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ABSTRACT

STEFANOS KECHAGIAS: Studies in multidimensional stochastic processes: multivariate
long-range dependence and synthesis of Gaussian random fields

(Under the direction of Vladas Pipiras)

This thesis is concerned with the study of multidimensional stochastic processes with

special dependence structures. It is comprised of 3 parts. The first two parts concern

multivariate long-range dependent time series. These are stationary multivariate time series

exhibiting long-range dependence in the sense that the impact of past values of the series

to the future ones dies out slowly with the increasing lag. In contrast to the univariate

case, where long-range dependent time series are well understood and applied across a

number of research areas such as Economics, Finance, Computer Networks, Physics, Climate

Sciences and many others, the study of multivariate long-range dependent time series has not

matured yet. This thesis sets proper theoretical foundations of such series and examines

their statistical inference under novel models. The third part of the thesis is concerned

with two-dimensional stationary Gaussian random fields. In particular, a fast algorithm is

proposed for exact synthesis of such fields based on convex optimization and is shown to

outperform existing approaches.

iii



To my parents, Anatoli and Thanasis. . .

iv



ACKNOWLEDGEMENTS

It is with a great sense of gratitude and appreciation that I would like to thank my ad-

visor Professor Vladas Pipiras. His unending support and guidance have been instrumental

to my academic growth and to the successful completion of this thesis. Constantly pursuing

excellence, Professor Pipiras instilled in me his uncompromising scientific standards. I will

be forever grateful to him for believing in me, for sharing with me his ideas and passion

for Mathematics during our countless meetings, and most importantly for inspiring me to

follow my dreams to the fullest.

I would also like to thank the other members of my dissertation committee, Profes-

sors Shankar Bhamidi, Amarjit Budhiraja, Chuanshu Ji and M. Ross Leadbetter for their

immeasurable contribution in teaching me the notions of measure and probability. Their

encouragement and support pushed me to become a better researcher, while their help-

ful comments and suggestions improved the quality of this thesis. Moreover, I am deeply

thankful to Professor Edward Carlstein and to all the faculty members at the Department

of Statistics and Operations Research who mentored me in my first steps as a Statistics

teacher, and were always willing to offer me their valuable advice.

Next, I wish to offer my sincere thanks to Dr. Mark Little for giving me the opportunity

to work as a Research Fellow at the Advanced Analytics and Research Division at SAS.

There, I have been fortunate to work alongside Dr. Xilong Chen, an exceptional economist

and statistician. In particular, my discussions with Dr. Chen have helped me gain a broader

perspective on the role of Statistics in real world problems and have also contributed to the

material of Chapter 3.

On a more personal level, I want to thank Professor Nikolaos Artavanis for introducing

me to the wonderful world of Mathematics and for motivating me to pursue a graduate

degree at UNC. Additionally, I will always be grateful to Apostolis and Matina Karkalemi

for their invaluable teachings and their parental love. I also want to express my special

v



thanks and deep appreciation to Lily Bowers for her love and faith in me. Her continuing

patience and support were paramount to the completion of this thesis. Moreover, I am

particularly thankful to her parents Tom and Abby Bowers who supported me in every step

of this journey.

Finally, my words fall short to express my gratitude to my parents, Anatoli Choupanidou

and Thanasis Kechagias. With their uncompromising moral values and their unparalleled

work ethic they have always set an example for me to follow. From the bottom of my heart,

I thank them for their self-sacrifice, for their profound kindness and for their endless love.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Definitions and representations of multivariate
long-range dependent time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Definitions in the time and spectral domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Non-causal linear representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Causal linear representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 The special case of power-law coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 The case of zero phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 The case of general phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Multivariate FARIMA(0,D, 0) series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Inference and applications of a bivariate long-range dependent time series
model with general phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 General phase VARFIMA(0,D, 0) series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 General phase VARFIMA(p,D, q) series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 VARFIMA(0,D, q) series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 VARFIMA(p,D, q) series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



3.4 Inference and other tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Convex optimization and feasible circulant matrix embeddings in syn-
thesis of stationary Gaussian fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Available circulant matrix embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Standard embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Cutoff embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 Smoothing windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Optimal circulant embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.1 Formulation of the constrained optimization problem . . . . . . . . . . . . . . . . 77

4.3.2 Primal log-barrier method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Further discussion on the PLB method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Powered exponential covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.2 Cauchy covariance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.3 Efficiency and related issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.1 Technical proofs for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.2 Fourier series of trigonometric power-law coefficients . . . . . . . . . . . . . . . . . . . . . . . . 104

B Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.1 Technical proofs for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

viii



BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ix



LIST OF TABLES

3.1 Rule of thumb for assessing the strength of evidence against the
model with the higher BIC value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 AIC and BIC values from fitting 9 noncausal (left table) and 9
causal (right table) VARFIMA(p,D, q) models to the annualized
inflation rates for goods and services. The superscripts + and ∗
indicate diagonal AR and MA components, respectively.. . . . . . . . . . . . . . . . . . . . . 64

B.1 The values of ck(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.2 The values of cn(k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

x



LIST OF FIGURES

2.1 Components of bivariate FARIMA(0,D, 0) series where D =
diag(0.2, 0.4), and φ = 1.4587. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Phase functions φ(λ) for the model (3.8)–(3.9) for different param-
eter values. Left: c = 0, 0.5,−0.8,−0.4 and d1 = 0.2, d2 = 0.4.
Right: c = 0,−0.7, 0.7,−0.3, d1 = d2 = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Estimated parameters for 100 replications of a VARFIMA(0,D, 0)
series with sample size N = 200. The dashed vertical lines indicate
the median over all replications while the solid vertical lines indicate
the true parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Estimated parameters for 200 replications of a VARFIMA(0,D, 0)
series with sample size N = 400. The dashed vertical lines indicate
the median over all replications while the solid vertical lines indicate
the true parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Estimated parameters for 100 replications of a VARFIMA(0,D, 1)
series with sample size N = 200 and diagonal MA component. The
dashed vertical lines indicate the median over all replications while
the solid vertical lines indicate the true parameter values. . . . . . . . . . . . . . . . . . . . 51

3.5 Estimated parameters for 200 replications of a VARFIMA(0,D, 1)
series with sample size N = 400 and diagonal MA component. The
dashed vertical lines indicate the median over all replications while
the solid vertical lines indicate the true parameter values. . . . . . . . . . . . . . . . . . . . 52

3.6 Estimated parameters for 100 replications of a VARFIMA(0,D, 1)
series with sample size N = 200 and nondiagonal MA component.
The dashed vertical lines indicate the median over all replications
while the solid vertical lines indicate the true parameter values. . . . . . . . . . . . . . 53

3.7 Estimated parameters for 200 replications of a VARFIMA(0,D, 1)
series with sample size N = 400 and nondiagonal MA component.
The dashed vertical lines indicate the median over all replications
while the solid vertical lines indicate the true parameter values. . . . . . . . . . . . . . 54

3.8 Estimated parameters for 100 replications of a VARFIMA(1,D, 0)
series with sample size N = 200 and diagonal AR component. The
dashed vertical lines indicate the median over all replications while
the solid vertical lines indicate the true parameter values. . . . . . . . . . . . . . . . . . . . 55

3.9 Estimated parameters for 200 replications of a VARFIMA(1,D, 0)
series with sample size N = 400 and diagonal AR component. The
dashed vertical lines indicate the median over all replications while
the solid vertical lines indicate the true parameter values. . . . . . . . . . . . . . . . . . . . 56

xi



3.10 Estimated parameters for 100 replications of a VARFIMA(1,D, 1)
series with sample size N = 200 and diagonal AR and MA com-
ponents. The dashed vertical lines indicate the median over all
replications while the solid vertical lines indicate the true parame-
ter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Estimated parameters for 100 replications of a VARFIMA(1,D, 1)
series with sample size N = 200 and diagonal AR and nondiagonal
MA components. The dashed vertical lines indicate the median
over all replications while the solid vertical lines indicate the true
parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.12 Estimated parameters for 200 replications of a VARFIMA(1,D, 1)
series with sample size N = 400 and diagonal AR and nondiagonal
MA components. The dashed vertical lines indicate the median
over all replications while the solid vertical lines indicate the true
parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.13 Estimated parameters for 100 replications of a VARFIMA(1,D, 1)
series with sample size N = 200 and diagonal AR and nondiagonal
MA components. The white bins correspond to the realizations
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CHAPTER 1

Introduction

Since the introduction of Brownian motion in the late 19th century, stochastic processes

have been used extensively to model the evolution of random phenomena over time and

space. Specifically in recent years, technological advancements in monitoring systems and

data collection methods have motivated the use of multidimensional stochastic processes for

simultaneous modeling of data originating from multiple sources. This thesis focuses on two

classes of multidimensional stochastic processes that have special dependence structures,

namely, multivariate (vector-valued) time series exhibiting long-range dependence (LRD)

(Chapters 2 and 3) and multidimensional (scalar-valued) stationary Gaussian random fields

(Chapter 4).

Long-range dependent (LRD) time series models appear in the analysis of time series

data, where the dependence between observations that are increasingly far apart in time dies

out slowly. This behavior is in contrast to the one displayed by the well-studied family of

vector autoregressive (VAR) series which are short-range dependent, in the sense that their

memory dies out exponentially fast for observations that are increasingly far apart in time.

In the univariate case, LRD time series models have been studied extensively in theory and

have been popular in a wide range of application areas such as Statistical Physics, Computer

Networks, Finance, Hydrology and Geosciences. They are commonly defined as discrete-

time stationary time series models characterized by slowly decaying autocorrelations in the

time domain and in the frequency domain by a spectral density function which explodes

at the zero frequency. Bivariate and, more generally, multivariate LRD time series models

have also been considered by a number of researchers. But proper theoretical foundations

for a general class of such models were laid only recently in Kechagias and Pipiras (2015),

a work that we present in Chapter 2.



In particular, the focus of Chapter 2 is on the role of the so-called phase, an important

notion that emerges in the study of multivariate LRD time series but which erringly has

received little attention until now. More specifically, the phase parameter is the argument

φ of the complex constant ceiφ that appears in the cross spectrum at the zero frequency

and controls the asymmetry (time non-reversibility) in the series at large time lags. A time-

reversible bivariate time series, for example, has a (matrix-valued) autocovariance function

γ(n) that satisfies the symmetry condition γ(n) = γ(−n), n ∈ Z. Consequently, such a

series will have real-valued spectrum and thus the phase parameter φ = 0. In many em-

pirical applications, however, the observed LRD series are not time-reversible calling for

multivariate LRD models that allow for general φ. In Chapter 2, we construct such mod-

els by taking noncausal (two-sided) linear representations with matrix-valued coefficients

whose entries decay as a power law. Moreover, we propose a parametric model which is

a noncausal multivariate extension of the celebrated FARIMA series that admits such a

representation and give an exact form for its autocovariance function. Finally, we develop

a causal multivariate LRD model that allows for general phase by introducing a new type

of coefficients which we will refer to as trigonometric power-law coefficients.

In Chapter 3, we turn our attention to statistical inference. As the practical usefulness

of the causal linear representations that we constructed using the trigonometric power-law

coefficients is yet to be determined, we focus here on the noncausal fractionally integrated

model discussed in Chapter 2. We begin by proposing suitable reparametrizations under

which the model is identifiable in the sense that the (Gaussian) likelihood function does not

take the same value for different parameter choices. In particular, these parameterizations

seem to apply only in the bivariate case, and so the focus throughout Chapter 3 is on

bivariate series. Our second contribution in Chapter 3 is the enrichment of the parametrized

FARIMA class with models that allow for autoregressive (AR, for short) and moving average

(MA, for short) components while still being identifiable and of course leading to a general

phase parameter. This extension is far from simple compared to the univariate case, since

the matrix-valued LRD and SRD filters do not commute in general. For example, taking

nondiagonal AR and MA components yields fractionally cointegrated series which are a lot

more delicate to deal with.

2



Parametric estimation is performed using a conditional maximum likelihood approach

that is based on the multivariate Durbin-Levinson algorithm (a recursive time series al-

gorithm commonly used to solve the so-called Yule-Walker equations). This method is

appealing in our case as it only requires the knowledge of the autocovariance function of

models with no AR component whose exact form we provide. Moreover, we show that

switching from the Durbin-Levinson to a computationally slower algorithm called the In-

novations algorithm, allows for multistep ahead forecasting based on a finite information

set. Despite the efficiency loss, this approach is particularly useful as the usual infinite past

forecasting approaches break down in the noncausal case. The performance of the estima-

tion method is tested in a simulation study, where we fit a number of different models on

synthetic data. Our findings show that the method works well in most cases with a few

exceptions that raise interesting questions for future work. We conclude Chapter 3 with

an application to the annualized U.S. inflation rates on goods and services, which show

evidence of both long-range dependence and asymmetry. The proposed noncausal model

outperforms other models previously used to analyze this data.

In Chapter 4, we switch gears from multivariate long-range dependent time series to

multidimensional stationary Gaussian random fields. Such fields are fundamental modeling

tools in many application areas including Environmental Sciences, Image Analysis, Geo-

statistics and Machine Learning. The computational cost of synthesizing such data using

conventional methods (e.g. Cholesky decomposition), however, is often prohibitive, restrict-

ing empirical studies to small sample sizes. Moreover, in practice, spatial datasets are often

large with many missing observations which may need to be simulated in Monte Carlo EM

or MCMC algorithms, calling for fast (Gaussian field) data-generation algorithms. In par-

ticular, in Chapter 4, we propose a new method that can be used for the exact synthesis

of (large) stationary Gaussian two-dimensional random fields with a prescribed covariance

structure.

One of the most popular methods for fast and exact generation of stationary Gaussian

random fields is the so-called standard circulant matrix embedding (CME). The idea of the

method is to use a suitable periodization to embed a covariance matrix of interest into a

larger circulant matrix whose eigenvalues can be computed efficiently using the fast Fourier
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transform (FFT). If all the eigenvalues are nonnegative, which in theory is true for large

enough sample size, it is straightforward to construct a stationary Gaussian random field

with the desired covariance structure. Nevertheless, some of the eigenvalues often remain

negative for computationally feasible large sample sizes and many covariance structures of

practical interest.

A possible reason that some eigenvalues are negative is that the covariance embedding

is not smooth at the boundary of periodization. To deal with this issue, two approaches

have been suggested in the literature, namely, the cutoff circulant embedding (CCE) and

the smoothing windows circulant embedding (SWCE). In the CCE method, the initial

covariance is extended suitably in a parametric fashion, based on the model at hand, to

a larger domain, leading to a covariance embedding with nonnegative eigenvalues. While

such extensions have been found for several classes of models of stationary fields, their

construction is often nontrivial. The SWCE method, on the other hand, introduces a

transition region around the boundary of periodization, over which the covariance function

is then extended using a smoothing kernel which smooths out the discontinuities. The

SWCE method is fast, independent of the model at hand and outperforms the CCE method

in the sense that it requires smaller transition regions.

Our contribution to this body of work is a new circulant embedding method called

optimal optimal circulant embedding (OCE). Given a covariance function r on a finite

square lattice, the OCE method finds the embedding covariance r̃ that is closest to r and has

nonnegative eigenvalues by solving a quadratic program with linear inequality constraints.

The objective function of the problem is the quadratic distance between r and r̃ taken at

all points outside the transition region, while the constraints consist of all the eigenvalues

of r̃ being nonnegative.

The OCE method is appealing in several ways. First, the method proposes a novel

approach based on quadratic constrained optimization. This is quite fitting given the grow-

ing integration of optimization tools in Statistics. Second, several key components of the

optimization procedure can be implemented more efficiently using FFT. In particular, we

show that direct matrix-vector product calculations of complexity O(N4), where N is the

side length of the field to be constructed, can be performed using FFT which reduces the
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complexity to O(N2 logN). Moreover, these calculations need to be repeated over multiple

iterations and thus our approach reduces the computational cost significantly. Third, the

OCE outperforms the SWCE and CCE methods for several practical covariance functions

as it needs smaller transition regions to lead to embeddings with nonnegative eigenvalues.
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CHAPTER 2

Definitions and representations of multivariate long-range dependent time

series

2.1 Introduction

Long-range dependent (LRD, in short) time series models have been studied extensively in

theory and have been popular in a wide range of applications (Beran (2013), Doukhan, Op-

penheim and Taqqu (2003), Giraitis, Koul and Surgailis (2012), Park and Willinger (2000),

Robinson (2003)). They are defined as (second-order) stationary time series models satisfy-

ing one of the following non-equivalent conditions. In the time domain, the autocovariance

function γ(h) = Cov(X0,Xh) of a LRD time series {Xn}n∈Z is such that

γ(k) = L1(k)k
2d−1, as k →∞, (2.1)

where d ∈ (0, 1/2) is the long-range dependence (LRD) parameter and L1 is a slowly varying

function at infinity. In the spectral domain, the spectral density function f(λ) of {Xn}n∈Z
is such that

f(λ) = L2(λ)λ
−2d, as λ→ 0+, (2.2)

where L2 is a slowly varying function at 0. Another common way to define a LRD time

series is through a causal (one-sided) linear representation

Xn = µ+
∞∑

k=0

ψkǫn−k, (2.3)

where {ǫn}n∈Z is a white noise series, µ is a constant mean and the sequence {ψk}k≥0

satisfies

ψk = L3(k)k
d−1, as k →∞, (2.4)



where L3 is a slowly varying function at infinity.

In this chapter, we are interested in the notion of LRD for multivariate time series, that

is, Rp-valued time series Xn = (X1
n, . . . ,X

p
n)′, where prime indicates transpose. Second-

order stationary multivariate series are now characterized by matrix-valued autocovariance

function γ(h) = EX0X
′
h − EX0EX

′
h and matrix-valued spectral density f(λ). In the mul-

tivariate case, γ(h) does not necessarily satisfy the symmetry (time-reversibility) condition

γ(h) = γ(−h) and, moreover, f(λ) can have complex-valued entries in general (Hannan

(1970), Reinsel (1997), Lütkepohl (2005)). Several forms of multivariate LRD, not surpris-

ingly, have already been considered in the literature. The goal of this chapter is to clarify

this notion. As will be seen below, there are a number of new interesting issues that arise in

the multivariate but not in the univariate case, and which have not been studied in greater

detail yet.

The most general form of the bivariate LRD appears in Robinson (2008) who supposed

that the spectral density matrix satisfies

f(λ) ∼




ω11|λ|−2d1 ω12|λ|−(d1+d2)e−isign(λ)φ

ω21|λ|−(d1+d2)eisign(λ)φ ω22|λ|−2d2


 , as λ→ 0, (2.5)

where ω11, ω12, ω21, ω22 ∈ R, d1, d2 ∈ (0, 1/2) and φ ∈ (−π, π]. The parameter φ is called a

phase parameter and is unique to the bivariate LRD case (see also Section 2.2 below). It

controls asymmetry (time non-reversibility) in the series at large time lags. Many results of

this chapter will be related directly to this parameter and its role. The definition of LRD

with

φ = 0 (2.6)

was considered in Lobato (1999), Velasco (2003), Marinucci and Robinson (2003), Chris-

tensen and Nielsen (2006), Nielsen (2004; 2007). The value φ = 0 is associated with LRD

time series which are symmetric (time-reversible). The case of

φ =
π

2
(d1 − d2) (2.7)
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is another special case and was considered in Lobato (1997), Robinson (2002; 2008), Shi-

motsu (2007), Nielsen (2011), Nielsen and Frederiksen (2011). For example, a natural

extension of the FARIMA(0, d, 0) series to the bivariate case as




(I −B)d1 0

0 (I −B)d2


Xn = ǫn, (2.8)

where {ǫn} is a bivariate white noise and B is the backshift operator, corresponds to φ

given by (2.7). The case of general φ is considered in Robinson (2008) as indicated above,

and without referring to φ explicitely in Robinson (1995). Multivariate LRD models also

appear in Robinson (1994), Chan and Terrin (1995), Marinucci and Robinson (2001; 2003),

Robinson and Yajima (2002), Chen and Hurvich (2003; 2006) in the context of fractional

cointegration, and in Achard, Bassett, Meyer-Lindenberg and Bullmore (2008), Wendt,

Scherrer, Abry and Achard (2009) in the context of fractal connectivity.

We contribute to the understanding of the notion of multivariate LRD in the following

three ways. First, we extend the definition (2.5) to the multivariate case and consider its

analogue in the time domain (as in (2.1)) and relationships between them. This contribu-

tion is somewhat standard, but also necessary to set a proper foundation for dealing with

multivariate LRD. Again, much of the discussion will focus on the role played by the phase

parameters (φ in (2.5) in the bivariate case). In the bivariate case, similar results can be

found in Robinson (2008).

Our second contribution is more original. It concerns linear representations of multi-

variate LRD series of the form

Xn =

∞∑

k=−∞

Ψkǫn−k, (2.9)

where Ψk are p× p matrices and {ǫn}n∈Z is a p-variate white noise. Even more specifically,

we are interested in causal (one-sided) representations, that is, (2.9) with Ψk = 0 when

k < 0. It is not too difficult to construct non-causal (two-sided) representations (2.9)

having general phase parameters in the definition of LRD by having Ψk decay as suitable

power-law functions as k →∞ and k → −∞. But it is not obvious how to construct such

causal representations. For example, taking Ψk to behave as a power-law function in a
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causal representation leads necessarily to the phase parameters π
2 (dj1 − dj2), where dj1 , dj2

are the LRD parameters of component series (Section 2.3 below).

We show that causal multivariate LRD series of general phase can be constructed taking

the elements of Ψk as linear combinations of, what we will call, trigonometric power-law

coefficients

ca,bk = k−b cos(2πka),

sa,bk = k−b sin(2πka), k ≥ 0, (2.10)

where 0 < a < 1 and 1
2 < b ≤ 1 − 1

2a. (By convention, 0p = 0 for p ∈ R, so that

ca,b0 = sa,b0 = 0.) The use of such coefficients can be traced back at least to Wainger (1965).

What makes them special and relevant for LRD is that their discrete Fourier transform

satisfies, for example,

∞∑

k=0

ca,bk e−ikλ ∼ c1|λ|−
1−b−a/2

1−a ei(c2|λ|
− a

1−a−π
4
), as λ→ 0, (2.11)

where c1, c2 are two non-zero constants (Wainger (1965) and Appendix A.2 below). Thus,

even in the univariate case, the time series

Xn =

∞∑

k=0

ca,bk ǫn−k (2.12)

is LRD (cf. (2.2)) with the LRD parameter

d =
1− b− a/2

1− a . (2.13)

Though the trigonometric power-law coefficients can be used to construct new univariate and

multivariate causal LRD series, their statistical inference and practical usefulness remain

to be explored in the future.

Lastly and third, we provide a natural multivariate extension of FARIMA(0, d, 0) having

a general phase. As indicated above, the extension (2.8) of FARIMA(0, d, 0) series to the

bivariate case has necessarily the phase parameter φ = (d1 − d2)π/2. For example, a
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bivariate extension with a general phase can be obtained with

Xn =




(I −B)−d1 0

0 (I −B)−d2


Q+ǫn +




(I −B−1)−d1 0

0 (I −B−1)−d2


Q−ǫn,

(2.14)

where Q+, Q− are 2× 2 matrices with real-valued entries. We provide explicit formulas for

the autocovariance functions of this extension, including the multivariate case, in Section

2.5.

The structure of Chapter 2 is as follows. The definitions of multivariate LRD in the time

and spectral domains are given in Section 2.2. Non-causal representations of multivariate

LRD series are studied in Section 2.3. Section 2.4 concerns causal linear representations.

Multivariate FARIMA series are considered in Section 2.5. Conclusions and future direc-

tions can be found in Section 2.6. Technical proofs are moved to Appendix A.1, and the

behavior of the Fourier series of the trigonometric power-law coefficients (2.10) is presented

in Appendix A.2.

2.2 Definitions in the time and spectral domains

We begin with the definitions of multivariate LRD in the time and spectral domains, ex-

tending conditions (2.1) and (2.2). We shall suppose for simplicity that all slowly varying

functions behave asymptotically as constants. This is the relevant case for statistical infer-

ence. Moreover, these slowly varying functions would appear below in a matrix form which,

along with a matrix regular variation, is only now receiving a closer look (e.g. Meerschaert

and Scheffler (2013)).

The definitions below use the following notation. For a > 0 and a diagonal matrix M =

diag(m1, . . . ,mp), we write aM = diag(am1 , . . . , amp). The autocovariance matrix function

of a second-order stationary series X = {Xn}n∈Z is defined as γ(h) = (γjk(h))j,k=1,...,p =

EX0X
′
h − EX0EX

′
h, h ∈ Z, and the corresponding spectral density matrix function, if it

exists, is denoted f(λ) = (fjk(λ))j,k=1,...,p. For a matrix A, A∗ stands for its Hermitian

transpose. Finally, we will use the symbol ∼ to indicate a limit, e.g. an ∼ a stands for
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lim an = a. In the last example, note that this is equivalent to an/a → 1 when a 6= 0, and

that there is no such interpretation when a = 0.

