function, contributing to the increase in 

AMPA:NMDA ratio observed in the NAc of cocaine-withdrawn animals (Gipson et al., 2013; 

Shen et al., 2014). Importantly, a change of NMDA receptor function due to decreased D-serine 

tone would be independent of NMDA receptor subunit expression. In fact, some studies have 

shown upregulated NMDA receptor expression following cocaine self-administration and 

extinction (Hafenbreidel et al., 2014; P. I. Ortinski, 2014) and forced abstinence (Lu, Grimm, 

Shaham, & Hope, 2003; Tang, Wesley, Freeman, Liang, & Hemby, 2004). This cocaine-induced, 

astrocyte-mediated reorganization of synaptic function is at the heart of my dissertation project.  
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Goals of the current dissertation. 

The finding that NAc core astrocytes are smaller and make fewer synaptic contacts in 

cocaine- versus saline-extinguished animals raises interesting and important questions 

regarding the functional significance of this drug-induced adaptation. The governing hypothesis 

that was tested in this dissertation project was that reduced synaptic colocalization of astrocyte 

processes creates a barrier to volume transmission of astrocyte-derived D-serine to neuronal 

NMDA receptors, thereby contributing to the synaptic adaptations which characterize cocaine 

seeking behaviors. Consequently, the primary goal of this dissertation was to characterize the 

effect of D-serine augmentation on reinstatement to cocaine seeking. To accomplish this, two 

strategies were utilized: (i) characterization of the behavioral effects of D-serine and (ii) 

elucidation of the cellular and molecular mechanisms responsible for the observed effects. 

Chapter 2 provides an assessment of the behavioral effect of D-serine augmentation on cocaine 

seeking. Chapter 3 investigated the role of the NAc in the behavioral effects of systemic D-

serine augmentation, using NAc-specific stimulation of NMDA receptors, followed by cell 

surface biotinylation to assess the effects of systemic D-serine augmentation on cell-surface 

glutamate receptor expression in the NAc. Finally, in Chapter 3, I determined the effects of D-

serine augmentation on synaptic strength and plasticity in the NAc utilizing whole cell patch 

clamp electrophysiology. 

Importantly, I hypothesized that D-serine augmentation, during a cocaine plus cue-

primed reinstatement test, will increase tone on NMDA receptors. I hypothesized that the 

combination of D-serine with elevated levels of glutamate released during reinstatement would 

induce NMDA receptor-mediated AMPA endocytosis, depotentiate the synapse and reduce the 

cellular excitation of the NAc that drives reward seeking. Thus, the impetus of this dissertation 

was to investigate the cellular mechanism by which astrocyte-derived gliotransmitter D-serine 

can reduce cocaine reward and seeking.  Results obtained collectively from these studies add 

to the discussion of whether NMDA receptor agonism can impair cocaine seeking and normalize 
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synaptic strength in the NAc. Importantly, the results generated by the experiments in this 

dissertation will inform future hypotheses and guide understanding of how astrocytes modulate 

neuronal processing and synaptic plasticity, as well as elucidate the potential mechanism for 

these changes. 
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CHAPTER 2: 

The Effects of D-serine Augmentation on Cocaine Seeking. 

 

Introduction.  

Relapse to drug seeking after a period of abstinence is a defining feature of substance 

use disorders.  Preclinical animal studies indicate that withdrawal from chronic cocaine use is 

characterized by cellular adaptations and structural remodeling within the brain’s reward 

circuitry, which are believed to drive persistent drug seeking and relapse. Accordingly, 

identification of cellular adaptations which mediate drug seeking represent candidate targets for 

pharmacotherapeutic development. 

As introduced in the preceding chapter, chronic cocaine self-administration and 

withdrawal lead to maladaptive adaptations within the NAc core. The NAc core is an important 

limbic-motor integrator that translates internal motivational states into motor output (Mogenson 

et al., 1980; Roitman et al., 2005), and as such is central to relapse behaviors (McFarland and 

Kalivas 2001). Among these functionally significant adaptations, withdrawal from cocaine self-

administration is characterized by impaired glutamate homeostasis in the NAc core, and 

interventions that rectify this dysregulation inhibit cocaine seeking [for a review see (Scofield & 

Kalivas, 2014)]. Because glutamate homeostasis is largely mediated by the transporter and anti-

porter systems localized on astrocytes, a greater appreciation of astrocyte-mediated 

mechanisms of cocaine seeking is warranted. 

Astrocytes make close physical contact with neuronal synapses, referred to as the 

tripartite synapse (Araque et al., 1999) and have been extensively implicated in synaptic 

transmission, strength and plasticity (De Pitta et al.; Haydon & Nedergaard, 2015; Panatier et al., 



 18 

2006). In particular, NMDA receptor activity is gated by co-agonism by D-serine in the nucleus 

accumbens (Curcio et al., 2013).  

D-serine is one in a list of gliotransmitters that are released by astrocytes including 

GABA, adenosine, and others (Araque et al., 1999; Barker & Ullian, 2010). The biosynthetic 

enzyme serine racemase (SR) converts L-serine to D-serine and is found both in neurons and 

astrocytes (Curcio et al., 2013; Verrall et al., 2007; Wolosker, 2011), providing evidence that D-

serine is not exclusively a gliotransmitter. However, the first step of L-serine production is 

catalyzed by 3-phosphogylcerate dehydrogenase (3-PGDH), an exclusively astrocytic enzyme 

(Ehmsen et al., 2013; Martineau, Parpura, & Mothet, 2014). The serine shuttle model proposes 

that L-serine is generated in astrocytes and shuttled to neurons using alanine-serine-cysteine-1 

transporter-1 (Asc1) and alanine/serine/cysteine/threonine transporter (ASCT; (Wolosker, 

2011)) to be synthesized by SR. Importantly, D-serine is the primary endogenous co-agonist of 

the N-methyl-D-aspartate (NMDA) receptor at the glycine modulatory site in the NAc, as the 

effect of glycine degradation on NMDA-mediated EPSCs is negligible in this region (Curcio et al., 

2013). 

It is important to note that the role of astrocytes in D-serine synthesis and transmission is 

controversial. Recent evidence has pointed to neurons, not astrocytes, as the primary source of 

SR, the bidirectional enzyme that converts L-serine to D-serine and vice versa (Foltyn et al., 

2005), and SR knockout studies indicated a reduction in D-serine in neurons and not astrocytes 

(Benneyworth & Coyle, 2012). Additionally, there has yet to be evidence supporting D-serine 

release machinery in astrocytes [(Agulhon, Fiacco, & McCarthy, 2010) for a review see 

(Wolosker, Balu, & Coyle, 2016)]. Because of this, Wolosker and colleagues support neurons as 

the dominant source of D-serine (Wolosker et al., 2016).  Countering these claims, Oliet and 

colleagues point to established research that indicates astrocytes have optimal conditions for D-

serine synthesis, and neurons have optimal conditions for D-serine degradation (Ehmsen et al., 

2013; Foltyn et al., 2005; Papouin, Henneberger, Rusakov, & Oliet, 2017). They further argue 
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that differences in experimental conditions from physiological conditions can reverse serine 

racemase to primarily degrading D-serine and that using staining methods for serine racemase 

in neurons and astrocytes is confounded by the difference in makeup of the neruopile [~5-5% 

astrocytic and 70-75% neuronal; (Papouin et al., 2017)]. Finally, they point out that despite a 

lack of evidence for release machinery in astrocytes, there is also currently no evidence for 

release mechanisms of D-serine in neurons. As such, further investigation is necessary to settle 

this dispute of the locus, either astrocytic or neuronal, of D-serine synthesis and release.  

Our lab has recently reported that NAc core astrocytes exist in a retracted state following 

extinction from cocaine self-administration, where the astrocytes are reduced in surface area, 

volume and co-localization to the synapse compared to saline control animals (Scofield, Li, et al., 

2016). These findings follow a growing amount of research implicating atrophic astrocytes in 

neuropsychiatric disorders such as major depressive disorder, schizophrenia and chronic stress 

(Katsel et al., 2011; Rajkowska & Stockmeier, 2013; Q. Wang et al., 2017; Y. Zhao et al., 2017). 

Interestingly, administration of ceftriaxone, a beta-lactam antibiotic, known to attenuate cocaine 

reinstatement by rectifying glutamate homeostasis (Kalivas, 2009; Knackstedt et al., 2009), 

reverses the deficit in synaptic co-localization of NAc core astrocyte peripheral processes in 

cocaine self-administering animals (Scofield, Li, et al., 2016). As such, combating these 

enduring cellular adaptations caused by cocaine use and prolonged withdrawal, such as 

atrophic astrocytes, could be useful targets to reduce relapse.  

One of the consequences of atrophic astrocytes is impaired functional release of 

gliotransmitters.  Identified astrocyte-derived factors include glutamate, GABA, ATP, D-serine, 

and others (Alexei Verkhratsky, Matteoli, Parpura, Mothet, & Zorec, 2016). Subsequently, D-

serine can be transported to neurons, and can be released by either neurons or astrocytes. 

(Martineau et al., 2014; Papouin et al., 2017; Wolosker et al., 2016). Reduced synaptic 

colocalization of astrocyte processes results in a barrier of volume transmission for both L- and 

D-serine, raising the hypothesis that NMDA function mediated by D-serine co-agonism is 
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impaired in cocaine-extinguished animals, and contributes to the cellular adaptations which 

drive maladaptive synaptic and behavioral function.  

Supporting this, D-serine administration reduces behavioral sensitization to non-

contingent cocaine (Curcio et al., 2013; Z. Q. Liu et al., 2016; Puhl, Berg, Bechtholt, & Coyle, 

2015). Additionally, D-serine reduces compulsive alcohol intake (Seif et al., 2015). Given the 

important role for D-serine in NMDA receptor function and learning and memory, D-serine has 

also been shown to facilitate extinction of fear memories (Bai et al., 2014), morphine and 

cocaine conditioned place preference (Dias, Wang, & Phillips, 2012; Z. Q. Liu et al., 2016; Puhl 

et al., 2015), and cocaine self-administration (Hafenbreidel et al., 2014; Kelamangalath et al., 

2009; Kelamangalath & Wagner, 2010).  Despite these advances, D-serine has yet to be 

studied as a pharmacotherapy for relapse after protracted withdrawal. Therefore, the first goal of 

this study was to determine if D-serine augmentation would impair reinstatement to cocaine 

seeking. In order to augment D-serine co-administration of D-serine and sodium benzoate (SB), 

an inhibitor of the metabolizing enzyme of D-Serine [D-Amino Acid Oxidase (DAO)] were given 

systemically prior to a test of reinstatement to reward seeking.  

 

Methods. 

Animals.  

Male Sprague-Dawley rats (Harlan Farms, Raleigh NC), aged approximately 6-8 weeks and 

weighing 260-300 grams at the time of surgery were used in these experiments. Rats were 

individually housed in a temperature controlled environment on a reversed 12:12 light:dark 

(lights off at 0700) schedule. Following a week of habituation, animals were put on a food 

restricted diet of 20g/day (Envigo Teklad laboratory animal diet).  All procedures were approved 

by the University of North Carolina’s Institutional Animal Care and Use Committee. One animal 

was removed from the food reinstatement analyses because the animal had spontaneous 

recovery of food seeking behavior the day before reinstatement test.  
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Catheterization surgery.  

Animals were anesthetized with ketamine (100 mg/kg) and xylazine (7mg/kg) and given 

ketorolac analgesic (0.28-0.32 mg/kg) for catheterization surgery. Briefly, chronic indwelling 

catheters were constructed from 23-cm Bio-sil Silastic catheter (0.02mm inner diameter, 

0.047mm out diameter; Dow Corning, Midland, MI) with a 22 gauge cannula (Plastics One, 

Wallingford, CT). Catheters were implanted into the right jugular vein for the administration of 

intravenous (iv) cocaine and exited the animals’ back between the scapulae, as described 

previously (Scofield, Heinsbroek, et al., 2016). Animals received 5 days of recovery and 

catheters were flushed daily with antibiotic (gentimicin 5mg/ml, 0.1 ml, iv) followed by 

heparinized saline (100 mg/ml, 0.1 ml, iv) during the recovery period and throughout self-

administration training. Catheters were checked for patency with propofol (10mg/kg, SAGENT 

Pharmaceuticals, Schaumburg, IL). 

 

Behavioral training.  

Self-Administration and Extinction Training.  

Self-administration training was conducted in standard operant conditioning chambers (Med 

Associates Inc.) that contained a white house light, two retractable levers, and a bar floor.  Rats 

were first trained to lever press for food in a food training session where criteria were set at 6 hr 

or delivery of 100 pellets. After recovery from surgery, animals were then trained to lever press 

for cocaine infusions (cocaine hydrochloride; 0.2 mg per infusion, iv; NIDA) under a fixed ratio 

(FR1) reinforcement schedule with a discrete stimulus complex during infusion and 20s time out. 

The stimulus complex consisted of a tone (70 dB, 2.5 kHz) and a stimulus light above the active 

lever activated for 5 s during the infusion.  There was a second lever that had no programmed 

response when pressed; this served as a control for lever responding throughout the experiment. 

Rats were trained to self-administer cocaine in 2 hr daily sessions for 12 days or until they 
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achieve the self-administration criterion (10 days of greater than 10 infusions per session). A 

subset of animals were trained to self-administer food (Purina Precision Rodent Chow, 45 

mg/pellet) or sucrose (Purina Precision Sucrose, 45 mg/pellet) pellets on an escalating 

FR1:FR3:FR5 and complex cue schedule used previously to test for natural reward seeking 

(Cosme, Gutman, & LaLumiere, 2015; McFarland et al., 2003). Rats in these experiments did 

not receive a food training session prior to self-administration training and during self-

administration training their reinforcers were paired with the same complex cues as the cocaine 

experiments. Treatment groups were balanced based on the number of active lever presses 

during the last 3 days of self-administration. Following self-administration, animals either 

received extinction training or forced abstinence where animals remained in their home cage for 

2 weeks and were handled at least 3 times a week. During extinction training, responding on 

either lever had no programmed result. Rats received 14 extinction training sessions before the 

test of reinstatement.  

 

Tests of reinstatement or extinction.  

Cocaine- Plus Cue-primed Reinstatement or Extinction Test 

Twenty-four hr after the last extinction training session rats were tested for reinstatement of 

cocaine-seeking behaviors in a 2 hr test session. In a separate experiment, rats who did not 

receive extinction training, but remained in the home cage for two weeks, were tested for 

cocaine-seeking behaviors in a 2 hr test session at the same time as their self-administration 

sessions (extinction test. In both cases, rats received a cocaine prime (10 mg/kg, i.p.) 

immediately prior to the session.  During the test session, lever responses were recorded 

without cocaine reinforcement.  The stimulus complex was presented identical to self-

administration training on lever press of the active lever on an FR1 schedule. Inactive lever 

responses were recorded but had no programmed response. A subset of animals in the acute 
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treatment experiment received cue alone or cocaine alone reinstatement tests (data not shown) 

before the cocaine plus-cue primed reinstatement test. 

 

Food or Sucrose Plus Cue-primed Reinstatement Test  

To emulate the cocaine and cue-primed reinstatement test, rats who received food or 

sucrose self-administration training received a food or sucrose plus cue-primed test of 

reinstatement to reward seeking, as described previously (Cosme et al., 2015). At the start of 

the session 2 pellets were placed in the food hopper and then every 2 minutes one pellet was 

delivered non-contingently for 30 minutes. Throughout the 2-hr test the complex cue previously 

associated with food or sucrose reinforcement was available on an FR1 schedule similar to the 

tests of cue-primed tests of cocaine seeking.  

 

Locomotor test.  

24 hr following reinstatement test, a subset of rats were tested for locomotor activity of 

habituation to a novel environment and a cocaine challenge. Standard locomotor chambers 

(Med Associates Inc.) with beams to track locomotor activity were used. Locomotor testing was 

conducted 3 hr after treatment of D-serine augmentation or vehicle. Rats were placed in the 

center of the chamber and the 2 hr locomotor test began. Sixty minutes into the locomotor test 

the session was paused for a cocaine injection (10 mg/kg, intraperitoneal, i.p). Locomotor 

activity was collected in 5 minute bins in mm of ambulatory activity. 

