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ABSTRACT 

 

JAMES S. MCGINLEY: A Novel Mixed Effects Modeling Framework for Longitudinal Ordinal 

Substance Use Data 

(Under the direction of Patrick J. Curran) 

 

Substance use is a serious public health concern. Despite advances in the theoretical 

conceptualization of within and between person pathways to substance use, researchers are 

limited by the longitudinal models currently available. Researchers often fit linear mixed effects 

models (L-MM) and proportional odds mixed effects models (PO-MM) to longitudinal ordinal 

data with many response categories defined by collapsed count data (e.g., 0 drinking days, 1-2 

days, 3-6 days, etc.). Consequently, existing models ignore the underlying count process, 

resulting in a disjoint between the construct of interest and the models being fitted. My proposed 

novel ordinal-count mixed effects modeling framework overcomes this limitation by explicitly 

linking ordinal responses to a suitable underlying count distribution. In doing so, researchers can 

fit ordinal negative binomial mixed effects models (ONB-MM) and ordinal zero-inflated 

negative binomial mixed effects models (OZINB-MM) to ordered data as if they had directly 

observed the underlying discrete counts. The utility the ONB-MM and OZINB-MM was verified 

by simulation studies. The simulation studies demonstrated that the proposed ordinal-count 

models recovered the underlying unobserved count process across a range of conditions that may 

arise in the study of substance use. Results also showed the advantages of the proposed ordinal-

count mixed effects models compared to existing L-MM and PO-MM. In sum, my ordinal-count 

mixed effects modeling framework offers several quantitative and substantive advantages over 

currently available methods. 
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CHAPTER 1: INTRODUCTION 

Addiction research often aims to describe how between and within person differences in 

substance use behaviors unfold over time. For example, clinical psychologists have posited ways 

a variety of mental health constructs such as depression, stress, and anxiety are related to 

substance use (Fleming, Mason, Mazza, Abbott, & Catalano, 2008; Hussong, Jones, Stein, 

Baucom, & Boeding, 2011; King, Molina, & Chassin, 2009). Public health researchers have 

examined demographic differences in longitudinal trends of alcohol consumption (Moore et al., 

2005). Other topics such as the influence of peers on substance use intersect multiple disciplines 

including public health, psychology, and human development (Curran, Stice, & Chassin, 1997; 

Norton, Lindrooth, & Ennett, 1998; Simons-Morton & Chen, 2006).  

Despite diversity in the goals and focuses of substance use research, there exists a common 

need for flexible longitudinal data analytic techniques. Over the past two decades, accessible 

pedagogical references and advances in user-friendly statistical software have led to an increase 

in the utilization of longitudinal models for continuous outcomes in substance use research (e.g., 

Curran, 2000; Hedeker, Gibbons, & Flay, 1994; Singer & Willett, 2003). However, in most 

situations, these linear models are inappropriate because indicators of substance use constructs 

are largely discrete counts such as quantity or frequency of use.  

Advances in Modeling Count Substance Use Outcomes 

Statisticians have outlined several longitudinal mixed effects models for count data such as 

the Poisson, negative binomial, and zero-inflated mixed effects models (Hall, 2000; Hur, 

Hedeker, Henderson, Khuri, & Daley, 2002; Min & Agresti, 2005; Siddiqui, 1996, Yau, Wang, 
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& Lee, 2003). These models are slowly being integrated into substance use research with the 

help of recent dissemination efforts (e.g., Atkins, Baldwin, Zheng, Gallop, & Neighbors, 2013; 

Desantis et al., 2013; Xie, Tao, McHugo, & Drake, 2013). Most of these count modeling 

approaches have yet to be rigorously evaluated for the study of substance use, but they show 

significant advantages over widely used linear models. For example, substance use count data 

usually show common distributional characteristics such as being positively skewed with a large 

number of responses at the lower bound of zero (e.g., no use). Standard linear mixed effects 

models are not well-suited to handle these types of distributions and, consequently, can lead to 

violations of model assumptions (e.g., normality of errors), poor model fit, and invalid 

predictions (e.g., negative predictions). In turn, these shortcomings restrict substance use 

researchers’ ability to effectively test theoretically derived research hypotheses. 

Count mixed effects models are ideal for the distributional characteristics of substance use 

data and are, consequently, less prone to the limitations of linear mixed effects models. Further, 

there have been several useful methodological developments in the area of longitudinal models 

for zero-inflated count data, which are counts that exhibit an abundance of zeroes beyond what 

would be expected by standard count distributions (Hall, 2000; Liu & Powers, 2007; Min & 

Agresti, 2005). These zero-inflated models usually address inflation from a mixture framework 

with a binary process (modeled through a logistic or probit regression) and a count process 

(modeled through standard or truncated Poisson or negative binomial regression). As a result, 

zero-inflated methods are different from typical count models from both quantitative and 

substantive standpoints. These methods are especially promising for adolescent substance use 

research because subjects frequently report no drug use over the assessed time-periods. A small 

number of studies have applied zero-inflated mixed effects models to adolescent substance use 
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count data (e.g., Buu, Li, Tan, & Zucker, 2012; Otten, van Lier, & Engels, 2011), but these 

models are still relatively new. It is clear that count mixed effects models provide advantages 

over standard linear mixed effects models for modeling substance use data. However, an ignored 

and complicating characteristic of real substance data is that count constructs are often collected 

as ordinal items, not open-ended responses. 

