
 

MODULATION OF ADENO-ASSOCIATED VIRUS TRANSDUCTION BY THE 

PROMYELOCYTIC LEUKEMIA PROTEIN, ARSENIC TRIOXIDE, AND PROTEASOME 

INHIBITORS 

Angela Marie Mitchell 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in 

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department 

of Microbiology and Immunology in the School of Medicine. 

Chapel Hill 

2013 

Approved by: 

R. Jude Samulski 

Mark T. Heise 

Aravind Asokan 

Tal Kafri 

Lishan Su 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2013 

Angela Marie Mitchell 

ALL RIGHTS RESERVED 

  



iii 

ABSTRACT 

Angela Marie Mitchell: Modulation of adeno-associated virus transduction by the promyelocytic 

leukemia protein, arsenic trioxide, and proteasome inhibitors 

(Under the direction of R. Jude Samulski) 

 

Adeno-associated virus (AAV) has been developed as a gene therapy vector and has been 

utilized in over 100 clinical trials, which demonstrate increasing efficacy. However, the efficacy 

of systemic applications is often hampered by low transgene expression at lower doses or loss of 

transgene expression over time at higher doses. Therefore, mechanisms are needed to increase 

rAAV transduction efficiency without increasing viral dose. 

The promyelocytic leukemic protein (PML) is a known cell-intrinsic antiviral factor, 

which has not been examined in the context of rAAV. Using PML knockout mice, we 

determined that PML inhibits rAAV transduction up to 50-fold in a serotype-independent 

manner and at several doses. Mechanistically, this transduction inhibition occurred at the level of 

second-strand DNA synthesis and not at earlier transduction steps. We further demonstrated 

human PML inhibited rAAV transduction, mostly through the actions of PML isoform II. This 

effect was extended to rAAV and wild type AAV production and replication. These data 

demonstrate PML inhibits rAAV transduction and suggest that PML may be an important target 

for efforts to enhance rAAV transduction. 

Moreover, various cell stressors enhance rAAV transduction through diverse 

mechanisms. We examined the effect of arsenic trioxide (As2O3), a chemotherapeutic agent 

approved for use in humans, on rAAV transduction. As2O3 treatment caused a dose dependent 
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increase in rAAV transduction in vitro, in cell lines from several cell type and species origins. 

This transduction increase was due to reaction oxygen species dependent stabilization of rAAV 

virions at the perinuclear region. As2O3 increased transduction in vivo with several rAAV 

serotypes. Therefore, As2O3 treatment and the dependent mechanisms are promising avenues to 

enhancing rAAV transduction. 

Finally, we investigated whether proteasome inhibition was sufficient to enhance rAAV 

transduction, as previous work demonstrating proteasome inhibitors enhance rAAV transduction 

was conducted with non-specific proteasome inhibitors. Using carfilzomib, we determined that 

proteasome inhibition was sufficient to enhance rAAV transduction and that this was the 

mechanism through which other proteasome inhibitors act. In addition, we determined that the 

proteasome inhibitors caused increased efficiency in a late step in rAAV transduction. These data 

further elucidate the mechanism by which proteasome inhibitors enhance rAAV transduction. 
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CHAPTER 1 

Introduction 

 

AAV Biology 

Adeno-associated virus (AAV) is a small single-stranded DNA virus of the parvovirus 

family. AAV was first discovered as a contaminant of adenovirus (Ad) stocks (1) and later 

determined to be dependent upon Ad for replication, leading to its classification as a 

dependovirus. This classification in the dependovirus genus separates AAV from the other 

members of the parvovirus subfamily, the autonomous parvovirus and erythrovirus genera (2). 

Although the majority of the population is seropositive for AAV (3), to date, no pathogenicity 

has been linked to AAV (4). AAV’s 4.7 kb genome encodes two genes, Rep and Cap, flanked by 

inverted terminal repeats (TR) (Fig. 1.1), which are the only viral elements required in cis for 

genome packaging (5). The Rep gene encodes four non-structural proteins, Rep78, Rep68, 

Rep52, and Rep40, using two promoters and alternative splicing. These proteins function to 

control viral transcription, nick the genome to allow completion of genome replication, integrate 

the genome in a site-specific manner, and package the genome into the capsid (6, 7). 

Specifically, Rep78 and Rep68 possess DNA binding and endonuclease activities responsible for 

TR nicking during DNA replication, while Rep52 and Rep40 have ATP-dependent helicase 

activity and are thought to be responsible for packaging of the genome into the capsid (2). The 

Cap gene encodes the three viral capsid proteins, VP1, VP2, and VP3, as well as a non-structural 

protein involved in packaging called the assembly activating protein (AAP) through alternative 
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start sites and alternative splicing (2, 8). The capsid proteins share their C-terminal domain, the 

VP3 common region, and differ in their N-terminal domains. The unique regions of VP1 and 

VP2 are denoted as VP1u and VP1/2 common region, respectively, and have motifs including 

punitive nuclear localization signals and a phospholipase domain (9, 10). AAP is responsible for 

targeting of the capsid proteins to the nucleolus and assembling them into the T=1 icosahedral 

capsid (8). VP1, VP2, and VP3 assemble in a ratio of 1:1:10 and thus capsids contain five copies 

of VP1, five copies of VP2, and fifty copies of VP3 surrounding the positive- or negative-sense 

viral genome (11). 

Although there are numerous serotypes of AAV, the majority of AAV’s life cycle has 

been elucidated based on the archetypical AAV serotype, AAV2 (Fig. 1.2). AAV initially 

contacts cells through binding to primary receptor consisting of a sugar moiety, such as heparan 

sulfate or sialic acid, and then to a secondary receptor, such as an integrin or a growth factor 

receptor (12). The virus enters the cell via receptor-mediated endocytosis (13) and traffics 

through the endolysosomal pathway to the microtubule-organizing center (MTOC) where the 

virus accumulates before and after endosomal escape (14). The majority of the virus is 

maintained at the MTOC; however, a small proportion of virus continues on its transduction 

pathway by trafficking intact to the nucleus where the viral genome can be uncoated (15). As 

AAV is a single-stranded DNA virus, before transcription, the genome is converted into a 

double-stranded form either through second-strand DNA synthesis by cellular replication factors 

(16) (Fig. 1.3A) or, perhaps, through annealing of positive-sense and negative-sense genomes 

(17). In the absence of a helper virus, viral transcription is repressed by the Rep proteins (18) and 

AAV genomes persist episomally in a circular, concatemerized form  (19). The Rep proteins can 

also mediate the site-specific integration of the AAV2 genome into the AAVS1 integration site 
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on chromosome 19 (20, 21). The AAV genomes persist until replication is activated by the 

presence of a helper virus. 

Although AAV was first discovered in association with Ad (1), several other viruses are 

also able to provide helper functions for AAV, including herpes simplex virus (HSV) (22), 

human papillomavirus (HPV) (23), and vaccinia (24). Furthermore, conditions of cellular stress, 

including treatment with hydroxyurea or UV light in the presence of oncogenes, have been 

demonstrated to substitute for AAV helper virus functions (25, 26). AAV helper viruses increase 

the efficiency of or are necessary for a number of steps in AAV life cycle. The helper viruses 

increase the efficiency of nuclear transport of AAV (27), facilitate second-strand DNA synthesis 

(16), encourage genome circularization (28), release Rep repression of the viral p5 promoter 

(29), increase the efficiency of mRNA splicing, transport, and translation (30-32), allow genome 

replication (33, 34), and provide a means of cell escape (35). Therefore, in the presence of a 

helper virus, AAV genomes are replicated by cellular DNA replication machinery such as DNA 

polymerase δ, proliferating cell nuclear antigen (PCNA), replication factor C (RFC), and 

replication protein A (RPA) (Fig. 1.3A) with the assistance of helper virus proteins such as Ad 

DNA binding protein (Ad-DBP) (36, 37). AAV DNA replication proceeds through a strand 

displacement mechanism illustrated in Fig. 1.3B, wherein the terminal repeat acts to prime 

leading strand synthesis for DNA molecule (2). Rep then acts to break the strands in the TR 

nicking stem, separating the strands and allowing the TR to be replicated. This genome form, a 

double-stranded monomer, is the major form of replicative AAV DNA. Alternatively, if Rep 

fails to nick the TR before the DNA replication machinery begins to synthesize another DNA 

strand, a double-stranded dimer molecule can be formed, representing the minor replicative form 

of AAV DNA. Newly synthesized genomes are packaged into the newly assembled viral capsid, 
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presumably in the nucleolus, with the aid of Rep and AAP (8) and the virions are released from 

the cell by helper virus cell lysis, completing AAV’s lifecycle. 

Although the majority of AAV biology has been generated using AAV2, many different 

serotypes of AAV have been isolated from the tissues of a broad range of animal species and 

show between 49% and 99% identity in capsid amino acid sequence (38). These serotypes can 

have markedly different tissue tropisms; for instance, AAV1 is largely muscle-tropic, while 

AAV2 is liver-tropic and AAV9 is systemic (39). Capsid structures are available for many of the 

serotypes (11, 40-46), allowing the influence of various capsid regions on the steps of the viral 

lifecycle to be elucidated.  

 

rAAV Vector Biology 

Due to many advantageous facets of AAV biology, AAV has been developed as a vector 

for gene delivery. AAV’s lack of known pathogenesis is suggestive of safety for AAV-mediated 

gene delivery. In addition, AAV is relatively non-inflammatory, precluding the cytokine storms 

that have been observed with some other gene delivery methods (47). AAV can infect both 

dividing and non-dividing cells (48), which makes it a good choice for delivery to terminally 

differentiated target cells, as well as targets that are more amenable to transduction. Furthermore, 

AAV DNA can persist episomally in cells for long time periods, especially in cells with slow 

rates of cell division, making it well suited for delivery of genes for long-term expression (3, 49). 

Finally, AAV2 genomes can be packaged into capsids from different serotypes, a process known 

as transencapsidation (50, 51). The wide variety of AAV serotypes available for packaging 

allows vectors with a large range of tropisms and differing transduction properties. These factors 

make rAAV a highly promising gene therapy vector. 
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To produce an AAV virus-like particle or vector (rAAV), the viral genes can be 

completely removed from the vector genome and supplied in trans with the TRs being the only 

viral elements required in cis (5). A transgene cassette is then substituted for the viral genes and 

the vector is produced through a triple transfection method with an Ad helper plasmid 

minimizing the risk of wild-type virus production (52). Through this method, the same transgene 

cassette can be packaged into the capsids of various AAV serotypes, allowing comparisons 

between the serotypes. In addition, self-complementary rAAV genomes can be produced which 

contain a mutation in the Rep nicking element in one TR, producing an rAAV genome which can 

self-anneal avoiding the rate-limiting step of second-strand DNA synthesis and increasing 

transduction kinetics and efficiency (Fig. 1.2) (53, 54). These features make rAAV highly 

amenable as a gene therapy vector. 

rAAV is thought to undergo the same transduction steps and intracellular trafficking as 

wild-type AAV in the absence of a helper virus through the step of second-strand DNA 

synthesis. However, due to the lack of Rep protein in rAAV transduction, rAAV cannot integrate 

in a site-specific manner and so only low-level (<0.5%), illegitimate integration occurs (55-57). 

The vast majority of genomes persist episomally as head-to-tail concatemers (58). The 

illegitimate integration occurs due to interactions between the host DNA and the TRs leading to 

integration of the vector genome and a small deletion of host DNA (59). This integration can 

occur throughout the genomes although ribosomal DNA repeats, genes, initiation sites, CpG 

islands, and palindromic sequences appear to be hotspots for integration (57, 59). Some studies 

have suggested an increased risk of oncogenesis from rAAV integration (57); however, others 

have reported no increased risk and any effects appear to be transgene and promoter specific (55, 
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56). Therefore, this low level of illegitimate integration has not prevented the utilization of 

rAAV to delivery genes for clinical gene therapy applications. 

 

Clinical Successes with rAAV 

Given AAV’s many advantages as a gene delivery vector, over 100 clinical trials to date 

are utilizing or have utilized rAAV for gene therapy purposes (http://www.abedia.com/wiley). 

The results of these trials strongly demonstrate that rAAV-mediated gene delivery is a very safe 

method for delivering transgenes in the clinic (4). In addition, recent clinical trials, especially in 

restricted transduction sites, have begun to demonstrate successes in reaching their efficacy 

goals. Of the trials conducted, several stand out including trials leading to the licensing of the 

first commercial gene therapy product in Europe (60), trials for the treatment of retinal disease 

(61), trials for the treatment of CNS diseases (62), and trials for congestive heart failure (63). 

Two of these applications are discussed in more detail below. 

Glybera®, a commercial gene therapy product. Glybera®, gene therapy product 

marketed to treat lipoprotein lipase deficiency (LPLD), was approved for commercial use in 

Europe in November of 2012 and is seeking approval in other markets. LPLD, caused by loss of 

function mutations in the lipoprotein lipase (LPL) gene or its functional partners, is an orphan 

disease affecting approximately one in five hundred thousand to one in one million people, 

although certain geographical regions such as eastern Canada exhibit higher rates of disease (60). 

LPL is produced by muscle cells and adipocytes and secreted into circulation where it binds to 

the luminal surface of blood vessels (60). After a meal, LPL is responsible for clearing 

triglycerides from chylomicrons, whereas LPL affects triglycerides in very low-density 

lipoprotein (VLDL) during fasting. In patients with LPLD, the triglycerides are not effectively 
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cleared from the plasma, leading to plasma triglyceride levels 10 to 100-fold higher than normal. 

These high levels of triglycerides lead to complications including acute and chronic pancreatitis 

(60). As the serum half-life of LPL is very short prohibiting enzyme replacement therapy, the 

only treatment available for LPLD prior to Glybera® was dietary management to enact an 

extremely low fat diet, which was often not effective. 

The lack of effective treatments for LPLD led to the development of AAV-mediated gene 

addition approaches to target LPLD resulting from mutations in LPL. Early LPLD gene therapy 

studies in animal models were conducted with Ad vectors and demonstrated proof-of-principle 

that delivery of LPL could led to decreases in serum triglyceride levels and disease symptoms; 

however, the highly inflammatory response to Ad vectors led to short-term transgene expression 

and immune responses directed against the transgene (64, 65). Therefore, further studies were 

conducted with rAAV1, which is a muscle-tropic serotype of AAV. These studies also utilized a 

naturally occurring gain of function mutant of LPL, LPL
S447X

, which is present in approximately 

20% of the human population and results in low plasma triglyceride levels and reduced risk of 

cardiovascular disease (66). Preclinical studies in LPL deficient mice demonstrated that 

intramuscular injection of rAAV1- LPL
S447X

 resulted in decreased plasma triglyceride levels and 

disease symptoms lasting more than one year, suggesting that this approach led to long-term 

disease improvements (67). Further preclinical studies in a feline LPLD model also demonstrate 

improvements although the treatment was limited by an antibody response to the human LPL 

transgene expressed (68). Given these promising preclinical results, clinical trials were initiated 

to determine whether the treatment would be safe and effective in humans. 

Due to the low prevalence of LPLD, the first clinical trial examining the effect of 

rAAV1- LPL
S447X

 treated four patients each with a low and a high dose of rAAV1- LPL
S447X
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using 40 to 60 simultaneous intramuscular injections (69). Most importantly, this study resulted 

in no serious adverse events. In addition, it demonstrated a significant but transient decrease in 

plasma triglyceride levels, thought to be limited by an immune response. A larger dose escalation 

study conducted with 14 patients and utilizing immunosuppression for 12 weeks after treatment 

demonstrated significant decreases in plasma triglyceride levels that were, however, still 

transient, suggesting that the short-term nature of the decrease was not due to an immune 

response (70). Nevertheless, signs of clinical improvement, including a decrease in incidences of 

pancreatitis, changes in the patients’ tolerance for certain food, and changes in the profile of 

lipids present in the blood out to two years following treatment, as well as long-term muscle 

expression of the LPL
S447X

 transgene, suggested that plasma triglyceride levels might not be an 

appropriate biomarker of successful treatment and that treatment with rAAV1- LPL
S447X

 had the 

capacity to improve patient outcomes. Therefore, a third clinical study was conducted looking 

for the effects of treatment with rAAV1- LPL
S447X

 on abdominal pain, pancreatitis, and 

chylomicron plasma clearance.  

This third clinical trial enrolled five patients and demonstrated that rAAV1- LPL
S447X

 

treatment resulted in an improvement of chylomicron metabolism (71). In addition, the patients 

reported increased energy, increased ability to eat, decreased abdominal pain, and decreased 

incidence of pancreatitis through two years post-treatment. A retrospective study of 22 of the 27 

patients treated previously determined that treatment resulted in decreased incidence of 

pancreatitis, severity of pancreatitis, and hospitalization (60). Taken together, these studies 

present good evidence that rAAV-mediated gene transfer can be effective in treating clinical 

disease. Based on these finding, rAAV1- LPL
S447X

 (Glybera®) was recently approved for 
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commercial use in Europe, representing a great success for both AAV-mediated gene delivery 

and gene therapy in general. 

Retinal targeted AAV gene therapy. Thus far, mutations in approximately 200 genes 

have been linked to inherited retinal diseases, including Bardet-Biedl syndrome, chorioretinal 

atrophy, cone dystrophy, cone-rod dystrophy, congenital stationary night blindness, Leber’s 

congenital amaurosis (LCA), macular degeneration, and retinitis pigmentosa 

(https://sph.uth.edu/retnet/home.htm). These retinal diseases are an especially attractive target for 

AAV-mediated gene therapy. The small site of delivery and restricted numbers of cells to 

transduce allow very small doses of rAAV to be effective in expressing transgenes (72). 

Moreover, the site of transduction is reached by relatively easy surgery and the specific cells 

transduced can be tailored by subretinal or intravitreal injection to target different retinal cell 

layers (73). In addition, subretinal injections lead to immune privilege, avoiding immune 

responses to the transgene or the vector (74). Furthermore, various rAAV serotypes are capable 

of targeting different cell types in the retina allowing customization of delivery (75). Finally, 

non-invasive technologies, such as tomography and electroretinography, allow efficacy 

outcomes to be easily evaluated (72). For all of these reasons, AAV-mediated gene therapy for 

retinal disease is a promising avenue of investigation. 

Preclinical investigations of rAAV-mediated gene addition have been conducted in 

animal models with deficiencies in at least ten different genes related to retinal diseases 

including retinitis pigmentosa, LCA, and rod monochromacy (75). The vast majority of these 

studies demonstrated long-term improvements in the retinal degeneration. Of these diseases, 

LCA caused by mutations in RPE65 (retinal pigment epithelium-specific protein 65 kDa) has 

recently been the focus of several very successful clinical trials for rAAV-mediated gene 
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delivery (72, 76-78). LCA, an early onset form of retinal degeneration, accounts for about 5% of 

retinal disease and is the leading cause of childhood blindness (75). Mutations leading to this 

disease have been identified in 14 genes to date (https://sph.uth.edu/retnet/home.htm); however, 

mutations to RPE65 account for approximately 6 to 16% of LCA cases (75). RPE65 is an 

enzyme responsible for converting the all-trans-retinal formed when photoreceptors signal to 11-

cis-retinal, allowing photoreceptors to signal again (79). Three clinical trials delivering RPE65 

using an rAAV2 vector were initiated based on very promising small and large animal models 

and reported their results in 2008 (80-82). All of these trials demonstrated the safety of the 

treatment and the two trials utilizing strong promoters demonstrated improvements in various 

measures of visual function including nystagmus, visual fields, dark-adapted perimetry, and 

mobility at low luminance (81, 82). In total, these trials treated 30 patients and have now 

reported lasting improvements through three years post-treatment (78). In addition, a follow up 

study treated the contralateral eye in three patients, demonstrating safety and efficacy with re-

administration via the subretinal injection (83). Based in part on these results, eight clinical trials 

utilizing rAAV to treat retinal diseases have been initiated since 2008 for indications including 

age-related macular degeneration, choroderaemia, and a phase III trial for LCA 

(http://www.abedia.com/wiley), exemplifying the promise of rAAV-mediated gene therapy. 

 

Systemic Transduction 

The large number of clinical studies utilizing rAAV and their increasing success at 

reaching efficacy goals demonstrate an exciting proof-of-principle for rAAV mediated gene 

therapy. However, issues with low levels of transgene expression or loss of transgene expression 

over time have been observed repeatedly in clinical systemic gene therapy, hampering the 
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efficacy of these approaches. These findings are exemplified by the results garnered from trials 

to treat hemophilia B, one of the earliest targets of rAAV-mediated gene therapy. Hemophilia B 

is an X-linked monogenetic disease caused by loss of function mutations to the factor IX (F.IX) 

gene affecting approximately 1 in 25 000 males (84). Hemophilia B can be characterized by the 

percentage of normal F.IX activity possessed by the patient (84). Patients with mild disease (5% 

to 30% activity) usually only have bleeding episodes in response to major trauma or surgery and 

are often diagnosed as adults. Patients with moderate disease (1% to 5% activity) generally have 

bleeding episodes after injury and relatively few spontaneous episodes. The majority of 

hemophilia B patients have severe disease (less than 1% activity) and experience frequent 

spontaneous bleeding into muscle tissue and joints, leading to long-term tissue damage. 

Hemophilia B is generally treated with injections of exogenous F.IX; however, this treatment is 

extremely expensive and often not feasible for those in developing countries (84). In addition, 

2% to 4% of patients treated with exogenous F.IX develop inhibitory antibodies, necessitating 

more complicated treatments (84). For these reasons, hemophilia B is considered a good target 

for rAAV-mediated gene therapy. 

 Given hemophilia B’s strength as a target for gene therapy, four clinical trials have 

utilized rAAV to deliver F.IX to the liver (85-88), while one trial used rAAV to delivery F.IX to 

the muscle (89, 90). In most of these trials, no serious adverse events related to the vector were 

reported. Here, we will focus on the liver directed gene therapy approaches. The early clinical 

trials utilized rAAV2 as this was the first serotype developed and approved for clinical use. The 

results of a dose escalation trial treating 7 patients with severe hemophilia at a range of rAAV2-

F.IX doses from 8×10
10

 vector genomes (vg)/kg to 2×10
12

 vg/kg were published in 2006 (86). At 

the lower vector doses, very little increase in F.IX levels was observed after treatment with 



12 

rAAV2-F.IX, suggesting that the dose was not high enough to allow for successful transduction. 

At the high dose, F.IX levels initially reached moderate or even mild hemophilia levels in the 

first 5 weeks post-transduction; however, after this time, the levels of F.IX decreased, returning 

to baseline by 10 weeks post-transduction. This decrease in transduction was thought to be the 

result of an immune response and correlated with a small increase in liver enzyme levels in one 

patient. Although the trial did not reach efficacy goals, the results demonstrated the safety of the 

treatment and encouraged further investigations. 