 

Treatment.  

Rats received either acute or 3-day D-serine augmentation treatment of D-serine and 

sodium benzoate (DAO inhibitor). 3-Day D-serine augmentation was administered systemically 

3 hr prior to the last two extinction sessions (100 mg/kg D-serine, i.p.; 100 mg/kg SB, i.p.) and 

on reinstatement or extinction test day (100 mg/kg D-serine, i.p.; 200 mg/kg SB, i.p.). Acute D-
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serine augmentation was administered 3 hr before the reinstatement test session (100 mg/kg D-

serine, i.p.; 200 mg/kg SB, i.p.). 

 

D-serine measurements.  

To determine the effect of systemic D-serine augmentation on D-serine levels in the NAc, 

a subset of animals received behavioral training as described, but no test of reinstatement. Rats 

were sacrificed by rapid decapitation 3 hrs after the third treatment (when reinstatement testing 

would begin) and the NAc core was dissected with a 2 mm punch and flash frozen using dry ice 

and isopentane. Neutralized perchloric acid extract and high-pressure liquid chromatography 

(HPLC) measurements were performed by The CHOP Metabolomics Core directed by Dr. 

Itzhak Nissim (https://metabolomic.research.chop.edu). Mass spectrometry was then used to 

determine measurements of D-serine, kynurenic acid, and kynenurine. Analysis was performed 

as previously described (Nissim et al., 2014; Wimmer et al., 2017). 

 

Data analysis.  

A 2x2 repeated measures analysis of variance (ANOVA) was used to compare the 

behavioral data of the groups (active lever responding, inactive lever responding and infusions) 

with Sidak’s multiple comparison test post hoc corrections to compare groups.  Student’s 

unpaired two-tailed t-test was used to compare extinction test data of two groups. HPLC 

analysis used a one-way ANOVA with Sidak’s multiple comparison test post hoc corrections to 

compare groups. Alpha was set at p=0.05 for all statistics. 
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Results.  

3-Day systemic D-serine augmentation attenuates cocaine and cue-primed test of reinstatement. 

In order to determine the effect of D-serine augmentation on cocaine seeking, animals 

were trained in cocaine self-administration followed by extinction and a cocaine plus cue-primed 

reinstatement test. During self-administration no differences were observed between animal 

groups (Figure 2.1B) in lever responding (F(5.49)=0.4, p=0.86, active; F(5.49)=0.9, p=0.50, inactive) 

and cocaine infusions (F(5.49)=0.4, p=0.856), however there was a main effect of session on 

cocaine infusions (F(9.450)=15, p<0.01). There was no difference in lever responding during 

extinction training between the groups (F(5.49)=0.3, p=0.90) and all groups extinguished active 

lever responding during extinction training (Sidak’s multiple comparison test, p<0.05; Figure 

2.1B).  

All groups significantly reinstated cocaine seeking during a cocaine plus cue-primed test 

compared to the last day of extinction training (interaction effect (IE) F(5,49)=5.5, p<0.02; main 

effect (ME) of session F(1,49)=138.3, p<0.01, Figure 2.1B). There was a main effect of treatment 

(F(5,49)=3.6, p<0.01) and post hoc comparisons revealed that rats who received systemic D-

serine augmentation reinstated cocaine seeking significantly less than rats treated with vehicle 

or SB (200mg/kg) alone (p<0.01, Figure 2.1C).  

 

Acute Systemic D-serine augmentation has no effect on reinstatement to cocaine seeking. 

In this experiment, rather that received systemic administration of D-serine and SB prior 

to the last two extinction sessions as well as reinstatement test, a single administration was give 

immediately prior to the reinstatement test only. Self-administration training behavior was the 

same between all treatments (Figure 2.2A), with no differences in lever responding (F(2.19)=0.7, 

p=0.50, active; F(2,19)=0.8, p=0.47, inactive) or cocaine infusions (F(2.18)=1.5, p=0.26). 

Additionally, there was no difference between treatment groups in extinction training (F(2,19)=0.8, 
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p=0.08, active; F(2,19)=0.1, p=0.89, inactive) and all groups extinguished active lever responding 

during extinction training (Sidak’s multiple comparison test, p<0.05; Figure 2.2B).  

All groups significantly reinstated cocaine seeking during a cue plus cocaine primed test 

compared to the last day of extinction training (IE F(2,18)=0.6, p=0.58, ME of session F(1,18)=70.9, 

p<0.01) and there was no difference in cocaine seeking between the groups on test day 

(F(2,18)=0.6, p=0.53, Figure 2.2C).  

Following acute treatment of the low dose of D-serine augmentation (100 mg/kg D-

serine + 100 mg/kg SB) animals were tested for locomotor activity. As expected, both groups 

habituated to the novel environment in the first 60 minutes of the activity test (ME of time 

F(23.322)=69.9, p<0.01). Surprisingly, there were significant differences between the treatment 

groups in their locomotor activity (IE F(23,322)=1.6, p<0.05; ME of treatment F(1.14)=11.2, p<0.01). 

After a cocaine challenge at 60 minutes, post hoc analyses indicate that the acute D-serine 

augmentation group had significantly lower locomotor activity compared to vehicle animals (D-

serine augmentation > Vehicle minutes 65-75, and 200; Sidak’s multiple comparisons test, 

p<0.05, data not shown). Although unexpected, given the null effect of acute treatment on 

cocaine seeking behavior, these results are in parallel with previously published work that acute 

doses of D-serine attenuate locomotor sensitization in a model of non-contingent cocaine 

exposure (Curcio et al., 2013). 

 

D-serine augmentation increases D-serine levels compared to control animals after 3-days of 
treatment but not acute treatment.  
 

I hypothesize that the effect of systemic D-serine augmentation on cocaine 

reinstatement is mediated by cellular effects in the NAc core. As a first step toward testing this 

hypothesis, I first measured the effect of systemic D-serine augmentation on D-serine levels in 

the NAc core in cocaine-extinguished animals.  
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Behavioral training (Figure 2.3B) was the same among treatments for self-administration 

of cocaine (F(2,21)=0.9, p=0.43, active lever responding; F(2,21)=1.2, p=0.33, inactive lever 

responding; F(2,21)=0.4, p=0.65 cocaine infusions and extinction training (F(2,21)=0.4, p=0.68, 

active lever responding; F(2,21)=1.2, p=0.33, inactive lever responding). All groups extinguished 

active lever responding during extinction training (ME of session F(13,273)=26.1, p<0.01). Rats 

that received 3 days of D-serine augmentation had significantly higher D-serine levels than 

control animals, where treatment with only 1 day of D-serine augmentation was not significantly 

different than vehicle (F(2,21)=4.4 p<0.03; Sidak’s multiple comparisons test p<0.02; Figure 2.3C).  

 Because inhibition of D-amino acid oxidase can also affect levels of kynurenic acid 

(Ayala 2015), an inhibitor of NMDA receptors, we measured kynurenic acid and its precursor 

kynurenine in the same group of animals. Kynurenic acid has been linked to cocaine addiction 

research (Badawy, 2017; Vengeliene, Cannella, Takahashi, & Spanagel, 2016; Witkin, 1993). 

There were no differences in levels of kynurenic acid or kynurenine between vehicle and 3-day 

or acute treatment with D-serine augmentation (F(2,21)=0.1, p=0.90 kynurenic acid; F(2,21)=1.8 

p=0.20, kynurenine; Figure 2.3D-E).  

 

3-Day Systemic D-serine augmentation reduces cocaine seeking in a model of forced 
abstinence, but not locomotor activity. 
 

D-serine augmentation has been found to enhance extinction learning and attenuate 

reinstatement levels (Hammond, Seymour, Burger, & Wagner, 2013; Kelamangalath et al., 

2009; Kelamangalath & Wagner, 2010). To confirm that the treatment given here was effecting 

reinstatement mechanisms and extinction learning, rats received 3-day D-serine augmentation 

in a model of forced abstinence, in which rats did not receive extinction training.  

No differences were found in self-administration training between treatment groups in 

cocaine self-administering (F(1.24)=0.2, p=0.68, cocaine active lever responding; F(1,24)=1.2, 

p=0.28, cocaine inactive lever responding; F(1,24)=0.3, p=0.59 cocaine infusions; Figure 2.4B), 
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Following self-administration and forced abstinence, D-serine augmented animals exhibited 

significantly attenuated cocaine seeking during a cocaine plus cue-primed test of extinction 

compared to control animals (T(24)=2.4, p<0.03; Figure 2.4D). These results indicate that the 

effect of D-serine augmentation on cocaine seeking is independent of extinction training, and 

thus the previous results were unlikely to be a consequence of facilitated extinction learning.  

To determine if the effect of 3 days of D-serine augmentation on reinstatement is a true 

effect of seeking behavior and not an artifact of reduced activity, a subset of rats was given a 

locomotor activity test. Both treatment groups (D-serine augmentation and vehicle) habituated to 

the novel environment and showed increased activity following cocaine challenge (IE 

F(23,322)=2.5, p=0.18; ME of Time F(23,161)=21.6, p<0.01), but treatment had no effect on 

locomotor activity (F(1,7)=0.8, p=0.4, Figure 2.4E).  

 

D-serine augmentation has no effect on sucrose seeking or food seeking. 

Additionally, to determine whether the treatment affects all rewards we tested 3-day D-

serine augmentation’s ability to affect sucrose and food seeking in a model of self-administration 

and extinction training. Sucrose and food self-administering animals had no differences in self-

administration training behavior (F(1.13)=0.1, p=0.71, sucrose active lever responding; 

F(1,13)=0.113, p=0.7421, sucrose inactive lever responding; F(1.13)=0.0021, p=0.9637 sucrose 

reinforcers, F(1.14)=0.1228, p=0. 7313, food active lever responding; F(1,14)=0.01654, p=0.8995, 

food inactive lever responding; F(2.18)=0.0001136, p=0.9916 food reinforcers; Figure 2.5B&D) or  

extinction training (F(1.14)=2.157, p=0.1641, sucrose active lever responding; F(1,14)=0.01788, 

p=0.8955, sucrose inactive lever responding; F(1,14)=1.789, p=0.2024, food active lever 

responding; F(2,18)=0.102, p=0.7542, food inactive lever responding) and all groups extinguished 

seeking behavior (Tukey’s multiple comparisons test, p<0.05). 

D-serine augmentation had no effect on reinstatement to other rewards. There were no 

differences in food seeking between the treatment groups during a food plus cue-primed test of 
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reinstatement (IE F(1,13)=1.3, p=0.27; ME of Session F(1,13)=66.08, p<0.0001, Treatment 

F(1,13)=0.2247, p=0.6434; Figure 2.5C). Additionally, sucrose seeking was not affected by 

treatment with D-serine augmentation during a sucrose plus cue-primed test (IE F(1,13)=3.0, 

p=0.11; ME of session F(1,13)=32.33, p<0.0001, ME of treatment F(1,13)=2.622, p=0.1294; Figure 

2.5E). These results are strong indicators that D-serine augmentation does not affect motivation 

to seek all rewards.  

 

Discussion 

Systemic D-serine augmentation impairs cocaine seeking 

D-serine has been shown to oppose cocaine locomotor sensitization (Curcio et al., 2013; 

Z. Q. Liu et al., 2016), attenuate cocaine conditioned place preference (Hammond et al., 2013; 

Z. Q. Liu et al., 2016) and attenuate reinstatement to cocaine seeking through facilitation of 

extinction memories (Curcio et al., 2013; Hammond et al., 2013; Kelamangalath et al., 2009; 

Kelamangalath & Wagner, 2010). The current findings expand on the role of D-serine 

administration to attenuate relapse-related behaviors by acting on mechanisms of relapse 

directly. While 3 days of augmentation of D-serine attenuated cocaine seeking, via D-serine 

administration together with an inhibitor of D-amino acid oxidase, acute augmentation of D-

serine did not affect reinstatement. Moreover, I found that 3 days of D-serine augmentation was 

required to significantly raise levels of D-serine in the NAc core, an important brain region in 

relapse to reward seeking (McFarland & Kalivas, 2001), whereas a single administration did not 

affect NAc D-serine levels. Additionally, the effects of 3-day D-serine augmentation on cocaine 

seeking were not a result of impaired locomotor behavior (Figure 2.1D). Locomotor activity was 

unchanged when habituating to a novel environment and following a cocaine challenge dose.  

Previous studies have shown that D-serine administration can enhance extinction to 

cocaine seeking (Hafenbreidel et al., 2014; Kelamangalath et al., 2009). These studies differ 

from our own, in that D-serine was administered together with all extinction sessions. In our 
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studies, lever responding was extinguished well before administration of the treatments, and 

therefore the mechanism of action is likely independent of any learning during the advanced 

extinction training sessions. Thus, while previous studies have found that D-serine 

augmentation can facilitate extinction learning, extinction was already thoroughly consolidated 

before administration was performed.  

In order to more fully dissociate the role of extinction in the effects of D-serine on 

attenuation of cocaine seeking, D-serine treatment was tested in a model of forced abstinence, 

instead of extinction. D-serine augmentation similarly attenuated reinstatement to cocaine 

seeking as in animals that received extinction training, indicating that D-serine augmentation in 

our model is likely affecting mechanisms of reinstatement. Supporting this, administration of D-

serine alone during extinction training in a novel context had no effect on reinstatement behavior 

(Hammond et al., 2013) and administration during only early extinction, but not chronically 

throughout extinction training, had no effect on a test of cocaine seeking (Hafenbreidel et al., 

2014), adding insight into our results that we are directly targeting reinstatement mechanisms. 

 

The effects of D-serine and sodium benzoate on NAc D-serine and kynurenic acid levels 

D-serine augmentation combined D-serine with a drug that inhibits the enzyme that 

breaks down D-serine and catalyzes kynurenic acid (NMDA receptor antagonist) to directly 

manipulated the mechanisms of reinstatement through elevated D-serine levels during the 

reinstatement test. We predict that, with our combination of drugs, D-serine was elevated to a 

greater extent than administration of D-serine alone, and D-serine continued to be elevated for a 

greater length of time, thus having a significant impact on NMDA receptor activation. In support 

of this, previous experiments show that following systemic administration brain levels of D-

serine are increased 24 hrs later and return to basal levels in 3 days (Hashimoto & Chiba, 2004), 

and thus administration on consecutive days would have an additive effect on brain D-serine 

levels. 
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Kynurenic acid is a primarily astrocyte-derived (Guillemin et al., 2001) potent inhibitor of 

NMDA receptors (Alkondon et al., 2011; Kessler, Terramani, Lynch, & Baudry, 1989; Moroni, 

1999);. As discussed, DAO also catalyzes kynurenic acid, and so it is possible that our 

administration of D-serine and SB could both augment D-serine and inhibit kynurenic acid levels. 

However, there were no differences in kynurenic acid levels in the NAc core compared between 

saline- and cocaine-extinguished rats. The null effects could be a result of insufficient sensitivity 

of our measure due to the low concentration. Additionally, it is important to note that DAO is just 

one enzyme that catalyzes kynurenine into kynurenic acid, for instance there is a family of 

kynurenine aminotransferases that catalyze kynurenic acid (Q. Han, Cai, Tagle, & Li, 2010). 

Thus, it is possible that only inhibiting DAO was insufficient to affect the levels of these 

molecules. Further, we systemically injected the DAO inhibitor SB, and although we found no 

difference in levels in the NAc core, this may not be the case in other regions where kynurenic 

acid has plentiful targets, such as the prefrontal cortex. 