Definition 2.1. (Time domain) A multivariate (p-vector) second-order stationary time

series is LRD if its autocovariance matrix function satisfies:

γ(n) = nD−(1/2)IR(n)nD−(1/2)I =
(
Rjk(n)n

(dj+dk)−1
)
j,k=1,...,p

, (2.15)

where D = diag(d1, . . . , dp) with dj ∈ (0, 1/2), j = 1, . . . , p, and R(u) = (Rjk(u))j,k=1,...,p is

an R
p×p-valued function satisfying

R(u) ∼ R = (Rjk)j,k=1,...,p, as u→ +∞, (2.16)

for some p× p matrix R, where Rjk ∈ R and Rjj 6= 0, j = 1, . . . , p.

Definition 2.2. (Spectral domain) A multivariate (p-vector) second-order stationary time

series is LRD if its spectral density matrix function satisfies

f(λ) = λ−DG(λ)λ−D
∗
=
(
Gjk(λ)λ

−(dj+dk)
)
j,k=1,...,p

, (2.17)

where D = diag(d1, . . . , dp) with dj ∈ (0, 1/2), j = 1, . . . , p, and G(λ) = (Gjk(λ))j,k=1,...,p is

a C
p×p-valued, Hermitian symmetric, non-negative definite matrix function satisfying

G(λ) ∼ G = (Gjk)j,k=1,...,p =
(
gjke

iφjk
)
j,k=1,...,p

, as λ→ 0+, (2.18)

for some p×p, Hermitian symmetric, non-negative definite matrix G, where gjk ∈ R, gjj 6= 0

and φjk ∈ (−π, π].

A number of remarks regarding Definitions 2.1 and 2.2 are in place.

Remark 2.2.1. Note that the component series {Xj
n}n∈Z, j = 1, . . . , p, of a multivariate

LRD series are LRD with parameters dj , j = 1, . . . , p. (Note that φjj = 0 since the matrix

G is Hermitian symmetric and hence has real-valued entries on the diagonal.) Another

possibility would be to require that at least one of the component series {Xj
n}n∈Z is LRD.

This could be achieved by assuming in (2.17) that dj ∈ [0, 1/2), j = 1, . . . , p, and that at
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least one dj > 0. But note that such assumption is not appropriate in (2.15). See also

Section 2.6 for a discussion on the so-called antipersistence case dj < 0.

Remark 2.2.2. Note that the structure of (2.17) is such that f(λ) is Hermitian and non-

negative definite. D∗ appearing in (2.17) can be replaced by D since it is diagonal and

consists of real-valued entries. We write D∗ to make the non-negative definiteness of f(λ)

more evident. The entries φjk in (2.18) are referred to as phase parameters. Their role

will become more apparent in Proposition 2.2.1 below where Definitions 2.1 and 2.2 are

compared.

There are two common but slightly different ways to represent the phase parameters.

Note that a complex number z = z1 + iz2 ∈ C, z1, z2 ∈ R, can be represented as (assuming

z1 6= 0 in the second relation below and denoting the principle value of the argument by

Arg(z) ∈ (−π, π])

z = |z|eiArg(z) (2.19)

=
√
z21 + z22e

i(arctan(
z2
z1

)+πsign(z2)1{z1<0}) = sign(z1)
√
z21 + z22e

i arctan(
z2
z1

)

= z1

√
1 +

z22
z21
e
i arctan(

z2
z1

)
= z1

√
1 + tan2(arctan

z2
z1

)e
i arctan(

z2
z1

)

=
z1

cosφ
eiφ, with φ = arctan(

z2
z1

). (2.20)

The two specifications of gjk and the phase φjk correspond to (2.19) (e.g. Brockwell and

Davis (2009), p. 422) and (2.20) (e.g. Hannan (1970), pp. 43–44):

gjk = |Gjk|, φjk = Arg(Gjk), (2.21)

gjk =
ℜGjk
cosφjk

, φjk = arctan
ℑGjk
ℜGjk

. (2.22)

Note that, in the case (2.22), φjk ∈ (−π/2, π/2).

Remark 2.2.3. It should also be noted that the phase parameters are unique to the LRD

case. Taking
∞∑

n=−∞

||γ(n)|| <∞ (2.23)
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for the definition of short-range dependent (SRD) series (with || · || denoting the Frobenius

norm of a matrix), we have

f(λ) =
1

2π

∞∑

n=−∞

e−inλγ(n). (2.24)

In particular, f(0) = (2π)−1
∑∞

n=−∞ γ(n) consists of real-valued entries, and

f(λ) ∼ G (= f(0)), as λ→ 0, (2.25)

where G consists of real-valued entries. The relation (2.25) corresponds to (2.17)−(2.18)

with dj = 0, j = 1, . . . , p, and all phase parameters φjk = 0. Note that we view antiper-

sistence corresponding to G = (2π)−1
∑∞

n=−∞ γ(n) = 0 as a special case of short-range

dependence. The antipersistence case, however, is expected to involve phase parameters

similarly to the case of long-range dependence. See Section 2.6 for further discussion.

Remark 2.2.4. The squared coherence function

H2
jk(λ) =

|fjk(λ)|2
fjj(λ)fkk(λ)

satisfies 0 ≤ H2
jk(λ) ≤ 1. As λ→ 0+, this translates into

0 ≤ lim
λ→0+

|Gjk|2λ−2(dj+dk)

Gjjλ−2djGkkλ−2dk
=
|Gjk|2
GjjGkk

≤ 1 (2.26)

and also explains why the choice of λ−(dj+dk) is natural for the cross-spectral density fjk(λ).

Remark 2.2.5. Note also that (2.17) is considered for λ → 0+. Since f is Hermitian

symmetric, (2.17)−(2.18) can be replaced by

fjk(λ) = Gjk(λ)|λ|−(dj+dk) ∼ gjkeiφjksign(λ)|λ|−(dj+dk), as λ→ 0, (2.27)

where Gjk(−λ) = Gjk(λ)
∗, if both positive and negative λ’s are considered. (Note that

since G is Hermitian symmetric, we have gjk = gkj.)
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Proposition 2.2.1 below compares Definitions 2.1 and 2.2. It uses the notion of a quasi-

monotone slowly varying function whose definition is recalled in Appendix A.1. The proof

of the proposition can also be found in the appendix. As usual, Γ(·) denotes the gamma

function.

Proposition 2.2.1. (i) Suppose the component functions Rjk are quasi-monotone slowly

varying. Then, Definition 2.1 implies Definition 2.2 with

Gjk =
Γ(dj + dk)

2π

{
(Rjk +Rkj) cos(

π

2
(dj + dk))− i(Rjk −Rkj) sin(

π

2
(dj + dk))

}
(2.28)

in the relation (2.18).

(ii) Suppose the component functions ℜGjk, ℑGjk are quasi-monotone slowly varying.

Then, Definition 2.2 implies Definition 2.1 with

Rjk = 2Γ(1 − (dj + dk))
{
ℜGjk sin(

π

2
(dj + dk))−ℑGjk cos(

π

2
(dj + dk))

}
(2.29)

in the relation (2.16).

Note that under the specification (2.22), with Gjk = gjke
iφjk , the relation (2.28) yields

φjk = − arctan
{Rjk −Rkj
Rjk +Rkj

tan(
π

2
(dj + dk))

}
, (2.30)

gjk =
Γ(dj + dk)(Rjk +Rkj) cos(

π
2 (dj + dk))

2π cos(φjk)
. (2.31)

Similarly, under the specification (2.21),

φjk = − arctan
{Rjk −Rkj
Rjk +Rkj

tan(
π

2
(dj + dk))

}
− π sign(Rjk −Rkj)1{Rjk+Rkj<0}, (2.32)

gjk =
Γ(dj + dk)

2π

(
R2
jk +R2

kj + 2RjkRkj cos(π(dj + dk))
)1/2

, (2.33)

where we used the first equality following (2.19).

The relation (2.30) sheds light on the phase parameters φjk. Note that φjk = 0 if and

only if Rjk = Rkj. In view of (2.15)–(2.16), the last property corresponds to γjk(n) being
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symmetric as n → ∞ and n → −∞, that is, γjk(−n) ∼ γjk(n), as n → ∞. (We used here

the fact that γ(−n) = γ(n)′ and hence γjk(−n) = γkj(n).)

2.3 Non-causal linear representations

We are interested here in linear representations (2.9) of multivariate LRD time series. In

the next result, we show that linear time series (2.9) with power-law coefficients Ψk in the

asymptotic sense as k → ∞ and k → −∞, are multivariate LRD. We argue at the end of

the section that such non-causal time series can lead to general phase parameters.

Proposition 2.3.1. Let {ǫn}n∈Z be an R
p-valued white noise, satisfying Eǫn = 0 and

Eǫnǫ
′
n = I. Let also {Ψm = (ψjk,m)j,k=1,...,p}m∈Z be a sequence of real-valued matrices such

that

ψjk,m = Ljk(m)|m|dj−1, m ∈ Z, (2.34)

where dj ∈ (0, 1/2) and L(m) = (Ljk(m))j,k=1,...,p is an R
p×p-valued function satisfying

L(m) ∼ A+, as m→∞, and L(m) ∼ A−, as m→ −∞, (2.35)

for some p × p real-valued matrices A+ = (α+
jk)j,k=1,...,p, A

− = (α−
jk)j,k=1,...,p. Then, the

autocovariance function of the time series Xn given by a linear representation

Xn =

∞∑

m=−∞

Ψmǫn−m, (2.36)

satisfies (2.15)–(2.16) with

Rjk =
Γ(dj)Γ(dk)

Γ(dj + dk)

(
c1jk

sin(πdj)

sin(π(dj + dk))
+ c2jk + c3jk

sin(πdk)

sin(π(dj + dk))

)
, (2.37)

where

c1jk =
∑p

t=1 α
−
jtα

−
kt = (A−(A−)∗)jk,

c2jk =
∑p

t=1 α
−
jtα

+
kt = (A−(A+)∗)jk,

c3jk =
∑p

t=1 α
+
jtα

+
kt = (A+(A+)∗)jk.

(2.38)
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In particular, if Rjj 6= 0, j = 1, . . . , p, then the series is LRD in the sense of Definition

2.1.

The proof of Proposition 2.3.1 can be found in Appendix A.1. Entries of the matrices

A+ and A− in (2.35) are allowed to be zero. In particular, the case

ψjk,m = ljk(m)|m|djk−1, m ∈ Z, (2.39)

with possibly different djk ∈ (0, 1/2) across k for fixed j and ljk(m) ∼ β±jk with β±jk ∈ R, as

m→ ±∞, can be expressed as (2.34) with dj = maxk djk.

Note also that the time series (2.36) is proved to be LRD in the sense of Definition 2.1.

In view of Proposition 2.2.1, (i), the time series is also expected to be LRD in the sense of

Definition 2.2 with Gjk given by (2.28). To calculate Gjk, note that

Rjk +Rkj =
Γ(dj)Γ(dk)

Γ(dj + dk)

(
c1jk

sin(πdj) + sin(πdk)

sin(π(dj + dk))
+ c2jk + c2kj + c3jk

sin(πdk) + sin(πdj)

sin(π(dj + dk))

)

=
Γ(dj)Γ(dk)

Γ(dj + dk)

(
c1jk

cos(π2 (dj − dk))
cos(π2 (dj + dk))

+ c2jk + c2kj + c3jk
cos(π2 (dj − dk))
cos(π2 (dj + dk))

)
,

where we used basic trigonometric identities and the facts that c1jk = c1kj, c
3
jk = c3kj . Hence,

Γ(dj + dk)(Rjk +Rkj) cos(
π

2
(dj + dk))

= Γ(dj)Γ(dk)
(
(c1jk + c3jk) cos(

π

2
(dj − dk)) + (c2jk + c2kj) cos(

π

2
(dj + dk))

)
.

(2.40)

Similarly, one can show that

Γ(dj + dk)(Rjk −Rkj) sin(
π

2
(dj + dk))

= Γ(dj)Γ(dk)
(
(c1jk − c3jk) sin(

π

2
(dj − dk)) + (c2jk − c2kj) sin(

π

2
(dj + dk))

)
.

(2.41)
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Combining (2.40) and (2.41), the relation (2.28) now yields

Gjk =
Γ(dj)Γ(dk)

Γ(dj + dk)

(
(c1jk + c3jk) cos(

π

2
(dj − dk)) + (c2jk + c2kj) cos(

π

2
(dj + dk))

+ i(c1jk − c3jk) sin(
π

2
(dj − dk)) + i(c2jk − c2kj) sin(

π

2
(dj + dk))

)

=
Γ(dj)Γ(dk)

Γ(dj + dk)

(
c1jke

iπ
2
(dj−dk) + c3jke

−iπ
2
(dj−dk) + c2jke

iπ
2
(dj+dk) + c2kje

−iπ
2
(dj+dk)

)
.

(2.42)

Setting

F = diag
(
Γ(d1)e

iπ
2
d1 , . . . ,Γ(dp)e

iπ
2
dp
)

(2.43)

and using (2.38), the relation (2.42) can also be expressed as

Gjk =
Γ(dj)Γ(dk)

Γ(dj + dk)

(
(A−(A−)∗)jke

iπ
2
(dj−dk) + (A+(A+)∗)jke

−iπ
2
(dj−dk)

+ (A−(A+)∗)jke
iπ
2
(dj+dk) + (A+(A−)∗)jke

−iπ
2
(dj+dk)

)

=
1

2π

(
(FA−)(FA−)∗ + (F ∗A+)(F ∗A+)∗ + (FA−)(F ∗A+)∗ + (F ∗A+)(FA−)∗

)
jk

=
1

2π

(
(F ∗A+ + FA−)(F ∗A+ + FA−)∗

)
jk
. (2.44)

The relation (2.44) can also be derived informally as follows. Since
∑∞

m=−∞ ||Ψm||2 <

∞, the relation (5.3) in Hannan (1970) implies that the time series (2.36) has the spectral

density

1

2π

(
∞∑

m=−∞

Ψme
−imλ

)(
∞∑

m=−∞

Ψ∗
me

imλ

)
. (2.45)

Be Lemma A.1 in Appendix A.1, it is expected that

∞∑

m=−∞

Ψme
−imλ =

∞∑

m=1

Ψme
−imλ +

∞∑

m=0

Ψ−me
imλ ∼ λ−D

(
F ∗A+ + FA−

)
, (2.46)

which, when combined with (2.45), is consistent with (2.44).

Finally, note that, for fixed dj ’s and G = (Gjk)j,k=1,...,p, we can find matrices A+, A−,

so that (2.44) holds. Indeed, since G is Hermitian symmetric and non-negative definite, we

have G =WW ∗ for some matrixW . The real matrices A+, A− can now be found by setting
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(2π)−1(F ∗A+ + FA−) = W . (Note that, since e−iπd/2 and eiπd/2 are linearly independent,

there are real α+ and α− such that e−iπd/2α++ eiπd/2α− = y for any y ∈ C.) In particular,

any phase φjk can be obtained with a suitable choice of A+, A−.

2.4 Causal linear representations

In this section, we focus on causal linear representations of multivariate LRD series, that

is, the representations (2.9) with Ψk = 0 for k < 0. As shown in Section 2.4.1 below, causal

representations with power-law coefficients can only have very special phase parameters.

Causal representations with zero and more general phases, based on trigonometric power-

law coefficients (2.10), are considered in Sections 2.4.2 and 2.4.3.

2.4.1 The special case of power-law coefficients

One consequence of the results of Section 2.3 is that the causal representations of multi-

variate LRD series with power-law coefficients can only have very special phase parameters.

The next result restates Proposition 2.3.1 in the causal case.

Corollary 2.4.1. Let {ǫn}n∈Z and {Ψm}m∈Z be as in Proposition 2.3.1 but with Ψm =

0 for m < 0. Then, the autocovariance of the time series Xn given by a causal linear

representation

Xn =
∞∑

m=0

Ψmǫn−m, (2.47)

satisfies (2.15)–(2.16) with

Rjk =
Γ(dj)Γ(dk)

Γ(dj + dk)

sin(πdk)

sin(π(dj + dk))
(A+(A+)∗)jk. (2.48)

In particular, if Rjj 6= 0, j = 1, . . . , p, then the series is LRD in the sense of Definition

2.1.

Arguing as for (2.44), the relation (2.48) yields

Gjk =
Γ(dj)Γ(dk)

2π
(A+(A+)∗)jke

−iπ
2
(dj−dk) (2.49)
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and hence the phase parameters

φjk = −
π

2
(dj − dk). (2.50)

This can also be deduced from (2.45)–(2.46) when A− = 0.

2.4.2 The case of zero phases

The causal time series (2.47) with power-law coefficients leads necessarily to the phase

parameters (2.50). What coefficient matrices Ψm could one take to obtain general phases?

(Such coefficient matrices exist in theory by the multivariate version of the Paley-Wiener

theorem.) It is instructive to begin the discussion with the case of zero phases (that is, the

symmetric case), before moving to the general case.

Informally, in the case of zero phases, we are looking for coefficient matrices Ψm such

that, as λ→ 0+,

(
∞∑

m=0

Ψme
−imλ

)(
∞∑

m=0

Ψ∗
me

imλ

)
∼ λ−DGλ−D∗

, (2.51)

where G is real-valued (and we included the factor 1/2π on the left-hand side of (2.45) into

Ψm’s). This relation would follow from

(
∞∑

m=0

ψjk,me
−imλ

)(
∞∑

m=0

ψj′k′,me
imλ

)
∼ cjk,j′k′λ−(dj+dj′ ) (2.52)

with real cjk,j′k′ . This in turn would suggest to look for coefficients ψm such that

∞∑

m=0

ψme
−imλ ∼ cλ−d (2.53)

with real c. Note, however, that (2.53) with real c is not plausible. Writing cλ−d = cid(iλ)−d

the behavior of (iλ)−d can be captured by taking power-law coefficients. It is, however,

impossible to recover id through a Fourier series of real coefficients. In fact, (2.53) is only

expected with complex c = Ci−d, corresponding to power-law coefficients ψm. But again,
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power-law coefficients lead to zero phase only when the component LRD parameters are all

identical.

Instead of (2.53), another possibility is to look for coefficients ψm such that

∞∑

m=0

ψme
−imλ ∼ cλ−deia(λ), (2.54)

where a(λ) → ∞, as λ → 0+. Moreover, a(λ) should be flexible enough in its relation to

d. The idea here is that the complex-valued terms eia(λ) associated with the two Fourier

series would cancel out on the left-hand side of (2.52). In fact, coefficients whose Fourier

transform behaves as (2.54) have already been studied by Wainger (1965).

For example, adapting the arguments of Wainger (1965), we show in Appendix A.2 that

∞∑

n=0

n−b cos(2πna)e2πinx ∼ ca,bx−de−i(ξax
− a

1−a+ψ), (2.55)

as x → 0+, where 0 < a < 1, 0 < b ≤ 1 − a
2 , ψ = −π

4 , ca,b and ξa are two non-zero real

constants and

d =
1− b− a

2

1− a . (2.56)

The next proposition, Proposition 2.4.1, uses (2.55) to construct multivariate LRD series

with zero phases. Before stating the proposition, we shed some light on (2.55)–(2.56) and

one further assumption to be made.

Note that, viewing d in (2.56) as a LRD parameter, we need d < 1/2 which translates

to

1

2
< b. (2.57)

This additional assumption will be made in the proposition below. Under (2.57), the coef-

ficients n−b cos(2πna) are also square-summable and thus can be used to define linear time

series. When (2.57) holds, observe that

d =
1− b− a

2

1− a < 1− b =: d0, (2.58)
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where d0 corresponds to the value of d in (2.56) when formally setting a = 0 in the left-hand

side of (2.55) (see Lemma A.1). Moreover, when a1 < a2 (and (2.57) holds),

1− b− a1
2

1− a1
>

1− b− a2
2

1− a2
. (2.59)

Thus, viewing d as a LRD parameter, it decreases from d0 = 1−b associated with power-law

coefficients as a increases.

Proposition 2.4.1. Let {ǫn}n∈Z be an R
p-valued white noise, satisfying Eǫn = 0 and

Eǫnǫ
′
n = I. Let also {Ψm = (ψjk,m)j,k=1,...,p}m≥0 be a sequence of real-valued matrices such

that

ψjk,m = αjkm
−bj cos(2πma), m ≥ 0, (2.60)

where αjk ∈ R, 0 < a < 1, 1
2 < bj ≤ 1 − 1

2a, j = 1, . . . , p. Then, the spectral density of the

time series

Xn =
∞∑

m=0

Ψmǫn−m, (2.61)

satisfies (2.17)–(2.18) with

dj =
1− bj − a

2

1− a , (2.62)

Gjk = (2π)dj+dk−1ca,bj ca,bk(AA
∗)jk, (2.63)

where A = (αjk)j,k=1,...,p, ca,b is a non-zero real constant given in Theorem A.1, and hence

the phase parameters

φjk = 0.

When the cosine in (2.60) is replaced by the sine, the statements above continue to hold. In

particular, when Gjj 6= 0, j = 1, . . . , p, the series is LRD in the sense of Definition 2.2.

Proposition 2.4.1 is proved in Appendix A.1.
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2.4.3 The case of general phases

We showed in Proposition 2.4.1 that trigonometric power-law coefficients lead to zero phases

for multivariate LRD series. The next result shows that linear combinations of trigono-

metric power-law coefficients can lead to general phases (see also the discussion following

Proposition 2.4.2).

Proposition 2.4.2. Let {ǫn}n∈Z be as in Proposition 2.4.1. Let also {Ψm =

(ψjk,m)j,k=1,...,p}m∈Z be a sequence of real-valued matrices such that

ψjk,m = αjkm
−bj cos(2πma) + βjkm

−bj sin(2πma), m ≥ 0, (2.64)

where αjk, βjk ∈ R, 0 < a < 1, 1
2 < bj ≤ 1− 1

2a, j = 1, . . . , p. Then, the spectral density of

the time series

Xn =
∞∑

m=0

Ψmǫn−m (2.65)

satisfies (2.17)–(2.18) with

dj =
1− bj − a

2

1− a , (2.66)

Gjk = (2π)dj+dk−1ca,bjca,bk

p∑

t=1

zjtzkt, (2.67)

where zjk = αjk + iβjk, and ca,b is a non-zero real constant given in Theorem A.1. In

particular, when Gjj 6= 0, j = 1, . . . , p, the series is LRD in the sense of Definition 2.2.

Proposition 2.4.2 is proved in Appendix A.1.
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Note also that the coefficients ψjk,m in (2.64) can be expressed as (supposing, for ex-

ample, αjk 6= 0)

ψjk,m = αjk

(
cos(2πma) +

βjk
αjk

sin(2πma)

)
m−bj

= ajk

√
1 + β2jk/α

2
jk


 1√

1 + β2jk/α
2
jk

cos(2πma) +
βjk/ajk√
1 + β2jk/α

2
jk

sin(2πma)


m−bj

= τjk (cos(θjk) cos(2πm
a)− sin(θjk) sin(2πm

a))m−bj

= τjkm
−bj cos(2πma + θjk), (2.68)

where τjk = ajk
√

1 + β2jk/α
2
jk and θjk ∈ (−π/2, π/2) is such that tan(θjk) = −βjk/αjk.

Note that the matrix G = (Gjk)j,k=1,...,p with the entries (2.67) can be written as

G = ZZ∗,

where Z = ((2π)dj ca,bjzjk)j,k=1,...,p. Any Hermitian symmetric, non-negative definite G can

be written as G =WW ∗ and αjk, βjk can be found by setting Z =W .

2.5 Multivariate FARIMA(0,D, 0) series

We provide here a multivariate, non-causal extension of FARIMA series. Let D =

diag(d1, . . . , dp) with dj < 1/2, j = 1, . . . , p, and Q+ = (q+jk), Q− = (q−jk) ∈ R
p×p. Let

also {ǫn}n∈Z be an R
p-valued white noise series, satisfying Eǫn = 0 and Eǫnǫ

′
n = I. Define

a multivariate FARIMA(0,D, 0) series as

Xn = (I −B)−DQ+ǫn + (I −B−1)−DQ−ǫn, (2.69)

where B is the backshift operator. The series Xn is thus given by a non-causal linear

representation (when Q− is not identically zero). In the next result, we give the exact form

of the autocovariance matrix function of the multivariate FARIMA(0,D, 0) series in (2.69).