A later clinical trial tried to improve these results by altering the vector used to deliver 

the F.IX gene (88). Specifically, the trial utilized a rAAV8 vector, which has much higher 

transduction efficiency in the liver than rAAV2, a self-complementary genome that avoids the 

rate-limiting step of second-strand DNA synthesis, and a codon-optimized version of the F.IX 

gene. The trial treated six patients with severe hemophilia with doses of scAAV2/8-F.IX ranging 

from 2×10
11

 vector genomes (vg)/kg to 2×10
12

 vg/kg. The patients in the low and moderate dose 

groups demonstrated F.IX levels at 1-4% of normal moving them from severe to moderate 

disease and decreasing their reliance on exogenous F.IX infusions. The patients in the high dose 

group demonstrated F.IX levels in the range of mild disease early after treatment (7-12%); 

however, these patients exhibited increased liver enzyme levels that were treated with prednisone 

and, for one patient, were reported as an adverse event. Subsequently, the F.IX levels of the 

patient who had a large spike in liver enzyme levels dropped to 3% of normal levels, returning to 

moderate disease. Although every effort was made to optimize the vector and delivery with 

current technology, the levels of F.IX found in this trial were still not high enough to move the 

majority of the patients to mild disease. This pattern of either too little transgene expression or, at 

higher vector doses, loss of transgene expression over time has been repeatedly observed in trials 
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for other systemic gene therapy applications utilizing rAAV as well. Furthermore, it is clear that 

even the clinical successes with rAAV would benefit from higher transgene expression in order 

to improve the level of efficacy observed. Given all of these data, strategies are needed to 

increase the level of transgene expression without increasing vector dose. 

 

Enhancement of rAAV Transduction 

As clinical studies with rAAV have repeatedly demonstrated the need for increased 

transgene expression from rAAV vectors, several approaches have been undertaken in order to 

increase the efficiency of rAAV transduction. These approaches include random mutagenesis 

and directed evolution approaches to identify vectors that have high transduction potential in 

specific targets, understanding limiting steps in AAV biology and altering rAAV to avoid these 

barriers, and pharmacologically altering the environment of the cell in order to improve the 

efficiency of transduction. These approaches will be discussed in more detail below. 

Directed evolution of rAAV capsids. Directed evolution is a library-based approach that 

has been utilized to optimize rAAV capsids for specific applications and to identify capsids that 

can escape specific barriers to transduction (91). Although several early directed evolution 

approaches utilized only error prone PCR to generate capsid libraries (92, 93), in more recent 

approaches, an assortment of different AAV Cap genes are mixed and partially digested with 

DNase (94-97). The resulting gene fragments are then reassembled by error prone PCR, resulting 

in a library of Cap genes, which are chimeras of several AAV serotypes and contain an array of 

point mutations. These Cap genes are subcloned into an AAV2 infectious clone (pSSV9) and 

used to produce a library of AAV viruses. A selective pressure of choice can then be applied to 

the library in order to select for capsid that possess advantages in the given situation. With 
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specific alterations, this approach has been applied both in vitro and in vivo to isolate capsids that 

are efficient in transducing certain cell types (95, 96), evading neutralizing antibody responses 

(92), targeting tissues of interest and detargeting other tissues (94), and increasing efficiency for 

specific disease models (94). Three examples of successful directed evolution approaches are 

detailed below. 

The first rAAV directed evolution approach utilizing libraries that re-assort Cap genes 

from different AAV serotypes attempted to isolate rAAV capsids that could infect a hamster 

melanoma cell line, CS1, generally refractory to rAAV transduction (96). The authors created a 

library of several million clones and allowed five rounds of replication on CS1 cells in the 

presence of Ad, resulting in the recovery of a single clone named AAV1829. This clone was a 

chimera of AAV serotypes consisting of the N-terminus of AAV1, followed by a short region of 

AAV8, a long section of AAV2, and the C-terminus of AAV9 and shared heparan binding ability 

with AAV2. This clone demonstrated increased transduction compared to the parental serotypes 

on CS1 cells and several murine melanoma cell lines and equal transduction to rAAV2 on human 

melanoma cell lines. When tested in vivo, this clone demonstrated lower transduction of the liver 

and muscle and a switch in brain transduction from neuronal tropism to neural progenitor cell 

tropism. These results demonstrated that a library of AAV clones from several AAV serotypes 

can be generated and used to isolate clones that perform better than the parental serotype. 

However, they also demonstrate a potential pitfall of the directed evolution approach: isolation of 

the selected variable. In this case, instead of a widely applicable melanoma-tropic vector, the 

clone isolated was improved only in rodent derive cell lines. Therefore, care must be taken in 

specifically identifying the selection variable and determining how to avoid selection for other 

variables. 
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Another study, demonstrating the breadth of libraries applicable to directed evolution, 

selected for AAV clones that could successfully transduce primary human astrocytes, as these 

cells are important targets for gene therapy but are generally poorly transduced by rAAV (95). 

Three libraries were generated in this study and then combined before four rounds of selection 

on the primary astrocytes: AAV2 Cap with random mutagenesis, a shuffled capsid library as 

described above, and a peptide display library based on AAV2. This approach isolated several 

clones containing point mutations to AAV2 Cap, as well as several chimeric clones that were 

more efficient at transducing astrocytes than rAAV2. When tested in vivo, the isolated clones 

demonstrated a 3 to 5-fold higher percentage of astrocytes transduced than rAAV2. In addition, 

with sub-retinal injection, one of the clones demonstrated increased tropism for Müller glia. 

Interestingly, despite the large number of clones in the initial libraries, an attempt to select the 

libraries separately through five rounds of selection resulted in no improvements over rAAV2’s 

transduction. These results demonstrate that directed evolution approaches are capable of 

identifying rAAV clones that transduce specific cell types more efficiently than the parental 

rAAV serotypes; however, they also suggest that the results of the directed evolution can vary 

widely from trial to trial and that beneficial clones can sometimes be lost during cycling. 

The approach of directed evolution has been taken farther and applied to in vivo selection 

experiments. Specifically, a chimeric library was used to select for clones which could cross the 

blood brain barrier in areas of seizure induced damage and transduce the damaged areas in order 

to create a vector selective for the damaged tissue (94). Since coinfection with Ad is not 

appropriate in this selection, the clones were recovered from each round of selection through 

PCR and then packaged as for the initial library production; therefore, this selection method 

isolates clones that can enter the cells of interest, but does not necessarily select for the capacity 
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to transduce cells successfully. Consequently, a variety of isolated clones were screened for 

efficient transduction. Two clones were isolated that exhibited the desired pattern of transduction 

of the damaged regions of the brain following seizures. In addition, these clones exhibited 

decreased transduction of many peripheral organs compared to the parental serotypes, suggesting 

that the biopanning experiment not only placed positive pressure on transduction of neurons in 

the damaged areas of the brain but also exhibited negative selection for transduction of 

peripheral organs. Therefore, given the lack of replication during the cycling, this in vivo 

selection approach can be very useful for isolating tissue specific clones as long as care is taken 

to screen multiple clones. Furthermore, clones isolated in this type of in vivo selection 

experiment are likely to be specific for the specific disease model utilized and may not be 

capable of being generalized to other models. 

The results of these studies demonstrate that directed evolution is a viable and very useful 

approach for isolating capsids that are efficient in a specific cell type, tissue, or disease model. 

However, several limitations to the approach constrain its utility for widespread enhancement of 

transduction including isolation of the correct selective pressure, variation in results between 

experiments, and specificity to the species or disease model tested. In addition, it would be hoped 

that directed evolution would lead to the isolation and characterization of specific motifs on 

AAV capsids that make the capsids more efficient in certain cell types or situations. Thus far, 

few efforts to link these capsid changes to the virus biology have been successful. Therefore, 

although directed evolution is very efficient for generating specific transduction enhancement, 

more specifically targeted approaches are needed to increase rAAV transduction in a wide range 

of tissues and situations. 
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Engineering of rAAV to alter or avoid limiting steps in transduction. An alternative 

approach to the library-based directed evolution is to understand specific steps in the rAAV 

transduction pathway that are inefficient and alter rAAV to increase its efficiency at these steps 

or avoid these steps entirely. For this approach, rAAV’s transduction pathway needs to be 

understood and then strategies devised to alter specific steps. Two examples of this strategy 

being successfully employed are the development of self-complementary rAAV and the transfer 

of receptor binding domains between rAAV serotypes. The generation of self-complementary 

AAV began with the observation that rAAV2 transduction was significantly enhanced by co-

infection with Ad (16). This was an interesting observation given that many of the helper 

functions described for Ad at the time, such as activation of viral promoters or promotion of viral 

mRNAs splicing (29-32), were not applicable to the transduction of rAAV. The authors 

determined that the effect of Ad was mediated by the Ad E4Orf6 protein and observed increased 

double-stranded rAAV genomes despite equal amounts of uncoated DNA, suggesting that Ad 

enhanced rAAV second-strand DNA synthesis (16). As this enhancement of second-strand 

synthesis led to transduction levels orders of magnitude higher, the authors concluded that 

second-strand DNA synthesis is the rate-limiting step in rAAV transduction. This conclusion 

was further collaborated by in vivo experiments demonstrating that rAAV DNA was present in 

the nucleus of a high percentage of hepatocytes, most of which demonstrate no transgene 

expression, and that this expression could be rescued by co-infection with Ad (98).  

From these data, it was later hypothesized that, if a genome that could become double-

stranded without DNA synthesis could be packaged, the transduction of the rAAV would be 

greatly increased. The first approach undertaken was to create a rAAV genome that was slightly 

smaller than half the packaging capacity of rAAV capsids (54). In this case, a significant portion 
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of genomes packed should be single-stranded dimers consisting of a two copies of the transgene 

in opposite orientations with TRs present on both ends as well as in between the transgene 

cassettes. When released from the capsid, this self-complementary molecule can fold back on 

itself to form a double-stranded hairpin molecule. In fact, when these particle were isolated based 

on their density, they demonstrated 20-fold higher transduction than a comparable transgene 

cassette packaged in single-stranded form and a reprieve from reliance on DNA synthesis for 

transgene expression. In addition, when the vectors were utilized in vivo, the authors 

demonstrated both increased kinetics of transgene expression and increased steady state levels of 

transduction. These results demonstrated that self-complementary vectors had greatly increased 

transgene expression through avoidance of the rate-limiting step in rAAV transduction of 

second-strand DNA synthesis. The self-complementary rAAV technology was then further 

improved by deleting the D element of one TR, and so removing the Rep nicking stem, forcing a 

self-complementary molecule to be packaged (53). This mutation led to a much higher 

percentage of self-complementary genomes packaged and greater ease in self-complementary 

AAV production. Self-complementary vectors allowed for transduction in the mouse liver, brain, 

and muscle much higher than that of single-stranded rAAV. Therefore, the development of self-

complementary rAAV is a compelling example of knowledge of rAAV biology leading to 

improvements in rAAV that circumvent limiting steps in transduction. 

Another example of advances in the understanding of rAAV biology leading to altered 

vectors with differential transduction is the transfer of primary receptor binding footprints 

between capsids of different serotypes. The first instance was carried out with AAV1 and AAV6, 

two very closely related serotypes of AAV (99). Only six surface exposed amino acids differ 

between AAV1 and AAV6; yet, rAAV6 exhibits binding to heparan sulfate, although this 
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binding is not essential for transduction, and strong liver transduction, while rAAV1 does not 

bind heparan sulfate and has weak liver transduction. Swapping of each amino acid between 

rAAV1 and rAAV6 followed by heparan affinity column experiments demonstrated that altering 

single amino acid, 531 (rAAV1 E531K, rAAV6 K531E), could both remove heparan binding 

ability from rAAV6 and confer heparan binding ability to rAAV1 (99). In addition, the authors 

demonstrated that a comparable mutation in a different serotype of AAV, rAAV8 E533K, could 

also confer heparan binding. The heparan binding mutant of rAAV1 demonstrated greatly 

increased transduction in both a human-derived liver cell line and in the liver in vivo. These data 

demonstrate that understanding of the receptors utilized by AAV and their binding location on 

the AAV capsid can lead to alterations and enhancement of transduction.  

Similarly, the identification of AAV9’s receptor as N-linked galactose (100) and the 

discovery of the binding footprint of galactose on the AAV9 capsid (101), allowed for the 

transfer of the galactose binding domain to AAV2, generating a capsid that can bind heparan 

sulfate and galactose (102). As the binding domain for heparan sulfate and galactose are present 

at separate sites on the AAV capsid, the authors were able to mutate the rAAV2 capsid in order 

to confer galactose binding (102). This new capsid, called rAAV2G9, could utilize both heparan 

sulfate and galactose for cell entry, and was only inhibited when neither were available. In 

addition, this capsid, while remaining primarily liver-tropic, exhibited increased transduction in 

the heart, muscle, and kidney, as well as the liver. Moreover, the authors transferred the same 

galactose-binding domain into a chimeric variant of AAV2, AAV2i8, which does not bind 

heparan (102). This vector, rAAV2i8G9, demonstrated greatly increased transduction across a 

wide range of tissues. These results exemplify the process through which understanding of rAAV 
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biology can lead to improvements in the efficiency of transduction. Therefore, elucidation of 

rAAV biology is a useful strategy leading to improvements in rAAV transduction. 

Pharmacological approaches to enhance rAAV transduction and elucidate AAV 

biology. A third approach to enhancing rAAV transduction is to utilize pharmacological agents 

to alter the cellular milieu and so enhance rAAV transduction. Many pharmacological agents, 

specifically chemotherapeutics that cause cellular stress, have been observed to enhance rAAV 

transduction in a serotype independent manner. These stressors include DNA damaging agents, 

such as radiation (UV, gamma, X-ray), tritiated thymidine, and cisplatinum (16, 103), DNA 

synthesis inhibitors, such as aphidicolin and hydroxyurea (16, 104), topoisomerase inhibitors, 

such as etoposide and camptothecin (104), and proteasomal inhibitors, such as MG132, LLnL, 

and bortezomib (105-109). Some pharmacological treatments have also been derived that affect 

rAAV in a serotype-specific manner. For instance, treatment of cells with neuraminidase to 

remove sialic acid moieties results in inhibited rAAV1 transduction, which utilizes sialic acid as 

its primary receptor, has no effect on rAAV2 transduction, which utilizes heparan sulfate as its 

primary receptor, and results in enhanced rAAV9 transduction, which utilizes galactose as its 

primary receptor (100). Therefore, while some treatments target universal steps in rAAV 

transduction, others target specific transduction steps that differ between serotypes. 

In addition to simply enhancing rAAV transduction, the changes in the transduction 

pathway of rAAV in the presence of these pharmacological agents can also lead to advances in 

the understanding of rAAV biology. For instance, a study examining the effects of hydroxyurea 

and proteasome inhibitors, as well as several siRNA treatments, demonstrated the importance of 

trafficking of rAAV capsids between the nucleolus and the nucleoplasm for successful 

transduction (107). This study determined that treatment of cells with a proteasome inhibitor, 
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MG132, resulted in increased nucleolar accumulation of rAAV virions, whereas treatment with 

hydroxyurea resulted in increased localization of virions to the nucleoplasm. The drugs both 

enhance transduction and co-treatment with the two drugs results in a synergistic increase in 

transduction. These data led the authors to hypothesize that virions entering the nucleus stably 

accumulate in the nucleolus and then move to the nucleoplasm where uncoating of the genome 

can occur. This hypothesis, derived from changes occurring due to pharmacological treatments, 

can now be further investigated to elucidate the details of the nuclear steps in rAAV 

transduction. Therefore, pharmacological agents are useful tools not only for enhancing rAAV 

transduction, but also for revealing rAAV biology. 

 

Dissertation Objectives 

In summary, rAAV is an important gene delivery vector for clinical applications and has 

recently demonstrated success in reaching efficacy goals, especially in restricted sites such as the 

retina; however, low levels of transgene expression and loss of transgene expression over time 

have hampered many clinical systemic gene delivery efforts. These results led to the need to 

enhance rAAV transduction without increasing vector dose. The goal of this dissertation is to 

identify methods by which rAAV transduction, specifically in vivo transduction, can be 

increased. Towards this aim, we have undertaken several approaches: we have identified a 

cellular restriction factor that inhibits rAAV transduction, we have identified a chemotherapeutic 

approved for use in humans that enhances rAAV transduction, and we have explored the 

mechanisms by which a known class of pharmacological agents enhances rAAV transduction. 

Thus, of the approaches for enhancing rAAV transduction discussed above, we pursued gaining 

greater knowledge of the limiting steps in rAAV transduction as well as utilizing 

pharmacological agents to modify the cellular environment and determining how these agents 
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affect rAAV biology. The results of these approaches are detailed in Chapters 2, 3, and 4, while 

the final chapter will discuss the implications and future directions of these discoveries in the 

broader context of rAAV biology and applications towards clinical gene therapy. 

Specifically, Chapter 2 will answer the question does the promyelocytic leukemia protein 

(PML) inhibit rAAV transduction. PML is a tripartite motif protein that has been demonstrated 

to play many cellular roles including as a cell-intrinsic antiviral defense factor. PML can inhibit 

both RNA and DNA viruses through many varied mechanisms (110-114) and the importance of 

PML can be demonstrated by the wide variety of viruses that encode factors that block or modify 

PML activities (115, 116). Despite the wide range of viruses inhibited by PML, including AAV’s 

traditional helper viruses HSV and Ad (115, 116), the functional role of PML in the transduction 

and replication of parvoviruses has not been examined, although a possible role is suggested by 

the partial temporal colocalization of PML with the replication centers of both AAV (117) and 

minute virus of mice (MVM) (118). In this chapter, we utilized PML knockout mice, as well as 

knockdown and overexpression studies in human cells, to determine that PML inhibits rAAV 

second-strand synthesis leading to up to 50-fold inhibition of transduction in vivo. We also 

determined that human PML isoform II was mainly responsible for this effect and that the effect 

could be extended both to the production of rAAV and to the replication of wild-type AAV. 

These results will have implications for the enhancement of rAAV transduction and possibly for 

the replication other parvoviruses. 

Chapter 3 will answer the question does arsenic trioxide (As2O3) enhance the 

transduction of rAAV. As discussed above, many cellular stressors including chemotherapeutic 

agents have been demonstrated to enhance rAAV transduction (16, 103-105). We utilized As2O3, 

which is a chemotherapeutic agent approved for the treatment of acute promyelocytic leukemia 
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(119) and is under evaluation for the treatment of many other types of leukemia (120, 121). This 

compound affects many different cellular pathways including inducing reactive oxygen species 

formation, inhibiting BCL-2 and NFκB activation, decreasing mitochondrial membrane 

potential, changing histone acetylation patterns and, at high doses and with long treatments, 

degrading PML and inducing cell-intrinsic apoptosis (122). We determined that As2O3 treatment 

caused a dose-dependent increase in rAAV transduction in a number of human and non-human 

cell lines through stabilization of perinuclear accumulations of rAAV virions. In addition, we 

determined that this effect was mediated by reactive oxygen species and that As2O3 treatment led 

to up to 10-fold enhancement of rAAV transduction in vivo. These results will have implications 

for the pharmacological enhancement of rAAV transduction. 

In chapter 4, we will answer the question of whether proteasome inhibition is sufficient 

for the enhancement of rAAV transduction and examine the mechanisms of proteasome inhibitor 

effects on rAAV transduction. Although many groups have demonstrated that proteasome 

inhibitors can enhance the transduction of rAAV (105, 107, 109), these proteasome inhibitors 

also inhibit other proteases, such as serine and cysteine proteases, which have very different 

cellular roles (123). These off-target effects have led to the widely held hypothesis that 

proteasome inhibitors act on rAAV transduction not through inhibition of the proteasome but 

through their effects on other proteases. In addition, whether the effect of these drugs is through 

prevention of rAAV virion degradation or through alterations in the trafficking of capsids is not  

clear from the current data. In this chapter, we utilized a very specific proteasome inhibitor, 

carfilzomib, to determine that proteasome inhibition is sufficient for the enhancement of rAAV 

transduction, that other proteasome inhibitors also act through this mechanism, and that the 

effects of proteasome inhibition occur through positive changes in late steps in transduction.  
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Figure 1.1: AAV2 genome organization. The AAV genome consists of a positive-sense or 

negative-sense single-stranded 4.7 kb DNA molecule encoding two genes, Rep and Cap, flanked 

by inverted terminal repeats (TRs) necessary for genome packaging and replication. There are 

three promoters: the p5 promoter and p19 promoters, which are responsible for Rep transcription, 

and the p40 promoter, which is responsible for Cap translation. The Rep78 protein is translated 

from an mRNA beginning at the p5 promoter. The Rep68 mRNA begins at the same promoter 

but is spliced at the 3’ region of the coding sequence. The Rep52 and Rep40 mRNAs begin at the 

p19 promoter and differ in their 3’ splicing. VP1 is translated off a minor splice variant of the 

mRNA encoded from the p40 promoter, while VP2, VP3, and AAP are translated from the major 

splice variant. VP2 and AAP levels are modulated by initiation from non-canonical start codons. 
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Figure 1.2: The transduction pathway of AAV. AAV first binds to cells through interaction 

with its primary and secondary receptors (1) and then enters the cell through receptor-mediated 

endocytosis (2). AAV traffics through the endolysosomal pathway (3) toward the MTOC where 

it escapes from the endosome (4). The virions are then retained at the MTOC (5). A portion of 

the virions escapes from the MTOC and traffic to the nucleus (6) where the genome is released 

from the capsid (7). The genome is then converted to a transcriptionally functional double-

stranded form (8). Self-complementary AAV genomes contain a mutated TR, which cannot be 

resolved during genome replication and leads to the packaging of a molecule containing two 

copies of the genome in opposite orientations. When these genomes are released, they can self-

anneal avoiding the necessity for second-strand DNA synthesis (7(sc)). In the absence of helper 

virus functions, the remainder of the AAV lifecycle (i.e. genome replication, assembly, cell 

escape) cannot proceed. 
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Figure 1.3: AAV genome replication factors and pathway. (A) Several cellular replication 

factors have been demonstrated to be involved in AAV DNA replication, which requires only 

leading strand DNA synthesis. These factors include DNA polymerase δ, PCNA, which 

encourages processitivity, RFC, which loads PCNA onto the DNA, and RPA, which is a single-

stranded DNA binding protein. (B) AAV DNA replication occurs through a strand displacement 

mechanism. DNA synthesis is self-primed by the terminal repeat and then proceeds to end of the 

DNA molecule. The terminal repeat is then cleaved at the nicking stem by the Rep proteins and 

the TR is copied, forming a double-stranded monomer. The strands then separate and refold 

allowing replication of the new strands to begin from the terminal repeats. Alternatively, if Rep 

fails to cleave the nicking stem prior to synthesis of a new strand, a double-stranded dimer 

molecule can form which is eventually resolved by Rep nicking.
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CHAPTER 2 

The promyelocytic leukemia protein is a cell-intrinsic defense inhibiting parvovirus DNA 

replication
1
 

 

Summary 

The promyelocytic leukemia protein (PML) is a viral restriction factor inhibiting 

processes from uncoating to transcription to cell survival. Here, we investigated PML’s effect on 

adeno-associated virus (AAV), a parvovirus used for gene delivery. Although dependovirus 

(AAV) and autonomous parvovirus (MVM) replication centers can colocalize with PML, PML’s 

functional effect on parvoviruses is unknown. We determined PML knockout enhances rAAV2 

transduction up to 56-fold at a range of vector doses in both male and female mice. PML 

inhibited several rAAV serotypes, suggesting a conserved mechanism, and organ specificity 

correlated with PML expression. Mechanistically, PML inhibited rAAV second-strand DNA 

synthesis, precluding inhibition of self-complementary rAAV. We confirmed the effect of human 

PML on rAAV transduction through knockdown experiments and linked the highest level of 

inhibition to PML isoform II. PMLII overexpression resulted in inhibition of second-strand 

synthesis, vector production, and genome replication. Moreover, PMLII inhibited wild-type 

AAV2 production and infectivity. Our data demonstrate PMLII inhibits AAV second-strand 

                                                           
1
Adapted for this dissertation from: Mitchell A.M., Hirsch M.L, Li C., and R.J. Samulski. 

Posted November 6
th

, 2013. The promyelocytic leukemia protein is a cell-intrinsic defense 

inhibiting parvovirus DNA replication. J Virol. doi:10.1128/JVI.02922-13. 