 

D-serine augmentation is without effect on food or sucrose reinstatement 

D-serine augmentation has no effect on reinstatement to non-drug reward seeking 

behaviors, although, there was a slight trend for sucrose seeking to be decreased (Figure 2.5E; 

p=0.13). While sucrose has traditionally been considered a more natural reward in comparison 

to cocaine, accumulating evidence indicates that sucrose reward can induce cellular 

adaptations similar to cocaine. For example, repeated sucrose ingestion leads to potentiation of 

NAc core synapses through up regulation of GluA1 containing AMPA receptors (Oginsky, 

Goforth, Nobile, Lopez-Santiago, & Ferrario, 2016; Tukey et al., 2013), Similarly, NAc core 

synaptic potentiation has been reported in obesity-prone rats following access to a palatable 

diet (R. M. Brown et al., 2017; Oginsky et al., 2016). It’s noteworthy that following sucrose self-

administration and extinction NAc core synapses do not elicit the cue-induced transient 

potentiation that has been associated with cue-induced cocaine seeking (Gipson et al., 2013) 
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and further, NAc core PL afferents express increased-fos, a marker of neuronal activity, 

following cocaine cue-induced reinstatement but not after sucrose cue-induced reinstatement 

(McGlinchey, James, Mahler, Pantazis, & Aston-Jones, 2016). Accordingly, D-serine 

augmentation may attenuate sucrose-induced changes at the synapse and hence impair 

sucrose reinstatement, similar to our proposed mechanism for cocaine seeking, but these 

hypotheses warrant further investigation. Importantly, in food seeking these synaptic changes 

are not present (Cosme et al., 2015) and D-serine augmentation has no effect on reinstatement 

to food seeking, signifying that D-serine augmentation does not affect all rewards. 

 

Influence of reinstatement modality 

These experiments utilized a cocaine plus cue-primed test of reinstatement to reward 

seeking behavior. This combination of the subjective effects of the drug or palatable reward as 

well as the cues associated with the reward are powerful motivators to relapse to seeking 

behavior. The mechanisms by which each of these motivators affect reinstatement behavior 

have been found to be additive, and therefore possibly affecting different mechanisms (Sanchis-

Segura & Spanagel, 2006). In these experiments, we cannot determine if D-serine 

augmentation was acting on effects of a cocaine challenge dose, the cocaine conditioned cues, 

or both during the reinstatement test. Thus, future studies should determine the efficacy of D-

serine augmentation to attenuate either prime alone.   

Alternatively, it has been found a robust glutamate efflux in the NAc and mPFC during a 

methamphetamine plus cue reinstatement test (Parsegian & See, 2014), and it is possible that 

the release of glutamate during a single prime event is not as robust. Parsegian (2013) did not 

make direct comparisons of meth plus cue-prime to meth-prime or cue-prime alone, and 

differences in glutamate release following cocaine or cocaine plus cue prime have not been 

investigated. However, if there is increased glutamate release when both a drug prime and a 

cue prime are given simultaneously, this could provide great insight into the robust nature of 
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drug plus cue-primed reinstatement tests, which tend to have much higher responding than 

either prime alone.  The mechanism by which D-serine augmentation is attenuated seeking 

behavior may be dependent on robust glutamate release in combination with the added 

exogenous D-serine to vigorously activate NMDA receptors, thus decreasing seeking behavior. 

The locus of the effect of D-serine augmentation and the mechanism by which D-serine 

augmentation is working remain elusive and future studies need to address these questions. 

Because the injections were given systemically, it is not possible to determine if the NAc is the 

brain region driving this effect, or if it is involved in any manner. To determine this, additional 

studies described below will directly administer D-serine into the NAc to determine if activation 

of NAc NMDA receptors are sufficient for this effect. Further, these behavioral studies cannot 

determine the mechanism by which NMDA receptor activation during a reinstatement test is 

attenuating cocaine seeking behavior. Future studies should investigate this mechanism of 

action, to aid in the development of pharmacotherapeutic relapse treatments.   
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Figure 2.1. 3-Day D-serine augmentation attenuates cocaine plus cue-primed 
reinstatement to cocaine seeking. (A) Timeline of the study. (B)Treatment groups did not 
differ during self-administration training and extinction. (C) 3 Day treatment with D-serine (DS, 
100 mg/kg) and sodium benzoate (SB; 200 mg/kg) significantly attenuated cocaine seeking 
compared to vehicle treated animals in a cocaine plus cue-primed reinstatement test. Animals 
treated with either a lower dose of SB in combo with DS (100 mg/kg, both) or either drug alone 
DS (100 mg/kg) or sodium benzoate (100 mg/kg, 200 mg/kg) were no different in active lever 
responding compared to vehicle-treated animals. Hash denotes significant effect of 
reinstatement (#p<0.05); Asterisk denotes significant effect vs. vehicle (*p<0.05); $ denotes 
significant effect vs. 200 mg/kg SB ($p<0.05). 
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Figure 2.2. Acute D-serine augmentation has no effect on reinstatement to cocaine 
seeking. (A) Study timeline, some animals also received additional reinstatement tests of either 
cocaine alone or cue alone (data not shown). (B) There were no differences between treatment 
groups in self-administration or extinction training. (C) Acute administration of D-serine 
augmentation (100 mg/kg DS + 200 mg/kg SB) or (100 mg/kg DS + 100 mg/kg SB) had no 
effect on cocaine seeking during a cocaine plus cue-primed reinstatement test. Hash denotes 
significant effect of reinstatement (#p<0.05). 
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Figure 2.3. 3 Days of D-serine augmentation, but not acute administration, increase levels 
of D-serine in the nucleus accumbens core. (A)Study timeline. (B) There were no differences 
between treatment groups in self-administration or extinction training. (C) 3-Day, but not acute, 
D-serine augmentation significantly elevated D-serine levels in the nucleus accumbens core, but 
not levels of (D) kynurenic acid  or (E) kynurenine. Asterisk denotes significant effect vs. vehicle 
(*p<0.05) 
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Figure 2.4. D-serine augmentation attenuates cocaine seeking in a model of forced 
abstinence, but had no effect on locomotor behavior. (A)Study timeline. (B & C) There were 
no differences between the treatment groups in self-administration training. (D) D-serine 
augmentation (100 mg/kg D-serine and 200 mg/kg sodium benzoate) significantly attenuated 
cocaine seeking in a cocaine plus cue-primed extinction test following 14 days of forced 
abstinence. (E) There were no differences in locomotor activity in animals treated with D-serine 
(100 mg/kg) and SB (200 mg/kg). Asterisk denotes significant effect vs. vehicle (*p<0.05). 
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Figure 2.5. D-serine augmentation has no effect on natural reward seeking. (A) Timeline of 
sucrose and food reinstatement. Self-administration and extinction training responding for (B) 
food and (D) sucrose was similar between the treatment groups. D-serine augmentation had no 
effect on reinstatement to (C) food-  and (E) sucrose-seeking. 
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CHAPTER 3: 

The Role of the Nucleus Accumbens in the Effects of D-serine Augmentation. 

 

Introduction. 

 Data presented in the previous chapter indicates that systemic administration of D-serine 

and sodium benzoate can reduce cocaine reinstatement. These results raise an important 

subsequent question regarding the mechanism of this effect. I hypothesize that the attenuation 

in cocaine seeking is mediated by cellular consequences of NMDA receptor stimulation in the 

NAc. The central role of the NAc in cocaine seeking has been well defined, particularly 

regarding the alterations in glutamatergic homeostasis and synaptic function following 

prolonged withdrawal (Kalivas et al., 2003; Scofield & Kalivas, 2014). After cocaine self-

administration and extinction training, glutamate transporters (GLT-1 and system xc-) are 

downregulated, resulting in increased synaptic glutamate and glutamate spillover into the extra 

synaptic space during a reinstatement event (McFarland et al., 2003). This increased excitatory 

synaptic drive in the NAc is associated with increased AMPA:NMDA ratio, and is believed to 

contribute to cocaine seeking behaviors characteristic of reinstatement and relapse (Gipson et 

al., 2013; Shen et al., 2014).  

Increases in AMPA:NMDA are often driven by increases in AMPA current, but not always. 

This is the case following withdrawal from cocaine self-administration, as pharmacological 

inhibition of AMPA receptors blocks reinstatement of cocaine seeking, and increased surface 

expression of AMPA receptors have been reported in cocaine withdrawn animals (Wolf & Tseng, 

2012). However, it is possible that reduced tone on NMDA receptors could also be adding to the 

potentiation of the synapse as measured by the AMPA:NMDA ratio. The role for NMDA 
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receptors in cocaine seeking is murky at best (for review, see (P. I. Ortinski, 2014)), but in 

general there are reports of increased NMDA GluN1 subunit in the NAc following extended 

withdrawal from cocaine self-administration (Hafenbreidel et al., 2014; Lu et al., 2003; P. I. 

Ortinski, 2014; Pomierny-Chamiolo et al., 2015; Tang et al., 2004).  

Despite NMDA receptors being present, and possibly upregulated at the surface, I 

hypothesize that reduced activation of NMDA receptors, due to insufficient levels of astrocyte-

derived D-serine, a necessary co-agonist of the NMDA receptor. This is supported by findings 

from our lab that synaptic colocalization of astrocyte peripheral processes in the NAc are 

reduced in cocaine-extinguished rats (Scofield, Li, et al., 2016). Further, NMDA receptor 

activation can induce AMPA receptor internalization (Biou et al., 2008; Casimiro et al., 2011) 

and D-serine has been shown to enhance fear conditioning by increasing AMPA internalization 

(Bai et al., 2014). Therefore, one possibility for the behavioral effect of D-serine augmentation 

on reinstatement is increased activation of NMDA receptors leading to reduced surface 

expression of AMPA receptors, as well as normalized synaptic strength as measured by 

AMPA:NMDA. 

The ability of NMDA receptor stimulation to result in AMPA receptor internalization has 

been well described in other neural paradigms (Bai et al., 2014; Biou et al., 2008; Casimiro et al., 

2011). Particularly, activation of NMDA receptors can induce endocytosis of GluA2-containing 

AMPA receptors (Casimiro et al., 2011; Luscher et al., 1999). Therefore, stimulation of NMDA 

receptor function with D-serine would not only result in restored basal synaptic strength, but 

could also lead to an internalization of GluA2-containing AMPA receptors that are upregulated 

following prolonged withdrawal (Ma et al., 2014). NMDA receptor stimulation with systemic D-

serine augmentation may lead to AMPA receptor endocytosis, normalizing synaptic strength to 

control levels and blocking the transient synaptic potentiation observed during reinstatement 

(Gipson et al., 2013; Shen et al., 2014).  This mechanism has been more extensively studied as 

it pertains to LTD, and as such NMDA receptor-induced AMPA endocytosis has been well 
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characterized in the hippocampus (Biou et al., 2008; T. C. Brown et al., 2005; Casimiro et al., 

2011; Migues et al., 2016). It is important to note that NMDA receptor-induced endocytosis of 

GluA2-contiaining AMPAR does not disrupt constitutive cycling of AMPA receptors in and out of 

the membrane, only regulated (stimulated) endocytosis (Ahmadian et al., 2004).  

Several studies have begun to elucidate the relationship between AMPA receptor 

endocytosis and cocaine seeking behavior in rodents. Increased surface expression, through 

disruption of endocytosis and receptor cycling, of both GluA2-lacking (calcium permeable) and 

GluA2-containing (calcium impermeable) AMPA receptors potentiates reinstatement (Briand, 

Deutschmann, Ellis, & Fosnocht, 2016; Briand et al., 2014; Schmidt et al., 2015), and disrupting 

stabilization in the membrane attenuates cocaine seeking (James et al., 2014; S. L. White et al., 

2016). It is important to note that some studies have found conflicting results for AMPA 

trafficking and drugs of abuse. For example, increased surface expression of GluA2-lacking 

AMPA receptors was found to attenuate cocaine primed reinstatement to cocaine seeking, but 

had no effect on cue-induced reinstatement (Bachtell & Self, 2008). Another study found that 

disrupting trafficking of GluA2 containing AMPA receptors to and from the surface attenuates 

cue-induced cocaine seeking (Famous et al., 2008). Additionally, conflicting results of GluA2 

endocytosis and behavioral sensitization of the psychostimulant amphetamine have been 

reported; where GluA2 endocytosis has been to found to attenuate behavioral sensitization 

(Brebner et al., 2005) but also to have no effect on induction or maintenance of amphetamine 

sensitization (Choi, Ahn, Wang, & Phillips, 2014). While the collective interpretation of the 

literature is somewhat complex, overall it is agreed that withdrawal from cocaine leads to 

increased AMPA activity, and that inhibition of AMPA receptors impairs drug seeking. 

Although the effects of cocaine on AMPA receptor activity have been well researched, 

NMDA receptor mediated endocytosis of GluA2 containing AMPA receptors has yet to be 

investigated in the NAc or in the context of NAc drug-mediated behaviors. Targeting NMDA 

receptor-mediated internalization may normalize increased AMPA receptor expression and/or 
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activity that results in potentiated MSN synapses in the NAc core and subsequently decrease 

drug seeking. Evidence from other studies indicate that D-serine stimulation of NMDA receptors 

can lead to GluA2 containing AMPA receptor internalization (Bai et al., 2014; Kakegawa et al., 

2011) and synaptic depotentiation and/or depression in cocaine withdrawn rats or in the supra 

optic nucleus of lactating rats (Curcio et al., 2013; Panatier et al., 2006). If D-serine 

augmentation attenuates cocaine seeking by depotentiating the synapse through NMDA 

receptor activation and AMPA receptor internalization, surface expression of AMPA receptors 

will be reduced in D-serine augmented animals.  

 

Methods. 

Animals.  

Male Sprague Dawley rats (Harlan Farms, Raleigh NC), aged approximately 6-8 weeks 

and weighing 260-300 grams at the time of surgery were used in these experiments. Rats were 

individually housed in a temperature controlled environment on a reversed 12:12 light:dark 

(lights off at 0700) schedule. Following a week of habituation, animals were put on a food 

restricted diet of 20g/day (Envigo Teklad laboratory animal diet). The University of North 

Carolina’s Institutional Animal Care and Use Committee approved all procedures. 

 

Catheterization surgery and stereotaxic surgery.  

Chronic indwelling catheters were implanted into the right jugular vein for the 

administration of intravenous (iv) cocaine. Catheters were created as described previously 

(Scofield, Li, et al., 2016) and exited the animals’ back between the scapulae. In some 

experiments, following catheterization animals were moved to the stereotaxic frame (David Kopf 

Instruments; Tujunga, CA) and surgically implanted with bilateral 26-gauge guide cannula 

(Plastics One; Roanoke, VA) in the NAc core (A/P: 1.4 mm, M/L: 1.7mm, D/V: -5.5 mm). 

Animals received 5 days of recovery and catheters were flushed daily with antibiotic (gentimicin 
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5mg/ml, 0.1 ml, iv) followed by heparinized saline (100 mg/ml, 0.1 ml, iv) following surgery 

during recovery and throughout self-administration training. 

 

Behavioral training. 

Self-Administration and Extinction Training.  

Self-administration training was conducted in standard operant conditioning chambers 

(Med Associates Inc.) that contained a white houselight, two retractable levers, and a bar floor.  

Rats were first trained to lever press for food in a food training session where criteria was set at 

6 hr or 100 pellets delivered. After recovery from surgery, animals were trained to lever press for 

cocaine infusions (cocaine hydrochloride; 0.2 mg per infusion, iv; NIDA) under a fixed ratio 

(FR1) reinforcement schedule with a discrete stimulus complex during infusion and 20s time out. 

The stimulus complex consisted of a tone (70 dB, 2.5 kHz) and a stimulus light above the active 

lever that activated for 5 s during the infusion.  There was a second lever that had no 

programmed response when pressed; this served as a control for lever responding throughout 

the experiment. Rats were trained to self-administer cocaine in 2 hr daily sessions for 12 days 

or until they achieve the acquisition criterion (10 days of greater than 10 infusions per session). 

Treatment groups were balanced on the last 3 days of self-administration active lever presses. 

Following self-administration animals received extinction training where responding on either 

lever had no programmed result. Rats received 14 extinction training sessions before the test of 

reinstatement.  

 

Tests of Reinstatement.  

Reinstatement to cocaine seeking was defined as a significant increase in active lever 

responding on the test day relative to responding during the last extinction training session. 

Twenty-four hr after the last extinction training session rats were tested for reinstatement of 

cocaine-seeking behaviors in a 1 or 2 hr cocaine plus cue-primed test session. Directly before 
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being placed in the chamber, rats received a cocaine prime (10 mg/kg, i.p.).  During the test 

session, lever responses were recorded without cocaine reinforcement.  The stimulus complex 

was presented identical to self-administration training on lever press of the active lever on an 

FR1 schedule (cue prime). Inactive lever responses were recorded but had no programmed 

response.  