23



Proposition 2.5.1. The (j, k) component γjk(n) of the autocovariance matrix function

γ(n) of the multivariate FARIMA(0,D, 0) series in (2.69) is given by

γjk(n) =
1

2π

(
b1jkγ1,jk(n) + b2jkγ2,jk(n) + b3jkγ3,jk(n) + b4jkγ4,jk(n)

)
, (2.70)

where

b1jk =

p∑

t=1

q−jtq
−
jt = (Q−(Q−)∗)jk, b3jk =

p∑

t=1

q+jtq
+
jt = (Q+(Q+)∗)jk,

b2jk =

p∑

t=1

q−jtq
+
jt = (Q−(Q+)∗)jk, b4jk =

p∑

t=1

q+jtq
−
jt = (Q+(Q−)∗)jk,

(2.71)

and

γ1,jk(n) = γ3,kj(n) = 2Γ(1 − dj − dk) sin(πdk) Γ(n+dk)
Γ(n+1−dj )

,

γ4,jk(n) = γ2,jk(−n) =





2π 1
Γ(dj+dk)

Γ(dj+dk+n)
Γ(1+n) , n = 0, 1, 2, . . . ,

0 , n = −1, −2, . . .

(2.72)

Proposition 2.5.1 is proved in Appendix A.1.

Remark 2.5.1. Since (I − B)−d =
∑∞

j=0 bjB
j with bj = jd−1/Γ(d), as j → ∞, observe

that the FARIMA(0,D, 0) series satisfies (2.34) with

A+ = Γ(D)−1Q+, A− = Γ(D)−1Q−, (2.73)

where Γ(D)−1 = diag(Γ(d1)
−1, . . . ,Γ(dp)

−1). By using Γ(j+a)/Γ(j+ b) ∼ ja−b, as j →∞,

observe also that, as n→∞,

γ1,jk(n) ∼ 2Γ(1 − dj − dk) sin(πdj)
Γ(n+ dj)

Γ(n+ 1− dk)
=

2π sin(πdj)

Γ(dj + dk) sin(π(dj + dk))
ndj+dk−1,

(2.74)

γ4,jk(n) ∼
2π

Γ(dj + dk)
ndj+dk−1. (2.75)

The relations (2.73)–(2.75) show that (2.70)–(2.72) are consistent with (2.37)–(2.38).
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Figure 2.1: Components of bivariate FARIMA(0,D, 0) series where D = diag(0.2, 0.4), and
φ = 1.4587.

The exact form of the autovovariance function in (2.70)–(2.72) can be used, for example,

in a fast generation of the Gaussian FARIMA(0,D, 0) series by using a circulant matrix

embedding method (see Helgason et al. (2011)). For example, Figure 1 presents the plots

of a bivariate FARIMA(0,D, 0) series with φ = 1.4587 and

Q+ =




0.50246 0

0 1.2436


 , Q− =




0 −1.8878

3.4191 0


 , D =




0.2 0

0 0.4


 .

The phase parameter φ above is computed using the relation (2.22), where the (j, k) entry

of the matrix G is given by (2.44) with the matrices A+ and A− appearing in the relation

(2.73).

2.6 Conclusions

In this chapter, we studied the definitions, representations and models of multivariate long-

range dependent time series. Particular quantities of interest were phase parameters ap-

pearing in the cross spectra which control the (a)symmetry properties at large lags among

the components of a multivariate LRD series. The major theoretical contribution was the

construction of causal (one-sided) linear representations of multivariate LRD series with

general phase parameters, based on the trigonometric power-law coefficients.
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The results of Chapter 2 raise a number of questions left for future work. For one

possible future direction, note that Definition 2.2 can readily be extended to consider the

fundamental range dj ∈ (−1/2, 1/2), not just dj ∈ (0, 1/2). Examples of such models

are FARIMA(0,D, 0) series considered in Section 2.5, which even allow dj ∈ (−∞, 1/2).

The case dj ∈ (−1/2, 0) corresponds to antipersistent series. In particular, according to

the extended Definition 2.2, the cross spectra of antipersistent series could involve phase

parameters as in the case of LRD series.

Proposition 2.2.1 could likely be extended to cover the mixed case dj ∈ (−1/2, 0) or

(0, 1/2). But note that Definition 2.1 would have to be modified at least in part (i) of the

proposition since (2.15)–(2.16) need not imply the condition
∑∞

n=−∞ γjj(n) = 0 if the jth

component series is antipersistent. A more challenging open problem is to produce causal

representations in the mixed case. It is yet to be seen whether the trigonometric power-law

coefficients can be used in this regard. (Note that the key Theorem A.1 yields d > 0 only.)

In another direction, it would be interesting to study models with poles at other fre-

quencies than the origin. In the univariate case, the well-known examples are the so-called

Gegenbauer processes (e.g. Beran et al. (2013)). What are natural extensions of these

processes in the multivariate case? What is an appropriate semiparametric specification for

the cross spectra? Finally, estimation issues will be considered in Chapter 3 and also in

future work.
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CHAPTER 3

Inference and applications of a bivariate long-range dependent time series

model with general phase

3.1 Introduction

In this chapter, we are interested in modeling bivariate (R2–vector) time series exhibiting

long-range dependence (LRD, in short). In the univariate case, long-range dependent (LRD)

time series models are stationary with the autocovariance function decaying slowly like a

power-law function at large lags, or the spectral density diverging like a power-law function

at the zero frequency. The univariate LRD is understood well in theory and used widely in

applications. See, for example, Park and Willinger (2000), Robinson (2003), Doukhan et al.

(2003), Palma (2007), Giraitis et al. (2012), Beran et al. (2013), Pipiras and Taqqu (2015).

Bivariate and, more generally, multivariate (vector-valued) LRD time series models have

also been considered by a number of researchers. But theoretical foundations for a general

class of such models were laid only recently in Kechagias and Pipiras (2015) or Chapter

2 of this thesis. In particular, Kechagias and Pipiras (2015) stressed the importance of

the so-called phase parameters. Turning to the bivariate case which is the focus of this

chapter, the phase φ appears in the cross spectrum of a bivariate LRD series around the

zero frequency and controls the (a)symmetry of the series at large time lags. There are

currently no parametric models of bivariate LRD with general phase that can be used in

inference and applications. The goal of this chapter is to introduce such a class of models,

and to examine it through a simulation study and an application to real data. In the rest

of this section, we describe our contributions in greater detail.

A common parametric VARFIMA(0,D, 0) (Vector Autoregressive Fractionally Inte-

grated Moving Average) model for a bivariate LRD time series {Xn}n∈Z={(X1
n,X

2
n)

′}n∈Z
is obtained as a natural extension of the univariate ARFIMA(0, d, 0) model by fractionally



integrating the component series of a bivariate white noise series, namely,

Xn =




X1
n

X2
n


 =




(I −B)−d1 0

0 (I −B)−d2







η1n

η2n


 = (I −B)−Dηn, (3.1)

where B is the backshift operator, d1, d2 ∈ (0, 1/2) are the LRD parameters of the

component series {X1
n}n∈Z and {X2

n}n∈Z, respectively, D = diag(d1, d2) and {ηn}n∈Z=

{(η1n, η2n)′}n∈Z is a bivariate white noise series with zero mean Eηn = 0 and covariance

Eηnη
′
n = Σ. If Σ = QQ′, note that the model (3.1) can also be written as

Xn = (I −B)−DQǫn or (I −B)DXn = ηn = Qǫn, (3.2)

where {ǫn}n∈Z is a bivariate white noise with the identity covariance matrix Eǫnǫ
′
n = I.

The model (3.1) admits a causal (one-sided) linear representation of the form

Xn =
∑

k∈I

Ψ̃kηn−k =
∑

k∈I

Ψkǫn−k, (3.3)

where I = {n ∈ Z : n ≥ 0} and Ψ̃k, Ψk are real-valued 2 × 2 matrices whose entries decay

as a power law. In the frequency domain, the matrix-valued spectral density function1 f(λ)

of the series Xn defined in (3.1) satisfies

f(λ) ∼




ω11|λ|−2d1 ω12|λ|−(d1+d2)e−isign(λ)φ

ω21|λ|−(d1+d2)eisign(λ)φ ω22|λ|−2d2


 , as λ→ 0, (3.4)

where ω11, ω12, ω21, ω22 ∈ R and

φ = (d1 − d2)π/2. (3.5)

The asymptotic behavior (3.4) of the spectral density f with general φ ∈ (−π/2, π/2)

is taken for the definition of bivariate LRD in Kechagias and Pipiras (2015). Note that

φ ∈ (−π/2, π/2) is taken and the following polar coordinate representation z = z1
cos(φ)e

iφ

1The following conventions are used here. The autocovariance function γ is defined as γ(n) = EX0X
′
n and

the spectral density f(λ) satisfies γ(n) =
∫ π

−π
einλf(λ)dλ.
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with φ = arctan(z2/z1) of z = z1 + iz2 ∈ C is used throughout. The special form of

the phase parameter φ in (3.5) limits the type of bivariate LRD behavior that can be

captured by the model (3.1). For example, in the case of time-reversible models satisfying

γ(n) = γ(−n), n ∈ Z, the spectral density matrix f has real-valued entries and hence

φ = 0. Under the model (3.1) and (3.4), however, φ = 0 holds only when d1 = d2. These

observations naturally raise the following question:

Can one define a bivariate parametric LRD model with general phase?

One solution to the question above is to consider noncausal (two-sided) linear repre-

sentations with power-law decaying coefficients, that is, representations of the form (3.3)

with the index set I now being the set of all integers Z. Specifically, Kechagias and Pipiras

(2015) constructed a noncausal VARFIMA(0,D, 0) model with general phase by taking

Xn = (I −B)−DQ+ǫn + (I −B−1)−DQ−ǫn, (3.6)

where Q+, Q− are two real-valued 2×2 matrices. The reason we refer to (3.6) as noncausal

is the presence of B−1 in the second term of the right-hand side of (3.6), which introduces

dependence between Xn and the leads of the innovation process ǫn. Also, the positive and

negative powers of the backshift operator motivate our notation for the subscripts of the

matrices Q+ and Q−.

We shall use (3.6) in developing our parametric bivariate LRD model with general

phase. A first issue that needs to be addressed is finding a suitable parametrization under

which this model is identifiable, while still yielding a general phase parameter. We show in

Section 3.2 that this two-fold goal can be achieved by taking Q− as

Q− =




c 0

0 −c


Q+ =: CQ+, (3.7)

for some real constant c. Under the relation (3.7) and letting {Zn}n∈Z be a zero mean

bivariate white noise series with covariance matrix EZnZ
′

n = Q+Q
′

+ =: Σ, we can rewrite
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(3.6) in the more compact form

Xn = ∆c(B)Zn, (3.8)

where the operator ∆c is defined as

∆c(B) = (I −B)−D + (I −B−1)−DC. (3.9)

Note that when c = 0 (and C = 0), the filter ∆c(B) becomes the causal (one-sided)

fractional integration filter ∆0(B) = (I −B)−D.

The focus of Chapter 3 will be on the model (3.8)–(3.9) and its extensions involving

autoregressive and moving average parts, namely, a general phase VARFIMA(p,D, q) model

Φ(B)∆c(B)−1Xn = Θ(B)Zn, (3.10)

where Φ(B), Θ(B) are matrix polynomials of finite orders p and q satisfying the usual

stationarity and invertibility conditions. In fact, for identifiability and estimation purposes,

we shall work with diagonal AR filters Φ(B) in which the general phase VARFIMA(p,D, q)

model (3.10) can also be expressed as

Φ(B)Xn = ∆c(B)Θ(B)Zn, (3.11)

since the diagonal filters Φ(B),∆c(B) commute. The advantage of the model (3.11) is that

the autocovariance function of the right-hand side of (3.11) can be computed efficiently.

In inference, we can then employ a conditional likelihood approach where the Gaussian

likelihood is written for Φ(B)Xn (though the maximum is still sought over all unknown

parameters).

Our estimation follows the approach of Tsay (2010) who considered causal models (3.11)

with c = 0. Still in the case c = 0, Sowell (1986) calculated (numerically) the autocovari-

ance function of the model (3.10) and performed exact likelihood inference. For other

approaches, (all in the case c = 0), see also Ravishanker and Ray (1997) who considered

the Bayesian analysis and Pai and Ravishanker (2009a; 2009b) who employed the EM and
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PCG algorithms as well as Dueker and Starz (1998), Martin and Wilkins (1999), Sela and

Hurvich (2009) and Diongue (2010).

The rest of Chapter 3 is structured as follows. General phase VARFIMA(0,D, 0) and

VARFIMA(p,D, q) series are presented in Sections 3.2 and 3.3. Inference and other tasks

are considered in Section 3.4. Section 3.5 contains a simulation study, and Section 3.6

contains an application to the U.S. inflation rates.

3.2 General phase VARFIMA(0,D, 0) series

In this section, we consider the noncausal bivariate VARFIMA(0,D, 0) model (3.8)–(3.9).

Kechagias and Pipiras (2015) showed that any phase parameter φ in (3.4) can be obtained

with the model (3.6) for an appropriate choice of Q+ and Q−. However, letting the entries

of these matrices take any real value, causes identifiability issues around the zero frequency,

as the same phase parameter can be obtained by more than one choice of Q+ and Q−.

Indeed, from the following simple counting perspective note that the specification (3.4) has

6 parameters (d1, d2, ω11, ω12, ω22 and φ) whereas the model (3.6) has 10 (d1, d2 and the

entries of Q+ and Q−). One might naturally expect identifiability up to Q+Q
′
+ and Q−Q

′
−

but this still leaves the number of parameters at 8 (d1, d2 and the 6 different entries of

Q+Q
′
+ and Q−Q

′
−). In Proposition 3.2.1 and Corollary 3.2.1 below (see also the discussion

following the latter), we show that the parameterization (3.7) addresses the identifiability

and general phase issues. For one, note that the model (3.8)–(3.9) has the required number

of parameters (d1, d2, c and the three different entries of Σ = Q+Q
′

+).

Proposition 3.2.1. Let d1, d2 ∈ (0, 1/2) and Q+ be a 2×2 matrix with real-valued entries.

Let also {X(c)
n }n∈Z be a time series defined by (3.8)–(3.9) where D = diag(d1, d2). For any

φc ∈ (−π/2, π/2), there exists a unique constant c ∈ (−1, 1) such that the series {X(c)
n }n∈Z

has the phase parameter φ = φc in (3.4). Moreover, the constant c has a closed form given

by

c =
2(a1 + a2)−

√
∆

2(a1 − a2 + tan(φc)(1 + a1a2))
, (3.12)
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where

a1 = tan

(
πd1
2

)
, a2 = tan

(
πd2
2

)
and ∆ = 16a1a2 + 4(1 + a1a2)

2 tan2(φc). (3.13)

Proof: By using Theorem 11.8.3 in Brockwell and Davis (2009), the

VARFIMA(0,D, 0) series in (3.8)–(3.9) has a spectral density matrix

f(λ) =
1

2π
∆c(e

−iλ)Σ∆c(e
−iλ)∗, (3.14)

where the superscript ∗ denotes the complex conjugate operation. From (3.7) and by using

the fact that 1− e±iλ ∼ ∓iλ, as λ→ 0, we have

f(λ) ∼
(
(iλ)−D + (−iλ)−DC

)
Σ
(
(−iλ)−D + C(iλ)−D

)
, as λ→ 0. (3.15)

Next, by denoting Σ = (σjk)j,k=1,2 and using the relation ±i = e±iπ/2, we get that the (j, k)

element of the spectral density f(λ) satisfies

fjk(λ) ∼ gjkλ−(dj+dk), as λ→ 0+, (3.16)

where the complex constant gjk is given by

gjk =
σjk
2π

(e−iπdj/2 + (−1)j+1ceiπdj/2) · (eiπdk/2 + (−1)k+1ce−iπdk/2). (3.17)

Focusing on the (1, 2) element, and by using the polar-coordinate representation z =

z1
cos(φ)e

iφ of z = z1 + iz2 ∈ C with φ = arctan(z2/z1) (see (2.20) above or the relation

(20) in Kechagias and Pipiras (2015)), we have

g12 =
σjk
2π

(
cos(

πd1
2

)(1 + c) + i sin(
πd1
2

)(c− 1)

)
·
(
cos(

πd2
2

)(1 − c) + i sin(
πd2
2

)(1 + c)

)

=
σjk
2π

cos(πd12 ) cos(πd22 )

cos(φc,1) cos(φc,2)
(1− c2)e−iφc , (3.18)
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where

φc = −(φc,1 + φc,2), φc,1 = arctan

(
a1
c− 1

1 + c

)
and φc,2 = arctan

(
a2

1 + c

1− c

)
(3.19)

with a1 and a2 given in (3.13).

By using the arctangent addition formula arctan(u) + arctan(v) = arctan( u+v1−uv ) for

uv < 1 (in our case uv = −a1a2 < 0), we can rewrite φc as

φc = − arctan

(
a1

c−1
1+c + a2

1+c
1−c

1 + a1a2

)
=: h(c). (3.20)

For all d1, d2 ∈ (0, 1/2), the function h : (−1, 1) → (−π/2, π/2) is strictly decreasing (and

therefore 1-1) and also satisfies

lim
c↓−1

h(c) =
π

2
, lim

c↑1
h(c) = −π

2
.

Since h is continuous, it is also onto its range which completes the existence and uniqueness

part of the proof.

To obtain the formula (3.12), we invert the relation (3.20) to get the quadratic equation

(a1 − a2 + tan(φc)(1 + a1a2))c
2 − 2(a1 + a2)c+ a1 − a2 − tan(φc)(1 + a1a2) = 0, (3.21)

whose discriminant ∆c is given by

∆ = 16a1a2 + 4(1 + a1a2)
2 tan2(φc)

and is is always positive. The solutions of (3.21) are then given by

c1 =
2(a1 + a2) +

√
∆c

2(a1 − a2 + tan(φc)(1 + a1a2))
, c2 =

2(a1 + a2)−
√
∆c

2(a1 − a2 + tan(φc)(1 + a1a2))
.

It can be checked that c1 /∈ (−1, 1) and c2 ∈ (−1, 1). �

The following result is a direct consequence of the proof of Proposition 3.2.1.
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Corollary 3.2.1. The spectral density of the time series {X(c)
n }n∈Z in Proposition 3.2.1

satisfies the asymptotic relation (3.4) with φ = φc and

ωjj =
σjj
2π

(1 + c2 + 2c cos(πdj)), j = 1, 2, (3.22)

ω12 =
σ12
2π

cos(πd12 ) cos(πd22 )

cos(φc,1) cos(φc,2)
(1− c2), (3.23)

where Σ = Q+Q
′
+ = (σjk)j,k=1,2 and φc,1, φc,2 are given in (3.19).

Proof: The relations (3.22)–(3.23) follow from (3.16)–(3.17) and (3.18)–(3.19). �

Corollary 3.2.1 shows that the bivariate LRD model (3.8)–(3.9) is identifiable around

the zero frequency when parametrized by d1, d2,Σ = Q+Q
′
+ and c.

Remark 3.2.1. Proposition 3.2.1 relates the phase φ at the zero frequency and the constant

c which appears in the full model (3.8)–(3.9). For this model, however, the phase function

φ12(λ) of the full cross spectral density f12(λ) = g12(λ)e
−iφ(λ), λ ∈ (0, π), is not a constant

function of the frequency λ. Instead, by using the identity 1− e∓iλ = 2 sin(λ2 )e
∓i(λ−π) and

arguing as for (3.18)–(3.20) above, it can be shown that

φ12(λ) = − arctan

(
x1(λ)

c−1
1+c + x2(λ)

1+c
1−c

1 + x1(λ)x2(λ)

)
, (3.24)

where

x1(λ) = tan

(
d1(π − λ)

2

)
, x2(λ) = tan

(
d2(π − λ)

2

)
. (3.25)

Several plots of the phase function (3.24) are given in Figure 3.1. We also note that Sela

(2010) considers LRD models with phase functions φ12(λ) following special power laws, but

we will not expand in this direction.

Remark 3.2.2. The autocovariance function of the model (3.6) has an explicit form given

in Proposition 5.1 of Kechagias and Pipiras (2015). The same form can obviously be used

for the model (3.8)–(3.9).

Remark 3.2.3. We have tried several choices for Q− other than (3.7), for example Q− =

cQ+, but they did not lead to a general phase parameter for the resulting bivariate LRD
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Figure 3.1: Phase functions φ(λ) for the model (3.8)–(3.9) for different parameter values.
Left: c = 0, 0.5,−0.8,−0.4 and d1 = 0.2, d2 = 0.4. Right: c = 0,−0.7, 0.7,−0.3, d1 = d2 =
0.3.

models. A related note is that we presently do not have an explicit form for the inverse

filter ∆c(B)−1. But this observation also suggests that one could possibly work with the

filter

∆̃c(B) = ((I −B)D + C(I −B−1)D)−1, (3.26)

if the goal is to have an explicit form of the filter ∆̃c(B)−1 applied to the series {Xn}n∈Z.

Other filters than (3.9) and (3.26) with interesting properties might also exist and could

also be considered. In using (3.9), we aimed to have a general phase and an explicit form

of the autocovariance function.

Remark 3.2.4. We have assumed in Proposition 3.2.1 that both component series are

LRD, that is, d1, d2 ∈ (0, 1/2). The introduced model could also be used when one of the

d’s is 0, that is, one of the series is short-range dependent (SRD, for short).

Remark 3.2.5. We stress again that the case c = 0 corresponds to the phase φ = (d1 −

d2)π/2 (and in particular not necessarily φ = 0.) Note also that if the two component

series are interchanged (so that d1 and d2 are interchanged, and φ becomes −φ), then the

constant c in (3.12) changes to −c.

3.3 General phase VARFIMA(p,D, q) series

In this section, we generalize the model (3.8)–(3.9) by introducing autoregressive (AR,

for short) and moving average (MA, for short) components to capture potential short-

35



range dependence effects. For the causal model (3.1), this extension has been achieved

in a number of ways. Naturally, we focus on extensions that preserve the general phase

and identifiability properties. We also consider the problem of computing (theoretically or

numerically) the autocovariance functions of the introduced models, since these functions

are used in estimation (see Section 3.4 below).

3.3.1 VARFIMA(0, D, q) series

We begin with the case p = 0 (where there is no AR part). Define the general phase

VARFIMA(0,D, q) series as

Yn = ∆c(B)Θ(B)Zn, (3.27)

where ∆c(B) is the operator given by (3.9) and

Θ(B) = I2 +Θ1B + . . .+ΘqB
q (3.28)

is a matrix polynomial with 2× 2 real-valued matrices Θs = (θjk,s)j,k=1,2 , s = 1, . . . , q. As

throughout the chapter, {Zn}n∈Z is a white noise series with EZnZ
′

n = Σ = (σjk)j,k=1,2. In

the special case where Θ(B) is diagonal or when d1 = d2, the model (3.27) is equivalent to

Yn = Θ(B)∆c(B)Zn. (3.29)

The two operators ∆c(B) and Θ(B), however, do not commute in general. In fact, the

two models in (3.27) and (3.29) are quite different. More specifically, if Θ(B) has at least

one nonzero element on the off diagonal and if d1 6= d2, the series {Yn}n∈Z in (3.29) can

be thought to exhibit a form of fractional cointegration, by writing Θ(B)−1Yn = ∆c(B)Zn

where reduction of memory in one of the component series of {Yn}n∈Z could occur from

linear combination of present and past variables of the two component series. On the

other hand, fractional cointegration cannot occur under the model (3.27). In the rest of

this chapter, we will restrict our attention to this simpler case, leaving the investigation of

fractional cointegration for future work.
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In the next proposition, we compute the autocovariance function of the series in (3.27).

Tsay (2010) calculated the autocovariance function of the causal analogue of (3.27) using the

properties of the hypergeometric function. Our approach, which we find less cumbersome

for the multivariate case, is similar to the one used for the VARFIMA(0,D, 0) series in

Proposition 2.5.1 above or Proposition 5.1 of Kechagias and Pipiras (2015).

Proposition 3.3.1. The (j, k) component γjk(n) of the autocovariance matrix function

γ(n) of the bivariate VARFIMA(0,D, q) series in (3.27) is given by

γjk(n) =
1

2π

2∑

u,v=1

q∑

s,t=0

θju,sθkv,tσuv

(
a1,jkγ

(1)
st,jk(n) + a2,jγ

(2)
st,jk(n) + γ

(3)
st,jk(n) + a4,kγ

(4)
st,jk(n)

)
,

(3.30)

where

a1,jk = c2(−1)j+k, a2,j = c(−1)j+1, a4,k = c(−1)k+1, (3.31)

and

γ
(1)
st,jk(n) = γ

(3)
st,kj(n) = 2Γ(1 − dj − dk) sin(πdk) Γ(n+t−s+dk)

Γ(n+t−s+1−dj)
,

γ
(4)
st,jk(n) = γ

(2)
ts,jk(−n) =





2π 1
Γ(dj+dk)

Γ(dj+dk+n+t−s)
Γ(1+n+t−s) , n ≥ s− t,

0 , n < s− t.

