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ABSTRACT
Celeste Marie Yeates: Mode Identification from Combination Frequency

Amplitudes in Pulsating White Dwarf Stars
(Under the Direction of J. Christopher Clemens)

The lightcurves of variable DA and DB white dwarf stars are usually multi-

periodic and non-sinusoidal, so that their Fourier transforms show peaks at

eigenfrequencies of the pulsation modes and at sums and differences of these

frequencies. These combination frequencies provide extra information about the

pulsations, both physical and geometrical, that is lost unless they are analyzed.

Several theories provide a context for this analysis by predicting combination

frequency amplitudes. In these theories, the combination frequencies arise from

nonlinear mixing of oscillation modes in the outer layers of the white dwarf,

so their analysis cannot yield direct information on the global structure of the

star as eigenmodes provide. However, their sensitivity to mode geometry does

make them a useful tool for identifying the spherical degree of the modes that

mix to produce them. In this dissertation, we analyze data from eight hot,

low-amplitude DAV white dwarfs and measure the amplitudes of combination

frequencies present. By comparing these amplitudes to the predictions of the

theory of Goldreich and Wu, we have verified that the theory is crudely con-

sistent with the measurements. We have also investigated to what extent the

combination frequencies can be used to measure the spherical degree (ℓ) of the

modes that produce them. We find that modes with ℓ > 2 are easily identifiable

as high ℓ based on their combination frequencies alone. Distinguishing between

ℓ = 1 and 2 is also possible using harmonics. These results will be useful for

conducting seismological analyses of large ensembles of ZZ Ceti stars, such as

those being discovered using the Sloan Digital Sky Survey. Because this method

relies only on photometry at optical wavelengths, it can be applied to faint stars
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using 4 m class telescopes. We present new data from the 4.1 m Southern As-

trophysical Research Telescope for the ZZ Ceti star L19-2. We use these data

to determine the limits for application of this theory on data from a 4 m class

telescope. We also analyze data for the hot, low-amplitude DBV EC 20058-5234

and demonstrate that the theory is applicable to both DAV and DBV white

dwarf stars.
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Chapter 1

Introduction

Dana Barrett: You know, you don’t act like a scientist.

Dr. Peter Venkman: They’re usually pretty stiff.

Dana Barrett: You’re more like a game show host.

— Ghostbusters

In 1862, while testing his new telescope on the bright star Sirius, Alvin Gra-

ham Clark noticed its dim companion, Sirius B, thereby discovering the first

known white dwarf star. Sirius B is an extremely dense object with R =

0.0084±0.00025R⊙ (∼ 0.9R⊕) and M = 1.034±0.026M⊙ (Holberg et al., 1998).

The discovery of Sirius B marked the beginning of the study of a fascinating

new kind of star. White dwarf stars typically have log g ∼ 8 with a narrow

mass distribution centered on ∼ 0.56M⊙ (Koester et al., 1979; Bergeron et al.,

1992), with the bulk of the mass primarily in the carbon-oxygen core. Due to

the high-gravity environment, the heavy elements settle to the center of the star,

as confirmed by the purity of the observed atmospheres. In extreme cases, low

mass white dwarf stars (≤ 0.4M⊙) have helium cores and high mass white dwarf

stars (≥ 1.05M⊙) have oxygen-neon cores (Isern et al., 1998). For those white

dwarf stars with typical mass, a thin layer of pure helium surrounds the carbon-

oxygen core, and, for 75 percent of white dwarf stars, a thinner layer of pure

hydrogen surrounds the helium. The exact ratio of carbon to oxygen in the core



is unsettled primarily because of the uncertainties in the rate of the 12C(α, γ)16O

reaction during the asymptotic giant branch (AGB) phase of stellar evolution.

A high rate for this nuclear reaction means a greater abundance of oxygen in the

center then in the outer layers (Isern et al., 1998).

White dwarf stars are the end-product of all but the most massive stars. As

a consequence, understanding the origin and structure of white dwarf stars helps

us better understand the preceding stages of stellar evolution for low mass stars

(those ≤ 10 ± 2M⊙; see Isern et al., 1998). Indeed, white dwarf stars provide

a laboratory for understanding much of astrophysics. The compact interiors of

these stars supply a testing ground for extreme conditions of temperature and

pressure, while their surface temperatures unlock independent scales for the age

and history of galaxies.

As white dwarf stars thermally radiate their reservoir of energy into the in-

terstellar medium, they reach a temperature range in which certain conditions

trigger driven pulsations from deep within their interiors. These pulsations,

which we measure as surface temperature variations, equip us with a means of

delving in to the unseen interiors of white dwarf stars, similar to the seismologists

who use earthquakes to understand the internal layers of the Earth. This disser-

tation describes an important step forward for asteroseismologists, presenting a

simplified method for identifying individual pulsation modes in these stars that

utilizes the size of the nonlinearities present in the lightcurves of pulsating white

dwarf stars.

1.1 White Dwarf Stars

White dwarf stars evolve from low mass stars. Theories for the stellar evolu-

tion of a main sequence star into a white dwarf star are well known (see Mazzitelli

& D’Antona, 1986; D’Antona, 1989; Wood, 1990). In summary, following core H-

burning, the star ascends the giant branch, enters the core He-burning phase, and
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then the double-shell-burning phase on the AGB. In a process that is not well-

understood (Mazzitelli & D’Antona, 1986), the planetary nebula (PN) is formed.

The nuclei (central stars) of the planetary nebulae (PNN) are the forerunners of

the white dwarf stars. After the nebula has been dispersed, the central star is

called a pre-white dwarf star and it descends onto the constant-radius cooling

track. Figure 1.1 contains a theoretical H-R Diagram emphasizing the white

dwarf cooling track.

Figure 1.1: Theoretical H-R Diagram emphasizing white dwarf cooling-track.
The PNNV and DOV instability strips are possibly joined together into one strip.
In this dissertation, we analyze stars within the DBV and DAV instability strips.
We reproduce this figure by permission of the Journal of the Royal Astronomical
Society of Canada (see Fig. 1 of Wood, 1990).

White dwarf stars fall into several spectroscopic groups, based on the com-
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position of the outermost layer. The most common type of white dwarf stars,

classified as the DA group, shows only hydrogen lines. The DB group contains

white dwarf stars with mainly helium lines and the DO white dwarf stars show

strong He II lines. Other less common groups include DQ (with carbon features),

DZ (with metal lines), and DC (showing only continuum).

Fowler (1926) used electron degeneracy pressure to explain the high densities

in white dwarf stars. Immediately after, Chandrasekhar (1931, 1934a,b) began

evaluating stellar structure in white dwarf stars. He calculated gas pressures for

electrons at relativistic speeds and thereby determined the exact mass-radius re-

lation for degenerate, relativistic stars, finding a critical mass (the Chandrasekhar

limit) for the formation of white dwarf stars. Mestel (1952) proceeded to explain

the cooling theory of white dwarf stars and to describe their lifetimes based on

the latent heat. At the birth of a white dwarf star, the temperature and pressure

in the white dwarf is no longer adequate to produce the energy required for the

next phase of thermonuclear reactions. The compact core of the star is degener-

ate, with electrons providing the pressure support, and is an isothermal reservoir

of heat energy that is transferred by conduction. Energetic electrons have a

long mean free path because of the filled Fermi sea, providing the high thermal

conductivity. Non-degenerate surface layers surround the degenerate core, con-

trolling the outflow of the energy with high opacity. The high opacity results in

a lower mean free path for the photons, reducing the energy outflow. The en-

ergy transport in the outer layers is dominated by radiation, then by convection

resulting from the high opacity introduced by partial ionization regions.

1.1.1 White Dwarf Pulsations

After PNN stars evolve onto the constant-radius cooling track appropriate for

their degenerate masses, they become the cool white dwarf stars that we observe

(Mazzitelli & D’Antona, 1986). As they do so, they pass through three to four

instability strips (see Figure 1.1). Despite the differences in temperature and
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surface composition, the pulsation periods and the appearance of the lightcurves

of these stars in the separate instability strips are similar. The pulsation periods

for these stars range from 100 to 1500 s, with different periods favored depend-

ing on temperature. The Planetary Nebula Nuclei variable (PNNV) stars, the

first instability region, have spectra dominated by He II and C IV, temperatures

greater than 100,000 K, and pulsation periods greater than 1000 s. These pre-

white dwarf stars provide the only way to study the production rate of plasmon

neutrinos (Winget, 1998). The DOV (pulsating PG 1159) stars have tempera-

tures greater than 100,000 K and have periods ranging from 300 to 850 s. These

stars have passed the effective temperature turning point in the H-R Diagram

(see Figure 1.1). Vauclair et al. (2002) call DOV stars direct descendants of PNN

stars. However, the PNNV and DOV stars are often grouped together since the

discovery of the hot pulsating PG 1159 star RXJ 2117.1 + 3412 (Vauclair et al.,

1993). The DBV and DAV stars are much cooler than the PNNV and DOV

stars and are similar to each other in temperature and mass. The DBV stars

have temperatures near 25,000 K and pulsation periods between 100 and 1000 s.

The PNNV and DOV stars (Grauer & Bond, 1984) and the DAV stars (Green-

stein, 1976, 1982) were noted to contain similar group spectroscopic properties

after discovery. However, Winget et al. (1982a) theoretically predicted the exis-

tence of pulsating DB stars prior to the discovery of the first DBV GD 358 by

Winget et al. (1982b).

Although the DAV stars (also known as ZZ Ceti stars) are a continuous group

with no temperature gap, they are subdivided into the HDAV (hot) stars and

CDAV (cool) stars centered around 12,000 and 11,000 K. The HDAV pulsation

periods are shorter (less than 500 s) than those of CDAV stars (200 to 1500

s). Although the pulsations of the HDAV stars are smaller in amplitude than

those of the CDAV stars, the HDAV pulsations are stable in both period and

amplitude (Winget & Fontaine, 1982; Clemens, 1994) such that we can measure

the change in their period when we monitor the stars over several decades. In this
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dissertation, we focus primarily on the HDAV stars because of their pulsation

stability. However, the method for mode identification described in this work

readily applies to all pulsating white dwarf stars. Indeed, we have applied the

method to the DBV EC 20058-5234 in Chapter 5.

The variations we observe arise from the temperature changes associated

with non-radial gravity-mode pulsations (Robinson et al., 1982). Theoretical

tests performed by Kepler (1984) exclude r-modes (toroidal non-radial pulsations

where the Coriolis force is the restoring force) in favor of g-mode pulsations.

These g-modes, where gravity is the restoring force, have timescales coincident

with the observed periods of pulsating white dwarf stars. The motions are largely

horizontal on the surface of the star.

1.1.2 Driving Mechanisms

There are at least two competing views on the theoretical source of the driving

mechanisms for pulsating white dwarf stars, most notably the κ-γ mechanism and

convection. When astronomers discovered pulsations in white dwarf stars, many

theorists determined that the κ-γ mechanism, which drives the radial pulsations

of Cepheid variables, can be applied to explain the non-radial pulsations of the

DAV and DBV stars (Winget et al., 1981; Dolez & Vauclair, 1981; Dziembowski

& Koester, 1981; Winget et al., 1982a). The κ-γ mechanism allows the driving

to be caused by the hydrogen (for DAV) and helium (for DBV) partial ionization

zones. These theoretical analyses all individually argue that the g-modes can be

excited by this κ-γ mechanism.

However, Brickhill (1983) points out that the perturbation to the convec-

tive flux is neglected in the theoretical models mentioned above. He writes that

neglecting the perturbation to the convective flux inevitably results in strong

driving. In the models of Brickhill (1983), the ionization zone only excites pul-

sations when convection carries most of the flux. Because the time-scale of the

convective motions is much less than that of the oscillations, the efficiency of

6



convection could damp out any excitation due to the κ-γ mechanism. In fact,

his models show that many g-mode pulsations will be excited in stars where

convection carries all of the flux to the surface. The convection zone is able to

adjust instantaneously to the changing thermal structure (the time-scale is ap-

proximately one second), more swiftly than the oscillation time-scale (Brickhill,

1990). These driven pulsations are much stronger than those predicted by the

κ-γ mechanism when the convective perturbations are included, hence the term

“convective driving” (Brickhill, 1991a)1.

1.1.3 Asteroseismology

Asteroseismology is the study of the interiors of stars using their stellar pul-

sations. Because of its proximity, helioseismologists have comprehensively exam-

ined the oscillations of the Sun for the last fifty years. Christensen-Dalsgaard

(2002) describes measurements of the large-scale structure and rotation of the

solar interior, which is known to a precision that rivals our knowledge of the

interior of the Earth.

Winget (1998) reviews the asteroseismology of white dwarf stars. The “for-

ward technique” of asteroseismology is to perform a normal-mode analysis by

matching all observed frequencies to theoretical models for white dwarf interiors

and determine which model best fits the observed periods. Instability is be-

lieved to be an evolutionary stage for white dwarf stars (cf. Fontaine et al., 1982;

Mukadam et al., 2004a). The information gleaned from an asteroseismological

analysis of a white dwarf star is therefore applicable to all non-pulsating white

dwarf stars with the same mass.

The g-mode pulsation frequencies, ω, of pulsating white dwarf stars satisfy

1Pesnell (1987) also recognized that the convection zone had been neglected in
the κ-γ mechanism scenario. He introduced a driving mechanism called “convec-
tive blocking” as a modification of the ionization driving mechanism. However,
Brickhill (1991b) argues that the ZZ Ceti pulsations are much more powerful
than the convective blocking scenario allows.
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the conditions of the dispersion relation,

ω2 ≪ N2, L2
ℓ , (1.1)

where N is the Brunt-Väisälä frequency and Lℓ is the Lamb, or acoustic, fre-

quency:

N2 = −g
[

d ln ρ

dr
− 1

Γ1

d lnP

dr

]

(1.2)

and

L2
ℓ ≡ ℓ(ℓ+ 1)

r2

Γ1P

ρ
=
ℓ(ℓ+ 1)

r2
c2s, (1.3)

where c2s is the speed of sound. For further description of these frequencies, refer

to Winget (1998). Figure 1.2, a propagation diagram, is a plot of N2 and L2
ℓ

through the interior of a white dwarf star. The propagation diagram in Figure 1.2

is a theoretical model of a white dwarf star at Teff = 12, 000 K, as calculated

by P. A. Bradley. From the dispersion relation in equation 1.1, we see that the

region of propagation for the g-modes in a white dwarf star is under the two

solid lines in Figure 1.2. This propagation diagram shows that the pulsations are

global oscillations that reveal information about both the surface layers of the

star and the deep interiors. Also, Figure 1.2 shows that the periods we should

expect from g-mode oscillations range between about 100 and 1000 s.

Using the dispersion relation in equation 1.1, integration over the surface of

a white dwarf star yields an expression for g-mode frequencies,

ωk,ℓ,m ≈
〈

N2ℓ(ℓ+ 1)

k2r2

〉1/2

+

(

1 − Ck

ℓ(ℓ+ 1)

)

mΩ, (1.4)

where ℓ and m are the spherical and azimuthal quantum numbers associated

with spherical harmonics, k is the radial overtone number, and r is the radius of

the star. The second term on the right-hand side of the expression describes the

effects of rotation on the g-mode frequencies, namely the non-degeneracy of m
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Figure 1.2: Theoretical propagation diagram for white dwarf star with Teff =
12, 000 K. The solid lines represent the squares of the Brunt-Väisälä frequency,
N2, and the Lamb frequency, L2

ℓ , in s−2. The horizontal axis is pressure in dynes
cm−2, with the center of the star on the right. Gravity modes with frequency
ω propagate with periods found in the region below the curves for N2 and L2

ℓ .
These regions are marked with horizontal dashed lines for two ℓ = 1 modes with
periods of 134 and 1200 s, where ω = Lℓ and ω = N , respectively. The long-
dashed line, N2 ∼ g/z, is an analytic approximation of Goldreich & Wu (1999).
We reproduce this figure by permission of the American Astronomical Society
(AAS) (see Fig. 1 of Goldreich & Wu, 1999).
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producing 2ℓ+1 components for each pulsation mode. The term Ω is the rotation

frequency and the constant Ck is approximately one in most cases.

For the slow-rotation limit, the case for most white dwarf stars, the first term

in equation 1.4 dominates for the frequency. In a compositionally homogenous

white dwarf star, we can learn many things about the stellar interior by compar-

ing the observed pulsation properties of the star to the first term in equation 1.4.

The spacing of consecutive radial overtone g-modes for a given ℓ is uniform in

period, allowing identification of ℓ for each mode. This mean spacing in period

also depends on N2, and therefore gives the mass of the star. Deviations from the

mean spacing between modes provide information about “compositional stratifi-

cation,” allowing the measurement of the mass of surface and internal layers of

the star.

Identification of k, ℓ, and m for each pulsation mode is essential for astero-

seismological analyses of white dwarf stars. Historically, there are very few white

dwarf stars with complete seismological studies. Without correct identification

of ℓ for pulsation modes, there are too many theoretical models to fit to the

observed period spectra of white dwarf stars. Current methods for mode identi-

fication require the Hubble Space Telescope (HST) or large optical telescopes like

Keck. These methods are extremely expensive and time consuming and work for

only a limited number of stars. However, this dissertation provides a fast and in-

expensive method for the determination of the ℓ and m of these pulsation modes

for large quantities of white dwarf stars.

1.1.4 Nonlinear Pulsations

Linearly independent pulsation modes are an assumption of the asteroseismo-

logical models. The DAV and DBV stars have distinctive non-sinusoidal varia-

tions at large amplitude, and more linear behavior at small amplitude (McGraw,

1980). Consequently, the Fourier transforms (FTs) of DAV and DBV lightcurves

generally show power at harmonics and at sum and difference frequencies. These
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“combination frequencies” are not in general the result of independent pulsation

eigenmodes, but rather of frequency mixing between eigenmodes in the outermost

layers (Brickhill, 1992b; Goldreich & Wu, 1999; Ising & Koester, 2001; Brassard

et al., 1995, hereafter BFW95), implying that the assumption of independent

modes is not unjustified. At some amplitude, the pulsations will appear non-

sinusoidal because of the T 4 dependence of the measured flux. The combination

frequencies that we measure in the white dwarf stars are larger than those ex-

pected from the T 4 nonlinearity, and require an additional nonlinear process in

the surface layers of the white dwarf.

The first attempt to identify the nonlinear process was Brickhill (1983, 1990,

1991a,b, 1992a,b), who explored the time dependent properties of the surface

convection zone. Using a numerical model of the surface convection zone, Brick-

hill (1992a) calculated the first non-sinusoidal theoretical shapes of ZZ Ceti

lightcurves. In his model, the nearly isentropic surface convection zone adjusts

its entropy on short timescales, attenuating and delaying any flux changes that

originate at its base. As the base of the convection zone is heated and it ab-

sorbs more energy, it absorbs more mass and consequently grows deeper. At the

top of the sinusoidal flux variation, the convection zone is thin. Therefore, the

thin convection zone introduces very little delay into the sinusoidal signal. How-

ever, at the bottom of the sinusoidal flux variation, the convection zone is cool

and deep. The deep convection zone introduces a greater delay at the bottom

of the sinusoidal variation as compared with the delay introduced at the top.

This causes the flux variation at the surface of the convection zone to have the

non-sinusoidal appearance that we observe in the lightcurves of ZZ Ceti stars.

This effect is more dramatic as the amplitude of the signal is increased. As the

convection zone changes thickness during a single pulsation cycle, the amount of

attenuation and delay changes as well, distorting sinusoidal input variations and

creating combination frequencies in the Fourier spectrum of the output signal.

Goldreich & Wu (1999) repeated and expanded Brickhill’s work using an
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analytic approach. Wu (2001) was able to derive approximate expressions for

the size of combination frequencies that depend upon the frequency, amplitude,

and spherical harmonic indices of the parent modes,2 and upon the inclination of

the star’s pulsation axis to our line of sight. Her solutions yield physical insight

into the problem, and make predictions for individual stars straightforward to

calculate. Wu (2001) herself compared her calculations to measured combination

frequencies in the DBV GD 358 and the large-amplitude ZZ Ceti, G29-38, finding

good correspondence.