 

Locomotor Test.  

Rats were tested for locomotor activity of habituation to a novel environment and a 

cocaine locomotor challenge. Standard locomotor chambers (Med Associates Inc.) with beams 

to track locomotor activity were used. Rats were placed in the center of the chamber and the 2 

hr locomotor test began. 60 minutes into the locomotor test the session was paused for a 

cocaine injection (10 mg/kg, i.p.). Locomotor activity was collected in 5 minute bins in mm of 

ambulatory activity. 

 

Treatment. 

Systemic 

Rats received 3 days of D-serine augmentation treatment that consisted of D-serine and 

sodium benzoate (SB; DAO inhibitor). D-serine augmentation was administered systemically 3 

hr prior to the last two extinction sessions (100 mg/kg D-serine, i.p.; 100 mg/kg SB, i.p.) and on 

reinstatement or extinction test day (100 mg/kg D-serine, i.p.; 200 mg/kg SB, i.p.).  

Nucleus Accumbens  

Rats with cannula aimed at the NAc core received 3 days of NMDA receptor stimulation. 

Preliminary experiments (not shown) indicated that direct intra-NAc administration of SB can 

lead to neural toxicity, and accordingly it was not used as in the systemic studies. Instead, D-

serine (100 µg and 300 µg in 1 µL) alone was administered directly into the NAc 20 min prior to 

the last two extinction sessions, as well as 20 min prior to the reinstatement test. In some 
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groups, NMDA, an agonist of the NMDA receptor, was microinjected into the NAc core alone or 

with the low dose D-serine (100 µg/µL/side) only on the day of reinstatement test. Cocaine self-

administering animals received the following treatments: vehicle (veh; 0.9% NaCl), D-serine 

(100 µg/µL/side and 300 ug/µL/side), NMDA (0.25 µg/µL/side), and D-serine + NMDA (3-days 

100 µg/µL/side and 1 day 0.25 µg/µL/side, respectively).  

 

Surface and total expression of AMPA and NMDA receptor subunits. 

In order to test protein trafficking during the test of reinstatement two time points for 

rapid decapitation were set. The first was 3 hrs after the third treatment (directly before the test 

of reinstatement would occur) and the second was 1 hr into the cocaine plus cue-primed 

reinstatement test. Both treatments were tested at each time point.  Rats in the reinstatement 

test group received a cocaine prime (10 mg/kg) directly before being placed in the test session. 

Transient potentiation of NAc core synapses following cue-primed reinstatement has been 

shown to return to basal levels by 120 minutes following cue-prime (Gipson et al., 2013), and so 

reinstatement test (see Chapter 2 for detailed methods) was limited to 1 hr in this experiment. 

Following a 1 hr reinstatement test, or 3 hrs post injection for no reinstatement groups (t=0), rats 

were decapitated and NAc core, dorsal hippocampus and dorsolateral striatal tissue were taken 

for surface biotinylation and Western blot analysis for AMPA receptor subunits GluA1 and 

GluA2, NMDA receptor subunits GluN1, GluN2A and GluN2B and control protein GLT-1 as 

described (Reissner et al., 2011).  

Procedures followed (Reissner et al., 2011). NAc core, dorsal hippocampus and 

dorsolateral striatum tissue were dissected (2 mm punches of NAc core and dorsolateral 

striatum, dorsal hippocampus was free hand dissected) and chopped (Mackelwain tissue 

chopper) followed by a 30 min incubation in PBS containing 1mg/ml Sulfo-NHS-Biotin at 4ºC 

with gentle shaking. After incubation, to quench the biotinylation reaction, the tissue was 
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washed twice in ice-cold 100 mM glycine in PBS. Tissue was then sonicated in 1% SDS in RIPA 

buffer containing protease and phosphatase inhibitor cocktail (Thermo Scientific). The lysate 

was centrifuged at 10,000 x g for 10 min at 4ºC, and the supernatant was taken for protein 

determination by the BCA method (Thermo Scientific). 100 µg of the supernatant was combined 

with NeutrAvidin agarose resin and incubated overnight at 4ºC with gentle rotation. After two 

washes of ice-cold PBS, biotinylated proteins were eluted in 1% SDS, 50 mM DTT loading 

buffer and heated to 90 ºC for 5 min. Proteins in the biotinylated and total protein fractions were 

detected by immunoblotting.  

 

Western Blot 

10 µg of protein from the total protein fraction or 15 µl of biotinylated fraction were 

separated per lane on 7.5% Criterion Tris-HCl gels (Bio-Rad; 180mV, ~45 min) and transferred 

1hr at 150 mA onto PVDF membranes. Membranes were dried and then stained for total protein 

content using REVERT Total Protein Stain (LICOR Biosciences). Membranes were then 

blocked for 1hr at room temperature in LICOR Odyssy Tris blocking solution and incubated with 

primary antibodies overnight at 4°C (GluA1, Abcam ab31232, 1:1000; GluA2 Millipore MABN71, 

1:2000; GluN1, Millipore, 05-432, 1:600; GluN2A, Millipore MAB5530, 1:1000; GluN2B, Abcam 

ab65783, 1:1000; GLT-1, Millipore, AB1783, 1:5,000). Secondary antibody incubation was 

performed for 1.5hr at room temperature (700RD anti-rabbit, and 800CW anti-mouse, 800CW 

anti-mouse, 700RD anti-Guinea pig, LICOR Bioscience, 1:15,000 each). Westerns were imaged 

on an LICOR Odyssey Fc imager. Proteins of interest were adjusted to protein content in each 

lane using REVERT total protein stain at either 150-250 kDa or 75-100 kDa, as applicable, 

(LICOR Bioscience) and normalized to saline (vehicle) T=0 control. 
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Data analysis.  

A 2x2 repeated measures analysis of variance (ANOVA) was used to compare the 

behavioral data of the groups (active lever responding, inactive lever responding and infusions). 

A 2x2 ANOVA was used to investigate differences in protein expression (time point x treatment) 

with Sidak’s multiple comparison’s test post hoc corrections to compare groups. 

 

Results. 

NAc core D-serine augmentation attenuates cue- and drug-primed test of reinstatement. 

Experiment 1 was designed to determine whether NMDA receptor stimulation via D-

serine administration specifically in the NAc is sufficient to inhibit cocaine reinstatement, akin to 

systemic D-serine augmentation. Animals were trained in cocaine self-administration followed 

by extinction and a cocaine plus cue-primed reinstatement test. Intra-NAc D-serine was 

administered 20 min prior to the last two extinction session, and D-serine plus NMDA was 

administered 20 min prior to the reinstatement test. There were no differences observed 

between treatment groups in active lever responding (F(4.33)=0.5, p=0.72) or cocaine infusions 

(F(4.33)=0.9, p=0.50) during self-administration training, and all treatment groups extinguished 

active lever responding during extinction training (ME of session F(13.429)=6.4, p<0.01, Sidak’s 

multiple comparisons test, p<0.05) with no differences between the groups (F(4.33)=1.7, p=0.17). 

Table 3.1 details the full statistics of the training behavior data. Test session cocaine seeking 

was compared with the last day of extinction training to determine reinstatement to cocaine 

seeking and any treatment effects. All groups significantly increased responding during 

reinstatement compared to extinction responding (IE F(4,41)=2.6, p<0.05; ME of Session 

F(1,41)=117.8, p<0.01) and there was a significant effect of treatment (ME of Treatment F(4,41)=2.6, 

p=0.05; post hoc Sidak’s test of multiple comparisons p<0.05). Post hoc analyses revealed 

there was no significant effect of either dose of D-serine alone (300 µg/side, 100 µg/side; Figure 

3.1). Also, NMDA alone (0.25 µg/side) did not significantly affect reinstatement behavior, 



 48 

however in combination with a low dose of D-serine (100 µg/side), cocaine seeking was 

significantly attenuated (Figure 3.1D). Thus, a sub-threshold dose of either D-serine or NMDA 

when administered together is sufficient to impair reinstatement, supporting the hypothesis that 

D-serine is mediating its effects through the NMDA receptor.  

Intra-accumbal injection of D-serine and NMDA had no effect on locomotor activity 

(Figure 3.1E). Animals habituated to the novel environment and increased activity following a 

cocaine challenge (IE F(23.322)=0.7, p=0.86; ME of Time F(23.322)=23.58, p<0.01), yet there were 

no differences between the groups in locomotor activity (F(1,14)=0,4842, p>0.05). 

 

D-serine augmentation does not alter AMPA or NMDA surface expression in the nucleus 
accumbens core.  
 

To determine the mechanism by which D-serine augmentation is affecting reinstatement 

of cocaine seeking, we explored changes in AMPA and NMDA receptor subunits and the 

glutamate transporter GLT-1 total protein and surface protein expression in the NAc core, 

hippocampus and striatum at two time points. Immunoblotting targeted AMPA receptor subunits 

GluA1 and GluA2, and NMDA receptor subunits GluN1, GluN2A and GluN2B. 

Behavior Data 

 Responding during self-administration and extinction training (Table 3.1) was not 

different between the groups (p>0.05, Figure 3.1). A subgroup of animals received a cocaine 

plus cue-primed reinstatement test. D-serine augmented and vehicle-treated animals 

significantly increased responding during reinstatement test compared to extinction responding 

(IE F(1,19)=1.8, p=0.19; ME of Session F(1,19)=93.5, p<0.01; Figure 3.2B), however, there was no 

effect of treatment on cocaine seeking (ME of Treatment F(1,19)=1.9, p=0.18; Figure 3.2C). 

Nucleus Accumbens Core Protein Expression 

NMDA receptor subunit GluN1 total protein expression was increased in D-serine 

augmented animals (IE F(1,38)=1.7, p=0.20; ME of Treatment F(1,38)=10.6, p<0.005; Figure 3.3A) 
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and post hoc analysis revealed that basal levels of GluN1 (T=0) D-serine augmented animals 

were significantly increased compared to vehicle animals (Sidak’s test of multiple comparisons, 

p<0.05). There were no differences between the treatment groups, or between basal and 

reinstatement levels of NMDA receptor subunits GluN2A or GluN2B (Figure 3.3B-C) and no 

changes in surface expression of any of the NMDA receptor subunits (Figure 3.5A-C).  

AMPA receptor subunit GluA1 total expression had a significant interaction (F(1,39)=6.0, 

p<0.02; Figure 3.4A), and post hoc analyses divulged that reinstatement significantly increased 

GluA1 levels in vehicle treated animals; however, D-serine augmented animals remained at 

basal levels. GluA2 levels were unchanged overall or at the surface at either time point, and 

GluA1 levels were unchanged at the surface as well.  

GLT-1 expression was altered following reinstatement test in the NAc, in total expression 

and surface expression (Figure 3.7A-B). A 1 hr cocaine plus cue-primed reinstatement test 

increased GLT-1 total protein expression (IE F(1,39)=0.02, p=0.90; ME of Time F(1,39)=4.8, p<0.05), 

however no post hoc analyses were significant between the treatments. Mirroring this, an 

increase in surface expressed GLT-1 was also seen following cocaine plus cue-primed 

reinstatement test. NAc core GLT-1 surface expression had a significant interaction effect 

(F(1,39)=7.1, p<0.02), and post hoc analysis revealed a significant increase in GLT-1 surface 

expression in vehicle treated animals after 1 hr of the reinstatement test compared to basal 

levels. Further investigation of this effect indicated that the upregulation of GLT-1 surface 

expression was driven by a significant reduction in total protein in the 1 hr reinstatement group 

between the molecular weights of 75-100 kDa. REVERT total protein stain (normalized to saline 

T=0 control) was significantly reduced in vehicle animals after the 1 hr reinstatement test 

compared to basal levels (IE F(1,81)=9.9, p<0.01; Sidak’s multiple comparison vehicle T=0>T=1, 

p<0.01), and as the total protein stain is used to adjust GLT-1 signal by dividing GLT-1 signal 

with REVERT total protein signal, this could be driving the decrease in GLT-1 surface 

expression. Additionally, NAc core REVERT total protein signal was significantly different 
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between the treatments at T=0 (IE F(1,82)=2.7, p=0.21; ME treatment F(1,82)=4.0, p<0.05; Sidak’s 

multiple comparison vehicle T=0 > treatment T=0, p<0.05). This may be masking an even 

greater effect of GluN1 increase in D-serine augmented animals. REVERT total protein stain 

signal was not significantly different in the biotinylated fraction or total protein fraction of the 

other brain areas. These results need to be further investigated to decipher if a GLT-1 signal is 

upregulated, or a mass surface internalization event is causing a decrease in total protein of 

vehicle treated reinstated animals.  

 

Dorsolateral Striatum and Dorsal Hippocampus Protein Expression Protein Expression. 

The effects of reinstatement and D-serine augmentation were also investigated in the 

dorsolateral striatum and dorsal hippocampus. In the striatum, an anatomical control region, 

total and surface expression of AMPA (Figure 3.3) and NMDA (Figure 3.4) receptors was similar 

between groups, indicating D-serine augmentation had no effect on receptor subunit protein 

translation, transcription or trafficking. Striatal GLT-1 total protein expression was affected by 

reinstatement test (IE F(1,39)=0.3, p<0.60; ME of Time F(1,39)=6.9, p<0.02) and post hoc analysis 

revealed a trend for vehicle animals to have increased GLT-1 protein following a 1 hr 

reinstatement test (Sidak’s multiple comparison, p=0.07; Figure 3.7E).  There were no 

differences in striatal surface expression of GLT-1 (Figure 3.7F).  

The dorsal hippocampus was investigated because D-serine facilitates cocaine 

extinction learning (H. Han et al., 2015; Kelamangalath et al., 2009; Kelamangalath & Wagner, 

2010), and the hippocampus is a structure important in learning and memory. Hippocampal 

protein levels did not change between treatment groups at either time point in overall protein or 

surface protein expression for AMPA (Figure 3.4C&D; Figure 3.6E&F) or NMDA (Figure 3.4D-F; 

Figure 3.G-I) receptor subunits or GLT-1 (Figure 3.7C&D).  
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Discussion.  

Contributions of cocaine-induced synaptic modifications to cocaine seeking behaviors 

Impaired synaptic function in the NAc core has been well described in cocaine 

withdrawn animals, and the seminal features are impaired glutamate homeostasis and 

potentiated synaptic strength (Carbone et al., 2012; Gipson et al., 2013; Kalivas, 2009; Kalivas 

et al., 2009; Shen et al., 2014). We have recently included decreased synaptic colocalization of 

astrocytic processes to these sequelae of changes (Scofield, Li, et al., 2016). I hypothesize that 

decreased synaptic colocalization will increase the barrier to volume transmission of astrocyte-

derived factors, including D-serine, and consequentially reduce NMDA receptor function 

contributing to the synaptic adaptations induced by cocaine withdrawal. Supporting this, 

treatment with ceftriaxone restores synaptic colocalization of astrocyte processes after cocaine 

self-administration and extinction (Scofield, Li, et al., 2016) and blocks cocaine reinstatement 

(Knackstedt et al., 2010). Further, I have found that direct NMDA receptor stimulation in the NAc 

core attenuates cocaine seeking (Chapters 2 and 3). Collectively, these results suggest that 

rectifying the maladaptive cocaine-induced changes to astrocytes can reduce reinstatement to 

cocaine seeking, and more specifically, that stimulation of NAc core NMDA receptors can 

reduce reinstatement. 

Our recent finding that astrocytes retract from the synapse following cocaine self-

administration and extinction (Scofield & Kalivas, 2014), may indicate a reduction in the ability to 

activate NMDA receptors due to limited volume transmission of its co-agonist D-serine. This is 

in agreement with previous reports of impaired NMDA receptor function following cocaine 

experience (Curcio et al., 2013), but is opposed to reports regarding increased expression of 

NMDA receptors following cocaine self-administration and extinction (Hafenbreidel et al., 2014). 