28 

synthesis and replication, processes necessary for all parvoviruses, suggesting implications for 

both general parvovirus replication and AAV-mediated gene delivery. 

 

Introduction 

Adeno-associated virus (AAV) is a helper-dependent member of the Parvoviridae family, 

which, in addition to AAV, contains other viruses of clinical and veterinary importance such as 

B19 parvovirus, human bocavirus, and canine parvovirus. AAV consists of an icosahedral capsid 

surrounding a single-stranded DNA genome encoding two genes, Rep and Cap, and has been 

developed as a gene delivery vector for gene therapy applications. For use as a vector or virus-

like particle (rAAV), the viral genes can be removed and replaced with a transgene cassette, the 

terminal repeats being the viral only elements required in cis (5). Although clinical rAAV-

mediated gene therapy has demonstrated increasing success in reaching efficacy goals, especially 

in restricted sites such as the eye (124), low transgene expression or loss of expression over time 

have repeatedly compromised the efficacy in other clinical trials (86, 88). Therefore, efforts to 

increase the efficiency of rAAV transduction without increasing vector dose are imperative. 

AAV’s replication pathway involves receptor-mediated endocytosis, trafficking to the 

perinuclear region, nuclear entry, uncoating, and second-strand DNA synthesis, followed by 

either gene expression or persistence of episomal DNA (Reviewed in (4)). As AAV evolved to 

infect cells in the presence of a helper virus, it relies on these viruses, traditionally adenovirus 

(Ad) or herpes simplex virus (HSV), for various processes in its infection pathway. AAV helper 

virus functions span from increasing efficiency of intracellular viral trafficking (125) to inducing 

AAV gene expression (29) to allowing cell escape (35). When examining AAV biology, rAAV 

can be utilized to study the steps in AAV production prior to replication, as it undergoes the 
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same transduction steps as wild-type AAV through second-stand synthesis but cannot proceed 

with replication, making AAV a good model for studying the initial transduction of parvoviruses 

without the later steps of replication occluding the results. 

The AAV helper viruses Ad and HSV share the ability to modify or degrade the 

promyelocytic leukemia protein (PML). PML is a member of the tripartite motif (TRIM) family 

of proteins, which play a key role in both cell intrinsic and immune host responses against 

viruses (Reviewed in (126)). The antiviral mechanisms of TRIM proteins range from TRIM5α 

which directly binds to incoming HIV-1 capsids preventing uncoating (127) to TRIM21, an 

intracellular antibody receptor, which causes proteasome-mediated degradation of antibody 

bound virions (128) to regulation of pattern recognition receptor signaling by at least eight 

different TRIMs (Reviewed in (129)). PML (TRIM19), specifically, is an interferon responsive 

protein involved in a wide variety of cellular processes including apoptosis, differentiation, and 

antiviral defense. Various isoforms of PML are present in the cytoplasm, nucleoplasm, and PML 

bodies (130). PML bodies, punctate nuclear structures formed by a lattice of PML protein, act as 

organizing centers for protein modifications and as depots for storage of key cellular proteins 

(131). PML inhibits the infection of many RNA and DNA viruses through a variety of diverse 

mechanisms. These mechanisms include inhibition of vesicular stomatitis virus and human 

foamy virus transcription by PML isoform III (110, 113), sequestration of HSV ICPO in the 

cytoplasm by PMLIb (111), sequestration of varicella-zoster viral capsids in a cage of PMLIV 

(114), and activation of p53 and induction of apoptosis by PMLIII in response to poliovirus 

(112). These mechanisms illustrate the breadth of viral families affected by PML and the range 

of mechanisms by which they are affected. 
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To avoid PML antiviral activity, many viruses encode PML modifying proteins. For 

instance, Ad E4Orf3 binds directly to PMLII and causes its rearrangement from spherical PML 

bodies to track-like structures (116). Furthermore, HSV encodes ICP0, an E3 ligase, that causes 

proteasomal degradation of PML (115). In a natural AAV infection, the PML modifying 

properties helper viruses may protect AAV from any potential inhibitory effects of PML. 

Moreover, not only have AAV replication centers been shown to colocalize with PML track-like 

structures in the presence of Ad (117), but the replication centers of an autonomous parvovirus, 

minute virus of mice (MVM), have also been demonstrated to colocalize with PML bodies 

during specific times in its replication cycle (118). However, the functional consequences of 

PML on parvovirus transduction and replication have not been examined. Therefore, we asked 

whether, in the absence of a helper virus, PML is capable of inhibiting rAAV transduction. To 

address this question, we utilized PML knockout mice, siRNA-mediated knockdown in human 

cells, and overexpression of PML isoforms. We demonstrated PML inhibits the transduction of 

rAAV both in vivo and in human cells in culture. This inhibition is due to the prevention of 

second-stand synthesis and the majority of inhibition can be traced to PML isoform II. PMLII 

can also inhibit the production of both rAAV and wild-type AAV and the infection of wild-type 

AAV. These data may lead to strategies for enhancing the efficiency of rAAV mediated gene 

therapy. In addition, these data may have implications for the other members of the parvovirus 

family. 

 

Materials and Methods 

Cell culture and virus production. HEK293, HeLa, and HuH7 cells were maintained in 

Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine serum, 100 U/ml 
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penicillin, and 100 g/ml streptomycin at 37°C with 5% CO2. Adult mouse tail fibroblasts 

cultured in the media above supplemented with 1X MEM non-essential amino acids. AAV 

vectors were produced through cesium gradient purification as has been described (52). Self-

complementary rAAV and corresponding control vectors were purified to yield pure virus as has 

been described (132). Wild-type AAV was produced as for rAAV except that the plasmid 

encoding AAV’s genes and the transgene cassette plasmid were replaced with pSSV9. Virus and 

vectors were titered by qPCR (52). 

Isolation of adult mouse tail fibroblasts. Adult tail snip fibroblasts were isolated using 

the protocol on the ENCODE Database entitled “Establishment and Propagation of Adult Mouse 

Fibroblast Cultures” (http://genome.ucsc.edu/ENCODE/protocols/cell/ mouse/Fibroblast_Stam_ 

protocol.pdf). Briefly, tail snips were clipped into Hank’s Balanced Salt Solution (HBSS, Life 

Technologies) and minced with a razor blade. The tissue was then digested with collagenase 

Type XI-S at a final concentration of 1000 U/ml in HBSS for 30 minutes at 37°C. Tissue was 

washed once with HBSS, resuspended in 0.05% trypsin-EDTA (Life Technologies), and 

incubated at 37°C for 20 minutes. The tissue was then resuspended in complete growth media, 

pipetted to dissociate cells, and seeded in 35-mm plates with tissue clumps under glass 

coverslips. Media was changed every four days. When cells were subcultured, the cells were 

detached with 0.25% trypsin-EDTA (Life Technologies) and were seeded ratios of 1:2 to 1:4. 

Animals and in vivo transduction assays. All animal experiments were conducted in 

accordance with the policies of the Institutional Animal Care and Use Committee at the 

University of North Carolina at Chapel Hill. Wild-type 129/SV and PML knockout 129/SV-

PML
tm1Ppp

mice (133) were a kind gift from Dr. Pier Paolo Pandolfi (Beth Israel Deaconess 

Cancer Center). Age and sex matched mice were treated with the indicated rAAV dose in PBS 
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by retro-orbital injection. Transduction from luciferase carrying vectors was assayed by live 

luciferase imaging (132). Transduction from GFP vectors was determined using a GFP ELISA 

kit (Cell Biolabs, Inc.). Briefly, livers were harvested at 7 days post-transduction and minced. A 

sample (approximately 50 mg) was lysed with RIPA buffer, homogenized with a Tissue-Tearor 

(BioSpec Products), and total protein concentration was determined using the Bio-Rad Protein 

Assay and BioRad SmartSpec Plus spectrophotometer. Equal amounts of protein were used to 

proceed with the GFP ELISA as per manufacturer’s directions. A Bio-Rad iMark plate reader 

was used to determine absorbance and pg GFP per mg total protein was calculated. 

Biodistribution experiments and PML expression analysis. Mice were treated with 

rAAV as for transduction experiments and the specified organs were harvested and frozen on day 

14 post-transduction. The organs were minced and small samples were taken for luciferase assay 

and vector genome quantification. Luciferase samples were lysed in 2X passive lysis buffer 

(Promega) and homogenized with a TissueLyser (Qiagen) for 5 min at 40 Hz. The lysate was 

cleared by centrifugation and luciferase activity was assayed as per the manufacturer’s 

instructions (Promega) using a Wallac1420 Victor2 plate reader. Protein levels were determined 

as for transduction assays. Vector genome copy number was determined by harvesting total 

DNA with a DNeasy Blood and Tissue Kit (Qiagen) and performing qPCR as has been described 

(132). For determination of in vivo PML expression, the indicated organs were harvested and 100 

mg samples were immediately stored in RNAlater (Qiagen) at 4°C. RNA was purified with 

TRIzol (Life Technologies) as per the manufacturer’s instructions. cDNA was synthesized using 

a High Capacity cDNA Reverse Transcription Kit (Life Technologies) and transcript levels 

relative to GAPDH were determined by qPCR. 
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qPCR protocols and primers. To determine PML expression levels from cDNA made 

from mouse tissues and from human cells, qPCR assays were designed using the Universal Probe 

Library Assay Design Center (Roche). The amplicon was designed to be in the 5’ region shared 

between PML isoforms. For mouse tissues, the primers and probe for PML were as follows: 5’-

AGAGGAACCCTCCGAAGACT-3’, 5’-ATTCCTCCTGTATGGCTTGC-3’, and Mouse 

Universal Probe Library probe 76 (Roche). The primers and probe for mouse GAPDH were as 

follows: 5’-GGGTTCCTATAAATACGGACTGC-3’, 5’-CCATTTTGTCTACGGGA CGA-3’, 

and Mouse Universal Probe Library probe 52 (Roche). For human cells, the primers and probe 

for PML were as follows: 5’-TTCTGCTCCAACCCCAAC-3’, 5’-CGCTGATGTCGC 

ACTTGA-3’, and Human Universal Probe Library probe 5 (Roche). The primers and probe for 

human GAPDH were as follows: 5’-ATCACTGCCACCCAGAAGACT-3’, 5’-ACACGGAAGG 

CCATGCCA-3’, and Mouse Universal Probe Library probe 34 (Roche). The qPCR reactions 

were run with LightCycler 480 Probes Master mix (Roche) on the following program in the 

Roche LightCycler 480: 95°C 10 minutes, [95°C 10 s, 60°C 30 s, 72°C 1 s (acquisition)] 45 

cycles, 40°C 30 minutes. Standard curves for each primer set were used to determine efficiency 

and calculate relative expression. 

Entry, nuclear fractionation and DNase protection assays. Mice were treated as for 

transduction experiments and livers were harvested at the indicated time points and placed 

immediately on ice. Nuclear fractionation and DNase protection assays were performed as has 

been described (134) with slight modification. After mincing, small samples of liver tissue were 

taken and analyzed for total vector genome copy number as for biodistribution experiments. 

Ultracentrifugation through a sucrose cushion was performed for 20 minutes. Nuclear and DNase 

protected DNA was purified by DNeasy Blood and Tissue Kit with 5 µg salmon sperm DNA 
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(Life Technologies) added to DNase treated samples to act as a carrier. We determined the purity 

of isolated nuclei to be greater than 99.5% using the EnzChek acid phosphatase assay kit (Life 

Technologies). 

siRNA and in vitro transduction assays. We used SMARTpool On-TARGETplus PML 

siRNA (Thermo Scientific) to knockdown human PML and On-TARGETplus Non-targeting 

Control Pool siRNA (Thermo Scientific as a negative control. HuH7 cells were seeded and 

transfected with DharmaFECT as per the manufacturer’s instructions with slight modification. 

HuH7 cells were transfected with 25 nM siRNA 48 hours and 24 hours prior to transduction. At 

time of transduction, the media was changed to contain the indicated dose of rAAV and cells 

were incubated for 24 hours. Cells were harvested with 1X passive lysis buffer (Promega) and 

luciferase and protein assays were performed as above. Mouse fibroblasts were seeded 16 hours 

prior to transduction and the media was changed to contain rAAV at the indicated dose at the 

time of transduction. Transduction was assayed as for siRNA experiments 48 hours post-

transduction. 

PML isoform plasmid backbone control and PMLII cloning. To generate a pEGFP-

C3 backbone plasmid not containing a PML construct, pEGFP-C3-PMLII was digested with 

BglII and BamHI (New England Biolabs) and the 4.7 kb band was gel purified (Qiagen). This 

band was self-ligated with T4-DNA ligase (New England Biolabs), transformed into XL10 gold 

ultracompetent cells (Agilent Technologies), and colonies were screened by digestion with AgeI 

and AvrII (New England Biolabs). To clone the PMLII sequence into the pTR-ss-CMV-EGFP 

backbone, pTR-ss-CMV-EGFP was digested with SalI (New England Biolabs) and then the ends 

were blunted with Klenow DNA polymerase (New England Biolabs). The DNA was purified 

with a PCR Purification Kit (Qiagen) to remove the enzymes and buffers. The DNA was then 
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digested with AgeI (New England Biolabs) and a 4.2 kb band containing the plasmid backbone 

without the EGFP gene was gel purified (Qiagen). For retrieval of the PMLII DNA, the pEGFP-

C3-PMLII plasmid was PCR amplified with the primers 5’-AAACCGGTCCATGGAGCCTGC 

ACC-3’ and 5’-CCCTTCTCTTGTAACCTTGGAATTC GC-3’ and Illustria Hot Start Mix RTG 

(GE Healthcare). The PCR program was as follows: 95°C for 5 minutes, [95°C for 30 s, 60°C for 

30 s, 72°C for 120 s] 30 cycles, 72°C for 5 minutes, 4°C ∞. The ends of the PCR product were 

blunted with Klenow polymerase, PCR purified, and then digested with AgeI. The 2.6 kb PCR 

product was then gel purified. The fragments were ligated with T4 DNA ligase, transformed into 

electrocompetent DH10B (Life Technologies), and colonies were picked based on sequence. 

PML overexpression experiments. GFP-tagged overexpression constructs for PML 

isoforms I-VI were a kind gift from Dr. Peter Hemmerich (Leibniz Institute for Age Research). 

The backbone plasmid was used as a negative control. HeLa cells were transfection with PML 

plasmids in a 1:1 ratio with either pTR-CBA-Luc or salmon sperm DNA (Life Technologies). 

Briefly, HeLa cells were seeded in 24-well plates at 8×104 cells per well 24 hours prior to 

transfection. The cells were transfected with PEI Max (Polysciences, Inc) with a 1:1 ratio of the 

appropriate PML or backbone control plasmid (pEGFP-C3-PMLI, pEGFP-C3-PMLII, pEGFP-

C1-PMLIII, pEGFP-C1-PMLIV, pEGFP-C1-PMLV, or pEGFP-C1-PMLVI, or pEGFP-C3) and 

either pTR-CBA-Luciferase or salmon sperm DNA (Life Technologies). Total amounts used per 

well were 0.5 μg total DNA and 3 μl PEI Max (1 mg/ml) in 50 µl OptiMEM (Life Technologies) 

added to 500 µl complete growth media. Transfection complexes were incubated 10 minutes 

then added to cells. Cells were incubated for 16 hours and then media was changed to remove 

transfection reagents. Cells were transduced at 24 hours post-transfection. Cells were transduced 

with 500 vg/cell rAAV2-CBA-Luc 24 hours post-transfection, incubated for 24 hours, and 
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assayed for transduction by luciferase assay. Luciferase values from transduction were 

normalized to those from transfection. For the self-complementary rAAV experiment, HeLa cells 

were seeded and transfected with pTR-CMV-PMLII or pTR-CMV-Luciferase and carrier DNA 

and transduced with indicated doses of single stranded or self-complementary rAAV2-CMV-

EGFP 24 hours post-transfection. Transduction was assayed at 24 hours by flow cytometry 

(132). 

Virus and vector production assays. For rAAV2 production experiments, HEK293 

cells were seeded onto 15-cm plates at 1:3 24 hours prior to transfection (for 70% confluence at 

the time of transfection). For transfection, pXX680 (12 μg/plate), a pXR plasmid (10 μg/plate), 

and a pTR-CMV- plasmid encoding either PMLII or a reporter gene (6 μg/plate) were combined 

with 520 µl OptiMEM (Life Technologies) and 110 µl 1 mg/ml PEI Max (Polysciences, Inc). 

The complexes were incubated for 10 minutes at room temperature and then the total volume 

was added to the plates and cells were incubated for 48 hours to allow vector production. Cells 

were harvested, vector was purified as above, and vector was titered by qPCR. For rAAV2 and 

wildtype AAV protein level experiments and wildtype AAV production experiments, HEK293 

cells were seed at 1:3 24 hours prior to transfection in 10-cm plates. For rAAV experiments, cells 

were transfected as before with 4.8 µg pXX680, 4 µg pXR2, and 2.4 µg of either pTR-CMV-

Luciferase or pTR-CMV-PMLII in 208 µl OptiMEM and 44 µl PEI Max. For wildtype AAV2 

experiments, cells were transfected as before with 4.8 µg pXX680, 4 µg pSSV9, and 2.4 µg of 

either pEGFP-C3 or pEGFP-C3-PMLII in 208 µl OptiMEM and 44 µl PEI Max. Cells were 

incubated for 48 hours to allow production. For wildtype AAV2 production, cells were harvested 

and DNase treated as for virus production and titers were measured by qPCR. Immunoblotting 

was performed as has been described (107) with slight modifications. 150 μg of protein were 
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loaded on 12% Mini-PROTEAN TGX precast polyacrylamide gels (Bio-Rad) and 

electrophoresed at 225V for 35 minutes in Tris/Glycine/SDS buffer (Bio-Rad). Proteins were 

transferred to a nitrocellulose membrane using an iBlot (Life Technologies) on P3 for 4 minutes. 

AAV capsid proteins were detected with B1 antibody, rep proteins with IF11 antibody, and actin 

with Abcam ab8226. 

Replication and infection assays. For rAAV DNA replication assays, HEK293 cells 

were seeded at a 1:4 density into 10 cm plates 24 hours prior to transfection with PMLII or 

control plasmid. For transfection, 6 µg of pEGFP-C3 or pEGFP-PMLII were combined with 300 

µl DMEM without FBS or antibiotics and 40 µl PEI Max (Polysciences, Inc) and incubated for 

10 minutes at room temperature. The entire volume was added to the plate and cells were 

incubated for 6 hours. The media was then changed to remove the transfection reagents. Three 

days following transfection of the PML overexpression plasmid, or an eGFP expression plasmid, 

an additional transfection was performed to investigate rAAV replication. Three plasmids were 

used in this PEI transfection: i) the adenoviral helper plasmid XX680 (10ug), pXR2 (3ug) which 

supplies Rep2 and Cap2, and an AAV vector plasmid (3ug) pITR2-CBA-luc. Three days 

following the second transfection, HIRT DNA was isolated using modified protocol (135) and 

digested overnight with DpnI (New England Biolabs). Samples were separated on an alkaline 

gel, transferred to a nitrocellulose membrane (Amersham XL) and hybridization was performed 

with the product of a random primed labeling reaction (Roche) using the packaged transgenic 

DNA sequence as template (which also served as our size standard; (52)).  Blots were exposed to 

film and DNA quantitation of the replication products was performed using ImageJ.  

For wildtype AAV2 infection experiments, HEK293 cells were seeded at 1:3 in 10-cm 

plates 24 hours prior to transfection. The cells were transfected as before with 3 μg pEGFP-C3 or 
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pEGFP-C3-PMLII and 3 μg pXX680 or salmon sperm DNA in 300 µl OptiMEM and 40 µl PEI 

Max. Transfection cocktails were incubated 10 minutes at room temperature and the total volume 

was added to the plates. Media was changed to remove transfection reagents 6 hours post-

transfection. At 24 hours post-transfection, the cells were concurrently seeded into 24-well plates 

at 1×10
5
 cells/well and infected with the indicated dose of AAV2. Total DNA was harvested 48 

hours post-transduction by DNeasy Blood and Tissue Kit and numbers of viral genomes per cell 

were analyzed by qPCR. 

Data Analysis. We determined the statistical significance of all data using the non-

parametric Kruskal-Wallis test and considered a p-value of less than 0.05 to be significant. 

 

Results 

PML knockout enhances rAAV2 transduction in vivo. During wild-type AAV’s 

natural lifecycle, replicating AAV may be sheltered from the effect of PML by the PML 

modifying activity of its helper viruses. We hypothesized that PML may inhibit rAAV 

transduction in environments where helper viruses are not present. To test this hypothesis, we 

transduced wild-type (PML
+/+

) and PML knockout (129/SV-PML
tm1Ppp

, PML
-/-

) mice with a 

range of rAAV2-luciferase doses and examined transduction by live imaging. Although we 

observed very low levels of transduction with 1×10
10 

vector genome (vg)/mouse, we observed 

expression of luciferase in the area of the liver at day 11 post-transduction in PML
-/-

 mice 

whereas no expression was observable in PML
+/+

 mice (Fig. 2.1A & Fig. 2.2A). At a five-fold 

higher dose of virus (5×10
10

 vg/mouse), we observed transduction at the site of injection in 

PML
+/+

 mice, although liver expression was still low; however, liver and injection site 

expression was apparent in PML
-/-

 mice (Fig. 2.1B). With 1×10
11

 vg/mouse, a commonly utilized 



39 

dose of AAV, similar transduction levels were observed in PML
+/+

 mice as with 5×10
10

 

vg/mouse; however, PML
-/-

 mice demonstrated increasing levels of liver and injection site 

transduction (Fig. 2.1C). At a high dose of rAAV2 (5×10
11

 vg/mouse), we observed high levels 

of transduction in all mice, but more transduction in PML
-/-

 mice (Fig. 2.1D). By quantifying the 

light output, we created doses curves for transduction (Fig. 2.2B) and observed significant 

enhancement of transduction in PML
-/-

 mice as compared to PML
+/+

 mice at all of the tested 

doses in either total transduction (Fig. 2.1E) or transduction in the area of the liver (Fig. 2.1F), 

demonstrating that knockout of PML can enhance rAAV2 transduction and suggesting that PML 

can inhibit rAAV2 transduction. 

