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ABSTRACT 

Zena Cardman:  Active prokaryotic communities along a thermally and geochemically variable 
transect in Guaymas Basin hydrothermal sediments 

(Under the direction of Andreas Teske) 

 
The microbial inhabitants of deep-sea vents are genetically and metabolically diverse, 

and often make a living at the edge of biological temperature limits.  Guaymas Basin, a nascent 

spreading center in the Gulf of California, provides a unique environment in which to study 

prokaryotic communities across a range of thermal and geochemical niches.  Unlike most vents, 

Guaymas is blanketed in thick sediments, ranging from 3ºC to 200+ºC within half a meter below 

the sea floor. Microbial mats, including one nicknamed “Megamat,” serve as bull’s-eyes for 

subsurface hydrothermal activity. Here we explore Megamat’s subsurface, spanning low-

temperature (3º), low-methane (0.3mM) to high-temperature (85º), high-methane (3+ mM) 

sediments, and the 16S rRNA-based phylogeny of active prokaryotes therein.  Pyrosequencing 

revealed the fewest OTUs yet highest Shannon-Wiener diversity within the hottest sediments. 

Sequences of Sulfurimonas were nearly ubiquitous, and sequences from the heterotrophic MBGB 

dominated outside the mat’s perimeter.  Putative methane cyclers were most abundant within the 

methane-saturated mat center, including ANME-2c, Methermicoccaceae, Guaymas-specific 

ANME-1 groups, and a deeply-branching, novel group, “Guaymas Methanomicrobia.” The 

expected Deltaproteobacterial sulfate reducers were not common in this survey; in fact 

Archaeoglobus and Thermodesulfobacteria sequences were recovered in exponentially higher 

abundance in the hottest sediments. Major groups were most similar outside of Megamat and at 

its edge, in contrast with strikingly core-specific communities in central mat samples.  The mat’s 
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edge appears to be a transition zone hosting sequences found both in the central mat and in bare 

sediment, while the distinct community assemblages within central Megamat highlight 

horizontal and vertical variability in Guaymas Basin. Together, these data provide insights into 

community changes with temperature and substrates at high resolution over small spatial scales.  
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ACTIVE PROKARYOTIC COMMUNITIES ALONG A THERMALLY AND 
GEOCHEMICALLY VARIABLE TRANSECT IN GUAYMAS BASIN 

HYDROTHERMAL SEDIMENTS 
 

 
1.   INTRODUCTION 

 Guaymas Basin, a nascent spreading center in the Gulf of California, offers a unique 

environment in which to study microbial communities across a broad range of thermal and 

geochemical niches.  Unlike most vent sites, Guaymas is blanketed in a hundreds-of-meters-thick 

layer of organic-rich sediments of pelagic and terrigenous origin (Calvert 1966, Von Damm et al. 

1985).  Hydrothermally active spots pepper the basin where magmatic sills intrude and discharge 

fluid through tectonic fractures (Einsele et al. 1980, Lonsdale and Becker 1985).  The 

hydrothermal fluids are alkaline, and reach temperatures up to 315ºC.  As it advects upward, the 

high-temperature vent fluid interacts with and alters the sediments, facilitating metal sulfide 

precipitation, pyrolysis of hydrocarbons and organics, and other diagenetic processes (Kawka 

and Simoneit 1987).  Compared to bare lava vents, the metal content of Guaymas fluids is a few 

orders of magnitude lower (Von Damm et al. 1985, Von Damm 1990).   

Methane concentrations in Guaymas fluids reach 12-16mM, two orders of magnitude 

higher than bare lava vents, and with higher concentrations and lighter carbon isotopic 

composition compared to mantle outgassing.  The δ13C-CH4 here ranges from –50 to –43‰, 

implicating a thermocatalytic origin (Welhan 1988).  Archaeal methanogenesis is a second 

source of methane at some locations, often indicated by lighter δ13C CH4 signatures.  Methane 

sinks include the anaerobic oxidation of methane across a wide range of in situ temperatures 
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(Biddle et al. 2011, Holler et al. 2011), as well as simply the release of methane into the 

overlying water column.  

These hydrothermal fluids are rich in pyrolysis products and biogenic substrates: the 

aforementioned methane, as well as other light hydrocarbons, short-chain organic acids, and 

ammonia (Martens 1990).  Guaymas fluids thus carry to the shallow sediments a smorgasbord 

typically only available in the deep subsurface.  A robust community of methanogens, methane 

oxidizers, sulfate reducers, and other microorganisms make a living here (Dhillon et al. 2003, 

Teske et al. 2002); these groups range from psychro- and mesophilic to high-temperature-

tolerant and even hyperthermophilic.  They enrich the hydrothermal fluids in sulfide and CO2, to 

in turn be utilized by their upstairs neighbors:  sulfur-oxidizing Beggiatoa mats, which serve as 

surficial bulls-eyes for localized subsurface hotspots (Jannasch et al. 1989, Gunderson et al. 

1992).  

Bare sediment away from these colorful mats is the temperature of Guaymas bottom 

water throughout (3-4ºC), and shows little or no signature of hydrothermal fluid.  Beneath the 

mats, temperatures typically exceed the known thermal limits of life within the upper half-meter 

of sediment. The physicochemical environment can vary wildly over even a centimeter scale, 

both laterally and vertically (McKay et al. 2012).  Temperatures and hydrothermal flux can also 

vary temporally (H. Mendlovitz and B. White, personal communication).  Horizontal advection 

of fluid (suggested in Kawka and Simoneit 1987, Lonsdale and Becker 1985) may result in lower 

temperature discharge in the mud surrounding mounds. This horizontal transport may 

significantly confound our interpretation of geochemical profiles. 

Biogeochemical, lipid biomarker and sequence-based evidence for complex microbial 

communities has been detected in these sediments (Teske et al. 2002; Dhillon et al. 2003, 2005), 
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yet a great deal of work remains before we understand exactly who is active, how they affect and 

are affected by geochemical microniches, or how much biogeochemical variability exists.  

Studies of subsurface microbial diversity across multi-dimensional gradients are especially 

lacking.  Here we look in detail at one mat-covered seep site through a transect of sediment 

cores, coordinating prokaryotic community structure with physicochemical niches over small 

scales.  This RNA-based study gains insight into the active community present in surface and 

subsurface sediments, including some of the highest-temperature sediments from which RNA 

has been recovered to date.   