1.2 Mode Identification

In §1.1.3, we discussed that the uniform spacing of consecutive radial overtone

g-modes allows identification of ℓ for each mode. This is true only when large

numbers of observed modes are available and does not insure that each mode

in a pattern of evenly spaced modes is the same ℓ. For stars with few observed

modes, the case for many HDAVs, other methods can be applied to the data. The

ℓ-identification of single modes requires either using the HST (Robinson et al.,

1995) or time-resolved spectroscopy with very large optical telescopes (Clemens

et al., 2000). The HST method was pioneered by Robinson et al. (1995) using

observations in the UV. The method uses the large limb-darkening in the UV to

determine different ℓ values for modes by examining the behavior of amplitude as

a function of wavelength. Another method, ensemble asteroseismology (Clemens,

1994), combines modes from many individual HDAVs (correcting for differing

mass) to make it look like the mode distribution of one star. Kleinman et al.

(1998) (see also Kleinman, 1995) apply this method to the unstable CDAV G29-

38, combining modes that appear from season to season to find a large set of

modes for seismological analysis.

2The spherical harmonics describe the displacements of the atmosphere and
the temperature distribution over the stellar surface.
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The method for mode identification that we introduce here is based on using

the nonlinearities present in the lightcurves. The nonlinearities arise from the

mixing of oscillation modes in the outer layers of the white dwarf, so their analysis

cannot yield direct information on the global structure of the star as eigenmodes

provide. However, their sensitivity to mode geometry does make them a useful

tool for identifying the spherical degree of the modes that mix to produce them.

1.2.1 Mode Identification from Combination Frequencies

We commenced this work after noticing a curious difference between two

otherwise similar stars, L19-2 and G185-32. Both stars are hot, low-amplitude

ZZ Ceti stars with nearly identical effective temperature and mass. They exhibit

pulsations at similar periodicities. However, whereas G185-32 has two detected

combination frequencies, L19-2 has none. What could cause G185-32 to excite

nonlinear pulsations and L19-2 to excite none? Is it a geometrical effect due to

the inclination of the star’s pulsation axis relative to the observer’s line of sight?

Alternatively, is there a more interesting cause — are the daughter combination

frequencies affected by the ℓ and m spherical harmonic indices of their parent

modes? Consequently, can we learn anything interesting about the ℓ and m of

the parent modes from their daughter combination frequencies? The answer is a

resounding “yes.”

Brickhill (1992b) first suggested that a reliable theory that could reproduce

combination frequency amplitudes would allow pulsation mode identification

based on combination frequency amplitudes alone. The purpose of this work

is to test the theory of Wu (2001) as a mode identification method. We will show

that the theory of Wu (2001), suitably calibrated, serves as a crude mode iden-

tification method that works most of the time. Because this is a simple method

requiring straightforward calculations, it can easily be applied to each pulsating

white dwarf and depends only upon photometric measurements that are easy to

make.
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1.2.2 Overview

This work serves as an evaluation of the theory of Wu (2001) as a mode

identification method. We provide a detailed explanation of the analytical cal-

culations of Wu (2001) in Chapter 2. We discuss our method for estimating the

inclination of the stars’ pulsation axes to the observer’s line of sight. In Chapters

3 through 5, we have applied this theory to observations of pulsating white dwarf

stars. We present the data for each star individually and compare predictions

based on Wu’s equations with the observed amplitudes.

In Chapter 3, we examine a sample of eight hot, low-amplitude ZZ Ceti stars.

Of the stars that we studied, four exhibit detectable combination frequencies: GD

66, GD 244, G117-B15A, and G185-32. The remainder, L19-2, GD 165, R548,

and G226-29, do not show combination frequencies. The data that we present

in Chapter 3 are a combination of published Fourier spectra, new reductions of

archival Whole Earth Telescope (WET) data, and original data obtained with

the McDonald Observatory 2.1 m Struve Telescope.

Chapter 4 contains our analysis of new observations of L19-2 with the 4.1 m

Southern Astrophysical Research (SOAR) Telescope. The purpose of this chapter

is twofold. First, we test our hypothesis that larger telescope data on this star

might be useful as a further test of the reliability of the theory of Wu (2001)

for mode identification. Second, we gain further observational experience for the

author. In this chapter, we present the new L19-2 data and submit our analysis

of the pulsation modes.

In Chapter 5, we include an additional analysis of the DBV star EC 20058-

5234 to demonstrate that the method is both easy to use and applicable to DBV

stars.

Chapter 6 summarizes the results of this analysis and provides directions

and motivation for further application. We discuss future application of the

technique, emphasizing a prescription for applying the theory of Wu (2001) to

large samples of ZZ Ceti stars. We have also provided tabulated matrices of
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combination frequency integrals for ℓ ≤ 4 in Appendix A.

As discussed in §1.1.3, pulsation mode identification is integral to astero-

seismology. Existing methods of mode identification require time-resolved spec-

troscopy using either very large optical telescopes or the HST. However, the

follow-up photometry of ZZ Ceti candidates from the Sloan Digital Sky Survey

(SDSS) is finding large numbers of these pulsators that will be too faint for

practical time-resolved spectroscopic methods (see Mukadam et al., 2004b; Mul-

lally et al., 2005). Determining a quick and inexpensive method for confidently

assigning values of the spherical degree (ℓ) and azimuthal order (m) to individ-

ual eigenfrequencies is therefore a crucial requirement in asteroseismology today.

The photometric mode identification method discussed in this dissertation can

be quickly applied to large samples of stars and provide the results necessary for

asteroseismological analysis.
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Chapter 2

Analytical Amplitudes for

Combination Frequencies in the

Theory of Yanqin Wu

Dr. Peter Venkman: You’re always so concerned about your reputation.

Einstein did his best stuff when he was working as

a patent clerk!

Dr. Ray Stantz: Do you know how much a patent clerk earns?

— Ghostbusters

2.1 Introduction

There are three known classes of pulsating white dwarf stars in three different

instability strips: the pulsating PG 1159 stars at about 100,000 K, the DBV (He

I spectrum, variable) stars at 25,000 K, and the DAV (H) stars at 12,000 K.3

In spite of the differences in temperature and surface composition, the pulsa-

tion periods and the appearance of the lightcurves are similar. The DAV and

3This chapter is an expanded version of sections 1, 2, and 4 of Yeates et al.
(2005) and is reproduced by permission of the AAS.



DBV stars in particular (with periods between 100 and 1000 s), have distinc-

tive non-sinusoidal variations at large amplitude, and more linear behavior at

small amplitude (McGraw, 1980). Consequently, the Fourier transforms (FTs)

of DAV and DBV lightcurves generally show power at harmonics and at sum

and difference frequencies. These “combination frequencies” are not in general

the result of independent pulsation eigenmodes, but rather of frequency mixing

between eigenmodes (Brickhill, 1992b; Goldreich & Wu, 1999; Ising & Koester,

2001, BFW95). In this chapter, we discuss how the amplitudes of combina-

tion frequencies can help identify the spherical harmonic indices of their parent

modes.

As discussed in §1.1.1, the variations we observe arise from the temperature

changes associated with non-radial gravity-mode pulsations (Robinson et al.,

1982). At some amplitude, these pulsations will appear non-sinusoidal because

of the T 4 dependence of the measured flux. The combination frequencies that we

measure in even low amplitude DAV white dwarfs are larger than those expected

from the T 4 nonlinearity, and require an additional nonlinear process in the

surface layers of the white dwarf.

The first attempt to identify the nonlinear process was Brickhill (1983, 1990,

1991a,b, 1992a,b), who explored the time dependent properties of the surface

convection zone. Using a numerical model of the surface convection zone, Brick-

hill (1992a) calculated the first non-sinusoidal theoretical shapes of ZZ Ceti

lightcurves. In his model, the nearly isentropic surface convection zone adjusts

its entropy on short timescales, attenuating and delaying any flux changes that

originate at its base. As the convection zone changes thickness during a single

pulsation cycle, the amount of attenuation and delay changes as well, distorting

sinusoidal input variations and creating combination frequencies in the Fourier

spectrum of the output signal.

Goldreich & Wu (1999) repeated and expanded Brickhill’s work using an

analytic approach. Wu (2001) was able to derive approximate expressions for
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the size of combination frequencies that depend upon the frequency, amplitude,

and spherical harmonic indices of the parent modes, and upon the inclination of

the star’s pulsation axis to our line of sight. Her solutions yield physical insight

into the problem, and make predictions for individual stars straightforward to

calculate. Wu (2001) herself compared her calculations to measured combination

frequencies in the DBV GD 358 and the large-amplitude ZZ Ceti, G29-38, finding

good correspondence.

Subsequently, Ising & Koester (2001) extended the numerical simulations of

lightcurves of Brickhill (1992a,b), showing that for large amplitude pulsations

(δP/P > 5%) the numerical models must incorporate the time-dependence of

quantities that are held constant in the method of Brickhill (e.g., heat capacities).

In these full time-dependent calculations, the large amplitude variations begin

to show maxima in locations different from those described by the low-order

spherical harmonics. However, for the small amplitude variations we consider

in this dissertation, this effect is negligible, and the numerical results of Ising &

Koester (2001) are in agreement with Brickhill (1992a,b) and Wu (2001).

An entirely different model for explaining combination frequencies was pro-

posed by BFW95. Instead of changes in the convection zone, BFW95 invoke the

nonlinear response of the radiative atmosphere, ignoring the changes to the sur-

face convection zone. These radiative nonlinearities can be larger than expected

from the T 4 dependence of flux because of the sensitivity of the H absorption

lines to temperature. Vuille & Brassard (2000) compared the predictions of this

theory to those of Brickhill for the large amplitude pulsator G29-38, and found

that the combination frequencies in that star are too large to be explained by the

BFW95 theory. This does not necessarily invalidate the theory, but suggests that

some other mechanism is at work, at least in G29-38. Vuille & Brassard (2000)

left open the question of low amplitude pulsators, which have much smaller com-

bination frequencies. In one case at least (G117-B15A), the BFW95 theory was

able to account for the amplitude of the combination frequencies (Brassard et al.,
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1993). However, this success relied on an exact match between the spectroscopic

temperature of the star and a narrow maximum in the theoretical predictions.

Using more recent spectroscopic temperature estimates for G117-B15A, which

differ from the old by only 850 K (see Bergeron et al., 2004), the theory un-

derestimates the combination frequency amplitudes by more than an order of

magnitude. In general, even for the low amplitude pulsators, the BFW95 theory

underestimates the sizes of combination frequencies by an order of magnitude or

more.

We begin in §2.2 by summarizing the analytical expressions of Wu (2001)

necessary for predicting the amplitudes of combination frequencies. We also

discuss our method for estimating the inclination of the stars’ pulsation axes to

the observer’s line of sight, and show that our result is insensitive to error in this

estimate. In §2.3, we discuss the sensitivity of this method to errors and provide

a prescription for applying the theory of Wu (2001) to large samples of ZZ Ceti

stars.

2.2 Theoretical Review

In this section, we will summarize the analytic model of Wu (2001) and ex-

plain how we apply her theory, along with an independent estimation of the

stellar inclination angle, to predict the amplitudes of combination frequencies.

The models of Wu (2001) rely upon an attenuation and a delay of the perturbed

flux within the convection zone to produce non-sinusoidal photospheric flux vari-

ations. The differential equation describing these effects (Wu, 2001) is:

(

δF

F

)

b

= X + τc0 [1 + (2β + γ)X]
dX

dt
, (2.1)

where (δF/F )b is the assumed sinusoidal flux perturbation at the base of the

convection zone, X ≡ (δF/F )ph is the flux variation at the photosphere and

is related to the photometric variations we observe, and τc0 is the time delay
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introduced by the convection zone. Physically it represents the timescale over

which the convection zone can absorb a flux change (by adjusting its entropy)

instead of communicating it to the surface. In this dissertation, we approximate

τc0 by setting it equal to the longest observed mode period. This is a lower limit,

because modes with periods longer than τc0 cannot be driven, but the longest

observed period might not be quite as large as τc0 . Parameters β and γ are

fixed parameterizations of the radiative region overlying the convection zone,

and represent an attenuation of the flux. The mixing length models of Wu &

Goldreich (1999) yield β ∼ 1.2 and γ ∼ −15 in the temperature range of ZZ Ceti

stars (see their Figure 1).

The solution to equation 2.1 represents the detectable flux variation at the

photosphere, and has the assumed form:

(

δF

F

)

ph

= ai cos(ωit+ ψi) + a2i cos(2ωit+ ψ2i)

+aj cos(ωjt+ ψj) + a2j cos(2ωjt+ ψ2j)

+ai−j cos[(ωi − ωj)t+ ψi−j]

+ai+j cos[(ωi + ωj)t+ ψi+j ] + ... (2.2)

Solving equation 2.1 yields expressions for the amplitude coefficients (ai±j) and

the phases (ψi±j) at each combination frequency (ωi ± ωj). In this dissertation

we do not consider phases because they are impossible to recover from some of

the published data, and difficult to measure in the presence of noise. Thus, we

focus on the amplitudes represented by:

ai±j =
nij

2

aiaj

2

| 2β + γ | (ωi ± ωj)τc0
√

1 + [(ωi ± ωj)τc0 ]
2
, (2.3)

where nij = 2 for i 6= j and 1 otherwise.

These ai±j represent total flux amplitudes for the combination frequencies

and are given in terms of the total flux amplitudes of the parent modes (ai,
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aj). Because we measure an integrated flux in a restricted wavelength range,

these amplitudes are not analogous to the ones we measure. However, they can

be transformed into quantities like those we measure by integrating over the

appropriate spherical harmonic viewed at some inclination (Θ0) in the presence

of an Eddington limb-darkening law, and then applying a bolometric correction

(αλ) appropriate for the detector and filter combination.

Calculating the integrated amplitude requires an expression for the flux in

the presence of limb darkening. For a parent mode, which is assumed to have

the angular dependence of a spherical harmonic, Wu (2001) gives:

gm
ℓ (Θ0) ≡

1

2π

∮ 2π

0

dφ

∫ 0

π/2

Re[Y m
ℓ (Θ,Φ)]

(

1 +
3

2
cos(θ)

)

cos(θ)d cos(θ), (2.4)

where (θ, φ) are in the coordinate system defined by the observer’s line of sight,

and (Θ,Φ) are aligned to the pulsation axis of the star. These two coordinate

systems are separated by the angle Θ0, which is the inclination of the star.

Evaluating this integral requires estimating this inclination, and applying the

appropriate coordinate transformation (see Appendix A of Wu (2001)).

For the combination frequencies, the integrated flux depends on the product

of the spherical harmonics of the parent modes:

G
mi±mj

ℓi ℓj
(Θ0) ≡

Nmi
ℓi
N

mj

ℓj

2π

∮ 2π

0

dφ

∫ 0

π/2

ρmi
ℓi

(Θ)ρ
mj

ℓj
(Θ) cos ((mi ±mj)Φ) ×

(

1 +
3

2
cos(θ)

)

cos(θ)d cos(θ), (2.5)

where the ρm
ℓ (Θ) are Legendre Polynomials, and the Nm

ℓ are the normalization

factors for the parent mode spherical harmonics. Our expression differs from that

of Wu (2001) slightly, in that we explicitly retain these normalization factors.

The bolometric correction is simpler, since it is only a numeric factor ex-

pressing the ratio of the amplitudes measured by the detector to the bolometric
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variations given by the theory. We calculated this factor using model atmo-

spheres of different temperatures provided by D. Koester (discussed in Finley

et al., 1997). The observations we analyze in the following chapters are either

white light measurement using a bi-alkali photocathode or CCD measurements

with a red cutoff filter (BG40). We applied the known sensitivity curves of these

systems and the UV cutoff of the Earth’s atmosphere to the model spectra. In

Figure 2.1, we show the sensitivity of αλ to stellar Teff and log g values and to the

assumed ℓ value of the pulsation modes for the bi-alkali photocathode detector.4

The bolometric correction is approximately constant over the ranges of Teff and

log g that we consider (i.e., in the instability strip). Because of the wavelength

dependence of limb darkening these corrections depend upon the value of ℓ as-

sumed for the modes, but this dependence is weak at optical wavelengths for

low ℓ. The correction is roughly constant for low ℓ (ℓ ≤ 2), but decreases by

approximately a factor of 2 for ℓ = 3.

The sample of stars we consider in Chapter 3 are centered on Teff = 12, 000

K and their log g range between ∼ 8.00 and 8.25. We averaged the bolometric

correction that we calculated for these values of log g at 12,000 K and found

αλ = 0.46 and 0.42 for the bi-alkali photocathode and CCD, respectively. Our

values are calculated assuming ℓ = 1. They are so close to the value that Wu

(2001) used (0.4) that we have decided to retain her value of 0.4 to make our

results directly comparable to hers.

Now we can write the observable flux change at the photosphere in terms of

(

δf

f

)

i

= αλaig
mi
ℓi

(Θ0) (2.6)

(

δf

f

)

i±j

= αλai±jG
mi±mj

ℓi ℓj
(Θ0) (2.7)

4The plot of the CCD plus filter bolometric correction is nearly identical to
the bi-alkali plot, with a slight downward shift.
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Figure 2.1: Bolometric correction as a function of Teff , log g, and ℓ for bi-alkali
photocathode. Each data point represents a discrete value of log g and the ℓ
assumed for the modes. The stars represent log g = 8.50, the crosses represent
log g = 8.25, and the open squares represent log g = 8.00. Each of these groups
of stars, crosses, and open squares are connected point-to-point by a line repre-
senting ℓ. The solid lines are ℓ = 1, the dotted lines are ℓ = 2, and the dashed
lines are ℓ = 3. The plot of the CCD plus filter bolometric correction is nearly
identical to the bi-alkali plot, with a slight downward shift.

so the predicted combination amplitude is:

(

δf

f

)

i±j

=
nij

2

(

δf
f

)

i

(

δf
f

)

j

2αλ

| 2β + γ | (ωi ± ωj)τc0
√

1 + [(ωi ± ωj)τc0 ]
2

G
mi±mj

ℓi ℓj
(Θ0)

gmi

ℓi
(Θ0)g

mj

ℓj
(Θ0)

. (2.8)

Equation 2.8 is the expression we use to calculate the predicted combination

frequency amplitudes for various assumptions of ℓ and m for the parent modes.

We reiterate that the bolometric corrections of the two parent modes are

really only equal if they are modes of the same ℓ. Moreover, the value for αλ for

the combination frequency amplitude in equation 2.7 will be a linear combination
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of the bolometric corrections of the two parent modes. Consequently, the 1/αλ

dependence of (δf/f)i±j in equation 2.8 (and of Rc in equation 2.9) is only an

approximation.

In addition to αλ, calculating a prediction for the combination frequency

amplitudes requires six additional quantities, (δf/f)i, ωi, β, γ, τc0 , and Θ0. The

first two are the parent mode amplitude and frequency measured from the FT,

β and γ are theoretical atmospheric parameters defined by Wu (2001), and τc0

is the convective timescale estimated from the longest period mode. The final

quantity, Θ0, is the inclination, which we discuss later.

Physically, it is useful to rearrange equation 2.8 into the form:

Rc ≡

(

δf
f

)

i±j

nij

(

δf
f

)

i

(

δf
f

)

j

=

[

| 2β + γ | (ωi ± ωj)τc0

4αλ

√

1 + [(ωi ± ωj)τc0 ]
2

]

G
mi±mj

ℓi ℓj
(Θ0)

gmi
ℓi

(Θ0)g
mj

ℓj
(Θ0)

= F (ωi, ωj, τc0, 2β + γ)
G

mi±mj

ℓi ℓj
(Θ0)

gmi

ℓi
(Θ0)g

mj

ℓj
(Θ0)

= F G. (2.9)

The ratio Rc is a dimensionless ratio between the combination frequency and the

product of its parents, as introduced by van Kerkwijk et al. (2000). It is instruc-

tive to consider the two terms on the right hand side of equation 2.9 separately.