We performed the AAV dose experiment with female mice. As male mice have been 

demonstrated repeatedly to have higher liver transduction than female mice (136), we more 

thoroughly examined the effects of PML knockout in male and female mice to determine 

whether the higher transduction levels in male mice would override the effects of PML 

knockout. We transduced male and female PML
+/+

 and PML
-/-

 mice with 2×10
11

 vg/mouse 

rAAV2 and assayed transduction by live imaging. In female mice, quantification demonstrated 

significantly enhanced transduction in PML
-/-

 mice at both 7 days and 12 days post-transduction 

(Fig. 2.1G). In fact, transduction was 28.2-fold higher at 7 days and 18.6-fold higher at 12 days 

post-transduction. In male mice, transduction was also significantly higher in PML
-/-

 mice, 10.8-

fold higher at 4 days and 56.4-fold higher at 11 days post-transduction (Fig. 2.1H). The increases 

in transduction are also evident visually (Fig. 2.2C-D). These data demonstrate that PML causes 

significant inhibition of rAAV2 transduction in vivo and that this effect can be observed in both 

male and female mice. 
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Effect of PML knockout is conserved among several rAAV serotypes. After 

determining that PML inhibited rAAV2 transduction in vivo, we examined the transduction of 

various serotypes of rAAV in PML
-/-

 mice to determine whether the transduction pathway 

affected by PML is specific to rAAV2 or is conserved among rAAV serotypes. Therefore, we 

transduced PML
+/+

 and PML
-/-

 mice with 1×10
11

 vg/mouse rAAV6, rAAV8, or rAAV9 and 

assayed transduction by live luciferase imaging. At 7 days post-transduction, we observed 

enhanced rAAV6 transduction in the area of the liver in PML
-/-

 mice (Fig. 2.3A) and quantified 

this enhancement at 15.0-fold (Fig. 2.3B). In addition, we observed higher transduction from 

rAAV8 (Fig. 2.3C) and quantitated this increase at 47.0-fold at 3 days post-transduction (Fig. 

2.3D). With rAAV9, we observed increased transduction in PML
-/-

 mice at day 7 post-

transduction (Fig. 2.3E) and quantified this difference at 5.6-fold (Fig. 2.3F). Thus, these data 

demonstrate PML knockout can enhance transduction of a number of rAAV serotypes, 

suggesting PML inhibits a process in AAV transduction conserved between serotypes. 

PML knockout enhances rAAV transduction in a manner correlating to PML 

expression. To investigate further the enhancement of rAAV transduction we observed in PML
-/-

 

mice, we determined in which organs transduction was enhanced by measuring transduction ex 

vivo. We transduced PML
-/-

 and PML
+/+

 mice with rAAV2, harvested organs at 14 days post-

transduction, and measured luciferase activity and vector genome copy number. We observed 

significant increases in luciferase activity from the liver (22.6-fold) and the kidney (9.2-fold); 

however, we observed no increase in heart and lung and observed very little muscle transduction 

(Fig. 2.4A). In addition, we observed no differences in rAAV2 genome copy number in any of 

the organs tested (Fig. 2.4B). Although these data suggest there may be some organ specificity of 

the effect of PML on rAAV transduction, rAAV2’s strong liver tropism occludes this conclusion. 
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Therefore, we investigated the effect of PML knockout on the biodistribution of rAAV9, a 

systemic vector. 

As with rAAV2, we transduced PML
-/-

 and PML
+/+

 mice with rAAV9 and harvested 

tissues at 14 days post-transduction. Similarly to rAAV2, we observed significant increases in 

luciferase activity in the liver (3.9-fold), spleen (2.8-fold), and kidney (5.2-fold), and no 

significant increases in heart, lung, and muscle (Fig. 2.4C). In addition, the only significant 

changes in vector genome copy number observed were in the liver where copy number was 3.5-

fold higher in PML
-/-

 mice and the lung where copy number was 2-fold lower in PML
-/-

 mice 

(Fig. 2.4D). To investigate the organ specificity further, we examined the expression of PML in 

the PML
+/+

 mice by qRT-PCR. We observed the highest levels of PML expression in the liver 

and spleen, intermediate levels of expression in the kidney, low levels of expression in the heart 

and lung, and very low levels of expression in the muscle (Fig. 2.4E). Interestingly, we observed 

no increase in PML expression in the liver following rAAV2 transduction (Fig. 2.5), suggesting 

rAAV transduction does not induce PML transcription. As the levels of PML expression appear 

to correlate with the increases in rAAV9 transduction we observed (Fig. 2.4C), this suggests the 

organ specificity of rAAV transduction enhancement observed with PML knockout occurs based 

on varying PML expression levels. Furthermore, our genome copy number data (Fig. 2.4B & 

2.4D) suggest changes in rAAV genome number are not necessary for PML’s effect on rAAV 

transduction. 

PML inhibits rAAV second-strand DNA synthesis. PML is present in both the 

cytoplasm and nucleoplasm of cells and additionally forms PML nuclear bodies that organize 

post-translational modification of many proteins (126); therefore, it is possible for PML to affect 

rAAV transduction directly or indirectly at many transduction steps. To determine the step in 
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rAAV transduction that PML knockout affects, we transduced PML
-/-

 and PML
+/+

 mice with 

rAAV2 and harvested liver tissue at several times post-transduction. We first asked whether the 

difference occurred in cell entry by determining the vector genome copy number at 1 day and 7 

days post-transduction. We observed no difference in copy number between PML
+/+

 and PML
-/-

 

mice at either time point (Fig. 2.6A), suggesting that the effect of PML occurs post-entry. This 

agrees with our biodistribution data, demonstrating no difference in rAAV2 vector genome copy 

number 14 days post-transduction (Fig. 2.4B). We next performed nuclear fractionation to 

determine levels of nuclear entry at these time points. At both 1 day and 7 days, we observed 

equal numbers of nuclear vector genomes in PML
+/+

 and PML
-/-

 mice (Fig. 2.6B), suggesting 

PML acts after rAAV2 nuclear entry. The next step in rAAV transduction after nuclear entry is 

uncoating of the vector genome; therefore, we assayed the numbers of uncoated genomes by 

performing a DNase protection assay on our nuclear fractions. We observed no difference in the 

numbers of unprotected (uncoated) genomes between PML
+/+

 and PML
-/-

 mice (Fig. 2.6C), 

suggesting PML acts after this transduction step on either second-strand DNA synthesis or 

transcription. 

To access whether PML knockout affects second-strand DNA synthesis, we transduced 

PML
+/+

 and PML
-/-

 mice with self-complementary and single-stranded rAAV8-EGFP and 

determined transduction in harvested liver tissue at 7 days post-transduction. Self-

complementary rAAV genomes do not require second-strand synthesis for transcription and so 

should be unaffected by inhibition of this step. As expected, with single-stranded rAAV8, we 

observed a 7.9-fold transduction enhancement in PML
-/-

 mice; however, we observed no 

difference in transduction from self-complementary rAAV8 between PML
+/+

 and PML
-/-

 mice 

(Fig. 2.7A), suggesting PML inhibits rAAV second-strand DNA synthesis. To further 
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substantiate this conclusion, we treated fibroblasts from the PML
+/+

 and PML
-/-

 mice with a wide 

range of rAAV2 doses to determine whether there is a difference in the lower transduction 

threshold. We hypothesized that transduction increases with PML knockout might be greater at 

lower vector doses if PML affects second-strand synthesis as annealing of genomes could not 

compensate for lack of second-strand synthesis. In fact, we observed transduction in the 100 

vg/cell group for PML
-/-

 cells but did not observe transduction in the PML
+/+

 cells until the 500 

vg/cell group (Fig. 2.7B), demonstrating a lower threshold for transduction in PML
-/-

 cells. These 

data also agree with our in vivo dosing data showing similar thresholding at our lowest rAAV2 

dose (Fig. 2.1A). The differences in the threshold for transduction support our mechanism of 

PML inhibition of rAAV second-strand DNA synthesis. Taken together, our results demonstrate 

PML knockout enhances second-strand DNA synthesis of rAAV vectors, suggesting PML can 

inhibit this transduction step. 

Human PML inhibits rAAV transduction through the actions of PMLII. Our data to 

this point demonstrate the effect of murine PML knockout on rAAV transduction. To confirm 

the validity of our results for human PML, we used siRNA to knockdown PML in HuH7 cells, a 

hepatocellular carcinoma cell line, and achieved 68% knockdown on an RNA level (Fig. 2.9A). 

We transduced cells with several doses of rAAV2-luciferase and determined knockdown 

approximately doubled rAAV2 transduction at all doses tested (Fig. 2.8A). Although this 

increase is less than that observed in vivo, it is similar to that achieved in primary fibroblasts 

harvested from the mice at the higher vector doses (Fig. 2.7B). Therefore, incomplete 

knockdown (Fig. 2.9A) and differences between the in vitro and in vivo environment likely 

account for the lesser effect of knockdown. Nevertheless, these data confirm human PML can 

inhibit rAAV transduction. Human PML has at least seven major isoforms and a number of 
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minor isoforms, all of which share their N-terminal domains and differ in their C-terminal 

domains (126). Of the major isoforms, isoforms I through VI are nuclear (130) and could 

possibly mediate the effect of PML on rAAV2 second-strand synthesis. We acquired plasmids 

expressing EGFP-tagged versions of these nuclear isoforms (137), expressed them in HeLa cells 

(Fig. 2.9B), and examined the effect of these isoforms on rAAV2 transduction. We determine 

that expression of five of the six isoforms (PMLI, PMLIII, PMLIV, PMLV, and PMLVI) 

resulted in an approximately 2-fold decrease in transduction, while expression of PMLII resulted 

in a 4.9-fold decrease in transduction (Fig. 2.8B). To confirm our in vivo mechanism, we then 

examined whether PMLII could inhibit self-complementary rAAV2 transduction. In fact, 

although we observed a significant decrease in the number of cells transduced with single-

stranded rAAV2 after PMLII overexpression, we observed significantly less inhibition of self-

complementary rAAV2 transduction (Fig 2.8C), confirming human PML isoform II is 

responsible for the inhibition of rAAV second-strand synthesis.  

PMLII overexpression inhibits rAAV2 and wildtype AAV2 production and 

replication. All of our data thus far address the role of PML in rAAV transduction; however, 

given our second-strand synthesis mechanism we set out to determine whether PML plays a role 

in rAAV genome replication and virus production. We began by examining the effect of PMLII 

overexpression on virus production by encoding PMLII as a transgene for rAAV vectors. We 

determine the presence of the PMLII transgene resulted in a 6.8-fold decrease in the yield of 

vector (Fig. 2.10A). As the effect of PML on rAAV transduction was through second-stand 

synthesis, we hypothesized that PMLII inhibits rAAV production on the level of genome 

replication. Therefore, we performed a replication assay to determine whether the level of 

replicated DNA was lower in cells expressing PMLII than in cells expressing a control vector. In 
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fact, we observed slightly lower levels of the replicative monomer and dimer form of the vector 

genome in PMLII expressing cells (Fig. 2.10B), which quantified at 73% of the control value 

(Fig. 2.10C). We then examined whether PML could also inhibit the production of wild-type 

AAV by producing wild-type AAV2 from an infectious clone with or without PMLII 

overexpression and assaying the levels of virus produced. As with rAAV2, we observed a 6.5-

fold decrease in wild-type AAV2 when PMLII was overexpressed (Fig. 2.10D), demonstrating 

PML also inhibits wild-type AAV2. We further investigated this production effect with both 

wild-type and recombinant AAV by examining levels of the rep and capsid proteins. We 

observed greatly reduced levels of all three capsid proteins, as well as the four Rep proteins, with 

PMLII overexpression (Fig. 2.10E), although the degree of decrease varied. These data 

demonstrate PML can inhibit the production of both recombinant and wild-type AAV on a 

protein level. As utilizing an infectious clone of AAV2 avoids the initial steps AAV’s infectious 

pathway and introduces high levels of template for the viral genome, we then tested the effect of 

PMLII overexpression on the infection of wild-type AAV by transfecting cells with PMLII and 

the Ad helper plasmid, infecting with AAV2, and measuring viral genomes produced. At 48 

hours post-infection, we observed large significant inhibition of AAV2 replication in the 

presence of PMLII (Fig. 2.10F), especially at low viral doses (60.1-fold at 1 vg/cell and 1207-

fold at 0.1 vg/cell). We also observed significant inhibition of AAV2 infection by PMLII at 

earlier time points (Fig. 2.11), confirming PML’s inhibitory role in AAV’s lifecycle. Overall, our 

results demonstrate that PML can inhibit the transduction of rAAV vectors both human and 

murine contexts through the inhibition of second-strand DNA synthesis. Moreover, we traced 

this inhibition to human PMLII and expanded the effect to the production of recombinant and 

wild-type AAV and to wild-type AAV infectivity. 
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Discussion 

In this study, we have examined the functional role of PML in the transduction of AAV 

and in AAV production and infection, in order to determine whether PML can inhibit AAV. We 

determined PML inhibits rAAV transduction in vivo in a manner that correlates with PML 

expression level and that is conserved among serotypes. Utilizing subcellular fractionation as 

well as self-complementary rAAV, we demonstrated that the inhibition of rAAV transduction by 

PML appeared to occur at the level of conversion of the single-stranded vector genome to a 

functional double-stranded form. In addition, we established that human PML, especially PMLII, 

could also inhibit rAAV2 transduction, production, and wild-type AAV2 infection. To our 

knowledge, these data represent the first time a functional role for PML in the transduction or 

replication of a parvovirus has been described. 

Four pieces of data contribute to our conclusion that PML inhibits rAAV second-strand 

DNA synthesis: (1) Equal the numbers of vector genomes completed the pre-second-strand 

synthesis transduction steps of cell entry, nuclear entry, or uncoating in vivo in PML
+/+

 and PML
-

/-
 mice. (2) Neither PML knockout in vivo nor PML knockdown in human cells had an effect on 

self-complementary rAAV transduction, which avoids second-strand synthesis by self-annealing. 

(3) Dose curves both in vitro and in vivo demonstrated a lower threshold rAAV dose required for 

successful transduction with PML
-/-

, suggesting a greater effect of PML at low vector doses 

where possible annealing of vector genomes cannot compensate for a lack of second-strand 

synthesis. (4) Our rAAV DNA replication assay demonstrated a small but significant decrease in 

rAAV genome replication when PML is overexpressed. Taken together, these data provide 

strong evidence suggesting inhibition of rAAV second-strand DNA synthesis by PML. 
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Furthermore, although PML affects the replication of many viruses through sequestration of viral 

components (111, 114) or prevention of transcription (110, 113), we are not aware of any other 

studies demonstrating a PML effect specifically on genome replication. AAV genome replication 

relies on cellular replication machinery including DNA polymerase δ, replication factor C, 

proliferating cell nuclear antigen, and replication protein A (36, 37), although second-strand 

synthesis has not been directly examined. In the future, it will be interesting to investigate 

whether any of these factors are involved in PML’s effect on rAAV second-strand synthesis. 

Moreover, as the same replication factors are involved in MVM DNA replication (138) and PML 

overexpression greatly inhibited AAV2 replication, it will be interesting to determine whether 

PML plays a role on the second-strand synthesis and DNA replication of other parvoviruses. 

In addition to investigating the role of PML in rAAV transduction in vivo, we examined 

the effect of human PML on AAV in order to eliminate the possibility that the PML effects were 

specific to mouse and determined human PML could also inhibit rAAV transduction. 

Furthermore, given PML acted at a nuclear step in transduction, we examined the six major 

nuclear human PML isoforms and elucidated their effect on rAAV. We determined 

overexpression of five of the isoforms (I, III, IV, V, VI) caused a 2-fold decrease in rAAV2 

transduction, while PMLII caused a 5-fold decrease in transduction. Two possible hypotheses 

could explain the partial effect of several isoforms and full effect of one isoform: (1) PML 

proteins contain two domains important for rAAV transduction inhibition, one in the shared 

exons (1-7a) and one in the unique region of PMLII; or (2) the effect on rAAV transduction is 

unique to PMLII and overexpression of other isoforms draws more endogenous PMLII into PML 

bodies (137), where rAAV effects might occur. Further studies will determine which of these 
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hypotheses is correct. Nevertheless, our data clearly demonstrate that PMLII, and specifically its 

unique region, is important for rAAV transduction inhibition.  

The unique region of PMLII consists of the majority of exon 7b and spans from amino 

acid 571 to 824, the C-terminus (Fig. 2.12). Interestingly, while PMLI and PMLII are the most 

abundant PML isoforms, the majority of known PMLII functions are interactions with AAV’s 

helper viruses Ad and HSV. Specifically, Ad E4Orf3 binds within amino acids 645 to 674 of 

PMLII and rearranges it to form tract-like structures (116). In addition, the conserved region 3 on 

Ad E1A-13S interacts with PMLII and may enhance viral and cellular transcription (139). 

Furthermore, HSV has two distinct mechanisms to decrease PMLII levels, ICP27 induced 

alternant splicing (140) and degradation of PML by ICP0 (115). In fact, PMLII expression 

decreases the replication of ICP0 null HSV (141). From these studies, it is clear that PMLII plays 

an important role in DNA virus replication that is still being elucidated. Further studies with 

AAV may clarify the role of PML in both DNA virus replication and other cellular processes. 

Beyond rAAV transduction, we examined the effect of PML on the production of rAAV 

and on the production and infection of wild-type AAV2. We observed similar decreases in 

production of wild-type and recombinant AAV with PMLII overexpression and correlated this 

production defect with a small decrease in rAAV DNA replication and a large decrease in viral 

protein levels. With the complicated regulation of AAV expression (18, 142-145), it is unclear 

whether the decrease in protein levels results from the decrease in replication or an addition 

effect on the viral promoters. Given the known effects of PML on viral transcription (110, 113), 

PML repressing AAV’s promoters would not be unprecedented. We are currently further 

investigating the roles of genome replication and viral promoter activity in PML’s effect. 
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Additionally, we are investigating reversing this phenotype by knocking down PML and possibly 

increasing vector yields, which would significantly influence rAAV clinical applications. 

In summary, we have demonstrated for the first time that PML inhibits rAAV 

transduction in vivo through inhibition of second-strand DNA synthesis. In addition, we 

demonstrated that human PML can also inhibit rAAV2 transduction and production and that 

PMLII is responsible for the majority of this effect. PMLII inhibited wild-type AAV2 production 

and infection, as well. Given the large in vivo effect of PML on rAAV transduction, rAAV’s 

interaction with PML will be important to target with rational vector design as this pathway 

becomes better understood. Designing vectors that avoid PML interactions could lead to large 

increases in transduction, facilitating systemic gene therapy approaches. In conclusion, pursuing 

the interaction of AAV with PML may have important implications for understanding AAV 

biology, clinical vector production, enhancing rAAV transduction, and understanding of the 

biology of other parvoviruses.  
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Figure 2.1: PML knockout enhances rAAV2 transduction at several vector doses in both male and 

female mice. (A-D) Female PML
+/+

 and PML
-/-

 mice were transduced with (A) 1×10
10

 vg, (B) 5×10
10

 vg, 

(C) 1×10
11

 vg, or (D) 5×10
11

 vg rAAV2-CBA-luciferase and assayed by live luciferase imaging at 11 days 

post-transduction (5 minute exposure). (E-F) Light output from luciferase live imaging was quantified 

either from the whole mouse (E) or the area of the liver (F) (n=3). (G-H) Female (G) and male (H) 

PML
+/+

 and PML
-/-

 mice were transduced with 2×10
11

 vg rAAV2-CBA-luciferase, transduction was 

assayed by live luciferase imaging at two time points post-transduction, and light output from the whole 

mouse was quantified (all 5-minute exposures except males on day 11, which is a 1-minute exposure; n=5 

for all groups except PML
-/-

 males for which n=6). Individual mice are shown as diamonds while the bar 

indicates the mean. (*) p<0.05, (**) p<0.01 versus PML
+/+

; Also see Fig. 2.2 
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Figure 2.2, related to Figure 2.1: PML knockout enhances rAAV2 transduction at several 

vector doses and in both male and female mice. 

(A) Luciferase live imaging data of PML
+/+

 and PML
-/-

 mice transduced with 1×10
10

 vg AAV2-

CBA-luciferase from Figure 1A at a later time point (21 days post-transduction, 5 minute 

exposure), demonstrating visible transduction in the site of injection in both groups and the liver 

with PML
-/-

 mice. (B) Dose curves for the rAAV2 doses shown in Figure 1 for total light output 

and light output from the area of the liver, demonstrating the changes in transduction between the 

doses. Values are indicated as the mean ± one SD. (*) p<0.05 versus corresponding PML
+/+

 

group. (C) Luciferase live imaging data of female PML
+/+

 and PML
-/-

 mice transduced with 

2×10
11

 vg AAV2-CBA-luciferase corresponding to quantification in Figure 1G (5 minute 
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exposure), confirming the large effect of PML knockout on rAAV transduction at a commonly 

used rAAV2 dose. (D) Luciferase live imaging data of male PML
+/+

 and PML
-/-

 mice transduced 

with 2×10
11

 vg AAV2-CBA-luciferase corresponding to quantification in Figure 1H (1 minute 

exposure), demonstrating that the higher transduction observed in male mice from rAAV 

transduction does not mask the effect of PML on rAAV transduction. 

 

  



54 

 

Figure 2.3. Enhancement of rAAV transduction by PML knockout is conserved among 

several serotypes. Male PML
+/+

 and PML
-/-

 mice were transduced with 1×10
11

 vg and assayed 

by live luciferase imaging. (A) Images of mice transduced with rAAV6-CBA-luciferase at 7 days 

post-transduction (30-second exposure). (B) Quantification of light output from mice in (A). (C) 

Images of mice transduced with rAAV8-CBA-luciferase at 3 days post-transduction (30-second 

exposure). (D) Quantification of light output from mice in (A). (E) Images of mice transduced 

with rAAV9-CBA-luciferase at 7 days post-transduction (30-second exposure). (F) 

Quantification of light output from mice in (A). Individual mice are shown as diamonds while 

the bar indicates the mean (n=3 for all groups except PML
-/-

 rAAV6 for which n=4). (*) p<0.05 

versus PML
+/+
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Figure 2.4: rAAV transduction enhancement is organ specific and correlates with PML 

expression. (A & B) PML
+/+

 and PML
-/-

 female mice were transduced with 2×10
11

 vg rAAV2-

CBA-luciferase and indicated organs were harvested 14 days post-transduction. Tissue was 

assayed for (A) luciferase activity and (B) vector genome copy number (vg/cell) (n=5). (C & D) 

PML
+/+

 and PML
-/-

 male mice were transduced with 1×10
11

 vg rAAV9-CBA-luciferase and 

indicated organs were harvested 14 days post-transduction. Tissue was assayed for (C) luciferase 

activity and (D) vg/cell (n=3). Grey bars indicate values for an un-transduced mouse. (E) The 

indicated organs were harvested from un-transduced male PML
+/+

 mice and RNA was purified. 

