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ABSTRACT 

Louise Caroline Giffin: Manipulation and Exploitation of the Host Cell by             
Kaposi’s Sarcoma-Associated Herpesvirus 
(Under the direction of Blossom Damania) 

 
 

Kaposi’s sarcoma-associated herpesvirus (KSHV) is a human gamma-

herpesvirus that is the causative agent of three human malignancies: Kaposi’s sarcoma, 

primary effusion lymphoma, and multicentric Castleman’s disease. KSHV causes a 

lifelong infection for which there is no known cure, and the cancers associated with 

KSHV typically have poor prognosis and no established treatment protocol. KSHV is a 

large DNA virus that encodes over eighty open reading frames that have diverse 

functions, including viral proteins that thwart the host immune system and that alter 

cellular growth pathways to promote viral persistence, with the incidental effect of 

inducing cellular transformation.  

 KSHV expresses several homologs of human proteins, including a homolog of 

interleukin 6 (hIL-6) called viral interleukin 6 (vIL-6). vIL-6 is a predominantly 

intracellular protein that localizes to the endoplasmic reticulum where it can signal 

through the gp130 subunit of the IL-6 receptor. We sought to examine how vIL-6 

interacts with components of the host cell and alters host gene expression to promote 

vIL-6 function and induce pathogenesis. We identified hypoxia upregulated protein 1 

(HYOU1) as a vIL-6-interacting partner, and found that HYOU1 supports vIL-6 protein 

expression and promotes vIL-6-mediated signaling, migration, and survival in 
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endothelial cells. We also found that vIL-6 significantly upregulates the expression of 

genes associated with cellular movement including the adhesion factor called 

carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). We 

determined that vIL-6 increases CEACAM1 expression via STAT3 signaling, and that 

CEACAM1 promotes vIL-6-mediated migration of endothelial cells. Both de novo and 

latent KSHV infection were also found to upregulate CEACAM1.  

 To further elucidate how KSHV modulates the cellular environment, we 

performed kinome profiling to identify cellular kinases that are differentially activated 

during latent and lytic KSHV infection in primary effusion lymphoma. Kinases regulate 

almost all cellular processes, and dysregulated kinase activation can drive 

tumorigenesis. This research may identify major pathogenic signaling pathways that are 

hyperactivated or shut off in KSHV-associated cancers. Further elucidating how KSHV 

and its encoded proteins alter the cellular environment to promote pathogenesis will 

identify targets for the development of novel therapeutics to treat KSHV-associated 

disease.  
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CHAPTER 1: KSHV: PATHWAYS TO TUMORIGENESIS AND            

PERSISTENT INFECTION1,2 

 

OVERVIEW 

Kaposi’s sarcoma associated herpesvirus (KSHV; also known as human 

herpesvirus 8) is the etiological agent of Kaposi’s sarcoma, primary effusion 

lymphoma, and multicentric Castleman’s disease. These cancers often occur in the 

context of immunosuppression, which has made KSHV-associated malignancies an 

increasing global health concern with the persistence of the AIDS epidemic. KSHV 

has also been linked to several acute inflammatory diseases. KSHV exists between 

a lytic and latent lifecycle which allow the virus to transition between active 

replication and quiescent infection. KSHV encodes a number of proteins and small 

RNAs that are thought to inadvertently transform host cells while performing their 

functions of helping the virus persist in the infected host. KSHV also has an arsenal 

of components that aid the virus in evading the host immune response, which help 

the virus establish a successful lifelong infection. In this comprehensive review, we 

will discuss the diseases associated with KSHV infection, the biology of latent and 

                                                           
1 Louise Giffin and Blossom Damania. Manuscript was written by LG and edited by 
BD.  

2 Reprinted from Advances in Virus Research, Volume 88, Louise Giffin and 
Blossom Damania, “KSHV: Pathways to Tumorigenesis and Persistent Infection”, 
Pages 111-159, 2014, with permission from Elsevier. 
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lytic infection, and individual proteins and microRNAs that are known to contribute to 

host cell transformation and immune evasion.  

 

 

INTRODUCTION 

 Kaposi’s sarcoma-associated herpesvirus (KSHV) was identified in 1994, and 

is the eighth and most recently discovered human herpesvirus. Shortly after, KSHV 

was found to be the etiological agent of three human malignancies including its 

namesake, Kaposi’s sarcoma, as well as two B cell lymphoproliferative diseases 

called primary effusion lymphoma and multicentric Castleman’s disease. Recently, 

KSHV has also been associated with several acute inflammatory diseases. KSHV 

infection typically occurs in the context of immunosuppression; thus KSHV-

associated cancers have become a global public health concern alongside the acute 

inflammatory disease syndrome (AIDS) epidemic.  

 Like all herpesviruses, KSHV infection transitions between a quiescent latent 

and replicative lytic life cycles. KSHV encodes an arsenal of viral proteins and non-

coding RNAs that are thought to manipulate the host cell environment to directly or 

indirectly drive pathogenesis and viral persistence. Unlike other human pathogens 

such as bacteria, fungi, and parasites, viruses must enter the host cell to replicate 

and rely on the function of many host factors to successfully propagate. Because of 

this intimate relationship between host and pathogen, viruses have evolved in close 

contact with cellular components and thus have developed unique ways of 

manipulating and exploiting the cellular environment to support viral infection. During 

co-evolution with the human host, herpesviruses also acquired the genetic material 
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to encode homologs of cellular proteins. Some of these homologs allow the virus to 

activate or inactivate key host pathways to the virus’ advantage. Dissecting the 

function and role of individual viral components has helped create a picture of how 

KSHV induces disease. Understanding the mechanisms by which KSHV maintains a 

persistent infection and/or drives tumor development will help uncover potential 

therapeutic targets for the treatment of KSHV-associated malignancies. 

 

MALIGNANCIES AND SYNDROMES LINKED WITH KSHV INFECTION  

Kaposi’s sarcoma: The classical form of Kaposi’s sarcoma was first 

described in 1872 as a pigmented sarcoma of the skin by the Hungarian 

dermatologist, Moritz Kaposi (1). KS incidence rates started to increase dramatically 

with the onset of the AIDS epidemic in the 1980’s (2). The correlation between HIV-

infected individuals and KS suggested an infectious agent was involved. About a 

decade later, representational difference analysis used by Chang and Moore 

identified novel gammaherpesvirus DNA sequences in KS lesion biopsies (3). In the 

years following the discovery of KSHV, PEL and MCD were also found to be 

causally linked to this human herpesvirus (4-6) (Table 1). 

There are four forms of KS that have been described (7-9). Classic KS, which 

was first identified by Moritz Kaposi, is found in elderly men of Mediterranean and 

eastern European descent (10). This form of KS is characterized by benign lesions 

on the upper and lower extremities, and rarely progresses to more aggressive 

disease. The second type of KS is African endemic KS, which occurs in eastern and 

central African countries (7, 11). The lymphadenopathic form of endemic KS is found 
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almost exclusively in young African children and cause significant mortality (12, 13). 

AIDS-associated, or epidemic KS has become the most common type of KS in the 

past three decades, and is the most aggressive form of the disease (2, 14, 15). 

AIDS-associated KS is considered an AIDS-defining illness (16). KS is currently the 

most common malignancy associated with HIV infection, and therefore is the most 

frequent cancer in many Sub-Saharan countries (17-21). The fourth type of KS is 

iatrogenic/post-transplant KS, which is associated with the use of immune 

suppressive therapy for the prevention of organ transplant rejection (22-24). 

Interestingly, it was found that this type of KS occurs more often in KSHV-infected 

recipients rather than KSHV-negative recipients that receive an organ from a KSHV-

positive donor (25, 26).  

KS lesions typically occur cutaneously on upper and lower extremities or on 

mucosal surfaces; however, lesions may also involve lymph nodes or may occur on 

visceral organs such as lung and spleen (22, 27). The immune status of the host and 

lymph node involvement are important factors in patient prognosis. KS disease 

progresses through six stages called the patch, plaque, nodular, lymphadenopathic, 

infiltrative, and florid stage (13, 28). KS lesions are highly angiogenic and as a result 

are usually red, purple, or brown in color. Additionally, the lesion vasculature is 

leaky, which allows for extravasation of erythrocytes and infiltration of inflammatory 

cells (29). KS tumor cells are of endothelial cell origin, and the primary KSHV-

infected cells found in the lesion are highly proliferative spindle-shaped cells (30-32). 

Over 95% of KS lesions contain KSHV DNA (33), and most of the infected cells 

harbor the virus latently. Interestingly, KSHV infection of blood endothelial cells 
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(BEC) can induce expression of lymphatic endothelial cell (LEC) markers and vice 

versa. This transcriptional reprogramming results in poorly differentiated endothelial 

cells that express mixed lineage markers such as CXCR4, CD34, VEGFR3, LYVE1, 

and PROX1 (34-36). As opposed to a metastatic dissemination, KS lesions typically 

arise independently of one another; however this oligoclonality is not universal, and 

situations of monoclonal KS have also been reported (37, 38).   

 

Disease Presentation Lineage and 
primary tumor 

cell 

Clonality KSHV 
genomes 

Kaposi’s 
sarcoma 

(KS) 

Highly 
angiogenic. 

Lesions can be 
found on skin, 

visceral organs, 
or mucosal 

surfaces 

Endothelial cell 
origin; tumor cells 
are spindle cells 
with mixed blood 

and lymphatic 
endothelial cell 

markers 

Oligoclonal 
lesions 

>99% of 
tumor cells 

contain 
KSHV 

genomes 

Primary 
effusion 

lymphoma 
(PEL) 

Non-Hodgkin 
lymphoma; B-

cell expansion in 
body cavity 

B cell; CD20-; 
markers resemble 

partially 
differentiated 
plasma cells 

Monoclonal Each tumor 
cell has 50-

100 copies of 
the KSHV 
genome 

Multicentric 
Castleman’s 

disease 
(MCD) 

Plasmablastic 
variant of MCD 

B cell; IgM λ-
restricted 

plasmablasts 

Typically 
polyclonal 

Unknown 

 

Table 1.1: Characteristics of KSHV-associated malignancies 

 

Primary Effusion Lymphoma: Shortly after its association with KS, KSHV 

was identified as the etiological agent of PEL (6). PEL is a non-Hodgkin lymphoma 

(NHL) comprised of malignant, latently-infected B cells that expand within the 
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pericardial, pleural, and peritoneal body cavities (39). Unlike KS, PEL is a 

monoclonal population of B cells as evidenced by clonal immunoglobin gene 

rearrangements, and each tumor cell has a high KSHV copy number ranging from 

50-100 genomes per cell (40). Morphologically, PEL share features of both 

immunoblastic and anaplastic large-cell lymphomas (41). Most PEL express CD45 

and activation markers including CD30, CD38, and CD7, and epithelial membrane 

antigen (EMA) (42). Interestingly, PEL expresses plasma cell markers such as 

CD138, VS38c, and MUM-1/IRF4, but has relatively low expression of B-cell 

associated antigens, suggesting that PEL resembles partially differentiated plasma 

cells rather than mature B cells (42-44). Unlike other NHLs, PEL typically does not 

exhibit c-myc rearrangements or mutations in the ras, bcl2, or p53 genes (39, 42). 

PEL is frequently coinfected with the Epstein Barr virus (EBV) (42). 

 Although PEL is characterized by a malignant serous effusion lacking a solid 

tumor mass, cases of solid PEL have also been reported (45). These tumors 

typically present as an extracavitary lymphoma in extranodal or lymph node tissue 

and are composed of immunoblastic-like cells. These solid PEL are also KSHV 

positive, and have similar morphology, immunophenotype, immunoglobulin gene 

rearrangements to classical PEL (41). 

 PEL is a very aggressive lymphoma, and the average survival time is about 6 

months from diagnosis (46). The main prognostic factors that have been identified 

are the presence of highly active antiretroviral therapy (HAART) in HIV-positive 

patients before PEL diagnosis and the performance status of the patient prior to PEL 

diagnosis (46); however, it has also been suggested that the KSHV viral load may 
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also be an accurate predictor of clinical outcome of PEL patients (47). The level of 

immune suppression and the amount of circulating CD4+ lymphocytes may also 

contribute to the aggressiveness of PEL. 

 

Multicentric Castleman’s disease: Around the same time as PEL, the 

plasmablastic variant of MCD was also found to be associated with KSHV infection 

(4, 5). MCD also exists in a hyaline variant that is not associated with KSHV (48).  

MCD is an uncommon disseminated lymphadenopathy characterized by an 

abnormal proliferation of IgM λ-restricted plasmablasts within the mantle zone of B 

cell follicles (4, 49). MCD is considered non-neoplastic since the plasmablasts are 

typically polyclonal, however monoclonal B cell expansions have been observed 

(50). The plasmablasts are large with a vesicular nucleus containing one or more 

nucleoli (51). Systemic symptoms and inflammation as well as involvement of 

multiple organs often accompany MCD diagnosis (48, 52).    

KSHV coinfection is observed in almost all HIV-positive MCD, although only a 

small proportion of cells in affected lymph nodes typically harbor the virus. 

Interestingly, KSHV infection in MCD is quite lytic as compared to KS and PEL (53, 

54). KSHV is detected in less than 40% of HIV-negative MCD cases (4, 48, 52, 55); 

however, in patients coinfected with HIV and KSHV, MCD tends to be very 

aggressive with rapid disease progression. One cause of the high fatality among 

these cases is that other KSHV-associated malignancies including KS and PEL are 

frequently observed with HIV-associated MCD (56, 57). MCD progression is thought 

to be driven by dysregulated cytokine levels, including IL-6, IL-10, and vascular 
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endothelial growth factor (VEGF) (52, 58-60). In KSHV+ MCD, expression of the 

virally-encoded IL-6 (vIL-6) cytokine likely exacerbates inflammation and disease 

progression. vIL-6 can enhance cytokine signaling and further increase human IL-6 

and VEGF expression (61-64). A cohort of plasmablastic MCD patients with 

detectable vIL-6 expression were found to have a rapidly fatal clinical course as 

compared to vIL-6-negative MCD patients, suggesting the importance of cytokine 

signaling in MCD progression (55). 

KSHV-associated Inflammatory Cytokine Syndrome: In the past few 

years, several studies have reported patients that present with MCD-like 

inflammatory symptoms but lack lymphadenopathy or other pathological evidence of 

true MCD (65). These patients typically have elevated cellular and viral cytokine 

levels, including human IL-6, IL10, C-reactive protein, and the viral cytokine vIL-6 

(65). As compared to KS patients, high KSHV viral loads are also observed, 

indicative of a lytic or reactivated KSHV infection (27, 65). Concurrent KS is 

frequently observed in these patients as well. Because of the systemic inflammatory 

symptoms, the proposed name for this disease is KSHV inflammatory cytokine 

syndrome or KICS. It differs from the chronic immune activation disease sometimes 

seen in HIV patients because two requirements for a KICS diagnosis include 

detection of high KSHV viral load and vIL-6 cytokine levels (54).  

 There has been some controversy as to whether KICS is truly a distinct 

syndrome, since its diagnosis is typically made by exclusion of an MCD diagnosis.  It 

has been proposed that KICS is a heterogeneous condition or a “prodrome” that 

eventually evolves into KSHV+ MCD, although some patients never progress to this 
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point (54). Recently, a group investigated whether polymorphisms in the KSHV-

encoded microRNAs (miRNA) could be correlated with the development of KICS 

(66). They found that a higher percentage KSHV+ MCD and KICS patients had 

single nucleotide polymorphisms (SNPs) in the KSHV miRNA loci than KS patients 

or KSHV+/KS-negative control patients.  They also utilized classification tree 

analysis to determine combinations of SNPs that may predict development of 

KSHV+ MCD and KICS. Another recent case study identified a KICS patient with 

high viral loads of both KSHV and the ubiquitous human herpesvirus 6A, suggesting 

a possible role for other pathogens in development of KICS (27).  

 

KSHV Immune Reconstitution Inflammatory Syndrome: A small 

percentage of patients that begin HAART to treat advanced HIV infection exhibit a 

rapid deterioration of their clinical status. This phenomenon is known as immune 

reconstitution inflammatory syndrome (IRIS).  It is proposed that following immune 

reconstitution, the increase in functional CD4+ T cell populations causes an immune 

recognition and response to autoantigens or pathogens that were previously present 

but asymptomatic. Cases of IRIS have been reported against KSHV and other 

pathogens such as Mycobacterium tuberculosis, Mycobacterium avium, 

Cryptococcus neoformans, and human cytomegalovirus (CMV) (67). In many 

instances, treatment of the offending pathogen or use of anti-inflammatory drugs can 

improve prognosis. High morbidity is observed in patients experiencing KS flares 

following initiation of HAART (IRIS-KS), although administration of systemic 

chemotherapy can control flares and cause tumor regression (68, 69).  Interestingly, 
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one study determined that IRIS-KS patients had a significantly higher CD4+ count at 

KS diagnosis following HAART initiation than patients who did not develop IRIS, and 

that the mean time to KS diagnosis following HAART was less than 2 months (70). 

They also found that patients receiving more potent HAART regimens were more 

prone to IRIS-KS development. Beginning HAART treatment prior to advanced HIV 

infection or diagnosis of AIDS-KS decreases the chance of IRIS-KS (69). 

 

VIRAL LATENCY AND ASSOCIATED PROTEINS 

Latency is the default lifecycle for KSHV following infection of a host cell. 

During latency, the latency associated nuclear antigen (LANA) circularizes and 

tethers the viral genome to the host chromosomes by simultaneously binding both 

the terminal repeats and host histones H2A and H2B (71-73).  The viral genome is 

replicated by host machinery with each cell division, and therefore persists as it is 

passed to each daughter cell (74, 75). As mentioned, only a small portion of the viral 

genome is actively transcribed during latency, and this region is known as the 

latency locus. This locus includes the viral genes LANA, vFLIP, vCyclin, kaposin, 

and the viral microRNAs (76, 77). The LANA promoter controls expression of LANA, 

vCyclin, and vFLIP while the kaposin promoter drives expression of three kaposin 

transcripts, a bicistronic transcript for vCyclin and vFLIP, and the twelve viral pre-

miRNAs (78, 79). Additionally, PEL express vIRF3 (LANA2) during latency (80). 

Transgenic mice expressing some or all of the KSHV latency locus have phenotypes 

characteristic of KSHV malignancies (76, 81). The viral latent genes and microRNAs 
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have been investigated in depth to understand the mechanism by which KSHV 

causes disease. In this section, we will discuss a few elements of the latency locus. 

LANA: LANA is encoded by ORF73 and is KSHV’s major latency protein. It is 

responsible for tethering the viral episome to the host genome via the terminal 

repeats and histone interactions (71, 73), which allows host machinery to replicate 

and distribute the latent genome to daughter cells (72, 74, 75). The phosphorylated 

DNA-damage response protein γH2AX and the cellular replication fork factors 

Timeless and Tipin are some of the many known cellular proteins that assist LANA 

in maintaining KSHV episomes (82-84).  LANA has also been shown to positively 

and negatively affect the transcription of a number of host genes (85, 86). This is 

likely mediated through LANA’s interaction with many transcription factors (84). 

LANA can also autoregulate its expression by inducing transcription from the LANA 

promoter (87). Furthermore, LANA and the LANA homologue in rhesus rhadinovirus 

(RRV) can repress transcription of the viral lytic transactivator, RTA (replication and 

transcription activator, ORF50) to help maintain latency (88-90).  

LANA has several mechanisms by which it can promote host cell survival and 

proliferation. LANA can bind and inhibit p53 to reduce activation of p53-dependent 

reporter genes and cause chromosomal instability (91, 92). LANA can also bind and 

inactivate the tumor suppressor Rb leading to increased E2F-dependent reporter 

gene activation (93). Furthermore, LANA induces cytoplasmic β-catenin 

accumulation by binding and sequestering GSK-3β in the nucleus (94), thus allowing 

upregulation of the pro-growth proteins cyclin D and c-myc by the transcription factor 

LEF. LANA can also stabilize c-myc protein levels (95, 96). LANA has been shown 
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to increase telomerase expression, which increases the lifespan of infected cells 

(97). Finally, B cell-specific expression of LANA in a transgenic mouse model led to 

follicular hyperplasia, increased germinal center formation, and lymphomas, 

implicating LANA as a key player in KSHV-associated lymphomagenesis (81). 

vCyclin: vCyclin is another latently-expressed protein and is encoded by 

ORF72. vCyclin shares sequence and functional homology with cellular cyclin D2 

and can bind and activate the cyclin-dependent kinase CDK6 (98, 99). When in 

complex with cdk6, vCyclin can phosphorylate and inactivate the tumor suppressor 

Rb, the cdk inhibitor p27 (Kip), and the anti-apoptotic protein Bcl-2, collectively 

leading to cell cycle deregulation (100-102). vCyclin-cdk6 can also phosphorylate 

histone H1 and cdc25a (101). Interestingly, vCyclin transgenic mice develop 

lymphomas deficient in p53 (103).  This is likely because vCyclin can also bind cdk9 

which induces p53 phosphorylation and cell cycle arrest, so only cells which have 

lost p53 can continue to divide and expand into a lymphoma (104). 

vFLIP: KSHV K13 encodes vFLIP, which is a viral homolog of cellular FLIP 

(FLICE [protein FADD-like interleukin-1 beta-converting enzyme, now called 

caspase-8] inhibitory protein). vFLIP is expressed during latency, and contains two 

death effector domains that can associate with FADD and prevent the CD95 death 

receptor from activating the apoptosis-inducing protease caspase 8 (FLICE) (105). It 

was subsequently shown that vFLIP can bind procaspase 8 directly to prevent its 

cleavage into active caspase 8 (106). Furthermore, vFLIP persistently activates 

nuclear factor kappa B (NFκB) signaling through binding to IKKα, IKKβ, RIP, and the 

NEMO complex (107, 108). This signaling contributes to the transforming potential of 
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vFLIP (109). In vivo studies demonstrate that vFLIP transgenic mice can develop 

lymphomas and B cell-derived tumors (110-112).  

The Kaposins: ORF K12 encodes three transcripts that yield kaposin A, B, 

and C (113). Kaposin is highly abundant in PEL, and is transforming in cell culture-

based assays (114). Kaposin A was shown to interact with the ARF guanine 

nucleotide exchange factor cytohesin-1 to mediate cellular transformation and 

activation of the ERK/MAPK pathway (115). Kaposin B plays a role in preventing the 

decay of cytokine mRNAs by binding and activating the p38/MAPK target kinase 

MK2 (116, 117). MK2 can inhibit the decay of mRNAs that contain AU-rich elements, 

which include cytokine mRNAs and the mRNA for PROX1. KSHV induces 

reprogramming of blood vascular endothelial cells towards a lymphatic lineage 

through upregulation of PROX1, and the ability of kaposin B to stabilize PROX1 

mRNA is critical for this process (118). 

KSHV microRNAs: Similar to other members of the herpesvirus family, 

KSHV encodes 12 viral pre-microRNAs (pre-miRNAs) that are processed by the 

host proteins Drosha and Dicer to generate mature miRNAs. The KSHV pre-miRNAs 

are transcribed from the latent Kaposin/K12 promoter. While 10 of the pre-miRNAs 

are located in a Kaposin intron, the remaining 2 are located in the Kaposin protein-

coding region and the Kaposin 3’ UTR (119-121) . The 12 viral pre-miRNAs 

generate 24 mature miRNAs that have all been detected in KSHV-infected cells. 

Furthermore, RNA editing of the 5’ end of pre-miR-K12-10 can yield multiple mature 

miR-K12-10 species (122). Despite having a common promoter, the mature KSHV 

miRNAs each exist at high but variable levels in latent PEL cell lines, and miR-K12-
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10 and miR-K12-12 levels are further increased during lytic replication (121-123). In 

PEL cell lines, over 90% of the expressed mature miRNAs are KSHV miRNAs. 

Several studies comparing clinical samples of KS biopsies and PEL to cultured PEL 

cell lines report that the KSHV pre-miRNAs are expressed at even higher levels in 

vivo and that their sequences are highly conserved between patients (124, 125). 

Functional KSHV miRNAs are also found in the virion, along with mRNAs, cellular 

miRNAs, and other small RNA species (126).  

A number of validated host and viral mRNA targets of the KSHV miRNAs 

have been identified. These targets are involved in a variety of viral and cellular 

processes including maintenance of viral latency, immune evasion, cell cycle 

regulation, cell survival and proliferation, and apoptosis. miR-K9* has been shown to 

directly target the 3’ UTR of the ORF50/RTA mRNA to prevent lytic reactivation 

(127), and miR-K12-5 may also indirectly suppress the RTA transcript (128). 

Furthermore, miR-K12-4 can target the DNA methyltransferase repressor Rbl2 to 

epigenetically maintain latency (128), and miR-K12-1 targets the 3’ UTR of the NFκB 

repressor IκBα to enhance NFκB signaling and promote latency (129). Two 

components of the TLR/IL-1R signaling cascade, IRAK1 and MyD88, were identified 

as targets of miR-K12-9 and miR-K12-5, respectively, which results in reduced IL-6 

and IL8 inflammatory cytokine production (130). Furthermore, miR-K12-7 can 

directly bind the 3’ UTR of the mRNA of MICB, the stress-induced natural killer (NK) 

cell ligand, to repress MICB translation and promote viral immune evasion by 

diminishing NK cell function (131). KSHV miR-K12-1 is able to prevent cell cycle 

arrest by targeting the CDK inhibitor p21 to promote cell division (132). KSHV 
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infection may prime B cells for transformation by expression of miR-K12-11, which is 

an ortholog of cellular miR-155 (133-135). miR-K12-11 targets the host protein 

Jarid2 and both miR-155 and miR-K12-11 can induce expansion of splenic CD19+ B 

cells in vivo (133, 136). Additionally, miR-K12-11 and -1 can induce MAPK signaling, 

promigration factors, and cell invasiveness through indirectly suppressing the MAPK 

phosphatase DUSP1 (137).  

The KSHV miRNAs also have several mechanisms of preventing apoptosis of 

host cells: miR-K12-10 variants inhibit TGF-β signaling by targeting the 3’ UTR of the 

TGF-β type II receptor (TβRII) (138) and miR-K12-10a suppresses the tumor 

necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) receptor (TWEAKER) 

to prevent TWEAK-mediated caspase activation, apoptosis, and proinflammatory 

cytokine production (139). Furthermore, it was demonstrated that miR-K12-1, -3, and 

4-3p can target the 3’ UTR of caspase 3 to downregulate this host protein and inhibit 

apoptosis (140). The KSHV miRNAs have a variety of cellular and viral targets, only 

a handful of which have been discussed here. Collectively, the miRNAs work to drive 

KSHV pathogenesis by promoting latency, providing favorable growth conditions, 

and preventing apoptosis of infected cells.   

In addition to the genes described above, some reports have also shown that 

viral genes such as K1, vIL-6, and K15 are expressed at low levels during latency 

but are highly upregulated during lytic replication (141-143). These viral proteins are 

discussed in the section on lytic pro-growth proteins. 
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THE KSHV LYTIC CYCLE 

The KSHV lytic cycle can ensue following primary infection or when a latently 

infected cell undergoes lytic reactivation.  During the lytic cycle, a temporal 

transcriptional cascade begins that results in expression of viral immediate early, 

delayed early, and late genes followed by the subsequent assembly and egress of 

progeny virions (144). As discussed earlier, a variety of cell stresses can induce 

reactivation (145-149). Ultimately, expression of the lytic transactivator, ORF50/RTA, 

is required to initiate this complex stage of the viral lifecycle. RTA expression alone 

is sufficient to drive lytic replication, and suppression of RTA prevents reactivation 

(150-153). RTA is an immediate-early gene, and it is part of a polycistronic transcript 

that also encodes K8 and K8.1. Other immediate early genes include ORF45 and 

K4.2 (154). RTA has an activation domain and a DNA-binding domain on opposite 

ends of the protein. The DNA-binding domain allows RTA to directly bind and 

activate numerous viral promoters and the two KSHV origins of lytic replication, 

OriLyt-L and OriLyt-R (155, 156). The activation domain allows RTA to interact with 

cellular transcription factors and chromatin modification complexes to promote viral 

gene transcription (157).   

 Delayed early genes are sensitive to cyclohexamide treatment because in 

order to be transcribed they require the function of the proteins encoded by 

immediate early genes.  The delayed early genes include the viral DNA polymerase 

and viral proteins required for viral DNA synthesis, as well as the viral thymidine 

kinase, nucleotide reductase, ORF57, the signal transduction proteins K1, K15, and 

vGPCR, and the immune evasion proteins K3 (MIR1) and K5 (MIR2) (144). 
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Following expression of the delayed early genes, viral DNA replication begins from 

OriLyt-L and OriLyt-R (158, 159). The viral replication machinery includes the viral 

DNA polymerase, helicase, polymerase processivity factor, primase, primase-

associated factor, and single strand binding protein (160) and replication is thought 

to occur by a rolling circle mechanism similar to other herpesviruses. Viral DNA 

replication stimulates expression of the KSHV late genes, which mainly encode 

structural proteins such as the viral capsid and envelope proteins (161). Linear 

genomes are packaged into the newly forming capsids. KSHV ORF67 and ORF69 

assist in nuclear egress (162, 163), and KSHV glycoprotein B is thought to play a 

role in viral maturation and egress from the host cell (164, 165). 

 

LYTIC KSHV PROTEINS INVOLVED IN CELL GROWTH AND SURVIVAL  

Lytic reactivation results in expression of all KSHV genes. As described 

earlier, several of the proteins encoded by the KSHV latency locus can drive cellular 

transformation. A number of proteins encoded by KSHV lytic genes also have pro-

growth or transforming qualities, which are discussed in this section and 

summarized in Figure 1.1. 
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Figure 1.1: KSHV encodes a number of proteins that contribute to cell growth and 

transformation. A) K1 is a transmembrane protein with a constitutively active 

immunoreceptor tyrosine activation motif (ITAM) that activates signaling through SH2-

containing proteins. K1 expression results in production of VEGF and pro-inflammatory 

cytokines. B) vGPCR is a constitutively active homolog of the IL8 receptor  that results in 

activation of numerous cell signaling pathways and transcription factors to increase 

production of VEGF, VEGFR, and proinflammatory cytokines and chemokines. C) vIL-6 is a 

functional homolog of human IL-6 that can signal through shared IL-6 pathways including 

JAK/STAT, MAPK, and PI3K. This results in activation of multiple IL-6 response elements 

and production of human IL-6 and VEGF. D) K15 is a transmembrane protein with several 

tyrosine residues and SH2 and SH3 domains in its cytoplasmic tail that are critical for K15’s 

interaction with cellular TRAFs and signaling through  the MAPK and NFκB pathways. K15  
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signaling results in activation of numerous transcription factors and expression of pro-

inflammatory cytokines and chemokines and several human miRNAs that are involved in cell 

motility. 

 

K1: K1 is a single-pass transmembrane glycoprotein encoded by the first 

open reading frame of KSHV (Figure 1.1 A). This protein is expressed on the cell 

and ER membranes and can be internalized to endosomes (166, 167).  K1 is 

constitutively active and has a highly conserved intracellular immunoreceptor 

tyrosine-based activation motif (ITAM) on its C terminus (168-170). Upon K1 

oligomerization, the ITAM becomes autophosphorylated and can activate various 

Src homology 2 (SH2)-containing signaling proteins including PI3K (p85)/Akt, PLCγ, 

Vav, Syk, Lyn, RasGAP, and Grb2 (171-173). Additionally, ITAM signaling results in 

activation of NFκB, nuclear factor of activated T cells (NFAT), Oct-2 and AP-1(173, 

174).  

Endothelial cells expressing K1 become immortalized in culture and primary 

marmoset T lymphocytes infected with a K1-expressing herpesvirus saimiri became 

immortalized to IL2-independent growth (175, 176).  K1 can also induce focus 

formation in rat fibroblasts (176). In vivo, K1 transgenic mice display constitutively 

active NFκB and Src family tyrosine kinase signaling and a fraction of the mice 

develop tumors (174) There are several aspects of K1 signaling that likely contribute 

to its transforming function. K1’s activation of Akt results in inactivation of the 

proapoptotic forkhead (FKHR) transcription factor family which protects cells from 

FKHR- and Fas-mediated apoptosis (171). Heat shock protein-90 and -40 (hsp90 
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and hsp40) were identified as K1 binding partners that are critical for both K1 

expression and K1’s anti-apoptotic function (177). K1 also induces angiogenesis and 

VEGF production in primary human endothelial cells and cells derived from K1 

transgenic animals (173, 175, 178). Furthermore, K1 signaling can induce secretion 

of inflammatory cytokines that are implicated in KS lesion development, including IL-

6, GM-CSF, IL-1β, IL-8, and IL-10 (172, 174). A unique mechanism that K1 utilizes 

to prolong the life of B cells is to downregulate surface expression of the B cell 

receptor (BCR) by binding the µ chain of the BCR to retain the complex in the ER 

(179). Overall, K1 is a multifunctional protein that can constitutively activate multiple 

pro-growth signaling pathways in KSHV infected cells. 

Viral G protein Coupled Receptor (vGPCR): KSHV ORF 74 encodes the 

vGPCR, which is a seven-pass transmembrane protein that shares homology with 

the human IL8 receptor (Figure 1.1 B) (180). This lytic protein has been detected at 

low levels in cultured reactivated PEL and in KS, PEL, and MCD clinical specimens 

(181). Conflicting reports have demonstrated that vGPCR has the ability to both 

sustain (182) and repress (183) RTA expression and lytic replication. Although 

vGPCR can bind the CXC and CC families of chemokines, it is constitutively active 

even in the absence of ligand (184-186).  vGPCR activates a number of important 

signaling pathways, including PLC, PKC, MAPK, PI3K/Akt/mTOR, and NFκB (187). 

Downstream signaling from these pathways activates the AP1, NFAT, NF-κB, HIF-

1α, and CREB transcription factors which results in vGPCR-mediated production of 

VEGF, VEGF receptor (VEGFR), and proinflammatory cytokines and chemokines 

(187). Through these signaling pathways, vGPCR can immortalize and promote the 
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growth of endothelial cells in culture (188-190). It was also demonstrated that 

endothelial cell-specific expression of vGPCR can cause formation of KS-like 

angioproliferative lesions in mice (191). Similar to K1, vGPCR expression can also 

transform NIH3T3 fibroblasts, as well as rat kidney cells, which are then able to form 

tumors in nude mice (186). A line of transgenic mice expressing vGPCR in 

hematopoietic cells developed angioproliferative lesions resembling KS at multiple 

organ sites (192). However, another study with a line of transgenic mice with vGPCR 

expressed ubiquitously from an SV40 promoter found that lesions mainly occurred 

on the tail and/or legs and that only a small fraction of tumor cells actually expressed 

vGPCR (193). Collectively, this research suggests a model by which vGPCR drives 

transformation of cells by inducing paracrine secretion of proinflammatory cytokines 

and angiogenic growth factors which can then work in concert with KSHV latent 

proteins to promote tumorigenesis.  

Viral Interleukin-6 (vIL-6): KSHV ORF K2 encodes the vIL-6 cytokine 

(Figure 1.1 C). vIL-6 is induced upon lytic replication, but it is also expressed at low 

levels during latency. Although vIL-6 has been detected in KSHV-associated 

malignancies (64, 194), levels are highest in MCD lesions and patient sera (55).  

This protein shares about 25% amino acid identity and 63% similarity with human IL-

6 (hIL-6) (195-197). Additionally, vIL-6 shares many functional characteristics with 

hIL-6, and as a result the viral cytokine can activate the IL-6 receptor (IL6-R) and 

downstream signaling pathways, including the JAK/STAT, MAPK, and PI3K/Akt 

pathways (198, 199). These pathways induce a variety of transcription factors and 

response elements (RE) such as the STAT1/3 and STAT5 IL-6 RE, C/EBP, and c-
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jun promoter IL-6 RE (JRE-IL-6) (62). Activation of these pathways leads to 

expression of hIL-6 (200) and VEGF (61). However, vIL-6 differs from the human 

cytokine in several regards. vIL-6 can signal intracellularly directly through the gp130 

subunit of the IL6-R and does not require the extracellularly-located IL6-R gp80 

subunit whereas hIL-6 requires both gp80 and gp130 (201-203); however, gp80 can 

still bind to vIL-6 and enhance signaling (63, 204, 205). Additionally, hIL-6 is 

secreted much more efficiently than vIL-6, and a large portion of expressed vIL-6 is 

actually retained in the endoplasmic reticulum (ER) (206, 207).  In the ER, vIL-6 

interacts with the ER chaperone calnexin which impacts vIL-6 localization and 

intracellular retention (142). Furthermore, vIL-6 undergoes N-linked glycosylation 

which is required for its signaling activities (208). 

 vIL-6 expression transforms NIH3T3 fibroblasts and these cells form tumors 

in nude mice (61). vIL-6 expression can also induce growth in mouse hybridoma 

(198), PEL (209, 210), BAF (205), and Hep3B hepatoma (195) cell lines. In 

endothelial cells, vIL-6 expression induces proliferation, tubule formation, and 

neoangiogenesis (211, 212). Additionally, vIL-6 can help cells escape interferon 

(IFN)-induced growth arrest (209).  Furthermore, transgenic mice expressing vIL-6 

under the MHC class I promoter develop plasmablastic MCD-like disease, which is 

abrogated in the absence of endogenous IL-6 (213).   