2.  METHODS 

2.1 Site description 

At the time of sampling, Megamat was a broad, mostly white Beggiatoa mat (Figure 1), 

spanning about 5-10 m diameter at 2,002 m water depth and approximately 27ºN 00.445, 111ºW 

24.530. Fluids were hot and rich in hydrothermal petroleum degradation products such as LMW 

organic acids, alkanes, and methane; hydrocarbons could often be seen bubbling up from the 

mud. While we cannot know the exact history of any one site, we do know that visible mats can 

grow or shrink over the course of one year, or possibly during even less time.  A currently cold 

site could have a relatively recent hot history, or vice versa.  A large microbial mat could change 

size or disappear with changes in subsurface hydrothermal flow.  Extensive push coreing may 

further affect a mat.  Nevertheless, Megamat as it existed in 2008 is described above and was the 

source of samples for this study. 

The samples were taken along a five-point transect:  (1) from the center of the mat, (2) a 

hot site within the mat’s perimeter, (3) a less-hot site at the mat’s edge, (4) another cooler site 

just outside the mat’s perimeter, and (5) a cold site from bare sediment several dozen meters 
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away.  From each of these transect points was collected: (i) sediment for microbial community 

analysis, (ii) sediment for geochemical profiling, and (iii) temperature profiles in the upper 40cm 

of subsurface.  Figure 2 shows a cartoon of this transect in relation to Megamat; these samples 

are summarized in Table 1. 

2.2    Sample collection 

The deep submersible HOV Alvin was used to collect temperature profiles and 

coordinating push cores during dives 4485, 4486, and 4491 in December 2008. Temperature was 

measured in situ with Alvin’s external heat flow probe (shown in Figure 1c), at 5 or 10cm depth 

intervals over the upper 40 or 42cm of sediment.  Freshly recovered push cores (3 inches 

diameter and on average 17cm length) were sectioned shipboard on the R/V Atlantis at 2cm 

intervals, immediately frozen in liquid nitrogen, and stored at -80ºC until processing.  Sediments 

from 0-2cmbsf and 6-8cmbsf were used for geochemical and microbiological analysis.   

Temperature probes, microbiology sediment cores, and geochemistry sediment cores 

were taken as closely as possible for coordinating samples along the transect.  For sites (2), (3), 

and (4), microbial data and geochemical data are from cores effectively touching each other, i.e. 

<1cm from edge to edge, or 3cm from center to center, and temperature profiles were measured 

directly adjacent to their respective cores.  For site (1), sediment cores and coordinating 

temperature profile were a few cm apart.  At site (5), the geochemical and microbiological cores 

were approximately 6cm apart, and the temperature profile an additional few cm away. It should, 

however, be noted that several temperature profiles were taken within a 1m radius of site (5) and 

all revealed 3ºC over the entire upper 40cm of sediment. 

Throughout this manuscript, these five sites will often be referred to by microbiology 

core number only, representing microbial community, geochemistry, and temperature data in: 
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“bare sediments” (4485-5), “edge of Megamat” sediments (4486-19, 4486-24), and “central 

Megamat” sediments (4486-13, 4491-7).  The bare sediment site at 4485-5 serves as a sort of 

“background” sample, but only in the sense that this sediment is far removed from Megamat. It is 

still within the general area of many scattered Guaymas hotspots, and its biogeochemistry is 

likely still influenced by proximity to hydrothermal flow in spite of its cold, unchanging 3ºC 

temperature profile and relatively low, unchanging, unsaturated methane concentrations over at 

least the upper 20cmbsf.  

2.3 Geochemical porewater analysis 

Sulfate and sulfide concentrations were measured from porewater, separated from 15mL 

sediment by centrifugation; the resulting supernatant was 0.2um filtered.  One 1mL subsample 

was acidified with 50uL 50% HCl and bubbled with nitrogen for 4 minutes to remove sulfide 

before shipboard sulfate measurement on a 2010i Dionex Ion Chromatograph (as previously 

described in Martens et al. 1999). For sulfide, a second 1mL porewater subsample was preserved 

with 0.1mL 0.1M zinc acetate, until measured spectrophotometrically (Cline 1969).  For methane 

analysis, sediment was sealed in serum vials with 0.1M NaOH. Headspace methane 

concentrations were obtained using gas chromatography with flame ionization detection. Stable 

carbon isotopes of methane and DIC were measured from porewater, separated from 

approximately 50mL of sediment by centrifugation and 0.2 μm filtration, and quantified by gas 

chromatography and isotope ratio mass spectrometry on a Hewlett Packard 5890 GC with 

Finnegan Mat 252 IRMS.  

2.4 RNA extraction and amplification 

Selected frozen sediment core subsections (0-2cmbsf and 6-8cmbsf, 30-40g wet weight 

each) were thawed by vortexing with trichloroacetic acid lysis buffer (McIlroy et al. 2008). To 
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lyse cells, samples were agitated 2x45 seconds in an MSK-Zellhomogenisator (B. Braun Biotech 

International, Melsungen, Germany) with sterile 0.1 and 0.45μm diameter glass beads. Nucleic 

acids were precipitated overnight at –20ºC, in 0.6 volume isopropanol (MacGregor et al. 1997). 

The precipitate was pelleted by 30 minutes’ centrifugation at 2800rpm in an Eppendorf 5702/R 

with A-4-38 swinging-bucket rotor, and resuspended in nuclease-free water.  RNA was purified 

via multiple pH 5.1 phenol, phenol-chloroform, chloroform-isoamyl alcohol separations 

(following Stahl et al. 1988, MacGregor et al. 1997). Following another overnight precipitation 

at –20ºC (in 0.7 volume isopropanol and 0.5 volume ammonium acetate), RNA was pelleted 

(again by a 30 minute centrifugation), resuspended in nuclease-free water, further purified with a 

Qiagen RNeasy RNA Cleanup Kit, eluted in 50μl nuclease-free water, and stored short-term at –

20ºC.  Low concentrations of extracted total RNA (often ≤2ng/μl) necessitated amplification 

prior to 454 pyrosequencing. SuperScript III One-Step RT-PCR with Platinum Taq DNA 

Polymerase reagents (Thermo Fisher Scientific, Waltham MA) were used according to the 

manufacturer’s instructions to reverse-transcribe rRNA to cDNA, then amplify the V5-V8 region 

of 16S rRNA using universal primers 787F (5’-ATTAGATACCCNGGTAG-3’, Roesch et al. 

2007, Jorgensen et al. 2012) and 1391R (5’-ACGGGCGGTGWGTRC-3’, Lane et al. 1985, 

Jorgensen et al. 2012). This primer combination gives 98% coverage of Bacteria and Archaea 

with one mismatch (Jorgensen et al. 2012). As a control, parallel PCR reactions for each sample 

were performed without reverse transcriptase; absence of a product in this case ruled out DNA 

contamination, thus indicating amplification only of cDNA derived from RNA. Amplified 

concentrations of this 600bp product after 30 cycles in a Bio-Rad iCycler Thermal Cycler, and 

the final volume sent for sequencing, are shown in Table 2.  
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2.5 454-pyrosequencing and phylogenetic analysis  

The V5-V8 product was barcoded and pyrosequenced at the UNC Chapel Hill 

Microbiome Core Facility using Roche 454 technology. Returned sequences were denoised and 

filtered for read quality with Qiime (Caporaso et al. 2010), and multiplexed reads were assigned 

to samples.  De novo operational taxonomic units (OTUs) were picked at 97% sequence 

similarity, and representatives were chosen for each OTU. These representatives were checked 

for chimeras using Qiime’s ChimeraSlayer, then assigned domain- and phylum-level taxonomy 

with the SILVA aligner and SSU reference database (arb-silva.de/aligner) (Pruesse et al. 2007).  