(3.32)

Proof: By using Theorem 11.8.3 in Brockwell and Davis (2009), the

VARFIMA(0,D, q) series in (3.27) has a spectral density matrix

f(λ) =
1

2π
G(λ)ΣG(λ)∗, (3.33)

where G(λ) = ∆c(e
−iλ)Θ(e−iλ). The (j, k) component of the spectral density is given by

fjk(λ) =
1

2π

2∑

u,v=1

q∑

s,t=0

θju,sθkv,tσuve
−i(s−t)λ (f1,jk(λ) + f2,jk(λ) + f3,jk(λ) + f4,jk(λ)) ,

(3.34)
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where

f1,jk(λ) = a1,jk(1− eiλ)−dj (1− e−iλ)−dk , f2,jk(λ) = a2,j(1− eiλ)−(dj+dk),

f3,jk(λ) = (1− e−iλ)−dj (1− eiλ)−dk , f4,jk(λ) = a4,k(1− e−iλ)−(dj+dk).
(3.35)

Consequently, the (j, k) component of the autocovariance matrix satisfies γjk(n) =
∫ 2π
0 einλfjk(λ)dλ, which in view of the relations (3.34)–(3.35) implies (3.30)–(3.31) with

γ
(1)
st,jk(n) = γ

(3)
st,kj(n) =

∫ 2π

0
ei(n−s+t)λ(1− eiλ)−dj (1− e−iλ)−dkdλ,

γ
(2)
st,jk(n) =

∫ 2π

0
ei(n−s+t)λ(1− eiλ)−xjkdλ, γ

(4)
st,jk(n) =

∫ 2π

0
ei(n−s+t)λ(1− e−iλ)−xjkdλ,

where xjk = dj+dk. The relations (3.32) follow from the evaluation of the integrals above as

in the proof of Proposition 2.5.1 above or Proposition 5.1 of Kechagias and Pipiras (2015).

�

Remark 3.3.1. Since Θ(e−iλ) ∼ I2+Θ1+ . . .+Θq as λ→ 0, the VARFIMA(0,D, q) model

has general phase at the zero frequency, with the same relation (3.12) as in Proposition

3.2.1. The parameters of Θ are identifiable if and only if they are identifiable for the same

VARMA(0, q) model.

3.3.2 VARFIMA(p,D, q) series

We extend here the model (3.27) to a general phase fractionally integrated model containing

both autoregressive and moving average components. As for the causal model (3.1), two

possibilities can be considered for this extension. Let Φ(B) = I2−Φ1B− . . .−ΦpB
p be the

AR polynomial, where Φr = (φjk,r)j,k=1,2 , r = 1, . . . , p, are 2× 2 real-valued matrices. Fol-

lowing the terminology of Sela and Hurvich (2009), define the noncausal VARFIMA(p,D, q)

series {Xn}n∈Z as

Φ(B)Xn = ∆c(B)Θ(B)Zn, (3.36)

and the noncausal FIVARMA(p,D, q) series as

Φ(B)∆c(B)−1Xn = Θ(B)Zn. (3.37)
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The causal FIVARMA(p,D, q) series have been more popular in the literature, with Lobato

(1997), Sela and Hurvich (2009) and Tsay (2010) being notable exceptions. In particular,

Sela and Hurvich (2009) investigated thoroughly the differences between the causal ana-

logues of the models (3.36) and (3.37), focusing on models with no MA part. Excluding

the MA part is natural as any VARMA(p, q) series can be written in a VAR(1) form. Such

transformations, however, lead to higher dimensional models, where inference is not always

computationally feasible.

As expected, the noncausal VARFIMA and FIVARMA series differ if Φ(B) is nondiag-

onal and if d1 6= d2. Similarly to the discussion around the models (3.27) and (3.29), the

VARFIMA model with nondiagonal Φ(B) allows for fractional cointegration in the sense

discussed following the relation (3.29), which however cannot be produced by the FIVARMA

model (3.37) (see Sela and Hurvich (2009) for more details in the causal case). As indicated

earlier, the case of fractional cointegration will be pursued elsewhere (though we shall also

briefly mention some numerical results in Section 3.5).

We will focus on the VARFIMA(p,D, q) series (3.36) with a diagonal AR part, in which

case the two models (3.36) and (3.37) are equivalent. Besides the obvious computational

and simplification advantages of this approach, our consideration is also justified by similar

assumptions recently used in Dufour and Pelletier (2011) for the construction of identifi-

able multivariate short-range dependent time series models. More specifically, Dufour and

Pelletier (2011) show that any VARMA(p, q) series can be transformed to have a diagonal

AR (or MA) part with the cost of increasing the order of the MA (or AR) component.

As a consequence, they construct identifiable representations of VARMA(p, q) series where

either AR or MA is diagonal.

There is yet another reason for making our assumption of diagonal AR part Φ(B). By

using the reparametrizations of Dufour and Pelletier (2011), the FIVARMA model (3.37)

can take the form (3.36) with diagonal Φ(B). Indeed, inverting the fractional operator

∆c(B), the model (3.37) becomes

∆c(B)−1Xn = Φ(B)−1Θ(B)Zn.
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Next, by using the relation Φ(B)−1 = |Φ(B)|−1adj(Φ(B)), where | · | and adj(·) denote the

determinant and adjoint of a matrix respectively, we can write

∆c(B)−1|Φ(B)|Xn = adj(Φ(B))Θ(B)Zn, (3.38)

where the commutation of ∆c(B)−1 and |Φ(B)| is possible since |Φ(B)| is scalar-valued.

Letting Φ̃(B) = diag(|Φ(B)|) and Θ̃(B) = adj(Φ(B))Θ(B), the relation (3.38) yields

∆c(B)−1Φ̃(B)Xn = Θ̃(B)Zn. (3.39)

Thus, a FIVARMA model with AR component of order p can indeed be written as a

VARFIMA model with diagonal AR part whose order will not exceed 2p (maximum possible

order of |Φ(B)|).

The presence of the AR filter on the left-hand side of (3.36) makes it difficult to compute

the autocovariance function of the process explicitly. Closed form formulas for the auto-

covariance function of the causal model (3.37) with c = 0 were provided by Sowell (1986),

albeit their implementation is computationally inefficient as it requires multiple expensive

evaluations of hypergeometric functions. The slow performance of Sowell’s approach was

also noted by Sela (2010), who proposed fast approximate algorithms for calculating the

autocovariance functions of the causal models (3.36) and (3.37) with c = 0 when p = 1

and q = 0. Although not exact, Sela’s algorithms are fast with negligible approximation

errors. In fact, it is straightforward to extend these algorithms to calculate the autocovari-

ance function of a noncausal VARFIMA(1,D, q) series. For models with AR components of

higher orders, however, this extension seems to require restrictive assumptions on the AR

coefficients and therefore we do not pursue this approach.

3.4 Inference and other tasks

In this section, we discuss the statistical inference of the VARFIMA(p,D, q) model (3.36)

introduced in Section 3.3.2. Estimation of the parameters of this model can be carried out by

adapting suitably the CLDL (Conditional Likelihood Durbin Levinson) estimation of Tsay
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(2010). Tsay’s method is appealing in our case for a number of reasons. First, as discussed in

Section 3.4.1 below, the method requires only the knowledge of the autocovariance function

of the VARFIMA(0,D, q) series (3.27) for which we have an explicit form. Second, Tsay’s

algorithm can be modified easily to yield multiple steps-ahead (finite sample) predictions

of the series. Finally, Tsay’s method has a mild computational cost, compared to most

alternative estimation methods.

3.4.1 Estimation

The basic idea of Tsay’s CLDL algorithm is to transform a VARFIMA(p,D, q) series to a

VARFIMA(0,D, q) series whose autocovariance function is known. Then, a straightforward

implementation of the well-known Durbin-Levinson (DL, for short) algorithm allows one to

replace the computationally expensive likelihood calculations of the determinant and the

quadratic part with less time consuming operations. Below we give a brief review of the

algorithm.

We start with some notation. Let {Yn}n=1,...,N be the VARFIMA(0,D, q) series

(3.27) and let Γ(n) = EY0Y
′

h denote its autocovariance function. Let also Θ =

(vec(Θ1)
′, . . . , vec(Θq)

′)′ be the vector containing the entries of the coefficient matrices of

the MA polynomial Θ(B). Assuming that the bivariate white noise series {Zn} is Gaus-

sian, we can express the likelihood function of {Yn}n=1,...,N with the aid of the multi-

variate DL algorithm (see Brockwell and Davis (2009), p. 422). More specifically, letting

θ = (d1, d2, c, σ11, σ12, σ22,Θ
′)′ be the (6+4q)–dimensional vector containing all the param-

eters of the model (3.27), we can write the likelihood function as

L(θ;Y ) = (2π)−N



N−1∏

j=0

Vj




−1/2

exp



−

1

2

N−1∑

j=0

(Yj+1 − Ŷj+1)
′V −1
j (Yj+1 − Ŷj+1)



 , (3.40)

where Ŷj+1 := E(Yj+1|Y1, . . . , Yj) and Vj , j = 0, . . . , N − 1, are the one-step-ahead finite

sample predictors and their corresponding error covariance matrices obtained by the mul-

tivariate DL algorithm. Using the fact that the series {Yn}n=1,...,N satisfies the relation

Φ(B)Xn = Yn, (3.41)
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where {Xn}n=1,...,N is the VARFIMA(p,D, q) series (3.36), we can view {Φ(B)Xn}n=p+1,...,N

as a VARFIMA(0,D, q) process, whose likelihood function conditional on X1, . . . ,Xp and

Φ = (vec(Φ1)
′, . . . , vec(Φp)

′)′ is given by

L(Φ, θ;Xn|X1, . . . ,Xp) ≡ L(θ; Φ(B)Xn), n = p+ 1, . . . , N. (3.42)

The reason we do not absorb Φ in θ, is to emphasize the different roles that these two

parameters have in calculating the likelihood function in (3.42). More specifically, Φ is used

to transform the available data {Xn}n=1,...,N, to a VARFIMA(0,D, q) series {Yn}n=1,...,N,

while θ is necessary to apply the DL algorithm.

The conditional likelihood estimators of Φ and θ are then given by

(Φ̂, θ̂) = argmax
Φ,θ∈S

L(Φ, θ;Xn|X1, . . . ,Xp), (3.43)

where S = {θ ∈ R
6+4q : 0 < d1, d2 < 0.5, −1 < c < 1, |Σ| > 0, (Σjj)j=1,2 ≥ 0} denotes

the parameter space for θ. Although there is no closed form for the estimates Φ̂ and θ̂,

they can be computed numerically using the quasi-Newton algorithm of Broyden, Fletcher,

Goldfarb, and Shanno (BFGS).

Remark 3.4.1. The finite sample predictors Ŷj+1 and their corresponding error covariance

matrices Vj, j = 1, . . . , N, in (3.42) can also be computed using the multivariate Innovations

(IN, for short) algorithm as Ŷ1 = 0 by convention and

Ŷj+1 =

j∑

k=1

Θjk(Yj+1−k − Ŷj+1−k), j ≥ 1, (3.44)

Vj = Γ(0)−
j−1∑

k=0

Θj,j−kVjΘ
′

j,j−k, (3.45)

where Γ(n) is the autocovariance function of {Yn}n∈Z at lag n and the matrix-valued coef-

ficients Θjk, k = 1, . . . , j, are given by the relation (11.4.23) in Brockwell and Davis (2009).

The multivariate DL and IN algorithms have computational complexities O(N2) and O(N3)

respectively. As argued in Section 3.4.2 below, however, the latter is more suitable for
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forecasting purposes and hence we will use it instead of the DL algorithm for prediction

purposes.

3.4.2 Forecasting

In contrast to the DL algorithm, the IN algorithm also provides an efficient way to compute

the h–step-ahead finite sample predictors Ŷn+h|n := E(Yn+h|Y1, . . . , Yn), h = 1, 2, . . . , and

the corresponding prediction error matrices Vn+h−1 = E(Yn+h − Ŷn+h|n)(Yn+h − Ŷn+h|n)′

of a process {Yn}n∈Z whose autocovariance function is known. More specifically, once the

one-step-ahead predictors Ŷ1, . . . , Ŷn and the matrix coefficients Θn,n−k, k = 0, . . . , n − 1,

are computed by the IN algorithm, Ŷn+h|n, h = 1, 2, . . . , and Vn+h−1 can be calculated as

Ŷn+h|n =

n∑

k=1

Θn+h−1,n+h−k(Yk − Ŷk), (3.46)

Vn+h−1 = Γ(0)−
n∑

k=1

Θn+h−1,k+h−1Vn−kΘ
′
n+h−1,k+h−1 (3.47)

(see Brockwell and Davis (2009), pp. 174-175, for the univariate analogues of the relations

(3.46)–(3.47)).

We now turn our attention to the VARFIMA(p,D, q) series Xn defined in (3.41). As we

do not have an explicit form of the autocovariance function of {Xn}n∈Z, it is not immediately

clear how to calculate the h–step-ahead predictors X̂n+h|n := E(Xn+h|X1, . . . ,Xn), h =

1, 2, . . . , and the corresponding error matrices Ṽn+h−1 = E(Xn+h−X̂n+h|n)(Xn+h−X̂n+h|n)
′.

In the next proposition, we show that X̂n+h|n and Ṽn+h−1 can be calculated recursively from

Ŷn+h|n and Vn+h−1. For simplicity we focus on the case p = 1. However, the proposition

can be extended for larger values of p.

Proposition 3.4.1. Let {Yn}n∈Z be the VARFIMA(0,D, q) series given in (3.27) with

autocovariance function Γ(n), and let Θnk, Vk, k = 1, . . . , n, be the coefficients and prediction

error matrices obtained by the IN algorithm. Let also {Xn}n∈Z be the VARFIMA(p,D, q)

series defined in (3.41), where Φ(B) is an AR polynomial of order p = 1, and suppose

for simplicity that X1 and Y1 are uncorrelated with Y2, . . . , Yn. Then, the h–step-ahead
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predictors X̂n+h|n = E(Xn+h|X1, . . . ,Xn) satisfy

X̂n+h|n = Φh1Xn +
h−1∑

s=0

Φs1Ŷn+h−s|n, (3.48)

where Ŷn+h|n = E(Yn+h|Y1, . . . , Yn). Moreover, the prediction error matrices Ṽn+h−1 =

E(Xn+h − X̂n+h|n)(Xn+h − X̂n+h|n)
′ can be computed by

Ṽn+h−1 =

h−1∑

s=0

Φs1Vn+h−s−1(Φ
s
1)

′ +

h−1∑

s,t=0
s 6=t

Φs1As,t(n+ h)(Φt1)
′, (3.49)

where

As,t(u) = Γ(t− s)−
n∑

k=1

Θu−s−1,u−s−kVk−1Θ
′

u−t−1,u−t−k. (3.50)

Proof: By using the relation (3.41) recursively, we can write

Xn+h = Φh1Xn +
h−1∑

s=0

Φs1Yn+h−s, h = 1, 2, . . . (3.51)

which implies that

E(Xn+h|X1, . . . ,Xn) = Φh1Xn +
h−1∑

s=0

Φs1E(Yn+h−s|X1, . . . ,Xn). (3.52)

Note that E(Yn+h−s|X1, . . . ,Xn) = E(Yn+h−s|Y2, . . . , Yn) = E(Yn+h−s|Y1, . . . , Yn) =

Ŷn+h−s|n, since we assumed for simplicity that X1 and Y1 are uncorrelated with Y2, . . . , Yn.

Then, the relation (3.52) yields (3.48).

Next, we subtract (3.48) from (3.51) to get

Xn+h − X̂n+h|n =
h−1∑

s=0

Φs(Yn+h−s − Ŷn+h−s|n).
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The h–step-ahead error matrix Ṽn+h−1 is then given by

Ṽn+h−1 = E

(
h−1∑

s=0

Φs1(Yn+h−s − Ŷn+h−s|n)
)(

h−1∑

t=0

Φt1(Yn+h−t − Ŷn+h−t|n)
)′

=

h−1∑

s=0

Φs1Vn+h−s−1(Φ
s
1)

′ +

h−1∑

s,t=0
s 6=t

Φs1As,t(n+ h)(Φt1)
′
, (3.53)

where As,t(u) = E(Yu−s− Ŷu−s|n)(Yu−t− Ŷu−t|n)′. To show that As,t(u) satisfies (3.50) note

that for s, t = 0, . . . , u− n− 1, s 6= t, we have

EŶu−s|nY
′

u−t = E(E(Ŷu−s|nY
′

u−t|Y1, . . . , Yn)) = EŶu−s|nE(Yu−t|Y1, . . . , Yn) = EŶu−s|nŶ
′

u−t|n.

Hence,

At,s(u) = EYu−sY
′

u−t − EYu−sŶ
′

u−t|n − EŶu−s|nY
′

u−t + EŶu−s|nŶ
′

u−t|n

= Γ(t− s)− EŶu−s|nŶ
′

u−t|n

= Γ(t− s)− E

(
n∑

k=1

Θu−s−1,u−s−k(Yk − Ŷk)
)(

n∑

k=1

Θu−t−1,u−t−k(Yk − Ŷk)
)′

= Γ(t− s)−
n∑

k=1

Θu−s−1,u−s−kVk−1Θ
′

u−t−1,u−t−k, (3.54)

where the last relations comes from the orthogonality of Yk− Ŷk and Yj− Ŷj, k, j = 1, . . . , n,

k 6= j. �

It is worth noting here that typical forecasting methods based on the infinite past cannot

be immediately extended to the noncausal case. For example, note that for a series {Xn}n∈Z
admitting a causal representation (3.2), we can write

Xn+h =
∞∑

j=0

ΨjZn+h−j.
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Then, by replacing the ǫ’s that contribute to Xn+h but not to Xn with their expected values

(which are zero), we get the infinite past forecast X̂n+h|n,∞ as

X̂n+h|n,∞ =

∞∑

j=h

ΨjZn+h−j, (3.55)

with the forecast error

Xn+h − X̂n+h|n,∞ =

h−1∑

j=0

ΨjZn+h−j. (3.56)

A noncausal series Xn, however, satisfies Xn+h =
∑∞

j=−∞Ψjǫn+h−j, where the expected

values of the infinite future ǫk, k = n+ 1, n + 2, . . . , are not necessarily zero and hence we

cannot derive a relation similar to (3.55).

3.4.3 Model selection

Here, we briefly review two typical model selection methods, namely, the Akaike information

criterion (AIC, for short) and the Bayesian information criterion (BIC, for short). The AIC

was proposed by Akaike (1974; 1998) as a method to select a model that best fits a given

dataset amongst a set of candidate models. It is defined as

AIC = −2lnL+ 2k, (3.57)

where L is the maximized value of the model’s likelihood function, and k is the number

of its parameters. Models with smaller AIC values are preferred to those with larger AIC

values. Note, however, that AIC is a relative measure of model quality in the sense that it

gives no information as to whether or not a given model is a good choice for the data at

hand. Instead, the AIC ranks the candidate models rewarding the ones with large likelihood

functions while penalizing the ones with a large number of parameters.

A number of similar model selection criteria have appeared in the literature. The most

notable is a version of AIC with a correction for finite sample sizes defined as

AICc = AIC +
2k(k + 1)

n− k − 1
, (3.58)

46



where n is the sample size (see Hurvich and Tsai (1989)). In particular, Brockwell and

Davis (2009) prefer AICc as a model selection criterion for short-range dependent time

series models as it counteracts the overfitting tendency of AIC. The sample size of the

dataset in Section 3.6 is much larger than the number of parameters for the models we will

consider and so the AIC and AICc differ only by a small amount.

BIC was proposed by Schwarz (1978) as a competitor to AIC. It is defined as

BIC = −2lnL+ kln(n), (3.59)

and tends to favor smaller models. In other words, BIC requires stronger evidence to allow

for higher complexity. Informally, this is justified by the parameter uncertainty that is

present in Bayesian analysis. Below we give a rule of thumb for the strength of evidence

against the model with the higher BIC (see Kass and Raftery (1995)).

BIC Difference Evidence against higher BIC

0 to 2 Weak

2 to 6 Positive

6 to 10 Strong

>10 Very strong

Table 3.1: Rule of thumb for assessing the strength of evidence against the model with the
higher BIC value.

We will not expand more on model selection criteria here. For further details, see

Burnham and Anderson (2002).

3.5 Simulation study

In this section, we perform a Monte Carlo simulation study to assess the performance of

the CLDL algorithm for the VARFIMA(p,D, q) model (3.36) described in Section 3.4.1.

We examine four different models with AR and MA components of orders p, q = 0, 1. As

discussed in Section 3.3.2, the focus will be on models with diagonal AR components. For

each model, we consider two sample sizes N = 200, 400. The Gaussian time series data are
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generated using the fast and exact synthesis algorithm of Helgason et al. (2011), while the

number of replications will be either 100 or 200.

To solve the maximization problem (3.43), we use the SAS procedure nlpqn, which

implements the BFGS quasi-Newton method, a popular iterative optimization algorithm.

For our optimization scheme, we follow an approach found in Tsay (2010). A first step is to

eliminate the nonlinear inequality constraint |Σ| ≥ 0 in the parameter space S, by letting

Σ = UTU , where U = (Ujk)j,k=1,2 is an upper triangular matrix (Σ is nonnegative definite

and such a factorization always exists). Therefore, the parameter vector θ can be written

as θ = (d1, d2, c, U11, U12, U22,Θ
′)′ while the parameter space becomes S = {θ ∈ R

6+kq : 0 <

d1, d2 < 0.5, −1 < c < 1}, where k is 2 for models with diagonal MA part and 4 for models

with general MA part.

Next, we describe our strategy on selecting initial parameter values (ΦI , θI) for the

BFGS method. Let

Φ0

r = (φ0

jk,r)j,k=1,2, θ0 = (d0

1, d
0

2, c
0, U 0

11, U
0

12, U
0

22, (Θ
0

s)
′)′, r, s = 1, 2, (3.60)

where Θ0

s = (θ0

jk,s)j,k=1,2 be the true parameter values. We consider initial values

dI
k =

d0

k

1 + 2d0

k

, cI =
2c0

1 + |c0| , U I
jk = 1, θI

jk,s =
eθ

0
jk,s − 1

eθ
0
jk,s + 1

, φI
jk,r =

eφ
0
jk,r − 1

eφ
0
jk,r + 1

, (3.61)

where j, k, r, s = 1, 2. Note that the transformations (3.61) are essentially perturbations of

the true parameter values that also retain the range of the parameter space S. For example,

the value of dI
k will be zero (or 1/2) when d0

k is also zero (or 1/2). Moreover, even though

the parameter space S does not include identifiability constraints for the elements of the

AR and MA polynomials, we did not encounter any cases where the optimization algorithm

considers such values.

Figures 3.2–3.12 show the histograms of the parameter estimates for 12 different models.

For all simulations we take d1 = 0.2, d2 = 0.4, c = 0.6,Σ11 = 3,Σ12 = 0.5,Σ22 = 3, while

the true SRD parameters along with the sample size and number of replications are given
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in the caption of each plot.2 We also performed simulations for several other values of

these parameters and got similar results and therefore we omit them in favor of space

economy. Moreover, each plot in Figures 3.2–3.12 has dashed and solid lines which indicate

the median of all replications and the true parameter values respectively. Note that in some

cases, the estimates of the SRD parameters and of the entries of the matrix U , have large

absolute values for a few number of realizations. To preserve a more informative scale of

the horizontal axis, we do not to include these estimates in histogram bins. Instead, we

indicate the range and frequency of these “outlier” estimates inside a legend box.
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Û11

−0.6 −0.4 −0.2 0 0.2 0.4
0

5

10

15

20

25

30
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Figure 3.2: Estimated parameters for 100 replications of a VARFIMA(0,D, 0) series with
sample size N = 200. The dashed vertical lines indicate the median over all replications
while the solid vertical lines indicate the true parameter values.