Importantly, behavioral results presented herein specifically regard stimulation of NMDA 

receptors, independent of expression levels. It is possible that increased subunit expression 

may be a compensatory effort by the cell to normalize NMDA receptor function. 
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The inability of direct D-serine administration alone into the NAc core at a higher dose 

(300 µg/side) to attenuate cocaine seeking is at odds with our hypothesis that D-serine and SB 

administered together increase D-serine levels driving NMDA receptor activation and reducing 

reinstatement. This could be an indication that the NAc core is not the only brain region driving 

the systemic D-serine augmentation effect or that DAO acting on other molecules (for instance 

kynurenic acid) are driving our effect. However, it is unlikely that DAO inhibiting the production 

of kynurenic acid is the mechanism driving our systemic effect, as we found no differences in 

kynurenine or kynurenic acid following 3 days of systemic D-serine augmentation in the NAc 

core. Previous studies have found that administration of SB to the VTA increases dopamine 

release in the mPFC (Betts et al., 2014), and also that NMDA administration to the NAc 

increases mPFC glutamate (Bortz, Wu, Schwarcz, & Bruno, 2017), potentially indicating that 

both administration to the NAc and administration of systemic D-serine augmentation are 

activating the mPFC, an area of descending input that regulates motivation (McGlinchey et al., 

2016; Perry et al., 2011). In fact, PFC-subcortical circuits are integral for inhibitory control over 

cocaine craving and seeking (Navailles, Guillem, Vouillac-Mendoza, & Ahmed, 2015). 

Supporting this, systemic and intra-NAc D-serine reduces aversion resistant alcohol intake, but 

not quinine free-alcohol (Seif et al., 2015). Additionally, ventral medial PFC recruitment of 

glycine and D-serine were blunted after protracted abstinence from long-term alcohol exposure 

and, further, administration of a glycine transport inhibitor attenuated motor impulsivity deficits of 

alcohol exposed animals (Irimia et al., 2017). The short access and extinction model of cocaine 

administration used in these experiments does not have adverse consequences, such as 

models of inhibitory control or model deficits in impulsivity, and as such it is generally accepted 

that short access and extinction paradigms access the motivational properties of the drug and 

not inhibitory control. Despite this, it is an interesting possibility that should be further 

investigated. 
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Possible roles for NMDA receptor subtypes in cocaine reinstatement 

Collectively, our total protein expression data indicates divergent effects of D-serine 

augmentation on the obligatory subunits of AMPA and NMDA receptors, GluA1 and GluN1, 

respectively. D-serine augmentation increases total protein expression of the NMDA receptor 

subunit GluN1, where total GluN1 protein expression is significantly greater than vehicle treated 

animals basally (T=0), but these trends to do not follow to surface expression, which was 

unchanged. GluN1 is an obligatory subunit in the NMDA receptor complex, and as such an 

increase in GluN1 expression could be indicative of an overall increase in NMDA receptors 

following cocaine self-administration and prolonged withdrawal. The NMDA receptor complex is 

a heterotetramer, where one GluN1 dimer is necessary, but the second dimer can be composed 

of several match pairs of NMDA receptor subunits. Importantly, GluN1 contains the glycine 

modulatory site for binding of D-serine or glycine. The next two most common NMDA receptor 

subunits are GluN2A and GluN2B, which were assessed in these experiments. NMDA receptor 

subunits GluN2A-D bind glutamate (Furukawa, Singh, Mancusso, & Gouaux, 2005; Monyer et 

al., 1992). GluN3 subunits also contain the GMS and bind D-serine and glycine, and have been 

shown to have exponentially greater binding of the co-agonists than the NR1 subunit (Yao & 

Mayer, 2006). Interestingly, it has been recently found that the cocaine-evoked plasticity at VTA 

dopamine neurons that synapse with excitatory projections is caused by insertion of GluN3A-

containing NMDA receptors (Yuan et al., 2013). Because these subunits, such as GluN2C/D or 

GluN3A were not targeted in my experiments, it is possible that these were also upregulated 

with GluN1 to create more NMDA receptors to be trafficked to the surface.  

Additionally, a reinstatement event induced increased expression of the AMPA receptor 

subunit GluA1 in vehicle treated animals, but this upregulation of protein is not seen in D-serine 

augmented animals, indicating that D-serine augmentation is blocking this effect. As surface 

expression remained unchanged for all subunits of AMPA and NMDA receptors, it is unlikely 

that these changes in total protein are the mechanism by which D-serine augmentation is 



 54 

attenuating reinstatement. They do, however, give insight into the effects of cocaine plus cue-

primed reinstatement on protein expression, and how D-serine augmentation affects these 

reinstatement-induced changes in protein.  

 Given our surface expression data, it is unlikely that in the NAc D-serine augmentation is 

inducing AMPA receptor internalization, and through AMPA receptor internalization 

depotentiating the synapse and attenuating cocaine seeking. This leads us to contemplate other 

mechanisms by which NMDA receptor activation is reducing cocaine seeking. One alternative is 

NMDA receptor mediated dopamine release inhibition.  

 

Potential mechanism of the effect of D-serine on reinstatement 

As stated, cocaine exposure profoundly affects AMPAR transmission in the NAc core 

and shell, and similar changes also occur in the ventral tegmental area (VTA), the origin of the 

mesolimbic dopamine system. In the VTA a single cocaine injection can initiate exchange if 

GluA2-containing AMPA for GluA2-lacking (calcium permeable) AMPA receptors, a change 

which returns to baseline one week later (Bellone & Luscher, 2006). In fact, drugs that activate 

dopamine release have been shown to cause similar AMPA receptor redistribution in the VTA 

(Brown et al., 2010). Further, cocaine has been shown to cause a redistribution of NMDA 

receptors at excitatory synapses projecting on VTA dopamine neurons, inserting GluN3A 

containing NMDA receptors and effectively reducing NMDA receptor function (Yuan et al.). 

Adding insight into the decreased AMPA/NMDA ratio observed following cocaine exposure, as 

not only being a result of an increased AMPA receptor signal, but a decreased NMDA receptor-

mediated component (Mameli, Bellone, Brown, & Luscher, 2011; Shen et al., 2014). As a result 

of these finds, the mesolimbic dopamine system is proposed as a point of convergence for 

addictive drugs to alter neural circuits. 

The AMPA receptor exchange of GluA2-containing for GluA2-lacking AMPA receptors 

has also been well characterized in the NAc shell (Wolfe et al. 2012), however these changes 
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are not present in the NAc core (Ma et al., 2014). Despite this, nucleus accumbens 

dopaminergic and glutamatergic projections synapse on the same spines of medium spiny 

GABAergic projection neurons (Sesack, Carr, Omelchenko, & Pinto, 2003), making it another 

potential locus of these alterations in neural circuits. Specifically, the nucleus accumbens core 

remains to be investigated for alterations in NMDA receptor subunit composition, especially 

given the ability for direct NMDA receptor activation to attenuate cocaine seeking, shown here. 

Given the changes in NMDA receptor signaling in the VTA, in part, accounts for the reduction in 

AMPA:NMDA ratio (Mameli et al., 2011), this is something that also remains to be investigated 

in the NAc core. Additionally, as mentioned above, we did not probe for changes in GluN2C/D 

or GluN3A NMDA receptor subunits, which have been shown to be upregulated in the 

mesolimbic dopamine system following drugs of abuse (Hagino et al., 2010; Yuan et al., 2013) 

and Parkinson’s disease (Feng, Zhang, & Chergui, 2014; X. Zhang, Feng, & Chergui, 2014), a 

disease characterized by degenerative dopamine levels. Increased levels of GluN2C/D or 

GluN3A could be reducing the NMDA receptor-mediated currents, and thus our systemic and 

intra-accumbal targeting of NDMA receptors could be rectifying this deficit and attenuating 

excitatory signaling in the NAc core.  Convergent glutamatergic and dopaminergic afferents in 

the NAc core have complex interactions, and it is possible that NDMA receptors modulate 

dopamine release at the terminals of VTA afferents, as in the striatum (H. Zhang & Sulzer, 

2012). Dopamine modulates PL-NAc glutamatergic transmission, in a dopamine receptor 2 (D2) 

dependent manner (W. Wang et al., 2012), and as acute cocaine increases dopamine release in 

the NAc core, this should be considered.  Investigation into the interplay between AMPA and 

NMDA receptor synaptic changes, as well as their effects on the mesolimbic dopamine release 

are enticing new directions, however differences in the amount of cocaine exposure and 

withdrawal periods need to be kept in mind. 

D-serine augmentation had no effect on NMDA receptor total protein expression in the 

dorsal hippocampus or the dorsolateral striatum either basally or directly following a 
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reinstatement test. Additionally, surface expression at either time point was not altered in these 

brain regions following D-serine augmentation. Further, AMPA receptors (GluA1 and GluA2 

subunits) and the glutamate transporter 1 (GLT-1) total and surface expression were also 

unchanged in these regions by D-serine augmentation, as expected. These results give strong 

evidence that the cellular mechanism of D-serine augmentation attenuation of reinstatement 

behavior is through changes in glutamatergic ionotropic receptor or glutamate transporter 

surface expression in either the dorsal hippocampus or the dorsolateral striatum. 

It’s possible that cocaine plus cue-primed reinstatement is increasing production of GLT-

1 in the striatum, as there was a main effect of time, but no post hoc comparisons were 

significant. This could be a result of the relatively short period between our two-time points, and 

potentially if the reinstatement session was extended to a full 2 hr test there would be a greater 

increase in production of GLT-1 protein. Similar mechanisms may be affecting the NAc as GLT-

1 expression was also increased after reinstatement test compared to basal levels, but no 

differences in between time points within treatments were obtained. Extending the second-time 

point to after a 2 hr reinstatement test would allow for greater changes in GLT-1 protein. These 

increases in GLT-1 protein could be a compensatory mechanism to upregulate the transporter 

as a response to the increased glutamate release during the relapse event. GLT-1 is 

responsible for clearance of approximately 90% of the synaptic glutamate, and reduced levels of 

GLT-1 following cocaine and prolonged withdrawal leave the synapse ill prepared for the flood 

of glutamate during the reinstatement test.  As discussed, it has been well characterized that 

GLT-1 protein is down regulated following multiple paradigms of cocaine self-administration and 

withdrawal (Fischer-Smith et al., 2012), however changes in GLT-1 protein expression have not 

been investigated following reinstatement compared to animals who did not experience a 

relapse event. Although, it is unlikely that the D-serine induced upregulation of GLT-1 protein at 

the surface is a true effect, as REVERT total protein stain was significantly decreased, likely 

driving this effect. Further, investigation is necessary to parse out these findings. 
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 In the literature NAc, striatum and hippocampus all have contradictory findings in regard 

to cocaine self-administration and NMDA receptor subunit expression compared to naïve 

animals, where most studies find that there are either no change or an increase in GluN1. In the 

dorsal striatum, following short withdrawal, it has been reported that there is either no change in 

H-MK801 (radioactive) binding (Ben-Shahar et al., 2007) or an increase in GluN1(Crespo, Oliva, 

Ghasemzadeh, Kalivas, & Ambrosio, 2002), and further prolonged withdrawal ameliorated the 

changes in H-MK801 binding (Ben-Shahar et al., 2007).  Like the dorsal striatum, the 

hippocampus has a lack of information on NMDA receptor makeup following either self-

administration or after withdrawal, prompting additional probing of each of these areas (P. I. 

Ortinski, 2014). One experiment showed NMDA receptors expressed at the surface were 

increased immediately following both cocaine self-administration and yoked cocaine infusions, 

but following 10 days of extinction training these levels were returned to cocaine naïve levels 

(Caffino et al., 2014). This lack of hippocampal evidence for NMDA receptor makeup is lieu of a 

growing amount of studies indicating the hippocampus is important in underlying cocaine-

seeking behaviors (Lasseter, Xie, Ramirez, & Fuchs, 2010; Sun & Rebec, 2003), including 

unpublished work by the author (Healey master’s thesis, 2015).  

 

Summary 

Data presented in this chapter collectively indicates that D-serine administration together 

with subthreshold, low dose NMDA administration directly into the NAc core impairs 

reinstatement without effect on locomotor activity. However, systemic D-serine augmentation 

does not affect the surface expression of NMDA receptor subunits GluN1, GluN2A or GluN2B, 

or AMPA receptor subunits GluA1 or GluA2 in the NAc core, dorsal hippocampus or the 

dorsolateral striatum. Trafficking of proteins can happen on the time scale of minutes (Biou et al., 

2008), and so the 1 hr reinstatement test would be ample time for changes in the surface to be 

revealed. These findings suggest that stimulation of NMDA receptors in the NAc core is 



 58 

sufficient to reduce reinstatement, but that internalization of AMPA receptors leading to synaptic 

depotentiation following NMDA receptor stimulation in the NAc is not likely the mechanisms 

responsible for the effect of systemic D-serine. Future studies will be required to determine the 

mechanism of action, as discussed below in Chapter 4.  
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Table 3.1. Behavioral Data. 
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Figure 3.1. D-serine plus NMDA administration into the nucleus accumbens attenuates 
reinstatement to cocaine seeking in a cocaine plus cue-primed test. (A) Study timeline, 
microinjections were given on the last 2 days of extinction training and on reinstatement test day. 
(B) Self-administration and extinction training were similar between the treatment groups. (C) 
Cannula placement were all located in the nucleus accumbens core. All treatment groups 
reinstated cocaine seeking behaviors, however only the D-serine and NMDA combination 
treatment significantly attenuated cocaine seeking compared to vehicle. Hash denotes 
significant effect of reinstatement (#p<0.05). Asterisk denotes significant effect vs. vehicle 
(*p<0.05). 
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Figure 3.2. Behavioral training was similar between the groups and animals significantly 
reinstated cocaine seeking. (A) Timeline of study. (B) Animals readily learned to self-
administer cocaine, and there were no differences in self-administration or extinction training 
between the treatment groups. (C) Animals who received a 1 hr reinstatement test significantly 
increased cocaine seeking compared to their extinction responding, however, there were no 
differences in reinstatement responding between the treatment groups. Hash denotes significant 
effect of reinstatement (#p<0.05). 
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Figure 3.3 D-serine augmentation increases total protein fraction GluN1 expression in the 
nucleus accumbens core. Total protein fraction NMDA receptor subunits GluN1, GluN2A and 
GluN2B were assessed at T=0 and T=1hr in animals treated with DS (100 mg/kg) and SB (200 
mg/kg) or vehicle in the (A-C) nucleus accumbens, (D-F) hippocampus and (G-I) striatum. 
Representative bands are in the order of Vehicle T=0, DS+SB T=0, Vehicle T=1 and DS+SB 
T=1. Asterisk denotes significant effect vs. vehicle T=0 (*p<0.05). 
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Figure 3.4. D-serine augmentation attenuates a reinstatement induced increase of total 
protein fraction AMPA receptor subunit GluA1 in the nucleus accumbens core. Total 
protein fraction AMPA receptor subunits GluA1 and GluA2 were assessed at T=0 and T=1hr in 
animals treated with DS (100 mg/kg) and SB (200 mg/kg) or vehicle in the (A-B) nucleus 
accumbens, (C-D) hippocampus and (E-F) striatum. Representative bands are in the order of 
Vehicle T=0, DS+SB T=0, Vehicle T=1 and DS+SB T=1. Asterisk denotes significant effect vs. 
vehicle T=0 (*p<0.05). 
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Figure 3.5 Nucleus accumbal, hippocampal and striatal surface expression of NMDA 
receptor subunit composition remained unchanged by D-serine augmentation. 
Biotinylated fraction NMDA receptor subunits GluN1, GluN2A and GluN2B were assessed at 
T=0 and T=1hr in animals treated with DS (100 mg/kg) and SB (200 mg/kg) or vehicle in the (A-
C) nucleus accumbens, (D-F) hippocampus and (G-I) striatum. Representative bands are in the 
order of Vehicle T=0, DS+SB T=0, Vehicle T=1 and DS+SB T=1. 
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Figure 3.6 Nucleus accumbal, hippocampal and striatal surface expression of AMPA 
receptor subunit composition remained unchanged by D-serine augmentation. 
Biotinylated fraction AMPA receptor subunits GluA1 and GluA2 were assessed at T=0 and 
T=1hr in animals treated with DS (100 mg/kg) and SB (200 mg/kg) or vehicle in the (A-B) 
nucleus accumbens, (C-D) hippocampus and (E-F) striatum. Representative bands are in the 
order of Vehicle T=0, DS+SB T=0, Vehicle T=1 and DS+SB T=1. 
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Figure 3.7. A 1 hr cocaine plus cue-primed reinstatement test increases surface 
expression of GLT-1 in the nucleus accumbens. Total protein and biotinylated fraction 
glutamate transporter (GLT-1) were assessed at T=0 and T=1hr in animals treated with DS (100 
mg/kg) and SB (200 mg/kg) or vehicle in the (A-B) nucleus accumbens, (C-D) hippocampus and 
(E-F) striatum. Representative bands are in the order of Vehicle T=0, DS+SB T=0, Vehicle T=1 
and DS+SB T=1. Asterisk denotes significant effect (*p<0.05). 
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Figure 3.8 Increased surface expression of GLT-1 in the NAc core during reinstatement 
may be confounded by a loss of surface proteins. REVERT protein stain was significantly 
reduced in the NAc biotinylated fraction. REVERT protein stain quantification of the total protein 
fraction and biotinylated fraction between 75-100 kDa was assessed at T=0 and T=1hr in 
animals treated with DS (100 mg/kg) and SB (200 mg/kg) or vehicle in the (A-B) nucleus 
accumbens, (C-D) hippocampus and (E-F) striatum. Asterisk denotes significant effect vs. 
vehicle T=0 (*p<0.05). 