Finer-resolution classification was achieved through alignment with Arb software (Ludwig et al. 

2004).  Final phylogenetic trees were constructed with the neighbor-joining distance method 

with Jukes-Cantor correction (Saitou and Nei 1987); bootstrap confidence values were assigned 

from 1,000 tree iterations (Felsenstein 1985).  

2.6 Clone library synthesis from extracted DNA and RNA 

As comparison for our 454 pyrosequencing dataset – and to ground-truth those shorter 

reads within phylogenetic trees – clone libraries were constructed with near-full-length Archaeal 

16S sequences from cores 4491-7 (central Megamat) and 4486-24 (edge of Megamat).  Total 

genomic DNA was extracted from approximately 0.5g sediment and RNA from 2.0g sediment 

with MoBio PowerSoil DNA and RNA kits. A Bio101 Thermo Savant FP120 fast prep bead 

beater was used to lyse the cells, but kit protocols were followed thereafter. Near full-length 16S 

rRNA genes were amplified with Archaeal primers A8f and A1492r (Teske et al. 2002) in a Bio-

Rad iCycler Thermal Cycler. PCR reactions were carried out as previously for Guaymas Basin 

16S samples (Biddle et al. 2012).  Euryarchaeotal-specific primers A8f and Eury498r (Burggraff 

et al. 1994) were also used.  Reverse transcription was carried out with a Takara OneStep RT-
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PCR kit and the same primer combination as above, A8f and A1492r, also as described in Biddle 

et al. 2012. As with the 454 pyrosequencing data presented here, neighbor-joining phylogenetic 

trees were constructed with Jukes-Cantor correction (Saitou and Nei 1987) and bootstraps were 

assigned after 1,000 tree iterations (Felsenstein 1985).  

3.  RESULTS AND DISCUSSION 

3.1 Temperature and geochemical gradients throughout Megamat 

In the bare sediment several dozen meters away from the edge of Megamat (4485-5), 

temperatures are a constant 3.0ºC (Guaymas Basin bottom water temperature) over at least the 

upper 40cmbsf. Just outside the mat’s perimeter, temperatures reach 10-11ºC by 2cmbsf, and 

increase almost linearly over 40cm depth to 84 or 101ºC (4486-19 and 4486-24, respectively). 

Within Megamat-covered sediments, core 4486-13 is already 26ºC at the surface, 85ºC by 

6cmbsf, and 163ºC at 40cmbsf.  Core 4491-7, a few meters further into Megamat from the 4486 

transect, reaches 112ºC at depth.  These temperature measurements of course represent only one 

point in time within a highly variable environment, and are not from the exact location of either 

their corresponding microbiology or geochemistry cores. The data nevertheless give valuable and 

concrete context for the localized conditions in Megamat prior to sampling, and provide an 

approximation for temperatures experienced by these sediments. 

Surface sediment temperatures reveal the patchy and often hot conditions experienced by 

the Bacterial mat community. Subsurface temperatures, meanwhile, grant insight into 

hydrothermal flow below.  The 11 temperature profiles shown here in Figure 3, and the three-

dimensional temperature field presented by McKay et al. 2012, show a wide range of thermal 

environments in Megamat’s subsurface.  Mat perimeter profiles are typically less than 15ºC from 

0-2cmbsf, and increase linearly to 100ºC by 40cmbsf.  Within the central mat subsurface, 
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sediments experience much steeper thermal gradients: often hotter than 30º or even 50ºC by 

2cmbsf, exceeding 100ºC by 20cmbsf, and leveling off above 150ºC from 20-40cmbsf. Some 

Megamat sediments reach 200ºC by 30cmbsf (McKay et al. 2012). Metabolic and thermal 

zonation appears to be more compressed in the upper subsurface within central mat sediments 

than at the mat’s edge, and much more so than in bare sediments.  

Sulfate in Guaymas Basin penetrates the sediment at or near seawater concentrations, 

approximately 28mM. While geochemistry core 4486-14 is unfortunately lacking a data point at 

0-2cm depth, we can assume sulfate enters this core at a similar concentration. At the edge of 

Megamat there is little vertical decrease of sulfate, changing only 2-5mM throughout the core. In 

central Megamat, sulfate is sharply “consumed” over the upper few centimeters: down to 2mM 

by 6-8cmbsf in core 4486-14 and below detection limits by 8-10cmbsf in core 4491-12 – keeping 

in mind, of course, that with variable horizontal and vertical flow it is difficult to infer microbial 

activity from geochemical profiles alone.  Low sulfate concentrations here, for example, could 

also be accounted for by sulfate-free or sulfate-depleted hydrothermal fluid permeating the 

sediments from below, rather than consumption by microbial metabolism. 

Sulfide concentrations are low in surface sediments of all measured cores; 4491-12 

within central Megamat is the only core with elevated sulfide concentrations (2.5mM) at the 

surface. Four of these five cores show a local sulfide peak at 10-14cmbsf, which, in tandem with 

decreasing sulfate profiles, suggests an active community of sulfate reducers at these depth 

horizons.  Core 4486-14 is an exception, with low sulfide concentrations throughout, though 

notably this core experiences the highest temperatures over the upper 30cm, and is already above 

100ºC by 10cmbsf.  
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In our Megamat samples, methane concentrations are high in the subsurface: 1-2mM at 

40cmbsf in all mat-associated cores, which is likely an underestimate due to outgassing during 

and after sample recovery.  In central Megamat, porewater methane permeates the entire 

sediment column at near constant high concentrations.  Upward movement of subsurface fluids 

may be significant enough to inhibit the isotopic expression of microbial methane cycling, and 

the nearly homogeneous δ13C CH4 signature seen in these cores appears to be influenced by 

subsurface abiogenic sources.  Methane formed biogenically in sediments typically falls within 

the range of  –42‰ to –105‰. This wide range depends heavily on active community 

composition and function, as well as temperature (Whiticar 1999).  Abiotic methane, by contrast, 

is more typically within the range of –20‰ to –50‰; Guaymas porewater methane typically falls 

within this latter range, implying a predominantly thermocatalytic origin (Welhan 1988, Pearson 

et al. 2005).  