2For this choice of d1, d2, c, the phase parameter is equal to φ = 1.15. Taking c = −0.1985 with the same
d’s would yield zero phase.
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Figure 3.3: Estimated parameters for 200 replications of a VARFIMA(0,D, 0) series with
sample size N = 400. The dashed vertical lines indicate the median over all replications
while the solid vertical lines indicate the true parameter values.
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Figure 3.4: Estimated parameters for 100 replications of a VARFIMA(0,D, 1) series with
sample size N = 200 and diagonal MA component. The dashed vertical lines indicate the
median over all replications while the solid vertical lines indicate the true parameter values.
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Figure 3.5: Estimated parameters for 200 replications of a VARFIMA(0,D, 1) series with
sample size N = 400 and diagonal MA component. The dashed vertical lines indicate the
median over all replications while the solid vertical lines indicate the true parameter values.
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Figure 3.6: Estimated parameters for 100 replications of a VARFIMA(0,D, 1) series with
sample size N = 200 and nondiagonal MA component. The dashed vertical lines indicate
the median over all replications while the solid vertical lines indicate the true parameter
values.
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Figure 3.7: Estimated parameters for 200 replications of a VARFIMA(0,D, 1) series with
sample size N = 400 and nondiagonal MA component. The dashed vertical lines indicate
the median over all replications while the solid vertical lines indicate the true parameter
values.
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Figure 3.8: Estimated parameters for 100 replications of a VARFIMA(1,D, 0) series with
sample size N = 200 and diagonal AR component. The dashed vertical lines indicate the
median over all replications while the solid vertical lines indicate the true parameter values.
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Figure 3.9: Estimated parameters for 200 replications of a VARFIMA(1,D, 0) series with
sample size N = 400 and diagonal AR component. The dashed vertical lines indicate the
median over all replications while the solid vertical lines indicate the true parameter values.
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Figure 3.10: Estimated parameters for 100 replications of a VARFIMA(1,D, 1) series with
sample size N = 200 and diagonal AR and MA components. The dashed vertical lines
indicate the median over all replications while the solid vertical lines indicate the true
parameter values.
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Figure 3.11: Estimated parameters for 100 replications of a VARFIMA(1,D, 1) series with
sample size N = 200 and diagonal AR and nondiagonal MA components. The dashed
vertical lines indicate the median over all replications while the solid vertical lines indicate
the true parameter values.

58



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

35

40

45

50

d̂1

0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

40

45

d̂2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

30

35

40

45

ĉ

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90 Range Freq
(16,18) 4
(34,35) 1
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Figure 3.12: Estimated parameters for 200 replications of a VARFIMA(1,D, 1) series with
sample size N = 400 and diagonal AR and nondiagonal MA components. The dashed
vertical lines indicate the median over all replications while the solid vertical lines indicate
the true parameter values.
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The results of the simulation study indicate a satisfactory performance of the CLDL

algorithm for most cases considered. The small differences between the dashed and

solid lines in Figures 3.2–3.3 indicate the small bias of the parameter estimates for the

VARFIMA(0,D, 0) model, with the exception of Û12. The reason Û12 is close to zero is

because the value of the true parameter U12 is small (0.28), and not because the algorithm

fails to estimate the dependence across the series. To check this, we tried higher values of

U12, which led to estimates Û12 far from zero but also, as expected, an increased bias of the

other parameter estimates. Moreover, as the sample size grows from N =100 to 200, the

bias measured through the median(Û12)− U12 decreases from -0.33 to -0.29.

Moving on to higher order models with short-range dependent components, we notice

bias in the estimates of other parameters besides U12. The estimates of the LRD parame-

ters, in particular, have the smallest bias across all models. We would also like to note the

bimodality features of some histograms in Figures 3.6–3.7 (VARFIMA(0,D, 1) with nondi-

agonal MA part) and 3.11–3.12 (VARFIMA(1,D, 1) with nondiagonal MA and diagonal AR

parts), especially those of ĉ.3 One explanation of the bimodality is that the optimization

procedure is trapped at a local maximum of the likelihood function. Another reason could

be that the graph of the likelihood (viewed as a function of c only, with all other parame-

ters fixed at their estimated values) may be very flat around the maxima for a number of

realizations. We shall explore these issues in greater depth elsewhere.

Finally, it is worth mentioning here an interesting pattern in the estimates of Figures

3.11 and 3.12. More specifically, the estimates of all parameters can be classified according

to two types of realizations. For example, the estimates ĉ in Figure 3.11 divide into two

clusters one to the left and one to the right of 0.5. Figure 3.13 depicts the histograms

of Û11, Φ̂22, Θ̂11 from Figure 3.11, classified according to the values of ĉ. The white bins

correspond to the realizations for which ĉ > −0.1, while the dark colored bins correspond

to the realizations for which ĉ < −0.1.
3Similar features were also observed in simulations where other values for c were taken (not reported here).
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Θ̂11 Û11 Û12

Figure 3.13: Estimated parameters for 100 replications of a VARFIMA(1,D, 1) series with
sample size N = 200 and diagonal AR and nondiagonal MA components. The white bins
correspond to the realizations for which ĉ > −0.1, while the dark colored bins correspond
to the realizations for which ĉ < −0.1

3.6 Application

In this section, we apply the CLDL algorithm to analyze inflation rates in the U.S. under

the noncausal VARFIMA(p,D, q) model discussed in Section 3.3.2. Evidence of long-range

dependence behavior in inflation rates has been found in a number of works (see, for exam-

ple, Baillie et al. (1996), Doornik and Ooms (2004), Hurvich and Sela (2009), Baillie and

Moreno (2012) and references therein). More specifically, Hurvich and Sela (2009) tested the

fit of several long- and short-range dependent models on the annualized monthly inflation

rates for goods and services in the U.S. during the period of February 1956–January 2008

(N = 624 months) and selected a causal VARFIMA model as the best choice. Besides their

long memory features, however, the time series of inflation rates often exhibit asymmetric

behavior, and therefore call for multivariate LRD models that allow for general phase.

Following the notation of Sela (2010),4 we denote the Consumer Price Indices series for

commodities as {CPIct }t=0,...,N and the corresponding series for services as {CPIst }t=0,...,N .

Then, we define the annualized monthly inflation rates for goods and services as

gt = 1200
CPIct − CPIct−1

CPIct−1

and st = 1200
CPIst − CPIst−1

CPIst−1

,

respectively. The two series {gt}t=1,...,N , {st}t=1,...,N are depicted in Figure 3.14.5

4See also the accompanying R code.

5The consumer price indices (raw) data are available online from the Bureau of Labor Statistics.
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Figure 3.14: Annualized monthly inflation rates for goods (left) and services (right) from
February 1956 to January 2008.

The two plots in Figure 3.15 provide some motivation for why a general phase model

is needed for this dataset. More specifically, the left plot in Figure 3.15 depicts the sample

crosscorrelation function ρ̂12(h) of the two series for all lags such that |h| < 25. Observe

that for negative lags the sample crosscorrelation function decays faster than for positive

lags suggesting time-non-reversibility of the series and hence non-zero phase (see (2.30)).

lag
-25 -20 -15 -10 -5 0 5 10 15 20 25

ρ̂
12
(h
)
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0.2 Whittle (data driven)
Model (special phase)

Figure 3.15: Left plot: Sample cross correlation ρ̂12(h) of the series {gt}t=1,...,N and
{st}t=1,...,N depicted in Figure 3.14 for |h| ≤ 25. Right plot: Local Whittle phase esti-
mates, one corresponding to the causal VARFIMA (dashed line) and one estimated directly
from the data (solid line). Both estimates are plotted as functions of a tuning parameter
m = N0.25+0.0125k, k = 1, . . . , 51, where N = 624 is the size of the series.

Further evidence for general phase can be obtained from the local Whittle estimation

of Robinson (2008) which can be used to estimate the phase and the LRD parameters

directly from the data. The estimation is semiparametric in the sense that it only requires
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specification of the spectral density at low frequencies (see, for example, the relation (2.5)).

The right plot in Figure 3.15 depicts two local Whittle estimates of the phase parameter φ

as functions of m – a tuning parameter representing the number of lower frequencies used in

the estimation. The dashed line corresponds to the special phase estimate φ̂ = (d̂1− d̂2)π/2

of the causal VARFIMA model based on the local Whittle estimates of the two d’s. On the

other hand, the solid line shows the phase parameter estimated directly from the data. The

two lines being visibly different suggest that the special phase parameter and the associated

VARFIMA model are not appropriate.

In the analysis of Hurvich and Sela (2009), the causal VARFIMA(1,D, 0) model was

selected as the best choice (based on AIC), amongst vector autoregressive models of both

low and high orders and also amongst causal VARFIMA(p,D, 0) and FIVARMA(p,D, 0)

models with p ≤ 1. Note that for the FIVARMA model, the authors also allowed for typical

fractional cointegration, an extension that was not discussed in Section 3.3.2. The estimated

VARFIMA(1,D, 0) model, in particular, was

gt = 0.3027gt−1 + 0.4245st−1 + ǫ1t,

st = −0.0237gt−1 − 0.3085st−1 + ǫ2t,
(3.62)

where 


ǫ1t

(I −B)0.4835ǫ2t


 ∼ N


0,




20.23 0.46

0.46 7.08





 . (3.63)

We should note here that the SAS optimization algorithm we used produced estimates

similar to those of Sela’s algorithm (implemented in R), for all parameters except d1 which

Sela estimates to be zero while for this model we estimated it to be 0.17.

The parameter estimates in (3.62)–(3.63) reveal an interesting feature, noted by Sela

(2010). In particular, while the lagged services inflation has a significant influence on goods

inflation, the lagged goods inflation seems to have a small effect on services inflation. This

behavior is potentially related to the so-called gap between the prices in services and the

prices in goods which was studied by Peach et al. (2004). More specifically, the term gap
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refers to the tendency of prices in services to increase faster than prices in goods. We plan

to examine the relation of these two phenomena in greater depth in a future work.

Table 3.2 below contains the AIC and BIC values for 9 causal and 9 noncausal

VARFIMA models fitted to the inflation rates series. The superscripts + and ∗ indicate

models with diagonal AR and MA components, respectively, while k denotes the number

of parameters of each model.

(a) Noncausal models

Model k AIC BIC

(0,D, 0) 6 4412 4421

(0,D, 1)∗ 8 4385.7 4394.6

(1,D, 0)+ 8 4367 4376

(0,D, 1) 10 4361 4370

(1,D, 0) 10 4351 4360

(1,D, 1)∗+ 10 4339 4348

(1,D, 1)∗ 12 4314.8 4323.7

(1,D, 1)+ 12 4314.1 4322.9

(1,D, 1) 14 4303 4312

(b) Causal models

Model k AIC BIC

(0,D, 0) 5 4420 4429

(0,D, 1)∗ 7 4385.9 4394.8

(1,D, 0)+ 7 4376 4385

(0,D, 1) 9 4380 4389

(1,D, 0) 9 4358 4367

(1,D, 1)∗+ 9 4372 4381

(1,D, 1)∗ 11 4315.1 4323.9

(1,D, 1)+ 11 4315.3 4324.1

(1,D, 1) 13 4314 4323

Table 3.2: AIC and BIC values from fitting 9 noncausal (left table) and 9 causal (right
table) VARFIMA(p,D, q) models to the annualized inflation rates for goods and services.
The superscripts + and ∗ indicate diagonal AR and MA components, respectively.

A number of remarks are in place regarding Table 3.2. First, note that all noncausal

models have smaller AIC and BIC values compared to their causal counterparts. Second,

amongst all the models considered the best choice according to both the AIC and BIC

selection criteria is the VARFIMA(1,D, 1) with general AR and MA components. This

observation hints that we should extend out study to models with short-range dependent

components of higher orders, which we plan to pursue in a future work. Considering higher

order AR components will also allow us to consider FIVARMA(p,D, q) models (see the

discussion under the relation (3.39)).

Next, we present the two estimated noncausal VARFIMA(1,D, 0) models whose AIC

and BIC values were calculated in Table 3.2. Even though other models have smaller AIC

and BIC values, these models allow us to compare our results with Sela’s. The estimated
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noncausal VARFIMA(1,D, 0) model with a diagonal AR component is

gt = 0.122gt−1 + ǫ1t,

st = −0.514st−1 + ǫ2t,
(3.64)

where




((I −B)−0.215 + 0.534(I −B−1)−0.215)−1ǫ1t

((I −B)−0.379 − 0.534(I −B−1)−0.379)−1ǫ2t


 ∼ N


0,




9.34 1.72

1.72 17.43





 . (3.65)

Moreover, the estimated noncausal VARFIMA(1,D, 0) model with general AR component

is

gt = 0.176gt−1 + 0.03st−1 + ǫ1t,

st = 0.09gt−1 − 0.49st−1 + ǫ2t,
(3.66)

where




((I −B)−0.175 + 0.528(I −B−1)−0.175)−1ǫ1t

((I −B)−0.363 − 0.528(I −B−1)−0.363)−1ǫ2t


 ∼ N


0,




9.34 1.48

1.48 17.23





 . (3.67)

We have a number of interesting observations related to the estimated parameters in

(3.64)–(3.67). First, notice that the off-diagonal elements of the AR component in (3.66)

are close to 0. This suggests that the (a)symmetry behavior in the inflation rates is now

captured by the parameter c. Indeed, plugging the estimates of d1, d2 and c from the

models (3.64)–(3.65) and (3.66)–(3.67) in relation (3.20), we obtain phase estimates close

to −1 which agree with the local Whittle estimate of the phase in the right plot of Figure

3.15. Note that the local Whittle estimates of d1 and d2 which we did not report here are

close to 0.2 and 0.38 respectively, and hence they are also close to the estimated parameters

of the two noncausal VARFIMA models.

Second, even though the parameter estimates in (3.64)–(3.65) and (3.66)–(3.67) are very

close, the AIC and BIC values of these models differ a lot. We believe that this happens

because there exists some type of fractional cointegration relationship between the two series
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{gt}t=1,...,N and {st}t=1,...,N which can be captured by the model (3.66)–(3.67) but not by

the model (3.64)–(3.65).

Finally, observe that the diagonal elements of the variance matrices in (3.65) and (3.67)

seem to be reversed when compared to the corresponding estimates from the causal model

(3.63). At the moment, we are not certain what causes this behavior but we plan to further

investigate this in a future work.

We conclude this section with a comment regarding forecasting. We are currently

testing the performance of the multistep ahead forecasting method proposed in Section

3.4.2. Preliminary results indicate that for short and medium-range forecast horizons (1-

2 years), the mean squared prediction error (MSPE) in the inflation data for noncausal

models is slightly smaller than for causal ones. On the other hand, the noncausal models

had significantly smaller MSPEs for long-range forecast horizons (more than 3 years).
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CHAPTER 4

Convex optimization and feasible circulant matrix embeddings in synthesis

of stationary Gaussian fields

4.1 Introduction

In this chapter, we are interested in the synthesis of stationary Gaussian two-dimensional

random fields. One of the most popular methods for the exact generation of such fields

is based on circulant matrix embedding (CME). Introduced by Davis and Harte (1987)

for simulating stationary Gaussian univariate processes, the method was later extended to

random fields by Dietrich and Newsam (1993), Wood and Chan (1994), Chan and Wood

(1997), Gneiting et al. (2006), Stein (2012). See also Stein (2002) concerning the case of

fractional Brownian surfaces; Chan and Wood (1999), Helgason et al. (2011) for extensions

to the multivariate (vector) context; Percival (2006) for the case of complex-valued Gaussian

processes; and Craigmile (2003) for some theoretical contributions.

The idea of the method is to use a suitable periodization to embed a covariance matrix

of interest into a larger circulant matrix whose eigenvalues can be computed efficiently using

the fast Fourier transform (FFT). If all the eigenvalues are nonnegative, a stationary Gaus-

sian random field can be constructed with the embedding circulant matrix as its covariance

matrix. Its suitable subfield is then the desired stationary Gaussian field. While in theory

all eigenvalues can be shown to be nonnegative in the limit of the increasing sample size,

some of the eigenvalues often remain negative for computationally feasible large sample

sizes and many covariance structures of practical interest.

To have all the eigenvalues nonnegative, two approaches have been suggested in the

literature, namely, the cutoff circulant embedding or CCE, for short (Stein (2002), Gneiting

et al. (2006)) and the smoothing windows circulant embedding or SWCE, for short (Helgason

et al. (2014)). In the CCEmethod, the initial covariance is extended suitably in a parametric



fashion, based on the model at hand, to a larger domain, leading to a covariance embedding

with nonnegative eigenvalues. While such extensions have been found for several examples

of stationary fields, their construction is often nontrivial.

The SWCE approach, on the other hand, does not depend on the model at hand and

is easier to implement by suitably modifying the standard embedding. A possible reason

that some eigenvalues are negative is that the covariance embedding is not “smooth” at

the boundary of periodization. In the SWCE method, the covariance is extended over a

transition region where it is smoothed at the boundary, using a smoothing kernel. Helgason

et al. (2014) propose two types of smoothing: overlapping and nonoverlapping windows.

Numerical studies show that both variants of SWCE work well for a range of covariance

structures. Moreover, when using overlapping windows, the SWCE method greatly out-

performs CCE in the sense of efficiency considered in Helgason et al. (2014). However, for

some covariance structures (for example, as those in Section 4.4 below), a large transition

region is needed for the SWCE method to work.

We propose and study here a new method to simulate stationary Gaussian fields using

circulant matrix embedding, called optimal circulant embedding or OCE, for short. We

find the method interesting and promising for several reasons. First, the method proposes

a novel approach based on quadratic constrained optimization. This is quite fitting given

the growing integration of optimization tools in statistics. Second, as seen below, several

key components of the optimization procedure can be implemented more efficiently using

FFT, making it natural to combine the circulant matrix embedding and optimization ap-

proaches. Third, we show numerically that the OCE method works better than the SWCE

method (and hence the CCE method by the discussion above) for several covariance classes,

especially when the transition region is small.

More specifically, the OCE method consists of formulating a quadratic programming

problem with linear inequality constraints, to find a feasible covariance embedding, meaning
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that its eigenvalues are nonnegative. The exact optimization problem has the form

min
r̃(n1,n2)

N−1∑

n1,n2=−N+1

(r(n1, n2)− r̃(n1, n2))2 ,

subject to λk1,k2(r̃) ≥ 0, −Ñ + 1 ≤ k1, k2 ≤ Ñ − 1,

(4.1)

where {r(n1, n2), −N+1 ≤ n1, n2 ≤ N−1} is a given covariance function of a random field

X(n1,n2) on a square grid {(n1, n2) : 0 ≤ n1, n2 ≤ N − 1}, {r̃(n1, n2), −Ñ + 1 ≤ n1, n2 ≤

Ñ − 1} is the corresponding covariance embedding on a larger grid {(n1, n2), −Ñ + 1 ≤

n1, n2 ≤ Ñ−1} with Ñ ≥ N , and λk1,k2(r̃) are the eigenvalues of the covariance embedding

r̃. The difference between the larger and smaller square grids is the transition region,

referred to above. When the minimum value of the objective function is equal to zero, then

the method is exact, namely, the synthesized field will have the targeted covariance. If for

some choice of Ñ this is not true, then the solution of (4.1) can be thought as the best

approximation to the targeted covariance, that has no negative eigenvalues. The focus of

this chapter though is on the situations where the objective function is zero (up to some

tolerance error) and the simulation is exact.

To solve (4.1) numerically, we use an interior-point algorithm called the primal log-

barrier method (see Section 4.3 for more details). The basic idea of this algorithm is to

solve a sequence of unconstrained problems of the form

min
r̃(n1,n2)

Ft(r̃) :=

N−1∑

n1,n2=−N+1

(r(n1, n2)− r̃(n1, n2))2 −
1

t

Ñ−1∑

k1,k2=−Ñ+1

log(λk1,k2(r̃)) ,

(4.2)

for positive increasing values of t. The log term in (4.2) serves as a “barrier” not allowing

the search algorithm starting from a strictly feasible point r̃ (with all eigenvalues λk1,k2(r̃)

positive) to move into the region of non-feasible points r̃ (with some eigenvalues λk1,k2(r̃)

zero or negative). On the other hand, a large t ensures that the minimized function Ft(r̃) is

close to that of interest in (4.1). One can show that the solutions r̃t(n1, n2) of (4.2) approach

a solution of (4.1) as t increases. Eliminating inequality constraints of (4.1) by inserting

them in the objective function in (4.2) is a frequently used practice, since unconstrained

problems are far easier to handle.
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To solve the problem (4.2) (for a fixed t), we approximate Ft in (4.2) by a quadratic

function F̂t (around a strictly feasible initial point), and calculate its minimizer r̃t,a(n1, n2).

This reduces the problem to solving a linear system of the form

Hv = b, (4.3)

where H is the Hessian of Ft in (4.2) and v is the covariance embedding r̃ indexed as

a vector. The symmetry and the positive definiteness of the coefficient matrix H allows

solving the systems (4.3) using a popular iterative algorithm called the conjugate gradient

method. As we show below, key steps of the conjugate gradient method applied to our

problem can be carried out more efficiently using FFT.

Though the various components of the optimization procedure discussed above might

appear straightforward, there are in fact a number of technical issues that need to be

addressed. For example, as indicated above, we need to show how FFT is used in solving

(4.3). Among other issues arising in the procedure are the role and choice of the updating

rule for t in (4.2), the effect that the approximation of Ft by F̂t has on the convergence of

the approximate solutions r̃t,a(n1, n2) to the solution of (4.1), and so on. No less important

is to see how the suggested approach performs on covariance structures of interest and how

it compares to other approaches. All these issues are addressed in this chapter.

The rest of Chapter 4 is organized as follows. In Section 4.2, we briefly review the

existing circulant embedding schemes. Optimal circulant embedding is presented in Section

4.3. The performance of the method for several covariance structures is studied in Section

4.4. Section 4.5 contains all figures while technical proofs are moved to Appendix B.1.

4.2 Available circulant matrix embeddings

Let X = {Xn, n = (n1, n2) ∈ Z
2} be a zero mean, stationary Gaussian two-dimensional

random field. The autocovariance function of X is defined as

r(n) = r(n1, n2) = EX0Xn, (4.4)
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and satisfies r(n) = r(−n), n ∈ Z
2. We are interested here in the synthesis of the two

dimensional field X on the square grid

G(N) = {n = (n1, n2) ∈ Z
2 : 0 ≤ n1, n2 ≤ N − 1}, (4.5)

though the methods described below can be extended easily to rectangular grids and likely

to higher dimensions. For reference and comparison, the rest of Section 2 contains a short

description of the existing circulant matrix embedding methods. We recall the standard

CME (Circulant Matrix Embedding) method in Section 4.2.1. The CCE (Cutoff Circulant

Embedding) and SWCE (Smoothing Windows Circulant Embedding) methods are discussed

briefly in Sections 4.2.2 and 4.2.3, respectively.

4.2.1 Standard embedding

SetM = 2N−1 to be the (side) size of a larger embedding grid G(M), where an embedding

field will be generated. Let also r̃(n), n ∈ G(M), be the covariance embedding defined

through the symmetry relation

r̃(n) = r(ξN (n)), n ∈ G(M), (4.6)

where ξL(u) = (ξ1,L(u), ξ2,L(u)) is defined by

ξ1,L(u) = ξ2,L(u) =





u, if 0 ≤ u ≤ L− 1,

u−M, if L ≤ u ≤M − 1.
(4.7)

(The subscript L in (4.7) differs from N in (4.6) since the function (4.7) will also be used for

other indices than N .) Extend r̃ periodically in both dimensions by period M . Note that

r̃ can also be defined as the function that is M–periodic in both dimensions, and satisfies

r̃(n) = r(n), n ∈ G̃(N), (4.8)
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where the grid G̃(N) is defined as

G̃(N) = {n = (n1, n2) ∈ Z
2 : −(N − 1) ≤ n1, n2 ≤ N − 1} (4.9)

(see also Remark 4.2.1 below).

Next, consider a circular convolution operator Σ̃, whose action on a vector u(n), n ∈

G(M), is defined by

Σ̃u(n) =
∑

m∈G(M)

r̃(m− n)u(m), n ∈ G(M). (4.10)

The two-dimensional DFT basis {e−i2πk·(n/M), n ∈ G(M)}, k ∈ G(M), where n/M =

(n1/M,n2/M) and · is the usual inner product, diagonalizes the operator Σ̃. Hence, the

eigenvalues of Σ̃ are given by

λk =
∑

n∈G(M)

r̃(n)e−i2πk·(n/M), k ∈ G(M), (4.11)

and can be computed efficiently using the two-dimensional FFT. Assuming that

λk ≥ 0, k ∈ G(M), (4.12)

consider the complex-valued random variables

X̃n =M−1
∑

k∈G(M)

λ
1/2
k (Z0

k + iZ1
k)e

−i2πn·(k/M), n ∈ G(M), (4.13)

where Z0
k , Z

1
k , k ∈ G(M), are independent standard Gaussian random variables. One can

show that {ℜ(X̃n), n ∈ G(M)} and {ℑ(X̃n), n ∈ G(M)}, that is, the real and imaginary

parts of X̃n, are independent random fields with the covariance structure

Eℜ(X̃n)ℜ(X̃n+h) = Eℑ(X̃n)ℑ(X̃n+h) = r̃(h), n, n+ h ∈ G(M). (4.14)
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By using (4.8) and (4.14), a subfield Xn = ℜ(X̃n) or Xn = ℑ(X̃n), n ∈ G(N), is a Gaussian

random field with the desired covariance structure r.