K15: KSHV K15 is encoded by the rightmost open reading frame of the virus 

(Figure 1.1 D). K15 has two highly divergent alleles called the predominant (P) and 

minor (M) forms, and these are present in different strains of KSHV (214). K15 is 

expressed at low levels in latent PEL, but is robustly induced following lytic 
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reactivation. The transcript is spliced to yield multiple K15 proteins with 4-12 

transmembrane domains that localize to lipid rafts (215, 216). The short K15 

cytoplasmic tail contains SH3 and SH2 signaling motifs and binding sites for TRAFs 

1, 2, and 3 (215, 217).  Several critical tyrosine residues within these motifs are 

constitutively phosphorylated by cellular Src family tyrosine kinases, which mediate 

activation of downstream signaling pathways.  Pathways activated by K15 signaling 

include the Ras/MAPK, JNK/SAPK, and NFκB pathways as well as the NFAT/AP1 

transcription factors (217-219). This signaling activates transcription of a number of 

cellular cytokines and chemokines including IL-6, IL-8, CCL20, CCL2, CXCL3, IL-

1α/β, and Cox2 (217, 220). K15 can also downregulate signal transduction and 

intracellular calcium mobilization induced by the BCR, which may help the virus 

maintain latency (216). A potential mechanism by which K15 accomplishes this may 

be through K15’s interaction with the tyrosine kinase Lyn, which plays a role in the 

regulation of BCR signaling (219). Additionally, the K15 M allele induces cell motility, 

and this is dependent on K15-mediated upregulation of the human miRNAs miR-21 

and -31 (221). K15 may contribute to KSHV-induced tumorigenesis through its ability 

to activate pro-growth signaling pathways, promote latency, and induce cell motility. 

 

KSHV’S ACTIVATION AND EVASION OF THE HOST IMMUNE RESPONSE 

The human immune system is designed to recognize invading pathogens in 

order to launch an innate and adaptive response to eliminate infection. KSHV utilizes 

a number of mechanisms to dampen the immune response so that it can persist for 

the lifetime of the host. In this section, we will discuss aspects of the innate and 
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adaptive immune response that are activated by KSHV infection as well as aspects 

that are suppressed by viral immune evasion techniques.  

Immune Activation: Toll-like receptors (TLR) are innate pattern recognition 

receptors that recognize pathogen-associated molecular patterns (PAMPs) and 

induce NFκB signaling and production of type I IFN and proinflammatory cytokines 

(222). KSHV can activate TLR3 during infection of primary human monocytes, and 

this upregulates TLR3 expression and the production of IFNβ and CXCL10 (223, 

224) which are then downregulated as latency is established (225). Although KSHV 

can reduce TLR4 activity in endothelial cells, TLR4 activation is still capable of 

inhibiting KSHV infection because cells lacking this receptor are more susceptible to 

infection (226). Thus, there is an initial TLR-mediated innate immune response to 

KSHV primary infection, but in many cases this response is subsequently 

downregulated by the virus. KSHV is also sensed by IFN gamma-inducible factor 

IFI-16, which triggers inflammasome formation and subsequent production of IL-1β 

(227, 228). Additionally, KSHV infection can activate plasmacytoid dendritic cells 

(pDCs) which results in TLR9-mediated production of IFNα (229).   

KSHV-associated diseases typically occur in immune compromised patients, 

and it has been demonstrated that reconstitution of the immune system can result in 

KSHV-associated tumor regression (230). This suggests a role for the adaptive 

immune response, particularly the CD8+ T cell response, in controlling KSHV 

infection and pathogenesis (231-233).  CD4+ T cells can weakly recognize KSHV 

latent antigens such as LANA (234). Additionally, it was found that CD4+ and CD8+ 

T cells from KSHV-seropositive patients frequently recognize select groups of early 
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lytic and late lytic KSHV genes (235). In a cohort of seven KSHV+/HIV+ KS patients 

on HAART, KSHV-specific immune responses were detected in six of the seven 

patients (236). Interestingly, 100% of the non-progressor patients had KSHV-specific 

CD8+ cytotoxic T lymphocytes (CTLs) that simultaneously secreted IFNγ and TNFα 

in response to KSHV antigen whereas only 60% of the patients with progressive 

disease had a CD8+ CTL response (236). Although most studies of the adaptive 

immune response to KSHV have investigated the T cell response, KSHV infection 

also generates a humoral response to a variety of viral antigens (237).  

Evasion of the Adaptive Immune Response: KSHV employs a variety of 

mechanisms to evade KSHV-specific adaptive immune responses (reviewed in 

(238)). These techniques mainly involve repressing viral antigen presentation, T cell 

activation, B cell receptor (BCR)-mediated B cell activation, and B cell differentiation.  

 KSHV infection of B cells, dendritic cells (DCs), macrophages, and 

endothelial cells results in decreased expression of the major histocompatibility 

complex class I (MHC-I) (239, 240). MHC-I is critical for the presentation of viral 

antigens to the T cell receptor (TCR) of CD8+ T cells. KSHV K3 and K5 (also called 

modulator of immune recognition (MIR) 1 and 2, respectively) are capable of 

ubiquitinating the MHC-I cytoplasmic tail to trigger endocytosis and proteasomal 

degradation of the complex (241, 242). vIRF1, vFLIP, and the virally-encoded shutoff 

and exonuclease protein (KSHV SOX) can also cause downregulation of MHC-I 

(243, 244). vIRF3 and cellular suppressor of cytokine signaling 3 (SOCS3) were 

recently found to inhibit antigen presentation by the MHC-II complex by reducing the 

level of MHC-II transcripts (245, 246). Additionally, vIRF3 expression renders PEL 
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resistant to recognition by KSHV-specific CD4+ T cells. LANA, which is expressed in 

all KSHV-infected cells, has an acidic central repeat domain that prevents its 

antigenic processing to further hinder this process (247, 248). In addition to 

repressing antigen presentation, KSHV infection also causes downregulation of the 

costimulatory molecules CD80, CD86, CD1a, and CD83 on antigen presenting cells 

(APCs) (249). K5 likely plays a role in this, because it has been shown to 

downregulate CD86 and ICAM-1 (250). These costimulatory molecules are required 

for TCR-mediated activation of CTLs, so the downregulation of these proteins is a 

mechanism by which KSHV infection inhibits the adaptive T cell immune response.  

As discussed previously, B cells are one of the main target cells of KSHV 

infection. B cells are a critical part of the adaptive immune response, and following 

binding of antigen to the B cell receptor (BCR), these cells proliferate and 

differentiate into antibody-producing plasma cells or memory B cells (251). 

Antibodies eliminate infection by binding to antigen that is either in the extracellular 

space or presented on the surface of infected cells.  Antibody binding generally 

results in neutralization or phagocytosis of the pathogen or infected cell. If a B cell is 

unable to be activated through its BCR or unable to differentiate into a plasma cell, 

antibody production will not occur. One hypothesis is that KSHV targets these two 

aspects of B cell biology as a mechanism of adaptive immune evasion. The KSHV 

K5 protein can utilize its ubiquitin ligase activity to downregulate bone marrow 

stromal antigen 2 (BST-2, also called tetherin) which is an IFN-inducible protein that 

plays a role in B cell differentiation (252). As mentioned earlier, the KSHV K1 

signaling protein plays a role in downregulation of the BCR on the cell surface (179). 
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Furthermore, KSHV K15 is capable of disrupting signaling from the BCR and 

possibly accelerating BCR internalization to further reduce BCR-mediated B cell 

activation (216, 253). Collectively, this inhibition of both B cell differentiation and 

BCR signaling may help KSHV evade the B cell immune response. 

Evasion of the Innate Immune Response: A large portion of the KSHV 

genome is devoted to evading the innate immune response of the host. The innate 

immune functions targeted by viral proteins include interferon production, interferon 

regulatory factor (IRF) activation, natural killer (NK) cell activity, complement 

activation, inflammasome activation, and chemokine activity. In this section we will 

discuss the strategies utilized by KSHV to hinder the innate immune response to 

allow the virus to persist for the lifetime of the host (Figure 1.2).  
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Figure 1.2: KSHV evasion of the host interferon response. KSHV encodes viral 

interferon regulatory factors (vIRF 1-3) that antagonize the function of cellular IRFs, p300, 

and NFκB to suppress production of type I IFN. ORF45, RTA, and KbZIP have also been 

shown to interfere with IRF signaling.  K3 and K5 are able to degrade the IFN3γR1 to 

reduce antiviral IFNγ signaling through the JAK/STAT pathway. Viral infection and 

expression of vGPCR reduces TLR4 expression, and RTA can induce degradation of the 

TLR3 and TLR4 mediator TRIF. miR-K12-9 and 5 downregulate IRAK1 and MYD88 which 

are also components of TLR signaling pathways. Reduction of TLR signaling results in 

reduced expression of type I IFN. Finally, ORF64 is able to deubiquitinate RIG-I which 

suppresses RIG-I mediated production of IFNβ.  

 

 KSHV employs multiple mechanisms of inhibiting both IFN production and 

signaling since IFN is a potent antiviral defense that is detrimental to KSHV 
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persistence (Figure 1.2) (254).  The virus encodes four homologs of the cellular IRFs 

called vIRF 1-4 (255). The cellular IRFs are a large family of transcription factors that 

drive expression of type I IFN (IFNα and β) and a variety of cytokines and 

chemokines. Of the four KSHV-encoded vIRFs, only vIRFs 1, 2, and 3 have been 

shown to impact IFN signaling. vIRF1 can bind to and inhibit the transcriptional 

activities of IRF1, IRF3, and IRF7 (256, 257). Additionally, vIRF1 can bind and 

sequester the transcriptional coactivator p300 that is required for IRF1- and IRF3-

mediated transcription of type I IFN (256, 257). vIRF2 is able to bind to cellular IRF1, 

2, and 8 as well as NFκB RelA and p300 (258). vIRF2 is able to block type I IFN 

signaling and  IFNα-, IFNλ-, and IRF1-dependent transactivation of the IFN 

stimulated response element (ISRE) promoter (259). More recently, IRF3 was 

identified as a binding partner of vIRF2, and it was shown that this interaction both 

suppresses IRF3-mediated transcription of IFNβ and enhances caspase-3-

dependent degradation of IRF3 (260). vIRF3 can interact with cellular IRFs 3 and 7 

which diminishes the DNA-binding abilities of IRF7 (261). vIRF3 can also interact 

with IRF5 to inhibit IRF5-mediated IFN promoter activation and production of type I 

IFN (262, 263). Recently, it was shown that vIRFs 1 and 2, but not vIRF3, are 

capable of suppressing endogenous IFNβ message and protein expression following 

activation of TLR3 (225). Because KSHV can activate and upregulate the TLR3 

pathway (223), this suggests that the vIRFs have a crucial function in evading the 

innate type I IFN response to KSHV infection. The vIRFs also have the ability to 

promote cell growth and prevent apoptosis (reviewed in (255)). Therefore, the vIRFs 

may have a twofold function in infected cells: first, to inhibit IFN to create a safe 
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environment for KSHV, and second, to promote cell survival to allow for persistence 

of the virus in the host.  

 KSHV ORF45 also influences the IFN response. It was demonstrated that 

KSHV ORF45 can interact with the inhibitory domain of cellular IRF7 (264). This 

interaction prevents IRF7’s phosphorylation and nuclear accumulation, which are 

both necessary for IRF7-mediated transcription of type I IFN (265). ORF45 also 

competes with IRF7 for phosphorylation by IKKε and TBK1 which reduces overall 

levels of IRF7 phosphorylation (266). Infection of cells with an ORF45-null virus 

triggered a strong IRF7-dependent type I IFN response that rendered them resistant 

to subsequent vesicular stomatitis virus (VSV) infection (267).  Interestingly, ORF45 

is contained within the KSHV virion, which allows the virus to dampen the IFN 

response immediately upon infection (268). KSHV RTA can also act as an E3 

ubiquitin ligase that induces the ubiquitination and degradation of IRF7 to reduce 

transcription of type I IFN genes (269). KSHV ORFK8 encodes a transcription factor 

KbZIP that can bind to the positive regulatory domain (PRD) I/III region of the IFNβ 

promoter to block IRF3-mediated IFNβ transcription (270).  

In addition to inhibition of type I IFN, KSHV can also repress signaling by 

IFNγ. The K3 and K5 proteins are able to induce degradation of the IFN-γ receptor 1 

(IFN-γR1) which normally triggers IFNγ-mediated activation of the JAK/STAT 

pathway (271). Signaling through this pathway induces expression of a wide variety 

of antiviral genes, which is suppressed following reduction of IFN-γR1 expression by 

K3 and K5 (271). Between the vIRFs, ORF45, RTA, KbZIP, K3, and K5, KSHV 
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utilizes a variety of mechanisms to evade IFN activation, suggesting the importance 

of avoiding this antiviral response in order for KSHV to persist in the host. 

 As mentioned earlier, the TLRs are pattern recognition receptors (PRR) that 

can be activated by invading pathogens. TLR activation triggers the production of 

antimicrobial cytokines and chemokines such as IFN, CCLs, and CXCLs through a 

variety of signaling proteins including NFκB, IRFs, and TRAFs. KSHV infection is 

able to downregulate TLR4 expression partly through the actions of vGPCR and 

vIRF1, and this subsequently suppresses expression of TNF-α, IL1-β, IL-6, and IFNβ 

(226). Furthermore, it was recently discovered that the ubiquitin ligase activity of 

KSHV RTA may cause the degradation of TRIF (Toll-IL-1 receptor (TIR) domain-

containing adaptor-inducing β-IFN), which is a critical mediator of TLR3- and TLR4-

induced type I IFN production (272). As mentioned previously, the KSHV-encoded 

miRNAs miR-K12-9 and miR-K12-5 target IRAK1 and MYD88, which are both 

essential components of TLR and IL-1 receptor signaling pathways (130) . 

In addition to the TLRs, which are membrane-bound PRRs, host cells also 

express cytosolic receptors. These cytosolic PRRs include the RNA helicases RIG-I 

and MDA5, the NLR (nucleotide-binding and oligomerization, leucine-rich repeat 

containing) protein family, and the cytosolic DNA sensing pathway cGAS/STING 

(cyclic GMP AMP synthase/stimulation of IFN-dependent genes). RIG-I detects viral 

RNA and becomes ubiquitinated by TRIM25, which allows it to interact with the 

downstream signaling complex MAVS/IPS-1 (273, 274). Activation of this complex 

leads to the induction of type I IFN, which can limit KSHV infection (275) KSHV 

encodes a deubiquitinase (DUB), ORF64, which is capable of deubiquitinating RIG-I 
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to suppress RIG-I-mediated activation of the IFNβ promoter during reactivation 

(276).  

NLRs sense a variety of microbial ligands, and their activation results in the 

assembly of an inflammasome complex which activates caspase-1 to generate 

mature IL-1β and IL18 (277). Production of IL-1β and IL18 in response to infection 

can lead to hyperinflammatory caspase 1-mediated cell death, called pyroptosis. 

KSHV ORF63 has homology to parts of cellular NLRP1, but lacks the effector 

caspase activation and recruitment (CARD) domain that is critical for inflammasome 

formation and function. ORF63 is able to interact with NLRP1 to prevent formation of 

both the NLRP1 and NLRP3 inflammasome and subsequent activation of caspase 1 

(278). The function of ORF63 appears to be important for supporting viral gene 

expression and genome replication as well as suppressing IL-1β production. 

A new cytosolic DNA sensor called cGAS was recently identified. cGAS 

activates the effector STING to induce IFN production and a subsequent antiviral 

response (279, 280). It was recently found that KSHV infection activates the 

cGAS/STING pathway, and employs multiple mechanisms to dampen this activation 

(281). One of these mechanisms is expression of vIRF1, which blocks the 

cGAS/STING-induced IFN response by disrupting the interaction between STING 

and the effector molecule TBK1.  

KSHV encodes three homologs of cellular chemokines: viral CC-chemokine 

ligand 1 (vCCL1, also called vMIP1), vCCL2 (vMIP2), and vCCL3 (vMIP3) (195). 

vCCL1 is a ligand and agonist of CCR8 (282), whereas vCCL2 is a ligand that 

actually blocks signaling through multiple chemokine receptors including CCR-1, -2, 
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-5, and -8 and CXCR-1, -2, and -4 (283). vCCL3 is an agonist for CCR4 (284). 

Collectively, binding of the viral chemokines to their respective cellular chemokine 

receptors is able to elicit a Th2-polarized response that is less cytotoxic to KSHV-

infected cells than a Th1-polarized response (284, 285).  

 The complement pathway acts as a bridge between the innate and adaptive 

immune system, since activation of complement can occur in an antibody-dependent 

or independent mechanism. Furthermore, phagocytosis of complement-bound 

pathogens or infected cells (opsonization) generates pathogen-derived antigens 

required to prime the adaptive immune system. Complement activation can occur 

through the classical, lectin, or alternative pathways which all result in the cleavage 

of complement component C3 into C3a and C3b by the C3 convertase (286). C3b 

can then be deposited onto the surface of pathogens or infected cells to facilitate 

lysis, neutralization, or phagocytosis. Since complement activation occurs through 

an amplifying cascade of proteolytic events, cellular regulators of complement 

activation (RCA) proteins keep this pathway in check to avoid hyperinflammatory 

responses (286).  KSHV ORF4 encodes a structural and functional homolog to 

cellular RCA proteins called the KSHV complement control protein (KCP) (287, 288). 

KCP is able to prevent cleavage of C3 through accelerating the decay of the C3 

convertase, by acting as an inhibitory cofactor to inactivate C3b and downstream 

complement molecules, and by preventing deposition of C3b onto target surfaces 

(289, 290). By evading the complement pathway, the virus is able to avoid 

neutralization of extracellular virions by complement deposition, decrease the 
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elimination of infected cells, and reduce the acquisition of viral antigens by 

phagocytes and APCs to inhibit the adaptive immune response. 

 As discussed in the adaptive immune evasion section, KSHV downregulates 

MHC-I expression on APCs. NK cells are designed to sense and kill cells displaying 

abnormal MHC-I levels through their leukocyte Ig-like receptor 1 (LIR1) and killer 

inhibitory receptor (KIR), which recognize endogenous MHC-I molecules on cells. To 

prevent the elimination of infected cells with reduced MHC-I, KSHV utilizes multiple 

mechanisms to inhibit NK cell function. In addition to downregulating MHC-I, KSHV 

K5 also downregulates surface expression of ICAM-1 and B7-2 (CD86) to avoid NK-

mediated cell cytotoxicity (240, 242, 250). NK cell killing requires activation of the 

NKG2D and NKp80 receptors. As mentioned earlier, the KSHV miRNA miR-K12-7 

targets the NKG2D ligand MHC class I-related chain B (MICB) 3’UTR. This results in 

decreased expression of this NKG2D ligand and effectively reduces NK cell killing 

ability (131). K5 also decreases the surface expression MICB and another NKG2D 

ligand, MICA, as well as the NKp80 ligand activation-induced C type lectin (AICL) 

(291). In these ways, KSHV has cleverly devised mechanisms to not only reduce 

activation of the adaptive immune system by downregulating MHC-I, but also to 

avoid the detrimental side effects of abnormal MHC-I levels on infected cells.  

 

CONCLUSIONS 

KSHV expresses a diverse repertoire of proteins and small RNAs that aid the 

virus in establishing a lifelong infection in the host. Many of these viral components 

inadvertently cause transformation of host cells, linking KSHV with the development 
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of several human malignancies. These cancers pose a large threat to global public 

health, particularly in areas that are still struggling with limited treatment options for 

HIV infection. Two decades of KSHV research has elucidated many of the 

mechanisms by which KSHV is able to establish and maintain infection in the host 

and initiate tumorigenesis; however, despite this extensive research, there are still 

aspects of viral infection and transformation that are not well understood. Further 

elucidating the unique mechanisms that KSHV uses to persist so successfully in the 

host will hopefully uncover novel therapeutic targets for the treatment of KSHV 

disease. 
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CHAPTER 2: MODULATION OF KSHV VIL-6 FUNCTION BY HYPOXIA 

UPREGULATED PROTEIN 13  

 

OVERVIEW 

Kaposi’s sarcoma-associated herpesvirus (KSHV, also called human 

herpesvirus 8) is linked to the development of Kaposi’s sarcoma (KS), primary 

effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD). KSHV 

expresses several proteins that modulate host cell signaling and deregulate cell 

growth. One of these proteins is viral interleukin-6 (vIL-6) which is a homolog of 

human interleukin-6. vIL-6 is able to prevent apoptosis and promote pro-

inflammatory signaling, angiogenesis, and cell proliferation. Although it can be 

secreted, vIL-6 is mainly an intracellular protein that is retained in the endoplasmic 

reticulum (ER). We performed affinity purification and mass spectrometry to identify 

novel vIL-6 binding partners and found that the cellular ER chaperone hypoxia 

upregulated protein 1 (HYOU1) interacts with vIL-6. Immunohistochemical staining 

revealed that both PEL and KS tumor tissues express significant amounts of 

HYOU1. We also show that HYOU1 increases endogenous vIL-6 protein levels and 

that HYOU1 facilitates vIL-6-induced JAK/STAT signaling, migration, and survival in 
                                                           
3 Louise Giffin, Feng Yan, M. Ben Major, and Blossom Damania. Copyright © 
Journal of Virology, Aug 2014, 88(16):9429-41. BD and LG designed all 
experiments. LG performed all experiments except for the mass spectrometry run 
and analysis, which was performed by FY and MBM. Manuscript was written by LG 
and edited by BD. Grants to BD provided funding for all experiments. 
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endothelial cells. Furthermore, our data suggest that HYOU1 also modulates vIL-6’s 

ability to induce CCL2, a chemokine involved in cell migration. Finally, we 

investigated the impact of HYOU1 on cellular human IL-6 (hIL-6) signaling. 

Collectively, our data indicate that HYOU1 is important for vIL-6 function and may 

play a role in the pathogenesis of KSHV-associated cancers. 

 

INTRODUCTION 

Kaposi’s sarcoma-associated herpesvirus (KSHV; Human Herpesvirus 8) is 

the causative agent of several human malignancies including Kaposi’s sarcoma 

(KS), primary effusion lymphoma (PEL), and multicentric Castleman’s disease 

(MCD) (3-6). These malignancies often occur in the context of immunosuppression, 

and as a result KSHV-associated malignancies have increased in incidence since 

the onset of the AIDS epidemic (2). KSHV is a member of the gamma-herpesvirus 

subfamily and has a double-stranded DNA genome that expresses over eighty open 

reading frames (ORFs) (40). KSHV infection usually exists in a latent state in which 

a small subset of the viral genome is expressed. When the virus undergoes lytic 

reactivation, all viral genes are expressed and progeny virions are produced.  

It is thought that several latent and lytic genes contribute to modulation of 

host cell signaling to induce tumorigenesis. One of these genes is ORF K2 which 

encodes a viral homolog of human interleukin-6 (hIL-6) called viral interleukin-6 (vIL-

6) (195-197). vIL-6 shares 25% identity and 63% similarity to hIL-6 at the amino acid 

level. vIL-6 is expressed at low levels in latently infected PEL and is highly 

upregulated upon lytic reactivation (143, 144, 207). All KSHV-associated 
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malignancies have detectable vIL-6 levels (55, 64, 194). vIL-6 expression transforms 

NIH3T3 cells, and vIL-6-expressing cells injected into mice form larger tumors as 

compared to control cells (61). Additionally, transgenic mice engineered to express 

vIL-6 under the MHC Class I promoter display a phenotype reminiscent of KSHV-

associated plasmablastic MCD that is also dependent on mouse IL-6 expression 

(213). vIL-6 drives production of hIL-6 (200) and vascular endothelial growth factor 

(VEGF) (61) and can promote angiogenesis (211). Importantly, vIL-6 activates 

similar signaling pathways to the human cytokine, including the JAK/STAT, MAPK, 

and PI3K pathways (62, 198, 199).  

vIL-6 differs from hIL-6 in several ways: hIL-6 must bind the IL-6 receptor (IL-

6R, gp80) before activation of the gp130 signal transducer subunit, whereas vIL-6 

can directly bind gp130 to induce signaling (201-203); however, involvement of gp80 

can enhance vIL-6 signaling (205). Another difference is that hIL-6 is rapidly 

secreted from cells whereas vIL-6 is primarily retained within the endoplasmic 

reticulum (ER) (206, 207). In this compartment, vIL-6 binds gp130 in a tetrameric 

complex to induce intracellular signaling (207). The cellular ER protein, calnexin, has 

been shown to interact with vIL-6 to stabilize vIL-6 folding and maintain its 

intracellular distribution (142). The ER transmembrane protein vitamin K epoxide 

reductase complex subunit 1 variant 2 (VKORC1v2) was recently identified as an 

additional intracellular binding partner of vIL-6 (292, 293). vIL-6 binds to 

VKORC1v2’s C terminus which is present in the ER lumen, but data suggest that 

this binding domain is not responsible for retention of vIL-6 in the ER. 

Overexpression of VKORC1v2’s vIL-6 binding domain or depletion of VKORC1v2 
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abrogates vIL-6’s pro-growth phenotype in PEL cells independently of gp130 

signaling (292). Furthermore, it was found that vIL-6 promotes PEL cell survival by 

suppressing the pro-apoptotic properties of the VKORC1v2 binding partner, 

cathepsin D (294). This suggests that VKORC1v2 uses a mechanism independent 

of gp130 signaling to promote vIL-6 function and PEL cell survival.  

We performed affinity purification and mass spectrometry to identify novel 

binding partners of intracellular vIL-6. We found that a protein called hypoxia 

upregulated protein 1 (HYOU1; also called oxygen regulated protein 150 or 

ORP150) is able to bind vIL-6. HYOU1 is an ER resident chaperone protein that is a 

member of the heat shock and ER stress protein families (295). HYOU1 is 

expressed in many different cell types and can be upregulated by various cellular 

conditions including hypoxia and ER stress (295, 296). Furthermore, HYOU1 is 

upregulated in some human cancers including head and neck and breast cancer 

(297, 298). The HYOU1 transcript was originally cloned from astrocytes under 

hypoxic conditions (299), which makes it a relevant protein in KSHV biology since 

hypoxia plays a role in the KSHV lifecycle (300).  Previous work has indicated that 

HYOU1 can suppress hypoxia-induced cell death (301) and induce angiogenesis by 

facilitating VEGF processing (302).   

We found that HYOU1’s interaction with vIL-6 is important for vIL-6-induced 

intracellular STAT3 signaling and vIL-6 expression in PEL cells. Furthermore, we 

show that HYOU1 is required for several vIL-6 biological functions including 

promotion of endothelial cell survival and migration. We found that vIL-6 increases 

extracellular levels of chemokine (C-C motif) ligand 2 (CCL2, also called monocyte 
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chemoattractant protein 1 or MCP1) in a HYOU1-dependent manner. CCL2 is 

implicated in the migration and metastasis of tumor cells and the extravasation of 

immune cells (303, 304). Finally, we investigated the impact of HYOU1 on cellular 

human IL-6 (hIL-6) signaling. Our results suggest that by modulating vIL-6 function 

HYOU1 may contribute to KSHV-associated tumorigenesis, making HYOU1 an 

attractive target for the treatment of KSHV-associated malignancies. 

 

METHODS 

Cell Culture and Generation of Stable Cell Lines 

 Human embryonic kidney (HEK) 293 and HEK293T cells were cultured in 

Dulbecco’s modified Eagle’s medium (Corning). BCBL1 PEL cells were cultured in 

RPMI 1640 medium (Corning) containing 0.05 mM β-mercaptoethanol. TREx BCBL1 

and TREx BCBL1-RTA PEL cells (305) were cultured in RPMI 1640 medium 

(Corning) containing Tet System Approved FBS (Clontech) and 20 μg/mL 

hygromycin B (Roche). hTERT-immortalized human umbilical vein endothelial cells 

(hTERT-HUVEC) were cultured in EBM-2 (Lonza) with the EBM-2 bullet supplement 

(Lonza) as described (178). All media were additionally supplemented with 10% heat 

inactivated fetal bovine serum (FBS), 1% penicillin-streptomycin (PS), and 1% L-

glutamine. Charcoal filtered FBS was obtained from Life Technologies. Cells were 

transfected with XtremeGene HP transfection reagent (Roche) at a ratio of 2 µL 

XtremeGene: 1µg plasmid DNA as per the manufacturer’s protocol. Cells were 

transfected with 50-100 nM siRNA utilizing Lipofectamine RNAimax (Invitrogen) as 

per the manufacturer’s protocol. For lentiviral transductions, adherent cells were 
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grown to 70% confluence and inoculated with lentivirus in the presence of 8 μg/mL 

polybrene. Spinoculation was used for PEL cell transductions as previously 

described (223). All transfections and transductions were incubated for 48-72 hours 

to allow for protein expression or knockdown. hTERT-HUVEC cells and HEK293 

cells stably expressing empty vector or vIL-6 were generated by lentiviral 

transduction. HEK293 cells stably expressing a non-targeting shRNA or a HYOU1 

targeting shRNA plasmid (described below) were also generated by lentiviral 

transduction. For all stable cells, media were changed 24 hours post-transduction 

and the puromycin concentration was increased from 0.1 μg/mL to a final 

concentration of 0.5 μg/mLfor hTERT-HUVEC and 1.0 μg/mL for HEK293 cells over 

2 weeks.  

Plasmids, Lentiviral vectors, shRNAs, and siRNAs 

The pcDNA3.1-vIL-6-His clone was a kind gift from Yuan Chang and Patrick 

Moore. A C-terminal FLAG tag was added to vIL-6 and cloned into the pcDNA3.1 

eukaryotic expression vector (Invitrogen). pSG5-based eukaryotic expression 

vectors for untagged hIL-6 and hIL-6 with an ER-targeting motif containing KDEL 

and additional sequences (306) were a kind gift from John Nicholas and were 

previously described (207). The non-targeting control (NTC) siRNA duplex was 

purchased from Dharmacon (D001810-01) and the HYOU1-targeting siRNA duplex 

was designed and purchased from Invitrogen (NM_001130991_stealth_455) utilizing 

the Block-iT RNAi Designer as previously described (307). Plasmids for the pLKO.1 

non-targeting control (NTC) shRNA and a HYOU1-targeting shRNA 

(TRCN0000029220) were purchased from Sigma and used to generate lentivirus. 
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FLAG-tagged vIL-6 was cloned into the lentiviral vector pSuper-CMV puro 

(Invitrogen). All lentiviruses were produced using the ViraPower Lentiviral 

Expression System (Invitrogen) as per the manufacturer’s instructions. 

Mass Spectrometry, Immunoprecipitations, and Western Blots 

Twenty million 293T cells were transfected with pcDNA3 or vIL-6 expression 

vectors for 48 hours. Cells were harvested on ice in NP-40 lysis buffer (0.1% NP-40, 

150 mM NaCl, 50 mM Tris HCl pH 8.0, 30 mM β-glycerophosphate, 50 mM NaF, 1 

mM Na3VO4, 1 Roche protease inhibitor tablet per 50 mL) followed by one freeze-

thaw cycle. Samples were clarified by centrifugation at 16 000 x g for 10 minutes 

and protein content was determined by Bradford assay (Bio-Rad). Equal amounts of 

protein were loaded on FLAG antibody-conjugated beads (EZview Red ANTI-FLAG 

M2 Affinity Gel; Sigma) and rocked at 4oC overnight. Beads were washed twice with 

lysis buffer followed by 2 washes with 50 mM NH4HCO3. Samples were eluted with 

3x FLAG peptide (Sigma) diluted in 50 mM NH4HCO3 and 0.1% PPS Silent 

Surfactant (Protein Discovery). Samples were treated with 5 mM dithiothreitol at 

60oC for 15 minutes. Proteins were trypsinized using the FASP protein digestion 

protocol (Protein Discovery) and tryptic peptides were separated by a nanoAquity 

UPLC system (Waters Corp.) with a 2-cm trapping column and a self-packed 25-cm 

analytical column (75-μm ID, Michrom Magic C18 beads of 5.0-μm particle size, 100-

Å pore size) at room temperature. The flow rate was 350 nl/min over a gradient of 

1% buffer B (0.1% formic acid in acetonitrile) to 35% buffer B in 200 min. Full mass 

spectrum scan [300 to 2000 mass/charge ratio (m/z)] was acquired in an LTQ-

Orbitrap Velos mass spectrometer (Thermo Scientific) at 60 000 resolution setting; 
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data-dependent MS2 spectra were acquired by collision-induced dissociation with 

the 15 most intense ions. All raw data were searched with Sorcerer-SEQUEST 

server (Sage-N Research) against the human UniProtKB/Swiss-Prot sequence 

database. Search parameters used were a precursor mass between 400 and 4500 

atomic mass units (amu), up to 2 missed cleavages, a precursor-ion tolerance of 3 

amu, semi-tryptic digestion, a static carbamidomethyl cysteine modification, and 

variable methionine oxidation. False discovery rates (FDRs) were determined by 

ProteinProphet, and minimum protein probability cutoffs resulting in a 1% FDR were 

used.  

For HYOU1 immunoprecipitations, cell lysates containing equal amounts of 

protein were precleared by incubation with Protein A beads and normal rabbit IgG. 

Beads were pelleted and supernatants were incubated with 8 μL HYOU1 antibody or 

rabbit IgG for 5 hours prior to the addition of 50 μL Protein A beads overnight. Beads 

were pelleted and washed twice with lysis buffer and twice with cold TBS. Bound 

proteins were eluted by boiling in Laemmeli buffer for 5 minutes. For FLAG-vIL-6 

immunoprecipitation, HEK293 cells stably expressing empty vector or vIL-6 were 

transfected with 75 nM NTC or HYOU1-targeting siRNA for 72 hours. Equal amounts 

of cell lysates were precleared by Protein A beads and normal rabbit IgG then 

incubated with 50 μL FLAG antibody-conjugated beads overnight. Bound proteins 

were eluted with 3x FLAG peptide. All immunoprecipitation inputs and eluates were 

resolved on 10% SDS-PAGE gels and transferred to nitrocellulose membranes. 

Membranes were blocked with 5% non-fat dry milk in 1x TBS/0.1% Tween (TBST) 

followed by overnight incubation with primary antibody at 4oC. Blots were then 
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incubated with the appropriate HRP-conjugated secondary antibody for 1 hour at 

room temperature. Blots were developed with PicoWest chemiluminescent reagent 

(Thermo). Primary antibodies used were Flag (Bethyl, A190-101P), Actin (Santa 

Cruz, sc-1615), Tubulin (Cell Signaling, 9099), phospho-STAT3 Tyr705 (Cell 

Signaling, 9131), Total STAT3 (Cell Signaling, 4904), HYOU1 (Abcam, ab134944), 

human IL-6 (Abcam, ab32530), gp130 (Santa Cruz, sc-655), LANA (Advanced 

Biotechnologies (13-210-100), RTA (a gift from Ren Sun), K8.1 (Advanced 

Biotechnologies, 13-212-100), and vIL-6 (Advanced Biotechnologies, 13-214-050). 

Anti-rabbit, anti-mouse, and anti-rat (Cell Signaling) and anti-goat (Santa Cruz) 

horseradish peroxidase-conjugated secondary antibodies were used. Normal rabbit 

IgG (Santa Cruz, sc-2027) and Protein A beads (Santa Cruz sc-2003) were used for 

preclearing immunoprecipitation samples. 

Immunohistochemistry  

Immunohistochemical staining was carried out as described previously (308). 

PEL xenograft tumors were obtained from a previous study (308). Prepared sections 

of confirmed KSHV-positive KS lesions from specimen IDs 30035001 and 30035006 

were obtained from the AIDS and Cancer Specimen Resource (ACSR). For HYOU1 

staining, slides were deparaffinized and rehydrated then incubated in 3% H2O2 in 

10% methanol. Antigen retrieval was accomplished by boiling sections in 1 mM 

ethylenediaminetetraacetic acid (pH 8.0) for 10 minutes. Slides were incubated with 

blocking buffer (10% normal horse serum, 5% BSA, 0.3% Triton X-100) for 1 hour 

followed by overnight incubation with HYOU1 antibody (1:100) or blocking buffer as 

a negative control. Sections were washed and incubated with biotinylated goat anti-
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rabbit secondary antibody for 1 hour followed by signal amplification with the 

Vectastain ABC rabbit IgG kit (Vector labs). Sections were stained with 3, 3’-

diaminobenzidine (DAB) peroxide substrate according to the manufacturer’s protocol 

(Vector Labs). For LANA staining, antigen retrieval was accomplished by boiling 

sections in Retrievagen A pH 6.0 (BD Pharmingen). Slides were incubated in 

blocking buffer (1.5% rabbit serum, 1% BSA, 0.1% Triton X100, 0.05% Tween-20, 

0.1% gelatin from cold water fish skin in 1x PBS) for 1 hour followed by overnight 

incubation with LANA antibody diluted 1:100 in antibody buffer (1% BSA, 0.1% 

Triton X-100, 0.1% gelatin from cold water fish skin in 1x PBS) or plain antibody 

buffer for the negative control. Sections were washed and incubated with 

biotinylated rabbit anti-rat secondary antibody for 30 minutes followed by signal 

amplification with the Vectastain ABC rat IgG kit. Slides were stained with NovaRed 

substrate according to the manufacturer’s protocol (Vector Labs). All slides were 

counterstained with hematoxylin . Slides were imaged using a Leica DM LA 

histology microscope with 20x/0.25 numeric aperture (NA) and 40×/0.75 NA 

objectives. 