While temperature may limit microbial activity in some of Megamat’s hot, central 

sediments, core 4491-12 is a relatively cool 6ºC at the surface, and does show some small 

amount of putative methane consumption in the upper 4cm of sediment. Porewater methane 

concentration at the surface of this core decreases while  δ13C methane is slightly enriched.  Just 

inside the edge of Megamat, core 4486-24 reveals a broad sulfate-methane transition zone, with 

depletion of methane concentrations to near-zero from 10cmbsf upward, δ13C from Guaymas 

hydrothermal fluid signature around –40‰ (Peter and Shanks 1992, Welhan 1988) at depth to 

nearly –25‰ at the surface, and a slight consumption of sulfate over the upper 8cm. Just outside 

the mat’s edge methane is also apparently consumed, but less sharply than in 4486-24 and 

without the diagnostic δ13C signature of methane oxidation. Far outside Megamat, in 4485-1, 

methane concentrations are lower (0.45mM at 15cmbsf) than in mat-associated cores at depth, 
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with barely a change in concentration throughout the core. There is a spike in the δ13C of 

methane around 8cmbsf, nearly 10‰ heavier than the upper 6cmbsf, perhaps linked to the 

isotopically lighter DIC there.  

The isotopic signature of DIC in that distant, bare-sediment core (4485-1) is markedly 

low between 5 and 13cmbsf, possibly implicating microbial remineralization of organic matter at 

these depths, though porewater concentration data is lacking for this core.  In the peripheral 

sediments of Megamat, DIC concentrations are 10-15mM at 16cmbsf, and decrease down to 

5mM at the surface; in hotter sediments, concentrations are not depleted in surface sections 

relative to concentrations at depth. Little change in δ13C-DIC is evident throughout any mat-

associated cores, excepting a lighter signature in the upper 4cmbsf of 4491-12.  In diffusion-

dominated marine sediments, this would suggest microbial remineralization of organic matter.   

In Guaymas sediments, geochemical profiles are complicated by advection, so the 

isotopic signatures may be artifacts of fluid transported horizontally from elsewhere. Rapidly-

flowing hydrothermal fluids may also overwhelm any signs of authigenic microbial activity. 

Alternately, the relatively heavy δ13C-DIC may reflect limited microbial remineralization of 

organic matter in these cores, or a combination of Guaymas hydrothermal DIC near -9‰ and 

Guaymas bottom seawater near -0.6‰ (Pearson et al. 2005).  In other words, this isotopic 

signature may be consistent with some mixture of HCO3
–-derived DIC and CO2-derived DIC, or, 

depending on the pH, may be mostly CO2 with little influence from organic matter 

remineralization. 

Together, these data (summarized in Figure 4) show the clear influence of hydrothermal 

input within Megamat sediments compared to bare sediment.  The profiles presented here also 
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illustrate the physicochemical patchiness of Guaymas Basin with steep gradients in electron 

donor and carbon availability between cores that were taken mere centimeters apart. 

3.2 OTU abundance and Shannon diversity 

Ribosomal RNA-based microbial community analysis comes with a caveat: cellular 

ribosome concentrations may differ between taxonomic groups or even individuals, so a greater 

presence of any particular lineage’s 16S rRNA does not necessarily equate to cell abundance 

(Campbell and Kirchman 2013). That said, RNA degrades rapidly extracellularly, so it is 

expected to derive primarily from living cells.  DNA, by contrast, may persist for longer periods 

in the sediment, and can be recovered from spores or dead cells, or as extracellular detrital DNA 

(Dell’Anno and Danovaro 2005).   Obtaining a snapshot of actively transcribing prokaryotes is 

especially interesting in a hydrothermal environment like Guaymas Basin, where cells face 

biophysical stress at extreme temperatures. 

Pyrosequencing yields were >1500 reads per core at each depth, and just shy of 30,000 

reads total.  Primers targeted both Archaea and Bacteria at the V5-V8 region.  Archaeal 

sequences were the overwhelming majority in these samples, outnumbering Bacteria at least 2:1 

in all cores, more than 5:1 in several cores, and more than 100x in core 4486-19 at 6-8cm depth. 

This was not the case for multiple other Guaymas Basin samples, extracted with identical 

methods, amplified with the same PCR master mix, and sequenced simultaneously on the same 

plate (L. McKay, personal communication), so primer biases are not implicated. Total Bacterial 

and Archaeal sequence reads per sample are summarized in Table 3.  Operational taxonomic 

units (OTUs), picked in Qiime with a 97% similarity cutoff, are shown in Figure 5, and vs. 

sediment temperature in Figure 6.   
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In surface sediments (0-2cmbsf), OTU abundance is highest just outside the mat’s edge.  

This edge-of-mat area may be a species-rich ecotone: a transition zone where both out-of-mat 

and inside-mat OTUs coexist.  Excluding the bare sediment a few dozen meters away from 

Megamat (comparable in OTU abundance to 4486-24 and 4486-13), OTUs generally decrease 

from outside the mat to inside (Figure 5), but do not show a clear trend with subsurface 

temperature (Figure 6).  At depth, however, OTU abundance is highest outside the edge of 

Megamat, and lowest in central sediments (Figure 5), and appears to decrease linearly with 

temperature (R > 0.6, Figure 6).  This may indicate the stronger influence of temperature on 

OTU abundance at depth in the mat subsurface, versus perhaps a stronger influence of factors 

like substrate availability at the sediment-water interface. 

The Shannon-Wiener index, (Shannon and Weaver 1963, Wiener 1948), also called 

Shannon Entropy, is frequently used in ecological studies to analyze species diversity and 

abundance, defined as: 

H' = - pi ln pi 

 

where pi is the proportional abundance of individuals of species i. This value thus indicates both 

richness and evenness, accounting for rare species and weighting them relative to common 

species.  Shannon diversity approaches zero as one group increases in relative abundance, and 

equals zero if only one group is present.  With uncultured environmental samples, the microbial 

ecologist can substitute OTUs for species in this equation.  H’ is a useful and meaningful 

measure for comparing prokaryotic communities in soil and marine sediments (e.g. Hill et al. 

2002, Heijs et al. 2007, Auguet et al. 2010). Shannon-Wiener diversity of course does not offer 

any information regarding diversity above the OTU level. For example, OTUs present here may 
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be all within a narrow phylogenetic range, or they may be widely spread across any number of 

taxonomic groups.  With this in mind, a more detailed look at 16S rRNA-based phylogenetic 

classification will be discussed in section 3.3 of this manuscript.  