The first term (F) incorporates the physics particular to this model, i.e., the

thermal properties of the convection zone, while the second term (G) is geomet-

ric, and will be present in any theory that accounts for combination frequencies

using nonlinear mixing. In the theory of Wu (2001), the ℓ and m dependence

is entirely contained within this geometric term (except for the ℓ dependence of

the bolometric correction discussed before). Thus mode identification is possible
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if changes in G with ℓ are large compared to the natural variations in F .

In this respect, the theory of Wu (2001) is promising. For any individual star

with multiple pulsation modes, the only parameter in F that changes from one

mode to another is ω. Moreover, the functional dependence on ω is such that

for typical ZZ Ceti sum frequencies the variations in F are so small that F ∼
constant (see Figure 2.2). The same is not true for difference frequencies, which

lie at low frequencies and are therefore suppressed. For comparison between

modes in two different stars, the other parameters in F change slowly, so that

small adjustments to F should be able to reproduce a variety of stars with similar

temperature and mean pulsation period, such as the ensemble we consider in this

chapter.

The theory of BFW95 can be expressed in the same form as equation 2.9 by

replacing F with their tabulated atmospheric model parameters. However the

BFW95 F is independent of pulsation frequency for different modes in any single

star, so low frequency difference modes are not suppressed. For comparisons

between modes in different stars, the BFW95 theory is radically different from

that of Wu (2001). The BFW95 F term, which is normally an order of magnitude

smaller than in the Wu (2001) theory, grows to comparable size for a narrow range

of temperature that depends sensitively on stellar mass. Thus the expectation

of the BFW95 theory is that combination frequencies in most ZZ Ceti stars will

be smaller than in the theory of Wu (2001) (for the same ℓ). Moreover, the

temperature sensitivity of F makes mode identification more problematic if the

BFW95 theory is correct. Without very precise temperature measurements, it is

impossible to distinguish between large differences in F arising from temperature

differences, and large changes in G, the geometric term, arising from differences

in ℓ or Θ0.

For either theory, the calculation of G in equation 2.9 requires assigning a

value to the inclination of the pulsation axis to our line of sight. Following Pes-

nell (1985), we can estimate the inclination for each star by comparing finely split
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Figure 2.2: Typical F dependence on frequency, normalized to one. F incorpo-
rates the physics of the model of Wu (2001) (see equation 2.9). For a given star,
it is only dependent on the frequency of the combination or harmonic. The only
parameter in F whose value varies across stars is τc0, which affects the location
of the low frequency roll-off. The other component of Rc, G, depends upon ℓ, m,
and Θ0 (see Figure 2.3).

modes of different m. This requires that we make potentially dubious assump-

tions about the relative intrinsic sizes of pulsation modes, but the final result is

not very sensitive to the assumptions. Figures 2.3 and 2.4 show why. Figure 2.3

shows the dependence of the geometric factor on inclination for m = 0 modes.

It varies very slowly over a large range, and then changes rapidly when we look

directly down upon a nodal line. For ℓ = 1, this occurs near Θ0 = 90◦, because

the parent modes are totally geometrically cancelled and the combination fre-

quencies are not. However, the apparent size of these modes, as opposed to the

ratio of their sizes, diminishes rapidly near 90◦, and they eventually fall below

the noise threshold of the FT. At the same viewing angle, if any m 6= 0 modes
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Figure 2.3: G with mi = mj = 0 (see equation 2.9) plotted as a function of
inclination angle (Θ0). For low inclinations (Θ0 ≤ 25◦), the predicted amplitudes
of the combination frequencies show only a gradual increase with ℓi = ℓj = 1
(solid line), ℓi = ℓj = 2 (dashed line), and ℓi = 1, ℓj = 2 (dotted line).
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Figure 2.4: G with ℓi = ℓj = 1 and mi + mj (see equation 2.9) plotted as a
function of inclination angle (Θ0). The amplitude of the combination frequencies
is insensitive to inclination when Θ0 ≥ 60◦ for mi = −mj (dotted line). When
both parent modes have the same m (solid line), the combination amplitude is
always independent of inclination. G with mi −mj can be obtained by letting
the dotted line represent mi = mj and the solid line represent mi = −mj .
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are present, they will dominate the power spectrum and so will their combination

frequencies. As Figure 2.4 shows, these combinations are not very sensitive to in-

clination for Θ0 near 90◦. In other words, the analysis of combination frequencies

requires that they be detectable. At low inclination, only m = 0 combination fre-

quencies are detectable and at low inclination these are insensitive to Θ0, and at

high inclinations only m 6= 0 modes are detectable and at high inclination these

are insensitive to Θ0. For higher ℓ the situation is more complicated, because

there are more nodal lines, but the basic argument still applies.

With this in mind, following Pesnell (1985), we have assumed that the intrin-

sic mode amplitudes are the same for all the modes within a multiplet. When

modes of a specific ℓ value are rotationally split into 2ℓ+ 1 modes (as described

by the second term in equation 1.4), the inclination of a star can be found by

equating the amplitude ratio of the m = 0 peak and an m 6= 0 peak with the

corresponding ratio of Nm
ℓ ρ

m
ℓ (Θ0) for both values of m. The Nm

ℓ are the coef-

ficients of the spherical harmonic, Y m
ℓ (Θ,Φ), and the ρm

ℓ (Θ0) are the Legendre

Polynomials. For an ℓ = 1 triplet, this ratio is:

(

δf
f

)0

1
〈(

δf
f

)〉±1

1

=
N0

1ρ
0
1(Θ0)

N1
1ρ

1
1(Θ0)

=
√

2
cos(Θ0)

sin(Θ0)
. (2.10)

We estimated the inclination for each star by averaging the amplitudes of the

m = ±1 members of the largest amplitude ℓ = 1 multiplets in each star.

There are four stars in Chapter 3 with detected combination frequencies. For

three of these, the Pesnell (1985) method yields low inclination (Θ0 < 20◦). The

only combination frequencies detected in these stars are combinations of m = 0

parent modes, as established by their singlet nature or by their central location

in a frequency symmetric triplet. Figure 2.3 shows that except for at large in-

clination, the amplitudes of the combination frequencies are not very sensitive

to inclination for the central, m = 0, parent modes. The fourth star (GD 244)

has a high inclination (Θ0 ≥ 80◦), and shows only combinations of m 6= 0 parent
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modes. Figure 2.4 shows that at high inclinations the amplitudes of combina-

tion frequencies are not very sensitive to inclination when the parent modes are

m = ±1 members of an ℓ = 1 triplet. In fact, for certain m combinations, the

amplitudes of combination frequencies are measured independent of inclination.

Therefore, for all stars that we analyze, the amplitudes of the combination fre-

quencies are at most weakly dependent on the inclination, as long as the value

of ℓ is small. Hence, the approximation of inclination is a small source of error

in our analysis.

With independent estimates of inclination, the only factor that remains un-

known in the factor G of the theory of Wu (2001) is the value of ℓ for each

mode. Thus we can compare the measured combination frequencies in the data,

if any, to the predicted amplitudes of combination frequencies under various as-

sumptions for the ℓ value of the parent modes. In this way we can hope to

constrain or actually measure the value of ℓ. We will see that harmonics of a

single mode are more valuable in this enterprise than combinations between two

different modes. This is because there is a greater contrast in the theory between

same-ℓ combinations, and for harmonics there is only one parent, and therefore

only one ℓ involved. In the following chapter, we apply the theory to eight hot,

low-amplitude ZZ Ceti stars, and show that it is possible to establish the values

of ℓ for most modes in these stars.

2.3 Conclusions

The main result of this chapter is that combination frequencies, particularly

harmonics, in the lightcurves of white dwarf stars can be used along with the

theory of Wu (2001) to constrain and in many cases to determine uniquely the

spherical harmonic index (ℓ) of the modes that produced them. We will show in

Chapter 3 that this mode identification method is a quick and easy diagnostic

tool that frequently yields definitive results.
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The method we describe requires only time-series photometry and simple

calculations as presented in §2.2. The essential part of these calculations is

the evaluation of the geometric term in the theory of Wu (2001), which we

have named G. Calculating G requires the evaluation of integrals of spherical

harmonics in the presence of a limb darkening law. To assist others in application

of this technique, we have included tabulated matrices of combination frequency

integrals for ℓ ≤ 4 in Appendix A. Applying these requires a straightforward

estimation of the inclination, which we do using multiplet amplitudes, where

detected, and limits on the sizes of multiplet members where not detected. This

requires that we assume that modes of every m are excited to the same amplitude

in every mode, and that rotation always removes the frequency degeneracy of

multiplet members. Fortunately, our results are not highly sensitive to these

assumptions.

Both the observational and the calculated values of Rc (see equation 2.9)

contain parameters with varying levels of sensitivity to error. The observational

parameters are the measured amplitudes of the combination frequencies and

their parent modes from the FT of the data.5 The quantitative error associated

with these measured amplitudes are the formal errors of the least squares fit

used to calculate the frequency, amplitude, and phase for each pulsation mode.

The error bars in the figures depicting Rc in Chapters 3 through 5 contain these

formal errors of the measured amplitudes. These formal errors are often regarded

as underestimates (Winget et al., 1991), but our calculations for the reduced

χ2 suggest that instead they are a slight overestimate of the amplitude errors

in some cases. These errors are generally small compared with the measured

amplitudes, but the errors grow as the peak amplitude decreases to the level of

the noise. This is often the case for detected combination frequencies. Therefore,

the sensitivity of the observed Rc to the formal amplitude errors increases with

decreasing combination frequency amplitude.

5There is also the parameter nij , which is 1 for harmonics and 2 otherwise.
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The predictions for Rc are dependent upon the physical and geometrical pa-

rameters contained in F and G (see equation 2.9). The function F consists of the

parameters 2β+γ, ω, τc0 , and αλ. The parameters β and γ are coupled as 2β+γ

in our evaluation of the theory. In Chapter 3, we will show that this parame-

ter, which describes the radiative region overlying the convection zone, can be

measured using combination frequencies. The value that we found for 2β + γ is

consistent with the theoretical values from Wu & Goldreich (1999) and the value

that Wu (2001) used to compare the theory to observations. The calculated Rc is

not very sensitive to the error in this parameter because when we normalize the

value of 2β+ γ using the star in our sample with the most detected combination

frequencies, GD 66, the theory reproduces all the observed values of Rc to better

than a factor of two. The parameter ω is the measured combination frequency

from the FT of the data and the errors are the formal errors for the least squares

fit as discussed for the amplitude in the previous paragraph. We estimate the

thermal time constant, τc0, with the longest period mode observed for a given

star. This value only effects the location of the low-frequency roll-off for Rc (see

Figure 2.2). It does not effect the predicted value of Rc in the region where we

detect combination frequencies, therefore our predicted Rc is insensitive to the

errors in τc0 . We discussed the error sensitivity of the bolometric constant, αλ, in

detail in the previous section. This parameter depends upon the Teff and log g

of the star and the ℓ values of the pulsation modes. The bolometric correction

is approximately constant over the range of Teff and log g that we consider (i.e.,

in the instability strip, see Figure 2.1). This correction is roughly steady for low

ℓ (ℓ ≤ 2), but varies as ℓ increases. We use the αλ for ℓ = 1, which means that

the sensitivity of Rc to the error in this parameter increases for high ℓ.

Finally, the function G contains the geometric parameters Θ0 and Y m
ℓ . Though

our estimation of the inclination of the stellar pulsation axis, Θ0, may not be ex-

act, the analysis of combination frequencies requires that they be detectable. At

low inclination, only m = 0 combination frequencies are detectable and at low
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inclination these are insensitive to Θ0, and at high inclinations only m 6= 0 modes

are detectable and at high inclination these are insensitive to Θ0. The sensitiv-

ity of the calculated Rc to Θ0 is small, but grows for large ℓ because there are

more nodal lines. The spherical harmonics, Y m
ℓ , describe the displacements of

the atmosphere and the temperature distribution over the stellar surface. Ising

& Koester (2001) show that this approximation deteriorates as the amplitude

of modes increase, but this approximation is appropriate for the low amplitude

pulsation modes we consider in this work.

For convenience, we summarize application of the method as follows:

1. Calculate the inclination with the Pesnell (1985) method using the ratio of

the observed amplitudes in a given multiplet. Consult the sensitivity of G to

inclination (see Figures 2.3, 2.4, and A.1) to ensure that Rc is changing slowly

with inclination near this value.

2. Calculate the theoretical Rc for both ℓ = 1 and 2 by approximating τc0 with

the longest period mode and using the bolometric correction αλ = 0.4. We

use 2β + γ = −9.35 for hot, low-amplitude DA stars6, while Wu (2001) uses

2β + γ = −10 for the cool DA star G29-38.

3. Compare the calculated Rc with the measured value obtained with the am-

plitudes of the combinations and their parents.

6Please see the discussion of GD 66 in §3.2.2 for an explanation.
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Chapter 3

Mode Identification from

Combination Frequency

Amplitudes in ZZ Ceti Stars

Dr. Peter Venkman: Back off, man. I’m a scientist.

— Ghostbusters

3.1 Introduction

The Fourier transforms (FTs) of non-sinusoidal DAV and DBV lightcurves

generally show power at harmonics and at sum and difference frequencies.7

These combination frequencies result from frequency mixing between eigenmodes

(Brickhill, 1992b; Goldreich & Wu, 1999; Ising & Koester, 2001, BFW95). In the

previous chapter, we have described a method for using the combination frequen-

cies found in the Fourier spectra of pulsating white dwarfs to infer the spherical

degree (ℓ) and azimuthal order (m) of the parent modes that mixed to produce

them. In this chapter, we will explore combination frequencies in the small am-

7This chapter is an expanded version of sections 1, 3, and 4 of Yeates et al.
(2005) and is reproduced by permission of the AAS.



plitude DAV (ZZ Ceti) white dwarf stars. The combination frequency peaks

are smaller, and therefore harder to detect, than the combination frequencies in

large amplitude pulsators like G29-38, but they are more stable, and therefore

more likely to yield understandable and repeatable results. The small amplitude

DAVs are also the pulsators in which the origin of the combination frequencies

are most uncertain—they might arise from convective effects (Brickhill, 1992b)

or from nonlinearities in the radiative flux alone, as proposed by BFW95.

In this chapter, we compare the analytic theory of Wu (2001) to observations

of the hot, low-amplitude ZZ Ceti stars GD 66, GD 244, G117-B15A, G185-32,

L19-2, GD 165, R548, and G226-29 to determine how well this theory reproduces

the combination frequencies in hot DAV stars. If they correctly describe and pre-

dict the behavior of DAV pulsations, the analytical formulae of Wu (2001) will be

an important tool for mode identification in ZZ Ceti stars. Confidently assigning

values of the spherical degree (ℓ) and azimuthal order (m) to individual eigen-

frequencies has heretofore required time-resolved spectroscopy using either very

large optical telescopes (Clemens et al., 2000) or the HST (Robinson et al., 1995).

As Brickhill (1992b) first proposed, and BFW95 reiterated, a reliable theory for

combination frequency amplitudes allows pulsation mode identification based on

measurements of combination frequencies alone. Thus, if we can verify that the

predictions of Wu (2001) are consistent with observations, then they constitute

an uncomplicated method of mode identification that relies only upon broad-

band photometry rather than spectroscopy. Moreover, the theory of Goldreich

& Wu (and of Brickhill) implicitly contains a mode driving mechanism different

from that originally proposed for the DAV stars. Verification of the analytical

predictions of Wu (2001) will support this convective driving mechanism as the

source of pulsations in DAV stars.

For this chapter, we have used published Fourier spectra, new reductions of

archival WET data, and original data obtained with the McDonald Observatory

2.1 m Struve Telescope to measure combination frequency amplitudes or ampli-
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tude limits for eight hot DAV stars. We have applied our best estimates of the

inclination of the pulsation axis to the observer’s line of sight and compared the

amplitudes of the combination frequencies to the analytical calculations of Wu

(2001). We find that the theory reproduces the relative amplitudes of combina-

tion frequencies in these stars very well, but over-predicts their absolute values

by a factor of about 1.4. The calculations of Wu (2001) include an adjustable

parameterization of the radiative atmosphere that can easily accommodate a fac-

tor this large. When we normalize its value using the star in our sample with

the most detected combination frequencies, GD 66, the theory reproduces all the

observed ratios of combination frequency to parent mode amplitudes to better

than a factor of two. This is easily sufficient to verify the high ℓ identification

for modes in G185-32, as established by Thompson et al. (2004) using time-

resolved spectroscopy from Keck and the HST. It is also sufficient in many cases

to distinguish between ℓ = 1 and ℓ = 2 by relying on mode harmonics. Based

on these results, we conclude that the theory of Wu (2001), suitably calibrated,

can function as a mode identification method for at least the hot ZZ Ceti stars.

This conclusion is important because the follow-up photometry of ZZ Ceti can-

didates from the SDSS is finding large numbers of these pulsators that will be

too faint for practical time-resolved spectroscopic methods (see Mukadam et al.,

2004b; Mullally et al., 2005). Our results suggest that time-series photometry

on 4 m class telescopes, augmented with multiplet splitting where available (e.g.,

Bradley, 2006), will be sufficient to classify modes in these stars.

In §3.2 we present the data for each of the eight stars individually and compare

predictions based on the equations of Wu (2001) with the observed amplitudes.

In §3.3 we summarize our results and discuss future application of the technique,

emphasizing a prescription for applying the theory of Wu (2001) to large samples

of ZZ Ceti stars.
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3.2 Data Reduction and Analysis

The data we present in this section are a combination of published Fourier

spectra, new reductions of archival WET data, and original data obtained with

the McDonald Observatory 2.1 m Struve Telescope. They constitute all of the

currently-available data with frequency resolution sufficient to measure ampli-

tudes or amplitude limits for combination frequencies in hot DAV stars. The

purpose of this section is to extract mode frequencies and amplitudes via Fourier

methods. In principle, phase measurements are also possible, but in practice they

are too noisy to be useful. In cases where combination frequencies are not suffi-

ciently above the noise level to detect, we record the upper limit for comparison

to theory.

3.2.1 Data Reduction

3.2.1.1 Published Data

The stars for which we use published data include G117-B15A, G185-32, GD

165, R548, and G226-29 (Kepler et al., 1995b; Castanheira et al., 2004; Bergeron

et al., 1993; Mukadam et al., 2003; Kepler et al., 1995a). These stars were all

included as secondary target stars in Whole Earth Telescope campaigns (WET;

Nather et al., 1990) and the referenced papers present these WET data. Bergeron

et al. (1993) (GD 165) and Mukadam et al. (2003) (R548) also include Canada-

France-Hawaii Telescope (CFHT) observations, and Mukadam et al. (2003) in-

cludes supplemental McDonald Observatory observations. All of the published

data we have analyzed for combination frequencies are found in these publica-

tions, along with explanations of the reduction and analysis procedures.

3.2.1.2 Unpublished Data and New Reductions

We obtained time-series photometry data on both GD 66 and GD 244 in

2003 and 2004 with the McDonald Observatory 2.1 m Struve Telescope using the
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prime-focus ARGOS CCD photometer with a BG40 Schott glass filter (Nather

& Mukadam, 2004). We observed GD 66 on fourteen nights during three observ-

ing runs totaling 155,130 s of data as indicated in the Journal of Observations,

Table 3.1. We used two integrations times (10 s for the 2003 October run and

5 s for the 2003 November and 2004 January runs, see Table 3.1). To combine

the runs into one lightcurve we binned the 5 s observations into 10 s bins. We

observed GD 244 on ten nights during three observing runs totaling 124,500 s of

data (see Table 3.1). We used an integration time of 5 s for all of our GD 244

observations. We performed a complete reduction of the original data for GD 66

and GD 244 using the methods described by Mukadam et al. (2004b).

The data for L19-2 were obtained as the secondary target for the WET cam-

paign XCov 12 in 1995 April (see Sullivan, 1995). The observations of L19-2

that were included in this reduction are listed in the Journal of Observations,

Table 3.2. The integration times of most runs were 10 s. We binned the 5 s

Mt. John Observatory (MJUO) observations into 10 s bins. We performed a

complete reduction of the original data using the methods described by Nather

et al. (1990) and Kepler (1993).