 
 
 
  

Vehicle DS+SB 

H
ip

po
ca

m
pu

s
St

ria
tu

m
N

uc
le

us
 A

cc
um

be
ns

T0 T1
0.0

0.5

1.0

1.5

R
EV

ER
T 

B
io

tin
yl

at
ed

 F
ra

ct
io

n
N

or
m

al
iz

ed
 to

 S
al

in
e 

C
on

tr
ol

 T
=0

22 22 2220
T0 T1

0.0

0.5

1.0

1.5

R
EV

ER
T 

To
ta

l P
ro

tie
n 

Fr
ac

tio
n

N
or

m
al

iz
ed

 to
 S

al
in

e 
C

on
tr

ol
 T

=0

22 22 2220

T0 T1
0.0

0.5

1.0

1.5

R
EV

ER
T 

B
io

tin
yl

at
ed

 F
ra

ct
io

n
N

or
m

al
iz

ed
 to

 S
al

in
e 

C
on

tr
ol

 T
=0

18 22 2220
T0 T1

0.0

0.5

1.0

1.5

R
EV

ER
T 

To
ta

l P
ro

tie
n 

Fr
ac

tio
n

N
or

m
al

iz
ed

 to
 S

al
in

e 
C

on
tr

ol
 T

=0

22 22 2220

T0 T1
0.0

0.5

1.0

1.5

R
EV

ER
T 

B
io

tin
yl

at
ed

 F
ra

ct
io

n
N

or
m

al
iz

ed
 to

 S
al

in
e 

C
on

tr
ol

 T
=0

22 22 2220
T0 T1

0.0

0.5

1.0

1.5

R
EV

ER
T 

To
ta

l P
ro

tie
n 

Fr
ac

tio
n

N
or

m
al

iz
ed

 to
 S

al
in

e 
C

on
tr

ol
 T

=0

22 22 2220

A B

C

E F

D

* *



 68 

 
 

 

 

CHAPTER 4: 

Nucleus Accumbens Core Cellular Properties of Cocaine and D-serine Augmentation. 

 

Introduction 

Limbic brain regions such as the medial prefrontal cortex (mPFC), ventral tegmental 

area, hippocampus and amygdala send projections to the NAc. The projections specifically 

target core or shell sub regions, however they are interconnected and can process information 

in parallel or feedforward connections (Alexander, Crutcher, & DeLong, 1990; Groenewegen, 

Galis-de Graaf, & Smeets, 1999; Haber, 2003). Cocaine indirectly mediates glutamate signaling 

on these limbic to NAc projections, producing persistent maladaptive changes in neuronal 

function and plasticity, and driving cocaine seeking behaviors (Kalivas et al., 2009).  

Because the pharmacologic effects of acute cocaine are mediated by blockade of 

reuptake of dopamine, serotonin and norepinephrine, changes in glutamatergic signaling are 

believed to arise as a consequence of long-term hyperdopaminergia. Withdrawal from repeated 

self-administration of cocaine leads to reduced basal levels of extracellular glutamate in the NAc 

core, and a non-contingent cocaine challenge leads to a rapid increase in glutamate release 

(McFarland et al., 2003).  These changes are in part due to cocaine withdrawal-induced 

decreases in expression of the cysteine-glutamate antiporter subunit system xc-, responsible for 

extracellular glutamate tone, and glutamate transporter GLT-1, responsible for the reuptake of 

over 90% of synaptically released glutamate (Kalivas, 2009). These glutamatergic changes in 

the NAc core drive cocaine seeking, as reversal of these alterations in system xc- and GLT-1 

attenuate reinstatement responding (Baker et al., 2003; Knackstedt et al., 2009; LaCrosse, Hill, 
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& Knackstedt, 2016; LaCrosse et al., 2017; Reissner et al., 2014; Reissner et al., 2015; 

Trantham-Davidson et al., 2012).  

Further implicating glutamatergic adaptations in the NAc as drivers of cocaine seeking, 

glutamatergic ionotropic signaling is altered following cocaine exposure and prolonged 

withdrawal.  NAc core synapses are potentiated following extinction from cocaine self-

administration, as measured by AMPA:NMDA ratios, and become further potentiated after 

exposure to drug associated cues or the drug itself (Gipson et al., 2013; Shen et al., 2014). 

Because of the nature of the AMPA:NMDA ratio, this basal potentiation of the synapse could be, 

at least in part, a result of failure to activate NMDA receptors. The synaptic potentiation 

following cue and drug primed reinstatement is increased at 15 (cue-prime) or 45 (drug-prime) 

minutes into reinstatement and is returned back to basal levels in as little as 120 minutes 

(Gipson et al., 2013; Shen et al., 2014).  

It is well established that enhanced AMPA receptor expression and activity in the NAc 

contributes to cocaine seeking behavior (Heath D. Schmidt & R. Christopher Pierce, 2010); 

however, the role of NMDA receptors is less clear. For example, there is conflicting evidence 

regarding the role of NMDA receptors in cocaine reinstatement. Some have reported that NMDA 

receptor antagonism in the NAc core or shell results in spontaneous recovery of seeking 

behavior (Backstrom & Hyytia, 2007) and another study reported that the same drug, ((2R)-

amino-5-phosphonovaleric acid (APV), infused into the NAc core attenuates cue induced-

reinstatement to cocaine seeking (Famous et al., 2008). Moreover, other studies have found no 

effects of NMDA receptor antagonism on reinstatement behavior (Cornish et al., 1999).  

Reports regarding cocaine-induced adaptations in NMDA receptor function are also 

mixed. Curcio et al (2013) reported that NAc NMDA receptor activity is impaired following non-

contingent cocaine exposure and 24-hr withdrawal (Curcio et al., 2013), however evoked NMDA 

receptor mediated currents remain unchanged after non-contingent exposure and 2 weeks 

withdrawal (Joffe & Grueter, 2016). Further, NMDA receptor subunit GluN1 protein is increased 
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following prolonged withdrawal from non-contingent cocaine exposure (Ghasemzadeh, Mueller, 

& Vasudevan, 2009; Scheggi et al., 2002; Schumann & Yaka, 2009) and cocaine self-

administration (Lu et al., 2003), but also increases have been found in GluN2A and GluN2B (Al-

Hallaq, Conrads, Veenstra, & Wenthold, 2007; Ghasemzadeh et al., 2009; Hafenbreidel et al., 

2014; Loftis & Janowsky, 2002; Schumann & Yaka, 2009). It should be noted that some studies 

report no change in expression of GluN1 and GluN2A/B (Ferrario, Goussakov, Stutzmann, & 

Wolf, 2012) and even a decrease in GluN1 (Self, Choi, Simmons, Walker, & Smagula, 2004)in 

the NAc, clouding the picture of cocaine induced NMDA receptor adaptations.  

 The NAc shell has been investigated for changes in NMDA receptor signaling, but none 

have been found (Ferrario et al., 2012; Pavel I. Ortinski, Vassoler, Carlson, & Pierce, 2012; 

Thomas, Beurrier, Bonci, & Malenka, 2001). Yet, the NAc core has not been as extensively 

studied (Joffe & Grueter, 2016), potentially because NAc shell upregulation of CP-AMPA 

receptors has been well defined [for review see (Wolf, 2012)], leading to questions of NMDA 

receptor involvement. But also, the contradictory findings of NMDA receptors in the core (P. I. 

Ortinski, 2014; Heath D. Schmidt & R. Christopher Pierce, 2010) are potentially responsible for 

the lack of information on cocaine induced adaptations to NMDA receptor function. However, 

recent data from our laboratory indicate that that NMDA receptor function in the NAc core 

following cocaine self-administration and prolonged withdrawal should be investigated further. 

 We recently established that astrocytes in the NAc core are smaller, and have reduced 

colocalization with the synapse, potentially disrupting volume transmission of astrocyte-derived 

D-serine at the synapse (Scofield, Li, et al., 2016). D-serine is a co-agonist of NMDA receptors 

at the glycine modulatory site (GMS), and is integral for NMDA receptor function. Further, 

experiments in this dissertation indicate that systemic D-serine augmentation, and direct 

stimulation of NAc core NMDA receptors with D-serine and NMDA attenuate cocaine seeking. 

We then found that D-serine augmentation had no effect on the surface expression of NMDA 

receptors, which lead me to investigate the potential mechanism of D-serine augmentation to be 
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more efficiently activating NMDA receptors, rather than increasing the NMDA receptor 

population. Here, I characterize NMDA receptor function in the NAc core following cocaine self-

administration and extinction, and investigate the effects of systemic D-serine augmentation on 

both NMDA receptor and synaptic function. 

 

Methods. 

Animals.  

Male Sprague Dawley rats (Harlan Farms, Raleigh NC), aged approximately 6-8 weeks 

and weighing 260-300 grams at the time of surgery were used in these experiments. Rats were 

individually housed in a temperature controlled environment on a reversed 12:12 light:dark 

(lights off at 0700) schedule. Following a week of habituation, animals were put on a food 

restricted diet of 20 g/day (Envigo Teklad laboratory animal diet). All procedures were approved 

by the University of North Carolina’s Institutional Animal Care and Use Committee. 

 

Behavioral training.  

See detailed description of training in chapter 2. Briefly, animals were trained to self-

administer cocaine in 12 sessions, and then moved to extinction training for 14 sessions. 

Treatment of D-serine augmentation (100 mg/kg D-serine and 100 mg/kg or 200 mg/kg Sodium 

Benzoate) or vehicle were administered 3 hrs prior to the last two extinction training sessions 

and on test day, as described in previous experiments.  

 

Electrophysiology and NMDA currents.  

Rats were anesthetized with pentobarbital (65 mg/kg) and perfused transcardially with 

oxygenated cold modified artificial cerebral spinal fluid (aCSF) - NMDG-HEPES recovery 

solution and decapitated (S. Zhao et al., 2011). Coronal slices of the NAc were taken with a 

vibratome (220 µm; Leica VT1200S) in oxygenated ice-cold cutting solution. The NAc slices 



 72 

were incubated at 32oC for at least 10 min in oxygenated NMDG-HEPES recovery solution and 

then one hr in oxygenated modified HEPES holding ACSF solution at room temperature (S. 

Zhao et al., 2011). Slices were transferred to the recording chamber and neurons visualized 

with DIC microscopy using a 60X water-immersion objective on an upright microscope 

(Scientifica) perfused at 2-3 ml/min with 32oC ACSF with 50 µM picrotoxin, to block GABAA 

currents. Whole-cell patch-clamp recording were taken from NAc core MSNs by a Multiclamp 

700B amplifier using glass pipettes with a resistance of 2.5–3.5 MΩ filled with an internal 

solution containing (in mM): 10 Cs-Cl, 130 CsOH, 130 gluconic acid, 10 HEPES, 11 EGTA, 2 

ATP, 3 GTP, and 1 CaCl2. pH was adjusted to 7.3 with CsOH (300 mOsm). After establishing a 

whole-cell voltage-clamp recording, the resting membrane potential, the membrane resistance, 

membrane capacitance, and access resistance were monitored during the recording. Cells were 

excluded when the access resistance deviated by greater than 20% during the recording. 

Recordings were filtered at 4 kHz, digitized at 10 kHz via Digidata 1440A (Axon Instruments, 

Inc.) and saved to a computer using pCLAMP10 (Molecular Devices). To obtain AMPA:NMDA 

ratios, EPSCs were measured in response to approximately 1mA stimulation by a concentric 

bipolar electrode placed approximately 100-200 µM dorsomedial to the patched neuron. 

Picrotoxin (50 µM) was added to the bath to Block GABA A-mediated currents.  AMPA-mediated 

EPSCs were recorded at -80mV and NMDA EPSCs were recorded at +40mV in the presence of 

CNQX (10 µM) to block AMPA receptor currents. NMDA receptor mediated currents were 

evoked extracellular electrical stimulation (0.10 ms) of increasing intensity (0.5-2.5 mA) with an 

intertrial interval of 20 s, as described previously (Hong et al., 2009). 
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Data analysis.  

Repeated measures analysis of variance (ANOVA) was used to compare the behavioral 

data of the groups (active lever responding, inactive lever responding and infusions). Analysis of 

electrophysiology data was performed in Clampfit 10 (Axon Instruments, Union City, CA) 

followed by a three-way analysis of variance (self-administered drug x treatment x current) to 

compare the groups. Sidak’s multiple comparison post hoc corrections were used to compare 

groups. 

 

Results. 

Behavioral training.  

There were no differences between groups during cocaine self-administration or 

extinction (comparing cocaine-administering only; Table 4.1 and Figure 4.1B) or saline self-

administration or extinction (comparing saline-administering only; Table 4.1 and Figure 4.1B). 

All cocaine self-administering rats reliably extinguished lever responding during extinction 

training (Sidak’s multiple comparisons test, p<0.05). 

 

Cocaine self-administration and prolonged withdrawal potentiate NAc core MSN and D-serine 
augmentation rescues this effect. 
 

Following cocaine self-administration and extinction, MSNs exhibit potentiated NAc core 

synaptic strength compared to cocaine naïve animals (Gipson et al., 2013; Pavel I. Ortinski et 

al., 2012; Shen et al., 2014). We replicated this effect (significant interaction effect F(1,40)=14.1, 

p<0.01, Sidak’s test of multiple comparison, Saline/Veh > Cocaine/Veh; Figure 4.1C). Further, 

D-serine augmentation attenuated this potentiation of the synapse as cocaine self-administering 

animals with D-serine augmentation showed significantly lower AMPA:NMDA ratio than cocaine 

self-administering vehicle animals (Sidak’s test of multiple comparison, p<0.05; Figure 4.1C), 

however they were no different than saline self-administering vehicle animals (p=0.83). Further, 
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there was a non-significant trend for D-serine augmentation in saline self-administering animals’ 

AMPA:NMDA ratio to be greater than D-serine augmented cocaine self-administering animals 

(p=0.07), although D-serine augmented saline self-administering animals were no different than 

saline self-administering vehicle animals (p=0.41). 

 

D-serine augmentation increases evoked NMDA receptor currents.  

A three-way mixed ANOVA with current as the repeated measures factor, and group 

(cocaine vs. saline self-administering rats) and treatment (vehicle vs. D-serine augmentation) as 

between subject factors, was run to examine differences in evoked NMDA receptor currents 

over increasing stimulation intensity. There was a non-significant trend for a three-way 

interaction between group, treatment and stimulation (F(1,29)=2.1, p=0.07). There was a 

significant effect of stimulation (F(1,29) = 96.3, p <0.01), where at increasing stimulations the 

evoked NMDA currents increased (Sidak’s multiple corrections test, p<0.05; Figure 4.1D). There 

was a significant stimulation x treatment interaction (F(1,29) = 15.8, p <0.01), and post hoc 

analysis revealed that NMDA receptor currents in MSNs from D-serine-augmented rats were 

greater than vehicle animals at all stimulation intensities (Sidak’s multiple corrections test, 

p<0.05; Figure 4.1D).  There were no differences in saline self-administering and cocaine self-

administering evoked NMDA receptor currents as the interaction between stimulation and group 

was not significant (F(1,29) = 0.2, p=0.97). These results indicate that treatment with D-serine 

augmentation, regardless of self-administration of cocaine or saline, increased evoked NMDA 

receptor currents compared to vehicle control animals.  