 Total prokaryotic community diversity is shown in Figure 7. At the sediment-water 

interface in Megamat, H’ is greatest in 4486-13, which experiences the highest temperatures of 

these surface samples.  Diversity is lowest elsewhere within Megamat’s perimeter (4491-7), and 

just outside the mat’s edge (4486-24).  The greatest diversity in 0-2cmbsf samples was found 

farther outside the edge of Megamat (4486-19) and in bare sediments well beyond Megamat 

(4485-5).  At deeper depths, H’ is highest within the cooler central-mat sediments (4491-7, vs. 

hot central-mat 4486-13) and in bare sediment distant from Megamat (4485-5). It is lowest 

outside of Megamat’s edge (4486-19) and increases from just outside (4486-24) to just inside 

(4486-13) the mat’s perimeter.   

Separating by domain-level classification, Archaeal H’ (Figure 8a) is highest in surficial 

sediments of 4486-13, the highest-temperature core within Megamat’s perimeter. Bacterial 

diversity (Figure 8b) is highest in the three surface samples outside of Megamat, and consistently 

higher than Archaeal H’ in each sample, excepting 4486-13 (both at the surface and 6-8cmbsf).  

The highest-temperature sample in this study (4486-13 at 6-8cmbsf) hosted a low diversity of 

both Archaea and Bacteria (Figure 9), though both were higher than H’ for the other central mat 

core, 4491-7, at 0-2cmbsf.  No apparent trend existed for Bacterial diversity with temperature in 

0-2cmbsf sediments, all of which were < 60ºC.  Archaeal diversity, however, increased with 

temperature in 0-2cmbsf sediments (R2 = 0.8 including all samples, or R2 = 0.6 for Megamat-

only sediments, excluding the bare sediment sample 4485-5 several dozen meters away).  Deeper 

in the subsurface, at 6-8cmbsf, Archaeal H’ revealed a very weakly negative trend with 
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temperature (R2 = 0.4).  Bacterial diversity in sediments 6-8cmbsf showed the most striking 

trend, decreasing linearly with temperature (0.9).  Bacterial communities in these sediments may 

be more sensitive to temperatures greater than 60ºC, though diversity across all prokaryotes here 

is likely affected by some combination of temperature and substrate availability, not to mention 

grazing, interaction with viruses, competition, or other environmental factors.  In any case, 

temperature is clearly not the only influence on diversity, and the actual 16S rRNA-derived 

community composition, discussed in the following section, paints a more nuanced picture of 

active prokaryotes in these sediments. 

3.3 Prokaryotic community structure: 454 pyrosequencing 

Archaeal community composition (Figure 10a), both at 0-2cmbsf and 6-8cmbsf, appears 

similar at the mat’s edge (4486-22 and 4486-19) and well outside the mat (4485-5).  Within 

central Megamat, the two cores (4486-13 and 4491-7) are strikingly different in surface and 

subsurface sediments.  This emphasizes the horizontal and vertical variability even within the 

perimeter of one Guaymas Basin microbial mat.  

Marine Benthic Group B (MBGB, Vetriani et al. 1999) dominates Archaeal communities 

outside Megamat and at the mat’s edge, both in surface sediments and at 6-8cmbsf (Figure 10a).  

This deeply-branching, heterotrophic group often dominates Archaeal 16S rRNA gene and 16S 

rRNA transcript libraries, and is metabolically active in deep marine subsurface sediments 

(Teske and Sørensen 2008, Biddle et al. 2006). Carbon isotopic signatures in Archaeal 

phospholipids and cell biomass implicate this group as organic carbon assimilators (Biddle et al. 

2006). While MBGB are often found with methane-rich sediments (Inagaki et al. 2006, Biddle et 

al. 2006, Sørensen and Teske 2006), their abundance has also been linked to organic carbon and 

ferric iron oxide, suggesting an iron-reducing, organic matter-degrading metabolism (Jorgensen 
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et al. 2012). Prevalence of MBGB in warm sediments here is consistent with previous studies of 

Guaymas Basin (Biddle et al. 2012).   

In surficial bare sediments (4485-5) and the edge of Megamat (4486-19 and -24), 

Methanosarcinaceae, ANME-2c, GoM Arc I, Marine Benthic Group D (MBGD), MCG-15, and 

DHVE-6 are also found in moderate abundance.  MBGD is commonly found in marine 

sediments (Teske and Sørensen 2008), including hydrothermal sediments (Takai and Horikoshi 

1999).  At depth, MBGD shares the sediment with MBGB as we approach the mat, though the 

latter decreases while MBGD increases.  ANME-2c rRNA was also found in core 4486-24, just 

outside the perimeter of Megamat, where methane concentration profiles and δ13C signatures 

indicate sulfate-dependent methane oxidation at this depth.  ANME-2c sequences have often 

been associated with cold sediments replete in electron acceptor (Knittel et al. 2005), while 

ANME-1 (whose sequences were not frequently recovered in this 454 pyrosequencing survey) 

seems to tolerate sulfate limitation and turns up in fully-reduced environments (Lloyd et al. 2011, 

Knittel et al. 2005). 

The two cores 4486-13 and 4491-7 taken from sediments in central Megamat are distinct 

from the other cores, and from each other.  While both cores share high methane concentrations 

throughout the sediment column and contain sulfate only in their surficial layers, sulfide 

concentrations are significantly higher in 4491-7, and in-situ temperatures are significantly 

higher in 4486-13.  At 0-2cmbsf:  the active microbial communities of core 4486-13 are more 

diverse than those of 4491-7 and yield relatively evenly-distributed reverse-transcribed 16S 

rRNA sequences of Archaeoglobus, DHVE-6, DSEG-3, deeply-branching “Guaymas 

Methanomicrobia” (named for the first time in this text), and a few transcripts related to 

Methermicoccaceae and uncultured Thermoplasmatales.  Core 4491-7, by contrast, is almost 
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entirely dominated by ANME-2c sequences in surface sediments (approximately 6ºC in situ, vs. 

the 26º surface sediments of 4486-13), though Methanosaeta and Microarchea (ARMAN-2, 

Baker et al. 2006) sequences make cameo appearances.  At depth in the hottest sediments, core 

4486-13 sediments yielded approximately equal numbers of uncultured DSEG-3 and 

Archaeoglobaceae sequences.  Arb-based neighbor-joining phylogeny places these sequences 

with the known Archaeal sulfate reducers of the genus Archaeoglobus (Klenk et al. 1997) 

(Figure 12), as opposed to their non-sulfate-reducing sister taxa Geoglobus or Ferroglobus 

within the Archaeoglobales (Tor et al. 2001).  Core 4491-7 is more diverse at depth, including 

members of Methanomicrobiaceae, methane-oxidizing ANME-2c, the thermoacidophilic genus 

Aciduliprofundum,  MBGD (and other uncultured Thermoplasmatales), and MCG. 