 Endothelial Cell Assays 

Scratch assay: Stable empty vector- or vIL-6-expressing hTERT-HUVEC 

were plated at 1.5x105 cells/well of a 6 well dish. The following day, cells were 

transduced with lentivirus expressing NTC or HYOU1-targeting shRNA as described. 

Media were changed after 24 hours, and 48 hours post-transduction cells were 

serum-starved overnight with plain EBM-2. The monolayer was scratched with a P10 

pipet tip, and a Nikon Eclipse Ti inverted microscope was used to obtain brightfield 
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images of the cells at 40x or 100x magnification at the indicated timepoints. ImageJ 

software (NIH) was used to quantify the area of each scratch over time. 

CCL2 ELISA: Stable empty vector- or vIL-6-expressing hTERT-HUVEC were 

plated at 1.2x105 cells/well of a 6 well dish. The following day, cells were transfected 

with 100 nM NTC or HYOU1-targeting siRNA as described. Seventy-two hours post-

transfection, media were replaced with serum-free EBM-2 without supplements for 

48 hours. Following harvest, the media were cleared of debris by centrifugation and 

a CCL2 ELISA was carried out as per the manufacturer’s protocol (Life 

Technologies). Samples were all run in triplicate. Absorbance was read at 450 nm 

on a VersaMax tunable microplate reader (Molecular Devices) and a standard curve 

was generated using a best fit power trendline in Microsoft Excel. Error bars 

represent the standard deviation and CCL2 concentrations were compared using a 

two-tailed Student’s t test with p < 0.05 considered significant. Results are 

representative of at least 3 experiments.   

Survival Assay: Stable empty vector- or vIL-6-expressing hTERT-HUVEC 

were plated at 1.2x105 cells/well of a 6 well dish. The following day, cells were 

transfected with 100 nM NTC or HYOU1-targeting siRNA as described. Seventy-two 

hours post-transfection, media were replaced with serum-free EBM-2 without 

supplements and a Nikon Eclipse Ti inverted microscope was used to obtain 

brightfield images of the cells at 40x or 100x magnification at the indicated 

timepoints. Media were replaced with fresh serum-free media before each timepoint 

to remove dead cell debris.  
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Cytotoxicity Assay: Three thousand cells/well of stable empty vector- or vIL-6-

expressing hTERT-HUVEC were plated and transfected in two white walled 96 well 

plates using RNAimax and 100 nM NTC or HYOU1-targeting siRNA according to the 

manufacturer’s protocol for reverse transfection (Invitrogen). Samples were 

transfected in triplicate. Three days post-transfection, one plate was used to 

measure baseline cytotoxicity at day 0 using the CytoTox Glo kit (Promega) as per 

the manufacturer’s instructions with a FLUOstar Optima luminometer (BMG 

Labtech). The media of the second plate was replaced with serum-free EBM-2 

without supplements for 6 days followed by a second cytotoxicity assay. The 

percentage of dead cells at each timepoint was calculated from the raw data. Data is 

shown as a fold change in cell death which was calculated by dividing the 

percentage of dead cells at day 6 by the percentage at day 0. Error bars represent 

the standard deviation of the mean, and a one way ANOVA with Tukey’s post-hoc 

test was used to compare all samples with a p value < 0.05 considered significant.  

 

RESULTS 

Identification of HYOU1 as a vIL-6 Binding Partner 

The biological effects of extracellular vIL-6 have been extensively studied (61, 

62, 195, 198-200) but less is known about vIL-6’s interactions with intracellular 

proteins. We sought to identify additional cellular proteins that bind to vIL-6 and 

impact its function. We cloned vIL-6 with an N-terminal FLAG tag into the pcDNA3.1 

vector (pcDNA3.1-vIL-6), and transfected pcDNA3.1 empty vector or pcDNA3.1-vIL-

6 into HEK293T cells. Cells were harvested and subjected to an immunoprecipitation 



48 

with FLAG antibody-conjugated beads. vIL-6-bound proteins were eluted with 3x 

FLAG peptide. A fraction of the elution was subjected to SDS-PAGE and 

subsequent silver staining or Western blotting for vIL-6 to ensure successful vIL-6 

expression and pull down (Figure 2.1 A). The vIL-6 concentration in the lysate was 

high enough that dimerization of the vIL-6 protein was evident by Western blot 

(Figure 2.1 A, right panel). The remainder of the eluted samples were digested with 

trypsin and analyzed by shotgun mass spectrometry (309). Proteins with peptide 

counts that were higher in the vIL-6-FLAG sample than the empty vector sample 

were identified as potential vIL-6 binding partners (Figure 2.1 B). Consistent with 

previous findings (142), over 40 unique calnexin peptides and 9 unique gp130 

peptides were identified in the vIL-6 sample. The vIL-6 sample also had 9 unique 

peptides identified for the protein hypoxia upregulated protein 1 (HYOU1; ORP150) 

while no HYOU1 peptides were identified in the empty vector control. 

To confirm that HYOU1 interacts with vIL-6, we again transfected HE293T 

cells with empty vector or FLAG-tagged vIL-6 constructs. Lysates from these cells 

were immunoprecipitated with HYOU1 antibody or rabbit IgG as a control, and 

bound proteins were eluted by boiling in Laemmli buffer. Eluates and input samples 

were resolved on an SDS-PAGE gel and analyzed by Western blotting. As seen in 

Figure 2.1 C, vIL-6 coimmunoprecipitated with HYOU1. To determine if vIL-6 

interacts with HYOU1 in a more relevant cell type, BCBL1 PEL cells were 

transduced with lentivirus expressing empty vector or FLAG-tagged vIL-6 and 

lysates were harvested 48 hours later. The FLAG-tagged vIL-6 was 

immunoprecipitated by FLAG antibody-conjugated beads and bound proteins were 
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eluted with FLAG peptide. Our data again showed that HYOU1 

coimmunoprecipitated with vIL-6, suggesting that there is a bona fide interaction 

between HYOU1 and vIL-6 in multiple cell types.  

 

Figure 2.1: vIL-6 binds the ER chaperone protein hypoxia upregulated protein 1 

(HYOU1). (A) HEK293T cells were transfected with empty vector (EV) or FLAG-tagged vIL-6 

and lysates were harvested for a FLAG bead immunoprecipitation. Portions of the bead 

eluates were analyzed by SDS-PAGE and subsequent silver staining (left panel; M is the 

size marker) or Western blot for vIL-6 (right panel). An asterisk denotes the expected 

location of HYOU1. (B) HYOU1, Calnexin, and gp130 were identified as binding partners of 



50 

vIL-6 by mass spectrometry. (C) HEK293T cells were transfected with empty vector or vIL-6 

constructs and lysates were harvested and immunoprecipitated with HYOU1 or rabbit IgG 

control antibody. Bound proteins were eluted with Laemmli buffer. Samples were analyzed 

by SDS-PAGE and Western blotting for the indicated proteins. (D) BCBL1 PEL cells were 

transduced with lentivirus expressing empty vector or FLAG-tagged vIL-6. Lysates were 

immunoprecipitated with FLAG beads and eluates and inputs were analyzed by SDS-PAGE 

and Western blotting for the indicated proteins. 

 

To determine if HYOU1 is expressed in tumors associated with KSHV 

infection, sections of BC-1 PEL tumors grown in immunodeficient mice (308) and 

human KS sections were stained for HYOU1 using DAB peroxide substrate. 

Matched tumor sections were also stained for LANA to confirm KSHV infection. 

HYOU1 and LANA staining were observed in both PEL xenografts and in KS lesions 

(Figures 2.2 A and 2.2 B). In the PEL xenografts in particular, HYOU1 displayed 

distinct perinuclear staining which is consistent with its ER localization (Figure 2.2A). 
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Figure 2.2: HYOU1 is expressed in tissue from KSHV-associated tumors. (A) 

Immunohistochemical staining for HYOU1 and LANA on BC-1 PEL xenograft sections. The 

control received no primary antibody. (B) Immunohistochemical staining for HYOU1 and 

LANA on sections of human KS lesions. The control received no primary antibody. 

 

HYOU1 Increases vIL-6 Levels 

HYOU1 is an ER chaperone protein (295) so we sought to determine if its 

interaction with vIL-6 influences endogenous vIL-6 protein levels. BCBL1 PEL cells 

were transduced with lentivirus expressing a non-targeting control (NTC) shRNA or 

a HYOU1-targeting shRNA. Three days post-transduction, cells were treated with 
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DMSO to maintain latency or 25 ng/mL 12-O-Tetradecanoylphorbol 13-acetate 

(TPA) to induce lytic reactivation for 24 hours. Cell lysates and media were 

harvested and analyzed by SDS-PAGE and Western blot. High levels of HYOU1 

knockdown were achieved with the HYOU1-targeting shRNA, and as expected, vIL-

6 levels were higher overall in lytic samples since vIL-6 is induced during lytic 

reactivation (144) (Figure 2.3 A). We found that HYOU1 knockdown decreased 

endogenous vIL-6 protein levels in both lytic and latent BCBL1 cells (Figure 2.3 A). 

Additionally, HYOU1 knockdown decreased levels of secreted vIL-6 during 

reactivation. While this is likely due to the increased levels of intracellular vIL-6 when 

HYOU1 is expressed, we cannot rule out the possibility that HYOU1 may also 

promote the secretion of vIL-6.  

We also performed this experiment using TREx BCBL1 and TREx BCBL1-

RTA PEL lines that express doxycycline-inducible empty vector and doxycycline-

inducible RTA, respectively (305). The two TREx BCBL1 cell lines were transduced 

with lentivirus expressing a NTC or a HYOU1-targeting shRNA. After 72 hours, cells 

received 1 μg/mL doxycycline for 24 hours to maintain latency in the TREx BCBL1 

cells and induce lytic replication in the TREx BCBL1-RTA cells. Cell lysate and 

media were harvested and analyzed by SDS-PAGE and Western blotting for the 

indicated proteins (Figure 2.3 B). Similar to the results seen in BCBL1 PEL cells, 

knockdown of HYOU1 in both latent TREx BCBL1 and lytic TREx BCBL1-RTA cells 

reduced levels of intracellular and extracellular vIL-6. Conversely, levels of LANA did 

not significantly change with HYOU1 knockdown in both the latent and lytic cells. We 
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also examined the levels of the lytic proteins RTA and K8.1 in the reactivated cells, 

and found that HYOU1 knockdown did not impact the levels of these lytic proteins.  

 

Figure 2.3: HYOU1 increases endogenous vIL-6 levels. (A) BCBL1 PEL cells were 

transduced with lentivirus expressing a non-targeting control (NTC) or HYOU1-targeting 



54 

shRNA. Three days later, cells were treated with DMSO or 25 ng/mL TPA to induce 

reactivation for 24 hours. Lysates and media were collected and analyzed by SDS-PAGE 

and Western blot for the indicated proteins. (B) TREx BCBL1 and TREx BCBL1-RTA PEL 

cells expressing doxycycline-inducible empty vector or RTA, respectively, were transduced 

with lentivirus expressing a NTC or HYOU1-targeting shRNA. Three days post-transduction, 

1 μg/mL doxycycline was added for 24 hours. Lysates and media were harvested and 

analyzed by SDS-PAGE and Western blot for the indicated proteins. (C) HEK293 stably 

knocked down for HYOU1 (left panel) or HEK293 first transfected with NTC or HYOU1-

targeting siRNA (right panel) were then transfected with a titration of FLAG-tagged vIL-6 

plasmid for 48 hours. Lysates were harvested and analyzed by SDS-PAGE and Western 

blot for the indicated proteins. 

 

To further investigate if HYOU1 knockdown impacts levels of vIL-6, we used 

HEK293 cells stably expressing a NTC or a HYOU1-targeting shRNA. These cells 

were then transfected with a titration of FLAG-tagged vIL-6 plasmid for 48 hours. We 

also performed a similar experiment by transiently transfecting HEK293 cells with 

NTC or HYOU1-targeting siRNA for 24 hours followed by transfection with a titration 

of FLAG-tagged vIL-6 plasmid for 48 hours. Lysates from both of these experiments 

were harvested and analyzed by Western blot (Figure 2.3 C). In both of these 

experiments, knockdown of HYOU1 prior to expression of FLAG-tagged vIL-6 

resulted in a reduction in vIL-6 expression, as compared to cells that expressed 

endogenous levels of HYOU1. These results closely match the phenotype we see in 

PEL cells endogenously expressing vIL-6 (Figure 2.3 A and 2.3 B). Interestingly, we 

find that when FLAG-tagged vIL-6 is expressed prior to knockdown of HYOU1, vIL-6 
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levels do not appear to be significantly changed by knockdown of HYOU1 (Figures 

2.4, 2.5 C, 2.6 B and 2.7 B).  For subsequent experiments, we chose to overexpress 

FLAG-tagged vIL-6 before knocking down HYOU1 to keep the amount of vIL-6 the 

same and eliminate differences in vIL-6 levels as a variable contributing to the 

observed results. This approach allowed us to determine if HYOU1 actually affects 

vIL-6 function as opposed to simply affecting vIL-6 protein levels as a mechanism of 

action.  

HYOU1 Facilitates vIL-6-Dependent STAT Signaling 

Following activation of gp130, STAT3 becomes phosphorylated at Y705. This 

causes STAT3 to dimerize and relocate to the nucleus where it upregulates IL-6-

responsive proinflammatory genes. Others have shown that vIL-6 induces STAT3 

Y705 phosphorylation through activation of gp130 (142, 199). To determine if 

HYOU1’s interaction with vIL-6 is involved in the induction of this signaling cascade, 

HEK293 cells were transfected with empty vector or FLAG-tagged vIL-6 plasmid 

followed by transfection of a NTC or HYOU1-targeting siRNA 24 hours later. Twenty-

four hours after the siRNA transfection, media were replaced with serum-free media 

for another 24 hours. Lysates were harvested and analyzed by SDS-PAGE and 

Western blotting. Compared to cells expressing empty vector, vIL-6 increased 

STAT3 Y705 phosphorylation in the presence of HYOU1; however, knockdown of 

HYOU1 diminished this phosphorylation event (Figure 2.4 A). We generated hTERT-

HUVEC (178) stably expressing empty vector or FLAG-tagged vIL-6 and transfected 

these cells with NTC or HYOU1-targeting siRNA for 3 days. These cells were treated 

with plain EBM-2 media containing 2% charcoal-filtered FBS for 24 hours prior to 
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harvest to eliminate background levels of STAT3 phosphorylation. Lysates from the 

hTERT-HUVEC showed a similar trend to HEK293 cells for STAT3 phosphorylation 

(Figure 2.4 B). This suggests that HYOU1 is involved in enhancing vIL-6-induced 

activation of the JAK/STAT signaling pathway in multiple cell types.  

 

Figure 4: HYOU1 enhances vIL-6-induced STAT3 signaling. (A) HEK293 cells were 

transfected with empty vector (EV) or FLAG-tagged vIL-6 plasmids followed by a 
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transfection with non-targeting control (NTC) or HYOU1-targeting siRNA 24 hours later. 

Twenty-four hours post-siRNA transfection, cells were serum starved for another 24 hours. 

Lysates were harvested and analyzed by SDS-PAGE and Western blotting for the indicated 

proteins. (B) hTERT-HUVEC stably expressing EV or FLAG-tagged vIL-6 were transfected 

with NTC or HYOU1-targeting siRNA for 3 days. Media were replaced with plain EBM-2 with 

2% charcoal filtered FBS for 24 hours. Lysates were harvested and analyzed by SDS-PAGE 

and Western blotting. (C) HEK293 stably expressing EV or FLAG-tagged vIL-6 were 

transfected with 75 nM NTC or HYOU1 siRNA for 3 days. Lysates were harvested and 

subjected to a FLAG immunoprecipitation overnight. Bound proteins were eluted with 3x 

FLAG peptide and eluates and input samples were analyzed by SDS-PAGE and Western 

blotting for the indicated proteins. 

 

Since vIL-6 can bind ER-embedded gp130 to initiate JAK/STAT signaling 

(207), we hypothesized that HYOU1 may facilitate vIL-6-induced STAT3 

phosphorylation by promoting vIL-6’s interaction with gp130. To test this, we used 

HEK293 cells stably expressing an empty vector or FLAG-tagged vIL-6. Cells were 

transfected with 75 nM of a NTC or HYOU1-targeting siRNA for 72 hours. Lysates 

were harvested and subjected to an immunoprecipitation with FLAG beads to pull 

down vIL-6. Bound proteins were eluted with FLAG peptide and eluates and input 

samples were analyzed by SDS-PAGE and Western blotting.  We found that gp130 

coimmunoprecipitated with vIL-6 as expected, but knockdown of HYOU1 

consistently reduced this interaction (Figure 2.4 C). This suggests that HYOU1 

promotes the vIL-6-gp130 interaction, so this may be one mechanism by which 

HYOU1 facilitates vIL-6-mediated STAT signaling.   
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HYOU1 is Essential for vIL-6-Induced Endothelial Cell Migration  

To further understand the impact of HYOU1 on vIL-6 activity, we developed 

biological assays for vIL-6 function in endothelial cells. KS is a cancer of endothelial 

cell origin, and vIL-6 can be detected in patients with this malignancy (194).  

Therefore, endothelial cells are a relevant model to investigate vIL-6 function. We 

first investigated if vIL-6 can influence endothelial cell migration in a scratch assay. 

Equivalent numbers of hTERT-HUVEC stably expressing empty vector or FLAG-

tagged vIL-6 were plated as a confluent monolayer and serum starved overnight 

before scratching the monolayer with a P10 pipet tip. The scratch was monitored at 

various timepoints utilizing brightfield microscopy on a Nikon Eclipse Ti inverted 

microscope. Cells expressing vIL-6 were able to close the scratch faster than cells 

expressing empty vector (Figure 2.5 A). The influence of vIL-6 expression on 

endothelial cell migration has not been previously studied, so this data represents a 

novel biological function for vIL-6. 

We extended this assay to study the effect of HYOU1 on vIL-6-induced 

endothelial cell migration. hTERT-HUVEC stably expressing empty vector or FLAG-

tagged vIL-6 were transduced with lentivirus expressing a NTC or HYOU1-targeting 

shRNA. Two days post-transduction, cells were serum starved overnight prior to 

scratching the monolayer. Again, when HYOU1 was expressed normally the vIL-6-

expressing cells closed the scratch more rapidly than the empty vector-expressing 

cells (Figure 2.5 B). However, vIL-6-expressing cells knocked down for HYOU1 were 

unable to close the gap, similar to the empty vector-expressing cells (Figure 2.5 B). 

The area of each scratch was quantified with ImageJ software (Figure 2.5 C). 
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Lysates were harvested from these cells and subjected to SDS-PAGE and Western 

blotting to confirm HYOU1 knockdown and vIL-6 expression (Figure 2.5 D). These 

data suggest that HYOU1 is critical for vIL-6-induced migration of endothelial cells.  

 

 

Figure 2.5: HYOU1 facilitates vIL-6-induced migration of endothelial cells. (A) hTERT-

HUVEC cells stably expressing empty vector (EV) or FLAG-tagged vIL-6 were serum 

starved overnight and scratched with a P10 pipet. Scratch closure was monitored at 0, 4, 8, 
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12, and 24h by brightfield microscopy at 100x magnification using a Nikon Eclipse Ti 

inverted microscope. (B) hTERT-HUVEC cells stably expressing EV or FLAG-tagged vIL-6 

were transduced with lentivirus expressing a non-targeting control (NTC) or HYOU1-

targeting shRNA. Cells were serum starved overnight and scratched with a P10 pipet tip and 

monitored for scratch closure at 0, 6, 12, and 24h at 40x magnification. (C) Quantification of 

the area of each scratch pictured in figure 5B normalized to the 0hr timepoint. (D) Lysates 

from the cells described in panel B were harvested at the 24h timepoint and analyzed by 

SDS-PAGE and Western blot to confirm efficient HYOU1 knockdown and vIL-6 expression. 

(E) hTERT-HUVEC cells stably expressing EV or FLAG-tagged vIL-6 were transfected with 

50 nM NTC or HYOU1-targeting siRNA for 3 days followed by serum starvation for 48 hours. 

Supernatants were collected and a CCL2 ELISA was performed with each sample tested in 

triplicate. Absorbance was read at 450 nm and a standard curve was generated using a best 

fit power trendline in Microsoft Excel. The concentrations of the samples were calculated 

and error bars represent standard deviation of the triplicates. A two-tailed Student’s t test 

was used to compare the sample concentrations with a p value < 0.05 considered 

significant. Results are representative of at least 3 experiments. 

 

To elucidate the mechanism by which vIL-6 induces endothelial cell migration, 

we investigated if vIL-6 affects the levels of chemokine (C-C motif) ligand 2 (CCL2, 

also called monocyte chemoattractant protein 1 or MCP1) since this chemokine is 

associated with tumor cell migration and metastasis and increased vascular 

permeability (303, 304). We transfected hTERT-HUVEC stably expressing an empty 

vector or FLAG-tagged vIL-6 with 100 nM of NTC or HYOU1-targeting siRNA for 72 

hours followed by serum starvation for 48 hours. We performed a CCL2 ELISA on 



61 

supernatants from these cells and found that vIL-6 expression increases the level of 

extracellular CCL2 as compared to the empty vector (Figure 2.5 E). Interestingly, 

knockdown of HYOU1 in vIL-6 cells caused the CCL2 level to decrease 

substantially, although the level of CCL2 in this sample was still higher than the level 

seen in hTERT-HUVEC expressing empty vector (Figure 2.5 E). This suggests that 

there may be other factors besides CCL2 that are involved in vIL-6-mediated cell 

migration.     

HYOU1 is Required for vIL-6-Mediated Endothelial Cell Survival 

We next investigated vIL-6’s role in endothelial cell survival in serum starved 

conditions. hTERT-HUVEC stably expressing empty vector or FLAG-tagged vIL-6 

were transfected with 100 nM of NTC or HYOU1-targeting siRNA. Seventy-two 

hours post-transfection, cells were serum starved and brightfield images were 

obtained at the indicated timepoints. vIL-6 expressing cells expressing HYOU1 

maintained normal morphology, remained adherent, and survived significantly longer 

in serum-free conditions than cells expressing empty vector (Figure 2.6 A). HYOU1 

knockdown had little impact on survival in cells expressing the empty vector. 

However, vIL-6-expressing cells with HYOU1 knockdown displayed significantly 

reduced survival as compared to vIL-6 cells expressing HYOU1 (Figure 2.6 A). 

Lysates from a duplicate set of samples were harvested for analysis by SDS-PAGE 

and Western blotting to ensure adequate HYOU1 knockdown and vIL-6 expression 

(Figure 2.6 B). 
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Figure 2.6: HYOU1 is required for vIL-6-induced endothelial cell survival in serum 

starved conditions. (A) hTERT-HUVEC stably expressing EV or FLAG-tagged vIL-6 were 

plated as a confluent monolayer and transfected with 100 nM non-targeting control (NTC) or 

HYOU1-targeting siRNA. Cells were serum starved 72 hours post-transfection and 

brightfield images at 100x magnification were taken at 0, 6, and 10 days post-starvation 

using a Nikon Eclipse Ti inverted microscope. Replicate samples were harvested 24 hours 

after starvation for analysis by SDS-PAGE and Western blot to confirm efficient vIL-6 

expression and HYOU1 knockdown (B). (C) hTERT-HUVEC stably expressing EV or FLAG-

tagged vIL-6 were reverse-transfected with 100 nM NTC or HYOU1-targeting siRNA in 

triplicate in two white-walled 96 well plates. Three days post-transfection, a CytoTox Glo 

(Promega) cytotoxicity assay was performed on the first plate and the percent of dead cells 

at Day 0 was calculated. The second plate was serum starved for 6 days followed by 

completion of a cytotoxicity assay used to calculate the percent of dead cells at Day 6. The 

graph represents a fold change in dead cells calculated by dividing the percentage of dead 
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cells at Day 6 by the percentage of dead cells at Day 0. Error bars represent standard 

deviation of the mean and p values were calculated using a one way ANOVA with Tukey’s 

post-hoc test to compare all values to each other, with a p value < 0.05 considered 

significant. This data is representative of 3 independent experiments. 

 

To quantify the effect of HYOU1 on vIL-6-induced survival, we performed a 

luminescence-based cytotoxicity assay. hTERT-HUVEC stably expressing empty 

vector or FLAG-tagged vIL-6 were reverse-transfected with 100 nM NTC or HYOU1 

siRNA in triplicate in two 96-well white-walled plates. Three days post-transfection, 

the cytotoxicity assay was performed on one plate (Day 0 reading). At this timepoint, 

the levels of cell death were comparable between all samples (data not shown). The 

second plate was serum starved for 6 days and another cytotoxicity assay was 

performed. The percentages of dead cells at day 0 and day 6 were calculated as per 

the manufacturer’s instructions. A fold change in dead cells was calculated by 

dividing the percentage of dead cells at day 6 by the percentage at day 0. Similar to 

trends seen in the serum starved survival assay (Figure 2.6 A), empty vector cells 

receiving NTC siRNA have a statistically significant increase in cell death after 6 

days of serum starvation as compared to vIL-6-expressing cells receiving the NTC 

siRNA (Figure 2.6 C). HYOU1 knockdown had little impact on the survival of cells 

expressing empty vector. However, knockdown of HYOU1 in vIL-6-expressing cells 

caused significantly higher levels of cell death after 6 days of serum starvation than 

vIL-6 cells expressing HYOU1 (Figure 2.6 C). Overall, these data suggest that 

HYOU1 is critical for vIL-6-mediated survival of serum starved endothelial cells. 
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HYOU1 Influences the Signaling of Human IL-6 

After confirming vIL-6’s interaction with HYOU1, we wanted to determine if 

hIL-6 can also interact with HYOU1. hIL-6 is rapidly secreted (206) so intracellular 

levels are typically undetectable by Western blot. hIL-6 constructs that were either 

wild type or tagged with an ER-targeting KDEL motif (207, 306) were transfected into 

HEK293 cells. Lysates were harvested and subjected to an immunoprecipitation with 

HYOU1 antibody followed by SDS-PAGE and Western blot analysis. We found that 

hIL-6-KDEL, but not wild-type hIL-6, coimmunoprecipitated with HYOU1 (Figure 2.7 

A). The fact that an immunoprecipitated band for wild type hIL-6 was not visible is 

not surprising since no wild type hIL-6 was identified in the input lysates, whereas 

high levels of hIL-6-KDEL were observed in the lysates (Figure 2.7 A). Therefore, 

HYOU1 can interact with hIL-6 only when this cytokine is retained in the ER. 
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Figure 2.7: HYOU1 interacts with and influences the signaling of hIL-6. (A) HEK293 

cells were transfected with empty vector (EV), vIL-6, wild type hIL-6, or hIL-6 with a KDEL 

motif (hIL-6-KDEL). Lysates were harvested and immunoprecipitated with a HYOU1 

antibody. Eluates were subjected to SDS-PAGE and Western blotting for the indicated 

proteins. Input lysates and media were analyzed for intracellular expression of HYOU1, vIL-

6, and hIL-6. (B) HEK293 cells were transfected with empty vector (EV), vIL-6, wild type hIL-

6, or hIL-6-KDEL for 24 hours followed by transfection with 100 nM of non-targeting or 

HYOU1-targeting siRNA for an additional 24 hours. Cells were serum starved overnight and 
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lysates and media were harvested for analysis by SDS-PAGE and Western blotting for the 

indicated proteins. 

 

Since we detected an interaction between HYOU1 and hIL-6-KDEL, we 

investigated if HYOU1 impacts wild type and KDEL-tagged hIL-6 signaling through 

the JAK/STAT pathway. HEK293 cells were transfected with empty vector, FLAG-

tagged vIL-6, wild type hIL-6, or hIL-6-KDEL for 24 hours followed by an additional 

transfection with either NTC or HYOU1-targeting siRNA. One day later cells were 

serum starved for 24 hours and lysates were harvested and subjected to SDS-PAGE 

and Western blotting. Expression of vIL-6 and wild type hIL-6 increased STAT3 

Y705 phosphorylation (Figure 2.7 B). hIL-6-KDEL also induced STAT3 

phosphorylation, which is likely due to leaky expression of hIL-6-KDEL into the 

media  in our experimental system (Figure 2.7 A).  Knockdown of HYOU1 decreased 

STAT3 phosphorylation mediated by vIL-6, wild type hIL-6, and hIL-6-KDEL (Figure 

2.7 B). This suggests that HYOU1 not only impacts vIL-6 signaling events, but may 

also influence signaling by hIL-6. 

 

DISCUSSION 

KSHV expresses several homologs of human cytokines and chemokines, 

including vIL-6 and multiple viral CC chemokines (vCCLs, previously called vMIPs) 

(195). vIL-6 shares considerable structural and functional homology to hIL-6 and is 

detectable in all KSHV-associated malignancies (64, 194, 197). Patients with these 
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malignancies also have elevated hIL-6 levels (60), and vIL-6 signaling likely 

promotes the proinflammatory signaling of hIL-6 to exacerbate disease. Inhibition of 

hIL-6 signaling to treat KSHV-associated lymphomas has been successful (310), so 

it is plausible that targeting vIL-6 signaling may also be a viable treatment for KSHV-

associated malignancies.  

Many previous reports on vIL-6 used exogenously applied vIL-6 (61, 62, 198-

200). Although this has given valuable insight into the role of this viral cytokine, 

recent publications suggest that vIL-6 is primarily retained within the host cell in the 

ER (206, 207). Evidence that supports this intracellular retention include the fact that 

vIL-6 is secreted at a much slower rate than hIL-6, has glycosylation patterns distinct 

from those seen on secreted cytokines, and is capable of binding intracellular gp130 

to induce signaling (206, 208).  

We utilized affinity purification and mass spectrometry to identify cellular vIL-6 

binding partners. HYOU1 stood out as a potential hit because it had the same 

number of unique peptides as were seen for gp130. HYOU1 is an ER chaperone 

that facilitates protein processing, is involved in the ER stress response, and 

protects cells from hypoxia-induced cell death (295, 296, 301). KSHV-associated 

malignancies often persist in hypoxic environments, such as KS lesions on the lower 

extremities and PEL in oxygen-deprived pleural cavities. Hypoxia is able to induce 

lytic replication due to hypoxia response elements present in the promoter region of 

multiple lytic genes (300). Hypoxic conditions in KSHV-infected cells or tumors may 

create a favorable environment for high HYOU1 expression and function, making 

HYOU1 a relevant protein to investigate in KSHV pathogenesis.  
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Based on HYOU1’s role as a chaperone protein for other secreted factors 

(302), we tested if it modulates the level of vIL-6 in the cell. We found that 

knockdown of HYOU1 reduces endogenous vIL-6 protein levels in latent and lytic 

PEL cells as well as in HEK293 cells when HYOU1 is knocked down prior to 

transfection with a vIL-6 expression construct. Interestingly, in cells that exogenously 

express vIL-6 before knockdown of HYOU1, the effect of HYOU1 on vIL-6 

expression is not significant. Based on HYOU1’s role as a known processing factor 

for VEGF (302), we speculate that HYOU1 may be involved in the processing and/or 

stability, as well as the biological function, of vIL-6.   

Our data also show that HYOU1 enhances vIL-6-mediated STAT3 

phosphorylation, and it is known that vIL-6 can initiate STAT signaling through ER-

associated gp130 (207). We hypothesized that HYOU1’s interaction with vIL-6 could 

place vIL-6 in closer proximity to gp130 as a mechanism to promote signaling. To 

test this, we performed an immunoprecipitation, and found that HYOU1 expression 

does appear to increase the ability of vIL-6 to bind gp130. In addition to increasing 

intracellular vIL-6 levels, promoting the vIL-6-gp130 interaction may be yet another 

way that HYOU1 is able to positively influence vIL-6 function. 

KS lesions are of endothelial cell origin, and exist in a highly inflammatory and 

vascularized environment (29, 32). vIL-6 expression is detectable in the serum of a 

proportion of KS patients (194), and vIL-6 has been shown to influence important 

biological functions of endothelial cells such as differentiation, proliferation, and 

angiogenesis (211, 311). Our data further show that vIL-6 is able to induce the 

migration of endothelial cells in a HYOU1-dependent manner. For this assay, we 
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used serum starved cells to minimize the possibility that proliferating cells could be 

filling the gap as opposed to migrating cells, since vIL-6 has previously been shown 

to increase cell proliferation (61, 198, 207, 211). HYOU1 has a known role in 

facilitating processing of secreted factors including VEGF (302). We therefore 

hypothesized that HYOU1 could modulate chemokines involved in vIL-6-mediated 

cell migration. CCL2 is associated with increased migration of tumor cells and 

immune cells (303, 304). We found that vIL-6 can induce CCL2 expression and that 

knockdown of HYOU1 substantially reduced this vIL-6-mediated increase in CCL2, 

but not quite to the level of CCL2 in cells expressing an empty vector. This suggests 

that HYOU1 may partly influence vIL-6-mediated migration by modulating CCL2 

expression, but that other chemokines or factors are likely involved. Overall, our data 

suggest that HYOU1 may have multiple mechanisms by which it promotes vIL-6 

function in signaling, endothelial cell migration, and endothelial cell survival in 

serum-starved conditions.  

Since vIL-6 is a homolog of hIL-6, we tested if HYOU1 can also bind the 

human cytokine. Because hIL-6 is rapidly secreted, it is present at levels that are 

undetectable by Western blotting in cell lysates. Therefore, we speculated that it 

would be difficult to demonstrate an interaction between wild type hIL-6 and HYOU1, 

since such an interaction would likely be too transient to detect. We circumvented 

this issue by using a hIL-6 construct with an ER-targeting KDEL motif that increases 

the intracellular retention of hIL-6. We detected an interaction between HYOU1 and 

hIL-6-KDEL, although we could not detect an interaction between wild type hIL-6 

and HYOU1. However, we found that STAT3 signaling mediated by wild type hIL-6 
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was diminished when HYOU1 was depleted from cells. Since HYOU1 can impact 

wild type hIL-6 signaling, we speculate that HYOU1 might transiently interact with 

hIL-6 when the cytokine is transiting through the ER, despite being unable to see an 

interaction between HYOU1 and wild type hIL-6 by immunoprecipitation. 

Alternatively, HYOU1 might have an effect on other components of the hIL-6 

signaling pathway to impact signaling. Overall, our data suggest that HYOU1 may 

play a role in both vIL-6 and hIL-6 signaling function.  

During lytic reactivation of KSHV, vIL-6 is highly expressed and some is 

secreted from infected cells which is likely why patients with MCD and other KSHV-

associated malignancies have detectable vIL-6 in their serum (55, 64). Conversely, 

during latency, vIL-6 is expressed at very low levels that are mainly retained within 

the cell. Importantly, it has been demonstrated that this low level of latent expression 

is functional (207). Inhibition of proinflammatory hIL-6 signaling with an anti-IL-6 

receptor antibody has been moderately successful for the treatment of MCD (310); 

however, inhibiting vIL-6 signaling in a similar fashion may be challenging since 

much of vIL-6 signaling occurs inside the cell beyond reach of an IL-6R-targeting 

antibody. The identification of HYOU1 as a cellular binding partner that is required 

for facilitating multiple facets of vIL-6 function and hIL-6 activity presents an 

alternative druggable target for inhibiting IL-6 function to treat KSHV-associated 

malignancies.  
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CHAPTER 3: KSHV VIRAL INTERLEUKIN 6 MODULATES ENDOTHELIAL CELL 

MOVEMENT BY UPREGULATING CELLULAR GENES INVOLVED IN 

MIGRATION4 

 

OVERVIEW 

Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of 

Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s 

disease. KSHV utilizes a variety of mechanisms to evade host immune responses, 

promote cellular transformation and growth, and persist for the lifetime of the host. A 

viral homolog of interleukin 6 called viral interleukin 6 (vIL-6) is expressed by KSHV 

and KSHV-associated cancers. Unlike host interleukin 6, vIL-6 is retained within the 

endoplasmic reticulum (ER) where it can initiate functional signaling through part of 

the interleukin 6 receptor complex. We sought to determine how intracellular vIL-6 

modulates the host cell environment by analyzing vIL-6’s impact on the endothelial 

cell transcriptome. vIL-6 significantly altered the expression of many cellular genes 

associated with cell migration. In particular, vIL-6 upregulated the host factor 

carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1) at the 

protein and message level. CEACAM1 has been implicated in tumor invasion and 

                                                           
4 Louise Giffin, John A. West, and Blossom Damania (Manuscript submitted.) BD and 
LG designed experiments. All experiments performed by LG with assistance from 
JAW for viral preparations and infections. Manuscript was written by LG and edited 
by BD. Grants to BD provided funding for all experiments. 
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metastasis and promotes migration and vascular remodeling in endothelial cells. We 

report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism, and 

that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo 

KSHV infection of endothelial cells also induces CEACAM1 expression. Collectively, 

our data suggest that vIL-6 modulates cell migration by upregulating expression of 

cellular factors including CEACAM1. 

 

INTRODUCTION 

Kaposi’s sarcoma associated herpesvirus (KSHV, HHV8) is the eighth human 

herpesvirus identified and is the etiological agent of Kaposi’s sarcoma (KS), primary 

effusion lymphoma (PEL) and multicentric Castleman’s disease (MCD) (3, 4, 6). 