3.2.2 Analysis

Of the stars that we studied, four exhibit detectable combination frequencies:

GD 66, GD 244, G117-B15A, and G185-32. The remainder, L19-2, GD 165,

R548, and G226-29, do not show combination frequencies, though we will show

that the theory of Wu (2001) suggests that they must be just below the current

noise limits. The temperature and log g for each star from Bergeron et al. (2004)

are listed in Table 3.3. In §3.2.2.1 and §3.2.2.2, we will present the individual

analyses. We will describe our calculations of the inclination of each star and

compare the observed combination frequency amplitudes to the predictions of

the theory of Wu (2001).
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Table 3.1: Journal of Observations for GD 66 and GD 244

Run Name Date Start Time Length Integration Time

(UT) (UT) (sec) (sec)

GD 66

A0726 2003 Oct 25 09:04:23 12750 10

A0729 2003 Oct 27 09:42:27 1870 10

A0730 2003 Oct 27 10:58:12 5420 10

A0733 2003 Oct 28 06:52:39 19530 10

A0738 2003 Oct 29 11:08:30 4560 10

A0742 2003 Oct 31 09:32:33 10720 10

A0746 2003 Nov 1 08:17:12 3970 10

A0755 2003 Nov 19 07:29:14 11475 5

A0767 2003 Nov 22 05:11:34 14785 5

A0789 2003 Nov 29 06:08:55 12045 5

A0793 2003 Nov 30 06:49:05 21585 5

A0795 2003 Dec 1 05:44:42 11940 5

A0835 2004 Jan 20 03:26:37 11715 5

A0838 2004 Jan 21 03:09:07 12765 5

GD 244

A0693 2003 Sep 2 08:42:35 10270 5

A0695 2003 Sep 3 04:21:55 7705 5

A0700 2003 Sep 4 05:23:28 9555 5

A0705 2003 Sep 5 04:50:31 15070 5

A0732 2003 Oct 28 01:30:10 18770 5

A0734 2003 Oct 29 00:53:42 12900 5

A0743 2003 Nov 1 00:58:45 10455 5

A0766 2003 Nov 22 00:54:49 14880 5

A0772 2003 Nov 24 00:58:49 12995 5

A0775 2003 Nov 25 01:10:11 11900 5

Note. − All observations were made with the McDonald

Observatory 2.1 m Struve Telescope.

39



Table 3.2: Journal of Observations for L19-2 (WET Observations)

Run Name Telescope Date Start Time Length Integration Time

(UT) (UT) (sec) (sec)

S5843 SAAO 0.75 m 1995 Apr 25 17:53:00 5590 10

S5844 SAAO 0.75 m 1995 Apr 25 22:33:00 5040 10

RO064 Itajuba 1.60 m 1995 Apr 25 23:23:20 29080 10

AP2695-1 MJUO 1.0 m 1995 Apr 26 11:04:00 9245 5

AP2695-2 MJUO 1.0 m 1995 Apr 26 13:51:50 16135 5

RO065 Itajuba 1.60 m 1995 Apr 27 03:53:20 11810 10

S5845 SAAO 0.75 m 1995 Apr 27 17:23:00 31900 10

AP2895 MJUO 1.0 m 1995 Apr 28 11:38:20 18550 5

S5846 SAAO 0.75 m 1995 Apr 28 17:25:00 24360 10

RO066 Itajuba 1.60 m 1995 Apr 28 22:25:00 9410 10

RO067 Itajuba 1.60 m 1995 Apr 29 01:59:00 12600 10

AP2995 MJUO 1.0 m 1995 Apr 29 07:27:10 39270 5

S5847 SAAO 0.75 m 1995 Apr 29 17:20:00 31580 10

RO068 Itajuba 1.60 m 1995 Apr 29 22:26:40 33710 10

S5848 SAAO 0.75 m 1995 Apr 30 21:00:00 14340 10

RO069 Itajuba 1.60 m 1995 Apr 30 22:11:40 34560 10

MY0195 MJUO 1.0 m 1995 May 1 07:04:30 40660 5

S5849 SAAO 0.75 m 1995 May 1 23:41:00 7890 10

RO070 Itajuba 1.60 m 1995 May 2 01:27:50 9630 10

RO071 Itajuba 1.60 m 1995 May 2 05:02:20 10340 10

DB001 SAAO 0.75 m 1995 May 2 18:19:30 26990 10

DB002 SAAO 0.75 m 1995 May 3 02:38:40 5090 10

DB003 SAAO 0.75 m 1995 May 3 17:17:20 29990 10

RO073 Itajuba 1.60 m 1995 May 4 01:20:50 21510 10

DB004 SAAO 0.75 m 1995 May 4 01:47:20 8290 10

DB005 SAAO 0.75 m 1995 May 4 19:58:30 21150 10

DB006 SAAO 0.75 m 1995 May 5 02:02:40 3200 10

Note. − All data come from the WET campaign XCov12.

40



Table 3.3: Stellar Information

Star Teff log g Reference

(K) (cgs)

GD 66 11,980 8.05 1

GD 244 11,680 8.08 1

G117-B15A 11,630 7.97 1

G185-32 12,130 8.05 1

L19-2 12,100 8.21 1

GD 165 11,980 8.06 1

R548 11,990 7.97 1

G226-29 12,460 8.28 1

References. − (1) Bergeron et al. (2004).
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3.2.2.1 Stars With Detected Combination Frequencies

GD 66

Apart from an analysis by Fontaine et al. (1985), little progress toward un-

derstanding GD 66 has been made since Dolez et al. (1983) first reported its

discovery. The relatively high number of combination frequencies identified in

the FT of GD 66 makes it an ideal star to include in this dissertation.

To identify the pulsation modes and combination frequencies of GD 66, we

computed an FT from the reduced and combined lightcurves listed in Table 3.1.

We have included a sample lightcurve in Figure 3.1 and the FT of all GD 66 data

in Figure 3.2. To identify closely spaced modes in the regions of obvious excess

power, we utilized a prewhitening technique similar to that of O’Donoghue &

Warner (1982) using an iterative nonlinear least squares procedure. For each

peak, we fitted the frequency, amplitude, and phase and then subtracted the fit

from the original lightcurve. We then fitted a second frequency to the altered

data, choosing in every case the largest remaining peak, and used the result of

this fit to conduct a simultaneous least squares fit to the original data. Thus at

each step in the prewhitening, the frequencies removed are from a simultaneous

fit to the original data.

The problems with applying such a procedure to a highly aliased data set

are well known (Nather et al., 1990), and we have no illusions that we can

successfully measure the correct frequencies of the smaller modes in the presence

of the contaminating window function. Nonetheless, the exercise provides two

pieces of information that are valuable and reliable. It tells us how many modes

are required to model the data, and gives us crude amplitudes for the members

of the multiplet that are useful in estimating inclination.

In Figure 3.3 we show the deconstruction of the 271 s pulsation mode (F1)

by prewhitening. The FT of the reduced data in the region of F1 is shown in

Figure 3.3a. The window function, in Figure 3.3b, is the FT of a lightcurve of
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Figure 3.1: Lightcurve of GD 66. These data were acquired with the ARGOS
CCD photometer on the McDonald Observatory 2.1 m Struve Telescope with an
exposure time of 10 s.

a sinusoid with the same period, amplitude, and phase as the highest ampli-

tude peak in the original FT that has been sampled in the same manner as the

original data. Figure 3.3c shows the FT of the lightcurve with the largest peak

removed. Figures 3.3c and 3.3d are prewhitened FTs that reveal additional low

amplitude signals which were previously hidden in the window function of the

highest amplitude peak. Figure 3.3e, in which there is no remaining signal, is an

FT of a lightcurve with the three highest amplitude peaks fitted and removed

from the original lightcurve. It is gratifying that the frequencies identified by

this deconstruction form a frequency-symmetric triplet, but better sampling will

be required to measure all three frequencies with confidence.

A similar procedure showed that F2 was consistent with a single frequency,

to within the noise, and that F3 is a combination of at least three frequencies.
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Figure 3.2: Fourier transform of GD 66. This FT includes all individual nights
of the data that are listed in Table 3.1. We indicate the five pulsation modes
and nine identified combination frequencies that we reference in Table 3.4. We
believe the peak that we call F6 is due to the guide error of the telescope.

F4 and F5 both show residuals after prewhitening by one frequency, but they

are too close to the noise level to deconstruct further. F6 is at the frequency

expected from the drive of the telescope, and a peak at this location is present

in all of the ARGOS data, so we do not interpret it as being astrophysically

significant.

The five dominant pulsation modes (F1 - F5) and associated power derived

from prewhitening are listed in Table 3.4 and presented visually in Figure 3.4.

The amplitude of the smallest of our five modes is about three times above
√

〈P 〉,
where 〈P 〉 is the average power of the FT, yielding a false alarm probability

(Horne & Baliunas, 1986) of about 20%. That is, there is a 20% chance that
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Figure 3.3: Deconstruction of F1 in GD 66. a: A Fourier transform of GD 66 near
271 s (F1). b: A window function obtained by taking an FT of a single sinusoid
(with the same period and amplitude of the 271.71 s peak) that has been sampled
in the same manner as the data. c: An FT near F1 with a period of 271.71 s
removed. d: An FT near F1 with periods of 271.71 and 272.20 s removed. e: An
FT near F1 with periods of 271.71, 272.20, and 271.23 s removed.

F5 is an artifact of noise. However, the existence of a combination frequency

at F1+F5 adds confidence to this detection. All the pulsation modes except F5

were also identified by Fontaine et al. (2001). There is a large peak near the

location of F5 in their data, but it was not formally significant against the noise

level of their FT.

In addition to the five modes detected, we identified nine combination fre-

quencies that were consistently present throughout the three month span of our

GD 66 observations, with one exception (F1+F4 was not identified in the 2003

October data set). We verified our identification of combination frequencies with
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a computer program inspired by Kleinman (1995). Our program allows a user to

select pulsation modes in the data, calculates all possible combination frequen-

cies of these modes, and then searches for significant combination frequencies

in the data. The search is conducted over an estimated error range equal to

the resolution of the FT. We consider this a better estimate of the frequency

error than the smaller values from the least squares fit because the combina-

tion frequencies are usually low amplitude, i.e., only a few times as large as the

background. The frequencies of such small signals are pulled by the presence

of unresolved noise peaks, while the least squares fit formally assumes only a

single unblended frequency is present. The program successfully identified all

combination frequencies that we found by inspection in the data, and also found

some combinations that we had missed in our visual search. In some cases, the

highest amplitude peak among the combination frequency and its aliases did not

fall within the error range we established. In these cases, prewhitening a forced

fit of the expected combination frequency successfully removed the signal, and

we have listed the amplitude from the forced frequency fit. Our listed period er-

rors do not include the uncertainty in identifying the true peak among the alias

peaks and these dominate the error for combination frequencies.

Having identified and measured the amplitudes of the combination frequencies

allows us to calculate the ratio of combination to parent mode amplitudes (Rc,

see equation 2.9) and compare it to the theoretical predictions. Figure 3.5 shows

the observed Rc for all of the detected two-mode combination frequencies in GD

66. Where no combination was detected, we have plotted a limit equal to the 1

σ noise level in the FT. The observed Rc do not depend on any theory.

The theoretical calculations of Rc require that we supply an inclination es-

timate, an estimate of τc0 , and a value for the parameter 2β + γ. For the first,

a fit to the largest multiplet using the technique of Pesnell (1985) described in

§2.2 yielded Θ0 = 13◦, and we have used that value for all of the theoretical cal-

culations. The result is not very sensitive to this parameter as long as Θ0 ≤ 25◦
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Figure 3.4: Prewhitened peaks of parent modes in GD 66 Fourier transform.

(see Figure 2.3). The inclination calculation requires an assumption for the ℓ

identification of F1. However, this calculation is scarcely sensitive to our ℓ = 1

assumption for F1. If F1 is actually an ℓ = 2 mode, then the inclination of the

star is 8◦, and still in the range where our results are insensitive to inclination.

For τc0, we have used the value of 523 s, which is the longest period in GD 66,

for reasons discussed in §2.2. This value only affects the location of the fre-

quency roll-off, not the predicted combination frequency amplitudes in the high

frequency limit. Finally, because the detected combinations have similar values

of Rc, indicating similar ℓ, we decided to treat 2β + γ in this star as a free pa-

rameter.8 The solid line in Figure 3.5 shows the best fit under the assumption

that all modes are ℓ = 1. The fitted value of 2β + γ is −9.35, very close to the

value Wu (2001) herself used (−10) for her comparison to G29-38, and to her

8Please see §2.3 for a discussion of the sensitivity of Rc to errors.
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theoretically calculated value (−12.6). Any other assumption for ℓ would yield

values of 2β+ γ different by a factor of ∼ 3 or more, and we do not consider this

a reasonable possibility. Using ℓ = 1, the detected combination frequencies fit

the model with a reduced χ2 of 0.78, which may indicate that we have slightly

overestimated our errors. We used the errors from the least square fits, which are

often regarded as underestimates (Winget et al., 1991), but we see no evidence

for that here.

Figure 3.5: Ratio of combination to parent mode amplitudes (Rc) for GD
66. The lines are theoretical predictions for G0+0

1 1 /g
0
1g

0
1(Θ0 = 13◦) (solid line),

G0+0
1 2 /g

0
1g

0
2(Θ0 = 13◦) (long-dashed line), and G0+0

2 2 /g
0
2g

0
2(Θ0 = 13◦) (dashed

line). The data points are the detected harmonics or limits (filled squares),
detected cross combination frequencies (stars), and limits for the cross combi-
nations (crosses). The downward arrows on the limits indicate that the points
represent maximum values. The upper limit for Rc of 2F5 lies at 124 (not shown).

Even though the data show tight scatter about the line representing com-

binations between two ℓ = 1 modes, we cannot conclude that all of the modes
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are ℓ = 1 on that basis alone. The line representing ℓ = 1, 2 combinations (long

dashes in Figure 3.5) is close to the ℓ = 1, 1 line, and falls within the error bars for

some combinations. Fortunately, the theoretical lines for same-ℓ combinations

are well-separated, suggesting that harmonics, which are same-ℓ by definition,

might be able to constrain ℓ when cross combinations (i.e., all combinations that

are not harmonics) cannot. We have detected harmonics for F1 and F2, and mea-

sured limits for the harmonics of the remaining three modes. These are shown

in Figure 3.5 as filled squares. The measured Rc for F1 and F2 and the limits for

F3 and F4 are only consistent with ℓ = 1, and so we identify all of those modes

as ℓ = 1, F4 somewhat tentatively because the limit is not very stringent. The

limit for F5 is too large (Rc = 124) to fit on our plot and does not constrain

ℓ uniquely. Though our identification relies primarily on harmonics, the cross

combinations are all consistent with this conclusion. The m identifications we

assigned in Table 3.4 arise from frequency splitting only, and are not derived

from combination frequency amplitudes.

Finally, the Rc limits we have plotted at low frequency suggest that the roll-off

expected from the theory actually occurs, which eliminates from consideration

competing models, including the BFW95 theory, that predict no frequency de-

pendence for Rc.

GD 244

Fontaine et al. (2001) first reported the detection of variability in the DAV

white dwarf GD 244, but no subsequent observations have been published. The

FTs of GD 244 and GD 66 both contain large pulsation modes near 200, 256, and

300 s. The similarity of GD 244 to GD 66, including its relatively high number

of combination frequencies, makes it another ideal candidate to include in this

study.

To identify the pulsation modes and combination frequencies of GD 244, we

computed an FT from the reduced and combined lightcurves listed in Table 3.1.
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We have included a sample lightcurve in Figure 3.6 and the FT of all GD 244

data in Figure 3.7. We used the prewhitening technique to identify pulsation

modes and combination frequencies in GD 244, as with GD 66. We also used

prewhitening to reveal the doublet structure in the two highest amplitude pulsa-

tion modes. As with GD 66, we do not expect that we have consistently measured

the correct frequencies of the modes in these doublets in the presence of the con-

taminating window function. However, the amplitudes are useful in estimating

the inclination.

Figure 3.6: Lightcurve of GD 244. These data were acquired with the ARGOS
CCD photometer on the McDonald Observatory 2.1 m Struve Telescope with an
exposure time of 5 s.

In Figure 3.8 we show the deconstruction of the 256 s pulsation mode (F2)

by prewhitening. The FT of the reduced data in the region of F2 is shown in

Figure 3.8a. The window function for the GD 244 data set is in Figure 3.8b. Fig-

ure 3.8c shows the FT of the lightcurve with the largest peak removed. Panel c
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Figure 3.7: Fourier transform of GD 244. This FT includes all individual nights
of data included in Table 3.1. We indicate the four pulsation modes and all
combination frequencies that we reference in Table 3.5. F1+F3 is likely a blend
with guide error.

is a prewhitened FT that reveals additional low amplitude signal that was previ-

ously hidden in the window function of the highest amplitude peak. Figure 3.8d

is an FT of a lightcurve with the two highest amplitude peaks fitted and re-

moved from the original lightcurve. We were unable to fit any other statistically

significant signals from the FT in the bottom panel.

A similar procedure showed that F1 is also consistent with a doublet. F3,

however, is consistent with a single frequency, although any putative companion

peak would be in the noise if it scaled as the companions of F1 and F2. F4 is not

formally significant, with a false alarm probability near 1 in the whole data set,

but it appears above the noise at the same frequency in all three of the single
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Figure 3.8: Deconstruction of F2 in GD 244. a: A Fourier transform of GD 244
near 256 s (F2). b: A window function obtained by taking an FT of a single
sinusoid (with the same period and amplitude of the 256.56 s peak) that has
been sampled in the same manner as the data. c: An FT near F2 with a period
of 256.56 s removed. d: An FT near F2 with periods of 256.56 and 256.20 s
removed. Fitting and removing further peaks did not reduce the noise level.

month FTs so we have included it in Table 3.5. It does not show any combination

peaks and therefore does not enter our analysis. The complete list of pulsation

modes is listed in Table 3.5 and presented visually in Figure 3.9. We did not

detect the 294.6 s pulsation mode found by Fontaine et al. (2001) in GD 244. All

other pulsation modes that we list, except F4, were identified by Fontaine et al.

(2001). There are no formally significant peaks above the noise level in the low

frequency region of their FT.

In addition to the four modes detected, we identified six combination frequen-

cies that were consistently present throughout the observing run. In all cases,
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Figure 3.9: Prewhitened peaks in GD 244 Fourier transform. In addition to the
parent modes, we include one combination frequency (2F1) in which we resolved
fine structure.

the highest amplitude peak among the combination frequency and its aliases fell

within the error of the expected frequency. We list the frequencies of the highest

amplitude peaks in Table 3.5. The frequency errors were sufficiently small that

there was no confusion between the harmonic of the largest component (presumed

m = −1) and the sum of the m = −1 and m = +1 components.

We use the doublet structure at 307 s (F1) to estimate the inclination of

the pulsation axis of GD 244. We assume that the doublet structure in these

two pulsation modes results from viewing ℓ = 1 modes at high inclination so

that the third (central, m = 0) mode does not appear. As discussed previously,

our results do not depend sensitively on this assumption. Using the maximum

amplitude in the prewhitened FT of F1 as an estimate for the amplitude of the

m = 0 peak, we apply the Pesnell (1985) method and find a minimum possible

inclination of 80◦. Recall that Figure 2.4 shows that at high inclination, the
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amplitudes of combination frequencies with ℓ = 1 and same-m parent modes

have no dependence on inclination.

Figure 3.10 is a plot of the theoretical predictions for GD 244 (Rc with Θ0 =

80◦) and the observed amplitudes of the six detected combination frequencies for

comparison. We also include the observed noise limit (indicated by crosses for

the same-m combinations and open squares for the different-m combinations) in

cases where there was no combination frequency detected. The downward arrows

imply an upper limit. When we apply the GD 66 calibration of 2β + γ = −9.35

to GD 244 (in Figure 3.10), the predictions for the ℓ = 1, 1 line resemble the

observations for our detected combination frequencies except for the Rc of 2F2.