The construction of the variables X̃n is possible only under the condition (4.12). This

condition, however, often does not hold for some k ∈ G(M), and hence the above standard

circulant matrix embedding (CME) method fails. A common way to make it work is to

increase N to some Ñ . (As noted in Section 4.1, the condition (4.12) holds in the limit N →

∞, under mild assumptions.) It is convenient to think of G̃(Ñ)\G̃(N) (or its periodization

in G(M) with M = 2Ñ − 1) as a transition region. Increasing N to Ñ can thus be thought

as extending the covariance function r(n) over the transition region. Since increasing N to

any computationally feasible Ñ often does not ensure (4.12), it is natural to consider other

ways to extend r(n) over the transition region G̃(Ñ)\G̃(N).

Remark 4.2.1. The reader may find the use of both domains G̃(N) and G(M) excessive,

and wonder why not use only one of them. In particular, for example in view of (4.6) and

(4.8), the domain G̃(N) may seem to be preferred for simplicity. There are several reasons

why we, and others, work on G(M). First, it is natural to think of extending G(N) to G(M),

where a subfield is ultimately selected. (In one dimension, a longer series is generated at

times 0, 1, . . . ,M − 1, and a shorter series is selected of size N .) Second, the indexing by

G(M) is more common in scientific software, e.g. MATLAB. Third and more importantly

in our context, we will refer below to the discontinuities of the covariance embedding at

the boundary of periodization (see the beginning of Section 4.2.3). The discontinuities are

easier to visualize on G(M), not G̃(N).

4.2.2 Cutoff embedding

The CCE (Cutoff Circulant Embedding) method considers two extension schemes over the

transition region, and is used in models with isotropic covariances r(n) = ψ(||n||2), where

ψ is a function and || · ||2 denotes the usual Euclidean distance. In one CCE extension

(Gneiting et al. (2006)), r̃ is defined on G̃(Ñ) as

r̃(n) =





r(n), if 0 ≤ ||n||2 ≤
√
2N,

b1(a1 − ||n||1/22 ), if
√
2N ≤ ||n||2 ≤ Ñ − 1,

(4.15)
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and then periodically extended in both dimensions. The constants a1, b1 and Ñ are chosen

as

a1 = (
√
2N)1/2 − (

√
2N)−1/2 1

2

ψ(
√
2N)

ψ′
√
2N

, b1 = −2(
√
2N)1/2ψ′(

√
2N), Ñ = [a21], (4.16)

where [x] denotes the integer part of x. The choices (4.16) ensure that r̃(n) is once contin-

uously differentiable at t =
√
2N , while the choice of

√
2N in (4.15) is to have r̃(n) = r(n)

for n ∈ G̃(N).

In another CCE extension, the embedding r̃ is defined as

r̃(n) =





r(n), if 0 ≤ ||n||2 ≤
√
2N,

b2(a2 − ||n||2)2, if
√
2N ≤ ||n||2 ≤ Ñ − 1,

(4.17)

where the constants a2, b2 and Ñ satisfy

a1 =
√
2N − 2

ψ(
√
2N)

ψ′(
√
2N)

, b1 =
(ψ′(
√
2N))2

4ψ(
√
2N)

, Ñ = [a22]. (4.18)

After extending r into r̃ as in (4.15) or (4.17), and periodization, the rest of CCE is the

same as the algorithm in (4.10)–(4.13) with M = 2Ñ − 1. As shown in in Theorems 1 and

2 of Gneiting et al. (2006), under the extension schemes (4.15) and (4.17), the condition

(4.12) always holds for several classes of covariance models.

4.2.3 Smoothing windows

The SWCE (Smoothing Windows Circulant Embedding) method is another way of extend-

ing the covariance function over the transition region. In the standard CME, the cross sec-

tions {(n1, n2) : n1 = N −1, 0 ≤ n2 ≤M −1} and {(n1, n2) : n2 = N −1, 0 ≤ n1 ≤M −1}

are the boundary of periodization, when extending r periodically to r̃ from G̃(N) to Z
2

(and, in particular, to r̃ on G(M)). Along this boundary, the covariance embedding r̃ is

often not smooth (see, for example, the top left plots in Figures 4.1–4.2). The idea of

the SWCE method is to smooth the discontinuities at the boundary of periodization in

the standard CME, since the discontinuities can be thought to be the source of negative
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eigenvalues (of FFT). Helgason et al. (2014) showed that the SWCE method outperforms

the CCE and standard CME for a range of covariance functions. In this section, we review

briefly the two variants of the SWCE method, called the overlapping and nonoverlapping

windows. For more details, see Helgason et al. (2014).

We begin with the definition of a smoothing window. Let 0 < P < Q. A smoothing

window is defined as

w(x) =





1, if x ∈ G̃(P ),

ρ(x), if x ∈ G̃(Q) \ G̃(P ),

0, if x ∈ R
2 \ G̃(Q),

(4.19)

where ρ(x), x ∈ R
2, is a real-valued function that decays smoothly from 1 to 0 when moving

from the boundary of G̃(P ) toward that of G̃(Q).

In the nonoverlapping SWCE, one considers a transition region of side length Ñ − N

and an embedding size M = 2Ñ − 1. The covariance function is then extended through the

transition region as

r̃(n) = r(n)w(n), n ∈ G̃(Ñ), (4.20)

where w(n) is the smoothing window in (4.19) with

P = N, and Q = Ñ . (4.21)

Since w(n) = 1 for n ∈ G̃(N), we have r̃(n) = r(n) for n ∈ G̃(N). The rest of the algorithm

(after periodizing r̃) is the same as CME in Section 4.2.1. The basic idea behind (4.20) is

that w(n) smooths r̃(n) at the boundary of periodization by forcing it to zero.

Note that (4.20) is the embedding on G̃(Ñ ), which is then periodized in both dimensions.

The covariance embedding r̃(n) can equivalently be defined on G(M) and then periodized

by setting

r̃(n) =r(n1, n2)w1(n) + r(n1, n2 −M)w2(n)

+ r(n1 −M,n2 −M)w3(n) + r(n1 −M,n2)w4(n), n ∈ G(M), (4.22)
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where wk(n) = wk(n1, n2), k = 1, 2, 3, 4 and

w1(n1, n2) = w(n1, n2), w2(n1, n2) = w(n1, n2 −M),

w3(n1, n2) = w(n1 −M,n2 −M), w4(n1, n2) = w(n1 −M,n2).
(4.23)

To see the equivalence, note that only one of the wi(n)’s can be different from zero. See

Section 3.2 in Helgason et al. (2014) for more details.

In the overlapping SWCE, the covariance embedding r̃(n) is smoothed without forcing

it to be zero as in the nonoverlapping SWCE. The basic idea is to use the embedding given

by (4.22)–(4.23) but choosing a smoothing window (4.19) with

P = N, and Q = 2Ñ −N. (4.24)

The fact that Q > Ñ in (4.24) ensures the overlap of wi(n)’s. One can show that under

(4.24), r̃(n) = r(n) for n ∈ G̃(N). The rest of the algorithm (after periodizing r̃) is the same

as CME in Section 4.2.1 using the embedding (4.22)–(4.23) with (4.24). The overlapping

SWCE was found to outperform the nonoverlapping SWCE in Helgason et al. (2014).

4.3 Optimal circulant embedding

We propose here a new type of circulant matrix embedding method to generate a zero mean,

stationary Gaussian random field X on the grid G(N). Take Ñ > N and set M = 2Ñ − 1.

We shall also assume that the covariance embedding r̃ = {r̃(n), n ∈ G(M)} has the property

r̃(n) = r̃(−n), and satisfies the symmetry condition

r̃(n) = r̃(ξ
Ñ
(n)), n ∈ G(M), (4.25)

where the function ξÑ (u) is given in (4.7). The symmetry condition (4.25) ensures, in

particular, that the eigenvalues of the covariance embedding r̃ are real-valued (see also the

discussion following Lemma 4.1 below).
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4.3.1 Formulation of the constrained optimization problem

The basic idea of the OCE (Optimal Circulant Embedding) method is to obtain the covari-

ance embedding r̃ = {r̃(n), n ∈ G(M)}, or by periodization r̃ = {r̃(n), n ∈ G̃(Ñ)}, by

solving the following optimization problem:

min
r̃

f∗(r̃) =
∑

n∈G̃(N)

(
r(n)− r̃(n)

)2
,

subject to gk(r̃) ≥ 0, k ∈ G̃(Ñ ),

(4.26)

where r = {r(n), n ∈ G̃(N)} is a given covariance structure and gk(r̃) are the eigenvalues

of the covariance embedding r̃, given by (after replacing G(M) by G̃(Ñ) in (4.11) for

convenience and using G̃(Ñ) for indexing)

gk(r̃) =
∑

n∈G̃(Ñ)

r̃(n)e−i2πk·(n/M), k ∈ G̃(Ñ). (4.27)

Note that the sum in the first relation in (4.26) is taken over a smaller grid G̃(N) than

G̃(Ñ ) of the sum in (4.27). Minimization of f forces the covariance embedding r̃ to be as

close as possible to the targeted covariance r over the domain of interest G̃(N). Hence,

when the minimum value of f is zero, the solution of the problem can be used for the

exact synthesis of the desired field. The inequality constraints in (4.26) rule out candidate

(non-feasible) minimizers that lead to covariance embeddings with negative eigenvalues.

To write the problem (4.26) on the domain G(M), introduce the weights

β(n) =





1, n ∈ G̃(N),

0, n ∈ G̃(Ñ )\G̃(N),
(4.28)

on G̃(Ñ) and extend them periodically in both dimensions. With r extended periodically

in the same way, the problem (4.26) can be written as

min
r̃

f∗(r̃) =
∑

n∈G(M)

β(n)
(
r(n)− r̃(n)

)2
,

subject to gk(r̃) ≥ 0, k ∈ G(M).

(4.29)
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The optimization problem (4.29) is a quadratic programming problem with linear inequal-

ity constraints. In the optimization literature, this problem is treated by regarding the

underlying variable as a vector. In the case considered here, the underlying variable r̃ is

indexed by the square grid G(M). Indexing is just a question of perspective and we will

continue using parameters indexed by grids (though also sometimes switch to vectors, as

for example, in one of the proofs).

An issue requiring immediate attention, however, is the symmetry of the covariance

embedding r̃, expressed through the relation (4.25). We need to keep track only of the

non-symmetric half of the covariance, which we choose to be over the smaller rectangular

grid

G+(M) = {n ∈ Z
2, 0 ≤ n1 ≤ Ñ − 1, 0 ≤ n2 ≤M − 1}. (4.30)

Note that the symmetry relation (4.25) implies that, for (n1, n2) ∈ G(M)\G+(M),

r̃(n1, n2) = r̃(M − n1,M − n2), so that the values of r̃(n) for n ∈ G(M)\G+(M) are

indeed determined from those on G+(M).

When working on the smaller rectangle G+(M), we need to have a representation of

the eigenvalues gk(r̃) where the sum
∑

n∈G(M) is replaced by
∑

n∈G+(M), that is, a repre-

sentation of the form

gk(r̃) =
∑

n∈G+(M)

ck(n)r̃(n) =: [Ar̃](k), (4.31)

where ck(n) are suitable weights and A is viewed as a linear operator acting on a field

defined on G+(M). The next lemma provides an expression for the weights ck(n). The

proof of the lemma can be found in Appendix B.1.

Lemma 4.1. Suppose that (4.25) holds, and the eigenvalues gk(r̃) are given by (4.11).

Then, the relation (4.31) holds with the weights ck(n), k ∈ G(M), n ∈ G+(M), given by

ck(n) = c(k1,k2)(n1, n2) =





2 cos(2πk · (n/M)), if n1 6= 0,

cos(2πk2n2/M), if n1 = 0.

(4.32)
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A number of comments are in place concerning Lemma 4.1. First, note that the relation

(4.32) implies that c(M,M)−k(n) = ck(n). Therefore,

gk(r̃) ≥ 0, k ∈ G+(M), (4.33)

yields nonnegative gk(r̃) for general k in the larger grid G(M). Thus, the number of

inequality constraints in (4.29) can be reduced by half. Second, it also follows from (4.32)

that gk are real-valued.

We will not use Lemma 4.1 to calculate the eigenvalues gk(r̃) = [Ar̃](k) – these can be

computed efficiently by using the two-dimensional FFT. The relation (4.31), however, plays

a significant role in the practical implementation of the OCE method in the following sense.

As can be seen below in Section 4.3.2, the algorithm we use to solve the problem (4.29)

requires multiple evaluations of both [Ar̃](k) and [AT r̃](k), where AT refers to the adjoint

operator of A (if A is viewed as a matrix, AT is its transpose). We show in the next lemma

that [AT r̃](k) can be computed using [Ar̃](k) and hence FFT. The proof of the lemma is

based on (4.31) and can be found in Appendix B.1.

Lemma 4.2. The operators A and AT are related as

[AT y](k) = [Ay](k) + Ek, k ∈ G+(M), (4.34)

where

Ek =





−∑M−1
n2=0 cos(2πk2n2/M)

[∑Ñ−1
n1=1 y(n1, n2)

]
, if k1 = 0,

∑M−1
n2=0 cos(2πk2n2/M)y(0, n2), if k1 6= 0.

Note that Ek in the lemma above can also be calculated efficiently using FFT. We are

now ready to present the method to solve the optimization problem (4.29), which by the

discussion around (4.33) becomes

min
r̃

f(r̃) =
∑

n∈G+(M)

β(n)
(
r(n)− r̃(n)

)2
,

subject to gk(r̃) ≥ 0, k ∈ G+(M).

(4.35)
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4.3.2 Primal log-barrier method

To solve (4.35), we use the primal log-barrier (PLB) method. We outline the method below

in order to refer to its parts that will be specialized in our problem. For a more detailed

account, see Chapter 11 in Boyd and Vandenberghe (2004), and Section 19.6 in Nocedal

and Wright (2006).1

We start by recalling some convex optimization notions from Boyd and Vandenberghe

(2004), p. 128, adjusting the notation suitably for two-dimensional fields. The optimal value

z∗ of the problem (4.35) is defined as z∗ = inf{f(r̃) | gk(r̃) ≥ 0, k ∈ G+(M)}. We will

say that a (field) point r̃ is feasible if gk(r̃) ≥ 0, k ∈ G+(M) (if gk(r̃) > 0, k ∈ G+(M),

the point r̃ is called strictly feasible). The set of all feasible points will be called feasible

region. A (field) point r̃∗ is said to be an optimal point, or to solve the problem (4.35) if it

is feasible and f(r̃∗) = z∗. Moreover, a feasible point r̃ with f(r̃) ≤ z∗ + ǫ (ǫ > 0) is called

ǫ−suboptimal.

To ease the presentation of the PLB method, we break it down into 3 parts described

next. The actual steps of the PLB algorithm are outlined at the end of this section.

Part 1: Eliminating the constraints

Define the logarithmic barrier function

φ(r̃) = −
∑

k∈G+(M)

log(gk(r̃)), (4.36)

with the domain {r̃ = r̃(n) ∈ G+(M) | gk(r̃) > 0, k ∈ G+(M)}. To eliminate the constraints

in (4.35), the logarithmic barrier φ is introduced as a penalty term in the objective function

of (4.35). More specifically, let t > 0 and consider the unconstrained problem

min
r̃

ft(r̃) := tf(r̃) + φ(r̃). (4.37)

If gk(r̃) < 0, then by convention the value of ft in (4.37) is ∞.

1The reader familiar with optimization methods may skip to the end of the section where the use of FFT in
the CG method is discussed.
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One can show that the minimizers of (4.37), which we denote by r̃∗t (n), approach a

solution of (4.35) as t grows, under certain conditions (see, for example, Theorem 3.10 in

Forsgren et al. (2002), p. 548, for a detailed proof and Boyd and Vandenberghe (2004),

pp. 562-563, for an intuitive discussion). The points r̃∗t (n) form the so-called central path

{r̃∗t (n), t > 0}, and are at most m/t–suboptimal for the problem (4.35), i.e.

f(r̃∗t (n))− z∗ ≤ m/t, (4.38)

where m = ÑM is the number of inequality constraints in (4.35). See Boyd and Vanden-

berghe (2004), pp. 565-566, for a proof.

Part 2: Quadratic approximation

We now turn to solving the unconstrained optimization problem (4.37). It is convenient

here to view each ft as a function whose argument is a vector x ∈ R
m, where m is the

number of points in the grid G+(M). Consider the second-order Taylor approximation f̂t

of ft around some given x = x0 (for a fixed t)

f̂t(x+ v) = ft(x) +∇ft(x)v +
1

2
vT∇2ft(x)v, (4.39)

where∇ft and ∇2ft denote the gradient and Hessian of ft, respectively. Instead of minimiz-

ing the function f(x), we will choose a point x0 and find the direction v that minimizes the

Taylor approximation of ft around x0. In other words, we will solve the quadratic problem

min
v

∇ft(x)v + 1
2v
T∇2ft(x)v (4.40)

for x = x0. In the optimization literature, the vector v is called the Newton direction and

the process of calculating v is called the Newton step. Carrying out multiple Newton steps

yields a sequence of points that converges to the solution of the exact problem (4.37).

For our problem, however, since t is increasing, it is not necessary to find exact mini-

mizers of the problem (4.37). In fact, it is sufficient to calculate only one Newton direction

for each value of t and initial value x = x0. This fact is argued in Bertsimas and Tsitsiklis
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(1997) for linear objective functions (see the discussion under relation (9.19) on p. 424 and

figure 9.6 on p. 425) and in Boyd and Vandenberghe (2004), p. 570, for general convex

functions.

As expected, the approximate problem (4.40) is much easier to solve. The first-order

condition linear system is

Hv = b, (4.41)

where H and b are given by

H = ∇2ft(x), b = −∇ft(x). (4.42)

Thus, the minimizer of f̂t, for a fixed t and initial point x = x0, is given by

x̂∗ = x0 + v∗, (4.43)

where v∗ is the solution of (4.41).

Part 3: Conjugate gradient algorithm

The conjugate gradient (CG) algorithm is an iterative procedure for solving linear systems

of the form (4.41) with symmetric and positive definite matrices H. It is particularly ap-

propriate for large problems, which is the case with (4.35) even for moderate M . Moreover,

in our case, the key steps of the algorithm can be implemented more efficiently through

FFT. We give next a description of the CG method following Nocedal and Wright (2006),

p. 112.

Outline of the CG algorithm

Given v0; Set ǫ0 = Hv0 − b, p0 = ǫ0, k = 0;
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while ǫk 6= 0

αk ← ǫTk ǫk

pTkHpk
;

vk+1 ← vk + αkpk;

ǫk+1 ← ǫk + αkHpk;

sk+1 ← ǫTk+1ǫk+1

ǫTk ǫk
;

pk+1 ← −ǫk+1 + sk+1pk;

k ← k + 1;

end (while)

The major computational tasks to be performed at each iteration of the CG algorithm,

are calculating the products Hpk, p
T
kHpk and ǫTk+1ǫk. In our case, however, these calcula-

tions can be done more efficiently using FFT. This is possible because, as shown in Lemma

4.3 below, both the Hessian matrix H and the negative gradient b can be expressed as func-

tions of the linear operators A and AT , which can be implemented using FFT by Lemmas

4.1 and 4.2. Indeed, note that a direct matrix-vector calculation of Hp is of the order m2

for an m×m matrix H and an m× 1 vector p. In our problem, m is of the order N2 and

hence m2 of the order N4. On the other hand, if H refers to FFT and p to a field, the order

of calculation becomes N2 log(N).

In the practical implementation of the CG algorithm, we considered the stopping rule

ǫk < TOL for a tolerance TOL = 0.1. For all covariance functions considered in Section 4.4,

we found that calculating the Newton step with higher precision (taking smaller tolerance)

led to the same optimal value for f , requiring however a larger number of steps.

Before we state Lemma 4.3, some notation is necessary. Given a field r = {r(n), n ∈

G+(M)}, define {d(k), k ∈ G+(M)} to be the field whose kth element is given by

d(k) = −([Ar](k))−1 = −1/([Ar](k)). (4.44)
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Next, let D := diag(d) be a linear operator whose action on the field r is defined as

[Dr](k) = d(k) · r(k), k ∈ G+(M). (4.45)

We are now ready to state Lemma 4.3. The proof of the lemma can be found in Appendix

B.1.

Lemma 4.3. Let β(n) be the weights defined in (4.28). Then, the Hessian matrix H and

the negative gradient b in (4.41) can be viewed as a linear operator and a two-dimensional

field given by, respectively,

H = tW +ATD2A, and b(n) = t(Wr̃(n)− s(n)) + [AT d](n), (4.46)

where W = diag(β(n)) and s(n) = β(n)r(n).

We conclude with a general outline of the primal log-barrier method. Further com-

ments can be found in Section 4.3.3. Let r̃∗t,a denote the field analogue of the approximate

minimizer x̂∗ in (4.43), i.e. the solution of the optimization problem

min
r̃
f̂t(r̃). (4.47)

Steps of the PLB method

1. Find an initial strictly feasible point r̃0 for the problem (4.35). Pick constants t0 > 0,

µ > 1, and accuracy ǫ > 0. Set t = t0 and r̃ = r̃0.

2. Compute r̃∗t,a by solving the problem (4.47) or equivalently (4.41) with initial point r̃,

using the CG algorithm.

3. Update r̃ = r̃∗t,a. If m/t < ǫ, stop and return r̃; since f(r̃∗t,a) (≈ f(r̃∗t )) does not differ

from the objective at the optimum by more than m/t, we can ensure that f(r̃) is less

than ǫ away from the optimal value.

4. Increase t to µt and start again from Step 2.
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4.3.3 Further discussion on the PLB method

In this section, we discuss the choice of the parameters r̃0, t0 and µ above. The initial co-

variance embedding r̃0 needs to be strictly feasible (i.e. [Ar̃0](k) > 0 for all k). We describe

below a straightforward way to choose such a point. The roles of t0 and µ, on the other

hand, are less straightforward. Note that the domain of the function f̂t is different from

the feasible region of the constrained problem (4.35). This means that the CG algorithm

used to find approximate minimizers of ft will possibly result in minimizers of f̂t which

are not feasible points for (4.35). The parameters t0 and µ are selected to mitigate this effect.

Choice of r̃0: To find a strictly feasible initial point r̃0 in Step 1 of the PLB method, we

first calculate the standard covariance embedding r̃(n), n ∈ G(M), as defined through the

relation (4.6). Let F (k) := [Ar̃](k), k ∈ G(M), be the corresponding spectrum (which can

be calculated efficiently through FFT). We then shift the spectrum by a positive constant

c so that all of its elements become positive (taking c = 2|mink∈G(M) F (k)| will ensure

that). Denote the resulting spectrum by F+(k). Finally, let y(n), n ∈ G(M), denote the

inverse FFT of F+(k). Taking r̃0(n) = r(0)y(n)/y(0) yields a strictly feasible initial point

with the targeted scale r̃0(0) = r(0).

Choice of t0: Observe that f̂t can be written as

f̂t(r̃) = tf(r̃) + φ̂(r̃), (4.48)

where φ̂ denotes the second-order Taylor approximation of the logarithmic barrier φ

(defined in a similar manner as f̂t in (4.39)). Selecting a small t0 essentially diminishes the

contribution of f to f̂t and enhances the role of φ̂, in the early steps of the PLB method.

For points outside the feasible region, the value of φ is (by our convention) infinite, and

thus we expect the value of φ̂ to be very large. As a result, these points will not be favored

by the CG algorithm in the initial iterations of the PLB method. For our simulations (see

Section 4.4), we used a small t0 = 0.0001, which proved to work well for all the covariance
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structures considered. See Boyd and Vandenberghe (2004), pp. 570-571, for more elaborate

choices for t0.

Choice of µ: When µ is small (near 1), two consecutive t’s in the PLB method are not

very different. As a result, the problem (4.47) is perturbed only slightly from one iteration

to another. Moreover, the update rule in Step 3 of the algorithm implies that the initial

point used when solving the problem (4.47) is the solution of the previous iteration. Since

the two problems are only slightly different, we expect this choice of initial point to be a

good one, and therefore the conjugate gradient algorithm will require less time to find the

solution. The downside of this strategy is that a large number of iterations will be required

to reach the suboptimality property m/t < ǫ in Step 3 of the method.

On the other hand, when µ is large, t is increased rapidly at each PLB iteration and

thus the convergence to the suboptimality property is much faster. This aggressive update

of t, however, means that there will be a large difference between the problems (4.47) at

two consecutive iterations, and therefore the solution of one iteration might not be a good

initial point for the next. This might decrease the quality of the Taylor approximation,

potentially leading to a solution outside the feasible region.

When t is updated aggressively (large µ), note also that the first term in (4.48) dom-

inates the objective function and thus the CG algorithm focuses more on iterates that

minimize f in (4.35) and less on iterates that satisfy the constraints in (4.35). In other

words, large values of µ are more likely to lead to an exact circulant embedding, which

however might have some negative eigenvalues. Taking smaller values of µ will ensure that

the eigenvalues are nonnegative, however leading to approximate embeddings. We discuss

these situations further in Section 4.4.