KSHV-associated malignancies typically present in immunosuppressed patients 

such as HIV-positive individuals, and because of the high AIDS incidence in sub-

Saharan Africa, KS has become the most common cancer amongst African men (17, 

20). KSHV is a gammaherpesvirus that has a double stranded DNA genome and 

enveloped virion (40) and is able to transition between a latent phase and an actively 

replicating lytic phase. The virus expresses over eighty open reading frames 

(ORFs), many of which inhibit various host immune defenses or promote growth and 

transformation of host cells. These strategies allow KSHV to persist for the lifetime of 

the host and induce pathogenesis in immunocompromised individuals.  

 The KSHV protein expressed by ORF K2 is known as viral interleukin 6 (vIL-

6) because of its high sequence and structural similarity to the human cytokine 

interleukin 6 (hIL-6) (195-197). vIL-6 is expressed at low, but functional, levels during 

viral latency and becomes highly upregulated during lytic induction (143, 144, 207). 
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Importantly, vIL-6 can be detected in either serum or tissue of patients with KSHV-

associated malignancies, and in MCD, higher vIL-6 levels correlate with poor 

prognosis (55, 64, 194). vIL-6 expression is transforming in NIH-3T3 cells (61), and 

a transgenic mouse line expressing vIL-6 from an MHC class I promoter developed 

a MCD-like disease in a manner dependent on mouse IL-6 (312). vIL-6 drives 

expression of hIL-6 and VEGF (61, 200), and promotes angiogenesis, migration, 

survival, and activation of hIL-6-dependent signaling cascades such as the 

JAK/STAT, MAPK, and PI3K pathways (62, 198, 199, 211, 313). 

 Despite their structural similarities, vIL-6 differs from hIL-6 in that vIL-6 is 

secreted from the cell more slowly and accumulates in the endoplasmic reticulum 

(ER) where it can signal intracellularly through the gp130 subunit of the IL-6 receptor 

(142, 206). To better understand how vIL-6 interacts with host proteins to function 

inside the cell, we previously identified a host protein called hypoxia upregulated 

protein 1 (HYOU1) that plays a critical role in vIL-6-mediated signaling, survival, and 

migration (313). Two other host proteins, VKORC1v2 and calnexin, have also been 

identified as vIL-6-interacting partners and these cellular proteins appear to play a 

role in vIL-6-mediated cell survival and vIL-6 folding and intracellular retention, 

respectively (142, 292, 294).  

We wanted to investigate how intracellular expression of vIL-6 impacts the 

global transcriptional profile of endothelial cells since these cells  can be infected 

with KSHV in vivo and are the cells that drive the development of  KS lesions (31, 

32). To explore the impact of intracellular vIL-6 on gene expression, we performed 

microarray analysis on endothelial cells stably expressing vIL-6. We identified some 
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genes known to be upregulated by vIL-6 (61, 200, 313), and also found a number of 

genes that were previously not known to be upregulated by vIL-6.  In particular,  vIL-

6 increased expression of a number of genes significantly associated with cell 

invasion and endothelial cell movement and chemotaxis, including a gene called 

carcinoembryonic antigen-related adhesion molecule 1 (CEACAM1).  

CEACAM1 (also known as CD66a and biliary glycoprotein) is a 

transmembrane adhesion molecule that is expressed in a number of different cell 

types, including endothelial, epithelial, and hematopoietic cells (314). Although some 

earlier studies reported that CEACAM1 expression decreases in colorectal cancer 

(315), more recent clinical studies and profiling in a wide variety of human tumors, 

including colon (316), melanoma (317-319), lung (320), pancreas (321), bladder 

(322, 323), and thyroid (324) cancers found that high levels of CEACAM1 are 

expressed on tumor cells and that CEACAM1 expression directly correlates with 

poor prognosis and tumor metastasis. CEACAM1 may also play a role in dampening 

the immune response to cancer, which may contribute to cancer progression (325). 

In addition, CEACAM1 has consistently been shown to augment angiogenesis, 

increase migration of endothelial cells, and induce vascular remodeling (326-330). 

Interestingly, human cytomegalovirus (hCMV) encodes a viral homolog of 

CEACAM1 which has also been shown to be important in promoting angiogenesis 

(331). 

We found that expression of vIL-6 and de novo and latent KSHV infection 

upregulate CEACAM1 transcript and protein levels in endothelial cells. We 

determined that CEACAM1 expression is likely driven by vIL-6-mediated STAT3 
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signaling. Finally, we found that knockdown of CEACAM1 abrogated vIL-6-mediated 

migration of endothelial cells, indicating that CEACAM1 may play a critical role in 

promoting invasion and pathogenesis of KSHV-infected endothelial cells.  

 

METHODS 

Cell Culture, Generation of Stable Cell Lines, and KSHV Infection 

hTERT-immortalized human umbilical vein endothelial cells (hTERT-HUVEC) 

and primary HUVEC were grown in EBM-2 (Lonza) with the EBM-2 bullet 

supplement (Lonza) as described (178). TREx BCBL1 and TREx BCBL1-RTA PEL 

cells (305) were kindly provided by Dr. Jae Jung’s lab and were grown in RPMI 1640 

medium (Corning) containing Tet System Approved FBS (Clontech) and 20 μM 

hygromycin B (Roche). All media were supplemented with 10% heat inactivated fetal 

bovine serum (FBS), 1% penicillin-streptomycin (PS), and 1% L-glutamine. hTERT-

HUVEC stably expressing empty vector or FLAG-tagged vIL-6 were generated by 

lentiviral transduction as described previously (313). KSHV was produced by 

reactivating KSHV-Vero cells with 2 mM sodium butyrate (Sigma) and ORF50-

expressing baculovirus. Supernatants were clarified and filtered and purified KSHV 

was isolated by ultracentrifugation on a sucrose cushion, as described previously 

(223). Stable, latently infected KSHV-HUVEC were made by infecting hTERT-

HUVEC with recombinant KSHV as described previously (332).  

Plasmids, Lentiviral vectors, and siRNAs  

The pcDNA3.1-vIL-6-His clone was a kind gift from Yuan Change and Patrick 

Moore. A C-terminal FLAG tag was added to vIL-6 and cloned into the pcDNA3.1 
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eukaryotic expression vector (Life Technologies). The non-targeting control (NTC) 

siRNA duplex (D001810-01) was purchased from Dharmacon. CEACAM1-targeting 

Stealth siRNA duplexes were purchased from Life Technologies (HSS101005). 

FLAG-tagged vIL-6 was cloned into the lentiviral vector pSuper-CMV Puro (Life 

Technologies) and all lentiviruses were produced using the ViraPower Lentiviral 

Expression System (Life Technologies) as per the manufacturer’s instructions.  

Microarray and Ingenuity Pathway Analysis 

RNA was harvested from hTERT-HUVEC stably expressing empty vector or 

vIL-6-FLAG using TRIzol, and checked for quality with an Agilent Bioanalyzer. One 

μg of RNA was submitted to Mogene for use with the 4x44K Human Microarray 

(Agilent). Samples were run in duplicate with Cy3 and Cy5 dyes switched for each 

sample to correct for any fluorescence dye bias. Preliminary analysis was completed 

by Mogene and fold changes for each gene were reported. Gene names and 

corresponding fold changes were input into Ingenuity Pathway Analysis and 

analyzed using a fold change cutoff of 2.0 with “experimentally observed” confidence 

and a stringent filter for mammalian species specificity. Top diseases and biological 

functions were analyzed and gene lists and p-values for cell invasion and endothelial 

cell movement and chemotaxis were exported. 

Reagents and Antibodies  

The S3I-201 STAT3 inhibitor (Selleck Chem) was dissolved in DMSO (Sigma) 

and used at a concentration of 60-75 μM for 48-72 hours. Recombinant hIL-6 

(Peprotech) was resuspended in distilled deionized water and used at a 

concentration of 100 or 250 ng/mL. Primary antibodies used were ECS (FLAG - 
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Bethyl), vIL-6 (Advanced Biotechnologies), Tubulin, CEACAM1, phospho-STAT3 

Tyr705, and Total STAT3 (all from Cell Signaling unless otherwise stated). 

Secondary anti-rabbit and anti-mouse antibodies were purchased from Cell 

Signaling.  

Western Blotting  

Cells were washed in cold PBS and harvested in NP-40 lysis buffer (0.1% 

NP-40, 150 mM NaCl, 50 mM Tris HCl pH 8.0, 30 mM β-glycerophosphate, 50 mM 

NaF, 1 mM Na3VO4, 1 Roche protease inhibitor tablet per 50 mL) for 10-30 minutes 

on ice. Lysates were frozen and thawed and clarified by centrifugation at 16,000 x g 

for 10 minutes. Protein content was determined by Bradford assay (Bio-Rad) using a 

CLARIOstar Optima plate reader (BMG Labtech). Equal amounts of protein were 

resolved on 8% SDS-PAGE gels and transferred to nitrocellulose membranes. 

Membranes were blocked with 5% non-fat dry milk in 1x TBS/0.1% Tween followed 

by overnight incubation with primary antibody at 4oC. HRP-conjugated secondary 

antibodies were incubated for 1 hour at room temperature. Blots were developed 

with PicoWest chemiluminescent reagent (Thermo).  

RNA Isolation and Real Time qPCR 

Cells were washed in cold PBS and resuspended in TRIzol 

(LifeTechnologies) and RNA was harvested as per the manufacturer’s instructions. 

To generate cDNA, 1 μg of RNA was treated with amplification grade DNAse I 

(Invitrogen) followed by reverse transcription with Superscript III reverse 

transcriptase (Invitrogen) and oligoDT primers (Invitrogen). Quantitative real-time 

PCR (qPCR) was performed with an Advanced Biotechnologies 7300 instrument 
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using cDNA as a template in a SYBR green PCR master mix (Bio-Rad). Primers for 

Total CEACAM1 (Forward: 5’AATGTTGCAGAGGGGAAGGA 3’; Reverse: 5’ 

TCTGGGTGACGTTCTGGATC 3’) , CEACAM1-Long (Forward: 

5’CCCACCTAACAAGATGAATGAA 3’; Reverse: 5’ TTTCTGTGGCTGTTAGGGATG 

3’),  vIL-6 (Forward: 5’ CGGTTCACTGCTGGTATCTG 3’; Reverse: 5’ 

CAGTATCGTTGATGGCTGGT 3’), and ORF57 (Forward: 5’ 

TGGACATTATGAAGGGCATCCTA 3’; Reverse: 5’ CGGGTTCGGACAATTGCT 3’) 

were used with GAPDH as an endogenous control. PCR reactions were run in 

triplicate.   

KSHV Infection and Reactivation 

De novo infections were performed by infecting primary HUVEC (Clonetics) 

with purified KSHV by spinoculation in serum-free media in the presence of 8 μM 

polybrene (Sigma) at 2500 rpm for 1.5 hours at 30oC in a table top centrifuge as 

previously described (223). GFP was visualized on a Nikon Ti Eclipse fluorescent 

microscope to confirm infection and samples were harvested 30-72 hours post 

infection. TREx-BCBL1 were reactivated by supplementing media with 1 μg/mL 

doxycycline for 24-30 hours. 

Migration Assay 

hTERT-HUVEC expressing empty vector or FLAG-tagged vIL-6 were seeded 

at 0.9 x 105 cells per well of a 6 well dish coated with collagen IV (Corning Biocoat) 

since collagen IV is a known adhesion substrate of CEACAM1 (324). The following 

day cells were transfected with 60 nM of an NTC or CEACAM1-targeting siRNA 

using Lipofectamine RNAimax as per the manufacturer’s instructions. Media were 
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replaced 24 hours post-transfection and at 40 hours post-transfection cells were 

serum starved for 8 hours. Monolayers were then scratched with a P200 pipette tip 

and brightfield images were obtained at 0, 15, and 24 hours post-scratch at 40x 

magnification with a Nikon Eclipse Ti inverted microscope. Following the assay, cells 

were harvested in lysis buffer and analyzed by SDS-PAGE and Western blotting to 

test CEACAM1 knockdown efficiency. Scratch closure was quantified with ImageJ 

software (NIH) (333). 

 

RESULTS 

Intracellular vIL-6 Induces Expression of Genes Involved in Cell Migration 

 To investigate the effect of intracellular vIL-6 expression on the transcriptome 

of human endothelial cells, an Agilent 4x44K human microarray was performed in 

duplicate using RNA harvested from hTERT-HUVEC expressing empty vector (EV) 

or FLAG-tagged vIL-6 (vIL-6F). Ingenuity Pathway Analysis (IPA) software was 

utilized to identify major disease pathways affected by vIL-6 expression. IPA found 

that vIL-6 significantly impacted pathways associated with cancer, cellular 

movement, and cell-cell signaling and interaction (Figure 3.1 A). We further 

investigated the impact of vIL-6 on genes associated with cellular movement since 

we previously reported that vIL-6 can promote the migration of endothelial cells 

(313). We found that there were a significant number of genes associated with 

endothelial cell movement, endothelial cell chemotaxis, and cell invasion that were 

altered by vIL-6 expression (Figure 3.1 B). Furthermore, based on how vIL-6 

influenced the expression of these migration-associated genes, IPA predicted that 
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vIL-6 should induce cellular migration, thus confirming our previous findings (313). In 

addition to the identification of many previously unidentified vIL-6 target genes, we 

also found  some genes known to be upregulated by vIL-6, including the host 

chemokine CCL2 (313), VEGF (61), and hIL-6 (200) (Figure 3.1 C). 
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Figure 3.1: vIL-6 modulates expression of host genes associated with cell movement. 

(A) RNA was harvested from HUVEC expressing empty vector or FLAG-tagged vIL-6 and 

used in an Agilent 4x44K human microarray. Gene fold changes were imported into 
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Ingenuity Pathway Analysis (IPA) and top vIL-6 associated diseases and biological functions 

were analyzed. (B) Top modulated genes from selected cell movement-associated sub-

pathways from IPA. Fold change values represent vIL-6-expressing cells as compared to 

empty vector cells, and predicted cell movement phenotype represents IPA’s prediction of 

how cells will respond based on the expression pattern of that particular cellular gene and 

the IPA literature database. p values calculated by IPA represent how significantly vIL-6 

expression impacts genes associated with that particular sub-pathway. (C) Microarray data 

for genes known to be upregulated by vIL-6: VEGF, CCL2, and human IL-6. 

 

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a 

gene associated with cellular movement and invasion that was almost 12-fold 

upregulated in our vIL-6-expressing hTERT-HUVEC (Figure 3.1 B). We confirmed 

that expression of FLAG-tagged vIL-6 in hTERT-HUVEC significantly upregulates 

CEACAM1 mRNA message as compared to empty vector by qPCR (Figure 3.2 A). 

Lysates from hTERT-HUVEC stably expressing empty vector or FLAG-tagged vIL-6 

indicate that vIL-6 expression also upregulates CEACAM1 protein in endothelial 

cells (Figure 3.2 B). CEACAM1 has numerous isoforms that arise from alternative 

splicing of the transcript (Figure 3.2 C) (314). These isoforms exist in three general 

categories: secreted CEACAM1 that lacks a transmembrane domain, long isoforms 

of CEACAM1 (CEACAM1-L) that contains an intracellular immunoreceptor tyrosine 

inhibitory motif (ITIM) that can modulate downstream signaling, and short isoforms 

(CEACAM1-S) that lacks this intracellular signaling domain on the cytoplasmic tail. 

The ratios of each isoform can also differ between cell types, and dictate the 

outcome of CEACAM1 expression (334, 335). Higher amounts of CEACAM1-L in 
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cancer correlate with metastatic spread and shorter patient survival (336, 337).  We 

speculated that the two species of CEACAM1 visible by Western blot represent the 

long and short isoforms of this protein, but to confirm that the long isoforms are 

expressed we performed additional qPCR experiments with primers specific to the 

nucleotides encoding the ITIM region of CECAM1-L. We found that vIL-6 induces 

not only total CEACAM1 message, but also CEACAM1-L (Figure 3.2 D).  
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Figure 3.2: vIL-6 upregulates long isoforms of CEACAM1 in endothelial cells. (A) 

cDNA was generated from HUVEC stably expressing empty vector or FLAG-tagged vIL-6 

and used for qPCR analysis of total CEACAM1 message. (B) Lysates were harvested from 

HUVEC stably expressing empty vector or FLAG-tagged vIL-6. SDS-PAGE and Western 

blotting was performed for the indicated proteins. (C) CEACAM1 exists in a number of 

transmembrane and secreted isoforms that differ in the number and type of extracellular Ig 
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domains, and presence or absence of a transmembrane domain, a long cytoplasmic tail, 

and an Alu repeat. (D) cDNA was generated from HUVEC stably expressing empty vector or 

FLAG-tagged vIL-6 and used for qPCR analysis of total CEACAM1 message and 

CEACAM1-L message. 

 

vIL-6 Upregulates CEACAM1 Through Activation of STAT3 

 vIL-6 is a potent activator of STAT3 (142, 199, 205, 313), so we sought to 

determine if vIL-6-mediated STAT3 signaling is the mechanism by which vIL-6 

upregulates CEACAM1 message and protein. S3I-231 is a small molecule that 

inhibits the ability of STAT3 to dimerize and become activated (338). We treated 

hTERT-HUVEC stably expressing empty vector or FLAG-tagged vIL-6 with 60 uM 

S3I-231 or vehicle control (DMSO) for 48 hours. RNA was harvested and qPCR was 

performed. In vehicle-treated cells, CEACAM1 levels were much higher in vIL-6 cells 

as compared to empty vector cells; however, treatment with S3I-201 greatly reduced 

CEACAM1 transcript levels in vIL-6 cells (Figure 3.3 A). Furthermore, treatment of 

cells with S3I-201 for 72 hours significantly reduced CEACAM1 protein in vIL-6 cells 

as compared to the vehicle control (Figure 3.3 B).  Western blots confirmed that 

Tyr705 phosphorylation of STAT3 was increased by expression of vIL-6, and that 

treatment with S3I-201 reduced STAT3 phosphorylation, as expected (Figure 3.3 B). 

This data suggests that STAT3 signaling may play a role in vIL-6-mediated 

upregulation of CEACAM1. 
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Figure 3.3: vIL-6, but not hIL-6, upregulates CEACAM1 in a STAT3-dependent manner. 

(A) cDNA was generated from HUVEC stably expressing empty vector or FLAG-tagged vIL-

6 that were treated with DMSO or 60 μM S3I-201 for 48 hours in media containing 2% 

serum. qPCR was performed to assess levels of total CEACAM1 message. (B) Lysates 

were harvested from HUVEC stably expressing empty vector or FLAG-tagged vIL-6 that 

were treated with DMSO or 75 μM S3I-201 for 72 hours in media containing 10% serum. 

SDS-PAGE and Western blotting for the indicated proteins was performed. (C) HUVEC 

stably expressing empty vector or FLAG-tagged vIL-6 were treated with exogenous hIL-6 for 

48 hours. cDNA was generated and analyzed for total CEACAM1 message by qPCR. (D) 

HUVEC stably expressing empty vector or FLAG-tagged vIL-6 were treated with exogenous 
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hIL-6 for 48 hours. Lysates were harvested and subjected to SDS-PAGE and Western 

blotting for the indicated proteins. 

 

Human Interleukin-6 Does Not Influence CEACAM1 Expression 

 Since vIL-6 and human interleukin-6 (hIL-6) share homology, we wanted to 

determine if hIL-6 alone, or in combination with vIL-6, can drive CEACAM1 

expression. We treated hTERT-HUVEC stably expressing empty vector or FLAG-

tagged vIL-6 with 0, 100, or 250 ng/mL of recombinant hIL-6 for 48 hours total in 2% 

serum, with fresh media and fresh hIL-6 supplemented at 24 hours. RNA and lysates 

were harvested from these cells and Western blotting and qPCR was performed. 

Phosphorylation of STAT3 Tyr705 was induced in empty vector cells upon hIL-6 

treatment, although not nearly to the high levels seen in vIL-6-expressing cells 

(Figure 3.3 D). Interestingly, exogenous hIL-6 did not increase CEACAM1 

expression either in the empty vector cells or the vIL-6-expressing cells at either the 

protein (Figure 3.3 D) or transcript (Figure 3.3 C) level. We also treated cells with 

100 ng/mL hIL-6 treatment for 72 hours, and similar trends were seen (data not 

shown). This suggests that intracellular vIL-6 is unique in its ability to drive 

CEACAM1 expression in endothelial cells, despite its similarities to hIL-6.  

 

CEACAM1 Is Required for Migration of vIL-6 Expressing Endothelial Cells 

Based on CEACAM1’s proposed role in invasion and metastasis of a number 

of cancers (319, 323, 324), we wanted to determine if it plays a role in the biological 

function of vIL-6. We utilized hTERT-HUVEC stably expressing empty vector or 

FLAG-tagged vIL-6 that were plated onto dishes coated with collagen IV as 
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previously described (324). We transfected cells with a non-targeting or CEACAM1-

targeting siRNA, and 40 hours post-transfection, cells were serum starved for 8 

hours. Monolayers were scratched with a P200 pipette tip and triplicate images of 

each scratch were captured at 0, 15, and 24 hours post-scratch (Figure 3.5 A). 

ImageJ software was utilized to trace and quantify the remaining area of each 

scratch at 15 and 24 hours post-scratch as compared to the area of each scratch at 

0 hours (Figure 3.5 B). vIL-6 cells expressing CEACAM1 rapidly migrated and 

closed the scratch as compared to empty vector cells; however, knockdown of 

CEACAM1 reduced the ability of vIL-6-expressing cells to close the gap as fast. 

Following completion of the assay, lysates were harvested for SDS-PAGE and 

Western blotting to confirm CEACAM1 knockdown (Figure 3.5 C). This suggests that 

CEACAM1 plays a role in vIL-6-mediated migration of endothelial cells.   
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Figure 3.4: CEACAM1 facilitates vIL-6-mediated endothelial cell migration. (A) HUVEC 

stably expressing empty vector or FLAG-tagged vIL-6 were plated on collagen IV coated 

plates. Cells were transfected with 60 nM non-targeting (NTC) or CEACAM1-targeting 

siRNA (CEA-siRNA) for 40 hours. Cells were serum starved for 8 hours and the monolayers 
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were scratched with a P200 pipette tip. Brightfield images were obtained at 40x 

magnification with a Nikon Eclipse Ti inverted microscope at 0, 15, and 24 hours post-

scratch. Three images were taken of each individual scratch, with representative images 

shown. (B) Scratch assays were quantified using ImageJ software. The starting scratch area 

was determined and set at a value of 1, and at subsequent time points, scratch areas were 

divided by the original scratch area to normalize for variation in the original size of each 

scratch. Three images and measurements were taken for each time point for each scratch 

and averaged, and the graph and error bars were determined by the average of two 

independent experiments. (C) After the 24 hour scratch assay time point, cell lysates were 

harvested and subjected to SDS-PAGE and Western blot for the indicated proteins to 

confirm CEACAM1 siRNA knockdown.  

 

CEACAM1 is Upregulated by KSHV Infection in Multiple Cell Types 

We next wanted to determine if CEACAM1 is upregulated following KSHV 

infection. vIL-6 is expressed at low but functional levels during latency (207) and is 

highly upregulated during lytic infection or lytic reactivation (143, 144). We first 

investigated if de novo infection of primary HUVEC with a recombinant KSHV virus 

expressing GFP (339) could induce CEACAM1 upregulation. Upon KSHV infection 

in endothelial cells, the virus undergoes several brief rounds of lytic infection before 

establishing latency (340). At 30 hpi, almost 100% of cells receiving KSHV were 

GFP positive whereas the mock control was not (Figure 3.5 A). RNA and lysates 

were harvested and analyzed by qPCR and Western blotting, respectively. Ample 

vIL-6 message was detected in addition to another lytic transcript, ORF57, further 

confirming successful KSHV infection (Figure 3.5 B). CEACAM1 message was 
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upregulated over 6 fold in KSHV-infected cells as compared to mock control (Figure 

3.5 C), and we were also able to detect significant upregulation of CEACAM1protein 

in infected cells by Western blot (Figure 3.5 D).  

 

Figure 3.5: CEACAM1 is upregulated during de novo and latent KSHV infection of 

endothelial cells and during reactivation in PEL. (A) PBS (mock) or 150 μL purified 
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KSHV was added to primary HUVEC in the absence of serum followed by spinoculation. 

The following morning serum was added to 10% and 30 hours post-infection brightfield and 

GFP images at 100x magnification were obtained using a Nikon Eclipse Ti inverted 

microscope. (B) RNA was harvested and cDNA was generated from mock and KSHV-

infected primary HUVEC at 30 hours post infection. qPCR was performed for the lytic 

transcripts vIL-6 and ORF57 and total CEACAM1 (C). (D) Lysates were harvested from 

mock and KSHV-infected primary HUVEC at 30 hours post infection and subjected to SDS-

PAGE and Western blotting for the indicated proteins. (E) RNA was harvested and cDNA 

was generated from uninfected hTERT-HUVEC and latent KSHV-HUVEC. qPCR was 

performed for total CEACAM1. (F) Lysates were harvested from uninfected hTERT-HUVEC 

and latent KSHV-HUVEC and subjected to SDS-PAGE and Western blotting for the 

indicated proteins. (G) TREx-BCBL1 and TREx-BCBL1-RTA were treated with 1μg/mL 

doxycycline for 24 hours. RNA was harvested and cDNA was generated. qPCR was 

performed to analyze levels of total CEACAM1 and CEACAM1-L. (H)  TREx-BCBL1 and 

TREx-BCBL1-RTA were treated with 1μg/mL doxycycline for 24 hours. Lysates were 

harvested and resolved by SDS-PAGE followed by Western blotting for the indicated 

proteins. 

 

We then analyzed CEACAM1 message and protein levels in uninfected 

hTERT-HUVEC or latently infected KSHV-HUVEC that we had previously 

established and described (332). We found that CEACAM1 was also upregulated at 

the message and protein level in the latent KSHV-HUVEC (Figure 3.5 E and F).  

To test another physiologically relevant cell line for the impact of KSHV 

infection on CEACAM1 expression, we used a latently infected PEL cell line, BCBL1. 

TREx BCBL1-RTA stably express a doxycycline inducible RTA expression plasmid, 
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and are reactivated within 24 hours of doxycycline addition as previously described 

(305). The control line, TREx BCBL1, expresses a doxycycline inducible empty 

vector, and maintains a latent infection upon doxycycline addition. These two cell 

lines were treated with 1 μg/mL Doxycycline for 24 hours prior to harvest of RNA and 

lysates. Interestingly, we found that reactivation of these cells caused a large 

increase in a single discrete species of CEACAM1 by Western blotting as compared 

to latent cells (Figure 3.5 H). We performed qPCR on RNA harvested from the TREx 

BCBL1, and noted that total CEACAM1 message was upregulated in reactivated 

cells (Figure 3.5 G). We also quantified the long isoform of CEACAM1 using an 

ITIM-specific primer set and found that the long isoforms of CEACAM1 are not 

dramatically upregulated in lytic cells as compared to latent cells, although total 

CEACAM1 is still highly increased in lytic cells. Collectively, our data suggest that 

CEACAM1 expression is increased during both primary and latent KSHV infection 

and in the context of reactivation in multiple physiologically relevant cell types.  

 

DISCUSSION 

 The human herpesviruses are unique from most other viral classes because 

they persist for the lifetime of the host. To accomplish this, herpesviruses must 

intricately modulate their surroundings to create a favorable environment for 

propagation. The KSHV genome encodes an arsenal of proteins and small RNAs 

that help the virus persist via a number of mechanisms including direct and indirect 

evasion of the host immune system, modulation of host cell signaling, and mimicry of 

host chemokines and cytokines. For example, KSHV encodes several viral 
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homologs of cellular interferon regulatory factors (IRFs) that abrogate host IRF 

signaling to diminish an interferon response to the virus (225). In addition to the viral 

IRFs, KSHV encodes other homologs to cellular proteins including vIL-6, which is a 

viral cytokine that has functional and structural similarity to hIL-6 (195, 197).  

vIL-6 and elevated hIL-6 are detectable in all KSHV-associated malignancies 

(60, 64, 194) and these two cytokines likely work in a synergistic manner to create a 

pro-inflammatory environment that promotes disease. Despite their similarities, hIL-6 

and vIL-6 have differential requirements for signaling through the IL-6-receptor (IL-

6R): the gp80 and gp130 IL-6R subunits are essential for hIL-6 signaling, but vIL-6 

can signal through gp130 in the absence of gp80 (201, 203). Since gp80 is 

predominantly on the cell membrane, this limits hIL-6 to extracellular signaling, 

whereas vIL-6 is able to signal intracellularly through ER-embedded gp130 (207). 

Furthermore, hIL-6 is rapidly secreted from cells, but vIL-6 is primarily retained within 

the ER (206). Based on its unique intracellular localization and intracellular signaling 

capabilities, we were curious as to how vIL-6 might use or modulate the intracellular 

host environment to promote its function.  

We previously reported that vIL-6 interacts with a cellular ER protein called 

HYOU1, and that HYOU1 was important for vIL-6-induced JAK/STAT3 signaling, 

migration, and serum-starved survival in endothelial cells (313). Interestingly, vIL-6-

mediated endothelial cell migration was dependent in part on HYOU1-facilitated 

expression of the host chemokine CCL2. We speculated that vIL-6 may influence 

expression of a number of additional host genes to promote vIL-6 mediated 

biological processes such as endothelial cell chemotaxis and angiogenesis. A 
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previous study analyzed the impact of vIL-6 on the expression of several hundred 

cellular genes in a hepatoma cell line; however, this group used exogenously 

applied bacterially-derived vIL-6 and only a limited number of transcripts were 

analyzed (62). vIL-6 requires glycosylation derived from mammalian cell machinery 

for it to be fully functional (341), and it is now known that vIL-6 functions 

intracellularly (142, 206), so exogenous application of vIL-6 is less physiologically 

relevant. The impact of intracellular vIL-6 expression specifically on the endothelial 

cell transcriptome is a previously unexplored area, and endothelial cells are 

extremely relevant to KSHV infection since these cells are infected in vivo and can 

give rise to KS (31, 32).  

We performed a human microarray on hTERT-HUVEC stably expressing an 

empty vector or FLAG-tagged vIL-6. Our data confirmed previous reports that vIL-6 

upregulates the host genes CCL2, VEGF, and hIL-6 (Figure 3.1 C). We also found 

that vIL-6 expression altered genes associated with endothelial cell movement and 

chemotaxis and cell invasion (Figure 3.1 B). One gene, CEACAM1, was highly 

upregulated by vIL-6 expression. CEACAM1 is an adhesion protein that is implicated 

in a number of human cancers and can promote angiogenesis, migration, and 

vascular remodeling in endothelial cells (326-330). Because KS is a highly 

angiogenic tumor, we wanted to further investigate the induction of CEACAM1 

expression by vIL-6.    

  We sought to determine the mechanism by which vIL-6 mediates the increase 

in CEACAM1 transcription. It has been previously shown that knockout of STAT3 

can reduce CEACAM1 expression in APCmin mice (342), and vIL-6 is a known 
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inducer of STAT3 signaling (142, 199, 205, 343).  Inhibition of STAT3 activity with 

S3I-201 reduced the level of both CEACAM1 message and protein in vIL-6-

expressing endothelial cells. Interestingly, hIL-6 did not upregulate CEACAM1 

despite its known ability to activate STAT3. There are several possibilities that could 

explain this: first, exogenously applied hIL-6 activates STAT3 to a lesser degree 

than intracellularly-expressed vIL-6, so it is possible that hIL-6-induced STAT3 

activity is not adequate to impact CEACAM1 expression. Another possibility is that 

vIL-6 is inducing a unique intracellular pathway capable of upregulating CEACAM1. 

hIL-6 can only signal from gp80-containing IL-6R complexes found exclusively on 

the plasma membrane, so it is possible that vIL-6 can activate an intracellular 

mechanism from the ER that hIL-6 does not have access to.  Pathways uniquely 

activated by intracellular vIL-6 as compared to extracellular hIL-6 could be an 

interesting avenue of investigation for KSHV treatment, since this would allow for 

specific targeting of virally-activated pathways.   

Since CEACAM1 can promote the movement and invasive capability of 

endothelial cells (323, 327), we investigated whether vIL-6-mediated upregulation of 

CEACAM1 plays a role in cell movement. In the presence of CEACAM1, vIL-6-

expressing endothelial cells migrated rapidly, but knockdown of CEACAM1 

abrogated the ability of these cells to migrate. Knockdown of CEACAM1 in empty 

vector HUVEC also reduced migration to a small degree, which is expected since 

CEACAM1 is known to affect cell migration outside the context of vIL-6. These data 

suggest a significant biological function of vIL-6 through its ability to upregulate  
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CEACAM1 expression to induce increased migration of endothelial cells. 

Previous microarray studies using immortalized dermal microvascular 

endothelial cells with a predominantly latent KSHV infection also reported that 

CEACAM1 was one of multiple genes affected by KSHV infection 

(344).Furthermore, CEACAM1 was found to be upregulated in the lungs of mice 

infected with the murine gammaherpesvirus MHV68 (345, 346). In the present study, 

we found that both KSHV latent and de novo infection in endothelial cells 

upregulated CEACAM1 as compared to uninfected cells, and reactivation of PEL 

also resulted in increased CEACAM1 expression. It was recently shown that 

CEACAM1 expression is important for survival of naïve B cells and for proliferation 

of activated B cells, so KSHV’s induction of CEACAM1 expression in PEL may be a 

mechanism by which the virus promotes survival of infected B cells in PEL and/or 

MCD (347). In endothelial cells, however, we speculate that vIL-6’s upregulation of 

the long isoforms of CEACAM1 contributes to the ability of these infected cells to 

promote vascular remodeling, migration, and invasion.  

Collectively, our data have uncovered many previously unidentified cellular 

genes whose expression is changed when vIL-6 is expressed in endothelial cells. 

We have also identified a novel host protein, CEACAM1, induced by KSHV vIL-6, as 

well as in the context of latent and de novo KSHV infection in endothelial cells and 

during reactivation in PEL cells. Based on CEACAM1’s established role in 

angiogenesis, vascular remodeling, cell migration, and cancer metastasis, vIL-6-

induced CEACAM1 may be a very important player in promoting KSHV-associated  
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pathogenesis, particularly for endothelial cell-derived Kaposi’s sarcoma. Our results 

further elucidate the function of intracellular vIL-6 in KSHV biology, and have 

identified CEACAM1 as a migration-associated factor that may be a novel 

therapeutic target for KSHV-associated disease.   
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CHAPTER 4: ALTERATION OF THE HOST CELL KINOME BY LYTIC AND 

LATENT KAPOSI’S SARCOMA ASSOCIATED HERPESVIRUS INFECTION5 

 

OVERVIEW 

 Kinases regulate many sensitive signaling pathways and processes within the 

cell. Cancerous cells often have dyregulated kinase activity, and numerous selective 

kinase inhibitors are on the market or under investigation with the goal of restoring 

normal kinase activity in cancer cells or selectively eliminating these cells. Primary 

effusion lymphoma (PEL) is a B cell neoplasia associated with Kaposi’s sarcoma-

associated herpesvirus (KSHV) infection. PEL cells typically harbor a latent KSHV 

infection, but can undergo lytic reactivation in which a wider array of viral proteins is 

expressed and viral progeny are produced. We utilized a novel kinome profiling 

technique using multiplex inhibitor beads coupled with mass spectrometry (MIB/MS) 

to characterize the activated kinome in PEL cells undergoing latent or lytic infection. 

We identified numerous kinases that were differentially activated during these stages 

of the viral lifecycle. This work has uncovered novel kinases that may be effective 

targets for the treatment of KSHV-associated malignancies    

                                                           
5 Experiments were designed by Blossom Damania and Louise Giffin. LG prepared 
all samples for MIB/MS and Gary Johnson and members of his lab, including 
Deborah Granger, Tim Stumiller, Noah Sciaky, Rachel Reuther, and Trang Pham, 
performed MIB/MS and critical analysis.  Grants to BD provided funding for these 
experiments. 
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INTRODUCTION 

The human genome encodes over 500 protein kinases (collectively called the 

kinome) which regulate the activation of numerous signaling pathways in the cell by 

catalyzing the phosphorylation of cellular proteins and substrates. Upon 

phosphorylation by a kinase, a substrate’s conformation changes, which may then 

alter that substrate’s enzymatic properties, cellular localization, and ability to interact 

with and modulate other proteins and substrates. Abnormal activation or inactivation 

of particular kinases is thought to be one of the major driving forces by which cells 

escape growth regulation and become cancerous (348). Because of this, kinase 

inhibitors have become an intense focus of investigation in drug development, and 

there are currently over 130 selective kinase inhibitors in development as cancer 

chemotherapeutics (349). However, many studies have reported that cancer cells 

have the unique ability to reprogram their kinome to compensate for chemical 

inhibitor treatments or radiation therapy (350-353) which highlights the important 

issue of drug resistance in tumors.  To compete in this war against cancer, it will be 

crucial to understand the baseline activation status of the kinome in various cancers, 

and also to understand what kinase or kinases need to be targeted to effectively and 

permanently inhibit cancer cell growth. Kinome profiling has recently identified 

promising novel kinase targets in triple negative breast cancer and acute 

lymphoblastic leukemia (354, 355).  The application of this technology to other types 

of cancer has huge potential for the development of more efficacious 

chemotherapeutic drugs.   
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KSHV modulates the activation of many kinase-regulated cellular signaling 

pathways. Upon entry into the cell, KSHV infection activates numerous kinases and 

pathways including focal adhesion kinase (FAK), PI3K, Src, MAPK, and NFκB (356-

360). Activation of these pathways allows the viral genome to be transported to the 

nucleus and facilitates viral gene expression (361, 362). KSHV expresses many viral 

signaling proteins during the lytic cycle that can activate various cell signaling 

pathways. For example, the JAK/STAT pathway is activated by vIL-6 (62, 199), the 

PI3K/AKT/mTOR pathway is activated by K1 and vGPCR (171, 189), the NFκB  

pathway is activated by vGPCR and K15 (218, 363), and the MAPK pathway is 

activated by vGPCR, vIL-6, and K15 (198, 218, 364). During latency, KSHV 

expresses a limited repertoire of viral proteins and viral microRNAs that also 

modulate cell signaling pathways. For example, LANA can interact with the cellular 

kinase, GSK3, to facilitate expression of cyclin and myc to drive cell proliferation 

(94), and vCyclin activates cyclin dependent kinase 6 (CDK6) and phosphorylates 

histones to promote entry into S phase (98, 101).  