The reduced χ2 is 16.9 if all the modes are assumed to be ℓ = 1, but 9.2 if we leave

out the combinations of F2. Obviously we could reduce χ2 further if we varied

2β + γ as before, but part of our exercise is to establish that we can conduct

mode identification without fitting parameters, so that it is possible to measure

the ℓ of hot ZZ Ceti stars with only a single detected combination frequency.

Turning to the harmonics, which are known to be same-ℓ and therefore to have

well-separated predictions for Rc, 2F1 and the limit for 2F3 demand that F1 and

F3 be ℓ = 1 modes. The high measurement for 2F2 suggests that ℓ may not be 1.

However, if we assume ℓF2 = 2, then χ2 > 400 because Rc for a harmonic of an

ℓ = 2, m = 1 mode is predicted to be near 90. Even if we relax the assumptions

used to calculate inclination and adjust it to minimize χ2 for the assumption of

ℓF2 = 2, then at Θ0 = 67◦, χ2 = 17.3. So even under the best assumptions, the

identification of F2 as ℓ = 2 would yield a worse fit than if we let it be ℓ = 1.

Moreover, its similar frequency splitting to F1 suggests that it is ℓ = 1, but

without better sampling with WET this is not a secure statement. Therefore,

we have left question marks next to the identification of F2 in Table 3.5. It

is possible that the harmonic of F2 is inflated by some independent unresolved

pulsation mode, but our data are insufficient to test this possibility. Finally, for

the smallest mode, F4, the limit on the harmonic constrains it to be ℓ ≤ 3, which
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is not useful.

Because F1 and F2 are multiplets, we expect fine structure in their harmonics

and combinations, and indeed we observe secondary peaks near both harmonics

at the sum of the presumed m = −1 and m = 1 parent modes. Unfortunately,

the theoretical lines for these cross terms in m are not well-separated from similar

cross terms in an ℓ = 2 mode (see Figure 3.10). Likewise, the F1+F2 peak shows

multiplet structure, but we are unable to reliably dissect it into individual modes.

The limits we have measured for the cross terms of different-ms are all consistent

with the ℓ = 1 identifications, but would not be sufficient alone to reach that

conclusion.

G117-B15A

G117-B15A is one of the hottest known ZZ Ceti stars. McGraw & Robinson

(1976) confirmed the star’s variability and Kepler et al. (1982) found six pulsation

modes. The dominant mode, at 215 s, is stable in amplitude and phase such that

G117-B15A is the most precise optical clock known (Kepler et al., 2000a). We

use published measurements for G117-B15A obtained from the WET campaign

XCov 4 in 1990 May (Kepler et al., 1995b). They list the highest amplitude

modes as ℓ = 1.

The 215 s pulsation mode of G117-B15A has a large central peak and two

possible adjacent peaks regarded by Kepler et al. (1995b) as “low probability”

because they do not rise very far above the already low noise level. We have used

the size of the adjacent peaks to constrain the inclination of this star, under the

assumption that the central peak is an ℓ = 1, m = 0 mode. We find that the star

has a maximum inclination of 5◦ (nearly pole-on), and this result is not sensitive

to the assumption of ℓ = 1. In order to appear as a singlet, modes of any ℓ must

be viewed at low inclination.

Figure 3.11 is a plot of the theoretical predictions for G117-B15A (Rc with

Θ0 = 5◦) and the observed amplitudes of the four detected combination frequen-
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Figure 3.10: Ratio of combination to parent mode amplitudes (Rc) for GD 244.
The lines are theoretical predictions for G1+1
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The data points are the detected harmonics or limits (filled squares), detected
cross combination frequencies (stars), limits for the same-m cross combinations
(crosses), and limits for the different-m cross combinations (open squares). The
downward arrows on the limits indicate that the points represent maximum val-
ues.

cies for comparison. We also include the observed noise limit (indicated by the

crosses) in cases where there was no combination frequency detected. The down-

ward arrows below the crosses indicate an upper limit. Just as with GD 66, the

theory of Wu (2001) predicts high amplitudes for all of the combination frequen-

cies that we detect and low amplitudes for those we do not detect. When we

apply the GD 66 calibration of 2β + γ = −9.35 to G117-B15A (in Figure 3.11),

the predictions are consistent with the observations for our detected combina-

tion frequencies, though the scatter is considerably worse than in GD 66. The
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Figure 3.11: Ratio of combination to parent mode amplitudes (Rc) for G117-
B15A. The lines are theoretical predictions for G0+0
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The data points are the detected harmonics or limits (filled squares), detected
cross combination frequencies (stars), and limits for the cross combinations
(crosses). The downward arrows on the limits indicate that the points repre-
sent maximum values. There are no error bars for F1-F2 because there were
none reported by Kepler et al. (1995b).

reduced χ2 is 3.14 if all the modes are assumed to be ℓ = 1. The combination

F1-F2, located in the lower left quadrant of Figure 3.11, is not included in this

χ2, because no formal errors were reported by Kepler et al. (1995b). If we as-

sume the error for the amplitude of this combination is greater than the largest

errors in the plot, then it gives no information about the ℓ of its parents, but is

consistent with the low frequency roll-off of the theory of Wu (2001).

Robinson et al. (1995) established that ℓ = 1 for F1 by comparing time-series

photometry observations in the UV and optical wavelengths. The amplitude
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of the harmonic of this mode, combined with our analysis, confirms this ℓ = 1

identification; the observed Rc for the harmonic of F1 is too small to be consistent

with that for ℓi = ℓj = 2, which is 2.5 times greater than Rc for ℓi = ℓj = 1

and 5 greater than the Rc we observe. Likewise, the limit for the harmonic of

F2 is sufficiently low to constrain this mode to be ℓ = 1 with a 98.7 percent

confidence level. The limit for 2F3 is more ambiguous, but clearly requires that

ℓ ≤ 2 for F3. We list our mode identifications in Table 3.6. These results are

consistent with the seismological analyses of both Bradley (1998) and Brassard

et al. (1993), where the choice of ℓ = 1 for these three peaks yielded reasonable

physical parameters.

G185-32

McGraw et al. (1981) discovered the DA white dwarf G185-32 to be a rel-

atively low amplitude multi-periodic ZZ Ceti star on the basis of its (G − R)

colors (see Greenstein, 1976). The largest amplitude peaks have periods of 71,

73, 142, 216, 301, and 370 s. G185-32 is unique among the ZZ Cetis in that it

has a harmonic (at 71 s) that is sometimes measured to be larger than its parent

frequency (at 142 s). This has led to disagreement over whether the harmonic

is a pulse shape artifact, or whether there are resonances between real eigen-

modes that happen to be harmonically related (Castanheira et al., 2004). Most

recently, Thompson et al. (2004) has found that identifying the 142 s mode as

high ℓ (ℓ = 4) can explain all of the available observations, which include time-

resolved UV spectroscopy from HST (Kepler et al., 2000b), time-resolved optical

spectroscopy from Keck (Thompson et al., 2004), and time-series photometry

from WET (Castanheira et al., 2004). An ℓ = 4 mode cancels itself in the in-

tegration over the visible hemisphere for almost any value of inclination, but its

harmonic may not, because it has a surface distribution with characteristics of

lower ℓ. This allows a harmonic to appear larger than its fundamental. In our

analysis, we apply the theory of Wu (2001) under the assumption that the peak
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Table 3.4: GD 66 Periods and Mode Identifications

Mode Frequency Period σp Amplitude σamp ∆fa ℓ mb

Label (µHz) (sec) (sec) (mma) (mma) (µHz)

F1 3673.753 272.2012 0.0004 2.50 0.17 -6.582? 1 -1

3680.335 271.7144 0.0001 16.70 0.16 1 0

3686.927 271.2286 0.0004 2.93 0.17 6.592? 1 +1

F2 3302.889 302.7653 0.0001 11.29 0.19 1 0

F3 5049.227 198.0501 0.0002 2.65 0.21 -10.355? 1 -1

5059.582 197.6448 0.0001 4.21 0.21 1 0

5070.3c 197.23 1.77 10.7? 1 +1?

F4 3902.680 256.2341 0.0004 2.48 0.21 -5.603? 1? -1?

3908.283 255.8668 0.0003 3.43 0.21 1? 0?

F5 1911.121 523.2533 0.0016 2.33 0.22 1 or 2 ?

1928.257 518.6029 0.0021 1.77 0.22 17.136? 1 or 2 ?

F6d 8127.845 123.0338 0.0002 1.30 0.22 guide

2F1 7360.670 135.8572 0.0002 1.57 0.22 0.001

F1+F2 6983.219 143.2004 0.0001 2.83 0.21 0.005

F1+F3 8747.254 114.3216 0.0002 0.88 0.22 -7.336

F1+F4 7588.604 131.7765 0.0004 0.64 0.22 0.015

F1+F5 5587.599 178.9678 0.0007 0.61 0.22 3.857

2F2 6605.802 151.3821 0.0004 0.80 0.22 -0.025

F2+F3 8362.479 119.5818 0.0004 0.53 0.22 -0.009

F2+F4 7210.499 138.6867 0.0006 0.48 0.22 0.672

2F1+F2 10675.6 93.6720 0.0002 0.52 0.22 -11.994

aFor pulsation modes, ∆f is the separation between the modes in the multiplets and

the m = 0 member. For combination frequencies, ∆f is the frequency difference between

the calculated and observed combination frequency (i.e., ∆f = F1 + F2 − [F1 + F2]).
bThe m identifications in the table are based on the frequency splitting alone, not on

the size of the combination peaks.
cWe were unable to obtain a simultaneous fit with this frequency and the other two

frequencies in the F3 triplet, though it does seem to be a significantly high amplitude

peak above the noise.
dF6 is a formally significant peak that is due to the guide error of the telescope and

probably does not represent a pulsation mode originating at the star.
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Table 3.5: GD 244 Periods and Mode Identifications

Mode Frequency Period σp Amplitude σamp ∆fa ℓ mb

Label (µHz) (sec) (sec) (mma) (mma) (µHz)

F1 3255.919 307.1329 0.0001 20.18 0.17 1 -1

3261.886 306.5712 0.0002 5.02 0.17 5.966? 1 +1

F2 3897.733 256.5594 0.0001 12.31 0.20 1? -1?

3903.255 256.1964 0.0001 6.73 0.20 5.522? 1? +1?

F3 4926.697 202.9758 0.0001 4.04 0.21 1 -1?

F4 1103.656 906.0795 0.0056 1.72 0.21 ≤ 3 ?

2F1− 6511.422 153.5763 0.0001 2.25 0.23 0.417

F1−+F1+ 6516.119 153.4656 0.0003 0.95 0.23 1.686

F1−+F2− 7153.211 139.7974 0.0001 2.30 0.21 0.442

F1−+F3−c 8182.615 122.2103 0.0002 0.96 0.21 0.001

2F2− 7795.472 128.2796 0.0001 2.44 0.21 -0.006

F2−+F3− 8824.598 113.3196 0.0003 0.53 0.21 -0.168

aFor real pulsation modes, ∆f is the separation between the modes in the doublets.

For combination frequencies, ∆f is the frequency difference between the calculated and

observed combination frequency (i.e., ∆f = F1 + F2 − [F1 + F2]).
bThe m identifications in the table are based on frequency splitting alone, not on the

size of the combination peaks.
cThe period of F1−+F3− in GD 244 is close to the period of F6 in GD 66 (see

Table 3.4), so it is probable that the amplitude and frequency of this combination

frequency are partially contaminated by the guide error of the telescope.
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Table 3.6: Periods and Mode Identifications for Published Data with Combina-
tion Frequencies

Mode Frequency Period σp Amplitude σamp ∆fa ℓ m Ref.

Label (µHz) (sec) (sec) (mma) (mma) (µHz)

G117-B15A

F1 4646.909 215.1968 0.0007 19.15 0.39 1 0 1

F2 3288.91 304.052 0.004 6.89 0.44 1 0 1

F3 3697.47 270.455 0.004 5.47 0.45 1? 0 1

2F1 9293.68 107.600 0.004 1.06 0.45 0.14 1

F1+F2 7956.59 125.682 0.006 0.90 0.45 -20.77 1

F1+F3 8344.74 119.836 0.003 1.60 0.45 -0.36 1

F1-F2 1357.6 736.60 0.90 0.4 1

G185-32

F1 4635.3 215.74 1.93 0.07 1 or 2 0 2

F2 2701.2 370.21 1.62 0.07 1 or 2 0 2

F3 7048.8 141.87 1.43 0.07 3 0 2

F4 3317.8 301.41 1.13 0.07 1 or 2 0 2

F5 3335.6 299.79 0.95 0.07 1 or 2 0 2

F6 13784.9 72.54 0.93 0.07 1 or 2 0 2

2F3 14097.7 70.93 0.69 0.07 -0.1 2

F3-F6 6736.1 148.45 0.57 0.07 0.0 2

Note. − We have not included a complete list of eigenmodes for each star. Instead,

we have only included eigenmodes relevant to this study. The ℓ and m identifications

are from our analysis.
a∆f is the frequency difference between the calculated and observed combination

frequency (i.e., ∆f = F1 + F2 − [F1 + F2]).

References. − (1) Kepler et al. (1995b); (2) Castanheira et al. (2004).
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at 142 s is the parent mode of a harmonic at 71 s. We use published measure-

ments for G185-32 obtained from the WET campaign XCov 8 in 1992 September

(Castanheira et al., 2004).

With the exception of the 142 s mode, Kepler et al. (2000b) identify all the

other modes as either ℓ = 1 or ℓ = 2 based on HST data alone. Using independent

temperature constraints they choose ℓ = 1 for all of these modes. Under this

identification, F19, at 215 s, is the highest amplitude ℓ = 1 mode, and we use it

to estimate the inclination. Castanheira et al. (2004) detect only one peak at 215

s, so we presume it to be the m = 0 component and use the neighboring noise

limit to approximate the size of the m = ±1 peaks. The Pesnell (1985) method

then yields Θ0 = 13◦. If the inclination were greater than this, we would see the

m = ±1 members of the multiplet above the noise. Our results are robust even

if the ℓ identification is not; if F1 is actually an ℓ = 2 mode, then the inclination

of the star is less than 7◦, and still in the range where our results are insensitive

to the inclination (see Figure 2.3).

Figure 3.12 is a plot of the theoretically predicted combination frequency

amplitude ratios for G185-32 (Rc with Θ0 = 13◦) and the observed amplitudes of

the detected combination frequencies for comparison. For clarity, the ℓ = 1, 1 and

ℓ = 2, 2 lines are not included in Figure 3.12, but fall below the lowest line shown

(ℓ = 1, 3). Unlike the harmonics found in GD 66, GD 244, and G117-B15A,

Rc for the harmonic of F3 in G185-32 is more than 50 times greater than the

prediction for ℓi = ℓj = 1 and more than 15 times the prediction for ℓi = ℓj = 2.

The best explanation for this is that F3 is a high ℓ mode, just as Thompson et al.

(2004) claim for independent reasons. The value of ℓ that best explains our Rc is

ℓ = 3 rather than ℓ = 4. However, in the case of high ℓ, our theory suffers from

two problems. First, the geometric factor in the theory of Wu (2001) varies more

9Our nomenclature (see Table 3.6) does not follow Thompson et al. (2004),
Castanheira et al. (2004), nor Kepler et al. (2000b). We have labeled the modes
in order of highest amplitudes from the WET data.
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rapidly with inclination for ℓ = 3 and 4 (instead of the gradual changes for low

ℓ shown in Figure 2.3, see Figure A.1 in Appendix A). We have accommodated

this by including a range of inclinations about the 13◦ nominal value. We show

this range as dotted lines in Figure 3.12, which indicate how Rc for ℓi = ℓj = 3

changes between Θ0 = 0◦ and 20◦. Rc for 2F3 falls within the prediction for

ℓF3 = 3. The second problem is our use of a constant bolometric correction

that is really only appropriate for ℓ = 1. This is a limitation inherent to the

analytic theory as Wu (2001) presented it, and could be addressed by employing

numerical models, but this would be not be consistent with our objective of

having a quick and easily applicable method for mode identification in large

numbers of ZZ Ceti stars (see the discussion on error sensitivities in §2.3). We

have calculated bolometric corrections for higher ℓ, and the differences are not

large enough to change the ℓ = 3 identification for F3. So the inconsistency of

our ℓ = 3 identification and the ℓ = 4 identification of Thompson et al. (2004)

remains a mystery. Fortunately, for seismological work it is useful to identify a

mode as high ℓ, even if the exact value is unknown. The density of modes in the

models at high ℓ is so large that they do not contribute seismological constraints

because the radial overtone (k) is unknown, but misinterpreting a high ℓ mode as

ℓ = 1 or 2 would lead the models astray. So even if a mode identification method

based on measurements of Rc alone cannot identify high ℓ modes precisely, it is

still useful for its ability to discriminate between modes of high and low ℓ.

In addition to the identification of F3 as high ℓ, the limits on Rc for the

harmonics of F1, F2, F4, F5, and F6 constrain that ℓ ≤ 2 for these modes,

consistent with the tentative mode identifications of Castanheira et al. (2004).

Our results are also consistent with the seismological analysis of Bradley (2006),

including his high ℓ identification for F3, with the exception of his identification

of F6 as high ℓ. Unfortunately, we are not able to definitively assign any ℓ

values to these modes due to their intrinsically low amplitudes (see Clemens,

1994; Thompson et al., 2004). Likewise, the only detected cross term, which
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is a combination with the high ℓ mode F3, is not able to narrow the choice of

ℓ. Indeed, we are not even able to determine whether the mode we call F6 is

a combination with F3 and a mode at 148 s or whether the latter is F3-F6.

We have used the latter identification in Table 3.6, following Castanheira et al.

(2004) and consistent with Bradley (2006).

3.2.2.2 Stars Without Detected Combinations

L19-2

McGraw (1977) discovered the variability of L19-2, a hot, low-amplitude ZZ

Ceti star. O’Donoghue & Warner (1982) presented a comprehensive analysis of

single site data, and were able to assign tentative values of ℓ to the pulsation

modes. Bradley (2001) revised these identifications in light of theoretical im-

provements, finding three modes of ℓ = 1 and two of ℓ = 2. L19-2 was the

subject of the WET campaign XCov 12 in 1995 April, on which Sullivan (1995)

presented a preliminary paper. We have re-reduced and analyzed the archival

WET data to search for combination frequencies, and found none detectable

above the noise limit of the FT. We have included a sample lightcurve in Fig-

ure 3.13 and the FT of all of the L19-2 WET data in Figure 3.14.

As with GD 66, we used the prewhitening technique to measure pulsation

frequencies in L19-2, and to reveal the multiplet structure in the highest ampli-

tude modes. In Figure 3.15 we show the 192 s pulsation mode (F1) as a typical

example. Figure 3.15a is the original FT in the region of F1. Figure 3.15b is

the window function of the 192.61 s peak. The remaining panels show the re-

sults of our iterative fitting and removal of three pulsation frequencies. Note

that there appears to be a significant residual near the m = −1 component.

This is mysterious, but not unprecedented (Kawaler et al., 1995). We show the

multiplet structure of the 113 s, 118 s, 350 s, and 143 s modes in Figures 3.16,
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3.17, 3.18, and 3.19.10 The identified periods of L19-2 are listed in Table 3.7 and

presented visually in Figure 3.20. We do not detect any combination frequen-

cies in L19-2. However, the noise level is sufficiently low, that the non-existence

of combinations, particularly harmonics, constrains the ℓ values of the modes

present.