Although Bacteria are overall less abundantly detected in each sample, they reflect  

Archaeal population trends: similar major Bacterial groups dominating outside of Megamat and 

at its edge, in contrast with distinctly core-specific populations in each of the central mat cores 

(Figure 10b).  Interestingly, core 4486-24 diversity very much resembles the 16S community 

fingerprint of hot core 4491-7 at 6-8cmbsf, while in surface sediments this core is more similar 

to those outside of the mat’s surface area. Apparently, subsurface hot spot communities can 

extend beyond the surface margins of a mat area, as previously observed at a mat area in the Gulf 

of Mexico (Lloyd et al. 2010). 

The nitrate-reducing, sulfur- and hydrogen-oxidizing genus Sulfurimonas (within the 

Epsilonproteobacteria, Figure 11) is nearly ubiquitous (Campbell et al. 2006). Sequences from 

this genus are abundant in surface sediments of core 4485-5 and at the mat’s edge, and count for 

95% of all Bacterial sequences found in core 4491-7 (the cooler of two central-mat cores).  

Dehalococcoides-related sequences increase with proximity to the mat’s edge in warm and cool 
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cores; Psychromonas, SAR202, and uncultured Gammaproteobacteria are also found at 0-

2cmbsf in these cores.  Core 4486-13 is again distinct:  Bacterial populations here are split 

between Thermodesulfobacteria, Marinitoga, Thermosipho, and Thermotoga.   

The sulfur-oxidizing Beggiatoa who so conspicuously drape the surface of these 

sediments are nowhere to be found at the molecular level (in this study, as in Kysela et al. 2005); 

even targeted sequencing surveys of Beggiatoa mats recover few of their phylotypes (Mills et al. 

2004). While individual Beggiatoa cells are quite large in size, their intracellular volume is 

mostly filled by a gigantic vacuole, leaving little room for cytoplasm (Jannasch et al. 1989, 

Nelson et al. 1989).  These giant filaments apparently do not possess any more copies of 16S 

rRNA transcripts in their limited periplasmic space than smaller mat affiliates. 

At depth, Sulfurimonas sequences are common at the mat’s edge (core 4486-24) in nearly 

equal abundance to JS1 sequences, and in the relatively cool central-Megamat sediments of 

4491-7, from which candidate phylum OP9 sequences were also recovered.  Outside the mat in 

subsurface samples, SAR 202 sequences dominate, with some contribution from the hydrogen-

oxidizing, dehalogenating, anaerobic group Dehalococcoides.  In core 4486-19, just outside the 

mat, WS1 sequences are also prevalent.  Once again 4486-13 is markedly different, hosting 

Thermodesulfobacteria and unclassified Firmicutes transcripts at 6-8cmbsf.   

Looking in greater detail at the presumed sulfate-reducing community reveals a 

conspicuous contrast in core 4486-13 versus other sediments (Figures 12 and 13).  

Deltaproteobacteria are common sulfate reducers in subsurface sediments, and include the 

typical partners in consortia with ANME Archaea, related to Desulfosarcina or Desulfococcus 

(Orphan et al. 2002, Knittel et al. 2003, Schreiber et al. 2010).  Deltaproteobacterial sequences, 

however, are found only in very low abundance throughout any of these samples (Figures 11 and 
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12). In the hottest sediments (4486-13), sequences amplified from Archaeoglobus RNA 

dominate, orders of magnitude more abundant than Deltaproteobacteria sequences recovered 

from other samples, and about twice as abundant as the thermophilic, sulfate-reducing family 

Thermodesulfobacteriaceae found in 4486-13 sediments, by measures of percentage or even 

absolute RNA sequence recovery. Archaeoglobus and Thermodesulfobacteriaceae (found here in 

4486-13 but nearly absent in other sediments) are known to be thermophilic, while the 

Deltaproteobacteria recovered in this survey (in low sequence abundance in nearly every sample 

but 4486-13) are not.  The difference between sulfate-reducing communities in 4486-13 and 

elsewhere in Megamat may be due to extreme physicochemical fluctuations, or longer-term 

trends experienced by some portions of the mat.  Temperature and hydrothermal flux in 

Guaymas Basin are highly variable not only spatially but also temporally, even over daily scales 

(H. Mendlovitz, personal communication). 

Putatively methane-processing Archaea appear in divergent sequence abundances across 

all samples (Figures 14 and 15).  Generally speaking, more of these sequences were recovered 

(as a percentage of total prokaryotes) from sediment inside and close to Megamat’s perimeter 

than in bare sediments – consistent with the high concentrations of methane throughout these 

cores, versus bare sediments with relatively low porewater methane concentration.  Outside the 

mat, the methane-cycling-related sequences were mostly classified as ANME-2c and 

Methanosarcinaceae at the surface, and GoM Arc I (Lloyd et al. 2006) at depth, albeit in low 

abundance within any of these sediments. 

Outside the mat’s edge, the methane cyclers of 4486-19 are predominantly 

Methanosarcinaceae, and exceedingly few sequences were recovered from 6-8cmbsf sediments.  

Just inside the edge of Megamat, in 4486-24, Methanosarcinaceae are present at 0-2cmbsf, 
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ANME-2c and GoM Arc I at depth.  ANME group sequences comprise less than 15% of >2200 

prokaryotic sequences from core 4486-24 at 6-8cm, despite the clear isotopic signatures of 

sulfate-coupled methane oxidation in these sediments.  Of those, most are ANME-2c.   

The hottest core 4491-7 hosts deeply-branching “Guaymas Methanomicrobia” sequences 

(see Figure 15) and ANME-1 groups previously found in high-temperature Guaymas sediments 

(Biddle et al. 2012, Holler et al. 2011). Core 4491-7 is home to the highest percentage of 

methanotroph-related sequences.  ANME-2c makes up more than 95% of total prokaryotic 

sequences in 4491-7 surface sediments, while Methermicoccaceae turn up at depth, accounting 

for roughly half of the prokaryotic 16S rRNA sequences recovered from 6-8cmbsf.  Guaymas-

specific ANME-1 groups may yet represent the most hyperthermophilic, or, at least, most 

temperature-tolerant methanotrophs known, with RNA still present at in situ temperatures 

exceeding 85ºC.  Methermicoccaceae and the unstudied “Guaymas Methanomicrobia” clearly 

play a role in high-temperature Megamat sediments. 