PEL is an aggressive cancer with a median survival time of only 6 months 

(46). Currently, there is no standard therapy for PEL and patients are typically 

treated with traditional chemotherapy combined with anti-retroviral therapy (ART) if 

patients are HIV positive (365). On a case-by-case basis, patients have been treated 

with preclinical targeted therapeutics to inhibit NFκB, PI3K/AKT/mTOR, JAK/STAT, 

VEGF, and CD30, and there has been limited success with some of these strategies 

(365). Despite these advances, PEL is notoriously resistant to chemotherapy, so 

novel targeted or combination approaches will be essential to treat this KSHV-
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associated lymphoma. There is also an interest in inducing reactivation of latent 

infection because available herpesvirus drugs such as acyclovir are effective during 

lytic infection. A viral kinase expressed only during the lytic cycle phosphorylates 

acyclovir, then cellular kinases can further modify the compound with the addition of 

one or two more phosphate groups to create a nucleoside analog. This analog 

competes with GTP for incorporation into DNA, and preferentially inhibits the viral 

polymerase, thus impeding replication (366). Therefore, one strategy to cure the cell 

of the virus is to induce lytic reactivation while simultaneously treating with acyclovir-

like drugs. This has been done for other herpesvirus infections such as EBV (367).  

An siRNA screen targeting each of the cellular kinases was recently 

completed to identify cellular kinases that could cause reactivation of KSHV from 

latency (368). A cellular kinase called tousled-like kinase 2 (TLK2) was identified and 

found to be critical for maintenance of latent infection (368). Therefore, an objective 

of this work is to build on this study and compare the activated kinome in PEL with 

either a latent or lytic KSHV infection to identify differentially activated signaling 

pathways, some of which may be potential targets for driving infection towards a lytic 

state.  

To profile the kinome during latent and lytic KSHV infection, we utilized a 

novel technique called multiplex inhibitor bead/mass spectrometry (MIB/MS) (350). 

Activated kinases in a sample are selectively isolated by binding to broad spectrum 

kinase inhibitors attached to beads.  Bound kinases can then be eluted from the 

beads and subjected to mass spectrometry to identify individual active kinases that 

are present in the sample (350, 352). We harvested lysates from a KSHV-infected 
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TREx-BCBL1 PEL cell line that has stable expression of doxycycline-inducible 

empty vector or RTA expression vector to maintain or induce the latent or lytic KSHV 

lifecycle, respectively (305). In our comparison between latent and lytic PEL, we 

found numerous differentially activated kinases. The MIBs also isolated the two 

KSHV-expressed protein kinases, indicating that they are bound by the kinase 

inhibitors used in the bead preparation.  

 

METHODS 

Cell Culture 

 TREx BCBL1 and TREx BCBL1-RTA PEL cells (305) were kindly provided by 

Dr. Jae Jung’s lab and were grown in RPMI 1640 medium (Corning) containing 10% 

heat inactivated Tet System Approved FBS (Clontech), 1% penicillin-streptomycin, 

1% L-glutamine, and 20 μM hygromycin B (Roche). TREx BCBL1-RTA were 

reactivated by supplementing media with 1 μg/mL doxycycline for 24hours. 

Sample Harvest and Preparation 

Suspension PEL cells were pelleted and washed three times in cold PBS. 

Pellets were lysed on ice in MIB lysis buffer [50 mM HEPES (pH 7.5), 0.5% Triton X-

100, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 10 mM sodium fluoride, 2.5 mM 

sodium orthovanadate, 1X protease inhibitor cocktail (Roche), and 1% each of 

phosphatase inhibitor cocktail 2 and 3 (Sigma)]. Cell lysates were sonicated 3×10 

seconds on ice and centrifuged at 16,000×g in microfuge tubes for 10 minutes at 

4°C. The supernatant was syringe-filtered through a 0.2 µm SFCA membrane. 
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Protein concentration was determined by Bradford assay (Biorad) and equal 

amounts of protein, around 2.5 mg, were used for each sample.  

MIB/MS Technique and Analysis 

The filtered lysate was brought to 1 M NaCl and passed through a column of 

multiplexed kinase inhibitor-conjugated beads (MIBs) consisting of Sepharose-

conjugated Purvalanol B, PP58, CTx-0294885, VI16832, and two novel custom-

synthesized pan-kinase inhibitor compounds (352). The MIBs were washed with 5 

mL of high-salt buffer and 5 mL of low-salt buffer [50 mM HEPES (pH 7.5), 0.5% 

Triton X-100, 1 mM EDTA, 1 mM EGTA, and 10 mM sodium fluoride, and 1 M NaCl 

or 150 mM NaCl, respectively]. The columns were washed a final time with 1 mL 

0.1% SDS before elution in 1 mL of 0.5% SDS (100°C, 5 min). Eluted kinases were 

reduced (dithiothreitol) and alkylated (iodoacetamide) prior to being concentrated 

with Amicon Ultra centrifugal filters (Millipore) and detergent was removed from the 

concentrated eluate by chloroform/methanol extraction. Protein pellets were 

resuspended in 50 mM HEPES (pH 8.0) and were digested overnight with 

sequencing grade modified trypsin (Promega). Peptides were dried down in a 

speed-vac and cleaned with C-18 spin columns (Pierce) according to the 

manufacturer instructions.  

Peptides were resuspended in 5% acetonitrile and 0.1% formic acid, and 25-

50% injected onto a Thermo Easy-Spray 75uM x 25cm C-18 column via an Easy 

nanoLC-1000. Peptides were separated as a single fraction on a 300 minute 

gradient (5-40% acetonitrile) and identified by a Q-Exactive mass spectrometer. 

Parameters: 3e6 AGC MS1, 80ms MS1 max inject time, 1e5 AGC MS2, 100ms MS2 
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max inject time, 20 loop count, 1.8 m/z isolation window, 45s dynamic exclusion. 

Spectra were identified using MaxQuant software and the Uniprot/Swiss-Prot 

database. Peptide abundance was calculated using label-free quantification (LFQ). 

Western Blotting and Antibodies 

Either MIB lysates were used directly for Western  blots, or cells were washed 

in cold PBS and harvested in NP-40 lysis buffer [0.1% NP-40, 150 mM NaCl, 50 mM 

Tris HCl (pH 8.0), 30 mM β-glycerophosphate, 50 mM NaF, 1 mM Na3VO4, 1 Roche 

protease inhibitor tablet per 50 mL] for 10-30 minutes on ice. Lysates were frozen 

and thawed and clarified by centrifugation at 16,000 x g for 10 minutes. Protein 

content was determined by Bradford assay (Bio-Rad) using a CLARIOstar Optima 

plate reader (BMG Labtech). Equal amounts of protein were resolved on 10% SDS-

PAGE gels and transferred to nitrocellulose membranes. Membranes were blocked 

with 5% non-fat dry milk in 1x TBS/0.1% Tween followed by overnight incubation 

with primary antibody at 4oC. HRP-conjugated secondary antibodies were incubated 

for 1 hour at room temperature. Blots were developed with PicoWest (Thermo) or 

ECL Prime (GE Healthcare) chemiluminescent reagent. Phospho-Src Y416, 

phospho-p70 S6K T421/S424, phospho-IKKα/β S176/S180, phospho-p90 RSK 

S380/ T359/ S363/ T573, Total p70 S6K, and Tubulin were purchased from Cell 

Signaling. vIL-6 and LANA antibodies were from Advanced Biotechnologies. HRP-

conjugated secondary antibodies were from Cell Signaling.  
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RESULTS 

The activated kinome in latent and lytic TREx BCBL1 PEL were compared by 

averaging values obtained from two independent experiments, and dividing the 

latent average over the lytic average and the lytic average over the latent average. 

Values were ranked, and the top 20 differentially activated kinases were reported for 

both latent and lytic cells (Table 4.1).  

 

Table 4.1: Top twenty differentially activated kinases in latent and lytic PEL. (A) Kinases 

activated in latent TREx-BCBL1 PEL. (B) Kinases activated in lytic TREx-BCBL1 PEL. 

 

We also picked up the KSHV encoded kinases, ORF21 and ORF36 (vPK), in 

the MIB/MS profiling. As expected, spectral hits for these kinases were only 
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identified in the lytic cells since they are both expressed exclusively during lytic 

reactivation (Figure 4.1).  

 

 

Figure 4.1: Viral kinases are isolated by MIB/MS. Quantification of peptides isolated and 

identified with MIB/MS that correspond to the viral kinases, ORF21 and ORF36, in latent 

and lytic TREx-BCBL1 samples. Samples were normalized to latent PEL.  

 

We also wanted to confirm changes in kinase activity by Western blot. Left 

over MIB lysates were analyzed by SDS-PAGE and Western blotting for the 

activation status of Src, p70 S6K, IKKα/β, and p90 RSK (Figure 4.2). 
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Figure 4.2: Analysis of specific kinase activation in latent and lytic TREx-BCBL1 PEL. 

MIB lysates were subjected to SDS-PAGE and Western blotting for phospho-Src Y416 (A), 

phospho- p70 S6K T421/S424 (B), phospho-IKKα/β S176/S180 (C), and phospho-p90 RSK 

S380/T359/S363/T573 (D). Tubulin was used as a loading control, and vIL-6 was used as a 

measure of lytic reactivation. Fold change values indicate the level of predicted kinase 

activation in lytic cells as compared to latent cells by MIB/MS. 
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DISCUSSION 

MIB/MS is a powerful tool to profile the active kinome in cells or tissues. 

There are a number of other ways of assessing global kinase activation, each with 

their own caveats. RNA sequencing can be used to determine which kinase genes 

are actually being transcribed in cells, however this does not indicate which kinases 

are expressed at the protein level, or if the kinase proteins are actually activated. 

Identifying kinases with proteomic mass spectrometry is challenging because they 

make up a relatively small portion of the expressed proteome (369). Furthermore, 

the presence of a kinase does not indicate its activation status.  Adenosine 

triphosphate (ATP) affinity probes have been utilized for profiling the kinome 

expression of cells since kinases bind ATP. The limitations of this method are that it 

is not selective for activated kinases, and kinases have inherently different ATP-

binding affinities which may skew quantified data (370). Titanium dioxide can be 

used to enrich for phospho-proteins prior to mass spectrometry (371); however this 

method can also enrich for non-kinase proteins that can be phosphorylated, such as 

STAT3. Furthermore, many kinases have inactivating phosphorylation sites, such as 

Tyr527 of Src kinase (372), so it is possible that inactive kinases are also enriched 

by titanium dioxide prior to mass spectrometry. Antibody arrays are available to 

quantify levels of active kinases with phospho-specific antibodies, but these are 

largely limited by the quality and availability of these antibodies as well as the low-

throughput nature of these arrays.  

The multiplex inhibitor bead method used for this work is unique and 

overcomes some of the caveats of other kinome profiling methods. The beads used 
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are coupled to several moderately selective kinase inhibitors and several pan-kinase 

inhibitors, which collectively can bind to the active site of the majority of expressed 

human kinases (350). The advantage of these beads is that they selectively bind 

only activated kinases, since kinase inhibitors are inherently designed to bind to the 

active site of active kinases. Samples are run over a stacked column of these beads, 

and bound active kinases are then eluted and subjected to mass spectrometry.   

We began by profiling the active kinome of TREx-BCBL1 PEL that harbor either a 

latent or lytic KSHV infection to determine how kinases are differentially activated in 

these two lifecycles. Understanding how various kinases are activated in different 

stages of the viral lifecycle may uncover reasonable kinase targets to drive infection 

towards the lytic lifecycle which is treatable with acyclovir and related compounds 

(366). Our kinome profiling recovered hundreds of active kinases present in latent 

and lytic infection, including the two kinases encoded by KSHV, ORF21 and ORF36 

(vPK) (Figure 4.1). We reported the top kinases that are differentially activated in 

latent and lytic cells (Table 4.1).  

 CAMK1D is a member of the calcium/calmodulin-stimulated protein kinase 

family, and plays a role in cell cycle progression. CAMK1 has specifically been 

implicated in regulating the transition into G1 phase, and is thought to activate cdk4 

and cyclin D1 to promote entry into G2/S (373, 374). Our MIB/MS data indicate that 

CAMK1D is activated in lytic cells (Table 4.1). KSHV does not rely on host DNA 

replication machinery to copy its genome since it expresses a viral DNA polymerase; 

however, promoting entry into the cell cycle may still be advantageous for the virus 

since the production of nucleotides, amino acids, and lipids - all important 
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components of infectious progeny virions - are ramped up by the host cell during 

entry into the cell cycle. It would be interesting to investigate if CAMK1D is activated 

by a specific KSHV lytic protein to initiate the cell cycle. On a related note, the 

MIB/MS data also identified several host cyclin dependent kinases (CDKs) that were 

highly activated during lytic replication, including CDK3 and CDK17. CDK3 is a key 

cell cycle regulator, and its inhibition results in cell cycle arrest (375). Interestingly, 

inhibition of CDKs that are critical for promoting the cell cycle also inhibits replication 

of another herpesvirus, herpes simplex virus (HSV) (376). It would also be 

interesting to investigate the lytic KSHV proteins that can induce activation of CDKs 

to promote entry into the cell cycle and successful lytic viral replication.  

 In latent PEL, the MIB/MS analysis suggests that the tyrosine kinase c-MET is 

highly activated as compared to lytic PEL. The ligand for c-MET is hepatocyte 

growth factor (HGF), and a previous study indicated that both HGF and c-MET are 

expressed and functional in PEL (377). Activation of HGF/c-MET is implicated in the 

development of many cancers and the inhibition of MET activity is an active area of 

focus for the development of cancer therapeutics (378). Interestingly, another group 

recently reported preliminary studies indicating that the HGF/c-MET pathway is 

highly active in PEL, and that use of a novel selective HGF/c-MET inhibitor induces 

PEL apoptosis via cell-cycle arrest and DNA damage in vitro and reduces PEL tumor 

expansion in vivo (Dai, Qin, et al. Unpublished results, Abstract presented at the 18th 

International Workshop on KSHV and Related Agents, Miami FL, July 2015). This 

work not only confirms our MIB/MS findings, but also emphasizes the potential 

impact of inhibiting kinases that are found to be highly active in our MIB/MS analysis.  
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 The MIB/MS data, as well as confirmatory Western blots, also found higher 

activation of p70 S6 kinase (S6K) in lytic PEL. Additionally, Western blots indicated 

higher p90 ribosomal S6 kinase (RSK) activation in lytic PEL as compared to latent 

PEL. The S6 kinases regulate and promote protein translation, an essential process 

for viral replication, so higher levels of these kinases would be expected during lytic 

replication.  A recent publication investigating phosphorylated kinases in latent and 

lytic KSHV-infected epithelial cells also noted higher S6K and RSK activation in lytic 

cells (379). They found that ORF45 plays a role in the activation of both of these S6 

kinases, and that activation of RSK is crucial for the production of infectious progeny 

(379, 380). Since S6K is downstream of a number of signaling pathways activated 

by various KSHV-encoded proteins, there are likely many viral mechanisms in 

addition to ORF45 that contribute to the activation of both S6K and RSK.   

 MIB/MS and subsequent Western blotting indicated higher activation levels of 

the tyrosine kinase Src and the NFκB regulators IKKα/β in lytic PEL. Src family 

kinases are a group of non-receptor tyrosine kinases that regulate cell growth and 

promote cellular transformation. They interact with a variety of receptor tyrosine 

kinases (RTKs) to induce diverse downstream signaling pathways. Src and the Src 

family member Lyn have been shown to be activated by several KSHV lytic proteins, 

including K1 and vGPCR, as well as by binding between the KSHV virion and 

EphrinA2, a known KSHV receptor (173, 381, 382). The NFκB pathway is implicated 

in inflammation, cell survival, and tumorigenesis, and activation of the IKKs is 

required for initiation of both canonical and non-canonical NFκB signaling. There are 

several KSHV lytic proteins known to activate NFκB, including K1, vGPCR and K15 
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(173, 218, 383). Since expression of these KSHV-encoded signaling proteins is 

induced during lytic reactivation, this provides a possible mechanism by which Src 

and IKK activation occurs during lytic reactivation.  

Some of the kinases we analyzed for phosphorylation status by Western blot 

did not match the activation status suggested by the MIB/MS results, such as p90 

RSK. There are several possibilities for this disparity: the first is that kinases often 

have multiple phosphorylation sites, some of which are activating and some of which 

are inhibitory. By probing for a single phosphorylation site on a particular kinase with 

a single antibody, we are not seeing the entire picture of that kinase’s activity. 

Another explanation for inconsistent data is that MIB/MS cannot normalize for 

differences in total levels of a kinase. For example, in Figure 4.2 D the total levels of 

p90 RSK vary substantially amongst samples. MIB/MS analyzes the total amount of 

activated kinase regardless of whether the activated form makes up 3% of that 

particular kinase or 99% of that particular kinase, which is a bias that must be taken 

into consideration when evaluating MIB/MS data.  

In conclusion, we profiled the activated kinome of latent and lytic BCBL1 PEL 

and identified many kinases that are differentially activated in latent and lytic 

infection. These data are interesting and intriguing, and leave much to be explored. 

Understanding how KSHV modulates the kinome of infected cells will have huge 

implications not only for viral infection, but also for potential therapeutics for KSHV-

associated malignancies.  
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CHAPTER 5: SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 

  

GENERAL SUMMARY 

 My dissertation research, performed under the guidance of Dr. Blossom 

Damania, is focused on the broad goal of further understanding how KSHV interacts 

with and modulates the host cell environment to promote pathogenesis. My project 

took advantage of several different approaches to investigate this question. I first 

performed detailed characterization of how a single KSHV protein, vIL-6, interacts 

with and modulates the cellular environment. This project utilized both proteomics 

and transcriptomics to unravel the intricacies of vIL-6 function inside the cell. My 

project then investigated the impact of latent and lytic KSHV infection on the host 

cell kinome. Cellular kinases regulate nearly every cellular function, and 

dysregulated kinase signaling is implicated in the development of many cancers. 

Understanding further how KSHV and all of its encoded components interact with 

and modulate the host cell environment and host kinases will be essential to 

developing efficacious strategies to combat infection and associated malignancies.  

 In chapter one, the general biology and manifestations of KSHV infection are 

discussed. Chapter two investigates the interaction of the KSHV protein vIL-6 with 

cellular proteins, and focuses on an interaction of vIL-6 with the protein HYOU1. 

HYOU1 was found to be important for maintaining vIL-6 protein levels in the cell and 

facilitating vIL-6-mediated STAT3 signaling, cell migration, and nutrient-deprived 
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survival in endothelial cells. Chapter three delves into the impact of intracellular vIL-6 

expression on the endothelial cell transcriptome. My work uncovered that vIL-6 

upregulates expression of the host adhesion and angiogenesis factor CEACAM1, 

and that CEACAM1 facilitates vIL-6-mediated migration of endothelial cells. 

Additionally, I found that KSHV infection also upregulates CEACAM1, further 

implicating this host protein in viral pathogenesis. In chapter four, I utilized a novel 

kinome profiling technique to probe the activated kinome in latent versus lytic KSHV 

infection in PEL. This work could shape the development of targeted therapeutics to 

counteract dysregulated kinase activation in KSHV-associated cancers.   

 These diverse projects have come together to achieve my objective of further 

characterizing how KSHV interacts with and manipulates the host cell. Part of my 

graduate work investigates how one specific viral protein manipulates the host cell, 

and the other part broadly probes how the entire virus alters global signaling 

pathways within infected cells. This final chapter meshes these distinct approaches 

into the overall objective of my graduate research, and highlights future directions 

that will extend this work to bring a fuller understanding of KSHV biology and 

pathogenesis.  

 

KSHV-ASSOCIATED MALIGNANCIES AND MECHANISMS OF PATHOGENESIS 

 Since its discovery in 1994, KSHV has been linked to three human 

malignancies, KS, PEL, and MCD. KS is an endothelial cell tumor that presents as 

highly vascularized skin lesions, PEL is a clonal expansion of latently infected 

plasma cells in the pleural cavities, and MCD is an expansion of plasmablasts within 
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B cell follicles. KSHV is also associated with two rare immune activation syndromes 

called KSHV-associated inflammatory cytokine syndrome and KSHV immune 

reconstitution inflammatory syndrome, which present with high KSHV viral loads and 

immune system flare ups.  

 KSHV infection exists in a latent or lytic lifecycle, and it is thought that its 

ability to transition between these stages is one mechanism by which the virus 

evades host immune detection. During latency, KSHV expresses a limited set of viral 

proteins and viral miRNAs, many of which have oncogenic and transforming 

properties. KSHV primarily defaults to a latent infection in the host, so understanding 

the mechanisms by which latency proteins, such as LANA, drive pathogenesis in the 

host cell has been the focus of many scientific studies. LANA tethers the viral 

episome to the host chromosome and influences the oncogenic capability of latently 

infected cells by modulating the tumor suppressor p53, GSK3β, myc, and 

telomerase (91, 94, 95, 97). The viral miRNAs are also highly expressed in latency, 

and have diverse functions ranging from latency maintenance to immune evasion 

and cell proliferation.  

 During lytic reactivation, the viral replication and transcription activator (RTA) 

protein initiates a complex transcriptional cascade that results in expression of all 

viral non-structural and structural proteins. Many lytic proteins have been 

characterized as pro-growth signaling proteins, including K1, vIL-6, vGPCR, and 

K15, amongst others (199, 384). KSHV lytic proteins have been shown to activate 

major host proliferation and pro-inflammatory pathways, including the MAPK, 

PI3K/Akt/mTOR, JAK/STAT, PKC, and NF-κB pathways. Identifying cellular 
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pathways that are stimulated by lytic KSHV proteins and unraveling the underlying 

mechanisms by which they activate these pathways will not only enrich our 

knowledge of KSHV biology, but may also guide the development of targeted 

therapeutics to reduce pathogenic signaling.  

 In addition to utilizing latency to hide from the host immune system, KSHV 

has an arsenal of factors that also prevent its detection by and activation of antiviral 

immune defenses. Although KSHV has several mechanisms of evading the adaptive 

immune response, numerous studies have focused on the interplay between KSHV 

and the innate immune system. KSHV can be detected by various innate immune 

sensors, including the TLRs, RLRs, NLRs, and cGAS/STING (281, 385), but it also 

encodes viral proteins including the viral IRFs, ORF63, and ORF45, that potently 

blunt these responses to reduce expression and release of interferon β and IL-1β 

(225, 278). KSHV also expresses proteins that inhibit complement activation and 

detection by NK cells (242, 288). Further investigation of how KSHV evades immune 

detection may lead to alternative therapeutic strategies that boost the innate immune 

system to allow the host to successfully defend against the virus and eliminate 

infection. 

 

MODULATION OF KSHV VIRAL INTERLEUKIN 6 FUNCTION BY HYPOXIA 

UPREGULATED PROTEIN 1 

 KSHV encodes a homolog of the human interleukin 6 cytokine (hIL-6), called 

viral interleukin 6 (vIL-6). These proteins have significant structural and functional 

similarity, so many early studies on vIL-6 investigated how it influenced cells after 
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being exogenously applied in culture media. Elegant studies by Meads et al in 2004 

identified some striking differences between hIL-6 and vIL-6 secretion 

characteristics: vIL-6 was found to be secreted over 8 fold slower than hIL-6, and 

vIL-6 had a glycosylation profile distinct from typical secreted cytokines (206). A 

subsequent study discovered the ability of vIL-6 to form tetramers with the gp130 

subunit of the IL-6 receptor within the endoplasmic reticulum (ER) compartment to 

induce functional intracellular signaling in the absence of the IL-6R gp80 subunit 

(207). Collectively, these studies strengthened the evidence that vIL-6 largely 

functions inside the cell. We therefore hypothesized that vIL-6 must interact with 

host proteins that help promote the function of vIL-6, so the objective of this project 

was to identify and characterize novel cellular interaction partners of vIL-6.  

 The results of this work were published in the Journal of Virology (313). I 

initiated this project by performing a vIL-6 immunoprecipitation followed by mass 

spectrometry to identify bound proteins. Protein mass spectrometry is extremely 

sensitive, and data sets are notorious for containing many false positive hits. 

Proteins that had higher spectral counts in the vIL-6 samples as compared to an 

empty vector control sample were categorized as potential hits, and we became 

interested in one particular protein that had a comparable number of spectra 

identified in the vIL-6 samples to gp130. This protein was called hypoxia upregulated 

protein 1 (HYOU1), which is an ER chaperone protein that promotes angiogenesis 

and prevents hypoxia-induced cell death.  

 After confirming that vIL-6 and HYOU1 interact by coimmunoprecipitation 

experiments, I determined that HYOU1 is expressed in tissue from KSHV 
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malignancies. I then found that HYOU1 plays a role in maintaining the level of 

secreted and intracellular vIL-6 protein. To determine if HYOU1 modulates vIL-6 

function, I examined the impact of HYOU1 on vIL-6-induced signaling, and found 

that in the absence of HYOU1, vIL-6 was less able to interact with gp130 and 

activate STAT3. I then performed biological assays in endothelial cells and found 

that HYOU1 was critical for vIL-6-mediated migration and serum-starved survival. 

Finally, I showed that HYOU1 also facilitates hIL-6-induced STAT3 signaling, and 

that HYOU1 can bind hIL-6 when the human cytokine is in a modified form that 

restricts its localization to the ER compartment. I speculate that HYOU1 interacts 

transiently with wild type hIL-6 as it transitions out of the ER to be secreted, but 

because hIL-6 remains in the cell so briefly I was unable to detect it in a co-

immunoprecipitation experiment. 

 While investigating the mechanism by which HYOU1 affects vIL-6 mediated 

migration, I performed a chemokine array and identified CCL2 as a chemokine that 

is upregulated by vIL-6 in a HYOU1-dependent manner. Since vIL-6 has been 

implicated in migration and angiogenesis, it is likely that there are other important 

chemokines and cytokines whose expression is modified by vIL-6. An interesting 

future direction is to perform a more thorough profiling of secreted factors from vIL-6-

expressing cells, which may give further insight into the mechanisms by which vIL-6 

promotes increased movement, survival, and angiogenesis in endothelial cells. 

Another future direction could be to explore the vIL-6 residues or domains at the 

interface of the HYOU1-vIL-6 interaction. I attempted to mutate sizeable domains of 

vIL-6 but was unable to ablate the interaction, which suggests that there may be 
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multiple points of contact between vIL-6 and HYOU1. This would not be surprising, 

since HYOU1 is a large chaperone protein, but understanding where it interacts with 

vIL-6 may give insight into HYOU1’s possible interaction with and effect on hIL-6. 

Finally, there have been no other reports investigating HYOU1 in KSHV biology, so it 

is unknown whether KSHV infection is impacted by HYOU1 expression or if HYOU1 

plays a role in the processing or function of other viral proteins. These would be 

exciting avenues for future research. 

 

KSHV VIRAL INTERLEUKIN 6 MODULATES ENDOTHELIAL CELL MOVEMENT 

BY UPREGULATING CELLULAR GENES INVOLVED IN MIGRATION 

 This work was a continuation of my first project that investigated protein 

binding partners of vIL-6 that promoted vIL-6 function. While some vIL-6 functions 

have been elucidated by our lab and others, an area that has not been thoroughly 

explored is how this viral cytokine impacts the transcriptional profile of endothelial 

cells to modulate the host cell environment or host cell function.  The objective of 

this work was to identify major pathways altered by vIL-6 expression, and identify if 

there are host genes that vIL-6 induces to manipulate cellular function. 

 A previous study examined expression of a limited set of host genes with the 

exogenous application of bacterially-derived vIL-6 (62). More recently, it has been 

discovered that vIL-6 requires mammalian glycosylation machinery for optimal 

function, and that an appreciable amount of vIL-6 signaling occurs intracellularly 

(207, 341). My work therefore revisited the impact of vIL-6 on host gene expression, 

but took an approach using intracellular vIL-6 expression and endothelial cells, 
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which are a relevant cell type for KSHV biology. Microarray results and subsequent 

analysis with Ingenuity Pathway Analysis identified numerous biological function 

pathways that were significantly altered by vIL-6 expression, including cellular 

movement.  

 A host gene called CEACAM1 was identified in several of the cellular 

movement sub-pathways, and this protein is known to promote endothelial cell 

migration and angiogenesis. I confirmed that this gene is upregulated at both the 

message and protein level in endothelial cells that express vIL-6, as well as in 

endothelial cells with latent or de novo KSHV infection. Chemical inhibition of STAT3 

reduced vIL-6-mediated upregulation of CEACAM1, suggesting that vIL-6 induces 

CEACAM1 expression via the JAK/STAT pathway. Interestingly, exogenously 

applied hIL-6 did not induce CEACAM1, which could be due to the inherently weaker 

activation of STAT3 signaling by hIL-6, or to a unique intracellular mechanism 

employed by vIL-6 that results in CEACAM1 upregulation. Finally, I show that 

CEACAM1 plays a role in promoting vIL-6-mediated migration of endothelial cells. 

 There are a number of interesting questions that remain for this project. 

Despite the similarities between vIL-6 and hIL-6, there are also striking differences 

between these cytokines with regard to localization, secretion, and glycosylation. It 

would be interesting to evaluate and compare the microarray profiles of cells with 

intracellular expression of hIL-6 or vIL-6 and exogenously applied hIL-6 or vIL-6. 

This may elucidate not only differences in how vIL-6 and hIL-6 modulate cellular 

gene expression, but also whether these changes are impacted by where signaling 
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initiates (extracellular or intracellular). This work could also provide insight into why 

exogenously applied hIL-6 does not induce CEACAM1 expression. 

 A number of other interesting genes associated with cellular movement were 

modulated by vIL-6. Pleiotrophin (PTN) was upregulated about 25 fold by vIL-6 in 

the microarray, and about 8.5 fold with follow-up qPCR (data not shown). PTN is a 

secreted factor in the midkine chemokine family that promotes endothelial cell 

migration and angiogenesis by inducing expression and secretion of VEGF and 

CCL2 (386, 387). Tumor necrosis factor superfamily member 15 (TNFSF15; also 

called TL1A) is a protein secreted by endothelial cells to negatively regulate 

neovascularization, and its expression has been shown to be decreased by IFNγ in 

endothelial cells and decreased by VEGF and CCL2 in macrophages and T 

regulatory cells (388, 389). The microarray data as well as subsequent qPCR 

analysis of TNFSF15 indicated that this host transcript was approximately 10 fold 

reduced in vIL-6-expressing endothelial cells (data not shown). vIL-6 is known to 

increase VEGF and CCL2, so it is possible that modulation of PTN by vIL-6 causes 

induction of VEGF and CCL2 which then downregulates TNFSF15 to collectively 

contribute to the increased migration and angiogenesis observed with vIL-6 

expression. A more thorough investigation of these pathways may further elucidate 

the mechanism by which vIL-6 modulates these host genes.  

 While performing de novo KSHV infections in endothelial cells, I observed 

that knockdown of CEACAM1 increased viral gene expression at 30 hours post 

infection of primary HUVEC (data not shown). An in vivo study of MHV-68 in 

CEACAM1-knockout mice found less robust lytic infection but increased viral load 
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and splenomegaly during latent infection in CEACAM1-null mice (345). This 

phenotype was later found to be mediated by natural killer cells (346). An interesting 

future direction would be to probe the reason for increased viral gene expression 

following de novo infection in CEACAM1-knockdown primary HUVEC. It is possible 

that CEACAM1 impedes viral entry, or that signaling from the cytoplasmic 

CEACAM1 ITIM domain blocks signaling through pathways such as FAK, PI3K, Src, 

and MAPK to abrogate delivery of capsids to the nucleus. Alternatively, it is possible 

that CEACAM1 somehow promotes latency, and KSHV upregulates CEACAM1 to 

drive infected cells away from lytic replication and into latency, to evade immune 

detection. Pursuing these questions may elucidate why CEACAM1-knockdown 

endothelial cells have increased viral gene expression following de novo infection, 

which could uncover interesting and important implications for CEACAM1 in KSHV 

biology.  

 Collectively, the work discussed in chapters 2 and 3 identify novel ways in 

which vIL-6 interacts with and modulates the host cell environment. I identified a 

host protein, HYOU1, which contributes to vIL-6 function by supporting vIL-6 

signaling through the gp130 subunit of the IL-6 receptor. I also found that 

intracellular vIL-6 modulates the expression of many host genes associated with cell 

movement, including the host adhesion factor CEACAM1, which contributes to vIL-6-

mediated endothelial cell migration. My working model suggests that intracellular 

ER-localized vIL-6 is stabilized by the chaperone HYOU1, which promotes vIL-6 

signaling through the IL-6 receptor. This increases STAT3 activation, which drives 
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expression of a number of host genes that promote vIL-6-mediated biological 

functions, such as migration, angiogenesis, and survival (Figure 5.1). 

 

 

Figure 5.1: A model for the mechanism of action of intracellular vIL-6. 

  

 Since KSHV expresses over eighty open reading frames in addition to viral 

miRNAs and long non-coding RNAs, determining the significance and contribution of 

each viral component with regard to disease pathogenesis is often complex. In the 

context of cancer pathogenesis, I speculate that the main role of vIL-6 is to induce a 

pro-inflammatory environment that results in the increased secretion of chemokines, 

cytokines, and growth factors. Collectively these factors may promote the growth 

and migration of infected cells, thus encouraging transformation and tumorigenesis. 

The presence of a pro-inflammatory environment may also provide the necessary 



125 

cellular stresses to induce viral reactivation in some cells to allow for the propagation 

of the virus. Additionally, vIL-6-induced chemokines may result in the recruitment of 

other susceptible immune cells, thus providing new host cells to help perpetuate 

KSHV infection. It is also important to consider the role of vIL-6 during asymptomatic 

KSHV infection, since only a fraction of patients with KSHV develop KSHV-

associated malignancies. I speculate that vIL-6 levels are likely much lower (if 

expressed at all) during asymptomatic KSHV infection since the level of vIL-6 

positively correlates with prognosis in MCD (59, 60). It has not been investigated if 

vIL-6 is present in asymptomatic KSHV infection, but if expressed, I hypothesize that 

small amounts of vIL-6 would still promote a mildly inflammatory environment: 

enough to promote a low level of viral persistence without inducing pathogenesis. 

KSHV and closely related herpesviruses are the only human viruses known to 

express a homolog of human IL-6, and while my work has advanced the field’s 

understanding of vIL-6, the comprehensive role of this unique, multifaceted viral 

protein in disease and KSHV biology remains to be elucidated.     

 

ALTERATION OF THE HOST CELL KINOME BY LYTIC AND LATENT KAPOSI’S 

SARCOMA ASSOCIATED HERPESVIRUS INFECTION 

 This research was performed in collaboration with Dr. Gary Johnson’s lab at 

the University of North Carolina at Chapel Hill. His lab developed a novel method to 

specifically profile the activated kinome of cell or tissue samples, and the goal of our 

collaboration was to identify differentially activated kinases in lytic and latent PEL.  
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The MIB/MS analysis picked up several hundred kinases among our samples, and I 

ranked the top differentially activated kinases in the latent and lytic PEL (Table 4.1). 

The MIBs also isolated the two KSHV-encoded kinases, ORF21 and ORF36, which 

suggests that they are activated in lytic cells and can be bound by known kinase 

inhibitors. There are a number of future directions for this project, the first of which is 

confirming activation of top kinases identified in the MIB/MS comparison of latent 

and lytic PEL. Ideally, radioactive kinase assays should be used to probe the 

activation of selected kinases since Western blots analyzing phosphorylation at 

particular kinase residues have caveats, as described in chapter 4.  

Due to the rarity of PEL and the lack of an established treatment protocol, 

clinicians will sometimes treat PEL patients with a variety of novel drugs that target 

signaling pathways, with some efficacy. These include chemical inhibitors of NFκB, 

PI3K/AKT/mTOR, and JAK/STAT, VEGF, and CD30. Using kinase inhibitors to 

reactivate KSHV from latency will induce lysis of infected cells or sensitize cells to 

treatment with acyclovir-like compounds. Analyzing the kinome of latent versus lytic 

PEL may identify key kinases that can be targeted to accomplish lytic reactivation. 