Table 3.7: L19-2 Periods and Mode Identifications (WET Observations)

Mode Frequency Period σp Amplitude σamp ∆fa ℓ mb

Label (µHz) (sec) (sec) (mma) (mma) (µHz)

F1 5179.362 193.0740 0.0019 0.973 0.064 -12.433 1 -1

5191.795 192.6116 0.0004 5.535 0.065 1 0

5204.160 192.1540 0.0015 1.216 0.063 12.365 1 +1

F2 8789.054 113.7779 0.0004 1.766 0.067 1 or 2 0

8828.619 113.2680 0.0024 0.271 0.067 39.565 1 or 2 +2

F3 8426.324 118.6757 0.0006 1.191 0.070 -11.109 1 or 2 -1

8437.433 118.5195 0.0005 1.641 0.071 1 or 2 0

8448.580 118.3631 0.0023 0.339 0.069 11.147 1 or 2 +1

F4 2855.785 350.1664 0.0073 0.918 0.068 1 or 2 0

2868.023 348.6722 0.0192 0.347 0.068 12.238 1 or 2 +1

F5 6954.415 143.7935 0.0047 0.228 0.069 -18.112 ≤ 3 -1?

6972.527 143.4200 0.0030 0.354 0.070 ≤ 3 0

6991.176 143.0375 0.0031 0.341 0.069 18.649 ≤ 3 +1

a∆f is the separation between the modes in the multiplets and the m = 0 member.
bThe m identifications in the table are based on frequency splitting alone, not on the size

of the combination peak limits.

We have used the multiplet structure at 192 s (F1) in Figure 3.15 to estimate

the inclination of the pulsation axis of L19-2, finding an inclination of 16◦. In

Figure 3.21, we have plotted the theoretical predictions for combination frequency

amplitudes in L19-2 (Rc with Θ0 = 16◦). Instead of measured ratios for Rc, we

have included the observed noise limit (indicated by the filled squares, crosses,

open squares, and a star) at the frequencies where we expect combinations to

be detected. The downward arrows indicate that all data points are limits on

detections. The limit for the harmonic of F1 implies that mode is ℓ = 1, which

10The deconstruction of F5 (143 s) is particularly interesting because of the
confirmation of a peak at 143.79 s as predicted by O’Donoghue & Warner (1982).
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Figure 3.12: Ratio of combination to parent mode amplitudes (Rc) for G185-
32. The lines are theoretical predictions for G0+0
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3(Θ0 = 13◦) (dot-long-dashed line). The data points are the de-

tected harmonics or limits (filled squares), detected cross combination frequencies
(stars), and limits for the cross combinations involving the F3 pulsation mode
only (crosses). The downward arrows on the limits indicate that the points rep-
resent maximum values. The dotted lines on either side of the ℓi = ℓj = 3 line
are the Rc predictions for extremum in inclination: Θ0 = 20◦ (top) and Θ0 = 0◦

(bottom). the predictions of Wu (2001) for G0+0
4 4 /g

0
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0
4(Θ0 = 13◦) are not shown

because they reach values above Rc ∼ 3600.
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Figure 3.13: Lightcurve of L19-2 (WET observations). These data were acquired
as part of the WET campaign XCov 12 in 1995 April with an exposure time of
10 s.

Figure 3.14: Fourier transform of L19-2 (WET observations). This FT includes
all data listed in Table 3.2. We indicate the five pulsation modes that we reference
in Table 3.7.
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Figure 3.15: Deconstruction of F1 in L19-2. a: A Fourier transform of L19-2 near
192 s (F1). b: A window function obtained by taking an FT of a single sinusoid
(with the same period and amplitude of the 192.61 s peak) that has been sampled
in the same manner as the data. c: An FT near F1 with a period of 192.61 s
removed. d: An FT near F1 with periods of 192.61 and 192.15 s removed. e: An
FT near F1 with periods of 192.61, 192.15, and 193.08 s removed.
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Figure 3.16: Deconstruction of F2 in L19-2. a: A Fourier transform of L19-2
near 113 s (F2). b: A window function obtained by taking an FT of a single
sinusoid (with the same period and amplitude of the 113.78 s peak) that has
been sampled in the same manner as the data. c: An FT near F2 with a period
of 113.78 s removed. d: An FT near F2 with periods of 113.78 and 113.27 s
removed. Note that the peak of 113.27 in panel c was not the highest amplitude
peak remaining in the prewhitened FT. We chose this peak among the noise
because of its pre-established presence in the FTs of O’Donoghue & Warner
(1982).
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Figure 3.17: Deconstruction of F3 in L19-2. a: A Fourier transform of L19-2 near
118 s (F3). b: A window function obtained by taking an FT of a single sinusoid
(with the same period and amplitude of the 118.52 s peak) that has been sampled
in the same manner as the data. c: An FT near F3 with a period of 118.52 s
removed. d: An FT near F3 with periods of 118.52 and 118.68 s removed. e: An
FT near F3 with periods of 118.52, 118.68, and 118.36 s removed.
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Figure 3.18: Deconstruction of F4 in L19-2. a: A Fourier transform of L19-2
near 350 s (F4). b: A window function obtained by taking an FT of a single
sinusoid (with the same period and amplitude of the 350.17 s peak) that has
been sampled in the same manner as the data. c: An FT near F4 with a period
of 350.17 s removed. d: An FT near F4 with periods of 350.17 and 348.67 s
removed.
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Figure 3.19: Deconstruction of F5 in L19-2. a: A Fourier transform of L19-2 near
143 s (F5). b: A window function obtained by taking an FT of a single sinusoid
(with the same period and amplitude of the 143.42 s peak) that has been sampled
in the same manner as the data. c: An FT near F5 with a period of 143.42 s
removed. d: An FT near F5 with periods of 143.42 and 143.04 s removed. e: An
FT near F5 with periods of 143.42, 143.04, and 143.79 s removed. This tentative
identification of a peak at 143.79 s confirms predictions made by O’Donoghue &
Warner (1982).
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is consistent with how Bradley (2001) identified it based on its multiplet struc-

ture. The limits for F2, F3, and F4 imply that they are ℓ ≤ 2, again consistent

with the multiplet structure that suggests F2 is ℓ = 2 and F3 and F4 are ℓ = 1

(Bradley, 2001). The limit for 2F5 constrains F5 to be ℓ ≤ 3.
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Figure 3.20: Prewhitened peaks in L19-2 Fourier transform (WET observations).

It is gratifying to find that non-detections of combination frequencies can

provide useful seismological information, and that these corroborate independent

methods in the case of L19-2. We note that the predictions of Wu (2001) suggest

that the WET data are at the threshold of detecting the combination frequencies

in L19-2. Larger telescope data on this star might be useful as a further test of

the reliability of the theory of Wu (2001) for mode identification.
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Figure 3.21: Ratio of combination to parent mode amplitudes (Rc) for L19-2
(WET observations). The lines are theoretical predictions for G0+0
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2(Θ0 = 16◦) (dotted line), and G0+0
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0
2(Θ0 = 16◦)

(dashed line). The data points are the limits on the harmonics (filled squares)
and limits for the cross combinations for the presumed (Bradley, 2001) ℓ = 1, 1
combinations (crosses), ℓ = 1, 2 combinations (open squares), and an ℓ = 2, 2
combination (star). The downward arrows on the limits indicate that the points
represent maximum values.

GD 165

The pulsation pattern of GD 165 is very similar to that of L19-2. Both have

their two primary pulsations near 120 and 193 s. Bergeron & McGraw (1990)

discovered GD 165 to be a ZZ Ceti star as predicted by temperatures acquired

from spectroscopic analysis placing it within the theoretical ZZ Ceti instability

strip.

We included the data for GD 165 from WET observations (XCov 5, 1990

May) and from lightcurves obtained with the CFHT presented in an analysis by
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Bergeron et al. (1993). The two primary pulsations of GD 165 have multiplet

structure, to which we applied the Pesnell (1985) method and found 25◦ for the

inclination.

Table 3.8: Periods and Mode Identifications for Published Data without Combi-
nation Frequencies

Mode Frequency Period σp Amplitude σamp ∆fa ℓ mb Ref.

Label (µHz) (sec) (sec) (mma) (mma) (µHz)

GD 165

F1 8305.96 120.39543 1.76 -2.73 1? -1 1

8308.69 120.35585 4.79 1? 0 1

8311.24 120.31905 1.36 2.55 1? +1 1

F2 5187.02 192.78879 0.85 -2.98 1 or 2 -1 1

5190.00 192.67841 2.35 1 or 2 0 1

5192.82 192.57373 1.91 2.82 1 or 2 +1 1

F3c 3989.2 250.6797 0.6 -7.8 1 or 2 -1? 1

3997.0 250.1864 1.0 1 or 2 0 1

R548d

F1 4691.915 213.1326 6.7 1 -1 2

4699.946 212.7684 4.1 8.031 1 +1 2

F2 3639.348 274.7745 2.9 1 -1 2

3646.297 274.2508 4.1 6.949 1 +1 2

F3 2997.25 333.639 0.001 1.03 0.13 1 or 2 0? 2

F4 3143.92 318.074 0.001 1.10 0.13 1 or 2 0? 2

F5 5339.43 187.286 0.001 0.43 0.12 1 or 2 0? 2

G226-29

F1 9134.7234 109.47239 0.00019 2.82 0.10 -16.2175 1 -1 3

9150.9409 109.27838 0.00051 1.08 0.10 1 0 3

9167.0187 109.08672 0.00022 2.49 0.10 16.0778 1 +1 3

Note. − The ℓ identifications are from our analysis.
a∆f is the separation between the modes in the multiplets and the m = 0 member.
bThe m identifications for GD 165 are based on frequency splitting alone, not on the size of the

combination peak limits.
cBergeron et al. (1993) listed F3 from the WET data set, but not from the combined CFHT

and WET data set. They identified the m = −1 member as questionable.
dThe pulsation modes F3, F4, and F5 are those found in the 2001 data set of

Mukadam et al. (2003).

References. − (1) Bergeron et al. (1993); (2) Mukadam et al. (2003); (3) Kepler et al. (1995a).

Bergeron et al. (1993) did not report finding any combination frequencies

in the WET and CFHT combined data for GD 165. In Figure 3.22, we have

plotted the theoretical predictions for GD 165 (Rc with Θ0 = 25◦) along with

the observed noise limits for putative combination peaks. Once again the limits
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alone are sufficient to constrain F1 tentatively as ℓ = 1, and the other modes to

be ℓ ≤ 2, consistent with the ℓ = 1 identifications for each mode determined by

Bradley (2001) based on the multiplet structure. We list our mode identifications

in Table 3.8.

2F1

2F2

Figure 3.22: Ratio of combination to parent mode amplitudes (Rc) for GD
165. The lines are theoretical predictions for G0+0

1 1 /g
0
1g

0
1(Θ0 = 25◦) (solid line),

G0+0
1 2 /g

0
1g

0
2(Θ0 = 25◦) (dotted line), and G0+0

2 2 /g
0
2g

0
2(Θ0 = 25◦) (dashed line). The

data points are the limits on the harmonics (filled squares) and limits for the
cross combinations (crosses). The downward arrows on the limits indicate that
the points represent maximum values.

R548

R548, also called ZZ Ceti, is the prototype of this class of stars, and is one of

the brightest and hottest. Lasker & Hesser (1971) discovered R548 to be variable.

Its primary pulsation modes are doublets at 213 and 274 s. Like G117-B15A,

R548 has a very stable pulsation mode at 213 s (Mukadam et al., 2003).
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The data for R548 were gathered in the WET campaigns XCov 18 in 1999

November and XCov 20 in 2000 November, with additional data from the CFHT

and the McDonald Observatory (Mukadam et al., 2003). The pulsation periods

and amplitudes for R548 have been taken from Mukadam et al. (2003) and are

listed in Table 3.8. As with our assumption for GD 244, Bradley (1998) suggests

that the doublet structure in F1 and F2 results from viewing ℓ = 1 modes at

high inclination so that the third (central, m = 0) mode does not appear. Using

the maximum amplitude of the prewhitened FT of F1, at 213 s, as an estimate

on the amplitude of the m = 0 peak, we find the minimum possible inclination

for R548 to be 79◦. Unlike GD 244, another high inclination star, we do not

detect combination frequencies in R548.

In Figure 3.23, we have plotted the predictions for R548 (Rc with Θ0 = 79◦).

We include the observed noise limit (indicated by the filled squares, crosses,

open squares, and stars) at the frequencies where we expect combinations to be

detected. The limits on the harmonics of F1 and F2 do not uniquely identify

these modes, but only require that ℓ ≤ 2 for both. 2F1− appears to constrain

F1 to be ℓ = 1, but the line below it at the bottom of the Figure is an ℓ = 2, 2

combination for m = 2. However, the limits on the cross combination peaks at

the sum of the m = −1 and m = +1 parent modes do require F1 and F2 to be

ℓ = 1 modes (see the circles in Figure 3.23), which agrees with the identifications

of Bradley (1998). The limits for the harmonics of the F3, F4, and F5 singlets

are sufficient to imply that they are ℓ ≤ 2 if m = 0, again consistent with the

ℓ = 2 identification of Bradley (1998). As with L19-2, the predictions of Wu

(2001) suggest that these data are on the threshold of detecting the combination

frequencies for the two dominant modes in R548.

G226-29

G226-29 is the brightest known ZZ Ceti star because of its proximity (d = 11.0

pc, mv = 12.22; Kepler et al., 1995a). J. T. McGraw & G. Fontaine (1980,
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unpublished results) discovered its variability, finding only one pulsation mode

at 109 s that is rotationally split into a triplet. G226-29 is one of the hottest

of the 105 known single-star system ZZ Ceti stars (see Kepler et al., 2005; Voss

et al., 2006, and references therein), and Kepler et al. (2000b) suggest that we

are observing G226-29 just as it enters the instability strip.

We included data for G226-29 from the WET campaign XCov 7 in 1992

February presented in Kepler et al. (1995a). We found the inclination to be

74◦ by assuming the evenly spaced triplet is an ℓ = 1 mode. As discussed

previously, our results do not depend sensitively on this assumption. Kepler

et al. (1995a) did not detect combination frequencies in G226-29. In Figure 3.24,

we have plotted the predictions for G226-29 (Rc with Θ0 = 74◦). We include

the observed noise limit (indicated by the filled squares, crosses, and an open

square) at the frequencies where we expect combinations to be detected. The

limits for the harmonics of each member of the triplet do not uniquely identify

F1, but only require that ℓ ≤ 2. As with R548, another high inclination star with

detected m = ±1 multiplet members, it is the limit on the cross combination

peak at the sum of the m = −1 and m = +1 parent modes that require the

G226-29 F1 mode to be ℓ = 1. This result is consistent with the time-resolved

UV spectroscopy data from HST presented in Kepler et al. (2000b). As with

L19-2 and R548, the predictions of Wu (2001) suggest that these data are on the

threshold of detecting the combination frequencies in G226-29.

3.3 Conclusions

The main result of our study is that combination frequencies, particularly

harmonics, in the lightcurves of hot ZZ Ceti stars can be used along with the

theory of Wu (2001) to constrain and in many cases to determine uniquely the

spherical harmonic index (ℓ) of the modes that produced them. The first and

easiest result to achieve with this method is to identify those modes with ℓ > 2
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Figure 3.23: Ratio of combination to parent mode amplitudes (Rc) for R548.
The lines are theoretical predictions for G0±0
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Figure 3.24: Ratio of combination to parent mode amplitudes (Rc) for G226-29.
The lines are theoretical predictions for G0±0
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downward arrows on the limits indicate that the points represent maximum val-
ues.

80



and those with ℓ ≤ 2. This alone is useful for significantly reducing the number

of seismological models that need to be considered for a given star (Bradley,

1996). The theoretical mode spectrum at ℓ = 3 and higher is so dense that there

are many possible model fits to the typically sparse number of detected modes.

By eliminating from consideration the high ℓ modes, the possibility of identifying

a unique fit is improved. With the exception of a few small amplitude modes, in

this chapter we have successfully eliminated ℓ > 2 identification for all modes in

seven of the eight stars in our study. The eighth star, G185-32, was previously

thought to have a high ℓ mode (Thompson et al., 2004), and our method confirms

this result (though we get ℓ = 3 instead of ℓ = 4).

For modes with sufficiently large amplitude, combination frequency ampli-

tudes are further able to discriminate between ℓ = 1 and ℓ = 2, primarily through

the use of harmonics. The harmonics are superior for this purpose because they

are known to be same-ℓ combinations, and because same-ℓ combinations are well-

separated in the theoretical plots of Rc. We were able to identify modes as ℓ = 1

in six of the eight stars, and in every case our identifications agreed with any

previous independent results.

The method we have used requires only time-series photometry and simple

calculations as presented in Chapter 2. The essential part of these calculations is

the evaluation of the geometric term in the theory of Wu (2001), which we have

named G. Calculating G requires the evaluation of integrals of spherical har-

monics in the presence of a limb darkening law. To assist others in application

of this technique, we have included tabulated matrices of combination frequency

integrals for ℓ ≤ 4 in Appendix A. Applying these requires a straightforward esti-

mation of the inclination, which we have done using multiplet amplitudes, where

detected, and limits on the sizes of multiplet members where not detected. This

has required that we assume that modes of every m are excited to the same

amplitude in every mode, and that rotation always removes the frequency de-

generacy of multiplet members. Fortunately, our results are not highly sensitive
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to these assumptions.

In addition to our application of this method to eight stars, we have presented

analyses of new data on GD 66 and GD 244 that will be useful for seismological

study of these objects. We have not been able to definitively decompose the

multiplet structure in these stars with single-site data, but the mode periods we

have measured are given in Tables 3.4 and 3.5 for comparison to seismological

models.

More important than the results for these individual stars is our verification

of a quick and easy diagnostic tool that frequently yields definitive results. We

hope the method will find broad and immediate application in the study of

numerous ZZ Ceti stars being discovered with the SDSS (see Mukadam et al.,

2004b; Mullally et al., 2005). Most of these are fainter than the objects we

have measured, but photometry on a 4 m class telescope will be sufficient to

reach useful detection limits. For example, if the V=15.56 mag star GD 66 were

instead an 18th magnitude star, observations with a 4 m class telescope would

reveal four of the combination frequency peaks that we identified, including the

harmonics of the two highest amplitude peaks. Further study of the objects in

this chapter will also be useful, both to secure definitive ℓ identifications of the

smaller amplitude modes and to detect those combinations that hover just below

the detection limits of the present data. We discuss observations using the 4.1

m SOAR Telescope in Chapter 4.
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Chapter 4

Photometric Mode Identification

for L19-2 with the SOAR

Telescope

Dr. Peter Venkman: Ray has gone bye-bye, Egon . . . what’ve you got

left?

Dr. Egon Spengler: Sorry, Venkman, I’m terrified beyond the capacity

for rational thought.

— Ghostbusters

4.1 Introduction

For nearly three decades, since its discovery by McGraw (1977), the hot, low-

amplitude DAV (H atmosphere, variable) white dwarf star L19-2 has been the

subject of study. O’Donoghue & Warner (1982, 1987) presented a comprehensive

analysis of extensive single site data, and were able to assign tentative values of

ℓ to the pulsation modes. Bradley (2001) revised these identifications in light of

theoretical improvements, finding three modes of ℓ = 1 and two of ℓ = 2. In 1995

April, L19-2 was the subject of the WET campaign XCov 12, on which Sullivan



(1995) presented a preliminary paper. In Chapter 3, we re-reduced and analyzed

the archival WET data to search for combination frequencies, and found none

detectable above the noise limit of the Fourier transform (FT). In general, these

combination frequencies, sum and difference frequencies and harmonics identified

in FTs, result from the nonlinear behavior of pulse shapes. In this chapter,

we apply our mode identification method that utilizes combination frequency

amplitudes to the small amplitude DAV (ZZ Ceti) white dwarf star L19-2. Here,

we present new data acquired in 2005 May from the 4.1 m SOAR Telescope.

L19-2 falls into the class of HDAV stars, which are low amplitude pulsators

that have been shown to lie at the high temperature end of the instability strip

and have short, stable pulsation periods (Winget & Fontaine, 1982; Clemens,

1994). The DAV stars are subdivided into the HDAV (hot) and CDAV (cool)

groups, based on their pulsation property differences. Although the stars in the

HDAV group exhibit fewer modes than those of the CDAV group, L19-2 has a

comparably rich mode spectrum with five eigenmodes.