3.4 Archaeal community structure: clone libraries 

Traditional clone libraries were also made with Archaeal primers A8f and A1492r, for 

core 4491-7 and 4486-24 (Figures 16, 17, and 18), to ground-truth the 454 pyrosequencing 

results presented here. Domain-level Archaeal primers appeared to have a bias against 

Euryarchaeota; phylum-specific primer libraries were therefore also made for 4486-24 to catch a 

greater diversity of this group, and this small number of bonus clones have been included.  The 

taxonomy in Figure 16 should not be interpreted by any means as absolute abundance, but rather 

an independent test for the presence or absence of 16S DNA from particular groups.  These data 

nevertheless provide an interesting comparison between both RNA- and DNA-derived full-

length 16S sequences and the shorter, RNA-derived pyrosequencing reads.   
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 Core 4486-24, at the mat’s periphery, returned several full-length sequences of MBGD, 

MBGB, ANME-2c, and unclassified Thermoplasmatales, as in the 454 pyrosequencing library.  

These primer sets detected members of the Guaymas Euryarchaeotal Group, 

Methanomicrobiales, and Methanosarcinales where pyrosequencing did not.  Unlike 

pyrosequencing, the clone libraries did not pick up GoM Arc I or the MCG-15 Group sequences 

present in this core. In core 4491-7, clone libraries revealed several sequences belonging to the 

Miscellaneous Crenarchaeotal Group (MCG), DSEV-2 (including the thermoacidophile 

Aciduliprofundum) and Methanosarcinales, as did pyrosequencing.  These primer sets also 

detected Thermococcales and members of the Hot Water Crenarchaeotal Group while 

pyrosequencing did not, but failed to return sequences of Methanomicrobiaceae or 

Methermicoccaceae that were prevalent in this sample’s 454 pyrosequencing library. 

 Of those in a small RNA-based clone library for core 4491-7, most reverse-transcribed 

sequences branched closely to Aciduliprofundum boonei (Figure 17) and MCG (Figure 18), with 

one single clone each near Thermococcus sibiricus and in the Hot Water Crenarchaeotal Group.  

These libraries have the advantage of longer sequence reads and therefore higher-quality 

alignments.  However, the small library size missed a great deal of diversity captured with 454 

pyrosequencing. 

4. CONCLUSIONS 

 Guaymas Basin sediments are highly variable even within the context of one individual 

hydrothermal hot spot, as our Megamat investigation demonstrates. Methane concentration 

increases in porewater below the central mat, reflected in the high abundance of methane-cycling 

Archaea in these sediments.  Sulfate is available at near-seawater concentrations in the surface 
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layers of all measured sediment cores, but is rapidly depleted with depth in the hottest sediments 

of Megamat.  

OTU abundance was, by far, highest in the surficial sediments outside the perimeter of 

Megamat (4486-19, 0-2cmbsf), and lowest in the high-temperature, central-mat subsurface 

(4486-13, 6-8cmbsf).   This high-temperature sample had high Shannon-Wiener diversity for 

total prokaryotes.  In surface sediments (0-2cmbsf), Archaeal diversity increase linearly with 

temperature; at 6-8cmbsf, Archaeal diversity decreased slightly with temperature, and Bacterial 

diversity decreased in a strongly linear manner with temperature. Temperature appears to 

influence the community structure, though no doubt its effect is in conjunction with changes in 

geochemistry across Megamat: for example, higher porewater methane concentrations within 

central-mat sediments, or lower sulfate concentrations at depth in central-mat sediments, not to 

mention other possible factors like competition or grazing. Complex combinations of substrate 

availability, thermal stress, and community interaction likely limit the prokaryotic OTU richness 

and Bacterial diversity within Megamat’s subsurface.  

 Significantly, the community composition across varying thermal and geochemical 

regimes was remarkably different, in contrast to a recent ARISA-based biogeographic study of 

Guaymas Basin (Meyer et al. 2013).  By contrast to the RNA-based phylogeny presented here, 

DNA derived diversity may be more similar across disparate Guaymas biogeochemical niches.  

This study, however, clearly demonstrates a remarkable variety of sequences from the 

presumably active community over centimeter, decimeter, and meter scales, implying a strong 

influence of hydrothermal point sources in Guaymas Basin.   

 The putative sulfur-cycling community was markedly different in high temperature 

sediments (4486-13, at both 0-2cmbsf and 6-8cmbsf).  Few sequences related to those of known 
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sulfur oxidizers were recovered from the mat’s hottest subsurface, unlike other samples 

presented here (wherein Sulfurimonas often dominated the Bacterial sequences). Archaeoglobus 

and Thermodesulfobacteria dominated these hot sediments both in absolute sequence abundance 

and percentage of total prokaryotic sequences, by comparison to the handful of 

Deltaproteobacteria recovered in other sediments. Archaeoglobus could perhaps be affiliated 

with high-temperature-tolerant, Guaymas-specific ANME-1, or other anaerobic methane 

oxidizers, though of course the existing in-situ hybridization studies in Guaymas sediments show 

Archaeal-Bacterial, not Archaeal-Archaeal partnerships (Teske et al. 2003, Holler et al. 2011, 

Kellermann et al. 2012).  Nevertheless, in light of no Deltaproteobacterial sequence recovery 

within these sediments, high-temperature ANMEs may have a non-proteobacterial partner or no 

sulfate-reducing partner. 

 ANME-2c sequences were widespread, even in high-temperature, high porewater 

methane concentration, low porewater sulfate concentration sediments.  ANME-1 Guaymas 

sequences were only recovered from the hottest sediments (4486-13), and were absent in other 

high-methane samples.  The question of whether ANMEs are separated by temperature, flow, 

sulfate, oxygen, or other factors in these sediments remains to be fully answered.  Deeply-

branching Methanomicrobia in these hot sediments beg further exploration. DSEG-3, 

unclassified Firmicutes, and Thermodesulfobacteria are also abundant in the highest-temperature 

sediments presented here, and their role at such high thermal stress relative to local geochemistry 

is yet to be investigated.  RNA recovered from core 4486-13 has experienced temperatures of at 

least 85ºC, among the hottest yet of any successfully-extracted and sequenced RNA.   

Prokaryotic community structure was most similar in sediments outside of Megamat, 

with many majority groups shared between sediments at the mat’s edge and in bare sediments 
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well outside Megamat. Sequences of the heterotrophic MBGB dominate outside of Megamat’s 

perimeters. Within Megamat, cores 4486-13 and 4491-7 had remarkably different community 

structure, despite their similar porewater methane and sulfate profiles.  This may point to the 

influence of factors like temperature in the mat’s subsurface, and highlights niche variability 

within the mat environment.   
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FIGURES AND TABLES 

 

 
 
Figure 1:  Context photos of sample areas.  (a) Push cores in bare sediment, dive 4485.  (b) The 
far side of Megamat on dive 4491.  (c) Alvin’s temperature probe in a white portion of mat 
during dive 4486.   (d) Sediment cores taken within the white portion of Megamat and just 
outside its perimeter.  Each black number represents a 4486-X core number, while white “T” 
indicates point of probe entry for corresponding temperature profiles.  (Note the area delineated 
in red was in place for a separate experiment.)  
 