For example, inhibition of TLK2 by siRNA knockdown induces lytic reactivation 

(368). Therefore, another future direction of this project is to determine if inhibition or 

activation of specific kinases in latent PEL can drive cells towards lytic reactivation 

that is treatable with acyclovir or related compounds.  

Collectively, this project has provided preliminary evidence that there are 

differentially activated kinases in latent and lytic PEL. This project has numerous  
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future directions that will be necessary to confirm and characterize the activation of 

these cellular kinases, since this will provide critical direction for the development 

and use of specific kinase inhibitors to treat patients with PEL.   



128 

REFERENCES 
 

1. Kaposi M. 1872. Idiopathisches multiples Pigmentsarkom der Haut. Arch Dermatol 
Syph 4:265-273. 

2. Beral V, Peterman TA, Berkelman RL, Jaffe HW. 1990. Kaposi's sarcoma among 
persons with AIDS: a sexually transmitted infection? The Lancet 335:123-128. 

3. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS. 
1994. Identification of Herpesvirus-Like DNA Sequences in AIDS-Associated 
Kaposi's Sarcoma. Science 266:1865-1869. 

4. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, 
d'Agay M, Clauvel J, Raphael M, Degos L, Sigaux F. 1995. Kaposi's sarcoma-
associated herpesvirus-like DNA sequences in multicentric Castleman's disease. 
Blood 86:1276-1280. 

5. Gessain A, Sudaka A, Briere J, Fouchard N, Nicola M, Rio B, Arborio M, 
Troussard X, Audouin J, Diebold J. 1996. Kaposi sarcoma-associated herpes-like 
virus (human herpesvirus type 8) DNA sequences in multicentric Castleman's 
disease: is there any relevant association in non-human immunodeficiency virus-
infected patients? Blood 87:414-416. 

6. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. 1995. Kaposi's 
Sarcoma–Associated Herpesvirus-Like DNA Sequences in AIDS-Related Body-
Cavity–Based Lymphomas. N Engl J Med 332:1186-1191. 

7. Friedman-Kien AE, Saltzman BR. 1990. Clinical manifestations of classical, 
endemic African, and epidemic AIDS-associated Kaposi's sarcoma. J Am Acad 
Dermatol 22:1237-1250. 

8. Wahman A, Melnick SL, Rhame FS, Potter JD. 1991. The Epidemiology of Classic, 
African, and Immunosuppressed Kaposi's Sarcoma. Epidemiol Rev 13:178-199. 

9. Antman K, Chang Y. 2000. Kaposi's Sarcoma. N Engl J Med 342:1027-1038. 

10. DiGiovanna J, Safai B. 1981. Kaposi's sarcoma. Retrospective study of 90 cases 
with particular emphasis on the familial occurrence, ethnic background and 
prevalence of other diseases. Am J Med 71:779-783. 

11. Stein M, Spencer D, Ruff P, Lakier R, MacPhail P, Bezwoda W. 1994. Endemic 
African Kaposi's sarcoma: clinical and therapeutic implications. 10-year experience 
in the Johannesburg Hospital (1980-1990). Oncology 51:63-69. 

12. Dutz W, Stout A. 1960. Kaposi's sarcoma in infants and children. Cancer 13:684-
694. 

13. Taylor J, Templeton A, Vogel C, Ziegler J, Kyalwazi S. 1971. Kaposi's sarcoma in 
Uganda: a clinico-pathological study. Int J Cancer 15:122-135. 



129 

14. Biggar R, Rabkin C. 1996. The epidemiology of AIDS-related neoplasms. Hematol 
Oncol Clin North Am 10:997-1010. 

15. Beral V, Newton R. 1998. Overview of the Epidemiology of Immunodeficiency-
Associated Cancers. J Natl Cancer Inst Monogr 1998:1-6. 

16. Mbulaiteye SM, Biggar RJ, Goedert JJ, Engels EA. 2003. Immune Deficiency and 
Risk for Malignancy Among Persons with AIDS. J Acquir Immune Defic Syndr 
32:527-533. 

17. Parkin DM. 2006. The global health burden of infection-associated cancers in the 
year 2002. Int J Cancer 118:3030-3044. 

18. Engels E, Pfeiffer R, Goedert J, Virgo P, McNeel T, Scoppa S, Biggar R. 2006. 
Trends in cancer risk among people with AIDS in the United States. AIDS 20:1645-
1654. 

19. Parkin D, Wabinga H, Nambooze S, Wabwire-Mangen F. 1999. AIDS-related 
cancers in Africa: maturation of the epidemic in Uganda. AIDS 13:2563-2570. 

20. Thomas JO. 2001. Acquired immunodeficiency syndrome-associated cancers in 
Sub-Saharan Africa. Semin Oncol 28:198-206. 

21. Casper C, Wald A. 2007. The use of antiviral drugs in the prevention and treatment 
of Kaposi sarcoma, multicentric Castleman disease and primary effusion lymphoma. 
Curr Top Microbiol Immunol 312:289-307. 

22. Siegel J, Alper J, Schutte J, Robbins H, Blaufox L. 1969. Disseminated visceral 
Kaposi's sarcoma: Appearance after human renal homograft operation. JAMA 
207:1493-1496. 

23. Andreoni M, Goletti D, Pezzotti P, Pozzetto A, Monini P, Sarmati L, Farchi F, 
Tisone G, Piazza A, Pisani F, Angelico M, Leone P, Citterio F, Ensoli B, Rezza 
G. 2001. Prevalence, Incidence and Correlates of HHV-8/KSHV Infection and 
Kaposi's Sarcoma in Renal and Liver Transplant Recipients. J Infect 43:195-199. 

24. Marcelin A, Calvez V, Dussaix E. 2007. KSHV after an organ transplant: should we 
screen? Curr Top Microbiol Immunol 312:245-262. 

25. Francès C, Marcelin AG, Legendre C, Chevret S, Dussaix E, Lejeune J, Euvrard 
S, Bigorie A, Schulz TF, Agbalika F, Lebbé C. 2009. The Impact of Preexisting or 
Acquired Kaposi Sarcoma Herpesvirus Infection in Kidney Transplant Recipients on 
Morbidity and Survival. Am J Transplant 9:2580-2586. 

26. Barozzi P, Luppi M, Facchetti F, Mecucci C, Alu M, Sarid R, Rasini V, Ravazzini 
L, Rossi E, Festa S, Crescenzi B, Wolf DG, Schulz TF, Torelli G. 2003. Post-
transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. 
Nat Med 9:554-561. 

27. Tamburro KM, Yang D, Poisson J, Fedoriw Y, Roy D, Lucas A, Sin S-H, Malouf 
N, Moylan V, Damania B, Moll S, van der Horst C, Dittmer DP. 2012. Vironome of 



130 

Kaposi sarcoma associated herpesvirus-inflammatory cytokine syndrome in an AIDS 
patient reveals co-infection of human herpesvirus 8 and human herpesvirus 6A. 
Virology 433:220-225. 

28. Kyalwazi SK. 1981. Kaposi's sarcoma: clinical features, experience in Uganda. 
Antibiot Chemother 29:59-69. 

29. Hussein M. 2008. Immunohistological evaluation of immune cell infiltrate in 
cutaneous Kaposi's sarcoma. Cell Biol Int 32:157-162. 

30. Staskus KA, Sun R, Miller G, Racz P, Jaslowski A, Metroka C, Brett-Smith H, 
Haase AT. 1999. Cellular Tropism and Viral Interleukin-6 Expression Distinguish 
Human Herpesvirus 8 Involvement in Kaposi’s Sarcoma, Primary Effusion 
Lymphoma, and Multicentric Castleman’s Disease. J Virol 73:4181-4187. 

31. Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H, Renne R, Beneke J, 
Pudney J, Anderson DJ, Ganem D, Haase AT. 1997. Kaposi's sarcoma-associated 
herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 71:715-719. 

32. Boshoff C, Schulz TF, Kennedy MM, Graham AK, Fisher C, Thomas A, McGee 
JOD, Weiss RA, O'Leary JJ. 1995. Kaposi's sarcoma-associated herpesvirus 
infects endothelial and spindle cells. Nat Med 1:1274-1278. 

33. Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M, Franck N, van Marck E, Salmon 
D, Gorin I, Escande J-P, Weiss RA, Alitalo K, Boshoff C. 1999. Distribution of 
human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric 
Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci U S A 
96:4546-4551. 

34. Hansen A, Henderson S, Lagos D, Nikitenko L, Coulter E, Roberts S, Gratrix F, 
Plaisance K, Renne R, Bower M, Kellam P, Boshoff C. 2010. KSHV-encoded 
miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev 24:195-
205. 

35. Hong Y-K, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, 
Dezube BJ, Fingeroth JD, Detmar M. 2004. Lymphatic reprogramming of blood 
vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 36:683-
685. 

36. Morris VA, Punjabi AS, Lagunoff M. 2008. Activation of Akt through gp130 
receptor signaling is required for Kaposi's sarcoma-associated herpesvirus-induced 
lymphatic reprogramming of endothelial cells. J Virol 82:8771-8779. 

37. Duprez R, Lacoste V, Brière J, Couppié P, Frances C, Sainte-Marie D, Kassa-
Kelembho E, Lando M-J, Essame Oyono J-L, Nkegoum B, Hbid O, Mahé A, 
Lebbé C, Tortevoye P, Huerre M, Gessain A. 2007. Evidence for a Multiclonal 
Origin of Multicentric Advanced Lesions of Kaposi Sarcoma. J Natl Cancer Inst 
99:1086-1094. 

38. Judde J-G, Lacoste V, Brière J, Kassa-Kelembho E, Clyti E, Couppié P, 
Buchrieser C, Tulliez M, Morvan J, Gessain A. 2000. Monoclonality or 



131 

Oligoclonality of Human Herpesvirus 8 Terminal Repeat Sequences in Kaposi's 
Sarcoma and Other Diseases. J Natl Cancer Inst 92:729-736. 

39. Nador R, Cesarman E, Chadburn A, Dawson D, Ansari M, Sald J, Knowles D. 
1996. Primary effusion lymphoma: a distinct clinicopathologic entity associated with 
the Kaposi's sarcoma-associated herpes virus. Blood 88:645-656. 

40. Renne R, Lagunoff M, Zhong W, Ganem D. 1996. The size and conformation of 
Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in infected 
cells and virions. J Virol 70:8151-8154. 

41. Carbone A, Gloghini A. 2008. KSHV/HHV8-associated lymphomas. Br J Haematol 
140:13-24. 

42. Cesarman E, Knowles DM. 1999. The role of Kaposi's sarcoma-associated 
herpesvirus (KSHV/HHV-8) in lymphoproliferative diseases. Semin Cancer Biol 
9:165-174. 

43. Carbone A, Gloghini A, Larocca LM, Capello D, Pierconti F, Canzonieri V, Tirelli 
U, Dalla-Favera R, Gaidano G. 2001. Expression profile of MUM1/IRF4, BCL-6, and 
CD138/syndecan-1 defines novel histogenetic subsets of human immunodeficiency 
virus–related lymphomas. Blood 97:744-751. 

44. Jenner RG, Maillard K, Cattini N, Weiss RA, Boshoff C, Wooster R, Kellam P. 
2003. Kaposi's sarcoma-associated herpesvirus-infected primary effusion lymphoma 
has a plasma cell gene expression profile. Proc Natl Acad Sci U S A 100:10399-
10404. 

45. Carbone A, Gloghini A, Vaccher E, Cerri M, Gaidano G, Dalla-Favera R, Tirelli 
U. 2005. Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus Type 8-
Positive Solid Lymphomas: A Tissue-Based Variant of Primary Effusion Lymphoma. 
J Mol Diagn 7:17-27. 

46. Boulanger E, Gérard L, Gabarre J, Molina J-M, Rapp C, Abino J-F, Cadranel J, 
Chevret S, Oksenhendler E. 2005. Prognostic Factors and Outcome of Human 
Herpesvirus 8–Associated Primary Effusion Lymphoma in Patients With AIDS. J Clin 
Oncol 23:4372-4380. 

47. Simonelli C, Tedeschi R, Gloghini A, Spina M, Talamini R, De Paoli P, Tirelli U, 
Carbone A. 2006. Prognostic Factors in Human Herpesvirus 8–Related 
Lymphoproliferative Disorders Associated With HIV Infection. J Clin Oncol 24:209. 

48. Waterston A, Bower M. 2004. Fifty years of multicentric Castleman's disease. Acta 
Oncologica 43:698-704. 

49. Du M-Q, Liu H, Diss TC, Ye H, Hamoudi RA, Dupin N, Meignin V, Oksenhendler 
E, Boshoff C, Isaacson PG. 2001. Kaposi sarcoma–associated herpesvirus infects 
monotypic (IgMλ) but polyclonal naive B cells in Castleman disease and associated 
lymphoproliferative disorders. Blood 97:2130-2136. 



132 

50. Radaszkiewicz T, Hansmann M, Lennert K. 1989. Monoclonality and polyclonality 
of plasma cells in Castleman's disease of the plasma cell variant. Histopathology 
14:11-24. 

51. Dupin N, Diss TL, Kellam P, Tulliez M, Du M-Q, Sicard D, Weiss RA, Isaacson 
PG, Boshoff C. 2000. HHV-8 is associated with a plasmablastic variant of 
Castleman disease that is linked to HHV-8–positive plasmablastic lymphoma. Blood 
95:1406-1412. 

52. Nishimoto N, Kanakura Y, Aozasa K, Johkoh T, Nakamura M, Nakano S, 
Nakano N, Ikeda Y, Sasaki T, Nishioka K, Hara M, Taguchi H, Kimura Y, Kato Y, 
Asaoku H, Kumagai S, Kodama F, Nakahara H, Hagihara K, Yoshizaki K, 
Kishimoto T. 2005. Humanized anti–interleukin-6 receptor antibody treatment of 
multicentric Castleman disease. Blood 106:2627-2632. 

53. Chadburn A, Hyjek EM, Tam W, Liu Y, Rengifo T, Cesarman E, Knowles DM. 
2008. Immunophenotypic analysis of the Kaposi sarcoma herpesvirus (KSHV; HHV-
8)-infected B cells in HIV+ multicentric Castleman disease (MCD). Histopathology 
53:513-524. 

54. Polizzotto MN, Uldrick TS, Hu D, Yarchoan R. 2012. Clinical Manifestations of 
Kaposi Sarcoma Herpesvirus (KSHV) Lytic Activation: Multicentric Castleman 
Disease (KSHV-MCD) and the KSHV Inflammatory Cytokine Syndrome (KICS). 
Front Microbiol 3:1-9. 

55. Parravicini C, Corbellino M, Paulli M, Magrini U, Lazzarino M, Moore P, Chang 
Y. 1997. Expression of a virus-derived cytokine, KSHV vIL-6, in HIV-seronegative 
Castleman's disease. Am J Pathol 151:1517-1522. 

56. Oksenhendler E, Boulanger E, Galicier L, Du M, Dupin N, Diss T, Hamoudi R, 
Daniel M, Agbalika F, Boshoff C, Clauvel J, Isaacson P, Meignin V. 2002. High 
incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma 
in patients with HIV infection and multicentric Castleman disease. Blood 99:2331-
2336. 

57. Oksenhendler E, Duarte M, Soulier J, Cacoub P, Welker Y, Cadranel J, Cazals-
Hatem D, Autran B, Clauvel J, Raphael M. 1996. Multicentric Castleman's disease 
in HIV infection: a clinical and pathological study of 20 patients. AIDS 10:61-67. 

58. Nishi J-I, Arimura K, Utsunomiya A, Yonezawa S, Kawakami K, Maeno N, Ijichi 
O, Ikarimoto N, Nakata M, Kitajima I, Fukushige T, Takamatsu H, Miyata K, 
Maruyama I. 1999. Expression of vascular endothelial growth factor in sera and 
lymph nodes of the plasma cell type of Castleman's disease. Br J Haematol 
104:482-485. 

59. Yoshizaki K, Matsuda T, Nishimoto N, Kuritani T, Taeho L, Aozasa K, Nakahata 
T, Kawai H, Tagoh H, Komori T. 1989. Pathogenic significance of interleukin-6 (IL-
6/BSF-2) in Castleman's disease. Blood 74:1360-1367. 

60. Oksenhendler E, Carcelain G, Aoki Y, Boulanger E, Maillard A, Clauvel J, 
Agbalika F. 2000. High levels of human herpesvirus 8 viral load, human interleukin-



133 

6, interleukin-10, and C reactive protein correlate with exacerbation of multicentric 
castleman disease in HIV-infected patients. Blood 96:2069-2073. 

61. Aoki Y, Jaffe E, Chang Y, Jones K, Teruya-Feldstein J, Moore P, Tosato G. 
1999. Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated 
herpesvirus-encoded interleukin-6. Blood 93:4034-4043. 

62. Osborne J, Moore PS, Chang Y. 1999. KSHV-encoded viral IL-6 activates multiple 
human IL-6 signaling pathways. Hum Immunol 60:921-927. 

63. Boulanger MJ, Chow D-c, Brevnova E, Martick M, Sandford G, Nicholas J, 
Garcia KC. 2004. Molecular Mechanisms for Viral Mimicry of a Human Cytokine: 
Activation of gp130 by HHV-8 Interleukin-6. J Mol Biol 335:641-654. 

64. Aoki Y, Tosato G, Fonville TW, Pittaluga S. 2001. Serum viral interleukin-6 in 
AIDS-related multicentric Castleman disease. Blood 97:2526-2527. 

65. Uldrick TS, Wang V, O'Mahony D, Aleman K, Wyvill KM, Marshall V, Steinberg 
SM, Pittaluga S, Maric I, Whitby D, Tosato G, Little RF, Yarchoan R. 2010. An 
Interleukin-6-Related Systemic Inflammatory Syndrome in Patients Co-Infected with 
Kaposi Sarcoma-Associated Herpesvirus and HIV but without Multicentric Castleman 
Disease. Clin Infect Dis 51:350-358. 

66. Ray A, Marshall V, Uldrick T, Leighty R, Labo N, Wyvill K, Aleman K, Polizzotto 
MN, Little RF, Yarchoan R, Whitby D. 2012. Sequence Analysis of Kaposi 
Sarcoma–Associated Herpesvirus (KSHV) MicroRNAs in Patients with Multicentric 
Castleman Disease and KSHV-Associated Inflammatory Cytokine Syndrome. J 
Infect Dis 205:1665-1676. 

67. Shelburne SA, Hamill R, Rodriguez-Barradas M, Greenberg S, Atmar R, Musher 
D, Gathe J, Visnegarwala F, Trautner B. 2002. Immune reconstitution inflammatory 
syndrome: emergence of a unique syndrome during highly active antiretroviral 
therapy. Medicine 81:213-227. 

68. Leidner RS, Aboulafia D. 2005. Recrudescent Kaposi's sarcoma after initiation of 
HAART: a manifestation of immune reconstitution syndrome. AIDS Patient Care 
STDs 19:635-644. 

69. Letang E, Lewis J, Bower M, Mosam A, Borok M, Campbell T, Naniche D, 
Newsom-Davis T, Shaik F, Fiorillo S, Miro J, Schellenberg D, Easterbrook P. 
2013. Immune reconstitution inflammatory syndrome associated with kaposi 
sarcoma: higher incidence and mortality in Africa than in the UK. AIDS 27:1603-
1613. 

70. Bower M, Nelson M, Young AM, Thirlwell C, Newsom-Davis T, Mandalia S, 
Dhillon T, Holmes P, Gazzard BG, Stebbing J. 2005. Immune Reconstitution 
Inflammatory Syndrome Associated With Kaposi's Sarcoma. J Clin Oncol 23:5224-
5228. 



134 

71. Cotter MA, Robertson ES. 1999. The Latency-Associated Nuclear Antigen Tethers 
the Kaposi's Sarcoma-Associated Herpesvirus Genome to Host Chromosomes in 
Body Cavity-Based Lymphoma Cells. Virology 264:254-264. 

72. Barbera AJ, Ballestas ME, Kaye KM. 2004. The Kaposi's Sarcoma-Associated 
Herpesvirus Latency-Associated Nuclear Antigen 1 N Terminus Is Essential for 
Chromosome Association, DNA Replication, and Episome Persistence. J Virol 
78:294-301. 

73. Barbera AJ, Chodaparambil JV, Kelley-Clarke B, Joukov V, Walter JC, Luger K, 
Kaye KM. 2006. The Nucleosomal Surface as a Docking Station for Kaposi's 
Sarcoma Herpesvirus LANA. Science 311:856-861. 

74. Hu J, Garber AC, Renne R. 2002. The Latency-Associated Nuclear Antigen of 
Kaposi's Sarcoma-Associated Herpesvirus Supports Latent DNA Replication in 
Dividing Cells. J Virol 76:11677-11687. 

75. Verma SC, Choudhuri T, Kaul R, Robertson ES. 2006. Latency-Associated 
Nuclear Antigen (LANA) of Kaposi's Sarcoma-Associated Herpesvirus Interacts with 
Origin Recognition Complexes at the LANA Binding Sequence within the Terminal 
Repeats. J Virol 80:2243-2256. 

76. Sin S-H, Dittmer DP. 2013. Viral latency locus augments B cell response in vivo to 
induce chronic marginal zone enlargement, plasma cell hyperplasia and lymphoma. 
Blood doi:10.1182/blood-2012-03-415620. 

77. Dittmer D, Lagunoff M, Renne R, Staskus K, Haase A, Ganem D. 1998. A Cluster 
of Latently Expressed Genes in Kaposi’s Sarcoma-Associated Herpesvirus. J Virol 
72:8309-8315. 

78. Talbot SJ, Weiss RA, Kellam P, Boshoff C. 1999. Transcriptional Analysis of 
Human Herpesvirus-8 Open Reading Frames 71, 72, 73, K14, and 74 in a Primary 
Effusion Lymphoma Cell Line. Virology 257:84-94. 

79. Pearce M, Matsumura S, Wilson AC. 2005. Transcripts Encoding K12, v-FLIP, v-
Cyclin, and the MicroRNA Cluster of Kaposi's Sarcoma-Associated Herpesvirus 
Originate from a Common Promoter. J Virol 79:14457-14464. 

80. Rivas C, Thlick A-E, Parravicini C, Moore PS, Chang Y. 2001. Kaposi's Sarcoma-
Associated Herpesvirus LANA2 Is a B-Cell-Specific Latent Viral Protein That Inhibits 
p53. J Virol 75:429-438. 

81. Fakhari FD, Jeong JH, Kanan Y, Dittmer DP. 2006. The latency-associated 
nuclear antigen of Kaposi sarcoma-associated herpesvirus induces B cell 
hyperplasia and lymphoma. The Journal of clinical investigation 116:735-742. 

82. Jha HC, Upadhyay SK, Aj MP, Lu J, Cai Q, Saha A, Robertson ES. 2013. H2AX 
phosphorylation is important for LANA mediated KSHV episome persistence. J Virol 
doi:10.1128/jvi.03575-12. 



135 

83. Dheekollu J, Chen H-S, Kaye KM, Lieberman PM. 2013. Timeless-dependent DNA 
Replication-coupled Recombination Promote KSHV Episome Maintenance and 
Terminal Repeat Stability. J Virol doi:10.1128/jvi.02211-12. 

84. Ballestas ME, Kaye KM. 2011. The latency-associated nuclear antigen, a 
multifunctional protein central to Kaposi’s sarcoma-associated herpesvirus latency. 
Fut Microbiol 6:1399-1413. 

85. An F-Q, Compitello N, Horwitz E, Sramkoski M, Knudsen ES, Renne R. 2005. 
The Latency-associated Nuclear Antigen of Kaposi's Sarcoma-associated 
Herpesvirus Modulates Cellular Gene Expression and Protects Lymphoid Cells from 
p16 INK4A-induced Cell Cycle Arrest. J Biol Chem 280:3862-3874. 

86. Schwam DR, Luciano RL, Mahajan SS, Wong L, Wilson AC. 2000. Carboxy 
Terminus of Human Herpesvirus 8 Latency-Associated Nuclear Antigen Mediates 
Dimerization, Transcriptional Repression, and Targeting to Nuclear Bodies. J Virol 
74:8532-8540. 

87. Jeong JH, Orvis J, Kim JW, McMurtrey CP, Renne R, Dittmer DP. 2004. 
Regulation and Autoregulation of the Promoter for the Latency-associated Nuclear 
Antigen of Kaposi's Sarcoma-associated Herpesvirus. J Biol Chem 279:16822-
16831. 

88. Lan K, Kuppers DA, Verma SC, Robertson ES. 2004. Kaposi's Sarcoma-
Associated Herpesvirus-Encoded Latency-Associated Nuclear Antigen Inhibits Lytic 
Replication by Targeting Rta: a Potential Mechanism for Virus-Mediated Control of 
Latency. J VIrol 78:6585-6594. 

89. DeWire SM, Damania B. 2005. The Latency-Associated Nuclear Antigen of Rhesus 
Monkey Rhadinovirus Inhibits Viral Replication through Repression of Orf50/Rta 
Transcriptional Activation. J Virol 79:3127-3138. 

90. Lan K, Kuppers DA, Robertson ES. 2005. Kaposi's Sarcoma-Associated 
Herpesvirus Reactivation Is Regulated by Interaction of Latency-Associated Nuclear 
Antigen with Recombination Signal Sequence-Binding Protein Jκ, the Major 
Downstream Effector of the Notch Signaling Pathway. J Virol 79:3468-3478. 

91. Friborg J, Kong W-p, Hottiger MO, Nabel GJ. 1999. p53 inhibition by the LANA 
protein of KSHV protects against cell death. Nature 402:889-894. 

92. Si H, Robertson ES. 2006. Kaposi's Sarcoma-Associated Herpesvirus-Encoded 
Latency-Associated Nuclear Antigen Induces Chromosomal Instability through 
Inhibition of p53 Function. J Virol 80:697-709. 

93. Radkov SA, Kellam P, Boshoff C. 2000. The latent nuclear antigen of Kaposi 
sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with 
the oncogene Hras transforms primary rat cells. Nat Med 6:1121-1127. 

94. Fujimuro M, Wu FY, ApRhys C, Kajumbula H, Young DB, Hayward GS, Hayward 
SD. 2003. A novel viral mechanism for dysregulation of [beta]-catenin in Kaposi's 
sarcoma-associated herpesvirus latency. Nat Med 9:300-306. 



136 

95. Bubman D, Guasparri I, Cesarman E. 2007. Deregulation of c-Myc in primary 
effusion lymphoma by Kaposi's sarcoma herpesvirus latency-associated nuclear 
antigen. Oncogene 26:4979-4986. 

96. Liu J, Martin HJ, Liao G, Hayward SD. 2007. The Kaposi's Sarcoma-Associated 
Herpesvirus LANA Protein Stabilizes and Activates c-Myc. J Virol 81:10451-10459. 

97. Verma SC, Borah S, Robertson ES. 2004. Latency-Associated Nuclear Antigen of 
Kaposi's Sarcoma-Associated Herpesvirus Up-Regulates Transcription of Human 
Telomerase Reverse Transcriptase Promoter through Interaction with Transcription 
Factor Sp1. J Virol 78:10348-10359. 

98. Chang Y, Moore PS, Talbot SJ, Boshoff CH, Zarkowska T, Godden-Kent D, 
Paterson H, Weiss RA, Mittnacht S. 1996. Cyclin encoded by KS herpesvirus. 
Nature 382:410-410. 

99. Li M, Lee H, Yoon DW, Albrecht JC, Fleckenstein B, Neipel F, Jung JU. 1997. 
Kaposi's sarcoma-associated herpesvirus encodes a functional cyclin. J Virol 
71:1984-1991. 

100. Ellis M, Peng Chew Y, Fallis L, Freddersdorf S, Boshoff C, Weiss RA, Lu X, 
Mittnacht S. 1999. Degradation of p27Kip cdk inhibitor triggered by Kaposi's 
sarcoma virus cyclin-cdk6 complex. EMBO J 18:644-653. 

101. Godden-Kent D, Talbot SJ, Boshoff C, Chang Y, Moore P, Weiss RA, Mittnacht 
S. 1997. The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates 
cdk6 to phosphorylate the retinoblastoma protein and histone H1. J Virol 71:4193-
4198. 

102. Ojala PM, Yamamoto K, Castanos-Velez E, Biberfeld P, Korsmeyer SJ, Makela 
TP. 2000. The apoptotic v-cyclin-CDK6 complex phosphorylates and inactivates Bcl-
2. Nat Cell Biol 2:819-825. 

103. Verschuren EW, Hodgson JG, Gray JW, Kogan S, Jones N, Evan GI. 2004. The 
Role of p53 in Suppression of KSHV Cyclin-induced Lymphomagenesis. Cancer Res 
64:581-589. 

104. Chang P-C, Li M. 2008. Kaposi's Sarcoma-Associated Herpesvirus K-Cyclin 
Interacts with Cdk9 and Stimulates Cdk9-Mediated Phosphorylation of p53 Tumor 
Suppressor. J Virol 82:278-290. 

105. Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, 
Mattmann C, Burns K, Bodmer J-L, Schroter M, Scaffidi C, Krammer PH, Peter 
ME, Tschopp J. 1997. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis 
induced by death receptors. Nature 386:517-521. 

106. Bélanger C, Gravel A, Tomoiu A, Janelle ME, Gosselin J, Tremblay MJ, 
Flamand L. 2001. Human herpesvirus 8 viral FLICE-inhibitory protein inhibits Fas-
mediated apoptosis through binding and prevention of procaspase-8 maturation. J 
Hum Virol 4:62-73. 



137 

107. Matta H, Sun Q, Moses G, Chaudhary PM. 2003. Molecular Genetic Analysis of 
Human Herpes Virus 8-encoded Viral FLICE Inhibitory Protein-induced NF-κB 
Activation. J Biol Chem 278:52406-52411. 

108. Liu L, Eby MT, Rathore N, Sinha SK, Kumar A, Chaudhary PM. 2002. The Human 
Herpes Virus 8-encoded Viral FLICE Inhibitory Protein Physically Associates with 
and Persistently Activates the IκB Kinase Complex. J Biol Chem 277:13745-13751. 

109. Sun Q, Zachariah S, Chaudhary PM. 2003. The Human Herpes Virus 8-Encoded 
Viral FLICE-inhibitory Protein Induces Cellular Transformation via NF-κB Activation. 
J Biol Chem 278:52437-52445. 

110. Chugh P, Matta H, Schamus S, Zachariah S, Kumar A, Richardson JA, Smith 
AL, Chaudhary PM. 2005. Constitutive NF-κB activation, normal Fas-induced 
apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 
transgenic mice. Proc Natl Acad Sci U S A 102:12885-12890. 

111. Ballon G, Chen K, Perez R, Tam W, Cesarman E. 2011. Kaposi sarcoma 
herpesvirus (KSHV) vFLIP oncoprotein induces B cell transdifferentiation and 
tumorigenesis in mice. J Clin Invest 121:1141-1153. 

112. Ahmad A, Groshong JS, Matta H, Schamus S, Punj V, Robinson LJ, Gill PS, 
Chaudhary PM. 2010. Kaposi sarcoma-associated herpesvirus-encoded viral FLICE 
inhibitory protein (vFLIP) K13 cooperates with Myc to promote lymphoma in mice. 
Cancer Biol Ther 10:1033-1040. 

113. Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D. 1999. A 
Complex Translational Program Generates Multiple Novel Proteins from the Latently 
Expressed Kaposin (K12) Locus of Kaposi’s Sarcoma-Associated Herpesvirus. J 
Virol 73:5722-5730. 

114. Muralidhar S, Pumfery AM, Hassani M, Sadaie MR, Azumi N, Kishishita M, 
Brady JN, Doniger J, Medveczky P, Rosenthal LJ. 1998. Identification of Kaposin 
(Open Reading Frame K12) as a Human Herpesvirus 8 (Kaposi’s Sarcoma-
Associated Herpesvirus) Transforming Gene. J Virol 72:4980-4988. 

115. Kliche S, Nagel W, Kremmer E, Atzler C, Ege A, Knorr T, Koszinowski U, 
Kolanus W, Haas J. 2001. Signaling by Human Herpesvirus 8 kaposin A through 
Direct Membrane Recruitment of cytohesin-1. Mol Cell 7:833-843. 

116. McCormick C, Ganem D. 2005. The Kaposin B Protein of KSHV Activates the 
p38/MK2 Pathway and Stabilizes Cytokine mRNAs. Science 307:739-741. 

117. McCormick C, Ganem D. 2006. Phosphorylation and Function of the Kaposin B 
Direct Repeats of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 80:6165-6170. 

118. Yoo J, Kang J, Lee HN, Aguilar B, Kafka D, Lee S, Choi I, Lee J, Ramu S, Haas 
J, Koh CJ, Hong Y-K. 2010. Kaposin-B Enhances the PROX1 mRNA Stability 
during Lymphatic Reprogramming of Vascular Endothelial Cells by Kaposi's 
Sarcoma Herpes Virus. PLoS Pathog 6:e1001046. 



138 

119. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. 2005. Kaposi's 
sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently 
infected cells. Proc Natl Acad Sci U S A 102:5570-5575. 

120. Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grasser FA, van 
Dyk LF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall G, Lindenbach 
BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschl T. 2005. Identification of 
microRNAs of the herpesvirus family. Nat Meth 2:269-276. 

121. Samols MA, Hu J, Skalsky R, Renne R. 2005. Cloning and identification of a 
microRNA cluster within the latency-associated region of Kaposi's sarcoma-
associated herpesvirus. J Virol 79:9301-9305. 

122. Umbach JL, Cullen BR. 2010. In-Depth Analysis of Kaposi's Sarcoma-Associated 
Herpesvirus MicroRNA Expression Provides Insights into the Mammalian MicroRNA-
Processing Machinery. J Virol 84:695-703. 

123. Lin Y-T, Kincaid RP, Arasappan D, Dowd SE, Hunicke-Smith SP, Sullivan CS. 
2010. Small RNA profiling reveals antisense transcription throughout the KSHV 
genome and novel small RNAs. RNA 16:1540-1558. 

124. O'Hara AJ, Chugh P, Wang L, Netto EM, Luz E, Harrington WJ, Dezube BJ, 
Damania B, Dittmer DP. 2009. Pre-Micro RNA Signatures Delineate Stages of 
Endothelial Cell Transformation in Kaposi Sarcoma. PLoS Pathog 5:e1000389. 

125. Marshall V, Parks T, Bagni R, Wang CD, Samols MA, Hu J, Wyvil KM, Aleman K, 
Little RF, Yarchoan R, Renne R, Whitby D. 2007. Conservation of Virally Encoded 
MicroRNAs in Kaposi Sarcoma-Associated Herpesvirus in Primary Effusion 
Lymphoma Cell Lines and in Patients with Kaposi Sarcoma or Multicentric 
Castleman Disease. J Infect Dis 195:645-659. 

126. Lin X, Li X, Liang D, Lan K. 2012. MicroRNAs and Unusual Small RNAs Discovered 
in Kaposi's Sarcoma-Associated Herpesvirus Virions. J Virol 86:12717-12730. 

127. Bellare P, Ganem D. 2009. Regulation of KSHV Lytic Switch Protein Expression by 
a Virus-Encoded MicroRNA: An Evolutionary Adaptation that Fine-Tunes Lytic 
Reactivation. Cell Host Microbe 6:570-575. 

128. Lu F, Stedman W, Yousef M, Renne R, Lieberman PM. 2010. Epigenetic 
Regulation of Kaposi's Sarcoma-Associated Herpesvirus Latency by Virus-Encoded 
MicroRNAs That Target Rta and the Cellular Rbl2-DNMT Pathway. J Virol 84:2697-
2706. 

129. Lei X, Bai Z, Ye F, Xie J, Kim C-G, Huang Y, Gao S-J. 2010. Regulation of NF-
[kappa]B inhibitor I[kappa]B[alpha] and viral replication by a KSHV microRNA. Nat 
Cell Biol 12:193-199. 

130. Abend JR, Ramalingam D, Kieffer-Kwon P, Uldrick TS, Yarchoan R, 
Ziegelbauer JM. 2012. Kaposi's Sarcoma-Associated Herpesvirus MicroRNAs 
Target IRAK1 and MYD88, Two Components of the Toll-Like Receptor/Interleukin-



139 

1R Signaling Cascade, To Reduce Inflammatory-Cytokine Expression. J Virol 
86:11663-11674. 

131. Nachmani D, Stern-Ginossar N, Sarid R, Mandelboim O. 2009. Diverse 
Herpesvirus MicroRNAs Target the Stress-Induced Immune Ligand MICB to Escape 
Recognition by Natural Killer Cells. Cell Host Microbe 5:376-385. 

132. Gottwein E, Cullen BR. 2010. A Human Herpesvirus MicroRNA Inhibits p21 
Expression and Attenuates p21-Mediated Cell Cycle Arrest. Journal of Virology 
84:5229-5237. 

133. Boss IW, Nadeau PE, Abbott JR, Yang Y, Mergia A, Renne R. 2011. A Kaposi's 
Sarcoma-Associated Herpesvirus-Encoded Ortholog of MicroRNA miR-155 Induces 
Human Splenic B-Cell Expansion in NOD/LtSz-scid IL2Rγnull Mice. J Virol 85:9877-
9886. 

134. Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, 
Renne R. 2007. Kaposi's Sarcoma-Associated Herpesvirus Encodes an Ortholog of 
miR-155. J Virol 81:12836-12845. 

135. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi J-TA, Braich 
R, Manoharan M, Soutschek J, Ohler U, Cullen BR. 2007. A viral microRNA 
functions as an orthologue of cellular miR-155. Nature 450:1096-1099. 

136. Dahlke C, Maul K, Christalla T, Walz N, Schult P, Stocking C, Grundhoff A. 
2012. A microRNA Encoded by Kaposi Sarcoma-Associated Herpesvirus Promotes 
B-Cell Expansion <italic>In Vivo</italic>. PLoS ONE 7:e49435. 

137. Qin Z, Dai L, Defee M, Findlay VJ, Watson DK, Toole BP, Cameron J, Peruzzi F, 
Kirkwood K, Parsons C. 2013. Kaposi's Sarcoma-Associated Herpesvirus 
Suppression of DUSP1 Facilitates Cellular Pathogenesis following De Novo 
Infection. J Virol 87:621-635. 

138. Lei X, Zhu Y, Jones T, Bai Z, Huang Y, Gao S-J. 2012. A Kaposi's Sarcoma-
Associated Herpesvirus MicroRNA and Its Variants Target the Transforming Growth 
Factor β Pathway To Promote Cell Survival. J Virol 86:11698-11711. 

139. Abend JR, Uldrick T, Ziegelbauer JM. 2010. Regulation of Tumor Necrosis Factor-
Like Weak Inducer of Apoptosis Receptor Protein (TWEAKR) Expression by 
Kaposi's Sarcoma-Associated Herpesvirus MicroRNA Prevents TWEAK-Induced 
Apoptosis and Inflammatory Cytokine Expression. J Virol 84:12139-12151. 

140. Suffert G, Malterer G, Hausser J, Viiliäinen J, Fender A, Contrant M, Ivacevic T, 
Benes V, Gros F, Voinnet O, Zavolan M, Ojala PM, Haas JG, Pfeffer S. 2011. 
Kaposi's Sarcoma Herpesvirus microRNAs Target Caspase 3 and Regulate 
Apoptosis. PLoS Pathog 7:e1002405. 

141. Sharp TV, Wang H-W, Koumi A, Hollyman D, Endo Y, Ye H, Du M-Q, Boshoff C. 
2002. K15 Protein of Kaposi’s Sarcoma-Associated Herpesvirus Is Latently 
Expressed and Binds to HAX-1, a Protein with Antiapoptotic Function. J Virol 76:802-
816. 



140 

142. Chen D, Choi YB, Sandford G, Nicholas J. 2009. Determinants of Secretion and 
Intracellular Localization of Human Herpesvirus 8 Interleukin-6. J Virol 83:6874-
6882. 

143. Chandriani S, Ganem D. 2010. Array-Based Transcript Profiling and Limiting-
Dilution Reverse Transcription-PCR Analysis Identify Additional Latent Genes in 
Kaposi's Sarcoma-Associated Herpesvirus. J Virol 84:5565-5573. 

144. Sun R, Lin S-F, Staskus K, Gradoville L, Grogan E, Haase A, Miller G. 1999. 
Kinetics of Kaposi’s Sarcoma-Associated Herpesvirus Gene Expression. J Virol 
73:2232-2242. 

145. Chang J, Renne R, Dittmer D, Ganem D. 2000. Inflammatory Cytokines and the 
Reactivation of Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication. Virology 
266:17-25. 

146. Gregory SM, West JA, Dillon PJ, Hilscher C, Dittmer DP, Damania B. 2009. Toll-
like receptor signaling controls reactivation of KSHV from latency. Proc Natl Acad Sci 
U S A 106:11725-11730. 

147. Yu F, Feng J, Harada JN, Chanda SK, Kenney SC, Sun R. 2007. B cell terminal 
differentiation factor XBP-1 induces reactivation of Kaposi’s sarcoma-associated 
herpesvirus. FEBS Lett 581:3485-3488. 

148. Ye F, Zhou F, Bedolla RG, Jones T, Lei X, Kang T, Guadalupe M, Gao S-J. 2011. 
Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi's Sarcoma-
Associated Herpesvirus Reactivation from Latency. PLoS Pathog 7:e1002054. 

149. Yu Y, Black JB, Goldsmith CS, Browning PJ, Bhalla K, Offermann MK. 1999. 
Induction of human herpesvirus-8 DNA replication and transcription by butyrate and 
TPA in BCBL-1 cells. J Gen Virol 80:83-90. 

150. Sun R, Lin S-F, Gradoville L, Yuan Y, Zhu F, Miller G. 1998. A viral gene that 
activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proc 
Natl Acad Sci U S A 95:10866-10871. 

151. Lukac DM, Renne R, Kirshner JR, Ganem D. 1998. Reactivation of Kaposi's 
Sarcoma-Associated Herpesvirus Infection from Latency by Expression of the ORF 
50 Transactivator, a Homolog of the EBV R Protein. Virology 252:304-312. 

152. Lukac DM, Kirshner JR, Ganem D. 1999. Transcriptional Activation by the Product 
of Open Reading Frame 50 of Kaposi’s Sarcoma-Associated Herpesvirus Is 
Required for Lytic Viral Reactivation in B Cells. J Virol 73:9348-9361. 

153. Xu Y, AuCoin DP, Huete AR, Cei SA, Hanson LJ, Pari GS. 2005. A Kaposi's 
Sarcoma-Associated Herpesvirus/Human Herpesvirus 8 ORF50 Deletion Mutant Is 
Defective for Reactivation of Latent Virus and DNA Replication. J Virol 79:3479-
3487. 

154. Zhu FX, Cusano T, Yuan Y. 1999. Identification of the Immediate-Early Transcripts 
of Kaposi’s Sarcoma-Associated Herpesvirus. J Virol 73:5556-5567. 



141 

155. Chen J, Ye F, Xie J, Kuhne K, Gao S-J. 2009. Genome-wide identification of 
binding sites for Kaposi's sarcoma-associated herpesvirus lytic switch protein, RTA. 
Virology 386:290-302. 

156. Ziegelbauer J, Grundhoff A, Ganem D. 2006. Exploring the DNA Binding 
Interactions of the Kaposi's Sarcoma-Associated Herpesvirus Lytic Switch Protein by 
Selective Amplification of Bound Sequences In Vitro. J Virol 80:2958-2967. 

157. Guito J, Lukac DM. 2012. KSHV Rta promoter specification and viral reactivation. 
Front Microbiol 3:1-21. 

158. AuCoin DP, Colletti KS, Cei SA, Papousková I, Tarrant M, Pari GS. 2004. 
Amplification of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 
lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an 
ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-
bZIP). Virology 318:542-555. 

159. Lin CL, Li H, Wang Y, Zhu FX, Kudchodkar S, Yuan Y. 2003. Kaposi's Sarcoma-
Associated Herpesvirus Lytic Origin (ori-Lyt)-Dependent DNA Replication: 
Identification of the ori-Lyt and Association of K8 bZip Protein with the Origin. J Virol 
77:5578-5588. 

160. Wu FY, Ahn J-H, Alcendor DJ, Jang W-J, Xiao J, Hayward SD, Hayward GS. 
2001. Origin-Independent Assembly of Kaposi's Sarcoma-Associated Herpesvirus 
DNA Replication Compartments in Transient Cotransfection Assays and Association 
with the ORF-K8 Protein and Cellular PML. J Virol 75:1487-1506. 

161. Lu M, Suen J, Frias C, Pfeiffer R, Tsai M-H, Chuang E, Zeichner SL. 2004. 
Dissection of the Kaposi's Sarcoma-Associated Herpesvirus Gene Expression 
Program by Using the Viral DNA Replication Inhibitor Cidofovir. J Virol 78:13637-
13652. 

162. Luitweiler EM, Henson BW, Pryce EN, Patel V, Coombs G, McCaffery JM, Desai 
PJ. 2013. Interactions of the Kaposi's Sarcoma-Associated Herpesvirus Nuclear 
Egress Complex: ORF69 Is a Potent Factor for Remodeling Cellular Membranes. J 
Virol 87:3915-3929. 

163. Desai PJ, Pryce EN, Henson BW, Luitweiler EM, Cothran J. 2012. Reconstitution 
of the Kaposi's Sarcoma-Associated Herpesvirus Nuclear Egress Complex and 
Formation of Nuclear Membrane Vesicles by Coexpression of ORF67 and ORF69 
Gene Products. J Virol 86:594-598. 

164. Krishnan HH, Sharma-Walia N, Zeng L, Gao S-J, Chandran B. 2005. Envelope 
Glycoprotein gB of Kaposi's Sarcoma-Associated Herpesvirus Is Essential for Egress 
from Infected Cells. J Virol 79:10952-10967. 

165. Subramanian R, Sehgal I, D'Auvergne O, Kousoulas KG. 2010. Kaposi's 
Sarcoma-Associated Herpesvirus Glycoproteins B and K8.1 Regulate Virion Egress 
and Synthesis of Vascular Endothelial Growth Factor and Viral Interleukin-6 in 
BCBL-1 Cells. J Virol 84:1704-1714. 



142 

166. Tomlinson CC, Damania B. 2008. Critical Role for Endocytosis in the Regulation of 
Signaling by the Kaposi's Sarcoma-Associated Herpesvirus K1 Protein. J Virol 
82:6514-6523. 

167. Brinkmann MM, Schulz TF. 2006. Regulation of intracellular signalling by the 
terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 
87:1047-1074. 

168. Lee H, Guo J, Li M, Choi J-K, DeMaria M, Rosenzweig M, Jung JU. 1998. 
Identification of an Immunoreceptor Tyrosine-Based Activation Motif of K1 
Transforming Protein of Kaposi’s Sarcoma-Associated Herpesvirus. Mol Cell Biol 
18:5219-5228. 

169. Lee B-S, Connole M, Tang Z, Harris NL, Jung JU. 2003. Structural Analysis of the 
Kaposi's Sarcoma-Associated Herpesvirus K1 Protein. J Virol 77:8072-8086. 

170. Lagunoff M, Majeti R, Weiss A, Ganem D. 1999. Deregulated signal transduction 
by the K1 gene product of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad 
Sci U S A 96:5704-5709. 

171. Tomlinson CC, Damania B. 2004. The K1 Protein of Kaposi's Sarcoma-Associated 
Herpesvirus Activates the Akt Signaling Pathway. J Virol 78:1918-1927. 

172. Lee B-S, Lee S-H, Feng P, Chang H, Cho N-H, Jung JU. 2005. Characterization of 
the Kaposi's Sarcoma-Associated Herpesvirus K1 Signalosome. J Virol 79:12173-
12184. 

173. Prakash O, Swamy OR, Peng X, Tang Z-Y, Li L, Larson JE, Cohen JC, Gill J, 
Farr G, Wang S, Samaniego F. 2005. Activation of Src kinase Lyn by the Kaposi 
sarcoma–associated herpesvirus K1 protein: implications for lymphomagenesis. 
Blood 105:3987-3994. 

174. Prakash O, Tang Z-Y, Peng X, Coleman R, Gill J, Farr G, Samaniego F. 2002. 
Tumorigenesis and Aberrant Signaling in Transgenic Mice Expressing the Human 
Herpesvirus-8 K1 Gene. J Natl Cancer Inst 94:926-935. 

175. Wang L, Dittmer DP, Tomlinson CC, Fakhari FD, Damania B. 2006. 
Immortalization of Primary Endothelial Cells by the K1 Protein of Kaposi's Sarcoma–
Associated Herpesvirus. Cancer Research 66:3658-3666. 

176. Lee H, Veazey R, Williams K, Li M, Guo J, Neipel F, Fleckenstein B, Lackner A, 
Desrosiers RC, Jung JU. 1998. Deregulation of cell growth by the K1 gene of 
Karposi's sarcoma-associated herpesvirus. Nat Med 4:435-440. 

177. Wen KW, Damania B. 2010. Hsp90 and Hsp40/Erdj3 are required for the expression 
and anti-apoptotic function of KSHV K1. Oncogene 29:3532-3544. 

178. Wang L, Wakisaka N, Tomlinson CC, DeWire SM, Krall S, Pagano JS, Damania 
B. 2004. The Kaposi’s Sarcoma-Associated Herpesvirus (KSHV/HHV-8) K1 Protein 
Induces Expression of Angiogenic and Invasion Factors. Cancer Res 64:2774-2781. 



143 

179. Lee B-S, Alvarez X, Ishido S, Lackner AA, Jung JU. 2000. Inhibition of 
Intracellular Transport of B Cell Antigen Receptor Complexes by Kaposi's Sarcoma–
Associated Herpesvirus K1. J Exp Med 192:11-22. 

180. Cesarman E, Nador RG, Bai F, Bohenzky RA, Russo JJ, Moore PS, Chang Y, 
Knowles DM. 1996. Kaposi's sarcoma-associated herpesvirus contains G protein-
coupled receptor and cyclin D homologs which are expressed in Kaposi's sarcoma 
and malignant lymphoma. J Virol 70:8218-8223. 

181. Chiou C-J, Poole LJ, Kim PS, Ciufo DM, Cannon JS, ap Rhys CM, Alcendor DJ, 
Zong J-C, Ambinder RF, Hayward GS. 2002. Patterns of Gene Expression and a 
Transactivation Function Exhibited by the vGCR (ORF74) Chemokine Receptor 
Protein of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 76:3421-3439. 

182. Bottero V, Sharma-Walia N, Kerur N, Paul AG, Sadagopan S, Cannon M, 
Chandran B. 2009. Kaposi Sarcoma-associated herpes virus (KSHV) G protein-
coupled receptor (vGPCR) activates the ORF50 lytic switch promoter: A potential 
positive feedback loop for sustained ORF50 gene expression. Virology 392:34-51. 

183. Cannon M, Cesarman E, Boshoff C. 2006. KSHV G protein-coupled receptor 
inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated 
inhibition of Cdk2. Blood 107:277-284. 

184. Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E. 1997. 
Human herpesvirus KSHV encodes a constitutively active G-protein-coupled 
receptor linked to cell proliferation. Nature 385:347-350. 

185. Gershengorn MC, Geras-Raaka E, Varma A, Clark-Lewis I. 1998. Chemokines 
activate Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor in 
mammalian cells in culture. J Clin Invest 102:1469-1472. 

186. Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, Asch AS, 
Cesarman E, Gerhengorn MC, Mesri EA. 1998. G-protein-coupled receptor of 
Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis 
activator. Nature 391:86-89. 

187. Montaner S. 2007. Akt/TSC/mTOR activation by the KSHV G protein-coupled 
receptor: emerging insights into the molecular oncogenesis and treatment of 
Kaposi's sarcoma. Cell Cycle 6:438-443. 

188. Montaner S, Sodhi A, Pece S, Mesri EA, Gutkind JS. 2001. The Kaposi’s 
Sarcoma-associated Herpesvirus G Protein-coupled Receptor Promotes Endothelial 
Cell Survival through the Activation of Akt/Protein Kinase B. Cancer Res 61:2641-
2648. 

189. Sodhi A, Chaisuparat R, Hu J, Ramsdell AK, Manning BD, Sausville EA, Sawai 
ET, Molinolo A, Gutkind JS, Montaner S. 2006. The TSC2/mTOR pathway drives 
endothelial cell transformation induced by the Kaposi's sarcoma-associated 
herpesvirus G protein-coupled receptor. Cancer Cell 10:133-143. 



144 

190. Bais C, Van Geelen A, Eroles P, Mutlu A, Chiozzini C, Dias S, Silverstein RL, 
Rafii S, Mesri EA. 2003. Kaposi's sarcoma associated herpesvirus G protein-
coupled receptor immortalizes human endothelial cells by activation of the VEGF 
receptor-2/ KDR. Cancer Cell 3:131-143. 

191. Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y, Li Y, Ray PE, 
Gutkind JS. 2003. Endothelial infection with KSHV genes in vivo reveals that 
vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential 
of viral latent genes. Cancer Cell 3:23-36. 

192. Yang T-Y, Chen S-C, Leach MW, Manfra D, Homey B, Wiekowski M, Sullivan L, 
Jenh C-H, Narula SK, Chensue SW, Lira SA. 2000. Transgenic Expression of the 
Chemokine Receptor Encoded by Human Herpesvirus 8 Induces an 
Angioproliferative Disease Resembling Kaposi's Sarcoma. J Exp Med 191:445-454. 

193. Guo H-G, Sadowska M, Reid W, Tschachler E, Hayward G, Reitz M. 2003. 
Kaposi's Sarcoma-Like Tumors in a Human Herpesvirus 8 ORF74 Transgenic 
Mouse. J Virol 77:2631-2639. 

194. Aoki Y, Yarchoan R, Wyvill K, Okamoto S-i, Little RF, Tosato G. 2001. Detection 
of viral interleukin-6 in Kaposi sarcoma–associated herpesvirus–linked disorders. 
Blood 97:2173-2176. 

195. Nicholas J, Ruvolo VR, Burns WH, Sandford G, Wan X, Ciufo D, Hendrickson 
SB, Guo H-G, Hayward GS, Reixz MS. 1997. Kaposi's sarcoma-associated human 
herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and 
interleukin-6. Nat Med 3:287-292. 

196. Neipel F, Albrecht JC, Ensser A, Huang YQ, Li JJ, Friedman-Kien AE, 
Fleckenstein B. 1997. Human herpesvirus 8 encodes a homolog of interleukin-6. J 
Virol 71:839-842. 

197. Moore PS, Boshoff C, Weiss RA, Chang Y. 1996. Molecular Mimicry of Human 
Cytokine and Cytokine Response Pathway Genes by KSHV. Science 274:1739-
1744. 

198. Hideshima T, Chauhan D, Teoh G, Raje N, Treon SP, Tai Y-T, Shima Y, 
Anderson KC. 2000. Characterization of Signaling Cascades Triggered by Human 
Interleukin-6 versus Kaposi’s Sarcoma-associated Herpes Virus-encoded Viral 
Interleukin 6. Clin Cancer Res 6:1180-1189. 

199. Molden J, Chang Y, You Y, Moore PS, Goldsmith MA. 1997. A Kaposi’s Sarcoma-
associated Herpesvirus-encoded Cytokine Homolog (vIL-6) Activates Signaling 
through the Shared gp130 Receptor Subunit. J Biol Chem 272:19625-19631. 

200. Mori Y, Nishimoto N, Ohno M, Inagi R, Dhepakson P, Amou K, Yoshizaki K, 
Yamanishi K. 2000. Human herpesvirus 8-encoded interleukin-6 homologue (viral 
IL-6) induces endogenous human IL-6 secretion. J Med Virol 61:332-335. 



145 

201. Wan X, Wang H, Nicholas J. 1999. Human Herpesvirus 8 Interleukin-6 (vIL-6) 
Signals through gp130 but Has Structural and Receptor-Binding Properties Distinct 
from Those of Human IL-6. J Virol 73:8268-8278. 

202. Chow D-c, He X-l, Snow AL, Rose-John S, Garcia KC. 2001. Structure of an 
Extracellular gp130 Cytokine Receptor Signaling Complex. Science 291:2150-2155. 

203. Aoki Y, Narazaki M, Kishimoto T, Tosato G. 2001. Receptor engagement by viral 
interleukin-6 encoded by Kaposi sarcoma–associated herpesvirus. Blood 98:3042-
3049. 

204. Li H, Wang H, Nicholas J. 2001. Detection of Direct Binding of Human Herpesvirus 
8-Encoded Interleukin-6 (vIL-6) to both gp130 and IL-6 Receptor (IL-6R) and 
Identification of Amino Acid Residues of vIL-6 Important for IL-6R-Dependent and -
Independent Signaling. J Virol 75:3325-3334. 

205. Hu F, Nicholas J. 2006. Signal Transduction by Human Herpesvirus 8 Viral 
Interleukin-6 (vIL-6) Is Modulated by the Nonsignaling gp80 Subunit of the IL-6 
Receptor Complex and Is Distinct from Signaling Induced by Human IL-6. J Virol 
80:10874-10878. 

206. Meads MB, Medveczky PG. 2004. Kaposi's Sarcoma-associated Herpesvirus-
encoded Viral Interleukin-6 Is Secreted and Modified Differently Than Human 
Interleukin-6: EVIDENCE FOR A UNIQUE AUTOCRINE SIGNALING MECHANISM. 
J Biol Chem 279:51793-51803. 

207. Chen D, Sandford G, Nicholas J. 2009. Intracellular Signaling Mechanisms and 
Activities of Human Herpesvirus 8 Interleukin-6. J Virol 83:722-733. 

208. Dela Cruz CS, Lee Y, Viswanathan SR, El-Guindy AS, Gerlach J, Nikiforow S, 
Shedd D, Gradoville L, Miller G. 2004. N-linked Glycosylation Is Required for 
Optimal Function of Kaposi's Sarcoma Herpesvirus–encoded, but Not Cellular, 
Interleukin 6. J Exp Med 199:503-514. 

209. Chatterjee M, Osborne J, Bestetti G, Chang Y, Moore PS. 2002. Viral IL-6-
Induced Cell Proliferation and Immune Evasion of Interferon Activity. Science 
298:1432-1435. 

210. Jones KD, Aoki Y, Chang Y, Moore PS, Yarchoan R, Tosato G. 1999. 
Involvement of Interleukin-10 (IL-10) and Viral IL-6 in the Spontaneous Growth of 
Kaposi’s Sarcoma Herpesvirus-Associated Infected Primary Effusion Lymphoma 
Cells. Blood 94:2871-2879. 

211. Zhou F, Xue M, Qin D, Zhu X, Wang C, Zhu J, Hao T, Cheng L, Chen X, Bai Z, 
Feng N, Gao S-J, Lu C. 2013. HIV-1 Tat Promotes Kaposi’s Sarcoma-Associated 
Herpesvirus (KSHV) vIL-6-Induced Angiogenesis and Tumorigenesis by Regulating 
PI3K/PTEN/AKT/GSK-3β Signaling Pathway. PLoS ONE 8:e53145. 

212. Zhu X, Guo Y, Yao S, Yan Q, Xue M, Hao T, Zhou F, Zhu J, Qin D, Lu C. 2013. 
Synergy between Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6 and HIV-1 



146 

Nef protein in promotion of angiogenesis and oncogenesis: role of the AKT signaling 
pathway. Oncogene doi:10.1038/onc.2013.136. 

213. Suthaus J, Stuhlmann-Laeisz C, Tompkins VS, Rosean TR, Klapper W, Tosato 
G, Janz S, Scheller J, Rose-John S. 2012. HHV-8–encoded viral IL-6 collaborates 
with mouse IL-6 in the development of multicentric Castleman disease in mice. Blood 
119:5173-5181. 

214. Poole LJ, Zong J-C, Ciufo DM, Alcendor DJ, Cannon JS, Ambinder R, 
Orenstein JM, Reitz MS, Hayward GS. 1999. Comparison of Genetic Variability at 
Multiple Loci across the Genomes of the Major Subtypes of Kaposi’s Sarcoma-
Associated Herpesvirus Reveals Evidence for Recombination and for Two Distinct 
Types of Open Reading Frame K15 Alleles at the Right-Hand End. J Virol 73:6646-
6660. 

215. Glenn M, Rainbow L, Auradé F, Davison A, Schulz TF. 1999. Identification of a 
Spliced Gene from Kaposi’s Sarcoma-Associated Herpesvirus Encoding a Protein 
with Similarities to Latent Membrane Proteins 1 and 2A of Epstein-Barr Virus. J Virol 
73:6953-6963. 

216. Choi J-K, Lee B-S, Shim SN, Li M, Jung JU. 2000. Identification of the Novel K15 
Gene at the Rightmost End of the Kaposi's Sarcoma-Associated Herpesvirus 
Genome. J Virol 74:436-446. 

217. Brinkmann MM, Pietrek M, Dittrich-Breiholz O, Kracht M, Schulz TF. 2007. 
Modulation of Host Gene Expression by the K15 Protein of Kaposi's Sarcoma-
Associated Herpesvirus. J Virol 81:42-58. 

218. Brinkmann MM, Glenn M, Rainbow L, Kieser A, Henke-Gendo C, Schulz TF. 
2003. Activation of Mitogen-Activated Protein Kinase and NF-κB Pathways by a 
Kaposi's Sarcoma-Associated Herpesvirus K15 Membrane Protein. J Virol 77:9346-
9358. 

219. Cho N-H, Choi Y-K, Choi J-K. 2008. Multi-transmembrane protein K15 of Kaposi's 
sarcoma-associated herpesvirus targets Lyn kinase in the membrane raft and 
induces NFAT/AP1 activities. Exp Mol Med 40:565-573. 

220. Wang L, Brinkmann MM, Pietrek M, Ottinger M, Dittrich-Breiholz O, Kracht M, 
Schulz TF. 2007. Functional characterization of the M-type K15-encoded membrane 
protein of Kaposi's sarcoma-associated herpesvirus. J Gen Virol 88:1698-1707. 

221. Tsai Y-H, Wu M-F, Wu Y-H, Chang S-J, Lin S-F, Sharp TV, Wang H-W. 2009. The 
M Type K15 Protein of Kaposi's Sarcoma-Associated Herpesvirus Regulates 
MicroRNA Expression via Its SH2-Binding Motif To Induce Cell Migration and 
Invasion. J Virol 83:622-632. 

222. Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: 
update on Toll-like receptors. Nat Immunol 11:373-384. 

223. West J, Damania B. 2008. Upregulation of the TLR3 Pathway by Kaposi's Sarcoma-
Associated Herpesvirus during Primary Infection. J Virol 82:5440-5449. 



147 

224. Gregory SM, Damania B. 2009. KSHV and the toll of innate immune activation. Cell 
Cycle 8:3246-3247. 

225. Jacobs SR, Gregory SM, West JA, Wollish AC, Bennett CL, Blackbourn DJ, 
Heise MT, Damania B. 2013. The Viral Interferon Regulatory Factors of Kaposi's 
Sarcoma-Associated Herpesvirus Differ in Their Inhibition of Interferon Activation 
Mediated by Toll-Like Receptor 3. J Virol 87:798-806. 

226. Lagos D, Vart RJ, Gratrix F, Westrop SJ, Emuss V, Wong P-P, Robey R, Imami 
N, Bower M, Gotch F, Boshoff C. 2008. Toll-like Receptor 4 Mediates Innate 
Immunity to Kaposi Sarcoma Herpesvirus. Cell Host Microbe 4:470-483. 

227. Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, 
Chandran B. 2011. IFI16 Acts as a Nuclear Pathogen Sensor to Induce the 
Inflammasome in Response to Kaposi Sarcoma-Associated Herpesvirus Infection. 
Cell Host Microbe 9:363-375. 

228. Singh VV, Kerur N, Bottero V, Dutta S, Chakraborty S, Ansari MA, Paudel N, 
Chikoti L, Chandran B. 2013. Kaposi's Sarcoma-Associated Herpesvirus Latency in 
Endothelial and B Cells Activates Gamma Interferon-Inducible Protein 16-Mediated 
Inflammasomes. J Virol 87:4417-4431. 

229. West JA, Gregory SM, Sivaraman V, Su L, Damania B. 2011. Activation of 
Plasmacytoid Dendritic Cells by Kaposi's Sarcoma-Associated Herpesvirus. J Virol 
85:895-904. 

230. Bihl F, Mosam A, Henry L, Chisholm J, Dollard S, Gumbi P, Cassol E, Page T, 
Mueller N, Kiepiela P, Martin J, Coovadia H, Scadden D, Brander C. 2007. 
Kaposi's sarcoma-associated herpesvirus-specific immune reconstitution and 
antiviral effect of combined HAART/chemotherapy in HIV clade C-infected individuals 
with Kaposi's sarcoma. AIDS 21:1245-1252. 

231. Lambert M, Gannagé M, Karras A, Abel M, Legendre C, Kerob D, Agbalika F, 
Girard P-M, Lebbe C, Caillat-Zucman S. 2006. Differences in the frequency and 
function of HHV8-specific CD8 T cells between asymptomatic HHV8 infection and 
Kaposi sarcoma. Blood 108:3871-3880. 

232. Hislop AD, Sabbah S. 2008. CD8+ T cell immunity to Epstein-Barr virus and 
Kaposi’s sarcoma-associated herpes virus. Semin Cancer Biol 18:416-422. 

233. Wang QJ, Jenkins FJ, Jacobson LP, Kingsley LA, Day RD, Zhang Z-W, Meng Y-
X, Pellet PE, Kousoulas KG, Baghian A, Rinaldo CR. 2001. Primary human 
herpesvirus 8 infection generates a broadly specific CD8+ T-cell response to viral 
lytic cycle proteins. Blood 97:2366-2373. 

234. Sabbah S, Jagne YJ, Zuo J, de Silva T, Ahasan MM, Brander C, Rowland-Jones 
S, Flanagan KL, Hislop AD. 2012. T-cell immunity to Kaposi sarcoma–associated 
herpesvirus: recognition of primary effusion lymphoma by LANA-specific CD4+ T 
cells. Blood 119:2083-2092. 



148 

235. Robey RC, Lagos D, Gratrix F, Henderson S, Matthews NC, Vart RJ, Bower M, 
Boshoff C, Gotch FM. 2009. The CD8 and CD4 T-Cell Response against Kaposi's 
Sarcoma-Associated Herpesvirus Is Skewed Towards Early and Late Lytic Antigens. 
PLoS ONE 4:e5890. 

236. Bihl F, Berger C, Chisholm J, Henry L, Bertisch B, Trojan A, Nadal D, Speck R, 
Flepp M, Brander C, Mueller N. 2009. Cellular immune responses and disease 
control in acute AIDS-associated Kaposi's sarcoma. AIDS 23:1918-1922. 

237. Zheng D, Wan J, Cho YG, Wang L, Chiou C-J, Pai S, Woodard C, Zhu J, Liao G, 
Martinez-Maza O, Qian J, Zhu H, Hayward GS, Ambinder RF, Hayward SD. 2011. 
Comparison of Humoral Immune Responses to Epstein-Barr Virus and Kaposi’s 
Sarcoma–Associated Herpesvirus Using a Viral Proteome Microarray. J Infect Dis 
204:1683-1691. 

238. Aresté C, Blackbourn DJ. 2009. Modulation of the immune system by Kaposi's 
sarcoma-associated herpesvirus. Trends Microbiol 17:119-129. 

239. Rappocciolo G, Jenkins FJ, Hensler HR, Piazza P, Jais M, Borowski L, Watkins 
SC, Rinaldo CR. 2006. DC-SIGN Is a Receptor for Human Herpesvirus 8 on 
Dendritic Cells and Macrophages. J Immunol 176:1741-1749. 

240. Tomescu C, Law WK, Kedes DH. 2003. Surface Downregulation of Major 
Histocompatibility Complex Class I, PE-CAM, and ICAM-1 following De Novo 
Infection of Endothelial Cells with Kaposi's Sarcoma-Associated Herpesvirus. J Virol 
77:9669-9684. 

241. Coscoy L, Sanchez DJ, Ganem D. 2001. A novel class of herpesvirus-encoded 
membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in 
immune recognition. J Cell Biol 155:1265-1274. 

242. Ishido S, Wang C, Lee B-S, Cohen GB, Jung JU. 2000. Downregulation of Major 
Histocompatibility Complex Class I Molecules by Kaposi's Sarcoma-Associated 
Herpesvirus K3 and K5 Proteins. J Virol 74:5300-5309. 

243. Lagos D, Trotter MWB, Vart RJ, Wang H-W, Matthews NC, Hansen A, Flore O, 
Gotch F, Boshoff C. 2007. Kaposi sarcoma herpesvirus–encoded vFLIP and vIRF1 
regulate antigen presentation in lymphatic endothelial cells. Blood 109:1550-1558. 

244. Zuo J, Thomas W, van Leeuwen D, Middeldorp JM, Wiertz EJHJ, Ressing ME, 
Rowe M. 2008. The DNase of Gammaherpesviruses Impairs Recognition by Virus-
Specific CD8+ T Cells through an Additional Host Shutoff Function. J Virol 82:2385-
2393. 

245. Zuo J, Hislop AD, Leung C, Sabbah S, Rowe M. 2013. KSHV encoded vIRF3 
modulates MHC-II antigen presentation through CIITA dependent and independent 
mechanisms: implications for oncogenesis. J Virol doi:10.1128/jvi.00250-13. 

246. Butler LM, Jeffery HC, Wheat RL, Long HM, Rae PC, Nash GB, Blackbourn DJ. 
2012. Kaposi's Sarcoma-Associated Herpesvirus Inhibits Expression and Function of 



149 

Endothelial Cell Major Histocompatibility Complex Class II via Suppressor of 
Cytokine Signaling 3. J Virol 86:7158-7166. 

247. Zaldumbide A, Ossevoort M, Wiertz EJHJ, Hoeben RC. 2007. In cis inhibition of 
antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma 
Herpes virus. Mol Immunol 44:1352-1360. 

248. Kwun HJ, da Silva SR, Shah IM, Blake N, Moore PS, Chang Y. 2007. Kaposi's 
Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen 1 Mimics 
Epstein-Barr Virus EBNA1 Immune Evasion through Central Repeat Domain Effects 
on Protein Processing. J Virol 81:8225-8235. 

249. Gregory SM, Wang L, West JA, Dittmer DP, Damania B. 2012. Latent Kaposi's 
Sarcoma-Associated Herpesvirus Infection of Monocytes Downregulates Expression 
of Adaptive Immune Response Costimulatory Receptors and Proinflammatory 
Cytokines. J Virol 86:3916-3923. 

250. Coscoy L, Ganem D. 2001. A viral protein that selectively downregulates ICAM-1 
and B7-2 and modulates T cell costimulation. J Clin Invest 107:1599-1606. 

251. Shapiro-Shelef M, Calame K. 2005. Regulation of plasma-cell development. Nat 
Rev Immunol 5:230-242. 

252. Bartee E, McCormack A, Früh K. 2006. Quantitative Membrane Proteomics 
Reveals New Cellular Targets of Viral Immune Modulators. PLoS Pathog 2:e107. 

253. Lim CS, Seet BT, Ingham RJ, Gish G, Matskova L, Winberg G, Ernberg I, 
Pawson T. 2007. The K15 Protein of Kaposi's Sarcoma-Associated Herpesvirus 
Recruits the Endocytic Regulator Intersectin 2 through a Selective SH3 Domain 
Interaction†. Biochemistry 46:9874-9885. 

254. Monini P, Carlini F, Stürzl M, Rimessi P, Superti F, Franco M, Melucci-Vigo G, 
Cafaro A, Goletti D, Sgadari C, Butto’ S, Leone P, Leone P, Chiozzini C, Barresi 
C, Tinari A, Bonaccorsi A, Capobianchi MR, Giuliani M, di Carlo A, Andreoni M, 
Rezza G, Ensoli B. 1999. Alpha Interferon Inhibits Human Herpesvirus 8 (HHV-8) 
Reactivation in Primary Effusion Lymphoma Cells and Reduces HHV-8 Load in 
Cultured Peripheral Blood Mononuclear Cells. J Virol 73:4029-4041. 

255. Jacobs SR, Damania B. 2011. The Viral Interferon Regulatory Factors of KSHV: 
Immunosuppressors or Oncogenes? Front Immunol 2. 

256. Burysek L, Yeow W-S, Lubyova B, Kellum M, Schafer SL, Huang YQ, Pitha PM. 
1999. Functional Analysis of Human Herpesvirus 8-Encoded Viral Interferon 
Regulatory Factor 1 and Its Association with Cellular Interferon Regulatory Factors 
and p300. J Virol 73:7334-7342. 

257. Lin R, Genin P, Mamane Y, Sgarbanti M, Battistini A, Harrington W, Barber G, 
Hiscott J. 2001. HHV-8 encoded vIRF-1 represses the interferon antiviral response 
by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene 20:800-811. 



150 

258. Burysek L, Yeow W, Pitha P. 1999. Unique properties of a second human 
herpesvirus 8-encoded interferon regulatory factor (vIRF-2). J Hum Virol 2:19-32. 

259. Fuld S, Cunningham C, Klucher K, Davison AJ, Blackbourn DJ. 2006. Inhibition 
of Interferon Signaling by the Kaposi's Sarcoma-Associated Herpesvirus Full-Length 
Viral Interferon Regulatory Factor 2 Protein. J Virol 80:3092-3097. 

260. Aresté C, Mutocheluh M, Blackbourn DJ. 2009. Identification of Caspase-
mediated Decay of Interferon Regulatory Factor-3, Exploited by a Kaposi Sarcoma-
associated Herpesvirus Immunoregulatory Protein. J Biol Chem 284:23272-23285. 

261. Joo CH, Shin YC, Gack M, Wu L, Levy D, Jung JU. 2007. Inhibition of Interferon 
Regulatory Factor 7 (IRF7)-Mediated Interferon Signal Transduction by the Kaposi's 
Sarcoma-Associated Herpesvirus Viral IRF Homolog vIRF3. J Virol 81:8282-8292. 

262. Wies E, Hahn AS, Schmidt K, Viebahn C, Rohland N, Lux A, Schellhorn T, 
Holzer A, Jung JU, Neipel F. 2009. The Kaposi's Sarcoma-associated Herpesvirus-
encoded vIRF-3 Inhibits Cellular IRF-5. J Biol Chem 284:8525-8538. 