Although L19-2 did not exhibit detectable combination frequencies within

the limits of the WET data discussed in Chapter 3, we showed that the limits of

non-detected harmonics can constrain the identity of the modes. We found the

highest amplitude mode at 192 s to be ℓ = 1, constrained the three modes at

113, 118, and 350 s to be ℓ ≤ 2, and constrained the lowest amplitude mode at

143 s to be ℓ ≤ 3. These results are all consistent with the analysis of Bradley

(2001).

The noise level of the L19-2 WET data set is low, very near the predicted de-

tection limit for the harmonics of the two largest amplitude modes (
√

〈P 〉 ∼ 0.1

mma, where 〈P 〉 is the average power of the FT in the region of the harmonics).

In Chapter 3, we anticipated that observations with a 4 m class telescope would

reveal previously undetected harmonics for L19-2, further constraining mode

identifications for this star and justifying the theory of Wu (2001) as a reliable

mode identification method. However, we are unable to detect new harmonics
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for L19-2. Because of weather and time constraints, we were only able to acquire

8.13 hours of data for L19-2 with the SOAR Telescope. As a consequence, the

noise level (
√

〈P 〉) for the SOAR data presented in this chapter is twice that of

the WET data set considered in Chapter 3.

In §4.2 we present the new SOAR data for L19-2 and compare the theoretical

predictions of Wu (2001) with these observations. In §4.3 we summarize our

results and emphasize the need for future application of the technique to large

samples of ZZ Ceti stars.

4.2 Data Reduction and Analysis

In §4.2.1, we present and describe our observations of L19-2 with the SOAR

4.1 m Telescope. In §4.2.2, we give a full description of the data reduction process.

The purpose of this subsection is to extract mode frequencies and amplitudes via

Fourier methods. Finally, in §4.2.3, we provide our analysis using the theory of

Wu (2001) and present an updated evaluation of the modes in L19-2. We record

the upper limit of the noise level (
√

〈P 〉) to compare the size of the harmonics

and combination frequencies to the theory.

4.2.1 Observations

We obtained time-series photometry data on L19-2 in 2005 with the SOAR

4.1 m Telescope using the Goodman High Throughput Spectrograph in imaging

mode with no filter (Clemens et al., 2004; Crain et al., 2004) and an Apogee AP10

CCD camera that we are temporarily using to commission the spectrograph (see

López-Morales & Clemens, 2004, for camera characterization). At the time of

our observations, the dewar and detector for the Goodman Spectrograph were

not ready for use. We designed and built an attachment for the Apogee CCD

camera allowing us to use it with the Goodman Spectrograph. We show drawings

from our computer aided design in Figure 4.1. Figure 4.2 shows a photograph of

85



the CCD housed in the attachment.

Figure 4.1: Drawing of attachment for Apogee CCD camera. We designed this
attachment to house the CCD camera and fit against the Goodman Spectrograph
temporarily.

We observed L19-2 on four consecutive nights totaling 29,270 s of data as

indicated in the Journal of Observations, Table 4.1. We used an integration time

of 10 s for the observations.

4.2.2 Data Reduction

We performed a complete reduction of the L19-2 data using the methods de-

scribed by Mukadam et al. (2004b). We used weighted circular aperture photom-

etry to create sky-subtracted lightcurves for each of the runs listed in Table 4.1.

We then divided each lightcurve by the brightest comparison star (see Figure 4.3)

and fitted a polynomial to each lightcurve to bring each run to the same frac-

tional amplitude scale. We calculated the Barycentric Julian Ephemeris Date for

the start-time of each run to convert the times to Barycentric Coordinated Time
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Figure 4.2: Photograph of attachment for Apogee CCD camera. The CCD can
be seen in the center of the attachment.

Table 4.1: Journal of Observations for L19-2 (SOAR Telescope Observations)

Date Start Time Length Integration Time

(UT) (UT) (sec) (sec)

2005 May 19 07:31:59.7 7060 10

2005 May 20 09:01:58.7 3000 10

2005 May 21 02:23:28.7 16830 10

2005 May 22 07:41:30.0 2380 10

Note. − All observations were made with the SOAR

4.1 m Telescope.
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(TCB). To identify the pulsation modes and possible combination frequencies

of L19-2, we combined all of the lightcurves and computed a discrete FT. We

have included a sample lightcurve in Figure 4.4 and the FT of all L19-2 data in

Figure 4.5.

Figure 4.3: CCD image of L19-2. This CCD image was acquired with the Good-
man Spectrograph on the 4.1 m SOAR Telescope on 21 May 2005 with an ex-
posure time of 10 s. L19-2 (circled) is located near the center of the image. We
divided each lightcurve by the brightest comparison star, which is circled in the
bottom-center of the image.

To identify closely spaced modes in the regions of obvious excess power, we

utilized a prewhitening technique similar to that of O’Donoghue & Warner (1982)

using an iterative nonlinear least squares procedure. For each peak, we fitted the

frequency, amplitude, and phase and then subtracted the fit from the original

lightcurve. We then fitted a second frequency to the altered data, choosing in

every case the largest remaining peak, and used the result of this fit to conduct

a simultaneous least squares fit to the original data. Thus at each step in the
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Figure 4.4: Lightcurve of L19-2 (SOAR Telescope observations). These data
were acquired with the Goodman Spectrograph on the SOAR 4.1 m Telescope
with an exposure time of 10 s.

prewhitening, the frequencies removed are from a simultaneous fit to the original

data. Only two modes in the FT of these data actually show multiplet structure,

F1 and F3. We did not detect harmonics and combination frequencies in these

data. The five dominant pulsation modes (F1 - F5) and associated power derived

from prewhitening are listed in Table 4.2 and presented visually in Figure 4.6.

The four highest amplitude modes and associated multiplet structure are consis-

tent to within 2 µHz of those found in both the WET data set in Table 3.7 and

the modes found by O’Donoghue & Warner (1982).11 Figure 4.6 shows clearly

that the lowest amplitude mode, F5, is ∼ 30 µHz from the expected frequency.

However, the F5 mode is only two times as large as the background. The fre-

11However, O’Donoghue & Warner (1982) did not identify them = +1 member
of the F3 multiplet.
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Figure 4.5: Fourier transform of L19-2 (SOAR Telescope observations). This FT
includes all individual nights of the data that are listed in Table 4.1. We indicate
the five pulsation modes that we reference in Table 4.2. The window function, in
the top right of the figure, is the FT of a lightcurve of a sinusoid that has been
sampled in the same manner as the original data.

quency of such a small signal is pulled by the presence of unresolved noise peaks.

4.2.3 Mode Identification

Measuring the limits for the harmonics and combination frequencies in L19-2

allows us to calculate the ratio of combination to parent mode amplitudes and

compare it to the theoretical predictions (Rc, see equation 2.9). Figure 4.7 shows

the observed limit of Rc for the harmonics and combination frequencies. We have

plotted a limit equal to the 1 σ noise level in the FT. The observed Rc do not

depend on any theory.

The theoretical calculations of Rc require that we supply an inclination esti-
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Figure 4.6: Prewhitened peaks in L19-2 Fourier transform (SOAR Telescope
observations). The scale of this figure is the same as Figure 3.20 in Chapter 3
for ease in direct comparison between these data and the WET data.

mate, an estimate of τc0 , and a value for the parameter 2β + γ. To be consistent

with our previous analysis of L19-2, we have used Θ0 = 16◦ for all of the theoret-

ical calculations, which is the value determined in Chapter 3 using the technique

of Pesnell (1985). The end result, Rc, is not very sensitive to this parameter

as long as Θ0 ≤ 25◦ (see Figure 2.4). For τc0, we have used the value of 350 s,

which is the longest period mode in L19-2. This value only affects the location

of the frequency roll-off, not the predicted combination frequency amplitudes in

the high frequency limit. Finally, we use 2β+γ = −9.35, which is the value that

we found in Chapter 3 by normalizing the parameter for the hot, low-amplitude

ZZ Ceti stars.

The theoretical lines for same-ℓ combinations are well-separated, suggesting

that harmonics, which are same-ℓ by definition, are better able to constrain ℓ

91



Table 4.2: L19-2 Periods and Mode Identifications (SOAR Telescope Observa-
tions)

Mode Frequency Period σp Amplitude σamp ℓ ma

Label (µHz) (sec) (sec) (mma) (mma)

F1 5177.694 193.1362 0.0180 0.97 0.15 1 -1

5192.179 192.5973 0.0042 4.09 0.15 1 0

F2 8788.823 113.7809 0.0032 1.32 0.15 1 or 2 0

F3 8425.901 118.6817 0.0067 1.15 0.16 1 or 2 -1

8447.857 118.3732 0.0126 0.61 0.16 1 or 2 +1

F4 2856.599 350.0666 0.0691 0.58 0.16 ≤ 3 0

F5 7002.105 142.8142 0.0166 0.40 0.16 ≤ 3 0

aThe m identifications in the table are based on the frequency splitting

alone, not on the size of the combination peaks.

when cross combinations cannot. The limit on the harmonic of F1 is only con-

sistent with ℓ = 1, while the limits for the harmonics of F2 and F3 are consistent

with ℓ = 1 or ℓ = 2. These results are consistent with our analysis of the WET

L19-2 data set in Chapter 3, and with how Bradley (2001) identified them based

on the multiplet structure. The limits for the harmonics of F4 and F5 constrain

these modes to be ℓ ≤ 3. The m identifications we assigned in Table 4.2 arise

from frequency splitting only, and are not derived from combination frequency

amplitudes.

4.3 Conclusions

We acquired 8.13 hours of time-series photometry data on L19-2 in 2005 May

at the SOAR Telescope. We compared these data with the analytical predictions

of Wu (2001) by calculating the ratio of combination frequency to parent mode

amplitudes. These new data confirm conclusions from Chapter 3 that ℓ = 1 for
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Figure 4.7: Ratio of combination to parent mode amplitudes (Rc) for L19-
2 (SOAR Telescope observations). The lines are theoretical predictions for
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2(Θ0 = 16◦) (dashed line). The data points are the limits on the har-

monics (filled squares) and limits for the cross combinations for the presumed
(Bradley, 2001) ℓ = 1, 1 combinations (crosses) and ℓ = 1, 2 combinations (open
squares). The downward arrows on the limits indicate that the points represent
maximum values.

F1 and ℓ = 1 or ℓ = 2 for F2 and F3, consistent with the previous seismological

analysis of Bradley (2001).

It is unfortunate that we were not able to lower the L19-2 noise level with

our 4 m class telescope. The signal to noise ratio (S/N) for the WET data from

Chapter 3 is twice the S/N of the SOAR data presented in this chapter. Although

the SOAR 4.1 m Telescope collects photons sixteen times faster than the WET

1 m class telescopes, we observed L19-2 for ∼ 8 hours with the SOAR Telescope,

which is insufficient to reduce the noise level when compared with the ∼ 142

hours of data in the WET data set. The noise level goes down as the square root
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of the number of data points, which is linearly related to the amount of time

spanned by the observations. Increasing our observation time by four times (to

32 hours) would equate the noise level to the WET data set. Decreasing the WET

noise level over the course of our five night observing run was an achievable goal,

had the weather and other factors cooperated. However, the primary purpose

of acquiring these data was to give the author further observational experience.

Most importantly, we have accumulated the skills necessary to take raw data and

extract useful information from it.

This chapter also verifies that this method for mode identification can be

applied to pulsating white dwarf stars with relatively little effort as a first check

on mode identifications. The first application of this method is to quickly dis-

criminate between modes with ℓ > 2 and those with ℓ ≤ 2. For modes with

sufficiently high amplitude, the amplitudes of their harmonics allow further dif-

ferentiation between ℓ = 1 and ℓ = 2 modes. Harmonics are known to be same-ℓ

combinations, and the theoretical predictions for same-ℓ combinations are well

separated in the theory of Wu (2001).
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Chapter 5

Photometric Mode Identification

for the DBV EC 20058-5234

Dr. Peter Venkman: Ray, pretend for a moment that I don’t know any-

thing about metallurgy, engineering, or physics,

and just tell me what is going on.

Dr. Ray Stantz: You never studied.

— Ghostbusters

5.1 Introduction

EC 20058-5234 is one of the brightest members of the DBV group of pul-

sating stars. Koen et al. (1995) reported the discovery of the variability of EC

20058-5234 finding eight periodicities, including combination frequencies. EC

20058-5234 is a low-amplitude DBV with stable pulsation modes (Sullivan &

Sullivan, 2000). Beauchamp et al. (1999) present optical spectra of EC 20058-

5234, providing Teff ∼ 28, 000 K and log g ∼ 7.8, though the errors are large due

to instrumental problems with the detector used for the observations. In 1997

July, EC 20058-5234 was the secondary target star of the WET campaign XCov

15, on which Sullivan & Sullivan (2000) and Sullivan (2005) have presented pre-



liminary papers. The spectra of DB white dwarf stars are dominated by strong

He I lines. The DBV instability strip is centered on 25,000 K and its existence

was theoretically predicted by Winget et al. (1982a) before the discovery of the

first DBV.

In this chapter, we will present our analysis of the pulsation modes using

the combination frequencies amplitudes of the DBV EC 20058-5234. The the-

ory of Wu (2001) provides approximate expressions for the size of combination

frequencies that depend upon the frequency, amplitude, and spherical harmonic

indices of the parent modes. We use the relative amplitudes of the combination

frequencies to infer the spherical harmonic indices of their parent modes. In

§5.2, we present the data. In §5.3, we describe our analysis and resultant mode

identifications for EC 20058-5234. We summarize our results in §5.4.

5.2 Data

The data for EC 20058-5234 were obtained as the secondary target for the

WET campaign XCov 15 in 1997 July (for further information see Sullivan,

2005). Table 5.1 include data from this WET run, as well as further observations

acquired after 1997 as discussed in Sullivan (2005). In addition to interesting

measurements of the plasmon neutrino flux, these data are being used for an

asteroseismological analysis on this star. These data have been provided by

D. Sullivan (2006, private communication) and we have performed our mode

identification method to help facilitate the asteroseismology.

5.3 Mode Identification

Gathering the amplitudes for the harmonics and combination frequencies in

EC 20058-5234 allows us to calculate the ratio of combination to parent mode

amplitudes and compare it to the theoretical predictions (Rc, see Equation 2.9).
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Table 5.1: EC 20058-5234 Periods and Mode Identifications

Mode Frequency Period Amplitude Combination? ℓ Rc

Labela (µHz) (s) (mma)

f1 1852.6 539.8 2.0 1 or 2

f2 1903.5 525.4 1.9 1 or 2

f3 2852.4 350.6 1.4 1 or 2

f4 2998.7 333.5 3.0 1 or 2

f5 3488.9 286.6 1.7

f6 3559.0 281.0 8.5 1

f7 3640.3 274.7 1.0

f8 3893.2 256.9 8.4 1?

f9 4887.8 204.6 2.7 1 or 2

f10 4902.2 204.0 1.7 f2+f4 149.12

f11 5128.6 195.0 2.5 1 or 2

f12 6557.6 152.5 0.6 f6+f4 11.76

f13 7452.2 134.2 1.7 f6+f8 11.90

f14 9021.7 110.8 0.9 f8+f11 21.43

f15 10030.7 99.7 0.7 f2+f4+f11

f16 4816.8 207.6 0.7 ≤3

f17 3924.2 254.8 0.5 ? ≤3

a 5462.5 ∼0.5 f6+f2 15.48

b 5745.8 ∼0.3 f8+f1 8.93

c 6745.6 ∼0.5 f8+f3 21.26

d 7118.0 ∼0.5 2f6 6.92

e 7533.5 ∼0.4 f8+f7 23.81

f 8127.3 ∼0.5 f4+f11 33.33

g 8446.8 ∼0.5 f6+f9 10.89

h 8461.2 ∼0.6 f6+f2+f4

i 8781.0 0.6 f8+f9 13.23

Note. − These data are primarily from the WET campaign XCov 15

and are provided courtesy of D. Sullivan (2006, private communication).
aFor simplicity, we have retained the mode labeling system of D. Sullivan

(2006, private communication). Modes f5, f6, and f7 are believed to be

members of a rotationally split triplet centered on f6.
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Figure 5.1 shows the measured Rc for the harmonics and combination frequencies.

For the non-detected harmonics, we have plotted a limit approximately equal to

the 1 σ noise level in the FT. The observed Rc do not depend on any theory.

Figure 5.1: Ratio of combination to parent mode amplitudes (Rc) for EC 20058-
5234. The lines are theoretical predictions for G0±1

2 1 /g
0
2g

±1
1 (Θ0 = 13◦) (dot-long-

dashed line), G0±1
1 1 /g

0
1g

±1
1 (Θ0 = 13◦) (dot-dashed line), G0±0

1 1 /g
0
1g

0
1(Θ0 = 13◦)

(solid line), G0±0
1 2 /g

0
1g

0
2(Θ0 = 13◦) (dashed line), and G0±0

2 2 /g
0
2g

0
2(Θ0 = 13◦) (long-

dashed line). The data points are the detected harmonics or limits (filled squares)
and detected cross combination frequencies (stars). The downward arrows on the
limits indicate that the points represent maximum values.

The theoretical calculations of Rc require that we supply an inclination esti-

mate, an estimate of τc0, and a value for the parameter 2β + γ. We have used

Θ0 = 13◦ for the inclination of this star for all of the theoretical calculations.

We calculate this value by applying the technique of Pesnell (1985) to the rota-

tionally split triplet f5, f6, and f7 centered on f6. The end result, Rc, is not very

sensitive to this parameter as long as Θ0 ≤ 25◦ (see Figure 2.4). For τc0 , we have
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used the value of 539.8 s, which is the longest period mode in EC 20058-5234.

This value only affects the location of the frequency roll-off, not the predicted

combination frequency amplitudes in the high frequency limit. Finally, we use

2β + γ = −10, which is the value that Wu (2001) uses for the DBV GD 358.

The theoretical lines for same-ℓ combinations are well-separated, suggesting

that harmonics, which are same-ℓ by definition, are better able to constrain

ℓ when cross combinations cannot. The harmonic of f6 and the limit on the

harmonic of f8, the two highest amplitude modes, are only consistent with ℓ = 1.

However, two modes this closely space in period (only 24 s apart) are not expected

to have the same ℓ. Indeed, Sullivan expects f8 to be an ℓ = 2 mode. We hoped

that the combination of f8 with f7, the proposed m = +1 member of the f6

triplet, would reveal more information about the ℓ of f8, but it falls well above the

predictions for an ℓ = 1 or 2,m = 0 mode with an ℓ = 1,m = +1 mode. However,

all other detected cross combination frequencies involving f8 are consistent with

ℓ = 2 for that mode. The limits on the harmonics of modes f1, f2, f3, f4, f9,

and f11 reveal that they are either ℓ = 1 or 2 modes. After close inspection of

Figure 5.1, one may be moved upon to say there is a distinct separation between

combination frequencies with Rc clustered around the ℓ = 2, 2 line and those

clustered around the ℓ = 1, 1 and ℓ = 1, 2 lines. If this is genuine, f2, f3, f4, and

f11 may be further constrained to be ℓ = 2 modes.

5.4 Conclusions

We have performed our mode identification method on the DBV EC 20058-

5234. We have constrained the highest amplitude mode to be ℓ = 1. We ten-

tatively identify the second highest amplitude mode as ℓ = 1, with some reser-

vation. We constrain six other modes to be ℓ ≤ 2 based on the limits of their

harmonics. Two low amplitude modes are found to be ℓ ≤ 3. These results will

be valuable to the current asteroseismological analysis being performed on this
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star.

The most important result of this chapter is the proof that this method serves

as a quick and uncomplicated technique for mode identification for both DAV

and DBV stars. The first application of this method is to quickly discriminate

between modes with ℓ > 2 and those with ℓ ≤ 2. For modes with sufficiently

high amplitude, the amplitudes of their harmonics allow further differentiation

between ℓ = 1 and ℓ = 2 modes. Harmonics are known to be same-ℓ combina-

tions, and the theoretical predictions for same-ℓ combinations are well separated

in the theory of Wu (2001).
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Chapter 6

Summary and Conclusions

Dr. Ray Stantz: Personally, I liked the university. They gave us

money and facilities, we didn’t have to produce

anything! You’ve never been out of college! You

don’t know what it’s like out there! I’ve worked in

the private sector. They expect results.