4.4 Simulations

In this section, we provide a Monte Carlo study comparing the OCE and SWCE methods, as

well as numerical illustrations of all the circulant embedding methods discussed above. For

our comparisons, we consider the anisotropic covariance function of the powered exponential
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form

r(n) = e−(θ||n||W )α , 0 < α ≤ 2, θ > 0, (4.49)

where ||t||W :=
√
t′Wt for column vectors t and W is a symmetric positive definite 2 × 2

matrix, and the isotropic Cauchy covariance function of the form

r(n) = (1 + (θ||n||2)α)−β/α , 0 < α ≤ 2, β > 0, θ > 0. (4.50)

For the powered exponential covariance structure (4.49), we consider two configurations,

with α = 0.5, θ = 0.01 and W =W1 or W2, where

W1 =




1 1

1 2


 , W2 =




1.6388 −1.489

−1.489 1.3712


 . (4.51)

(While there is nothing particularly special about the choice of W1, the matrix W2 is chosen

to be nearly singular as discussed in Section 4.4.1 below.) For the Cauchy covariance

structure (4.50), we consider the following parameter values

α = 1.3, β = 0.01, θ = 0.01. (4.52)

For the SWCE method, overlapping windows are used throughout.

4.4.1 Powered exponential covariance

Figure 4.1 shows the covariance embeddings resulting from the standard CME, SWCE and

OCE procedures for N = 200 and Ñ = 240 (transition region length 40) when the matrix

W1 is used in (4.49). In the standard CME (top left), the covariance embedding is not

smooth at the boundary of periodization resulting in many negative eigenvalues (77,300).

The SWCE method (top right), as expected, smooths the covariance embedding at the

boundary. However, for this transition region length, some of the eigenvalues (50) are still

negative. Finally, the covariance embeddings of the OCE method (middle left and middle

right plots) have no negative eigenvalues, while their values within the corner areas marked
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with broken lines are those of the desired covariance (up to the indicated error min f).

These plots visualize the goal of the optimization problem (4.26). The two bottom plots

show 2 cross sections of the covariance embeddings from all 3 methods.

Figure 4.2 shows the covariance embeddings resulting from the standard CME, SWCE

and OCE procedures for N = 100 and Ñ = 359 (transition region length 80) when the

matrix W2 is used in (4.49). The matrix W2 is nearly singular having eigenvalues 0.01 and

3. This singularity causes more pronounced discontinuities at the boundary of periodization

– c.f. the standard CME plots in Figures 4.1–4.2 (upper left). The SWCE method smooths

the discontinuities. However, the resulting embedding still has some negative eigenvalues

(116). Moreover, even though the length of the transition region here is larger compared to

Figure 4.1, the number of negative eigenvalues has increased. This is due to the ill behavior

of the weight matrix W . On the other hand, the two middle plots of Figure 4.2 depict the

covariance embedding of the OCE method with no negative eigenvalues. The two bottom

plots show 2 cross sections of the covariance embeddings from all 3 methods.

4.4.2 Cauchy covariance

Figure 4.3 shows the covariance embeddings resulting from the CME, SWCE and OCE

procedures for the Cauchy covariance function (4.50) with parameters (4.52) and N = 200.

The transition region length for the upper right (SWCE) and middle left (OCE) covariance

embeddings is 40, while for the middle left (SWCE) is 400. As in Figures 4.1–4.2, the

covariance embedding resulting from the standard CME method (upper left) is not smooth

at the boundary of periodization (2,836 negative eigenvalues). Note that non-smoothness

here is in the derivative (and not in the covariance itself as in Figures 4.1–4.2, top left) as

indicated through a highlighted contour plot which is spiky at the boundary.

In the top-right plot where the transition region length is 40, the SWCE method results

in an embedding with 24,720 negative eigenvalues. One possible explanation for this is a

very small range of the values of the given covariance function (the range of approximate

size 0.05 as seen from the vertical scale). That is, when overlapping windows are used in

the SWCE, the values of the covariance function are superimposed according to (4.22) and

as in the case considered here, can result in larger values over the transition region (the
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white region in the middle of the top-right plot). In fact, the SWCE method still fails

to produce a covariance embedding with nonnegative eigenvalues even when Ñ = 600 (for

example, the smoothing covariance embedding with Ñ = 400 shown in the middle right

plot has 28 negative eigenvalues). The OCE method, on the other hand, finds a feasible

covariance embedding even when Ñ = 240. The two bottom plots show 2 cross sections of

the covariance embeddings from all 3 methods.

4.4.3 Efficiency and related issues

We compare here the performance of the SWCE and OCE methods. Following Helgason et

al. (2014), define the efficiency of the embedding as

γ = γ(M) =
2N∗ − 1

M
, (4.53)

where M = 2Ñ − 1 is the embedding size. For the SWCE method, N∗(≤ N) is the largest

size for which the covariance embedding has nonnegative eigenvalues (and hence for which

the field can be generated exactly on the grid G(N∗)). The efficiency γ satisfies 0 < γ ≤ 1

and the closer γ is to 1, the larger the grid G(N∗) one can simulate the field on.

For the OCE, the value N∗ can be defined in several ways. One possibility is to take

N∗ as the largest value for which the covariance embedding yields the objective function

smaller than some small value, for example, 10−5. Another possibility which we find more

informative, is to take N∗ as the largest value for which the OCE method results in a

feasible embedding (i.e. an embedding with nonnegative eigenvalues) – see Section 4.3.3 for

a related discussion. The value of N∗, however, needs to be supplemented by the value of

the objective function since the latter is not necessarily small. This choice of N∗ is used

below, though we also comment on what N∗ is expected under the first possibility above.

In Figures 4.4–4.5, we compare the embedding efficiency of the OCE (solid line) and the

SWCE (dashed line) methods. Figure 4.4 compares the embedding efficiency for the powered

exponential covariance (4.49) as a function of Mθ (this choice, rather than θ, allows a nicer

scale on the x−axis). The comparisons were done for 3 different values of α = 0.5, 1, 1.5

(corresponding to the three rows), θ = 0.05k, k = 1, . . . , 10, and embedding size M = 101.
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The OCE method was implemented for µ = 2 (left column) and µ = 3 (right column), and

the optimum values of f in (4.35) are given below each point on the solid lines. The OCE

method performs significantly better than the SWCE in all cases considered (the solid lines

are located above the dashed ones). Note also that as α decreases, the performance of the

SWCE method gets worse, while the OCE method is only slightly affected.

Focusing on the OCE method, the plots illustrate nicely the tradeoff in the choice of µ

discussed in Section 4.3. Observe, for example, in the second (middle) row of Figure 4.4,

that the embedding efficiency γ has higher values for µ = 2 (left) than for µ = 3 (right).

This means that, for the given covariance r(n), n ∈ G̃(N), and the given size M , taking

µ = 2 allows the synthesis of the desired field on larger grids, than taking µ = 3. The

synthesized fields, however, will not necessarily be exact, since the optimum value of the

objective function is often non-negligible (e.g. for µ = 2 and Mθ = 20 the optimum value is

1). On the other hand, the optimum values of the objective function f in (4.35) are lower

for µ = 3 (right plots) illustrating the fact that larger values of µ are more likely to yield

exact embeddings.

Note also that, for example, all the values of the objective function in the top-right plot

(µ = 3) of Figure 4.4 are smaller than 10−5. If we defined the efficiency for the OCE method

requiring the objective function to be smaller than 10−5 at N∗, the resulting top-left plot

(µ = 2) of Figure 4.4 would naturally have a lower efficiency for the OCE method. We find,

however, that this efficiency would still be higher than the one for µ = 3 in the top-right

plot. The same observation applies to other plots concerning the cases µ = 2 and µ = 3.

Remark 4.4.1. A field X = {Xn, n ∈ G(N)} on grids of small size (N < 100) can be

synthesized exactly using Cholesky decomposition. However, even a fast variant of the

method developed by Dietrich (1993) has complexity O(N5), and thus is not suitable for

the synthesis of fields on grids of size larger than N = 100 (see Table 2 in Gneiting et al.

(2006), p. 485, for a detailed comparison of the computational requirements of Cholesky

decomposition and standard CME methods). On the other hand, the OCE method works

well for grids of size up to N = 1, 000. Note also that the speed of the OCE method

varies depending on how strong the discontinuities of the covariance embedding are. For
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the Cauchy covariance of Figure 4.3 for example, where N = 200 and M = 479, the OCE

method for µ = 2.5 needs 150 seconds to produce a feasible covariance embedding.2 On

the other hand, for the powered exponential covariance function as in Figure 4.2 but for

N = 60 and M = 215, the time needed is almost the same (140 secs) even though the grid

size is much smaller.

Remark 4.4.2. Regarding the computational requirements of the SWCE and OCE meth-

ods, at first glance, the SWCE method seems to be much faster. As discussed above,

however, the SWCE method can break down for small transition regions. In fact, the mini-

mum transition region length needed for the method to work is not known in advance. This

means that to produce a feasible covariance embedding, it may be necessary to perform

the SWCE method multiple times, each time increasing the transition region length until

a feasible covariance embedding is produced. Although this trial and error approach can

be optimized, it is still likely that a large number of transition region lengths will need to

be tested. In other words, the OCE and SWCE methods should not be compared in speed

solely for fixed transition regions leading to feasible embeddings, where the SWCE method

is likely to be faster (even if the corresponding transition region is larger). One should

also take into account the uncertainty in the size of the transition region, where the OCE

method is the favorite (in allowing for smaller regions).

Finally, note again that the approach taken in this chapter stresses nonnegative eigen-

values of covariance embeddings and focuses on the values of the objective function. Related

to this, it is natural to ask how our approach compares to the following simple procedure.

If the standard CME fails, a straightforward way to obtain a feasible covariance embedding

r̃N is by setting all negative eigenvalues of the CME covariance r̃I equal to 0. Variations

of this are suggested, for example, in Chan and Wood (1997), p. 167. Moreover, by using

Parseval’s identity, note that

argmin
r̃

||r̃I − r̃||2 = argmin
r̃

||g(r̃I )− g(r̃)||2 = r̃N ,

2All simulations were performed in an Intel Core i5 processor with 4GB of RAM.
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where || · ||2 denotes the Frobenius norm, g(r̃) = {gk(r̃), k ∈ G̃(N)} are the eigenvalues

of the covariance embedding r̃ and the minimum is taken over all covariance embeddings

r̃ having nonnegative eigenvalues. In other words, r̃N is the solution to our optimization

problem (4.26) when Ñ = N .

Indeed, when the transition region is empty (Ñ = N), the OCE method results in

the covariance embedding r̃O very close to r̃N . On the other hand, when Ñ > N, the

OCE method can result in significantly smaller optimal values of the objective function

(which moreover can be made smaller if desired). For example, in the case of the powered

exponential covariance function of Figure 4.1, the optimal value in the OCE method is less

than 10−6, while the above modification of the CME method leads to the Frobenius distance

between r̃I and r̃N equal to 24.

4.5 Figures

We gather below the figures referred to in Section 4.4.
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Figure 4.1: Plots for the anisotropic covariance of the powered exponential form in (4.49)
with W = W1 in (4.51), N = 200 and M = 479. Top left: Standard embedding. Top
right: Smoothing windows embedding with 50 negative eigenvalues. Middle left: Optimal
embedding with µ = 3 and min f = 6.7 · 10−7. Middle right: Optimal embedding with
µ = 1.5 and min f = 8 · 10−7. Bottom plots: Cross sections of standard CME, SWCE and
OCE (µ = 1.5) for n2 = 50, 190.
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Figure 4.2: Plots for the anisotropic covariance of the powered exponential form in (4.49)
with W = W2 in (4.51) and N = 100 and M = 359. Top left: Standard embedding. Top
right: Smoothing windows embedding with 116 negative eigenvalues. Middle left: Optimal
embedding with µ = 1.5, min f = 5 · 10−6, and no negative eigenvalues. Middle right:
Optimal embedding with µ = 3, min f = 4 · 10−6, and no negative eigenvalues. Bottom
plots: Cross sections of standard CME, SWCE and OCE (µ = 1.5) for n2 = 50, 170.
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Figure 4.3: Plots for the isotropic covariance of the Cauchy form (4.50) with parameters
(4.52) N = 200. Top left: Standard embedding (2,836 negative eigenvalues). Top right:
Smoothing windows embedding with transition region Ñ − N = 40 and 24,720 negative
eigenvalues. Middle left: Optimal embedding with µ = 2.5, min f = 7·10−5, and no negative
eigenvalues. Middle right: Smoothing embedding with transition region Ñ −N = 200 and
136 negative eigenvalues. Bottom plots: Cross sections of standard CME, SWCE and OCE
(µ = 1.5) for n2 = 50, 250 and Ñ −N = 200.
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Figure 4.4: Efficiency values of SWCE (dashed lines) and OCE (solid lines) methods for
the powered exponential covariance function (4.49) with θ = 0.05k, k = 1 . . . , 10, and
α = 0.5, 1, 1.5. Left: OCE implemented with µ = 2. Right: OCE implemented with µ = 3.
The tolerance ǫ in the PLB method is equal to 10−5 in all cases.
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Figure 4.5: Efficiency values of SWCE (dashed lines) and OCE (solid lines) methods for
the Cauchy covariance (4.50) with θ = 0.001 and α = 0.5, 1, 1.5. For the first row β =
0.1, 0.2, . . . , 1, for the second row β = 1, 2, . . . , 10 and for the third row β = 10, 20, . . . , 100.
Left: OCE implemented with µ = 2. Right: OCE implemented with µ = 3. The tolerance
ǫ in the PLB method is equal to 10−5 in all cases.
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APPENDIX A

A.1 Technical proofs for Chapter 2

We gather here the proofs of several results given in Chapter 2, starting with Proposition

2.2.1. Recall that a slowly varying function L is quasi-monotone if it is of bounded variation

on any compact interval of [0,∞) and, if for some δ > 0,

∫ x

0
uδ|dL(u)| = O

(
xδL(x)

)
, as x→∞ (A.1)

(Bingham, Goldie and Teugels (1989)). One interest in quasi-monotone slowly varying

functions lies in the following classical result (see, for example, Theorem 4.3.2 in Bingham

et al. (1989)).

Lemma A.1. Suppose L is a quasi-monotone slowly varying function. Let g(u) stand for

cos(u), sin(u) or eiu, and 0 < p < 1. Then, the following series converges conditionally for

all λ ∈ (0, π], and

∞∑

k=0

g(kλ)
L(k)

kp
∼ λp−1L

(
1

λ

)
Γ(1− p)g

(π
2
(1− p)

)
, as λ→ 0+. (A.2)

A converse of Lemma A.1, allowing one to go from the spectral domain to the time

domain, is also available (see (4.3.8) in Bingham et al. (1989)).

Lemma A.2. Suppose l(1/u) is a quasi-monotone slowly varying function on (1/π,∞),

and 0 < p < 1. Then,

∫ π

0
einλλp−1l(λ)dλ ∼ n−pl

(
1

n

)
Γ(p)e

iπp
2 , as n→∞.



Proof of Proposition 2.2.1: (i) One consequence of Lemma A.1 (omitted here for the

shortness sake) is that we can write

fjk(λ) =
1

2π

∞∑

n=−∞

e−inλγjk(n). (A.3)

(Proving (A.3) amounts to showing that fjk(λ) given by the right-hand side of (A.3) satisfies
∫ π
−π e

inλfjk(λ)dλ = γjk(n).) Then, by using γjk(−n) = γkj(n),

fjk(λ) =
1

2π

{ ∞∑

n=−∞

cos(nλ)γjk(n)− i
∞∑

n=−∞

sin(nλ)γjk(n)
}

=
1

2π

{
γjk(0) +

∞∑

n=1

cos(nλ)(γjk(n) + γkj(n))
}
− i

2π

{ ∞∑

n=1

sin(nλ)(γjk(n)− γkj(n))
}

=
1

2π

{
γjk(0) +

∞∑

n=1

cos(nλ)
Rjk(n) +Rkj(n)

n1−(dj+dk)

}
− i

2π

{ ∞∑

n=1

sin(nλ)
Rjk(n)−Rkj(n)

n1−(dj+dk)

}
.

It follows from Lemma A.1 that

fjk(λ) ∼
Γ(dj + dk)

2π
λ−(dj+dk)

{
(Rjk+Rkj) cos(

π

2
(dj + dk))− i(Rjk −Rkj) sin(

π

2
(dj + dk))

}
,

showing (2.28). This also immediately yields (2.30)–(2.31) by using (2.22).

(ii) Note that

γjk(n) =

∫ π

−π
einλfjk(λ)dλ =

∫ π

−π
einλGjk(λ)|λ|−(dj+dk)dλ

=

∫ π

0
einλ(ℜGjk(λ)+iℑGjk(λ))λ−(dj+dk)dλ+

∫ π

0
e−inλ(ℜGjk(−λ)+iℑGjk(−λ))λ−(dj+dk)dλ

=

∫ π

0
einλ(ℜGjk(λ) + iℑGjk(λ))λ−(dj+dk)dλ+

∫ π

0
e−inλ(ℜGkj(λ)− iℑGkj(λ))λ−(dj+dk)dλ

= 2

∫ π

0
cos(nλ)ℜGjk(λ)λ−(dj+dk)dλ−

∫ π

0
sin(nλ)ℑGjk(λ)λ−(dj+dk)dλ,

where we used ℜGjk(λ) = ℜGkj(λ) and ℑGjk(λ) = −ℑGkj(λ). By Lemma A.2 we get that

γjk(n) ∼ 2Γ(1−(dj+dk))n(dj+dk)−1
{
ℜGjk cos(

π

2
(1−(dj+dk)))−ℑGjk sin(

π

2
(1−(dj+dk)))

}
,
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which yields (2.29). �

We next turn to Proposition 2.3.1.

Proof of Proposition 2.3.1: Write the autocovariance function γ(n) of Xn as

γ(n) =
∞∑

m=−∞

ΨmΨ
′
m+n =

−n−1∑

m=−∞

ΨmΨ
′
m+n +

0∑

m=−n

ΨmΨ
′
m+n +

∞∑

m=0

ΨmΨ
′
m+n

=: γ1(n) + γ2(n) + γ3(n). (A.4)

Denote by γi,jk(n) the (j, k) component of γi(n), i = 1, 2, 3. Then, by using (2.34), we

have

γ1,jk(n) =
−n−1∑

m=−∞

p∑

t=1

Ljt(m)Lkt(m+ n)|m|dj−1|m+ n|dk−1

=

p∑

t=1

∞∑

m=n+1

Ljt(−m)Lkt(n−m)mdj−1(m− n)dk−1

= ndj+dk−1
p∑

t=1

∞∑

m=n+1

Ljt(−m)Lkt(n −m)
(m
n

)dj−1 (m
n
− 1
)dk−1 1

n

∼ ndj+dk−1
p∑

t=1

α−
jtα

−
kt

∫ ∞

1
xdj−1(x− 1)dk−1dx,

where the last asymptotic relation follows by the dominated convergence theorem and (2.35).

By using Formula 3.191.2 in Gradshteyn and Ryzhik (2007), p. 315, we have

γ1,jk(n) ∼ R1
jkn

dj+dk−1, as n→∞, (A.5)

where R1
jk =

∑p
t=1 α

−
jtα

−
kt

Γ(dk)Γ(1−dj−dk)
Γ(1−dj)

. Similarly for γ2,jk(n) and γ3,jk(n), as n→∞, we

have

γ2,jk(n) ∼ ndj+dk−1
p∑

t=1

α−
jtα

+
kt

∫ 1

0
xdj−1(1− x)dk−1dx = R2

jkn
dj+dk−1, (A.6)

γ3,jk(n) ∼ ndj+dk−1
p∑

t=1

α+
jta

+
kt

∫ ∞

0
xdj−1(x+ 1)dk−1dx = R3

jkn
dj+dk−1, (A.7)
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where R2
jk =

∑p
t=1 α

−
jtα

+
kt

Γ(dj)Γ(dk)
Γ(dj+dk)

and R3
jk =

∑p
t=1 α

+
jtα

+
kt

Γ(dj )Γ(1−dj−dk)
Γ(1−dk)

. Combining

(A.5), (A.6) and (A.7), we get (2.15)–(2.16) with

Rjk = c1jk
Γ(dk)Γ(1− dj − dk)

Γ(1− dj)
+ c2jk

Γ(dj)Γ(dk)

Γ(dj + dk)
+ c3jk

Γ(dj)Γ(1 − dj − dk)
Γ(1− dk)

, (A.8)

where c1jk =
∑p

t=1 α
−
jtα

−
kt, c

2
jk =

∑p
t=1 α

−
jtα

+
kt, c

3
jk =

∑p
t=1 α

+
jtα

+
kt. The coefficients Rjk can

be expressed as in (2.37) by using the identity Γ(z)Γ(1 − z) = π
sin(πz) , 0 < z < 1. �

Next, we will prove Propositions 2.4.1 and 2.4.2.

Proof of Proposition 2.4.1: The series Xn in (2.61) is well defined (in the

L2(Ω)–sense) since bj > 1/2 and hence

∞∑

m=0

|ψm,jk|2 =
∞∑

m=0

|αjkm−bj cos(2πma)|2 ≤ α2
jk

∞∑

m=0

m−2bj <∞,

for j, k = 1, . . . , p. Moreover, from (5.3) in Hannan (1970), p. 61, the spectral density matrix

f(λ) of Xn is given by

f(λ) =
1

2π

(
∞∑

m=0

Ψme
−imλ

)(
∞∑

m=0

Ψme
−imλ

)∗

, (A.9)

where the series
∑∞

m=0 Ψme
−imλ is defined a.e. in the L2(−π, π]-sense. The (j, k) entry of

the series
∑∞

m=0 Ψme
−imλ is given by

∑∞
m=0 ψm,jke

−imλ = αjk
∑∞

m=0m
−bj cos(2πma)e−imλ.

By Lemma A.5, this entry is equal to αjkf1(λ/2π), where f1(x) is defined in Theorem A.1.

Hence, with this interpretation and by using Theorem A.1 with x = λ/2π,

∞∑

m=0

ψm,jke
−imλ ∼ ajk(2π)dj ca,bjλ−djei(ξa(2π)

a
1−a λ

− a
1−a−π

4
), as λ→ 0+. (A.10)

By using (A.9) and (A.10), we conclude that

fjk(λ) ∼ (2π)dj+dk−1ca,bjca,bk

p∑

t=1

ajtaktλ
−(dj+dk). (A.11)
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Finally, the statement of the proposition concerning the sine can be deduced similarly. �

Proof of Proposition 2.4.2: As in the proof above, the series Xn in (2.65) is well

defined in the L2(Ω)–sense and its spectral density is given by (A.9), where the se-

ries
∑∞

m=0 Ψme
−imλ is defined a.e. in the L2(−π, π]–sense. The (j, k) entry of the se-

ries
∑∞

m=0 Ψme
−imλ is given by

∑∞
m=0 ψm,jke

−imλ = αjk
∑∞

m=0m
−bj cos(2πma)e−imλ +

βjk
∑∞

m=0m
−bj sin(2πma)e−imλ. By Lemma A.5, this entry is equal to αjkf1(λ/2π) +

βjkf2(λ/2π), where f1(x), f2(x) are defined in Theorem A.1. Then, by using Theorem A.1

with x = λ/2π,

∞∑

m=0

ψm,jke
−imλ ∼ zjk(2π)dj ca,bjλ−djei(ξa(2π)

a
1−a λ

− a
1−a−ψ), as λ→ 0+, (A.12)

where zjk = αjk + iβjk. By using (A.9) and (A.12), we conclude that

fjk(λ) ∼ (2π)dj+dk−1ca,bjca,bk

p∑

t=1

zjtzktλ
−(dj+dk). (A.13)

�

Finally, we prove Proposition 2.5.1.

Proof of Proposition 2.5.1: By using the relation (5.3) in Hannan (1970), p. 61, the

FARIMA(0,D, 0) series in (2.69) has the spectral density matrix

f(λ) =
1

2π
G(λ)G(λ)∗, (A.14)

where G(λ) = (1− e−iλ)−DQ+ + (1− eiλ)−DQ−. This can be expressed component-wise

as

fjk(λ) =
1

2π
gj(λ)gk(λ)

∗, (A.15)
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where gj is the jth row of G. Then, the (j, k) component of the autocovariance matrix is

γjk(n) =

∫ 2π

0
einλfjk(λ)dλ =

1

2π

∫ 2π

0
einλgj(λ)gk(λ)

∗dλ

=
1

2π

(
b1jkγ1,jk(n) + b2jkγ2,jk(n) + b3jkγ3,jk(n) + b4jkγ4,jk(n)

)
, (A.16)

where b1jk, b
2
jk, b

3
jk, b

4
jk are given in (2.71), and

γ1,jk(n) = γ3,kj(n) =

∫ 2π

0
einλ(1− eiλ)−dj (1− e−iλ)−dkdλ,

γ2,jk(n) =

∫ 2π

0
einλ(1− eiλ)−(dj+dk)dλ, γ4,jk(n) =

∫ 2π

0
einλ(1− e−iλ)−(dj+dk)dλ.