PML expression relative to GAPDH was determined by qRT-PCR (n=3). Values are indicated as 

mean ± one SD. (*) p<0.05, (**) p<0.01 versus PML
+/+

; Also see Fig. 2.5 
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Figure 2.5, related to Figure 2.4. PML expression is not increased by rAAV2 transduction. 

PML+/+ mice were transduced with 1×1011 vg AAV2-CBA-Luciferase and livers were 

harvested for RNA at the indicated time points post-transduction. Relative expression of PML to 

GAPDH was determined by qRT-PCR (n=3), demonstrating that PML expression does not 

increase in response to rAAV2 transduction and, in fact, shows a small decrease common to 

many transcripts. Values are indicated as mean ± one SD. NV—no vector; 2h—2 hours post-

transduction; 6h—6 hours post-transduction; 24h—24 hours post-transduction; 48h—48 hours 

post-transduction. (*) p<0.05 
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Figure 2.6: PML does not inhibit rAAV cell entry, nuclear localization, or uncoating. (A-C) 
PML

+/+
 and PML

-/-
 female mice were transduced with 1×10

11
 vg rAAV2-CBA-luciferase and 

livers were harvested at indicated time post-transduction. (A) Total vg/cell were measured by 

qPCR (n=5). (B) Nuclei were isolated by subcellular fractionation and nuclear vg/cell were 

measured by qPCR (n=5). (C) Nuclei were DNase digested to completion and number of 

remaining vg was determined. Unprotected vg/cell were calculated (n=5). Grey bars indicate 

values from un-transduced mice (n=2). Values are indicated as mean ± one SD. 
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Figure 2.7: PML inhibits rAAV second-strand DNA synthesis. (A) PML
+/+

 and PML
-/-

 female 

mice were transduced with 1×10
11

 vg single stranded rAAV8-CMV-GFP (ssAAV) or self-

complementary rAAV8-CMV-GFP (scAAV) and livers were harvested at 7 days post-

transduction. Transduction was determined by GFP ELISA (n=3). Grey bars indicate value from 

an un-transduced mouse. (B) Adult mouse-tail fibroblasts from PML
+/+

 and PML
-/-

 mice were 

transduced with the indicated doses of rAAV2-CBA-luciferase and assayed at 48 hours by 

normalized luciferase assay. Fibroblast data represent three independent experiments. Values are 

indicated as mean ± one SD. (*) p<0.05 versus PML
+/+
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Fig 2.8: Human PML, especially isoform II, inhibits rAAV transduction and second-strand 

synthesis. (A) HuH7 cells were transfected with PML or negative control siRNA 48 and 24 

hours prior to transduction with rAAV2-CBA-luciferase at indicated dose. Transduction was 

assayed by luciferase assay at 24 hours post-transduction. Values are indicated as percentage of 

the negative control (Neg Cont) for the vector dose. (B) HeLa cells were transfected with the 

indicated PML overexpression or control plasmid 24 hours prior to transduction with 500 vg/cell 

rAAV2-CBA-luciferase. Transduction was assayed by luciferase assay at 24 hours post-

transduction and normalized to value from transfection. Values are indicated as a percentage of 

the control construct. (C) HeLa cells were transfected with PMLII or control plasmid 24 hours 

prior to transduction with either 1000 vg/cell single-stranded rAAV2-CMV-EGFP (ssAAV2) or 

200 vg/cell self-complementary rAAV2-CMV-EGFP (scAAV2). At 24 hours post-transduction, 

cells were assayed by flow cytometry. Values indicated are percentage of cells transduced as fold 

of the control plasmid group. Data represent three independent experiments. Values are indicated 

as mean ± one SD. (*) p<0.05 versus control; (ǂ) p<0.05 versus other isoforms; Also see Fig. 2.9 
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Figure 2.9, related to Figure 2.8. Human PML, especially isoform II, inhibits rAAV 

transduction and second-strand DNA synthesis. (A) After human PML knockdown by siRNA 

as described in Fig. 2.8A, cells were harvested for RNA and levels of PML mRNA relative to 

GAPDH were determined by qRT-PCR, demonstrating successful but not complete knockdown 

of PML. (*) p<0.05. (B) GFP fluorescence images showing expression and localization of GFP-

tagged PML isoforms following transfection of overexpression constructs into HeLa cells as in 

Fig. 2.8B. 
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Fig 2.10 Production and replication of rAAV and AAV2 are inhibited by PMLII. (A) 
HEK293 cells were transfected for production of vector encoding either PMLII or a control gene 

(i.e. luciferase, EGFP). At 48 hours post-transfection, vector was harvested and purified. Vector 

produced was determined by qPCR. Values indicate mean fold to control transgene for three 

separate vector preparations ± SEM. (B) HEK293 cells were transfected with PMLII or control 

plasmid 24 prior to transfecting with viral production plasmids. At 72 hours post-transduction, 

small molecular weight DNA was harvested. Replicative forms of rAAV DNA were detected by 

Southern blot. No pXX680 lanes represent negative control for replication. M—monomer; D—

dimer; LC—loading control (DPN1 digested plasmid). Image is representative of three trials on 

two blots. (C) Monomer bands from the three trials in (B) were quantified by densitometry. 

Values indicate mean ± one SD. (D) HEK293 cells were transfected with PMLII or control 

plasmid, pXX680, and an AAV2 infectious clone. At 48 hours post-transfection, virus was 

harvested and production was assayed by qPCR. Values indicate mean fold to control transgene 

for three separate vector preparations ± SEM. (E) HEK293 cells were treated as in (A) for vector 

groups and as in (D) for virus groups. Protein was harvested at 48 hours and AAV capsid 

proteins (VP1, VP2, and VP3) and non-structural proteins (Rep78, Rep68, Rep52, and Rep40) 

were assayed by immunoblotting. Actin serves as a loading control. Blot is representative of 

three independent experiments. (F) HEK293 cells were transfected with pXX680 or carrier DNA 

and the PMLII or control plasmid 24 hours prior to infection with the indicated dose of AAV2. 

AAV genome copy number was determined by qPCR at 48 hours post-infection. Data represent 

three independent experiments. Values indicate mean ± one SD. (*) p<0.05 versus control; Also 

see Fig. 2.11 
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Figure 2.11, related to Figure 2.10. PMLII inhibits the infection of wildtype AAV2. (A-B) 
HEK293 cells were transfect, seeded and infected with wildtype AAV2 as in Figure 7F. Total 

DNA was harvested from the cells at either (A) 6 hours or (B) 24 hours post-infection and 

numbers of viral genomes per cell were determined by qPCR. (*) p<0.05 
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Figure 2.12. Alignment of PMLII and PMLIII protein sequences. Our data in Fig. 2.8 

demonstrated that PMLII has a greater effect on rAAV2 transduction than the other nuclear 

isoforms of PML. Therefore, the protein sequences of PMLII (accession number AF230403) and 

the most closely related PML isoform to PMLII, PMLIII (accession number S50913) were 

aligned to illustrate the similarity and differences between these isoforms. This alignment 

demonstrates that the extreme C-terminal region of PMLII (amino acids 571-824), unique among 

the PML isoforms, is responsible for its greater effect on AAV. Interestingly, this unique region 

is also known to bind adenovirus E4Orf3. 
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CHAPTER 3 

Arsenic trioxide stabilizes accumulations of adeno-associated virus virions at the 

perinuclear region, increasing transduction in vitro and in vivo
2
 

 

Summary 

Interactions with cellular stress pathways are central to the lifecycle of many latent 

viruses. Here, we utilize adeno-associated virus (AAV) as a model to study these interactions as 

previous studies have demonstrated that cellular stressors frequently increase transduction of 

rAAV vectors and may even substitute for helper virus functions. Since several 

chemotherapeutic drugs are known to increase rAAV transduction, we investigated the effect of 

arsenic trioxide (As2O3), an FDA approved chemotherapeutic agent with known effects on 

several other virus lifecycles, on the transduction of rAAV. In vitro, As2O3 caused a dose-

dependent increase in rAAV2 transduction over a broad range of cell lines from various cell 

types and species (e.g. HEK-293, HeLa, HFF hTERT, C-12, Cos-1). Mechanistically, As2O3 

treatment acted to prevent loss of virions from the perinuclear region, which correlated with 

increased cellular vector genome retention, and was distinguishable from proteasome inhibition. 

To extend our investigation of the cellular mechanism, we inhibited reactive oxygen species 

formation and determined that the As2O3-mediated increase in rAAV2 transduction was 

dependent upon production of reactive oxygen species. To further validate our in vitro data, we 

tested the effect of As2O3 on rAAV transduction in vivo and determined that treatment initiated 

                                                           
2
Adapted for this dissertation from: Mitchell A.M., Li C., and R.J. Samulski. 2013. Arsenic 

trioxide stabilizes accumulations of adeno-associated virus virions at the perinuclear region, 

increasing transduction in vitro and in vivo. J Virol 87: 4571-83. 
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transgene expression as early as two days post-transduction and increased reporter expression by 

up to ten-fold. Moreover, the transduction of several other serotypes of rAAV was also enhanced 

in vivo, suggesting As2O3 affects a pathway used by several AAV serotypes. In summary, our 

data support a model wherein As2O3 increases rAAV transduction both in vitro and in vivo and 

maintains perinuclear accumulations of capsids, facilitating productive nuclear trafficking. 

 

Introduction 

Adeno-associated virus (AAV), a non-enveloped, single-stranded DNA virus, is a 

member of the family Parvoviridae and is classified as a dependovirus as it requires the presence 

of a helper virus, such as adenovirus or herpes simplex virus (HSV), in order to replicate. In the 

absence of a helper virus, AAV's genome can persist episomally for long time periods (146).  

The AAV genome consists of two genes, rep which encodes the non-structural proteins and cap 

which encodes the capsid assembly protein and capsid proteins, flanked by inverted terminal 

repeats. To make rAAV vectors, the two viral genes can be entirely removed from the genome 

with the terminal repeats being the only cis elements required for vector production (5), allowing 

for the examination of the viral transduction pathway leading up to gene expression.  Although 

no pathogenesis has been linked to AAV, rAAV plays an important role as a gene delivery 

vector and is increasingly used for clinical gene therapy applications (reviewed in (4)). 

While there are several naturally occurring serotypes of AAV, the majority of AAV 

biology has been elucidated using rAAV serotype 2 (AAV2) vectors. rAAV2 is brought into 

cells through receptor-mediated endocytosis (13) and is trafficked through endosomal pathways, 

along microtubules, to the microtubule organizing center (MTOC) (14).  rAAV2 then escapes 

from the endosome and is trafficked to the nucleus where it uncoats (15), exposing the genome 



66 

for second-strand synthesis and transcription.  Several steps in the rAAV transduction pathway 

are inefficient, including nuclear entry (125) and second strand synthesis (16, 53), and modifying 

the environment of the cell can lead to increased efficiency in these steps (15, 16).  Specifically, 

several forms of cellular stress, including endoplasmic reticulum stress associated with unfolded 

protein responses (147), treatment with chemotherapeutic agents (15, 16), and heat shock (16, 

148), have been shown to positively influence AAV transduction. In fact, our group was the first 

to demonstrate that heat shock, hydroxyurea, UV light, and X-rays are capable of increasing 

rAAV transduction through a mechanism involving the enhancement of second-strand DNA 

synthesis (16).  Two of these treatments, hydroxyurea treatment and UV light in the presence of 

SV40 T antigen, were later shown to be able to substitute for helper virus functions and allow 

AAV replication in the absence of adenovirus (149).  Moreover, dependence on stress responses 

in viral lifecycles in not unique to AAV and has in fact been demonstrated to be important to the 

reactivation of many latent viruses from lambda phage (150) to herpesviruses (151, 152).  

Although some stress response dependent reactivation is due to disregulation of the immune 

system (152), some may result from specific changes in the intracellular environment.  In 

addition, the role of stress in the initial transduction of viruses other than AAV is less well 

understood than its role in latency. 

The dependence of the AAV lifecycle on cellular stress has been exploited to attempt to 

increase the efficiency of rAAV-mediated gene delivery and improve efficacy in clinical gene 

therapy applications. A number of chemotherapeutic agents have been used to induce cell stress 

and enhance rAAV transduction including proteasome inhibitors such as MG-132, calpain 

inhibitor I, and bortezomib, DNA synthesis inhibitors such as hydroxyurea and aphidicolin, and 

topoisomerase inhibitors such as etoposide and camptothecin (15, 104-106, 109, 153, 154). Thus 
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far, the leading candidate for enhancing rAAV transduction in vivo is bortezomib, a proteasome 

inhibitor, which has been demonstrated to increase expression of a clinically relevant transgene 

3- to 6-fold in a large animal model (109). Although bortezomib is approved for use in humans, 

it has serious toxic side effects and, in rare cases, its use can lead to liver failure and death (109, 

155). Therefore, exploring the possibility of other less toxic agents to enhance rAAV 

transduction in vivo remains an advantageous approach. 

One specific cellular stressor that has not been examined for its effect on AAV biology is 

arsenic trioxide (As2O3). As2O3 was approved for the treatment of acute promyelocytic leukemia 

in 2000 (119) and is currently being evaluated treatment of other forms leukemia (120, 121). 

As2O3 is often considered to be a less toxic alternative to traditional chemotherapeutic agents. In 

fact, clinical studies have been published on the treatment of more than 1100 promyelocytic 

leukemia patients with As2O3 (156) and the side effects of the current course of treatment (five 

weeks of daily doses) are relatively mild, including dermatological issues, fatigue, and nausea.  

A comparatively severe cardiac side effect is prolonged QT interval; however, this effect is 

reversible after treatment ceases and has not led to any As2O3 associated deaths (120).  

Furthermore, oral preparations of As2O3 are being investigated and appear to avoid this 

complication (119). These clinical features make As2O3 a promising stressor to consider for use 

in enhancing rAAV transduction. 

Numerous studies have worked to define the mechanisms by which As2O3 acts to treat 

promyelocytic leukemia. When cells are treated with As2O3, it is taken up through aqua-

glyceroporins and then acts on a molecular level by binding thiol ligands from cysteine residues 

(157).  On a cellular level, As2O3 has many effects including inducing reactive oxygen species 

(ROS) formation (158), inhibiting NFκB activation (159), degrading the promyelocytic leukemia 
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protein (PML) (160), changing mitochondrial membrane potentials (161), inducing global 

changes in transcriptional patterns (162), and, at high doses, inducing apoptosis (121, 163).  

Therefore, As2O3 can lead to widespread changes in the cellular environment. In addition, As2O3 

has previously been demonstrated to have effects on several different viruses. Specifically, 

As2O3 increases human immunodeficiency virus (HIV) infection in non-permissive cell types but 

has no effect in permissive cell types (164-166). Moreover, treatment of patients with As2O3 

often leads to the reactivation of varicella zoster virus (VZV) and HSV (167, 168); in fact, the 

risk of patients developing herpes zoster after As2O3 treatment is 26%, which is higher than the 

20% risk found with severe immunosuppression after hematopoietic stem cell transplant (167).  

Indeed, the high rate of herpes reactivation has led some groups to proscribe prophylactic 

acyclovir during As2O3 treatment (119). 

As As2O3 affects these other viruses and chemotherapeutic agents such as proteasome 

inhibitors (15, 169) and topoisomerase inhibitors (104) have been demonstrated to enhance 

rAAV transduction, we determined whether As2O3 has an effect on initial rAAV transduction.  

We utilized rAAV2 vectors and examined transduction both in As2O3 treated cells and in vivo. 

We determined that transduction of rAAV2 was enhanced in vitro and in vivo and that the 

transduction of several different rAAV serotypes was also enhanced in vivo. In addition, we 

determined that As2O3 treatment of cells maintained the accumulation of rAAV2 virions at the 

MTOC and that this effect was dependent on induction of ROS formation. The enhancement of 

rAAV transduction by As2O3, as well as mechanisms behind this enhancement, has implications 

for the enhancement of rAAV-mediated gene delivery and possibly for the initial infection 

pathways of other viruses impacted by As2O3. 
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Materials and Methods 

Cell culture and chemicals. HEK-293 cells, HeLa cells, human foreskin fibroblasts 

immortalized with telomerase (HFF hTERT), and Cos-1 cells were maintained in Dulbecco’s 

modified eagles media. C-12 cells were maintained in minimal essential media (MEM) alpha 

without ribonucleosides and deoxyribonucleosides and Cho-K1 cells were maintained in Ham’s 

F-12 media. Cell utilized in confocal microscopy experiments were maintained in MEM without 

phenol red supplemented with 2 mM L-glutamine and 1x MEM non-essential amino acids for at 

least two passages before imaging. All cells were maintained at 37°C and 5% CO2 and media 

was supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 g/ml streptomycin.   

As2O3 (Sigma-Aldrich) was prepared for in vitro use as a 1 mM solution in 200 mM 

NaOH and compared to a vehicle control of the same pH. For in vivo use, a 50 mg/ml solution of 

As2O3 in 1 M NaOH was prepared, diluted to 0.5 mg/ml in PBS, and brought to a neutral pH 

with HCl. A proteasome inhibitor, MG-132 (Calbiochem), was prepared at 10 mM in DMSO. N-

acetyl-L-cysteine (NAC; Sigma-Aldrich) was prepared at 500 mM in PBS. Dihydroethidium 

(DHE; Sigma-Aldrich) was prepared at 10 mM in DMSO. 

Virus production. rAAV vector was produced in HEK-293 cells as has been previously 

described (52).  Briefly, rAAV was prepared by transfection of HEK-293 cells with pXX680, a 

pXR plasmid (pXR2, pXR6, pXR8, or pXR9 for the different serotypes of rAAV produced), and 

either pTR-CBA-EGFP or pTR-CBA-Luc. After 48 hours, cells were harvested, lysed and 

DNase treated. For general use, vector was purified on a cesium chloride gradient and then 

dialyzed to remove the cesium. To produce pure vector for fluorescent labeling, the vector was 

purified on a discontinuous iodixanol gradient followed by ion exchange chromatography and 

dialysis. Vectors were titered by quantitative PCR (qPCR) as has been previously described (52). 
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Transduction assays. For transduction experiments, 8×10
4
 cells were seeded per well of 

a 24-well plate 16-18 prior to transduction and, where indicated, treated with the stated doses 

As2O3 or vehicle control at the time of seeding. Vector was added in fresh media at the indicated 

vector dose. For proteasome inhibition experiments, 1 µM MG132 or a DMSO control were 

added concurrent with transduction. Cells were harvested by trypsinization at 48 hours post-

transduction unless otherwise noted. For flow cytometry, trypsinized cells were resuspended in 

2% para-formaldehyde and analyzed using a Beckman-Coulter CyAn ADP instrument. EGFP 

fluorescence was measured using a 488 nm excitation laser and 530/40 nm emission filter. 

DNA purification and qPCR of viral genome copy number. For quantification of 

intracellular vector genome copies (vg), transduced cells were harvested by trypsinization, 

washed with PBS, and total DNA was harvested using the Qiagen DNeasy Blood and Tissue Kit 

as per the manufacturer’s instructions. Viral genomes and cellular endogenous control genes 

were quantified as has previously been described (15).  Briefly, the following primers were 

utilized to quantitate EGFP (forward: 5’-AGC AGC ACG ACT TCT TCA AGT CC-3’, reverse: 

5’-TGT AGT TGT ACT CCA GCT TGT GCC-3’), luciferase (forward: 5’-AAA AGC ACT 

CTG ATT GAC AAA TAC3’, reverse: 5’-CCT TCG CTT CAA AAA ATG GAA C-3’), human 

LB2C1 (forward: 5’-GTT AAC AGT CAG GCG CAT GGG CC-3’, reverse: 5’-CCA TCA GGG 

TCA CCT CTG GTT CC-3’), mouse β-actin (forward: 5’-TGG CAC CAC ACC TTC TAC 

AAT-3’, reverse: 5’-AGG CAT ACA GGG ACA GCA CA-3’), and hamster GAPHD (forward: 

5’-CGT ATT GGA CGC CTG GTT AC-3’, reverse: 5’-GGC AAC AAC TTC CAC TTT GC-

3’).  The human LB2C1 primer set was also used to quantitate Cos-1 cellular genomes. All 

reactions were run with SyBR Green master mix (Roche Applied Science) on the Roche 

Lightcycler 480. The following run protocol was used: 95°C 10 minutes; 45 cycles 95°C 10 s, 



71 

60°C 10 s, 72°C 10 s. Absolute quantification was performed based 2
nd

 derivative max 

comparisons to standard curves of plasmid DNA (EGFP and luciferase) or un-transduced cellular 

DNA. 

Cell cycle analysis. For analysis of the proportion of cells in each stage of the cell cycle, 

cells were treated overnight with As2O3 as for transduction assays and then harvested at the 

conclusion of As2O3 treatment. Propidium iodide staining was performed as has been previously 

described (170), with slight modifications.  Briefly, cells were washed twice with PBS + 0.1% 

fetal bovine serum then fixed in ethanol overnight. After fixation, cells were washed and then 

resuspended in the propidium iodide staining solution (40 μg/ml propidium iodide [Sigma-

Aldrich] in PBS with 3.8 mM sodium citrate) and 0.5 μg RNase A (Sigma-Aldrich) and allowed 

to stain for at least 3 hours at 4°C. DNA content was analyzed by flow cytometery at a low rate 

of flow. Flow cytometry was performed on the Beckman-Coulter CyAn ADP instrument using a 

488 nm excitation laser and a 613/20 nm emission filter. 

Capsid labeling and confocal microscopy. rAAV2 virions were fluorescently labeled 

with Cy5 and used for confocal imaging as has been previously described (171), with slight 

modifications.  Briefly, pure rAAV2 virions were incubated with 5000 molecules of mono-NHS-

Cy5 (GE Healthcare) per vector genome for 45 minutes at room temperature and then 

extensively dialyzed to remove excess dye. Labeled vector was titered by qPCR. For confocal 

imaging experiments, Cho-K1 cells were seeded and treated with As2O3 as in transduction 

experiments on poly-L-lysine coated coverslips. Cy5 labeled rAAV2 was added to the cells at 10 

000 vg/cell 16-18 hours after seeding. At the time of harvest, cells were washed three times with 

PBS, fixed with 2% paraformaldehyde for 15 minutes at room temperature, washed 2 times with 
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PBS and 1 time with ddH2O, and mounted on slides with ProLong Gold Antifade Reagent with 

DAPI (Molecular Probes). 

For confocal microscopy, rAAV2 virion localization was analyzed with a Zeiss LSM 710 

Spectral Confocal Laser Scanning microscope using a Plan-Apochromat 63x/1.40 oil objective. 

Z stacks of 12-14 focal planes were acquired at 0.63 µm Z intervals and these images were used 

to create 3D reconstructions. Images were deconvoluted using the AutoQuant X3 program 

(MediaCybernetics) to perform 3D blind adaptive point spread function deconvolution. The 

IMARIS software package (Bitplane AG) was used to create 3D projections of the stacks. 

Reactive oxygen species quantification and scavenging. Cells were seeded and treated 

as for transduction experiments. For ROS scavenging experiments, NAC was added to cells at 

the indicated doses at the time of As2O3 treatment. The NAC and As2O3 were removed at the 

time of transduction and transduction was assayed as above. Quantification of ROS levels by 

DHE staining has been previously described (172). Briefly, cells were harvested by 

trypsinization 16-18 hours after treatment, washed twice with PBS, and then incubated for 30 

min at 37°C in 10 µM DHE in PBS. After incubation, the cells were washed once with PBS. 