263. Barnes BJ, Bi X, Mancl ME, Yang L. 2011. Modulation of interferon regulatory 
factor 5 activities by the Kaposi sarcoma-associated herpesvirus-encoded viral 
interferon regulatory factor 3 contributes to immune evasion and lytic induction. J 
Interferon Cytokine Res 31:373+. 

264. Sathish N, Zhu FX, Golub EE, Liang Q, Yuan Y. 2011. Mechanisms of 
Autoinhibition of IRF-7 and a Probable Model for Inactivation of IRF-7 by Kaposi's 
Sarcoma-associated Herpesvirus Protein ORF45. J Biol Chem 286:746-756. 

265. Zhu FX, King SM, Smith EJ, Levy DE, Yuan Y. 2002. A Kaposi's sarcoma-
associated herpesviral protein inhibits virus-mediated induction of type I interferon by 
blocking IRF-7 phosphorylation and nuclear accumulation. Proc Natl Acad Sci U S A 
99:5573-5578. 

266. Liang Q, Fu B, Wu F, Li X, Yuan Y, Zhu F. 2012. ORF45 of Kaposi's Sarcoma-
Associated Herpesvirus Inhibits Phosphorylation of Interferon Regulatory Factor 7 by 
IKKε and TBK1 as an Alternative Substrate. J Virol 86:10162-10172. 

267. Zhu FX, Sathish N, Yuan Y. 2010. Antagonism of Host Antiviral Responses by 
Kaposi's Sarcoma-Associated Herpesvirus Tegument Protein ORF45. PLoS ONE 
5:e10573. 

268. Zhu FX, Yuan Y. 2003. The ORF45 Protein of Kaposi's Sarcoma-Associated 
Herpesvirus Is Associated with Purified Virions. J Virol 77:4221-4230. 

269. Yu Y, Wang SE, Hayward GS. 2005. The KSHV Immediate-Early Transcription 
Factor RTA Encodes Ubiquitin E3 Ligase Activity that Targets IRF7 for Proteosome-
Mediated Degradation. Immunity 22:59-70. 

270. Lefort S, Soucy-Faulkner A, Grandvaux N, Flamand L. 2007. Binding of Kaposi's 
Sarcoma-Associated Herpesvirus K-bZIP to Interferon-Responsive Factor 3 
Elements Modulates Antiviral Gene Expression. J Virol 81:10950-10960. 



151 

271. Li Q, Means R, Lang S, Jung JU. 2007. Downregulation of Gamma Interferon 
Receptor 1 by Kaposi's Sarcoma-Associated Herpesvirus K3 and K5. J Virol 
81:2117-2127. 

272. Ahmad H, Gubbels R, Ehlers E, Meyer F, Waterbury T, Lin R, Zhang L. 2011. 
Kaposi Sarcoma-associated Herpesvirus Degrades Cellular Toll-Interleukin-1 
Receptor Domain-containing Adaptor-inducing β-Interferon (TRIF). J Biol Chem 
286:7865-7872. 

273. Gack MU, Shin YC, Joo C-H, Urano T, Liang C, Sun L, Takeuchi O, Akira S, 
Chen Z, Inoue S, Jung JU. 2007. TRIM25 RING-finger E3 ubiquitin ligase is 
essential for RIG-I-mediated antiviral activity. Nature 446:916-920. 

274. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, 
Akira S. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I 
interferon induction. Nat Immunol 6:981-988. 

275. West JA, Wicks M, Gregory SM, Chugh P, Jacobs SR, Zhang Z, Host KM, 
Dittmer DP, Damania B. 2014. An important role for mitochondrial antiviral signaling 
protein in the Kaposi's sarcoma-associated herpesvirus life cycle. J Virol 88:5778-
5787. 

276. Inn K-S, Lee S-H, Rathbun JY, Wong L-Y, Toth Z, Machida K, Ou J-HJ, Jung JU. 
2011. Inhibition of RIG-I-Mediated Signaling by Kaposi's Sarcoma-Associated 
Herpesvirus-Encoded Deubiquitinase ORF64. J Virol 85:10899-10904. 

277. Martinon F, Burns K, Tschopp J. 2002. The Inflammasome: A Molecular Platform 
Triggering Activation of Inflammatory Caspases and Processing of proIL-β. Mol Cell 
10:417-426. 

278. Gregory SM, Davis BK, West JA, Taxman DJ, Matsuzawa S-i, Reed JC, Ting 
JPY, Damania B. 2011. Discovery of a Viral NLR Homolog that Inhibits the 
Inflammasome. Science 331:330-334. 

279. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, 
Ludwig J, Hornung V. 2013. cGAS produces a 2'-5'-linked cyclic dinucleotide 
second messenger that activates STING. Nature 498:380-384. 

280. Ishikawa H, Barber GN. 2008. STING is an endoplasmic reticulum adaptor that 
facilitates innate immune signalling. Nature 455:674-678. 

281. Ma Z, Jacobs SR, West JA, Stopford C, Zhang Z, Davis Z, Barber GN, 
Glaunsinger BA, Dittmer DP, Damania B. 2015. Modulation of the cGAS-STING 
DNA sensing pathway by gammaherpesviruses. Proc Natl Acad Sci U S A 
doi:10.1073/pnas.1503831112. 

282. Endres MJ, Garlisi CG, Xiao H, Shan L, Hedrick JA. 1999. The Kaposi's 
Sarcoma–related Herpesvirus (KSHV)-encoded Chemokine vMIP-I is a Specific 
Agonist for the CC Chemokine Receptor (CCR)8. J Exp Med 189:1993-1998. 



152 

283. Dairaghi DJ, Fan RA, McMaster BE, Hanley MR, Schall TJ. 1999. HHV8-encoded 
vMIP-I Selectively Engages Chemokine Receptor CCR8: AGONIST AND 
ANTAGONIST PROFILES OF VIRAL CHEMOKINES. J Biol Chem 274:21569-
21574. 

284. Stine JT, Wood C, Hill M, Epp A, Raport CJ, Schweickart VL, Endo Y, Sasaki T, 
Simmons G, Boshoff C, Clapham P, Chang Y, Moore P, Gray PW, Chantry D. 
2000. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates 
angiogenesis, and selectively chemoattracts TH2 cells. Blood 95:1151-1157. 

285. Weber KSC, Gröne H-J, Röcken M, Klier C, Gu S, Wank R, Proudfoot AEI, 
Nelson PJ, Weber C. 2001. Selective recruitment of Th2-type cells and evasion 
from a cytotoxic immune response mediated by viral macrophage inhibitory protein-
II. Eur J Immunol 31:2458-2466. 

286. Zipfel PF, Skerka C. 2009. Complement regulators and inhibitory proteins. Nat Rev 
Immunol 9:729-740. 

287. Mullick J, Bernet J, Singh AK, Lambris JD, Sahu A. 2003. Kaposi's Sarcoma-
Associated Herpesvirus (Human Herpesvirus 8) Open Reading Frame 4 Protein 
(Kaposica) Is a Functional Homolog of Complement Control Proteins. J Virol 
77:3878-3881. 

288. Mark L, Lee WH, Spiller OB, Proctor D, Blackbourn DJ, Villoutreix BO, Blom 
AM. 2004. The Kaposi's Sarcoma-associated Herpesvirus Complement Control 
Protein Mimics Human Molecular Mechanisms for Inhibition of the Complement 
System. J Biol Chem 279:45093-45101. 

289. Mark L, Proctor DG, Blackbourn DJ, Blom AM, Spiller OB. 2008. Separation of 
decay-accelerating and cofactor functional activities of Kaposi's sarcoma-associated 
herpesvirus complement control protein using monoclonal antibodies. Immunology 
123:228-238. 

290. Spiller OB, Blackbourn DJ, Mark L, Proctor DG, Blom AM. 2003. Functional 
Activity of the Complement Regulator Encoded by Kaposi's Sarcoma-associated 
Herpesvirus. J Biol Chem 278:9283-9289. 

291. Thomas M, Boname JM, Field S, Nejentsev S, Salio M, Cerundolo V, Wills M, 
Lehner PJ. 2008. Down-regulation of NKG2D and NKp80 ligands by Kaposi's 
sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc Natl 
Acad Sci U S A 105:1656-1661. 

292. Chen D, Cousins E, Sandford G, Nicholas J. 2012. Human herpesvirus 8 viral 
interleukin-6 interacts with splice variant 2 of vitamin K epoxide reductase complex 
subunit 1. J Virol 86:1577-1588. 

293. Cousins E, Nicholas J. 2013. Role of Human Herpesvirus 8 Interleukin-6-Activated 
gp130 Signal Transducer in Primary Effusion Lymphoma Cell Growth and Viability. J 
Virol 87:10816-10827. 



153 

294. Chen D, Gao Y, Nicholas J. 2014. Human Herpesvirus 8 Interleukin-6 Contributes 
to Primary Effusion Lymphoma Cell Viability via Suppression of Proapoptotic 
Cathepsin D, a Cointeraction Partner of Vitamin K Epoxide Reductase Complex 
Subunit 1 Variant 2. J Virol 88:1025-1038. 

295. Ozawa K, Tsukamoto Y, Hori O, Kitao Y, Yanagi H, Stern DM, Ogawa S. 2001. 
Regulation of Tumor Angiogenesis by Oxygen-regulated Protein 150, an Inducible 
Endoplasmic Reticulum Chaperone. Cancer Res 61:4206-4213. 

296. Wang Y, Wu Z, Li D, Wang D, Wang X, Feng X, Xia M. 2011. Involvement of 
oxygen-regulated protein 150 in AMP-activated protein kinase-mediated alleviation of 
lipid-induced endoplasmic reticulum stress. J Biol Chem 286:11119-11131. 

297. Stojadinovic A, Hooke JA, Shriver CD, Nissan A, Kovatich AJ, Kao TC, Ponniah 
S, Peoples GE, Moroni M. 2007. HYOU1/Orp150 expression in breast cancer. Med 
Sci Monit 13:BR231-239. 

298. Chiu C-C, Lin C-Y, Lee L-Y, Chen Y-J, Lu Y-C, Wang H-M, Liao C-T, Chang JT-C, 
Cheng A-J. 2011. Molecular Chaperones as a Common Set of Proteins That 
Regulate the Invasion Phenotype of Head and Neck Cancer. Clin Cancer Res 
17:4629-4641. 

299. Kuwabara K, Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda Y, Kitagawa K, 
Imuta N, Kinoshita T, Stern DM, Yanagi H, Kamada T. 1996. Purification and 
characterization of a novel stress protein, the 150-kDa oxygen-regulated protein 
(ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. J 
Biol Chem 271:5025-5032. 

300. Haque M, Davis DA, Wang V, Widmer I, Yarchoan R. 2003. Kaposi's sarcoma-
associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: 
relevance to lytic induction by hypoxia. J Virol 77:6761-6768. 

301. Ozawa K, Kuwabara K, Tamatani M, Takatsuji K, Tsukamoto Y, Kaneda S, 
Yanagi H, Stern DM, Eguchi Y, Tsujimoto Y, Ogawa S, Tohyama M. 1999. 150-
kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell 
death. J Biol Chem 274:6397-6404. 

302. Ozawa K, Kondo T, Hori O, Kitao Y, Stern DM, Eisenmenger W, Ogawa S, 
Ohshima T. 2001. Expression of the oxygen-regulated protein ORP150 accelerates 
wound healing by modulating intracellular VEGF transport. J Clin Invest 108:41-50. 

303. Wolf MJ, Hoos A, Bauer J, Boettcher S, Knust M, Weber A, Simonavicius N, 
Schneider C, Lang M, Sturzl M, Croner RS, Konrad A, Manz MG, Moch H, 
Aguzzi A, van Loo G, Pasparakis M, Prinz M, Borsig L, Heikenwalder M. 2012. 
Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation 
via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 22:91-105. 

304. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder 
LA, Pollard JW. 2011. CCL2 recruits inflammatory monocytes to facilitate breast-
tumour metastasis. Nature 475:222-225. 



154 

305. Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU. 2003. Global 
changes in Kaposi's sarcoma-associated virus gene expression patterns following 
expression of a tetracycline-inducible Rta transactivator. J Virol 77:4205-4220. 

306. Rose-John S, Schooltink H, Schmitz-Van de Leur H, Mullberg J, Heinrich PC, 
Graeve L. 1993. Intracellular retention of interleukin-6 abrogates signaling. J Biol 
Chem 268:22084-22091. 

307. Isono T. 2011. O-GlcNAc-specific antibody CTD110.6 cross-reacts with N-GlcNAc2-
modified proteins induced under glucose deprivation. PLoS ONE 6:e18959. 

308. Bhatt AP, Bhende PM, Sin S-H, Roy D, Dittmer DP, Damania B. 2010. Dual 
inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in 
PI3K/Akt/mTOR-addicted lymphomas. Blood 115:4455-4463. 

309. Siesser PF, Motolese M, Walker MP, Goldfarb D, Gewain K, Yan F, Kulikauskas 
RM, Chien AJ, Wordeman L, Major MB. 2012. FAM123A binds to microtubules and 
inhibits the guanine nucleotide exchange factor ARHGEF2 to decrease actomyosin 
contractility. Sci Signal 5:ra64. 

310. Matsuyama M, Suzuki T, Tsuboi H, Ito S, Mamura M, Goto D, Matsumoto I, 
Tsutsumi A, Sumida T. 2007. Anti-interleukin-6 Receptor Antibody (Tocilizumab) 
Treatment of Multicentric Castleman's Disease. Internal Med 46:771-774. 

311. Morris VA, Punjabi AS, Wells RC, Wittkopp CJ, Vart R, Lagunoff M. 2012. The 
KSHV viral IL-6 homolog is sufficient to induce blood to lymphatic endothelial cell 
differentiation. Virology 428:112-120. 

312. Suthaus J, Stuhlmann-Laeisz C, Tompkins VS, Rosean TR, Klapper W, Tosato 
G, Janz S, Scheller J, Rose-John S. 2012. HHV-8-encoded viral IL-6 collaborates 
with mouse IL-6 in the development of multicentric Castleman disease in mice. Blood 
119:5173-5181. 

313. Giffin L, Yan F, Ben Major M, Damania B. 2014. Modulation of Kaposi's sarcoma-
associated herpesvirus interleukin-6 function by hypoxia-upregulated protein 1. J 
Virol 88:9429-9441. 

314. Beauchemin N, Arabzadeh A. 2013. Carcinoembryonic antigen-related cell 
adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer 
Metastasis Rev 32:643-671. 

315. Neumaier M, Paululat S, Chan A, Matthaes P, Wagener C. 1993. Biliary 
glycoprotein, a potential human cell adhesion molecule, is down-regulated in 
colorectal carcinomas. Proc Natl Acad Sci U S A 90:10744-10748. 

316. Kang WY, Chen WT, Wu MT, Chai CY. 2007. The expression of CD66a and 
possible roles in colorectal adenoma and adenocarcinoma. Int J Colorectal Dis 
22:869-874. 

317. Markel G, Ortenberg R, Seidman R, Sapoznik S, Koren-Morag N, Besser MJ, 
Bar J, Shapira R, Kubi A, Nardini G, Tessone A, Treves AJ, Winkler E, 



155 

Orenstein A, Schachter J. 2010. Systemic dysregulation of CEACAM1 in 
melanoma patients. Cancer Immunol Immunother 59:215-230. 

318. Gambichler T, Grothe S, Rotterdam S, Altmeyer P, Kreuter A. 2009. Protein 
expression of carcinoembryonic antigen cell adhesion molecules in benign and 
malignant melanocytic skin lesions. Am J Clin Pathol 131:782-787. 

319. Thies A, Moll I, Berger J, Wagener C, Brummer J, Schulze HJ, Brunner G, 
Schumacher U. 2002. CEACAM1 expression in cutaneous malignant melanoma 
predicts the development of metastatic disease. J Clin Oncol 20:2530-2536. 

320. Obrink B. 2008. On the role of CEACAM1 in cancer. Lung Cancer 60:309-312. 

321. Simeone DM, Ji B, Banerjee M, Arumugam T, Li D, Anderson MA, Bamberger 
AM, Greenson J, Brand RE, Ramachandran V, Logsdon CD. 2007. CEACAM1, a 
novel serum biomarker for pancreatic cancer. Pancreas 34:436-443. 

322. Tilki D, Singer BB, Shariat SF, Behrend A, Fernando M, Irmak S, Buchner A, 
Hooper AT, Stief CG, Reich O, Ergun S. 2010. CEACAM1: a novel urinary marker 
for bladder cancer detection. Eur Urol 57:648-654. 

323. Oliveira-Ferrer L, Tilki D, Ziegeler G, Hauschild J, Loges S, Irmak S, Kilic E, 
Huland H, Friedrich M, Ergun S. 2004. Dual role of carcinoembryonic antigen-
related cell adhesion molecule 1 in angiogenesis and invasion of human urinary 
bladder cancer. Cancer Res 64:8932-8938. 

324. Liu W, Wei W, Winer D, Bamberger AM, Bamberger C, Wagener C, Ezzat S, Asa 
SL. 2007. CEACAM1 impedes thyroid cancer growth but promotes invasiveness: a 
putative mechanism for early metastases. Oncogene 26:2747-2758. 

325. Chen Z, Chen L, Baker K, Olszak T, Zeissig S, Huang YH, Kuo TT, Mandelboim 
O, Beauchemin N, Lanier LL, Blumberg RS. 2011. CEACAM1 dampens antitumor 
immunity by down-regulating NKG2D ligand expression on tumor cells. J Exp Med 
208:2633-2640. 

326. Kilic N, Oliveira-Ferrer L, Wurmbach JH, Loges S, Chalajour F, Neshat-Vahid S, 
Weil J, Fernando M, Ergun S. 2005. Pro-angiogenic signaling by the endothelial 
presence of CEACAM1. J Biol Chem 280:2361-2369. 

327. Muller MM, Singer BB, Klaile E, Obrink B, Lucka L. 2005. Transmembrane 
CEACAM1 affects integrin-dependent signaling and regulates extracellular matrix 
protein-specific morphology and migration of endothelial cells. Blood 105:3925-3934. 

328. Horst AK, Ito WD, Dabelstein J, Schumacher U, Sander H, Turbide C, Brummer 
J, Meinertz T, Beauchemin N, Wagener C. 2006. Carcinoembryonic antigen-
related cell adhesion molecule 1 modulates vascular remodeling in vitro and in vivo. 
J Clin Invest 116:1596-1605. 

329. Gerstel D, Wegwitz F, Jannasch K, Ludewig P, Scheike K, Alves F, Beauchemin 
N, Deppert W, Wagener C, Horst AK. 2011. CEACAM1 creates a pro-angiogenic 



156 

tumor microenvironment that supports tumor vessel maturation. Oncogene 30:4275-
4288. 

330. Ergun S, Kilik N, Ziegeler G, Hansen A, Nollau P, Gotze J, Wurmbach JH, Horst 
A, Weil J, Fernando M, Wagener C. 2000. CEA-related cell adhesion molecule 1: a 
potent angiogenic factor and a major effector of vascular endothelial growth factor. 
Mol Cell 5:311-320. 

331. MacManiman JD, Meuser A, Botto S, Smith PP, Liu F, Jarvis MA, Nelson JA, 
Caposio P. 2014. Human cytomegalovirus-encoded pUL7 is a novel CEACAM1-like 
molecule responsible for promotion of angiogenesis. MBio 5:e02035. 

332. Wang L, Damania B. 2008. Kaposi's sarcoma-associated herpesvirus confers a 
survival advantage to endothelial cells. Cancer Res 68:4640-4648. 

333. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of 
image analysis. Nat Methods 9:671-675. 

334. Turbide C, Kunath T, Daniels E, Beauchemin N. 1997. Optimal ratios of biliary 
glycoprotein isoforms required for inhibition of colonic tumor cell growth. Cancer Res 
57:2781-2788. 

335. Izzi L, Turbide C, Houde C, Kunath T, Beauchemin N. 1999. cis-Determinants in 
the cytoplasmic domain of CEACAM1 responsible for its tumor inhibitory function. 
Oncogene 18:5563-5572. 

336. Fiori V, Magnani M, Cianfriglia M. 2012. The expression and modulation of 
CEACAM1 and tumor cell transformation. Ann Ist Super Sanita 48:161-171. 

337. Ieda J, Yokoyama S, Tamura K, Takifuji K, Hotta T, Matsuda K, Oku Y, Nasu T, 
Kiriyama S, Yamamoto N, Nakamura Y, Shively JE, Yamaue H. 2011. Re-
expression of CEACAM1 long cytoplasmic domain isoform is associated with 
invasion and migration of colorectal cancer. Int J Cancer 129:1351-1361. 

338. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip 
ML, Jove R, McLaughlin MM, Lawrence NJ, Sebti SM, Turkson J. 2007. Selective 
chemical probe inhibitor of Stat3, identified through structure-based virtual screening, 
induces antitumor activity. Proc Natl Acad Sci U S A 104:7391-7396. 

339. Vieira J, O'Hearn PM. 2004. Use of the red fluorescent protein as a marker of 
Kaposi's sarcoma-associated herpesvirus lytic gene expression. Virology 325:225-
240. 

340. Krishnan HH, Naranatt PP, Smith MS, Zeng L, Bloomer C, Chandran B. 2004. 
Concurrent expression of latent and a limited number of lytic genes with immune 
modulation and antiapoptotic function by Kaposi's sarcoma-associated herpesvirus 
early during infection of primary endothelial and fibroblast cells and subsequent 
decline of lytic gene expression. J Virol 78:3601-3620. 

341. Dela Cruz CS, Viswanathan SR, El-Guindy AS, Shedd D, Miller G. 2009. 
Complex N-linked glycans on Asn-89 of Kaposi sarcoma herpes virus-encoded 



157 

interleukin-6 mediate optimal function by affecting cytokine protein conformation. J 
Biol Chem 284:29269-29282. 

342. Musteanu M, Blaas L, Mair M, Schlederer M, Bilban M, Tauber S, Esterbauer H, 
Mueller M, Casanova E, Kenner L, Poli V, Eferl R. 2010. Stat3 is a negative 
regulator of intestinal tumor progression in Apc(Min) mice. Gastroenterology 
138:1003-1011 e1001-1005. 

343. Giffin L, Damania B. 2014. KSHV: Pathways to Tumorigenesis and Persistent 
Infection. Adv Virus Res 88:111-159. 

344. Carroll PA, Brazeau E, Lagunoff M. 2004. Kaposi's sarcoma-associated 
herpesvirus infection of blood endothelial cells induces lymphatic differentiation. 
Virology 328:7-18. 

345. Adler H, El-Gogo S, Guggemoos S, Zimmermann W, Beauchemin N, Kammerer 
R. 2009. Perturbation of lytic and latent gammaherpesvirus infection in the absence 
of the inhibitory receptor CEACAM1. PLoS ONE 4:e6317. 

346. Adler H, Steer B, Juskewitz E, Kammerer R. 2014. To the editor: Murine 
gammaherpesvirus 68 (MHV-68) escapes from NK-cell-mediated immune 
surveillance by a CEACAM1-mediated immune evasion mechanism. Eur J Immunol 
44:2521-2522. 

347. Khairnar V, Duhan V, Maney SK, Honke N, Shaabani N, Pandyra AA, Seifert M, 
Pozdeev V, Xu HC, Sharma P, Baldin F, Marquardsen F, Merches K, Lang E, 
Kirschning C, Westendorf AM, Haussinger D, Lang F, Dittmer U, Kuppers R, 
Recher M, Hardt C, Scheffrahn I, Beauchemin N, Gothert JR, Singer BB, Lang 
PA, Lang KS. 2015. CEACAM1 induces B-cell survival and is essential for protective 
antiviral antibody production. Nat Commun 6:6217. 

348. Blume-Jensen P, Hunter T. 2001. Oncogenic kinase signalling. Nature 411:355-
365. 

349. Zhang J, Yang PL, Gray NS. 2009. Targeting cancer with small molecule kinase 
inhibitors. Nat Rev Cancer 9:28-39. 

350. Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA, Zawistowski JS, 
Johnson NL, Granger DA, Jordan NV, Darr DB, Usary J, Kuan PF, Smalley DM, 
Major B, He X, Hoadley KA, Zhou B, Sharpless NE, Perou CM, Kim WY, Gomez 
SM, Chen X, Jin J, Frye SV, Earp HS, Graves LM, Johnson GL. 2012. Dynamic 
reprogramming of the kinome in response to targeted MEK inhibition in triple-
negative breast cancer. Cell 149:307-321. 

351. Guo L, Xiao Y, Fan M, Li JJ, Wang Y. 2015. Profiling global kinome signatures of 
the radioresistant MCF-7/C6 breast cancer cells using MRM-based targeted 
proteomics. J Proteome Res 14:193-201. 

352. Stuhlmiller TJ, Miller SM, Zawistowski JS, Nakamura K, Beltran AS, Duncan JS, 
Angus SP, Collins KA, Granger DA, Reuther RA, Graves LM, Gomez SM, Kuan 
PF, Parker JS, Chen X, Sciaky N, Carey LA, Earp HS, Jin J, Johnson GL. 2015. 



158 

Inhibition of Lapatinib-Induced Kinome Reprogramming in ERBB2-Positive Breast 
Cancer by Targeting BET Family Bromodomains. Cell Rep 11:390-404. 

353. Cooper MJ, Cox NJ, Zimmerman EI, Dewar BJ, Duncan JS, Whittle MC, Nguyen 
TA, Jones LS, Ghose Roy S, Smalley DM, Kuan PF, Richards KL, 
Christopherson RI, Jin J, Frye SV, Johnson GL, Baldwin AS, Graves LM. 2013. 
Application of multiplexed kinase inhibitor beads to study kinome adaptations in 
drug-resistant leukemia. PLoS ONE 8:e66755. 

354. Al-Ejeh F, Miranda M, Shi W, Simpson PT, Song S, Vargas AC, Saunus JM, 
Smart CE, Mariasegaram M, Wiegmans AP, Chenevix-Trench G, Lakhani SR, 
Khanna KK. 2014. Kinome profiling reveals breast cancer heterogeneity and 
identifies targeted therapeutic opportunities for triple negative breast cancer. 
Oncotarget 5:3145-3158. 

355. van der Sligte NE, Scherpen FJ, Meeuwsen-de Boer TG, Lourens HJ, Ter Elst 
A, Diks SH, Guryev V, Peppelenbosch MP, van Leeuwen FN, de Bont ES. 2015. 
Kinase activity profiling reveals active signal transduction pathways in pediatric acute 
lymphoblastic leukemia: a new approach for target discovery. Proteomics 15:1245-
1254. 

356. Naranatt PP, Akula SM, Zien CA, Krishnan HH, Chandran B. 2003. Kaposi's 
Sarcoma-Associated Herpesvirus Induces the Phosphatidylinositol 3-Kinase-PKC-ζ-
MEK-ERK Signaling Pathway in Target Cells Early during Infection: Implications for 
Infectivity. J Virol 77:1524-1539. 

357. Chandran B. 2010. Early events in Kaposi's sarcoma-associated herpesvirus 
infection of target cells. J Virol 84:2188-2199. 

358. Krishnan HH, Sharma-Walia N, Streblow DN, Naranatt PP, Chandran B. 2006. 
Focal adhesion kinase is critical for entry of Kaposi's sarcoma-associated 
herpesvirus into target cells. J Virol 80:1167-1180. 

359. Pan H, Xie J, Ye F, Gao SJ. 2006. Modulation of Kaposi's sarcoma-associated 
herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-
activated protein kinase pathways during primary infection. J Virol 80:5371-5382. 

360. Sadagopan S, Sharma-Walia N, Veettil MV, Raghu H, Sivakumar R, Bottero V, 
Chandran B. 2007. Kaposi's sarcoma-associated herpesvirus induces sustained 
NF-kappaB activation during de novo infection of primary human dermal 
microvascular endothelial cells that is essential for viral gene expression. J Virol 
81:3949-3968. 

361. Raghu H, Sharma-Walia N, Veettil MV, Sadagopan S, Caballero A, Sivakumar R, 
Varga L, Bottero V, Chandran B. 2007. Lipid Rafts of Primary Endothelial Cells Are 
Essential for Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8-
Induced Phosphatidylinositol 3-Kinase and RhoA-GTPases Critical for Microtubule 
Dynamics and Nuclear Delivery of Viral DNA but Dispensable for Binding and Entry. 
J Virol 81:7941-7959. 



159 

362. Sharma-Walia N, Krishnan HH, Naranatt PP, Zeng L, Smith MS, Chandran B. 
2005. ERK1/2 and MEK1/2 Induced by Kaposi's Sarcoma-Associated Herpesvirus 
(Human Herpesvirus 8) Early during Infection of Target Cells Are Essential for 
Expression of Viral Genes and for Establishment of Infection. J Virol 79:10308-
10329. 

363. Schwarz M, Murphy PM. 2001. Kaposi's sarcoma-associated herpesvirus G protein-
coupled receptor constitutively activates NF-kappa B and induces proinflammatory 
cytokine and chemokine production via a C-terminal signaling determinant. J 
Immunol 167:505-513. 

364. Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA, Gutkind JS. 2000. The 
Kaposi’s Sarcoma-associated Herpes Virus G Protein-coupled Receptor Up-
Regulates Vascular Endothelial Growth Factor Expression and Secretion through 
Mitogen-activated Protein Kinase and p38 Pathways Acting on Hypoxia-inducible 
Factor 1α. Cancer Res 60:4873-4880. 

365. Okada S, Goto H, Yotsumoto M. 2014. Current status of treatment for primary 
effusion lymphoma. Intractable Rare Dis Res 3:65-74. 

366. Elion GB. 1983. The biochemistry and mechanism of action of acyclovir. J 
Antimicrob Chemother 12 Suppl B:9-17. 

367. Israel BF, Kenney SC. 2003. Virally targeted therapies for EBV-associated 
malignancies. Oncogene 22:5122-5130. 

368. Dillon PJ, Gregory SM, Tamburro K, Sanders MK, Johnson GL, Raab-Traub N, 
Dittmer DP, Damania B. 2013. Tousled-like Kinases Modulate Reactivation of 
Gammaherpesviruses from Latency. Cell Host Microbe 13:204-214. 

369. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, 
Daub H. 2009. Large-scale proteomics analysis of the human kinome. Mol Cell 
Proteomics 8:1751-1764. 

370. Xiao Y, Guo L, Wang Y. 2014. A targeted quantitative proteomics strategy for global 
kinome profiling of cancer cells and tissues. Mol Cell Proteomics 13:1065-1075. 

371. Yu LR, Veenstra T. 2013. Phosphopeptide enrichment using offline titanium dioxide 
columns for phosphoproteomics. Methods Mol Biol 1002:93-103. 

372. Irtegun S, Wood RJ, Ormsby AR, Mulhern TD, Hatters DM. 2013. Tyrosine 416 is 
phosphorylated in the closed, repressed conformation of c-Src. PLoS ONE 
8:e71035. 

373. Kahl CR, Means AR. 2004. Regulation of cyclin D1/Cdk4 complexes by 
calcium/calmodulin-dependent protein kinase I. J Biol Chem 279:15411-15419. 

374. Skelding KA, Rostas JA, Verrills NM. 2011. Controlling the cell cycle: the role of 
calcium/calmodulin-stimulated protein kinases I and II. Cell Cycle 10:631-639. 



160 

375. van den Heuvel S, Harlow E. 1993. Distinct roles for cyclin-dependent kinases in 
cell cycle control. Science 262:2050-2054. 

376. Schang LM, Rosenberg A, Schaffer PA. 2000. Roscovitine, a specific inhibitor of 
cellular cyclin-dependent kinases, inhibits herpes simplex virus DNA synthesis in the 
presence of viral early proteins. J Virol 74:2107-2120. 

377. Capello D, Gaidano G, Gallicchio M, Gloghini A, Medico E, Vivenza D, 
Buonaiuto D, Fassone L, Avanzi GC, Saglio G, Prat M, Carbone A. 2000. The 
tyrosine kinase receptor met and its ligand HGF are co-expressed and functionally 
active in HHV-8 positive primary effusion lymphoma. Leukemia 14:285-291. 

378. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. 2012. Targeting MET 
in cancer: rationale and progress. Nat Rev Cancer 12:89-103. 

379. Avey D, Tepper S, Li W, Turpin Z, Zhu F. 2015. Phosphoproteomic Analysis of 
KSHV-Infected Cells Reveals Roles of ORF45-Activated RSK during Lytic 
Replication. PLoS Pathog 11:e1004993. 

380. Fu B, Kuang E, Li W, Avey D, Li X, Turpin Z, Valdes A, Brulois K, Myoung J, 
Zhu F. 2015. Activation of p90 ribosomal S6 kinases by ORF45 of Kaposi's 
sarcoma-associated herpesvirus is critical for optimal production of infectious 
viruses. J Virol 89:195-207. 

381. Cannon ML, Cesarman E. 2004. The KSHV G protein-coupled receptor signals via 
multiple pathways to induce transcription factor activation in primary effusion 
lymphoma cells. Oncogene 23:514-523. 

382. Dutta D, Chakraborty S, Bandyopadhyay C, Valiya Veettil M, Ansari MA, Singh 
VV, Chandran B. 2013. EphrinA2 regulates clathrin mediated KSHV endocytosis in 
fibroblast cells by coordinating integrin-associated signaling and c-Cbl directed 
polyubiquitination. PLoS Pathog 9:e1003510. 

383. Montaner S, Sodhi A, Servitja J-M, Ramsdell AK, Barac A, Sawai ET, Gutkind 
JS. 2004. The small GTPase Rac1 links the Kaposi sarcoma–associated herpesvirus 
vGPCR to cytokine secretion and paracrine neoplasia. Blood 104:2903-2911. 

384. Damania B. 2004. Oncogenic gamma-herpesviruses: comparison of viral proteins 
involved in tumorigenesis. Nat Rev Microbiol 2:656-668. 

385. West JA, Damania B. 2010. Kaposi's sarcoma-associated herpesvirus and innate 
immunity. Future Virol 5:185-196. 

386. Palmieri D, Mura M, Mambrini S, Palombo D. 2015. Effects of Pleiotrophin on 
endothelial and inflammatory cells: Pro-angiogenic and anti-inflammatory properties 
and potential role for vascular bio-prosthesis endothelialization. Adv Med Sci 60:287-
293. 

 



161 

387. Koutsioumpa M, Hatziapostolou M, Mikelis C, Koolwijk P, Papadimitriou E. 
2009. Aprotinin stimulates angiogenesis and human endothelial cell migration 
through the growth factor pleiotrophin and its receptor protein tyrosine phosphatase 
beta/zeta. Eur J Pharmacol 602:245-249. 

388. Lu Y, Gu X, Chen L, Yao Z, Song J, Niu X, Xiang R, Cheng T, Qin Z, Deng W, Li 
LY. 2014. Interferon-gamma produced by tumor-infiltrating NK cells and CD4+ T 
cells downregulates TNFSF15 expression in vascular endothelial cells. Angiogenesis 
17:529-540. 

389. Deng W, Gu X, Lu Y, Gu C, Zheng Y, Zhang Z, Chen L, Yao Z, Li LY. 2012. 
Down-modulation of TNFSF15 in ovarian cancer by VEGF and MCP-1 is a pre-
requisite for tumor neovascularization. Angiogenesis 15:71-85. 

 

 


	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	OVERVIEW
	INTRODUCTION
	MALIGNANCIES AND SYNDROMES LINKED WITH KSHV INFECTION
	VIRAL LATENCY AND ASSOCIATED PROTEINS
	THE KSHV LYTIC CYCLE
	LYTIC KSHV PROTEINS INVOLVED IN CELL GROWTH AND SURVIVAL
	KSHV’S ACTIVATION AND EVASION OF THE HOST IMMUNE RESPONSE
	CONCLUSIONS
	CHAPTER 2: MODULATION OF KSHV VIL-6 FUNCTION BY HYPOXIA UPREGULATED PROTEIN 12F
	OVERVIEW
	INTRODUCTION
	METHODS
	RESULTS
	DISCUSSION

	CHAPTER 3: KSHV VIRAL INTERLEUKIN 6 MODULATES ENDOTHELIAL CELL MOVEMENT BY UPREGULATING CELLULAR GENES INVOLVED IN MIGRATION3F
	OVERVIEW
	INTRODUCTION
	METHODS
	RESULTS
	DISCUSSION

	CHAPTER 4: ALTERATION OF THE HOST CELL KINOME BY LYTIC AND LATENT KAPOSI’S SARCOMA ASSOCIATED HERPESVIRUS INFECTION4F
	OVERVIEW
	INTRODUCTION
	METHODS
	RESULTS
	DISCUSSION

	CHAPTER 5: SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS
	GENERAL SUMMARY
	KSHV-ASSOCIATED MALIGNANCIES AND MECHANISMS OF PATHOGENESIS
	MODULATION OF KSHV VIRAL INTERLEUKIN 6 FUNCTION BY HYPOXIA UPREGULATED PROTEIN 1
	KSHV VIRAL INTERLEUKIN 6 MODULATES ENDOTHELIAL CELL MOVEMENT BY UPREGULATING CELLULAR GENES INVOLVED IN MIGRATION
	ALTERATION OF THE HOST CELL KINOME BY LYTIC AND LATENT KAPOSI’S SARCOMA ASSOCIATED HERPESVIRUS INFECTION

	REFERENCES