 

Discussion. 

Cocaine self-administration and prolonged withdrawal has been shown to change 

excitatory neuroplasticity in NAc core MSN, such as increased strength of AMPA relative to 

NMDA-mediated currents (AMPA:NMDA ratio) compared to cocaine naïve controls (Gipson et 
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al., 2013; Shen et al., 2014). Here, we replicated this effect showing that extinguished cocaine 

self-administering animals had significantly greater AMPA:NMDA ratios than cocaine-naïve 

control animals. Additionally, we probed the ability of systemic D-serine augmentation to 

attenuated this increase in synaptic potentiation. D-serine augmentation rescues these cocaine-

induced synaptic alterations in NAc core MSN synapses. Lastly, D-serine augmentation 

increased evoked NMDA receptor mediated currents in both saline- and cocaine-extinguished 

rats, indicating that NAc core NMDA receptors may contribute to the restored AMPA:NMDA 

ratio in treated animals with a cocaine history. Collectively, these results add further evidence 

that increasing NMDA receptor activation in the NAc core is potentially the driving force behind 

the behavioral effects of D-serine augmentation.  

 

Association between NAc core synaptic potentiation and established D-serine augmentation 
effect 
 

As presented above (Chapter 2 and 3), both systemic D-serine augmentation and intra-

NAc activation of NMDA receptors attenuate cocaine plus cue-primed reinstatement to cocaine 

seeking. Now, we have shown that NAc core MSN AMPA:NMDA ratios are increased in cocaine 

extinguished animals and that our treatment of D-serine augmentation attenuates this effect. 

These findings further support the role of NAc core MSN synaptic changes in driving cocaine 

seeking behaviors, but also indicate that these maladaptive changes are dynamic and can be 

altered with treatment. 

 It was beyond the scope of this work to investigate synaptic changes during the 

reinstatement test, however, it would do well to investigate the effects of D-serine augmentation 

on known reinstatement-dependent transient changes in NAc core MSN synaptic potentiation 

(Gipson et al., 2013; Shen et al., 2014). It’s possible that D-serine augmentation also reverses 

the rapid synaptic plasticity induced by cues associated with cocaine (Gipson et al., 2013) and 

cocaine itself (Shen et al., 2014). Further, this transient synaptic potentiation has not been 



 76 

investigated following a cocaine plus cue-primed reinstatement test. Cocaine associated cues 

and an acute cocaine dose have differing timelines for initiation of synaptic potentiation (Gipson 

et al., 2013; Shen et al., 2014), and so it would be necessary to determine the timeline of a 

combined cocaine plus cue prime transient synaptic potentiation, in addition to the effects of D-

serine augmentation on synaptic potentiation.  

  Furthermore, this transient, LTP-like increase in AMPA:NMDA ratio is likely a result of 

increased AMPA receptor signaling (Shen et al., 2014), and strengthening NMDA receptor 

signaling can counteract these effects. However, the facilitation of AMPA receptor signaling is 

not dependent on rapid changes in AMPA receptor surface expression or subunit expression 

[Chapter 4;(Shen et al., 2014)], as previously thought. In Chapter 4 of this dissertation we see 

no change in AMPA receptor subunit composition between vehicle treated animals at the two 

time-points: basally and 1 hr into a cocaine plus cue-primed reinstatement test. These results 

negate a possibility that elevated AMPA receptor expression increases AMPA receptor currents, 

thereby potentiating the synapse as measured by AMPA:NMDA ratios. It’s possible that despite 

no change in protein concentration, AMPA receptor currents are increased in the NAc core due 

to increased sensitivity of AMPA receptors to activate or increased decay times that would allow 

for greater current in the same number of receptors.  Interestingly, in the rat hippocampus, D-

serine administration inhibits AMPA receptor mediated currents, and may be a competitive 

antagonist of AMPA receptors (Gong, Zabek, & Bai, 2007). These possibilities warrant further 

investigation.  

 

D-serine augmentation increased evoked NMDA receptor mediated currents 

Interestingly, we found no difference in evoked NMDA receptor mediated currents 

between cocaine and saline self-administering animals, as we had expected. These results are 

congruent with previous findings, where no differences were found in electrically evoked NMDA 

receptor properties or NMDA:AMPA ratio after non-contingent cocaine and 2 weeks of 
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abstinence compared to cocaine naïve animals (Joffe & Grueter, 2016) and also no change was 

found in AMPA:NMDA ratio 24hr after non-contingent cocaine (Pavel I. Ortinski et al., 2012). 

Collectively, these findings indicate despite a cocaine withdrawal induced increase in NMDA 

receptor protein (P. I. Ortinski, 2014), it has no effect on the evoked NMDA receptor mediated 

currents in the NAc core. Our original hypothesis that extinguished cocaine self-administering 

animals have a deficit in D-serine at the synapse, due to reduced astrocytic contact with the 

synapse (Scofield, Li, et al., 2016), is still applicable. It is possible that NMDA receptors are 

present, and can be evoked in vivo electrophysiology recordings, but are not endogenously 

stimulated due to insufficient co-agonist affecting behavioral output. Interestingly, these results 

also point to AMPA receptors as driving the differential changes in AMPA:NMDA ratio between 

saline self-administering and cocaine self-administering D-serine augmented animals.  

It’s important to note that increased surface expression and exchanging of calcium 

impermeable AMPA receptors for calcium permeable AMPA receptors have been reported 

extensively in the NAc after long-access and incubation model of cocaine craving, but there is 

limited research on short access cocaine self-administration and extinction induced AMPA 

receptor alterations [for a review see (Wolf & Tseng, 2012)]. What is known, is that short access 

cocaine self-administration and prolonged withdrawal upregulates calcium impermeable but not 

calcium permeable AMPA receptors (McCutcheon, Wang, Tseng, Wolf, & Marinelli, 2011; 

Purgianto et al., 2013), indicating multiple levels of adaptations to the glutamatergic system that 

are dependent on cocaine exposure and length of cocaine withdrawal. It is noteworthy, that the 

experiments reporting changes in AMPA receptor rectification, and thus a change of subunits 

expressed at the surface, were observed in NAc core MSNs of cocaine self-administering 

abstinent animals (Conrad et al., 2008; McCutcheon et al., 2011), and extinction training may 

eliminate these changes as there are reports of unaltered subunit composition in extinguished 

cocaine self-administering animals (Shen et al., 2014). 
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Interestingly, D-serine augmentation increased evoked NMDA mediated receptor 

currents in both cocaine and saline self-administering animals, but only cocaine self-

administering animals demonstrated a decrease in NAc core AMPA:NMDA ratio. In fact, saline 

self-administering D-serine augmented animals had a trend of a greater AMPA:NMDA ratio than 

cocaine self-administering D-serine augmented animals. These effects are reminiscent of the 

findings Curcio and colleagues (2013) where D-serine added to the wash solution increased 

NMDA receptor mediated field potentials to a greater extent in non-contingent cocaine exposed 

animals than in cocaine naïve controls (Curcio et al., 2013). This was taken to indicate 

hypofunctioning NMDA receptors in the NAc core following cocaine experience. Our results and 

others (Joffe & Grueter, 2016) indicate that NMDA receptors are capable of functioning as well 

as their cocaine naïve control animals, giving evidence that changes in AMPA receptor signaling 

contribute to the changes in AMPA:NMDA ratio seen between saline self-administering and 

cocaine self-administering animals. Alternatively, it is also possible that the conditions set in our 

slice recordings are different than the endogenous conditions, and could be affecting our results. 

Further, our results are an indication that after D-serine augmentation NAc core NMDA 

receptors are more sensitive to activation, even when D-serine is not in the recording solution. 

 

Conclusions 

 These findings add to a growing evidence that following cocaine self-administration and 

extinction training NAc core MSN are potentiated compared to naïve control animals and that 

depotentiating the synapse can inhibit cocaine seeking behaviors (Gipson et al., 2013; Shen et 

al., 2014). We add further evidence elucidating of the complex role of NMDA receptors in 

cocaine reinstatement behaviors, an area of research that is murky at best (P. I. Ortinski, 2014; 

Heath D. Schmidt & R. Christopher Pierce, 2010). 3 day D-serine augmentation increases 

evoked NMDA receptor currents regardless of self-administration history, however only 

treatment in cocaine self-administering animals depotentiated the synapse, indicating a role for 
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AMPA receptors in the effect.  Collectively, these experiments highlight that investigation into 

the cellular effects of reinstatement behaviors is a promising area of study for the development 

of pharmacotherapeutics aimed at reducing relapse.  
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Table 4.1. Behavioral Data. 
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Figure 4.1. D-serine augmentation attenuates cocaine induced synaptic potentiation and 
increases evoked NMDA receptor currents. (A) Study timeline, systemic treatment was given 
on the last 2 days of extinction training (100 mg/kg D-serine and 100 mg/kg SB) and on 
electrophysiology test day (100 mg/kg D-serine and 200 mg/kg SB). (B) Self-administration and 
extinction training were similar between the treatment groups. (C) AMPA:NMDA ratio and (D) 
evoked NMDA receptor mediated currents in NAc core MSN with example traces. Hash denotes 
significant effect vs. vehicle T=1hr. Asterisk denotes significant effect of D-serine augmentation 
vs. vehicle treatment (*p<0.05). 
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CHAPTER 5 

 General Discussion. 

 

D-serine’s role as an astrocyte-derived co-agonist of NMDA receptors make it a novel 

target for psychostimulant abuse disorders, which are characterized by alterations in NAc core 

glutamate homeostasis (Kalivas, 2004; Scofield, Heinsbroek, et al., 2016; Scofield & Kalivas, 

2014) and recently, astrocyte morphological changes (Scofield, Li, et al., 2016). Studies thus far 

investigating the effects of D-serine administration on psychostimulant exposure have mainly 

focused on strengthening learning and memory of extinction training (Hafenbreidel et al., 2014; 

Hammond et al., 2013; Hammond & Wagner, 2013; Kelamangalath et al., 2009; Kelamangalath 

& Wagner, 2010; Z. Q. Liu et al., 2016) or cocaine sensitization (Curcio et al., 2013; Fernandez-

Espejo, Ramiro-Fuentes, Portavella, & Moreno-Paublete, 2008; Z. Q. Liu et al., 2016; Puhl et al., 

2015; Yang et al., 2013). In these dissertation experiments, I administered D-serine 

augmentation at the prolonged withdrawal time point of two weeks after cocaine self-

administration to allow for the investigation of NMDA receptor stimulation in cocaine 

reinstatement mechanisms and behavior.   

As stated above, we have recently reported that astrocytes are smaller and make less 

contact with the synapse following self-administration of cocaine and extinction training (Scofield, 

Li, et al., 2016). Reduced astrocytic contact with NAc core MSN synapses could lead to 

reductions in volume transmission and thus reduced availability of astrocyte-derived 

neurotransmitters and neurotrophic factors, like D-serine, at the synapse. Hence, cocaine-

induced adaptations could indirectly be reducing NMDA receptor activation because of a lack of 

D-serine at the synapse, although glutamate is present. This hypothesis lead to the preclinical 
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investigation of D-serine augmentation as potential therapeutic for combating relapse to cocaine 

seeking. The use of a combined cocaine plus cue-primed reinstatement test in these 

experiments allowed for a high degree of translational validity, as relapse to drug seeking in 

humans includes taking of the abused drug. Additionally, the combined cocaine plus cue-primed 

reinstatement test is hypothesized to induce a robust release of glutamate into the NAc core 

(Parsegian & See, 2014), to which reduced levels of D-serine would not be adequate to activate 

NMDA receptors and ultimately leading to a decrease in NMDA receptor mediated currents.   

Thus, the overarching goal of this dissertation was to investigate the ability of D-serine 

augmentation to attenuate cocaine seeking following a cocaine plus cue-primed reinstatement 

event and then to characterize the mechanism by which D-serine augmentation attenuated this 

cocaine seeking. Using the self-administration and extinction model of cocaine abuse, findings 

from the present series of experiments found that systemic and intra-accumbal D-serine 

augmentation attenuated cocaine seeking, and that systemic D-serine augmentation 

depotentiated the synapse and enhanced NMDA receptor activation in the NAc core. 

Interestingly, the experiments presented here conclude that there are no changes in surface 

protein expression of glutamatergic ionotropic subunits from the NMDA and AMPA receptors 

following D-serine augmentation. Therefore, the experiments were unable to determine the 

direct mechanism of action by which D-serine augmentation is reducing relapse to cocaine 

seeking. However, it can be concluded that NMDA receptor induced internalization of AMPA 

receptors is not likely the mechanism of the D-serine augmentation effect. Together, these data 

enhance the current understanding of NMDA receptor involvement in cocaine relapse behaviors, 

such that NMDA receptors oppose reinstatement of cocaine seeking. We also provide a detailed 

characterization of NMDA and AMPA receptor expression and function after enhancing the 

NMDA receptor co-agonist D-serine.  
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Summary of experimental findings. 

 Systemic D-serine augmentation significantly attenuated cocaine seeking during a 

cocaine plus cue-primed test of reinstatement. Three days of D-serine augmentation, a 

combination of D-serine and an inhibitor of D-amino Acid Oxidase (DAO), were necessary to 

produce the attenuation in cocaine seeking, as acute administration had no effect on behavior. 

Additionally, 3-day administration of D-serine, or the DAO inhibitor sodium benzoate (SB) alone, 

or a low dose of SB in combination with D-serine were no different than control animal 

responding during reinstatement test. Further, this effect was not due to enhancing extinction 

training, as animals who underwent forced abstinence instead of extinction training, with 3-days 

of D-serine augmentation, showed attenuated cocaine seeking in cocaine plus cue-primed 

extinction test. These animals showed no effect of D-serine augmentation on their locomotor 

activity, both habituating to a novel environment and after an acute cocaine dose. Lastly, HPLC 

analysis of systemically treated animals indicated that only 3-days of D-serine augmentation, 

and not acute treatment, significantly raised D-serine levels in the nucleus accumbens core 

compared to vehicle treated animals. These results collectively indicate that systemic D-serine 

augmentation attenuated cocaine seeking by increasing D-serine levels to act upon NMDA 

receptors, and that the nucleus accumbens core may be the locus of this effect. Therefore, the 

next chapter sought to elucidate if the NAc was sufficient for this behavioral effect, and by what 

mechanisms might D-serine augmentation be attenuating cocaine seeking. 

 To investigate if the NAc core was the locus of the behavioral effects of D-serine 

augmentation, we directly administered D-serine and NMDA to the NAc core. Because SB 

caused tissue damage when injected directly (data not shown), this treatment was not used in 

the intra-NAc core experiments. In order to stimulate NMDA receptors in the core, we gave D-

serine and NMDA together at doses that did not significantly affect seeking behavior when 

administered alone. D-serine plus NMDA significantly attenuated cocaine seeking when injected 

into the NAc core. D-serine administered alone or at a 3x higher dose had no effect on cocaine 
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seeking, and NMDA alone had no effect on behavior. These results cement the importance of 

NMDA receptors in NAc core attenuation of cocaine seeking in a cocaine plus cue primed 

reinstatement test, and present evidence that NAc core NMDA receptors oppose cocaine 

seeking following a cocaine plus cue-primed reinstatement test. 

 Within the NAc core, striatum, and hippocampus we found no difference in expression of 

AMPA subunits (GluA1 and GluA2) and NMDA receptor subunits (GluN2A and GluN2B) 

between systemic D-serine augmented and vehicle treated animals, implying that D-serine 

augmentation had no effect on transcription or translation of these receptor subunits. D-serine 

augmentation did increase GluN1 subunit expression in the whole homogenate compared to 

control animals, however this did not carry through to an increase in GluN1 surface expression. 