Flow cytometry was performed on the Beckman-Coulter CyAn ADP instrument using a 488 nm 

excitation laser and a 575/25 nm emission filter. 

In vivo transduction assays. All mouse experiments were conducted in accordance with 

the policies of the University of North Carolina at Chapel Hill’s Institutional Animal Care and 

Use Committee. For in vivo transduction experiments, age and strain matched female mice 

(Jackson Laboratories) were treated with 5 µg/g/day As2O3 or a PBS vehicle control by 

intraperitoneal (i.p.) injection for five days. On the third day of treatment, mice were transduced 

with the indicated dose of AAV vector in PBS by retro-orbital injection. Live imaging of 
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luciferase expression from AAV vectors has been previously described (173).  Briefly, mice 

were given 150 mg/kg D-luciferin (Caliper LifeSciences) by i.p. injection, and, after 5 minutes, 

luminescence was measured using the IVIS-Lumina imaging system (Caliper LifeSciences). The 

Igor Pro 3.0 software was used to quantitate luminescence signals.  

 

Results 

Arsenic trioxide treatment increases the percentage of cells transduced with rAAV2. 

To expand our knowledge of AAV’s responses to cellular stressors, we set out to determine 

whether As2O3 treatment had an effect on rAAV2’s initial transduction. We first treated HEK-

293 cells overnight with varying doses of As2O3, then transduced with rAAV2-EGFP and 

assayed the percentage of cells transduced after 48 hours. After As2O3 treatment, we observed a 

dose-dependent increase in the percentage of cells transduced by rAAV2 (Fig. 3.1A), with a 

maximum increase of 19.4-fold in the eight µM As2O3 group. Due to toxicity from higher As2O3 

concentrations (data not shown), further experiments were conducted in HEK-293 cells with the 

4 µM As2O3 dose to verify that the increase in the percentage of cells transduced observed with 

As2O3 treatment was due to an increase in transduction and not an increase in transgene 

expression. We assayed the numbers of vector genomes present in the cells 48 hours post-

transduction and determined that the increase in the intracellular vector genome copy number 

correlated very well with the percentage of cells transduced (Fig. 3.1B). In addition, we observed 

no increase in transgene expression from a plasmid carrying the transgene cassette following 

As2O3 treatment (data not shown). To determine whether As2O3’s transduction effect is stable 

over time, we treated the cells as before, assayed transduction from 24 to 96 hours post-

transduction, and determined that As2O3 increased transduction to a similar extent at all of the 
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time points assayed (Fig. 3.1C). Furthermore, we also investigated whether the effect of As2O3 

would be maintained at a range of vector doses. In fact, we observed significant increases in 

transduction with As2O3 treatment with rAAV2 doses from 250 to 4000 vg/cell (Fig. 3.1D). The 

increase in the numbers of vector genomes per cell in both the vehicle treated and As2O3 treated 

cells was linear (R
2
 values 0.996 and 0.999 respectively). 

The effects of As2O3 treatment on HIV infection can only be observed in non-permissive 

cell types (164-166); therefore, given the increase in rAAV2 transduction observed with As2O3 

treatment in HEK-293 cells, we tested the effect of As2O3 in other human and non-human cell 

lines. We optimized rAAV2 doses to result in 5-10% of cells transduced without treatment and 

performed dose curves to identify doses of As2O3 capable of increasing rAAV2 transduction 

without overt toxicity (data not shown), as sensitivity of cells to As2O3 varies based on cellular 

glutathione levels (158). In HeLa cells, which have been commonly utilized as a model cell line 

for exploring AAV biology, we observed a 2.4-fold increase in AAV2 transduction following 

As2O3 treatment that correlated well with an increase in the vector genome copy number (Fig. 

3.2A). We then investigated a human diploid cell line, HFF hTERT. In these cells, we observed a 

4.2-fold increase in the percentage of cells transduced with rAAV2; however, the increase in the 

vector genome copy number was smaller, although still significant (Fig. 3.2B). 

To determine whether the effect of As2O3 on rAAV2 transduction is restricted to human 

cells, we investigated the effect of As2O3 in several non-human cell lines. In Cos-1 cells, which 

are of non-human primate origin, we observed a 2.7-fold increase in the percentage of cells 

transduced that correlated well with an increase in the vector genome copy number (Fig. 3.2C). 

As rAAV2 is liver-tropic, we next investigated the effect of As2O3 on transduction of a mouse 

hepatoma derived cell line, C-12 cells. As2O3 treatment increased the percentage of cells 
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transduced with rAAV2 by 4.2-fold in this cell line and this increase correlated well with the 

increase in the vector genome copy number (Fig. 3.2D). Finally, we tested the effect of As2O3 in 

Cho-K1 cells, which are hamster cells with normal protein modification pathways, and observed 

a 5.0-fold increase in the percentage of cells transduced with As2O3 treatment, although the 

increase in the vector genome copy number was smaller (Fig. 3.2E). Therefore, the increase in 

transduction observed after As2O3 treatment is not restricted to a specific cell type or to a specific 

species origin. 

Arsenic trioxide acts in the first 24 hours of transduction through a post-entry 

mechanism. To gain mechanistic insights into the actions of As2O3 on rAAV2 transduction, we 

first examined the effect of As2O3 on self-complementary rAAV2 transduction, which does not 

require second-strand DNA synthesis. We determined that As2O3 caused a similar increase in 

rAAV transduction with both single-stranded (ssAAV) and self-complementary (scAAV) rAAV, 

suggesting that As2O3 affects a step in rAAV transduction prior to second-strand synthesis (Fig. 

3.3A). To determine when after transduction this effect occurs, we investigated the effect of the 

timing of As2O3 addition on the transduction of rAAV2. We treated cells with As2O3 from -18 

hours, 0 hours, 3 hours, 7 hours, or 24 hours post-transduction to the time of harvest and assayed 

the percentage of cells transduced with rAAV2. We observed that the majority of the As2O3 

effect was confined to pre-treatment and treatment within the first 24 hours of transduction (Fig. 

3.3B). Since As2O3 acts in the first 24 hours of transduction (Fig. 3.3B) and the vector genome 

copy number is increased similarly to the percentage of cells transduced at 48 hours post-

transduction (Fig. 3.1B), we then investigated the change in numbers of intracellular vector 

genomes over time. The vector genome copy number was similar between As2O3 and vehicle 

treated cells until 15 to 18 hours post-transduction; however, vector genome copy number in the 
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vehicle treated cells then decreased at a faster rate than that of As2O3 treated cells (Fig. 3.3C). 

The difference in the percentage of cells transduced at each time point correlated well with the 

difference in the vector genome copy numbers (data not shown). These data suggest that the 

effect of As2O3 occurs after rAAV2 has entered the cell and prior to second-strand DNA 

synthesis. To determine whether the increase in rAAV vector genome copy number or 

transduction might be due to inhibition of the cell cycle following As2O3 treatment, we treated 

cells overnight with As2O3 or a vehicle control and then measured the proportion of cells in each 

stage of the cell cycle. We determined that there was very little or no change in the percentage of 

cells in each cell cycle stage following As2O3 treatment (Fig. 3.3D) and that any changes were 

within the range of variability between experiments. These data are substantiated by our toxicity 

assays in which equal numbers of total and viable cells were observed following As2O3 treatment 

(data not shown). Given these data, it is unlikely that the 3 to 4-fold changes in rAAV 

transduction and vector genome copy number could result from a decrease in cell division rates. 

Therefore, these data suggest that the increase in vector genome copy number and in rAAV 

transduction is not due to cell cycle arrest but instead due to another change in the intracellular 

environment. 

Increased vector copy number is also observed with proteasome inhibition of AAV 

transduced cells, which induces the nucleolar localization of rAAV2 (15); therefore, we 

investigated whether the effects of proteasome inhibition and As2O3 treatment on AAV2 

transduction overlap.  When cells were pretreated with As2O3 then co-treated with a proteasome 

inhibitor, MG132, and rAAV2, there was no additional increase in the percentage of cells 

transduced between MG132 alone and the MG132/As2O3 treatment. However, the median 

fluorescence intensity (MFI) of the positive cells was greater for the combined MG132/As2O3 
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treatment than for MG132 alone (Fig. 3.3E). As both of these drugs appear to act through post-

entry mechanisms, this may suggest that the combination of the drugs leads to more successful 

intracellular trafficking, despite the lack of increase in the numbers of cells transduced when the 

drugs were combined; nevertheless, the additional increase in the MFI with MG132 and As2O3 

treatment suggests at least partially independent mechanisms for these two drugs. 

Arsenic trioxide treatment stabilizes accumulations of rAAV2 virions over time and 

acts through reactive oxygen species formation. To determine whether the slower rate of 

vector genome loss we observed occurred on the level of the virion or on the level of the 

genome, we transduced Cho-K1 cells, which are amenable with imaging techniques, with 

fluorescently labeled rAAV2 virions and tracked their intracellular trafficking through confocal 

microscopy after either vehicle or As2O3 pre- and co-treatment. Previous observations have 

suggested that rAAV traffics to the perinuclear region on microtubules where it accumulates and 

then some portion of virions proceeds to the nucleus where uncoating occurs (14, 15, 174). At 8 

hours post-transduction, a time at which the vector genome copy number was similar between 

vehicle and arsenic treated HEK-293 cells (Fig. 3.3A), we observed very little difference in the 

localization of virions between the vehicle (Fig. 3.4A) and As2O3 (Fig. 3.4B) treated cells. 

However, at 24 hours post-transduction, although we observed some perinuclear accumulation of 

virions with vehicle treatment (Fig. 3.4C), much larger perinuclear accumulations of virions 

were present in As2O3 treated cells (Fig. 3.4D). This effect was even more pronounced at 32 

hours post-transduction when many vehicle treated cells had few or no AAV virions remaining 

(Fig. 3.4E), but As2O3 treated cells still had large, condensed perinuclear accumulations of 

virions (Fig. 3.4F). We observed no clear differences in the amount or localization of intact 
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virions in the nucleus at any of these time points. Together, these data suggest that As2O3 

prevents the loss of intracellular rAAV2 virions during transduction.  

Many cellular effects of As2O3 are mediated through the formation of ROS (reviewed in 

(175)).  Consequently, we investigated whether the effect of As2O3 on rAAV2 transduction was 

mediated by ROS formation. When cells were treated with increasing doses of As2O3, we 

observed a dose-dependent increase in the levels of intracellular ROS as evidenced by increased 

red fluorescence following DHE staining of treated cells (Fig. 3.5A). Specifically, significant 

increases in the MFI were observed with the 2 µM, 4 µM, and 8 µM As2O3 treatments (Fig. 

3.5C). As the dose-dependent increase in ROS mirrors the dose-dependent increase in AAV2 

transduction following As2O3 treatment, we then investigated whether inhibiting ROS formation, 

by treating cells with N-acetyl-L-cysteine (NAC), would inhibit the transduction effects of 

As2O3. We treated cells overnight with As2O3 and NAC, transduced with rAAV2, and measured 

the levels of ROS species present at the time of transduction and the percentage of cells 

transduced 48 hours post-transduction. Although treatment with As2O3 induced ROS formation, 

treatment with NAC caused a dose-dependent decrease in ROS formation, where 10 mM NAC 

treatment of As2O3 treated cells resulted in a population that overlaid that of the vehicle control 

(Fig. 3.5B). When we assayed for transduction, we observed a dose-dependent decrease in 

transduction following NAC and As2O3 co-treatment compared to treatment with As2O3 alone 

(Fig. 3.5D). NAC had no effect on the transduction of vehicle treated cells. These data suggest 

that As2O3 acts through the formation of ROS, leading to a decrease in the loss of rAAV2 virions 

over time and so to increased AAV transduction. 

Arsenic trioxide increases rAAV2 transduction in vivo, but does not change tropism. 

To determine whether the increase in rAAV2 transduction we observed with As2O3 in vitro could 
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be replicated in vivo, we treated mice for five days with a dose of 5 µg/g/day As2O3, which 

replicates the levels of serum As2O3 observed in promyelocytic leukemia patients treated with 

this drug (176, 177). With this dose of As2O3, we observed no weight loss or overt toxicity and 

no increase in serum liver enzyme levels (alanine aminotransferase [ALT] and aspartate 

aminotransferase [AST]) over those of the vehicle control, suggesting a lack of acute liver 

toxicity (data not shown). We transduced mice systemically with 2×10
11

 vg rAAV2-luciferase on 

the third day of As2O3 treatment and measured transduction through luciferase live imaging. We 

observed measurable luciferase activity in As2O3 treated mice at as early as 2 days post-

transduction, at which time the activity of vehicle treated mice was close to background (Fig. 

3.6A). By day 7 post-transduction, all As2O3 treated mice were expressing strongly, while the 

vehicle treated mice were showing early, low levels of expression (Fig. 3.6B). Furthermore, 

when we quantified expression in the whole mouse (Fig. 3.6C) or the area of the liver alone (Fig. 

3.6D) we observed significant increases in transduction at 5 days to 12 days post-transduction. In 

fact, at day five post-transduction, the As2O3 treated mice had liver expression 19.3-fold greater 

than that of the vehicle treated mice (Fig. 3.6D). These data suggest that As2O3 can increase 

rAAV2 transduction in vivo. To confirm the increased expression observed in our live imaging 

data, we harvested the organs from mice at 14 days post-transduction and performed 

biodistribution experiments. In the liver, we observed a 3.8-fold increase in normalized 

luciferase activity with As2O3 treatment and minimal expression in the other organs tested (data 

not shown). Furthermore, analysis of vector genome copy number suggested no changes in 

vector tropism due to As2O3 treatment (data not shown). These data suggest that As2O3 can 

increase rAAV2 transduction in vivo without altering vector tropism. 
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Arsenic trioxide increases the transduction of several serotypes of AAV in vivo. To 

determine whether As2O3’s effect is specific to rAAV2 or can be applied to other rAAV 

serotypes, we treated mice with As2O3 as before, transduced with 1×10
11

 vg rAAV6, rAAV8, or 

rAAV9, and assayed transduction by luciferase live imaging. With rAAV6, we observed a clear 

increase in transduction at day 7 post-transduction (Fig. 3.7A), which could also be observed at 

14 days post-transduction (data not shown). Quantification of this increase demonstrated a 5.5-

fold enhancement at day 7 (Fig. 3.7B). With rAAV8, we observed an enhancement of 

transduction from As2O3 treatment at day 2 post-transduction (Fig. 3.7C), which was quantified 

at 3.0-fold (Fig. 3.7C); however, this enhancement was not observed at later time points (data 

not shown). Finally, with rAAV9, we observed an enhancement of transduction at day five post-

transduction (Fig. 3.7E), which was quantified at 4.2-fold (Fig. 3.7F). In fact, As2O3 enhanced in 

rAAV9 transduction from 2 days post-transduction through 3 weeks post transduction (Fig. 

3.7G, 3.7H,  and data not shown). Therefore, the enhancement of transduction caused by As2O3 

treatment is not unique to rAAV2 but can also be observed with several other serotypes of 

rAAV.  

 

Discussion 

In this study, we investigated the effect of As2O3 on the initial transduction of rAAV 

vectors. We determined that As2O3 increased rAAV2 transduction  both in vitro and in vivo and 

that, with As2O3 treatment, perinuclear accumulations of rAAV virions were maintained over 

time, leading to the increase in the intracellular vector genome copy number observed during 

transduction. We observed increased rAAV2 transduction with As2O3 at several vector doses, 

time points, and in several cell lines with different tissue and species origins, suggesting that the 
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effect of As2O3 on rAAV transduction is wide spread. As the increased numbers of cells 

transduced correlated with an increase in vector genome copy number (Fig. 3.1B) and As2O3 had 

no effect on transgene expression independent of rAAV (data not shown), we determined that the 

effect of As2O3 on rAAV transduction occurs at a step in transduction prior to gene expression. 

In addition, the fold increase in rAAV transduction caused by As2O3 treatment was stable from 

24 to 96 hours post-transduction (Fig. 3.1C) and was observed in vivo in cell types which divide 

very slowly (Fig. 3.6 and Fig. 3.7); this suggests that the increase in transduction observed was 

not due to any possible difference in cell division rates as, in this case, we would expect the 

difference in transduction to be minimal in vivo and, in vitro, to increase over time as vector 

copies were diluted in untreated cells.  Furthermore, we analyzed the portion of cells in each 

stage of the cell cycle following As2O3 treatment and observed no indications of cell cycle arrest 

(Fig. 3.3D). Instead, this suggests that the difference in transduction and in intracellular genome 

copy number is due to a difference in the intracellular transduction pathway of rAAV. 

Consequently, we investigated the intracellular fate of the rAAV through both molecular and 

imaging techniques. 

Our data demonstrate that the intracellular vector genome copy number was similar 

between vehicle and As2O3 treated cells out to 15 to 18 hours post-transduction and then the 

vector genome copy number decreased more quickly in vehicle treated cells than in As2O3 

treated cells (Fig. 3.3C). This correlates well with our confocal imaging data which demonstrate 

an increased persistence of the perinuclear accumulation of rAAV virions in As2O3 treated cells 

(Fig. 3.4). These data suggest a model in which, both in As2O3 treated and untreated cells, rAAV 

virions enter the cell and are trafficked along microtubules to the MTOC where they accumulate 

(14, 174). At the MTOC, the virions can continue their trafficking either productively by 
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trafficking to the nucleus or non-productively by eventually being targeted for degradation by 

proteasomal or lysosomal means. Without treatment, many rAAV virions are targeted for 

degradation, leading to relatively few virions continuing on their productive pathway (Fig. 

3.8A). With As2O3 treatment, fewer virions are degraded leading to viral stability in the 

perinuclear region and an increase in the productive trafficking of virions (Fig. 3.8B). This 

difference in the trafficking pathways then causes the difference in vector genome copy number 

and transgene expression observed. 

The assertion that virions maintained at the perinuclear region are capable of continuing 

their trafficking productively is supported by recent work demonstrating that the perinuclear 

region acts as a sink for rAAV particles and, thus, that disruption of the MTOC shortly after 

rAAV has accumulated can lead to increased rAAV transduction (P.J. Xaio and R.J. Samulski, 

unpublished data). In this study however, we are examining later time points during which 

perinuclear accumulations are generally being cleared and are preventing virion degradation at 

the perinuclear region. Taken together, the previous work and our data suggest that maintaining 

the perinuclear accumulation of rAAV, rather than allowing it to be degraded over time, may 

allow more virions to escape from this region and continue down a productive transduction 

pathway. In addition, previous work has suggested that rAAV virions are carried on 

microtubules in endosomal compartments to the  MTOC where endosomal escape presumably 

occurs (14).  This suggests that perhaps, if virions remain in the perinuclear region for longer 

periods of time, more virions can be released from endosomes and escape perinuclear retention 

to continue on a productive trafficking pathway to the nucleus. 

Proteasome inhibitors, such as MG132, have previously been demonstrated to lead to 

increased nucleolar accumulation of rAAV virions and to increased intracellular vector genome 
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copy number, leading to higher transduction (15).  Given the probable role of degradation in the 

effect of As2O3 on rAAV transduction, we find it interesting that As2O3 and MG132 have at least 

partially independent effects on rAAV transduction (Fig. 3.3E) and appear to act at different 

levels on the intracellular trafficking of rAAV (Fig. 3.4, (15)).  This suggests one of the 

following possibilities: 1. rAAV virions are being degraded in significant numbers by a non-

proteasomal mechanism that As2O3 affects, leading to the separate roles of MG132 and As2O3; 2. 

MG132 increases rAAV transduction through a mechanism that is separate from inhibition of the 

proteasome and so the decrease in degradation observed with As2O3 is separated from that of 

MG132; or, 3. MG132 and As2O3 each have partial effects on the proteasomal degradation of 

rAAV in separate steps in intracellular trafficking, perhaps in perinuclear degradation for As2O3 

and in nuclear degradation for MG132, leading to their separate effects.  We are currently 

investigating the specific mechanisms of rAAV degradation modified with As2O3 treatment, 

which should lend clarity to these issues. 

In addition to rAAV2, we investigated the ability of As2O3 to enhance the transduction of 

several other rAAV serotypes in vivo. As2O3 enhanced the transduction of rAAV6, rAAV8, and 

rAAV9 in vivo early after transduction (Fig. 3.7); however, the kinetics of the enhancement 

varied based on the serotype. Specifically, As2O3 enhanced the transduction of rAAV2 and 

rAAV9 at time points ranging from 2 days post-transduction to 14 days or more post-

transduction, while rAAV8’s transduction is enhanced at 2 days post-transduction but not at later 

time points (Fig. 3.6, Fig. 3.7, and data not shown). This is of interest as it suggests that there is 

capsid specificity in the response to As2O3, perhaps derived from differences in intracellular 

trafficking patterns or efficiencies with different serotypes. Although the intracellular trafficking 

of rAAV2 has been most thoroughly studied, several reports have begun to compare the 
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trafficking pathways of different rAAV serotypes. For instance, rAAV1 and rAAV5 can traffic 

to the nucleus of HeLa cells more quickly than rAAV2, but have lower transduction due to either 

poor uncoating or rapid degradation, respectively (178).  In addition, a recent report suggested 

that, perhaps due to differences in receptor usage, rAAV2 and rAAV8 differentially traffic 

through endosomal compartments and have different requirements for endosomal escape (179).  

Specifically, rAAV2 is reported to traffic through early, recycling, and late endosomes and to 

require low pH for endosomal escape, while rAAV8 does not traffic through late endosomes, 

only early and recycling endosomes, and low pH is not sufficient for its endosomal escape. 

Given the difference in the kinetics of As2O3’s effect on rAAV2’s and rAAV8’s transduction, 

this may suggest a role for endosomal trafficking in the As2O3 effect. Determining the role of 

endosomes in As2O3’s transduction effect and determining the specific regions of the capsid 

responsible for the differences in the As2O3 effect will be interesting avenues to pursue in the 

future. 

As2O3 has well known effects on cellular concentrations of ROS and ROS are thought to 

act as intermediates in some of As2O3’s other cellular effects; therefore, we investigated whether 

the effects of As2O3 on rAAV2 transduction were mediated through ROS formation. We 

determined that As2O3 causes a dose-dependent increase in ROS that corresponds well to the 

dose-dependent increase in rAAV2 transduction and that inhibiting the formation of ROS 

inhibits As2O3’s enhancement of rAAV2 transduction (Fig. 3.5). Interestingly, ROS formation 

has previously been demonstrated to be important for enhancement of rAAV transduction by 

hydroxyurea and UV light and a role for second-strand DNA synthesis was suggested (16, 180), 

although later reports questioned this assertion (15, 181). As we determined that As2O3 can 

enhance the transduction of self-complementary rAAV2 (Fig. 3.3A), which does not require 
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second-strand synthesis, and also observed changes in earlier steps in transduction (Fig. 3.4), it is 

unlikely that As2O3 is acting through enhancement of second-strand synthesis. Furthermore, 

although hydroxyurea acts through ROS, similar to As2O3, it increases the nuclear localization of 

rAAV2 without increasing the intracellular vector genome copy number (15), whereas As2O3 

increases vector genome copy number (Fig. 3.1B) and acts at an earlier step in transduction (Fig. 