— Ghostbusters

Asteroseismology is a promising tool for using stellar pulsations to under-

stand the interiors of white dwarf stars. In practice, we perform a normal-mode

analysis by matching all observed frequencies to theoretical models for white

dwarf interiors and determine which model best fits the observed periods. Be-

cause instability is believed to be an evolutionary stage for white dwarf stars (cf.

Fontaine et al., 1982; Mukadam et al., 2004a), we apply the information gleaned

from this normal-mode analysis to all white dwarf stars with the same mass,

pulsating and non-pulsating white dwarf stars alike. Asteroseismology teaches

us about the interiors of white dwarf stars and we apply this information to de-

termine the age of the galaxy (both the disc and the halo), to formulate models

for nuclear fusion, and to probe into the crystallization of white dwarf star cores

as they cool. An accurate understanding for all of these interesting topics is only

possible with correct asteroseismological analyses for pulsating white dwarf stars.



All of asteroseismology depends upon the accurate pulsation mode identification

of the radial overtone number, k, and the spherical harmonic quantum numbers,

ℓ and m, for each individual pulsation mode.

Historically, there are very few seismological studies on white dwarf stars.

Without correct identification of ℓ for pulsation modes, there are too many theo-

retical models to fit to the observed period spectra of white dwarf stars. There are

at least three observational methods for mode identification. The first two meth-

ods require either time-resolved spectroscopy with very large aperture optical

telescopes (i.e., Keck, Clemens et al., 2000; Thompson et al., 2004) or time-series

photometry in the optical and UV wavelengths with the HST (Robinson et al.,

1995). These methods are time intensive and expensive. The intrinsically faint

white dwarf stars require large aperture telescopes for these methods. However,

the follow-up photometry of ZZ Ceti candidates from the Sloan Digital Sky Sur-

vey (SDSS) is finding large numbers of these pulsators that will be too faint

for practical time-resolved spectroscopic methods (see Mukadam et al., 2004b;

Mullally et al., 2005). We have determined a quick and inexpensive method

for confidently assigning values of the spherical degree (ℓ) and azimuthal order

(m) to individual eigenfrequencies. The method that we propose only requires

time-series photometry on 4 m class telescopes for the faint SDSS ZZ Ceti stars.

We use the size of the nonlinearities in the observed lightcurves to infer ℓ and

m for the eigenmodes. The method that we discuss in this dissertation can be

quickly applied to large samples of stars and provide the results necessary for

asteroseismological analysis. We have demonstrated that the technique works on

both DAV and DBV white dwarf stars and we have provided a routine for future

application on objects.

The Fourier transforms (FTs) of DAV and DBV lightcurves generally show

power at harmonics and at sum and difference frequencies. These “combination

frequencies” are not in general the result of independent pulsation eigenmodes,

but rather of frequency mixing between eigenmodes (Brickhill, 1992b; Goldreich
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& Wu, 1999; Ising & Koester, 2001, BFW95). Wu (2001) was able to derive ap-

proximate expressions for the size of combination frequencies that depend upon

the frequency, amplitude, and spherical harmonic indices of the parent modes,

and upon the inclination of the star’s pulsation axis to our line of sight. Her

solutions yield physical insight into the problem, and make predictions for indi-

vidual stars straightforward to calculate. The routine that we present for mode

identification will significantly help asteroseismological analyses.

We have provided a detailed explanation of the analytical calculations of Wu

(2001) in Chapter 2. We discussed our method for estimating the inclination of

the stars’ pulsation axes to the observer’s line of sight. In Chapter 2, we lay

out a framework for using the theory of Wu (2001) for mode identification. In

Chapters 3 through 5, we have applied this theory to observations of pulsating

white dwarf stars. We have presented the data for each star individually and

compared the observed amplitudes with the predictions from the equations of Wu

(2001), finding good correspondence between the observations and theory. In the

following sections, we summarize the important achievements of this dissertation.

6.1 Harmonics Are the Key

The main result of this dissertation is that combination frequencies, particu-

larly harmonics, in the lightcurves of hot ZZ Ceti stars can be used along with

the theory of Wu (2001) to constrain and in many cases to determine uniquely

the spherical harmonic index (ℓ) of the modes that produced them. The first and

easiest result to achieve with this method is to identify those modes with ℓ > 2

and those with ℓ ≤ 2. This alone is useful for significantly reducing the number

of seismological models that need to be considered for a given star (Bradley,

1996). The theoretical mode spectrum at ℓ = 3 and higher is so dense that there

are many possible model fits to the typically sparse number of detected modes.

By eliminating from consideration the high ℓ modes, the possibility of identifying
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a unique fit is improved.

For modes with sufficiently large amplitude, combination frequency ampli-

tudes are further able to discriminate between ℓ = 1 and ℓ = 2, primarily through

the use of harmonics. The harmonics are superior for this purpose because they

are known to be same-ℓ combinations, and because same-ℓ combinations are

well-separated in the theoretical plots of Rc.

The method we have used requires only time-series photometry and simple

calculations as presented in Chapter 2. The essential part of these calculations is

the evaluation of the geometric term in the theory of Wu (2001), which we have

named G. Calculating G requires the evaluation of integrals of spherical har-

monics in the presence of a limb darkening law. To assist others in application

of this technique, we have included tabulated matrices of combination frequency

integrals for ℓ ≤ 4 in Appendix A. Applying these requires a straightforward esti-

mation of the inclination, which we have done using multiplet amplitudes, where

detected, and limits on the sizes of multiplet members where not detected. This

has required that we assume that modes of every m are excited to the same

amplitude in every mode, and that rotation always removes the frequency de-

generacy of multiplet members. Fortunately, our results are not highly sensitive

to these assumptions.

For convenience, we summarize application of the method as follows:

1. Calculate the inclination with the Pesnell (1985) method using the ratio of

the observed amplitudes in a given multiplet. Consult the sensitivity of G to

inclination (see Figures 2.3, 2.4, and A.1) to ensure that Rc is changing slowly

with inclination near this value.

2. Calculate the theoretical Rc for both ℓ = 1 and 2 by approximating τc0 with

the longest period mode and using the bolometric correction αλ = 0.4. We

use 2β + γ = −9.35 for hot, low-amplitude DA stars, while Wu (2001) uses

2β + γ = −10 for the cool DA star G29-38.

3. Compare the calculated Rc with the measured value obtained with the am-
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plitudes of the combinations and their parents.

6.2 Verification of the Theory of Yanqin Wu

Through our analysis, we have shown that the theory of Wu (2001) provides

the only available analytical predictions for combination frequencies that are

consistent with the amplitudes we measure. An entirely different model for ex-

plaining combination frequencies was proposed by BFW95. The BFW95 theory

invokes the nonlinear response of the radiative atmosphere, ignoring the changes

to the surface convection zone. We have shown that, in general, even for the low

amplitude pulsators, the BFW95 theory underestimates the sizes of combination

frequencies in most ZZ Ceti stars by an order of magnitude or more and that

they will be smaller than in the theory of Wu (2001) (for the same ℓ). Moreover,

without very precise temperature measurements, the temperature sensitivity of

the BFW95 theory makes mode identification problematic if the BFW95 theory

is correct. In addition, the BFW95 theory predicts that the size of the individual

combination frequencies is independent of the pulsation frequency in any single

star, unlike the theory of Wu (2001), so, contrary to observational evidence, low

frequency difference modes are not suppressed in the BFW95 theory.

Moreover, the theory of Goldreich & Wu (1999) (founded on the theory of

Brickhill (1992b)) implicitly contains a mode driving mechanism different from

that originally proposed for the DAV stars. Verification of the analytical predic-

tions of Wu (2001) supports the convective driving mechanism as the source of

pulsations in DAV stars.
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6.3 New Fourier Transforms for GD 66, GD

244, and L19-2

In Chapter 3, we presented independent analyses of new data on the DAV

white dwarf stars GD 66 and GD 244 that will be useful for seismological study

of these objects. There are few published lightcurves and FTs for these two

stars and their period spectra were previously uncertain. The mode periods we

have measured and published are given in Tables 3.4 and 3.5 for comparison to

seismological models. Additionally, we have identified the ℓ values for each mode

to facilitate the seismological analyses. This is important because without correct

identification of ℓ for pulsation modes, there are too many theoretical models to

fit the observed period spectra of white dwarf stars. By identifying the ℓ for each

mode, we have helped to preemptively exclude incorrect seismological models.

We identified five independent pulsations modes and nine combination fre-

quencies for GD 66. We found that the four highest amplitude modes are only

consistent with a mode identification of ℓ = 1. We constrained the lowest am-

plitude mode to be ℓ ≤ 2. We identified four independent pulsation modes and

six combination frequencies for GD 244. The three highest amplitude pulsation

modes are consistent with ℓ = 1 and the lowest amplitude mode has ℓ ≤ 3.

We have presented new reductions for archival Whole Earth Telescope (WET)

data for L19-2, summarized in Table 3.7. The complete reduction for these data

are previously unpublished (for preliminary results, see Sullivan, 1995), though

Bradley (2001) has conducted a seismological analysis on these data. Our mode

identification results are consistent with how Bradley (2001) identified the L19-2

modes based on their multiplet structure. We identified five independent pul-

sation modes and did not detect combination frequencies in L19-2. Because we

were unable to use measured amplitudes of combination frequencies for our anal-

ysis, we included the observed noise limit as an upper bound for comparison to

theory. We found the highest amplitude mode to be ℓ = 1, the three intermedi-
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ate amplitude modes to be ℓ ≤ 2, and the lowest amplitude mode to be ℓ ≤ 3.

It is gratifying to find that non-detections of combination frequencies can pro-

vide useful seismological information, and that these corroborate independent

methods in the case of L19-2.

6.4 Mode Identification for Published Data

In Chapter 3, we identified modes for five DAV white dwarf stars using pub-

lished data. G117-B15A and G185-32 have detectable combination frequencies,

while GD 165, R548, and G226-29 do not. We were able to identify modes as

ℓ = 1 in four of the five stars, and in every case our identifications agreed with

any previous independent results, making those ℓ identifications certain. With

the exception of a few small amplitude modes, we have successfully eliminated

ℓ > 2 identification for all modes in four of the five stars. The fifth star, G185-32,

was previously thought to have a high ℓ mode (Thompson et al., 2004), and our

method confirms this result (though we get ℓ = 3 instead of ℓ = 4). The details

of the mode identification for these published data are found in Tables 3.6 and

3.8.

6.5 An Expedition to Cerro Pachon

We acquired 8.13 hours of time-series photometry data on L19-2 in 2005 May

at the SOAR Telescope using the Goodman Spectrograph and presented this in-

formation in Chapter 4. These new data confirm conclusions from Chapter 3 that

ℓ = 1 for the highest amplitude mode and ℓ = 1 or ℓ = 2 for the next two highest

amplitude modes (the full results are listed in Table 4.2). This chapter verified

that this mode identification method can be applied to pulsating white dwarf

stars with relatively little effort as a first check on mode identifications. These

observations have paved the way for further mode identification investigations at
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the SOAR Telescope.

At the time of our observations, the dewar and detector for the Goodman

Spectrograph were not ready for use. We designed and built an attachment for a

temporary Apogee AP10 CCD camera allowing us to use it with the Goodman

Spectrograph. We designed and built this attachment to house the CCD camera

and mate with the Goodman Spectrograph.

6.6 Applicable to DAV and DBV Stars

In Chapter 5, we included an analysis of the DBV star EC 20058-5234 to

demonstrate that the method is widely and easily applicable to all pulsating

white dwarf stars. We constrained the two highest amplitude modes to be ℓ = 1

and six other modes to be ℓ = 1 or 2 (see Table 5.1). These mode identifications

will be useful for an ongoing seismological analysis of this star.

6.7 Future Application

The pulsations of white dwarf stars equip us with a means of delving in to

the unseen interiors of white dwarf stars, similar to the seismologists who use

earthquakes to understand the internal layers of the Earth. This dissertation

describes an important step forward for asteroseismologists, presenting a simpli-

fied method for identifying individual pulsation modes in these stars that utilizes

the size of the nonlinearities present in the lightcurves of pulsating white dwarf

stars. Without identifying ℓ for each individual pulsation mode, we are unable

to unlock the secrets of the white dwarf stellar interiors.

We have presented a quick and inexpensive method for confidently assigning

values of ℓ and m to individual eigenfrequencies in pulsating white dwarf stars

using straightforward calculations. This method can be quickly applied to large

samples of stars. The follow-up photometry from the SDSS is providing large
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numbers of ZZ Ceti stars that are simply too faint for practical time-resolved

spectroscopic mode identification analysis. Fortunately, these new ZZ Ceti stars

are an immediate source for further application of our new mode identification

method, easily applied with 4 m telescopes. This will provide an order of mag-

nitude increase of stars for immediate seismological analyses.
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Appendix A

Selected Solutions for

G
mi±mj

ℓi ℓj
/g
mi
ℓi
g
mj

ℓj
(Θ◦)

The following tables contain solutions for G
mi±mj

ℓi ℓj
/gmi

ℓi
g

mj

ℓj
(Θ◦) (see equa-

tions 2.4, 2.5, and 2.9) for the values of ℓ and m that are potentially useful

for mode identification with photometry using the theory of Wu (2001).12 Ta-

ble A.1 contains solutions for ℓi = ℓj = 1. Tables A.2 and A.3 contain solutions

for ℓi = 1, ℓj = 2 and ℓi = ℓj = 2. Finally, Table A.4 contains solutions for ℓi = 3

or 4 and ℓj ≤ 4 with mi = mj = 0. For comparison with Figures 2.3 and 2.4, we

include a plot of the variations of G with inclination for ℓ = 3, 3 and ℓ = 4, 4 in

Figure A.1.

12This appendix was originally published as Appendix A of Yeates et al. (2005)
and is reproduced by permission of the AAS.



Figure A.1: G with mi = mj = 0 (see equation 2.9) plotted as a function of
inclination angle (Θ◦). The scale of G for ℓi = ℓj = 4 (solid line) is a factor of ten
larger than the scale of G for ℓi = ℓj = 3 (dotted line). The predicted amplitudes
of the combination frequencies show a dramatic increase for inclinations greater
than 20◦, and the predictions less than 20◦ increase more rapidly than the cases
for ℓ = 1 and 2 (see Figures 2.3 and 2.4).
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Table A.1: Values of G
mi+mj

1 1 /gmi
1 g

mj

1 (Θ◦)

mi\mj -1 0 +1

-1 0.65 0.65 −0.65 − 0.90
sin2(Θ◦)

0 0.65 0.65 + 0.45
cos2(Θ◦)

-0.65

+1 −0.65 − 0.90
sin2(Θ◦)

-0.65 0.65

Note. − For values of G
mi−mj

1 1 /gmi
1 g

mj

1 (Θ◦), reverse the

sign of mj .
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Table A.2: Values of G
mi+mj

1 2 /gmi
1 g

mj

2 (Θ◦)

mi\mj -2 -1 0 +1 +2

-1 0.27 0.27 −0.81 sin2(Θ◦)−0.58
3 cos2(Θ◦)−1

−0.27 − 1.12
sin2(Θ◦)

0.27 + 2.24
sin2(Θ◦)

0 0.27 0.27 + 0.56
cos2(Θ◦)

0.81 cos2(Θ◦)+1.97
3 cos2(Θ◦)−1

−0.27 − 0.56
cos2(Θ◦)

0.27

+1 −0.27 − 2.24
sin2(Θ◦)

−0.27 − 1.12
sin2(Θ◦)

0.81 sin2(Θ◦)+0.58
3 cos2(Θ◦)−1

0.27 -0.27

Note. − For values of G
mi−mj

1 2 /gmi
1 g

mj

2 (Θ◦), reverse the sign of mj.
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Table A.3: Values of G
mi+mj

2 2 /gmi
2 g

mj

2 (Θ◦)

mi\mj -2 -1 0 +1 +2

-2 -0.20 -0.20
0.59 cos4(Θ◦)+1.08 cos2(Θ◦)−1.67

sin2(Θ◦)(3 cos2(Θ◦)−1)
0.20 − 1.87

sin2(Θ◦)

−0.20 sin4(Θ◦)+3.74 sin2(Θ◦)+2.66

sin4(Θ◦)

-1 -0.20
0.20 cos4(Θ◦)−0.66 cos2(Θ◦)+0.47

cos2(Θ◦) sin2(Θ◦)

−0.59 cos2(Θ◦)+1.13

3 cos2(Θ◦)−1
−

0.20 cos4(Θ◦)+0.27 cos2(Θ◦)+1.13

cos2(Θ◦) sin2(Θ◦)
−0.20 + 1.87

sin2(Θ◦)

0
0.59 cos4(Θ◦)+1.08 cos2(Θ◦)−1.67

sin2(Θ◦)(3 cos2(Θ◦)−1)

−0.59 cos2(Θ◦)+1.13

3 cos2(Θ◦)−1

−1.78 cos4(Θ◦)+6.80 cos2(Θ◦)+5.66

(3 cos2(Θ◦)−1)2
0.59 cos2(Θ◦)−1.13

3 cos2(Θ◦)−1

0.59 cos4(Θ◦)+1.08 cos2(Θ◦)−1.67

sin2(Θ◦)(3 cos2(Θ◦)−1)

+1 0.20 − 1.87
sin2(Θ◦)

−
0.20 cos4(Θ◦)+0.27 cos2(Θ◦)+1.13

cos2(Θ◦) sin2(Θ◦)

0.59 cos2(Θ◦)−1.13

3 cos2(Θ◦)−1

0.20 cos4(Θ◦)−0.66 cos2(Θ◦)+0.47

cos2(Θ◦) sin2(Θ◦)
0.20

+2
−0.20 sin4(Θ◦)+3.74 sin2(Θ◦)+2.66

sin4(Θ◦)
−0.20 + 1.87

sin2(Θ◦)

0.59 cos4(Θ◦)+1.08 cos2(Θ◦)−1.67

sin2(Θ◦)(3 cos2(Θ◦)−1)
0.20 -0.20

Note − For values of G
mi−mj
2 2 /g

mi
2 g

mj
2 (Θ◦), reverse the sign of mj .
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Table A.4: Values of G0±0
ℓi ℓj

/g0
ℓi
g0

ℓj
(Θ◦)

ℓi\ℓj 3 4

1 −0.78 cos4(Θ◦)+3.82 cos2(Θ◦)−1.12
1.67 cos4(Θ◦)−cos2(Θ◦)

−6.18 cos4(Θ◦)+19.41 cos2(Θ◦)−9
−11.67 cos4(Θ◦)+10 cos2(Θ◦)−1

2 −1.92 cos4(Θ◦)+4.87 cos2(Θ◦)+9.86
(3 cos2(Θ◦)−1)(1.67 cos2(Θ◦)−1)

40.38 cos6(Θ◦)−73.72 cos4(Θ◦)+144.05 cos2(Θ◦)−39.04
(3 cos2(Θ◦)−1)(−11.67 cos4(Θ◦)+10 cos2(Θ◦)−1)

3 5.56 cos6(Θ◦)−10 cos4(Θ◦)+15.17 cos2(Θ◦)+12.40
(1.67 cos3(Θ◦)−cos(Θ◦))2

35 cos6(Θ◦)−75 cos4(Θ◦)+85 cos2(Θ◦)+153.69
(1.67 cos2(Θ◦)−1)(−11.67 cos4(Θ◦)+10 cos2(Θ◦)−1)

4 35 cos6(Θ◦)−75 cos4(Θ◦)+85 cos2(Θ◦)+153.69
(1.67 cos2(Θ◦)−1)(−11.67 cos4(Θ◦)+10 cos2(Θ◦)−1)

−1225 cos8(Θ◦)+2660 cos6(Θ◦)−2070 cos4(Θ◦)+1769.26 cos2(Θ◦)+1400.80
(−11.67 cos4(Θ◦)+10 cos2(Θ◦)−1)2
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