Likewise, there was no effect of D-serine augmentation on the other AMPA or NMDA receptor 

subunit trafficking, as there were no differences in AMPA and NMDA receptors expressed at the 

surface in any of the brain areas investigated. These data infer that NMDA receptor mediated 

AMPA internalization is unlikely to be the mechanism by which D-serine augmentation is driving 

behavior in the NAc, striatum or hippocampus. Further investigation is necessary to determine if 

these assumptions are correct and that a false negative result was not acquired due to 

insufficient sensitivity of the measures used to assess protein content. A change of NMDA 

receptor function due to decreased D-serine tone would be independent of NMDA receptor 

subunit expression, and so in the next chapter we sought to characterize NMDA receptor 

function and synaptic plasticity in the NAc core. 

 We assessed AMPA:NMDA ratios as a measure of synaptic potentiation. Medium spiny 

neurons from cocaine self-administering and extinguished animals exhibited significantly greater 

AMPA:NMDA ratio compared to cocaine naïve animals, as established previously (Gipson et al., 

2013; Shen et al., 2014). Interestingly, D-serine augmentation in cocaine-trained animals 

inhibited the increase in AMPA:NMDA ratio, indicating that treatment depotentiated NAc core 

MSN synapses. It has been previously shown that depotentiating the synapse attenuates 
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reinstatement to cocaine seeking (Gipson & Kalivas, 2014; Shen et al., 2014), giving evidence 

that this depotentiation could be driving the previously established systemic D-serine 

augmentation attenuation of cocaine seeking. There was no effect of D-serine augmentation on 

AMPA:NMDA ratios in saline self-administering animals; although, administration of D-serine 

augmentation in both cocaine and saline self-administering animals increased evoked NMDA 

receptor current. Of note, we found no evidence that NAc core NDMA receptors are 

hypofunctioning as was found previously directly after non-contingent cocaine exposure (Curcio 

et al., 2013). However, this follows other literature finding cellular cocaine-induced changes are 

ameliorated following extinction training (Shen et al., 2014).  

 Collectively, the data from this dissertation begin to characterize that NAc core NMDA 

receptor activation opposes cocaine seeking behaviors and cocaine induced synaptic 

adaptations. 

 

NMDA receptor makeup and function following cocaine self-administration and 
prolonged withdrawal.  
 

NMDA receptor involvement in cocaine-induced adaptations is murky at best. It is 

generally accepted that following cocaine self-administration and extinction there is an increase 

in NAc and hippocampal GluN1 [(Hemby et al., 2005; Lu et al., 2003; Pomierny-Chamiolo et al., 

2015); for a review see (P. I. Ortinski, 2014; H. D. Schmidt & R. C. Pierce, 2010)], although 

several experiments have also found no change in GluN1 subunits in these regions (Ben-

Shahar et al., 2007; Ferrario et al., 2012). Additionally, there is no evidence of striatal changes 

in NMDA receptor expression (Ben-Shahar et al., 2007; Pomierny-Chamiolo et al., 2015). GluN1 

is an obligatory subunit in the NMDA receptor complex, and as such an increase in GluN1 

expression could be indicative of an overall increase in NMDA receptors following cocaine self-

administration and prolonged withdrawal.  
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NAc core NMDA receptor involvement in cocaine-induced adaptations. 

 The experiments in this dissertation aid in a further understanding of NMDA receptors 

involvement in cocaine relapse behaviors, however, the picture still remains unclear. In 

departure from the non-contingent literature, we found that cocaine self-administering animals 

did not have hypofunctional NMDA receptors in the NAc core (Curcio et al., 2013), as there was 

no difference in evoked NMDA receptor mediated currents between cocaine and saline self-

administering animals. However, these seemingly divergent findings maybe a result of 

methodology, as we did not have D-serine in our wash solution and Curcio et al. (2013) did, we 

also performed whole-cell patch clamp where as they recorded field potentials. Further, our 

findings are supported by a recent report that following non-contingent cocaine exposure and 2 

weeks abstinence there were no differences in the NAc core of NMDA receptor mediated 

currents (Joffe & Grueter, 2016). These results indicate that if there is a cocaine withdrawal 

induced increase in NMDA receptor protein, as shown previously, it has no effect on the evoked 

current of NMDA receptors in the NAc core in slices. It is possible, that NMDA receptors are 

more sensitive to D-serine following cocaine self-administration and withdrawal, and we were 

unable to make this distinction with our recording methodology.  

The conditions of slice electrophysiology recording can be very different than the 

conditions within the brain, and so it’s possible that we were unable to capture an impairment in 

NMDA receptor function by using the method of evoked NMDA receptor mediated current in 

brain slice. For instance, in the electrophysiology experiments presented here, there was no D-

serine in the wash solution when recordings were taken which could explain our lack of results. 

It is possible, that in extinguished cocaine-trained animals, NMDA receptor protein is present 

but a lack of D-serine at the synapse decreases their activation, thus adding exogenous D-

serine activates these receptors. In this case, we would not see a difference in D-serine treated 

saline self-administering and cocaine self-administering animals in our slice recordings. 
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Following cocaine self-administration and extinction NAc core MSN synapses are 

potentiated, and D-serine augmentation attenuates this synaptic potentiation so that 

AMPA:NMDA ratios are no different than saline self-administering controls at basal levels.  This 

decrease in AMPA:NMDA ratio could be a result of increased evoked NMDA receptor current, 

although we did not see a reduction in synaptic potentiation of saline self-administering D-serine 

augmented animals, indicating that this decrease in synaptic potentiation is selective to cocaine 

experienced animals. It’s important to note that the measure of synaptic potentiation is a ratio, 

and as such NMDA receptor currents may not be the only factor contributing to this change in 

potentiation. AMPA receptor mediated currents could also be affected by D-serine augmentation, 

in a protein expression independent manner, which we did not explicitly experimentally address, 

and warrants further investigation.  

 

NAc core reinstatement-induced synaptic adaptations 

Previous studies have shown that the AMPA:NMDA ratio is increased following cocaine 

self-administration (Shen et al. 2014, Gipson et al. 2013) and that during a reinstatement event 

NAc core synapses are further potentiated (Gipson et al., 2013; Shen et al., 2014). Further, 

these studies found that mechanisms that depotentiate the synapse can inhibit reinstatement to 

cocaine seeking (Gipson et al., 2013; Shen et al., 2014). We hypothesized that D-serine 

augmentation activates hypofunctional NMDA receptors and depotentiates the synapse, and 

ultimately elicits a reduction in cocaine seeking behavior. Interestingly, D-serine augmentation 

increased evoked NMDA mediated receptor currents in both cocaine and saline self-

administering animals. There were no changes in NMDA receptor composition or function 

following D-serine augmentation, as animals treated with D-serine augmentation had no 

difference in total protein or GluN1, GluN2A or GluN2B subunit surface expression at either 

basal levels or following a 1 hr reinstatement test. 
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I found a lack of trafficking of AMPA and NMDA receptors, revealing that during 

reinstatement test there is not an increase AMPA receptors at the surface causing the transient 

potentiation shown previously (Gipson et al., 2013; Shen et al., 2014). Further, these results 

indicate that the increase in evoked NMDA receptor current in D-serine augmented animals was 

not a result of increased NMDA receptors at the surface. These collectively lead to a picture of 

unchanged NAc core AMPA and NMDA receptor protein expression, but a change in 

potentiation of the synapse after animals are treated with D-serine augmentation. This is 

interesting, because despite there being no D-serine present in the wash solution we see 

elevated NMDA receptor mediated currents in treated animals. This could be indicative of a 

treatment induced reversal of subunits not explicitly investigated, such as a decrease in the 

cocaine-induced elevation of GluN3A (Tang et al., 2004), a subunit whose properties are 

associated with a reduction of induced NMDA receptor currents (Das et al., 1998; Kehoe, 

Bernardinelli, & Muller, 2013; Pérez-Otaño et al., 2001; Sasaki et al., 2002; Wada, Takahashi, 

Lipton, & Chen, 2006). 

 

Potential cellular mechanisms of D-serine augmentation: NMDA receptor modulation of 
dopamine. 
 

NAc core dopamine projections largely come from the ventral tegmental area (VTA), the 

source of dopamine in the mesolimbic dopamine system. Inhibition of the VTA also attenuates 

cocaine-induced reinstatement (McFarland & Kalivas, 2001; Shen et al., 2014) and 

depotentiates NAc core MSN following an acute cocaine challenge (Shen et al., 2014). 

Additionally, systemic administration of dopamine antagonists attenuates cocaine-induced 

reinstatement and blocks the transient increase in synaptic strength (Shen et al., 2014). 

Moreover, direct antagonism of dopamine receptors into the NAc core attenuates cue-induced 

reinstatement (Saunders, Yager, & Robinson, 2013). Recently, it has been found that NMDA 

into the NAc dose-dependently reduces dopamine transmission in a metabotropic glutamate 
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receptor dependent manner (Yavas & Young, 2017) and that GluN2D containing NMDA 

receptors are important in this effect (X. Zhang et al., 2014). Further, serine racemase knockout 

mice exhibit basal increases in NAc dopamine and glutamate (Puhl et al., 2017). Collectively, 

these data indicate that the mechanism of D-serine augmentation could be activation of NAc 

NMDA receptors causing a decrease in dopamine transmission.  

Alternatively, PL-NAc projections are integral for cocaine seeking, and they may operate 

in a VTA dopamine-dependent pathway, as shown by an elegant study where cue-induced 

cocaine seeking was attenuated by contralateral injection of dopaminergic D1/D2 antagonist in 

the PL and glutamatergic ionotropic antagonism (APV and CNQX) of the NAc core (McGlinchey 

et al., 2016). Thus, our systemic D-serine augmentation could be counteracting dopamine 

descending influence in the VTA->PL->NAc core pathway, in addition to effects in the NAc, by 

inhibiting VTA afferents.   

Prelimbic cortical (PL) glutamatergic afferents to the NAc core are integral to cue- and 

cocaine-induced reinstatement, but differentially regulate potentiation of NAc core MSN 

synapses during cue- or cocaine-induced reinstatement. PL pharmacological inactivation 

attenuated both cue-induced (Gipson et al., 2013) and cocaine-induced reinstatement 

(McFarland & Kalivas, 2001; Shen et al., 2014), however, inactivation of the PL has divergent 

effects on synaptic potentiation during reinstatement using different modalities. Pharmacological 

inactivation of the PL blocked the transient cue-induced potentiation, but facilitated cocaine-

induced transient potentiation in the NAc core (Shen et al., 2014). These findings lead us to 

consider the fact the PL may not be driving the effect behind our cocaine plus cue-primed 

reinstatement test, as cue and cocaine primes have opposing effects on NAc core MSN 

synaptic potentiation.   

Interestingly, these are not the first results to indicate divergent roles of the PL in 

addiction behaviors. PL activation in humans is associated with selecting appropriate behavior 

responses, and thus PL activation can produce contradictory results, based whether responding 



 91 

or not responding is the most adaptive behavioral response. Representative of this, inhibition of 

the PL promoted cocaine seeking in a model of compulsive drug use (Chen et al., 2013), where 

PL activation is important for devaluing cocaine in the presence of punishment, and also 

attenuated cocaine seeking in a model of cocaine self-administration and extinction (Gipson et 

al., 2013; Shen et al., 2014), where the PL codes the value of cocaine-conditioned cues.  

 

Future Directions 

The experiments presented in this dissertation support the hypothesis that NMDA 

receptors oppose cocaine plus cue-primed reinstatement to cocaine seeking and, further, 

indicate D-serine treatment during abstinence could be an effective pharmacotherapeutic tool 

for combating relapse in psychostimulant abuse disorders. However, these experiments also 

pose new questions that warrant further investigation. For instance, there still needs to be a 

further investigation into the locus of the systemic D-serine augmentation effect and further 

characterization of the molecular and functional changes following cocaine self-administration, 

extinction training and D-serine augmentation. These are outlined in more detail below. 

 

Behavioral Investigations 

Although we give evidence that NMDA receptor activation in the NAc core is sufficient to 

attenuate reinstatement to cocaine seeking, we do not directly prove that the NAc is necessary 

for the effect of systemic D-serine augmentation. One could investigate this with an experiment 

where systemic 3 day D-serine augmentation is combined with a glycine modulatory site (GMS) 

antagonist injected into the NAc core directly before reinstatement to cocaine seeking. If the 

NAc core is the main locus of the systemic effect, animals injected with the GMS inhibitor will 

have significantly greater reinstatement responding than D-serine augmented animals injected 

with vehicle.  It is possible that there will be no effect when the NAc is inhibited by the GMS 

antagonist, and this could have two meanings. First, (i) the NAc is could not be the locus of the 
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mechanism of the systemic D-serine augmentation, or (ii) the NAc is one of several brain areas 

contributing to the D-serine augmentation effect, and when the NAc is blocked other regions 

compensate. NMDA receptor antagonism has been shown to have bidirectional effects on 

reinstatement behavior (Backstrom & Hyytia, 2007; Famous et al., 2008) and is a potential 

confound of this experiment. Thus, antagonism of the GMS of NMDA receptors could potentiate 

cocaine seeking without affecting the mechanisms of D-serine augmentation and give a false 

negative result. 

 

Investigations into neurotransmission during a cocaine plus cue-primed reinstatement test. 

Also, data presented herein indicate that D-serine impairs cocaine plus cue-primed 

reinstatement, but does not address these modalities independently. We hypothesize that our 

cocaine plus cue-primed reinstatement test leads to an enhanced release of glutamate during 

the reinstatement test, compared to a reinstatement test of just one prime alone, and 

accordingly, that an effect on reinstatement might not be observed for cue-prime or cocaine-

primed reinstatement alone. This increase in glutamate combined with D-serine augmentation, 

to alleviate deficits in volume transmission of endogenous D-serine, allows for enhanced 

activation of NMDA receptors. This can be investigated by using microdialysis to assess 

glutamate levels in the accumbens during a cocaine, cue or cocaine plus cue-primed tests of 

reinstatement and comparing glutamate levels among these tests. Of interest, a study looking at 

NAc core glutamate release following a meth plus cue-primed reinstatement gives support that 

this may be the case (Parsegian & See, 2014), however they never directly compared glutamate 

release between the reinstatement tests.   

Further, microdialysis investigating the effects of D-serine augmentation on dopamine 

release during a cocaine plus cue-primed reinstatement event. It’s possible that stimulating 

NMDA receptors with D-serine is inhibiting dopamine release in the PL and NAc core during the 



 93 

reinstatement test and thus reducing reinstatement behavior, microdialysis experiments could 

investigate this hypothesis.  

These results would advance knowledge on how cocaine and cue priming affects 

mechanisms of relapse, but also why our D-serine augmentation is effective only during a 

cocaine plus cue-primed reinstatement event and not either prime alone (data not shown).  

 

Cellular Investigations 

Our investigation into AMPA and NMDA receptor subunit expression was limited to 

cocaine seeking animals with or without D-serine augmentation. Additionally, we did not assess 

levels of the less common NMDA receptor subunits like GluN2C/D or GluN3A, that upon a 

further investigation of the current literature may be important in cocaine-induced adaptations in 

the mesolimbic dopamine system. Future experiments should investigate potential changes in 

these subunits in total protein and surface protein expression, as well as compare all 

glutamatergic iontropic receptor subunits and GLT-1 to cocaine naïve animals. 

It was beyond the scope of this dissertation to investigate the transient synaptic 

potentiation seen following cue- or cocaine-prime (Gipson et al., 2013; Shen et al., 2014), and 

whether this LTP-like plasticity is present in a cocaine plus cue-primed test of reinstatement. 

Moreover, if there is a transient synaptic potentiation following a cocaine plus cue-primed 

reinstatement test it is likely that D-serine augmentation is also attenuating this synaptic change 

that is necessary for reinstatement of cocaine seeking (Shen et al., 2014).  

Regardless of the direction these future studies will take, a further investigation into 

NMDA receptors opposition of cocaine seeking and the mechanism of D-serine augmentation 

attenuation of cocaine seeking is a promising avenue for the development of 

pharmacotherapeutics for psychostimulant use disorders. 
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