3.4).  This suggests that, depending on the initiator, ROS can act on several different steps in 

rAAV’s transduction pathway. In this case, ROS may have a broad role on a number of steps 

AAV’s lifecycle. 

As2O3 has many effects on the cellular level, involving ROS formation, which may play a 

role in its enhancement of rAAV transduction. For instance, As2O3 has been shown to inhibit 

NFκB activation by directly binding a cysteine residue on the activation loop of the protein 

(159); however, as the concentration of As2O3 necessary to inhibit NFκB activation was higher 

than those used in our studies and the timing of As2O3 addition was different, the status of NFκB 

activation in our experiments is unclear. Several studies have suggested a positive role for NFκB 

activation in rAAV transduction (181, 182) and, in fact, several other ROS generators such UV 

light and H2O2 have been shown to increase NFκB activation, although this activation was not 

necessary for their effects on AAV transduction (180, 181). Nevertheless, it will be enlightening 

to explore the role of NFκB in As2O3 mediated enhancement of rAAV transduction further. 

Another effect of As2O3 and ROS is to degrade the promyelocytic leukemia protein (160), which 

has well known cell-intrinsic antiviral activities against many different viruses (reviewed in 

(126)).  However, we observed an increase in rAAV2 transduction with no apparent change in 

PML levels or localization and, in addition, could observe an increase in transduction in the 

absence of PML (data not shown). These data suggest that PML is not a key factor in the effect 
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of As2O3 on rAAV transduction. Therefore, identification of the specific cellular mechanisms 

responsible for the enhancement of rAAV transduction upon As2O3 treatment will continue to be 

an interesting avenue of research. 

As2O3 has several known effects on other viruses, either inhibiting or enhancing their 

replication. As2O3 strongly inhibits hepatitis C virus replication through a mechanism involving 

ROS and independent of PML (183, 184); although the specific mechanism has not been 

elucidated, this is interesting as As2O3’s enhancement of rAAV transduction is also mediated by 

ROS and independent of PML. Moreover, the replication of several other viruses is enhanced by 

As2O3 treatment. As2O3 causes an enhancement of HIV replication only in non-permissive cell 

types in a manner that depends on the expression of TRIM5α and APOBEC3G (165, 166). It is 

noteworthy that the effects of As2O3 on HIV are cell line specific, while the effects on AAV are 

more general, and that As2O3 acts on HIV through two cellular proteins which are unlikely to, or 

known not to, interact with AAV (185). This suggests that, although As2O3 has effects on several 

viruses, the effects may be caused by widespread, diverse mechanisms. 

Interestingly, several lines of evidence have suggested that trivalent arsenic can induce 

lytic replication in alpha- (HSV, VZV), beta- (human cytomegalovirus [HCMV]), and gamma- 

(Epstein-Barr virus [EBV]) herpesviruses (167, 168, 186, 187). Specifically, reactivation of HSV 

and VZV has been observed in acute promyelocytic leukemia patients treated with As2O3 at a 

rate higher than that found with general immunosuppression and in a manner which is not 

consistent with reactivation from immunosuppression (167, 168). To our knowledge, no studies 

have been published investigating the mechanism for the reactivation of HSV or VZV in 

response to As2O3. However, activation of EBV replication in response to As2O3 was correlated 

with the degradation of PML, although no direct evidence of a link was presented (187), while 
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the induction of HCMV immediate early gene synthesis by sodium arsenite, another trivalent 

arsenic compound, was suggested to be the result of heat shock protein activation (186).  Overall, 

the mechanisms for herpesvirus reactivation following As2O3 treatment remain incompletely 

understood and delving into the mechanisms by which As2O enhances the replication of other 

viruses may led to useful insights into herpesvirus reactivation. For instance, as cellular 

degradation pathways may play a role in the enhancement of rAAV2 transduction by As2O3, it 

would be interesting to determine whether there is a role for these pathways in As2O3 mediated 

reactivation of HSV or VZV. 

In addition to elucidating possible mechanisms to explore in the effect of As2O3 on the 

replication of other viruses, the enhancement of rAAV transduction observed with As2O3 

treatment may become important for gene therapy applications. We observed an increase in 

rAAV2 transduction both in vitro (Fig. 3.1, Fig. 3.2) and in vivo in several serotypes of rAAV 

with no apparent toxicity (Fig. 3.6, Fig. 3.7, data not shown). For some gene therapy 

applications, especially those involving systemic gene delivery, low levels of transgene 

expression or loss of transgene expression over time have limited the efficacy observed in 

clinical settings (86, 88). Pharmacological treatments are a promising approach to increasing 

rAAV transduction in order to address these issues, particularly when pharmacological agents 

currently approved for use in humans are utilized. In fact, bortezomib, a proteasome inhibitor, 

has been used in large animal models to enhance rAAV transduction (109); however, the serious 

and even fatal side effects associated with this drug makes its clinical use for enhancement of 

rAAV transduction problematic (109, 155). For this reason, identifying other agents, such as 

As2O3, capable of enhancing rAAV transduction is important to the clinical applications of 

rAAV. In addition, investigating the mechanism behind the increase in transduction observed 
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with pharmacological treatments may allow us to identify steps in transduction or cellular factors 

which limit rAAV transduction and to design other strategies to circumvent these difficulties. 

Therefore, our data demonstrating that As2O3 increases the transduction of rAAV vectors both in 

vitro and in vivo and suggesting that it acts to stabilize perinuclear accumulations of rAAV in a 

way dependent on ROS may broaden our toolkit for understanding AAV biology and improving 

its gene therapy applications. In conclusion, pursuing the biology behind the effects of As2O3 on 

rAAV transduction may have important implications both for AAV mediated gene therapy and 

for elucidating the mechanism by which As2O3 affects the replication of other clinically relevant 

viruses.  
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Figure 3.1: HEK-293 cells transduced by rAAV2 after As2O3 treatment. HEK-293 cells were 

treated overnight with As2O3 or a vehicle control and then transduced with rAAV2-CBA-EGFP. 

(A) Cells were treated with the indicated dose of As2O3 and transduced with 500 vg/cell rAAV2. 

The percentage of cells transduced at 48 hours post-transduction is shown as a fold value to the 0 

µM treatment group. (B) The numbers of vector genome copies per cell present and percentages 

of cells transduced were assayed at 48 hours post-transduction following the indicated treatment 

and transduction with 500 vg/cell. Values are indicted as fold to the no treatment group. (C) 

Cells were treated and transduced as in (B), harvested at the indicated time points, and assayed 

for the percentage of cells transduced. Values are indicated as fold to 24 hour no treatment 

group. (NT) no treatment, (Veh) vehicle. (D) After treatment as in (B), cells were transduced 

with the indicated doses of rAAV2 and the percentage of cells transduced was assayed at 48 

hours post-transduction. Values represent the percentage of the maximum value reached in each 

experiment. Data shown are the mean of at least 3 independent experiments; error bars represent 

the SEM. (*) p <0.05, (***) p<0.005 based on comparisons of sample means by the Student’s t-

test. 
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Figure 3.2: rAAV2 transduction after As2O3 treatment of several human and non-human 

cell lines. Cells were treated overnight with the indicated doses of As2O3 and a cell line specific 

dose of rAAV2. The percentage of cells transduced (left panel) and numbers of vector genomes 

per cell (right panel) were assayed at 48 hours post-transduction in HeLa cells transduced with 

250 vg/cell (A), HFF hTERT transduced with 5000 vg/cell (B), Cos-1 cells transduced with 1000 

vg/cell (C), C-12 cells transduced with 3000 vg/cell (D), and Cho-K1 cells transduced with 5000 

vg/cell (E). Values represent fold to no treatment and are the mean of at least 3 independent 

experiments. Error bars represent the SEM. (*) p<0.05, (**) p<0.01, (***) p<0.005 based on 

comparisons of sample means by the Student’s t-test. 
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Figure 3.3: Mechanistic insights regarding rAAV2 transduction after As2O3 treatment. (A) 
HEK-293 cells were treated overnight with 4 µM As2O3 or a vehicle control, then transduced 

with 500 vg/cell single stranded rAAV2 (ssAAV) or 100 vg/cell self-complementary rAAV2 

(scAAV), and the percentage of cells transduced was assayed at 48 hours post-transduction. (B) 

HEK-293 cells were treated with 4 µM As2O3 or a vehicle control starting at the indicated times 

and continuing to the time of harvest, 48 hours post-transduction with 500 vg/cell rAAV2, and 

the percentage of cells transduced was assayed. (C) HEK-293 cells were treated overnight with 4 

µM As2O3 or vehicle and then transduced with 1000 vg/cell rAAV2 and numbers of intracellular 

vector genomes were assayed at the indicated times post-transduction. (D) HEK-293 cells were 

treated overnight with 4 µM As2O3 or a vehicle control, and then stained with propidium iodide 

to determine the percentage of cells in each cell cycle stage. (E) HEK-293 cells were treated as 

in (C) and 1 µM MG132, a proteasome inhibitor, or a vehicle control was added at the time of 

transduction. Cells were harvested at 24 hours post-transduction and the percentage of GFP 

positive cells and the median fluorescence intensity of the positive cells were assayed. Data 

representative of three independent experiments is shown. Error bars represent one SD. (*) 

p<0.05 based on the non-parametric Kruskal-Wallis test. 
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Figure 3.4: Subcellular localization of rAAV2-Cy5 virions after As2O3 treatment. Cho-K1 

cells were treated with a vehicle control (A, C, & E) or 8 µM As2O3 (B, D, & F) from 18 hours 

pre-transduction to the time of harvest and transduced with 10 000 vg/cell rAAV2-Cy5. Cells 

were fixed at 8 hour post-transduction (A & B), 24 hours post-transduction (C & D), or 32 hours 

post-transduction for (E & F). The localization of rAAV virions was determined by confocal 

microscopy and representative deconvoluted 3D projections are shown. Cy5 signal is shown in 

yellow; DAPI signal is shown in purple. Scale bars represent five µm. 
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Figure 3.5: The role of ROS in the rAAV2 transduction effects of As2O3. (A) HEK-293 cells 

were treated overnight with no treatment (red), 1 µM As2O3 (blue), 2 µM As2O3 (black), 4 µM 

As2O3 (purple), or 8 µM As2O3 (orange) and ROS were measured with DHE. A histogram of 

fluorescence intensity is shown. (B)  HEK-293 cells were treated overnight with a vehicle 

control (red) or 4 µM As2O3 (blue) and with PBS (solid line), 5 mM NAC (small dashed line), or 

10 mM NAC (intermediate dashed line) to scavenge ROS. ROS were measured with DHE and a 

histogram of fluorescence intensity is shown. As2O3 10 mM NAC treated curve is solid in 

histogram. (C)  Cells were treated as in (A) and the median fluorescence intensity was plotted 

versus As2O3 concentration. (D)  Cells were treated as in (B) and then transduced with 500 

vg/cell rAAV2 and the percentage of cells transduced was assayed at 48 hours post-transduction. 

Data is representative of three independent experiments. Error bars represent one SD. (*) p<0.05 

based on the Kruskal-Wallis test. 
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Figure 3.6: rAAV2 transduction effects of As2O3 in vivo. Five to six week old BALB/c mice 

were treated for 5 days with 5 µg/g/day As2O3 or a PBS vehicle control by intraperitoneal 

injection and transduced with 2×10
11

 vg rAAV2-CBA-luciferase on the third day of treatment. 

Images from luciferase live imaging at 2 days (A) and 7 days (B) post-transduction are shown (5 

minute exposure). Quantification of luciferase activity from live imaging from 2 days to 12 days 

post-transduction from the whole mouse (C) and from the area of the liver (D) is shown with 

fold values of As2O3 over vehicle (n=5). Error bars represent one SD. (*) p<0.05 based on the 

Kruskal-Wallis test. 
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Figure 3.7: Transduction from several serotypes of rAAV after As2O3 treatment. Five to six 

week old C57BL/6 mice were treated for 5 days with 5 µg/g/day As2O3 or a PBS vehicle control 

by intraperitoneal injection and transduced with 1×10
11

 vg rAAV6-CBA-luciferase (A & B), 

rAAV8-CBA-luciferase (C & D), or rAAV9-CBA-luciferase (E, F, G, & H) on the third day of 

treatment. Images from live luciferase imaging are shown on day 7 for rAAV6 (A) (5 minute 

exposure), day 2 for rAAV8 (C) (5 minute exposure), day 5 for rAAV9 (E) (1 minute exposure), 

and day 21 for rAAV9 (G) (1 minute exposure). Quantification of luciferase activity from live 

imaging is shown at the same time points for rAAV6 (B) (n=4), rAAV8 (D) (n=4), and rAAV9 

(F & H) (n=3). Error bars represent one SD. (*) p<0.05 based on the Kruskal-Wallis test. 
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Figure 3.8: Model for effect of arsenic trioxide on AAV transduction. (A) In untreated cells, 

rAAV enters the cell through receptor-mediated endocytosis and is trafficked to the MTOC. At 

the MTOC, virions can be retained for a time or proceed to the nucleus; however, the majority of 

the virions are degraded through mechanisms possibly involving the proteasome or lysosomes 

and the perinuclear accumulation clears by 32 hours post-transduction. (B) In As2O3 treated 

cells, cell entry and trafficking to the MTOC occurs as in (A); however, As2O3, through ROS 

formation, acts to block the degradation of the virion. Consequently, more virions continue on in 

the transduction pathway, ultimately leading to greater transgene expression. 

 



98 

CHAPTER 4 

Mechanistic insights into the enhancement of adeno-associated virus transduction by 

proteasome inhibitors
3
 

 

Summary 

Proteasome inhibitors (e.g. bortezomib, MG132) are known to enhance adeno-associated 

virus (AAV) transduction; however, whether this results from pleotropic proteasome inhibition 

or off-target serine and/or cysteine protease inhibition remains unresolved. Here, we examined 

rAAV effects of a new proteasome inhibitor, carfilzomib, which specifically inhibits 

chymotrypsin-like proteasome activity and no other proteases. We determined proteasome 

inhibitors act on rAAV through proteasome inhibition and not serine or cysteine protease 

inhibition, likely through positive changes late in transduction. 

 

Introduction 

Adeno-associated virus (AAV) is frequently utilized as a gene delivery vector for clinical 

application; thus, several approaches have been undertaken to increase efficacy, including 

transgene optimization (188-190), capsid alteration (reviewed in (4)), and drug treatments to 

enhance transduction (16, 104-107, 109, 132, 153, 154).  Proteasome inhibitors (PIs) were first 

described to enhance rAAV polarized airway cell transduction (105) and since then PIs 

including, N-acetyl-L-leucinyl-L-leucinyl-norleucinal (LLnL) (105, 191-196), MG132 

                                                           
3Adapted for this dissertation from: Mitchell A.M. and R.J. Samulski. Posted September 11

th
, 

2013. Mechanistic insights into the enhancement of adeno-associated virus transduction by 

proteasome inhibitors. J Virol. doi:10.1128/JVI.01826-13. 
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(105-107, 109, 169, 179, 191, 194, 197-199) bortezomib (108, 109), and celastrol (200), have 

been observed to enhance transduction in many cell types both in vitro and in vivo.  

Nevertheless, questions remain regarding the mechanism of this enhancement. Although 

ubiquitinated rAAV2 capsids proteins accumulate after PI treatment, suggesting PIs prevent the 

degradation of ubiquitinated AAV capsids and lead to increased transgene expression, some 

level of capsid dissociation (105) or phosphorylation (201, 202) appears to be necessary for 

ubiquitination and the role of the proteasome in these effects has not been directly examined. In 

addition to proteasome inhibition, PIs are commonly observed to inhibit other proteases such as 

cysteine (MG-132) and serine (MG-132 and bortezomib) proteases (123).  These proteases have 

very different cellular roles from the proteasome, which degrades ubiquitinated cytoplasmic and 

nuclear proteins, including lysosomal degradation and calcium dependent intracellular signaling. 

In fact, the in vivo peripheral neuropathy caused by bortezomib is the result of serine protease 

inhibition leading to neurotoxicity (203), demonstrating the importance of off-target effects with 

clinically relevant dosing of PIs.  The broad range of inhibition caused by PIs has caused many 

in the field of rAAV research to hypothesize that the effects of PIs on rAAV transduction are due 

to off-target effects of PIs and not inhibition of the proteasome. In addition, whether the 

enhancement of rAAV transduction occurs through proteasome inhibition or protease inhibition, 

it is also unclear whether the effects of PIs prevent the degradation of rAAV virions or whether 

the cause a positive change in transduction. 

The promiscuity of so called “first-generation” PIs led to the development of new PIs 

with restricted specificity. Proteases, including the proteasome, act through a nucleophilic attack 

by their active site residue, which can be serine, cysteine, threonine, or by water in the case of 

aspartic and metalloproteases. The protease’s active site residue is used to classify the protease 
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(e.g. serine protease). Unlike other classes of proteases, active site threonine of the proteasome is 

the N-terminal residue of each catalytic subunit, exposing the amino group to possible reactivity 

(204).  Carfilzomib, a second-generation PI, relies on this amino group to form a morpholino, 

covalently inhibiting cleavage (205), and so cannot inhibit other proteases (206, 207).  In fact, 

carfilzomib highly inhibits only the chymotrypsin-like activity of the proteasome (207), making 

it a useful tool for examining the importance of proteasome inhibition on enhancement of rAAV 

transduction and addressing the hypothesis above that PIs act on rAAV transduction through off-

target effects on other proteases. To determine whether the enhancement of rAAV transduction 

observed with PI, treatment occurs from proteasome inhibition or from inhibition of other 

proteases, we utilized several PIs as well as cysteine and serine protease inhibitors and assessed 

their effect on rAAV transduction.  

 

Results and Discussion 

Carfilzomib enhances rAAV2 transduction in vitro. To address the question of 

whether a specific PI is sufficient to enhance rAAV transduction, we utilized three PIs, MG132, 

bortezomib, and carfilzomib (Selleck Chemicals), and a rAAV serotype 2 (rAAV2) vector 

expressing luciferase or EGFP transgenes (52).  We co-administered the drugs with 1000 vector 

genomes per cell (vg/cell) rAAV2 to HeLa cells and compared their effects on transduction at 24 

hours (107).  Using luciferase vector, we determined that all of these PIs enhanced rAAV2 

transduction at a range of doses, although we observed shifts in the curves that correlate with 

differing IC50 values (bortezomib—0.6 nM, carfilzomib—5 nM, and MG132—100 nM (208-

210)) (Fig. 4.1A). To differentiate between the numbers of cells transduced and the level of their 

transduction, we treated with 1 µM PI, transduced with 500 vg/cell rAAV2-EGFP, and assayed 
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EGFP expression by flow cytometry (132).  The PIs enhanced both the percentage of cells 

transduced (Fig. 4.1B) and their fluorescence intensity (Fig. 4.1C). This enhancement can also 

be observed visually (Fig. 4.1D). Carfilzomib’s transduction enhancement suggests that 

proteasome inhibition is sufficient for PI effects on rAAV transduction, as this is carfilzomib’s 

only activity. Furthermore, the similar enhancement observed between bortezomib and 

carfilzomib suggests that the enhancement from bortezomib may be primarily due to proteasome 

inhibition. 

Serine and cysteine protease inhibition do not enhance rAAV2 transduction. As we 

found proteasome inhibition sufficient for the enhancement of rAAV transduction, we asked 

whether serine protease inhibition, observed with MG132 and bortezomib, or cysteine protease 

inhibition, observed with MG132, have effects on rAAV2 transduction. We treated HeLa cells 

twice with phenylmethane sulfonylfluoride (PMSF) to inhibit serine proteases as has been 

described (211), co-administer 1000 vg/cell rAAV2 with the second dose, and analyzed 

transduction by luciferase assay at 24 hours.  We observed no increases in rAAV2 transduction 

from treatment with a 1000-fold range of PMSF doses with a maximum dose 10-fold over 

PMSF’s working concentration (Fig. 4.2A), suggesting serine protease inhibition does not 

enhance rAAV2 transduction. We confirmed the ability of PMSF to inhibit serine proteases at 

these concentrations with a colorimetric trypsin activity assay (BioVision Inc), which measured 

cleavage of a trypsin substrate over time (Fig. 4.2B). To investigate whether cysteine proteases 

affect rAAV transduction, we treated cells with E-64 and assayed transduction as above. rAAV2 

transduction did not change over a 10 000-fold range of E-64 doses with a maximum dose 10- to 

100-fold over E-64’s working concentration (Fig. 4.2C), suggesting that cysteine protease 

inhibition also does not enhance rAAV2 transduction. We confirmed the ability of E-64 to 
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inhibit cysteine proteases at these concentrations with a luminescent calpain assay (Promega), 

which measured cleavage of a luminescent substrate in the presence and absence of E-64 (Fig. 

4.2D). Although cathepsins B and L (cysteine proteases) have been suggested to important for 

rAAV transduction (212), we also observed no decreases in transduction with E-64 treatment.  

This may be due to a difference in species as the interaction of cathepsins with rAAV was 

identified in murine cells, whereas we are using human cells. Nevertheless, as PIs inhibition of 

these proteases would only decrease transduction, cysteine protease inhibition is unlikely to be 

the mechanism by which PIs enhance rAAV transduction. Taken together, these data suggest 

enhancement of rAAV transduction by PIs is not due to off target effects on other proteases. 

Bortezomib and carfilzomib act on rAAV transduction through the same 

mechanism. Our results thus far suggest that proteasomal inhibition is the responsible for 

enhancement of rAAV transduction after PI treatment. To investigate this hypothesis further, we 

determined whether bortezomib and carfilzomib are both effective on several different AAV 

serotypes. We treated HeLa cells with 1 µM bortezomib or carfilzomib and 20 000 vg/cell 

rAAV6, 100 000 vg/cell rAAV8, or 100 000 vg/cell rAAV9 and assayed transduction by flow 

cytometry at 24 hours. The enhancement of the percentage of cells transduced was similar in all 

serotypes between bortezomib and carfilzomib, although carfilzomib enhanced fluorescence 

intensity more for some serotypes (Fig. 4.3A), strengthening the hypothesis that bortezomib and 

carfilzomib act through the same mechanism. Furthermore, to our knowledge, this is the first 

report rAAV9 enhancement by PIs. To assess directly whether bortezomib and carfilzomib act 

through the same mechanism, we performed an exchange experiment where we treated cells with 

bortezomib or carfilzomib in combination, transduced with rAAV2 as before, and assayed 

transduction at 24 hours. There were no increases or decreases in transduction from combining 
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these two drugs (Fig. 4.3B), suggesting they can be used interchangeably. Combined with our 

other data, this suggests that bortezomib and carfilzomib both act to enhance rAAV transduction 

through proteasome inhibition. 