 
 
 
 



	  26	  

 
 
 
 
 
 
 
 
 

 
 
 
Figure 2:  Cartoon of Megamat and our sample transect. White and orange patches of mat 
represented by dark and light shaded area.  Temperature profiles were collected at these five 
transect sites, and sediment cores for microbiology and geochemistry were collected as closely 
as possible to each of those temperature profiles.  Core numbers as they will be referred to 
throughout this manuscript are summarized in Table 1.  Note distances in this cartoon are not 
drawn to scale. 
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Table 1:  Summary of coordinating sediment cores and closest in situ temperature measurement 

Environment Transect Site  
(Figure 2) 

Molecular 
biology core 

Geochemistry 
core 

In situ temperature (ºC) 
(0-2 

cmbsf) 
(6-8 

cmbsf) 
(40-42 
cmbsf) 

Bare sediment 5 4485-5 4485-1 3 3 3 

Edge of Megamat 4 4486-19 4486-16 11 32 84 
3 4486-22 4486-24 10 34 101 

Central Megamat 2 4486-13 4486-14 26 85 163 
1 4491-7 4491-12 6 19 112 

 

 

 

Table 2:  Summary of amplified cDNA concentration and final volume sent for pyrosequencing. 

Environment Molecular 
Biology Core 

Sediment 
Subsection 

(cmbsf) 

Amplified cDNA 
Concentration 

(ng/µl) 

Final Volume  
(µl) 

Bare sediment 4485-5 0-2 16.6 10 
6-8 10.9 14 

Edge of Megamat 
4486-19 0-2 13.2 12 

6-8 10.7 15 

4486-22 0-2 14.4 11 
6-8 6.4 18 

Central Megamat 
4486-13 0-2 10.4 15 

6-8 9.3 17 

4491-7 0-2 16.2 10 
6-8 12.4 13 
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Figure 3:  Subsurface temperatures within Megamat (and bare sediment, several dozen meters 
away).  Solid lines represent cores used in this study; dotted lines are profiles also taken within 
mat-covered sediments (“center of mat”) or just outside its perimeter (“edge of mat”). 
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Figure 4:  Geochemical and temperature profiles of Megamat. 
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Table 3:  Summary of 454 pyrosequencing reads per sample. 

Depth 0-2cm 6-8cm 

Environment Bare 
Sediment 

Edge of 
Megamat 

Central 
Megamat 

Bare 
Sediment 

Edge of 
Megamat 

Central 
Megamat 

Microbiology Core 4485- 
5 

4486- 
19 

4484- 
24 

4486- 
13 

4491- 
7 

4485- 
5 

4486- 
19 

4484- 
24 

4486- 
13 

4491- 
7 

Total Reads 2699 4641 2504 3005 3406 3398 3541 2210 1526 2621 

Domain-
Level 
Reads 

Archaea 1876 4361 2343 2585 2487 2799 3507 2101 1091 2302 

Bacteria 823 280 161 420 919 599 34 109 435 319 

Arch:Bac Ratio 2.3 15.6 14.6 6.2 2.7 4.7 103.2 19.3 2.5 7.2 
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Figure 5:  OTU abundance per sample.  OTUs representative of single reads are shown in light 
shading, while OTUs representative of multiple reads are shown in black. 
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Figure 6:  Number of OTUs per sample vs. temperature, separated by sample depth (cmbsf) 
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Figure 7:   Shannon-Wiener diversity (H’) of total prokaryotic community per sample.  
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Figure 8:   Shannon-Wiener diversity (H’) per sample for (a) Archaea and (b) Bacteria 
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Figure 9:   Domain-level Shannon-Wiener diversity (H’) vs. temperature, separated by Archaea 
(circles) and Bacteria (triangles) and by depth (0-2cmbsf, white, or 6-8cmbsf, black).  
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(a) ARCHAEAL COMMUNITY COMPOSITION 
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(b) BACTERIAL COMMUNITY COMPOSITION 
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(c)  LEGEND 

 

 

 
Figure 10:  (a) Archaeal and (b) Bacterial phylogenetic assignments at as specific a taxonomic 
designation as possible, with legend (c).  This phylogeny is based on alignments and neighbor-
joining trees constructed in Arb (Ludwig et al. 2004).  Only bootstrap confidence values >50% 
are shown. Major groups are indicated by patterns, minor groups by white fill.  All groups have 
a number designation (see legend).  Note groups are not all at the same taxonomic level. 
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Figure 11:  Phylogenetic lineages of Proteobacteria, excluding Deltaproteobacteria (see Figure 
13). Neighbor-joining phylogeny based on the V5-V8 region, approximately 600bp. Built with 
Arb software (Ludwig et al. 2004). Bootstrap support for nodes >50% are shown. 
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Figure 12:  Proportional representation of known sulfate-reducing lineages in the 
pyrosequencing dataset.  The top portion of this figure shows abundance of Deltaproteobacteria, 
Thermodesulfobacteria, and Archaeoglobi as a percentage of the total community sequenced per 
sediment section, while the bottom portion shows these communities normalized to 100% of the 
sulfate-reducers present in each sample. Taxonomic designations inferred from neighbor-joining 
trees constructed in Arb (Ludwig et al. 2004).  Note the break from 17-51% in the upper y-axis. 
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Figure 13:  Neighbor-joining tree of sulfate-reducing and related sequences from Megamat, 
with a heat plot of sequence abundance per sample.  Shaded boxes indicate sequence presence; 
black boxes indicate dominance of those sequences in a sample. Bootstraps >50% are shown. 
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Figure 14:  Proportional representation of methanogenic and methane-oxidizing Archaea in the 
pyrosequencing dataset, as a percentage of total prokaryotic community (top) and normalized 
within each sample (bottom). Note the red ANME-1 bars encompass ANME-1a, ANME-1b, 
ANME-1 Guaymas, and ANME-1 Guaymas II (see Figure 15).   
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Figure 15:  Neighbor-joining tree of known methanogens, methanotrophs, and related; heat plot 
with shaded scheme as in Figure 13.  Bootstraps >50% are shown. 
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Figure 16:  Clone-library based phylogeny of two Megamat samples, both from 6-8cmbsf.   
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Figure 17:  Neighbor-joining tree of Euryarchaeotal clone libraries.  Clones with “RNA” in 
their name are from RNA extractions, “DNA” from DNA extractions.  Clones named with 
“Arch” were amplified using domain-level PCR primers, while “Eury” were amplified with 
Euryarchaeotal-specific primers. 
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Figure 18:  Crenarchaeotal phylogeny from full-length 16S clone libraries. “DNA” and “RNA” 
denote the same distinction as in Figure 17; all clones in this neighbor-joining tree were 
amplified using domain-level Archaeal primers.  
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