By writing 1− e±iλ = 2 sin(λ2 )e
±i(λ−π)/2, we have

γ1,jk(n) =
eiπ(dj−dk)/2

2dj+dk

∫ 2π

0
einλ sin−dj−dk(

λ

2
)eiλ(dk−dj)/2dλ

=
2eiπ(dj−dk)/2

2dj+dk

∫ π

0
eiω(2n+dk−dj) sin−dj−dk(ω)dω.

By using Formula 3.892.1 in Gradshteyn and Ryzhik (2007), p. 485, we deduce that

γ1,jk(n) =
2eiπ(dj−dk)/2

2dj+dk
πeiβπ/2

2ν−1νB(ν+β+1
2 , ν−β+1

2 )
,

where β = 2n + dk − dj and ν = 1− dk − dj . Then,

γ1,jk(n) = 2π(−1)n Γ(1− dj − dk)
Γ(1− dj + n)Γ(1− dk − n)

. (A.17)

Similar calculations yield

γ2,jk(n) = 2π(−1)n Γ(1− dj − dk)
Γ(1− n)Γ(1 + n− dj − dk)

. (A.18)

The relations (2.72) can now be deduced from (A.17) and (A.18) by using the identities

Γ(z)Γ(1 − z) = π/ sin(πz) and Γ(z)Γ(1− z) = (−1)nΓ(n+ z)Γ(1− n− z), 0 < z < 1. �
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A.2 Fourier series of trigonometric power-law coefficients

In the next result, we establish the asymptotic behavior of the Fourier series of the trigono-

metric power-law coefficients (2.10). The proof is based on the work of Wainger (1965) who

obtained a similar result for double-sided trigonometric power-law coefficients (Theorem 10

in Wainger (1965), p. 53). For shortness sake, we shall abbreviate the work of Wainger

(1965) by WA.

Theorem A.1. Let 0 < a < 1 and 0 < b ≤ 1− 1
2a. For ǫ > 0, define

fǫ,1(x) =
∞∑

n=0

n−b cos(2πna)e2πinx−ǫn, fǫ,2(x) =
∞∑

n=0

n−b sin(2πna)e2πinx−ǫn.

Then, the limits fj(x) = limǫ→0+ fǫ,j(x), j = 1, 2, exist in the pointwise sense for x 6= 0.

Moreover, fj(x) are continuous for x 6= 0, j = 1, 2, and

f1(x) = |x|−de− sign(x)i(ξa|x|
− a

1−a +ψ)
(
ca,b +O(|x| a

1−a )
)
+C1(x), (A.19)

f2(x) = |x|−d sign(x)ie− sign(x)i(ξa|x|
− a

1−a+ψ)
(
ca,b +O(|x| a

1−a )
)
+ C2(x), (A.20)

where d =
1−b− a

2

1−a , ca,b =
1
2a

− b−1/2
1−a (1 − a)−1/2, ξa = 2π(a

a
1−a − a 1

1−a ), ψ = −π
4 and C1(x),

C2(x) are continuous functions.

Proof. We follow to the extent possible the notation of Wainger (1965), abbreviated WA

below. Consider the functions

Φ1(u) = ψ(u)|u|−b cos(2π|u|a), Φ2(u) = ψ(u)|u|−b sin(2π|u|a),

where ψ(u) ∈ C∞(−∞,∞), ψ(u) = 0 for u ≤ 1/2, ψ(u) = 1 for u ≥ 1 and 0 ≤ ψ(u) ≤ 1.

Let ǫ > 0 and Dǫ,j(x) = {Φj(u)e−ǫu}∨(x) =
∫
R
Φj(u)e

2πixu−ǫudu be the inverse Fourier

transforms of e−ǫuΦj(u), j = 1, 2. Observe that the functions fǫ,j(x) =
∑∞

n=0Φj(n)e
2πinx−ǫn

are discrete counterparts of Dǫ,j(x). The proof below will show that

Dj(x) = lim
ǫ→0+

Dǫ,j(x), j = 1, 2, (A.21)
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exist and are continuous at x 6= 0, that fj(x) and Dj(x) are equal up to a continuous

function, and that Dj(x), j = 1, 2, have the asymptotic behavior of the first terms on the

right-hand sides in (A.19)–(A.20). We will use Lemma 11 (p. 37) and Theorem 9 (p. 41) in

WA.

Consider the function F k,a,bǫ (x) appearing in 2.4 of WA, p. 44,

F k,a,bǫ (x) = 2π|x| 12 (2−k)
∫ ∞

0
ψ(u)u−b+

1

2
ke2πiu

a−ǫuJ 1

2
(k−2)(2π|x|u)du, (A.22)

where Jµ(x) is a Bessel function of the first kind. (See, for example, Korenev (2002) for

more information on Bessel functions.) The function (A.22) is denoted by Fǫ(x) in WA.

We added the superscripts k, a and b to avoid confusion regarding the values of these

parameters. By Lemma A.3 below,

Dǫ,1(x) =
1

2
Re(F 1,a,b

ǫ (x)) + sign(x)i
1

2
|x|Re(F 3,a,b+1

ǫ (x)), (A.23)

Dǫ,2(x) =
1

2
Im(F 1,a,b

ǫ (x)) + sign(x)i
1

2
|x|Im(F 3,a,b+1

ǫ (x)). (A.24)

By Theorem 9 in WA (see again 2.4 in WA, p. 44), F k,a,b(x) = limǫ→0+ F
k,a,b
ǫ (x) exists in

the pointwise sense for x 6= 0, and F k,a,b(x) is continuous for x 6= 0. Thus, in view of (A.23)

and (A.24), the same holds for Dǫ,j(x) and Dj(x), j = 1, 2.

We now want to use Lemma 11 in WA, p. 37, with Φ = Φj, Fǫ = Dǫ,j and F = Dj in

the lemma. The established relation (A.21) is one of the assumptions of the lemma. The

other assumptions are |Φj(u)| = O(eǫ|x|) as u → ∞, and |Dǫ,j(x)| = O(|x|−1−µ) uniformly

in ǫ for some µ > 0, as x→∞. The first of these assumptions certainly holds. The second

assumption can be verified by using Theorem 9 in WA. Thus, Lemma 11 of WA yields that

the limits fj(x) exist, are continuous at x 6= 0, and are equal to Dj(x) up to continuous

functions.

It remains to show that the functions Dj(x) behave as the first terms on the right-hand

sides of (A.19)–(A.20). Theorem 9, ii), in WA shows that, for b ≤ k(1− 1
2a) and m0 = 0,

F k,a,b(x) = |x|−
k−b− ka

2
1−a eiξa|x|

− a
1−a

(
α0 +O(|x| a

1−a )
)
+ C̃k(|x|), (A.25)
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where C̃k(|x|) is a continuous function and α0 ∈ C\{0} depends on a, b and k. For the

asymptotic behavior of (A.19)–(A.20), we need an exact form of the constant α0 when k = 1

and k = 3. By using a version of the saddle point method, which is finer than the one used

in Lemma 13 of WA, we show in Lemma A.4 below that

α0 = 2ca,be
iψ (A.26)

when k = 1, and

α0 = 2ca,bie
iψ (A.27)

when k = 3. This yields

F 1,a,b(x) = |x|−dei(ξa|x|
− a

1−a+ψ)
(
2ca,b +O(|x| a

1−a )
)
+ C̃1(|x|), (A.28)

F 3,a,b+1(x) = |x|−d−1iei(ξa|x|
− a

1−a+ψ)
(
2ca,b +O(|x| a

1−a )
)
+ C̃3(|x|). (A.29)

Letting ǫ→ 0+ in (A.23), (A.24), and using (A.28) and (A.29), we conclude that

D1(x) = |x|−de− sign(x)i(ξa|x|
− a

1−a+ψ)
(
ca,b +O(|x| a

1−a )
)
+
1

2

(
Re(C̃1(|x|)) + i|x|Re(C̃3(|x|))

)
,

D2(x) = |x|−d sign(x)ie− sign(x)i(ξa|x|
− a

1−a+ψ)
(
ca,b +O(|x| a

1−a )
)
+

1

2

(
Im(C̃1(|x|)) + i|x|Im(C̃3(|x|))

)
, (A.30)

where we also used the identities

cos(y)− sign(x)i sin(y) = e− sign(x)iy, sin(y) + sign(x)i cos(y) = sign(x)ie− sign(x)iy.

This completes the proof.

The next two auxiliary lemmas were used in the proof of Theorem A.1 above.

106



Lemma A.3. The functions Dǫ,j(x), j = 1, 2, F k,a,bǫ (x), defined in (A.21) and (A.22),

satisfy the relations (A.23) and (A.24).

Proof. By using the Bessel function properties J− 1

2

(x) =
√

2
πx cos(x) and J 1

2

(x) =
√

2
πx sin(x) (Korenev (2002), p. 16) and the facts that cos(|x|) = cos(x) and sin(|x|) =

sign(x) sin(x), we have

F 1,a,b
ǫ (x) = 2

∫ ∞

0
ψ(u)u−be2πiu

a−ǫu cos(2πxu)du,

F 3,a,b+1
ǫ (x) = 2sign(x)|x|−1

∫ ∞

0
ψ(u)u−be2πiu

a−ǫu sin(2πxu)du.

Since ψ(u) = 0 for u < 0, we can also rewrite the inverse Fourier transforms Dǫ,j(x) as

Dǫ,1(x) =

∫ ∞

0
ψ(u)u−b cos(2πua)e2πixu−ǫudu,

Dǫ,2(x) =

∫ ∞

0
ψ(u)u−b sin(2πua)e2πixu−ǫudu.

Since

Re(Dǫ,1(x)) =
1

2
Re(F 1,a,b

ǫ (x)), Im(Dǫ,1(x)) =
1

2
sign(x)|x|Re(F 3,a,b+1

ǫ (x)),

Re(Dǫ,2(x)) =
1

2
Im(F 1,a,b

ǫ (x)), Im(Dǫ,2(x)) =
1

2
sign(x)|x|Im(F 3,a,b+1

ǫ (x)),

we conclude that (A.23) and (A.24) hold.

The second auxiliary lemma uses a saddle point method. The saddle point method

allows computing asymptotic expansions of integrals of the form

I(t) =

∫

C
f(z)eth(z)dz, as t→∞,

where C is a contour in the complex plane and the functions f(z), h(z) are holomorphic

in a neighborhood of this contour. According to the method, if z0 is an interior point of C
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and a saddle point of h(z), that is, h′(z0) = 0, h′′(z0) 6= 0, then

I(t) =

√
2π

−h′′(z0)
t−1/2eth(z0)

(
f(z0) +O(t−1)

)
, as t→∞. (A.31)

See, for example, Fedoryuk (2011). The version of the saddle point result (A.31) used by

WA, Lemma 13, pp. 42-43, provides only the absolute value of the constant at t1/2eth(z0) in

(A.31), that is, the value (2π)1/2|h′′(z0)|−1/2|f(z0)|. (This is also after correcting the typo

in WA, p. 43, where the exponent 1/2 of |h′′(ξ)| should be replaced by −1/2.) The finer

version (A.31) allows us to identify the constant α0 in (A.25) as stated in the next lemma.

Lemma A.4. The coefficient α0 appearing in (A.25) is given by (A.26) and (A.27) when

k = 1 and 3, respectively, and the relations (A.28) and (A.29) hold.

Proof. To prove that F k,a,b(x) in (A.25) is the limit of F k,a,bǫ (x), Wainger (1965) decomposes

F k,a,bǫ (x) into several integrals. The main contribution to F k,a,b(x) comes from the integral

given in 2.20 on p. 49 in WA,

Hk,a,b
II (x) = 2|x|

b−k
1−a t

1

2
(1−k)

∫

II
s−b+

1

2
(k−1)eth1(s)S

1

2
(k−2)

1 (2πst)ds,

where h1(s) = 2πisa − 2πis, t = |x|− a
1−a , Sµ1 (z) is an analytic function given in Lemma

12 of WA, and II is the contour described on p. 47 of WA. Therefore, it is enough to

show that H1,a,b
II (x) and H3,a,b+1

II (x) are equal to the right-hand sides of (A.28) and (A.29),

respectively, up to a continuous function. When k = 1 and k = 3, we get from Lemma 12

of WA that S
−1/2
1 (z) = 1/2, S

1/2
1 (z) = i/2. Then,

H1,a,b
II (x) = |x| b−1

1−a

∫

II
s−beth1(s)ds, H3,a,b+1

II (x) = |x| b−2+a
1−a i

∫

II
s−beth1(s)ds.

(Note that the second term is with b + 1 to correspond to F 3,a,b+1(x) in (A.29)). Next,

consider the integral I(t) =
∫
II s

−beth1(s)ds. Let ξ = a
1

1−a and observe that the point (ξ, 0)

is a saddle point of h1 that lies in the interior of the contour II (as seen in figure 1 of WA,
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p. 46). Then, from (A.31), I(t) = t−
1

2 ei(tξa+ψ)
(
ca,b +O(t−1)

)
, as t→∞. This yields

H1,a,b(x) = |x|−dei(ξa|x|
− a

1−a+ψ)
(
2ca,b +O(|x| a

1−a )
)
,

H3,a,b+1(x) = |x|−d−1iei(ξa|x|
− a

1−a+ψ)
(
2ca,b +O(|x| a

1−a )
)
.

Finally, we include the following elementary lemma which is used in the proofs of Propo-

sitions 2.4.1 and 2.4.2.

Lemma A.5. Let a, b and f1, f2 be as in Theorem A.1. If

b >
1

2
,

then the trigonometric power-law coefficients (2.10) are in l2(Z), and their Fourier series

(defined in the L2(−1, 1]–sense) satisfy

f1(x) =
∞∑

n=0

cos(2πna)n−be2πinx, f2(x) =
∞∑

n=0

sin(2πna)n−be2πinx, a.e. dx.

(A.32)

Proof. Consider the functions fǫ,j(x), j = 1, 2, defined in Theorem A.1. Since

∫ 1/2

−1/2

∣∣∣∣∣fǫ,1(x)−
∞∑

n=0

cos(2πna)n−be2πinx

∣∣∣∣∣

2

dx =
∞∑

n=0

n−2b cos2(2πna)(e−ǫn − 1)2 → 0,

as ǫ → 0+, we have fǫ,1(x) converging to the Fourier series
∑∞

n=0 cos(2πn
a)n−be2πinx in

the L2(−1/2, 1/2]−sense. By Theorem A.1, fǫ,1(x) to f1(x) pointwise. The uniqueness of

the limit yields the first relation in (A.32). The proof of the second relation in (A.32) is

analogous.
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APPENDIX B

B.1 Technical proofs for Chapter 4

We first prove Lemma 4.1.

Proof of Lemma 4.1: First we write (4.25) as

r̃(n1, n2) =





r̃(n1, n2), if (n1, n2) ∈ Q1,

r̃(n1 −M,n2 −M), if (n1, n2) ∈ Q3,

r̃(n1, n2 −M), if (n1, n2) ∈ Q2,

r̃(n1 −M,n2), if (n1, n2) ∈ Q4,

(B.1)

where the regions Q1, Q2, Q3 and Q4 are given by

Q1 = {(n1, n2) : 0 ≤ n1 ≤ Ñ − 1, 0 ≤ n2 ≤ Ñ − 1},

Q2 = {(n1, n2) : 0 ≤ n1 ≤ Ñ − 1, Ñ ≤ n2 ≤M − 1},

Q3 = {(n1, n2) : Ñ ≤ n1 ≤M − 1, Ñ ≤ n2 ≤M − 1},

Q4 = {(n1, n2) : Ñ ≤ n1 ≤M − 1, 0 ≤ n2 ≤ Ñ − 1}

(B.2)

and partition the grid G(M). By using this partition, we rewrite the eigenvalues gk(r̃) in

(4.11) as

gk(r̃) =


∑

n∈Q1

+
∑

n∈Q2

+
∑

n∈Q3

+
∑

n∈Q4


 r̃(n)e−i2πk·n/M . (B.3)



The first sum of (B.3) can be written as

∑

n∈Q1

r̃(n1, n2)e
−i2πk·n/M =

Ñ−1∑

n1=1

Ñ−1∑

n2=1

r̃(n1, n2)e
−i2πk·n/M +

Ñ−1∑

n2=1

r̃(0, n2)e
−i2πk2n2/M

+

Ñ−1∑

n1=1

r̃(n1, 0)e
−i2πk1n1/M + r̃(0, 0). (B.4)

Using the symmetry condition (4.25) and the property r̃(n) = r̃(−n), we have for the third

sum of (B.3),

∑

n∈Q3

r̃(n1, n2)e
−i2πk·n/M =

M−1∑

n1=Ñ

M−1∑

n2=Ñ

r̃(n1, n2)e
−i2πk·n/M

=
−1∑

n1=−Ñ+1

−1∑

n2=−Ñ+1

r̃(n1 +M,n2 +M)e−i2πk·(n+M)/M

=

Ñ−1∑

n1=1

Ñ−1∑

n2=1

r̃(M − n1,M − n2)ei2πk·n/M

=

Ñ−1∑

n1=1

Ñ−1∑

n2=1

r̃(n1 −M,n2 −M)ei2πk·n/M

=

Ñ−1∑

n1=1

Ñ−1∑

n2=1

r̃(n1, n2)e
i2πk·n/M .

(B.5)

By combining the relations (B.4) and (B.5), we get


∑

n∈Q1

+
∑

n∈Q3


 r̃(n)e−i2πk·(n/M) = 2

Ñ−1∑

n1=1

Ñ−1∑

n2=1

r̃(n1, n2) cos

(
2π

(
k1n1
M

+
k2n2
M

))

+

Ñ−1∑

n1=1

r̃(n1, 0)e
−i2πk1n1/M +

Ñ−1∑

n2=1

r̃(0, n2)e
−i2πk2n2/M + r̃(0, 0). (B.6)
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Similar calculations for the second and fourth sums of (B.3) yield



∑

n∈Q2

+
∑

n∈Q4


 r̃(n)e−i2πk·(n/M) = 2

Ñ−1∑

n1=1

M−1∑

n2=Ñ

r̃(n1, n2) cos

(
2π

(
k1n1
M

+
k2n2
M

))

+

Ñ−1∑

n1=1

r̃(n1, 0)e
i2πk1n1/M +

Ñ−1∑

n2=1

r̃(0, n2)e
i2πk2n2/M . (B.7)

Combining (B.6) and (B.7) yields

gk(r̃) = 2
Ñ−1∑

n1=1

M−1∑

n2=1

r̃(n1, n2) cos

(
2π

(
k1n1
M

+
k2n2
M

))

+2

Ñ−1∑

n1=1

r̃(n1, 0) cos

(
2πk1n1
M

)
+ 2

Ñ−1∑

n2=1

r̃(0, n2) cos

(
2πk2n2
M

)
+ r̃(0, 0). (B.8)

The first two terms on the right-hand side of (B.8) give ck(n) in (4.32) for n1 6= 0, and the

last two terms give ck(n) in (4.32) for n1 = 0. �

For the proofs of Lemmas 4.2 and 4.3 we first obtain an expression for the adjoint

operator AT of A similar to (4.31). More specifically, we will show that AT satisfies

[AT r̃](k) =
∑

n∈G+(M)

cn(k)r̃(n), k ∈ G+(M). (B.9)

Note that the only difference between the two operators A and AT is that ck(n) in the

expression (4.31) of A is interchanged with cn(k) in the expression (B.9) of AT .

We will show (B.9) by viewing A and AT as matrices. To make the transition to a

matrix point of view, let m be the number of points in the grid G+(M) and consider two

arbitrary fixed bijective mappings φi(u) : {1, . . . ,m} → G+(M), i = 1, 2, for rearranging

the values of the fields r̃(n) and ck(n) in the relation (4.31) into vectors. More specifically,

let

n = φ1(j) and k = φ2(l), j, l = 1, . . . ,m,

for n, k ∈ G+(M). Then, we can interpret the two-dimensional field r̃(n), n ∈ G+(M),

as a column vector r̃v whose jth entry is r̃(φ1(j)). Similarly, for each k, the coefficients
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ck(n), n ∈ G+(M), can be viewed as a row vector aTl whose jth entry is cφ2(l)(φ1(j)). This

allows us to rewrite the relation (4.31) as

[Ar̃](k) =
∑

n∈G+(M)

ck(n)r̃(n) =
m∑

j=1

aTl (j)r̃(φ1(j)) = aTl r̃v = (Ar̃v)l, (B.10)

where A in the last equation is viewed as a matrix with rows aTl , l = 1, . . . ,m, and (·)l
denotes the lth element of a vector. The subscript v in r̃v is to avoid a possible confusion

regarding which point of view is adopted, as Ar̃ will denote the action of the linear operator

A on a field r̃, whereas Ar̃v is the usual matrix-vector product.

Next, let bTl , l = 1, . . . ,m, denote the rows of the transpose matrix AT of A. The jth

entry of bTl satisfies

bTl (j) = aTj (l) = cn(k), for n = φ1(j) and k = φ2(l).

Then, arguing as for (B.10) but in reverse order, we have

(AT r̃v)l = bTl r̃v =
m∑

j=1

bTl (j)r̃(φ1(j)) =
∑

n∈G+(M)

cn(k)r̃(n), (B.11)

which yields (B.9).

We are now ready to prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.2: In view of the relations (4.31) and (B.9), it is enough to show that

the weights cn(k) satisfy

cn(k) = ck(n)− cos(2πk2n2/M)1{k1=0,n1 6=0} + cos(2πk2n2/M)1{k1 6=0,n1=0}. (B.12)

To show that (B.12) holds, we simply use (4.32) and compare the values of ck(n) and cn(k)

for the four cases of the values of n and k shown in Tables B.1–B.2. �

Proof of Lemma 4.3: Recall from the relation (4.42), that H and b are the Hessian and

negative gradient of the function f(x) = tf(x) + φ(x), where f and φ are given in (4.35)
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ck(n) n1 6= 0 n1 = 0

k1 6= 0 2 cos(2πk · (n/M)) cos(2πk2n2/M)
k1 = 0 2 cos(2πk2n2/M) cos(2πk2n2/M)

Table B.1: The values of ck(n)

cn(k) n1 6= 0 n1 = 0

k1 6= 0 2 cos(2πk · (n/M)) 2 cos(2πk2n2/M)
k1 = 0 cos(2πk2n2/M) cos(2πk2n2/M)

Table B.2: The values of cn(k)

and (4.36), respectively. To show that H and b satisfy the relations (4.46), we will consider

the functions f and φ separately.

By using (4.31) and (B.10), we can express the function φ(r̃) in (4.36) from the vector

perspective as

φ(r̃v) = −
m∑

l=1

log(aTl r̃v). (B.13)

By using (B.10), we can also write the field d(k) in (4.44) as a vector dv whose lth entry

dv(l) is d(φ2(l)) = −(aTl r̃v)−1. Then, the gradient and Hessian of φ are given by

∇φ(r̃v) =
m∑

l=1

1

−aTl r̃v
al = ATdv , (B.14)

∇2φ(r̃v) =

m∑

l=1

1

(aTl r̃v)
2
ala

T
l = ATD2A, (B.15)

where D = diag(dv). As in the case of the operator/matrix A, the diagonal matrix D =

diag(dv) is the matrix analogue of the operator D defined in (4.45). Indeed, let y = [Au](k),

for some two dimensional field u = {u(n), n ∈ G+(M)}. Let also uv and yv be the vectors

whose jth elements are u(φ1(j)) and a
T
j uv, respectively. Then, the action of D on y yields

[Dy](k) := d(k) · y(k)

= d(φ2(l)) · [Au](φ2(l))

= dv(l)a
T
l uv,

114



where the last term is the lth element of the matrix Dyv.

Next, we calculate the gradient and Hessian of f in (4.35). Letting sv be a vector whose

jth entry is s(φ1(j)), we can write f in a quadratic form as

f(r̃v) = r̃TvWr̃v − 2sTv r̃v + rTvWrv. (B.16)

Since the last term in the relation (B.16) is a constant, minimizing f is equivalent to

minimizing the function

f̃0(r̃v) =
1

2
r̃TvWr̃v − sTv r̃v. (B.17)

The gradient and Hessian of f̃0 are given by

∇f̃0(r̃v) =Wr̃v − sv, (B.18)

∇2f̃0(r̃v) =W. (B.19)

Finally, by combining the relations (B.14)–(B.15) and (B.18)–(B.19), we get

∇f(r̃v) = t(Wr̃v − sv) +AT dv,

∇2f(r̃v) = tW +ATD2A,

which are the vector equivalents of the relations (4.46). �
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