Consequently, two hypotheses can be drawn for how proteasome inhibition enhances 

rAAV transduction:  (i) proteasome inhibition prevent the degradation of rAAV capsids, 

increasing the rAAV pool available to complete transduction; (ii) as misfolded protein responses 

can enhance rAAV transduction (147), a general misfolded protein response and/or 

ubiquitination of rAAV capsids facilitates late steps in transduction. To address these 

hypotheses, we treated HeLa cells with bortezomib or carfilzomib and rAAV2 as before and 

assayed intracellular vector genome copy number at 24 hours by qPCR (132).  The copy number 

was increased 2.3-fold and 1.8-fold by bortezomib and carfilzomib treatment, respectively (Fig. 

4.3C); however, this was much smaller than the 28-fold and 23-fold transduction increases 

observed with bortezomib and carfilzomib (Fig. 4.1A). These data suggest the enhancement of 

transduction observe is unlikely to be directly due to capsid retention (hypothesis (i)). Instead, it 

is more likely that the buildup of ubiquitinated capsid or a misfolded protein response lead to 

increased favorability in late transduction steps. This agrees with previous results demonstrating 

increased nuclear localization of virus following PI treatment (105, 109, 169, 194, 200, 201) and 

specifically increased nucleolar localization (107).  Furthermore, we previously reported that 

treatment with arsenic trioxide leads to increased transduction through stabilization of 

perinuclear rAAV capsids and that this effect was distinguishable from PI effects (132).  Taken 

with our current results, this suggests that, while arsenic trioxide is directly influencing 

transduction through the retention of capsids that would otherwise be degraded, PIs are 
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influencing transduction through a modification secondary to degradation, explaining their 

differing effects. 

Carfilzomib is less successful at enhancing rAAV transduction in vivo than 

bortezomib. As carfilzomib and bortezomib demonstrate similar rAAV transduction 

enhancement in vitro, we tested carfilzomib’s ability to enhance rAAV2 transduction in vivo to 

determine whether proteasome inhibition is sufficient for enhancement of rAAV transduction in 

vivo. We utilized rAAV2, a liver tropic vector, as the majority of AAV biology has been studied 

with this serotype; however, pharmacokinetic studies with carfilzomib demonstrate low activity 

in the liver due to drug metabolism (207). Therefore, we expected less enhancement of rAAV 

transduction in the liver with carfilzomib than with bortezomib. We co-administered either 0.5 

mg/kg bortezomib or 1 mg/kg carfilzomib, a similar molar dose, and 1×10
11

 vg/mouse rAAV2 

retro-orbitally into age-matched female BALB/c mice (Jackson Laboratories) (109) and assayed 

transduction through live luciferase imaging (132).  No acute liver toxicity occurred with the 

vehicle or either of the proteasome inhibitors at this dose (Fig. 4.4A). We observed enhanced 

transduction from both bortezomib and carfilzomib treatment at 7 days post-transduction (Fig. 

4.4B) which quantified as 12.4-fold and 2.7-fold enhancements, respectively (Fig. 4.4C). At 14 

days, bortezomib mice maintained higher transduction than vehicle mice; however, carfilzomib 

and vehicle mice demonstrated similar transduction (Fig. 4.4D). Ex vivo quantification of 

transduction by luciferase assay and vector genome copy number (132) confirmed the live 

imaging data (Fig. 4.4E).  Despite the expected lesser effects of carfilzomib than bortezomib in 

the liver, these data demonstrate that proteasome inhibition is sufficient for the enhancement of 

rAAV transduction in vivo. In addition, this suggests that, although carfilzomib is not ideal for in 
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vivo rAAV transduction enhancement in the liver, other second-generation, highly specific PIs 

should be evaluated for this purpose as they become available. 

 

Conclusions 

Overall, our data demonstrate proteasome inhibition is sufficient for rAAV transduction 

enhancement and serine and cysteine protease inhibition is unlikely to contribute to this 

enhancement. These data will alter the prevailing view in the field that the PIs act on rAAV 

transduction through off-target effects and instead demonstrate that they act through inhibition of 

the proteasome. Furthermore, the strategies employed to address these questions could now be 

applied to other viruses which are thought to be affected by proteasomal activity, such as 

hepatitis B virus or herpes simplex virus (213, 214).  Additionally, the transduction increase 

seems to be secondary to prevention of rAAV capsid degradation and is instead due to a positive 

change in late stages of transduction. Furthermore, although carfilzomib is not ideal for 

enhancing rAAV-mediated liver transduction, our data suggest that other second-generation PIs 

in development, such as ONX0912, MLN9708, and marizomib (215), should be examined for 

enhancement of rAAV transduction in vivo.  As these PIs may have fewer side effects than 

bortezomib, this may become important for the enhancement of rAAV clinical gene therapy.  
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Figure 4.1:  Carfilzomib enhances rAAV2 transduction. (A) HeLa cells were co-treated with the 

indicated does of bortezomib, carfilzomib, MG132 or a DMSO vehicle control and transduced with 1000 

vg/cell rAAV2-luciferase. Transduction at 24 hours is indicated as normalized luciferase activity and fold 

values to vehicle treated group. (B-C) HeLa cells were co-treated with 1 µM PI and 500 vg/cell rAAV2-

EGFP and transduction was analyzed by flow cytometry at 24 hours. The percentage of cells transduced 

(B) and median fluorescence intensity of the transduced cells (C) is indicated. (D) Brightfield and EGPF 

fluorescence images at 24 hours post-transduction of cell treated as in (B) and (C) visually indicating 

transduction. Data shown are representative of three independent experiments. Error bars represent one 

SD. (*) p<0.05 versus the vehicle control based on the Kruskal-Wallis test. 
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Figure 4.2:  Serine and cysteine protease inhibition does not enhance rAAV2 transduction. (A)  
HeLa cells were treated 3 hours prior to and at the time of transduction with the indicated dose of PMSF, 

a serine protease inhibitor, or an ethanol vehicle control and transduced with 1000 vg/cell rAAV2-

luciferase. Transduction is indicated as normalized luciferase activity. “Vehicle L” group corresponds to 

10-1000 µM treatments while “Vehicle H” group corresponds to 10 000 µM treatment. (B) Indicated 

concentrations of PMSF or vehicle were combined with 0.002% trypsin and incubated 30 min at room 

temperature. Solutions were diluted 1:10 in assay buffer and combined with trypsin substrate in 

quadruplicate. Average absorbance at 415 nm is shown for 60 readings at 60 s intervals. (C) HeLa cells 

were treated as in (A) with E-64, a cysteine protease inhibitor, or a DMSO vehicle control. Transduction 

is indicated as normalized luciferase activity. (D) Indicated concentrations of E-64 or vehicle control were 

combined with 20 nM human calpain 1 (BioVision), incubated at room temperature for 10 min, and 

combined with Calpain-Glo luciferase reagent (Promega) with 2 mM CaCl2. E-64 activity is indicated as 

relative light units. Data shown are representative of three independent experiments. Error bars represent 

one SD. 
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Figure 4.3:  Bortezomib and carfilzomib act on rAAV2 transduction through the same mechanism. 

(A) HeLa cells were treated with 1 µM bortezomib, carfilzomib, or vehicle control and 20 000 vg/cell 

rAAV6-EGFP, 100 000 vg/cell rAAV8-EGFP, or 100 000 vg/cell rAAV9-EGFP and transduction was 

assayed by flow cytometry at 24 hours post-transduction. Transduction is indicated as fold values to 

vehicle control groups of percentage of cells transduced and median fluorescence intensity. (B) HeLa 

cells were treated with the indicated µM doses of bortezomib and carfilzomib or a vehicle control and 

1000 vg/cell rAAV2-lucifease. Transduction is indicated as normalized luciferase activity. (C) HeLa cells 

were treated as in Fig. 1B and intracellular vector genome copy number was analyzed at 24 hours post-

transduction by qPCR. Data is indicated as fold to vehicle control. Data shown in (A) and (B) are 

representative of three independent experiments. Data shown in (C) is the mean of three independent 

experiments. Error bars represent one SD. (*) p<0.05 versus vehicle control group based on the Kruskal-

Wallis test. 
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Figure 4.4:  Bortezomib is more efficient at enhancing rAAV2 transduction in vivo than 

carfilzomib. Female BALB/c mice were treated with 1E11 vg/mouse rAAV2-luciferase and 0.5 mg/kg 

bortezomib, 1 mg/kg carfilzomib, or DMSO vehicle control. (A) Serum was collected from mice at 24 

hours post-treatment and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were 
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measured. Individual animals are indicated by diamonds and mean is indicated by bars. (B) Transduction 

was assayed by live imaging at 7 days post-transduction and (C) light output from the area of the liver 

was quantified. (D) Transduction at 13 days was assayed by live imaging. (E) At 14 days, livers were 

harvested and transduction is indicated by normalized luciferase activity. (F) Vector genome copy 

number was assayed by qPCR. Error bars represent one SD. (*) p<0.05 versus the vehicle control based 

on the Kruskal-Wallis test. 
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CHAPTER 5 

Conclusions and Future Directions 

 

Summary of Findings 

The goal of this dissertation was to determine mechanisms by which the transduction of 

rAAV can be increased without increasing viral dose. This aim is relevant given the frequent 

observation of low transgene expression or loss of transgene expression over time in clinical 

systemic gene therapy applications utilizing rAAV. Towards this aim, we completed three 

projects. In the first project, we determined that PML inhibited rAAV transduction through 

prevention of rAAV second-strand synthesis and that knockout of PML led to up to 50-fold 

increases in transduction (Chapter 2). We then examined the effect of a chemotherapeutic agent, 

As2O3, on AAV transduction. Although this agent was initially examined due to its known 

effects on a PML fusion protein found in APL patients, we determined that the enhancement of 

transduction observed with As2O3 was unrelated to PML and, in fact, an earlier step in rAAV 

transduction was altered than is affected by PML. Specifically, we determined that As2O3 causes 

stabilization of perinuclear accumulations of rAAV virions, presumably allowing for increased 

nuclear trafficking of virions (Chapter 3, (132)). Interestingly, despite the effect of As2O3 on 

rAAV degradation, the effects of As2O3 were distinguishable from the effects of PIs on rAAV 

transduction. Given the lack of consensus on the mechanism of PI effects on rAAV transduction, 

we then proceeded to investigate whether PIs act on rAAV transduction through proteasome 
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inhibition or through another mechanism. We determined that proteasome inhibition was 

sufficient for enhancement of rAAV transduction and that, in contrast to a direct effect of 

inhibition of degradation, PIs caused an increase in efficiency in a late transduction step (Chapter 

4, (216)). The steps in rAAV intracellular trafficking at which these three mechanisms act to 

increase rAAV transduction are illustrated in Figure 5.1. The following sections will specify 

future directions for these projects relating both to elucidation of rAAV biology and to the 

application of the results. 

 

Future Perspectives for the Role of PML in Parvovirus Biology and rAAV Gene Therapy 

In Chapter 2, we demonstrated that PML causes inhibition of rAAV second-strand DNA 

synthesis and so inhibits rAAV transduction both in vitro and in vivo. The method by which 

PML accomplishes this inhibition and the other cellular factors involved in the process are 

important outstanding questions relating to these results. Although AAV DNA replication and 

the cellular factors involved have been investigated, the template DNA utilized in the 

experiments was plasmid DNA (36, 37); therefore, the specific cellular factors necessary for 

initial synthesis of the second DNA strand are largely unknown. In addition, although a wide 

variety of work has examined the interactions of PML with specific cellular proteins (compiled 

in (217)), the consequences of these interactions is often unknown. Nevertheless, we have not 

observed a direct interaction between PML and rAAV genomes or capsids (data not shown), 

suggesting other cellular factors may act as intermediaries in the inhibition of rAAV DNA 

replication by PML. As a first step in identifying factors that might mediate interactions between 

PML and rAAV, we utilized a manually curated PML interactome containing more than 150 

proteins that interact with PML and more than 750 interactions between them (217) to determine 
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which of these proteins had known interactions with AAV. In addition, we sorted these proteins 

with known interactions based on type of protein and role in rAAV transduction (Fig. 5.2). Of 

these proteins, RPA, a single-stranded DNA binding protein, appears of immediate interest due 

to its role in increasing the processitivity of DNA synthesis during AAV genome replication 

(36). PML is thought to sequester RPA in cells not undergoing DNA replication and, therefore, 

we hypothesized that PML inhibits rAAV second-strand synthesis by sequestering RPA. 

However, we observed no changes in levels of RPA associated with rAAV genomes or the 

subcellular localization of RPA when PML was overexpressed (data not shown), suggesting 

RPA does not mediate PML’s effect on rAAV transduction. Therefore, the cellular factors 

mediating the effect of PML on rAAV and the mechanism by which they act remain open 

questions. Another interesting part of this question is what regions of PML are responsible for its 

inhibition of rAAV transduction. Our experiments demonstrated that PMLII had the greatest 

effect on rAAV transduction, while the other isoforms had a lesser 2-fold effect on transduction 

(Fig. 2.8). The inhibition caused by the other isoforms (PMLI, PMLIII, PMLIV, PMLV, and 

PMLVI) may have been due to either the shared regions of these proteins (exons 1-6a) or the 

movement of endogenous PMLII into PML bodies due to the overexpression of other isoforms 

(117, 137). These data demonstrate that the unique region of PMLII (Fig. 2.12) plays a 

significant role in rAAV transduction, while the role of the regions shared between the isoforms 

remains questionable. Therefore, elucidating the specific regions of PML responsible for its 

effect on rAAV transduction is an interesting future direction. 

We also observed that, in a rAAV production setting, PML overexpression led to a small 

but significant change in replicated rAAV DNA levels but a much larger change in the capsid 

and Rep protein levels (Fig. 2.10). The large decrease in viral protein levels was also observed 
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for wild-type AAV. These data raise the question of whether, beyond its role in second-strand 

synthesis, PML also represses transcription from AAV’s promoters. As PML has been 

demonstrated to inhibit the infection of several other viruses through effects on viral 

transcription (110, 113) and a large proportion of PML interacting proteins are involved in 

transcriptional control (217), an effect of PML on AAV transcription would not be unexpected. 

Furthermore, PML interacts with several factors known to affect AAV transcription (Fig. 5.2). 

Therefore, whether PML causes inhibition of AAV transcription will be interesting to address in 

the future. Moreover, the role of PML on AAV replication also broaches the question of the 

effect of helper viruses on PML activity and rAAV replication. Our replication experiments were 

conducted in the presence of a helper plasmid instead of replicating Ad to avoid changing levels 

of PML altering proteins during the experiment. Nevertheless, both Ad and HSV encode proteins 

that alter or inhibit PML activity (115, 116), suggesting that PML’s role in AAV replication may 

differ with helper virus context, which merits further investigation. An additional question raised 

by the inhibition of wild-type AAV replication by PML is whether this observation can be 

extended to autonomous parvoviruses. For instance, MVM utilizes many of the same cellular 

DNA replication factors as AAV and MVM replication centers partially colocalize with PML at 

specific times during its replication cycle (118, 138). These data suggest that PML may play a 

role in the replication of autonomous parvoviruses including MVM and this hypothesis should be 

investigated in the future. 

In addition to future directions related to the elucidation of rAAV biology, the inhibitory 

effect of PML on rAAV suggests directions that could be taken to avoid PML interactions and, 

therefore, enhance rAAV transduction and production. In production contexts, a shRNA could be 

incorporated into the helper plasmid (pXX680) in order to lower the levels of PML present 
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during vector genome replication. Although we examined the effect of PML on rAAV 

production only in an overexpression context, we hypothesize endogenous levels of PML inhibit 

rAAV production, and so lowering the levels of endogenous PML during production would lead 

an increase vector production. Moreover, in transduction settings, incorporating a PML shRNA 

into the transgene cassette could lower cellular PML levels allowing more vector genomes to 

become double stranded and so increasing transduction. This would be useful as, although 

scAAV can avoid the effects of PML on transduction (Fig. 2.7 & 2.8), the packaging capacity of 

scAAV is too small to accommodate the necessary transgene for many applications. In addition, 

once the cellular factors mediating PML’s effect on rAAV transduction are elucidated, it may be 

possible to target specifically these factors in order to accomplish a similar enhancement of 

transduction. 

 

Future Perspectives Relating to As2O3 Enhancement of rAAV Transduction 

In Chapter 3, we determined that As2O3 acts to increase rAAV transduction through 

stabilization of perinuclear accumulations of rAAV virions leading to increased vector genome 

copy number (Fig. 3.3 & Fig. 3.4). Although this effect was distinguishable from the effect of 

PIs on rAAV transduction (Fig. 3.3), the mostly likely mechanism for this effect is a prevention 

of rAAV degradation. However, as some portion of virions at the MTOC are retained within 

endosomes (14), it is not clear whether the degradation process affected is lysosomal, 

proteasomal, or a combination of both. Therefore, the specific rAAV degradation pathways 

affected by As2O3 remains an interesting question. Furthermore, although we determined as a 

first step in the cellular mechanism that As2O3 acts on rAAV transduction through ROS (Fig. 

3.5), As2O3 influences many cellular pathways (175) and the downstream targets of As2O3 and 
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ROS remain unidentified. In the future, it will be interesting to identify the specific cellular 

pathways leading to the increase in rAAV transduction. Moreover, we also determined that 

As2O3 increased the transduction of several rAAV serotypes in vivo but that the timing of the 

increase differed between serotypes (Fig. 3.7). Specifically, the enhancement of rAAV8 

transduction could only be observed at 2 days post-transduction and was not evident at later time 

points. These data suggest that As2O3 affects a rAAV transduction step that is different for 

rAAV8 than for the other serotypes examined (rAAV2, rAAV6, and rAAV9). The majority of 

rAAV intracellular trafficking has been elucidated using rAAV2; however, several recent reports 

compare rAAV serotypes in order to determine the similarities and differences in their 

trafficking pathways (178, 179). Specifically, rAAV8 and rAAV2 have been demonstrated to 

traffic through different endosomal compartment and rely on different conditions for endosomal 

escape (179); therefore, the difference in the kinetics of As2O3’s effect on rAAV8 transduction 

may be due to a difference in endosomal trafficking. This will be an interesting question to 

examine in the future. It will also be interesting to determine what AAV8 capsid motifs are 

responsible for the differing As2O3 effect. 

Beyond further elucidations of rAAV biology, the enhancement of rAAV by As2O3 can 

also be evaluated for application. As2O3 is approved for use in humans as a chemotherapeutic 

agent to treat APL and is under evaluation for the treatment of other forms of leukemia (119-

121). Indeed, As2O3 is often considered a less toxic alternative to traditional chemotherapy (156). 

The current “gold-standard” for enhancement of rAAV transduction is bortezomib, a PI, which 

has been tested in large animal models (109). However, bortezomib and other PIs can cause 

idiopathic liver failure, prohibiting its use to enhance rAAV transduction (109, 155). Therefore, 

As2O3 should be further evaluated for in vivo enhancement of rAAV transduction. These 
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evaluations could include use of As2O3 with rAAV carrying therapeutic transgenes, in disease 

models, and with other routes of rAAV administration. In addition, direct comparisons of the 

transduction enhancement, risks, and side effects between As2O3 and bortezomib would be 

useful. With this type of evaluation, As2O3 may eventually become a good candidate for 

enhancement of clinical rAAV transduction. 

 

Future Perspectives for the Mechanism of rAAV Transduction Enhancement Following 

Proteasome Inhibitor Treatment 

In Chapter 4, we determined that proteasome inhibition with bortezomib or carfilzomib 

resulted in an increase in rAAV transduction more than 10-fold higher than the increase in the 

vector genome copy number (Fig. 4.3), demonstrating that the effect of PIs is not a direct effect 

of prevention of degradation. Instead, these data suggest that proteasome inhibition causes an 

increase in efficiency in a late stage in transduction. Previous reports have demonstrated 

increased nuclear and nucleolar localization following proteasome inhibition (105, 107, 109, 

201). In the future, it will be interesting to determine what cellular and rAAV changes are 

responsible for this increase in transduction. For instance, misfolded protein responses have been 

demonstrated to enhance rAAV transduction (147) and similar cellular conditions may exist with 

proteasome inhibition. In addition, several studies have demonstrated increased ubiquitination of 

the rAAV capsid in the presence of PIs (105, 201) and ubiquination may make capsids more 

efficient at completing their trafficking pathway. Once the virion and cellular changes are 

elucidated, these data can be used to determine a specific molecular mechanism. Furthermore, 

more in depth understanding of the mechanism may lead to the identification of factors limiting 

rAAV transduction that can be targeted to enhance rAAV transduction while avoiding the side 
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effects of proteasome inhibition. In addition, as we determined that proteasome inhibition was 

sufficient for the enhancement of rAAV transduction (Fig. 4.1), other PIs in development that 

are more specific than bortezomib and so have less side effects should be evaluated for their 

ability to enhance rAAV transduction. 

 

Concluding Remarks 

rAAV-mediated clinical gene therapy is becoming increasingly successful at reaching 

efficacy goals but would, nevertheless, benefit from enhanced rAAV transduction. Towards this 

goal, we have developed several strategies that may eventually allow for rAAV transduction to 

be safely enhanced and for increased efficacy from clinical gene therapy. These strategies 

include the identification of a specific cellular factor, PML, that inhibits rAAV transduction, the 

identification of a pharmacological agent, As2O3, that can enhance rAAV transduction, and 

investigation into the mechanisms involved in a known enhancement of rAAV transduction. 

Experiments similar to these may lead to important advances in rAAV gene therapy and to the 

success of gene therapy approaches, as gene therapy treatments become more common and as 

more commercial gene therapy approaches are approved.  
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Figure 5.1: rAAV transduction model demonstrating the findings of this dissertation. In 

this dissertation, we examined three mechanisms by which rAAV transduction can be enhanced. 

In Chapter 2, we determined that inhibition of PML enhances rAAV transduction. PML acts, 

presumably through cellular intermediary factors, to inhibit the conversion of the rAAV genome 

from a single-stranded form to a transcriptionally active double-stranded form. In Chapter 3, we 

determined that treatment of cells with As2O3 enhances rAAV transduction by acting through 

ROS to inhibit the degradation of perinuclear rAAV virions, allowing for increased nuclear 

trafficking (132). In Chapter 4, we determined that proteasome inhibition was responsible for the 

enhancement of transduction from PI treatment and that this enhancement occurs through 

increasing the efficiency of rAAV transduction at a late step in transduction, not directly through 

prevention of rAAV degradation (216). This figure compares the steps in transduction affected 

by these mechanisms. For description of rAAV’s general transduction pathway, please see 

Figure 1.2. 
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Figure 5.2: Proteins known to interact with both PML and AAV. Using a manually curated 

PML interactome (217), proteins known to interact with both rAAV and PML were identified. 

These proteins were grouped based on whether they interact with wild-type AAV specific factors 

(blue box) (218-225), they were DNA damage response proteins (red boxes) (15, 37, 226-230), 

only interacted with PML in cell undergoing alternative lengthen of telomeres (green box) (229, 

231), or interacted with rAAV in some other way (purple box) (14, 232-234). The DNA damage 

response proteins were further subdivided in to those known to enhance the transduction of both 

single-stranded and self-complementary rAAV, those involved in rAAV genome circularization, 

those affecting sub-nuclear localization, and those involved in rAAV DNA replication (red boxes 

on right-hand side). Proteins interacting with PML and RPA were also identified (orange box) 

(217). 
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