Ordinal-Count Substance Use Outcomes 

In practice, substance use researchers collect what I call ordinal-count data instead of open-

ended discrete counts. Ordinal-count data are ordinal data in which the response categories 

represent unique ranges of counts (e.g., 1-2 days, 3-5 days, etc.). This approach is recommended 

by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and has been used in large 

scale studies such as Monitoring the Future (MTF) and the Health Behaviour of School Aged 

Children (HBSC) (Currie et al., 2012; Johnston et al., 2012; NIAAA, 2003). Table 1 provides a 

sample alcohol use frequency item used by the MTF and HBSC studies. 

 

 

Table 1. An example past 30 day alcohol frequency item used by the MTF and HBSC studies 

On how many occasions did you 

drink alcohol in the last 30 days?    
 

0. 0 Occasions 

1. 1 to 2 Occasions 

2. 3 to 5 Occasions 

3. 6 to 9 Occasions 

4. 10 to 19 Occasions 

5. 20 to 39 Occasions 

6. 40+ Occasions    
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While these ordinal-count items may offer measurement benefits (e.g., minimizing 

participant burden and recall error), they pose a significant challenge for statistical modeling.  

For instance, ordinal-count items usually have a large number of categories (e.g., 5-12 response 

categories) and the distributions of those ordinal responses mirror that of the underlying 

unobserved counts (e.g., positive skew and large number of responses in the first “zero” 

category). These characteristics make modeling ordinal-count substance use data challenging. 

Substance use researchers typically use standard linear mixed effects models or ordinal (e.g., 

proportional odds) mixed effects models to accommodate the nesting of time within individuals, 

but both of these models have significant limitations. 

Existing Models for Ordinal-Count Substance Use Data 

Linear Mixed Effects Model (L-MM) 

The linear mixed effects model (L-MM) is likely the most popular method for handling 

ordinal-count data. Let     denote the observed ordinal-count response for a sample of   

        individuals at            time-points. The basic L-MM can be expressed as 

       
      

                                                                       

where     is a       vector of covariates (typically including “1” as the first element for the 

intercept) with the corresponding       vector of regression coefficients,  . Additionally,     

represents a       vector of random effect variables (again, usually including “1” as the first 

element for the intercept) with a corresponding       vector of random subject effects,   . The 

errors,    , are assumed to be normally distributed with a mean of 0 and variance of    and the 

random effects are assumed to follow a multivariate normal distribution with a       mean vector 

  and a       variance-covariance matrix,  .  
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The L-MM has two major shortcomings for ordinal-count substance use data. First, the 

substantive interpretation of model parameters is usually ambiguous, assuming that the true 

construct of interest is the underlying substance use counts. Researchers must apply scores to the 

observed ordinal data in order to fit linear mixed effects models. The most commonly applied 

scoring approach is to use the integers representing the response categories as ordinal scores. For 

example, using the item from Table 1, the ordinal scores used in linear models would be integers 

ranging from 0-6. Upon close inspection, it is clear that these scores provide little information 

about the underlying count construct. Further, applying the same scoring approach to different 

ordinal-count items can imply measurement differences. For instance, suppose that a second 

study also assessed alcohol frequency, but the response categories differed (e.g., 0=0 occasions, 

1=1 occasion, 2=2 occasions, 3=3 occasions, 4=4 occasions, 5= 5-6 occasions, 6=7 or more 

occasions). This is an extreme example but it clearly illustrates that the same integer scores 

imply different levels of substance use depending on the measure, which impedes the 

accumulation of research findings. Most important, inferences are made relative to the arbitrarily 

defined ordinal scoring metric, not the count construct of true substantive interest. 

The second limitation of linear mixed effects models applied to ordinal-count substance use 

data is that model assumptions can easily be violated. As previously stated, the distribution of 

ordinal-count items often looks similar to that of the true underlying count process. As a result, 

fitting linear mixed effects models to ordinal-count data is similar to fitting linear models to 

count data. This, in turn, can lead to violations of key model assumptions such as normally 

distributed errors. Additional negative consequences of fitting linear models to ordinal-count 

data may include erroneous inferences and invalid predictions (e.g., negative predicted values). 

Previous work has identified several reasons why ordinal models are preferable to linear models 
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for ordered categorical data (e.g., Hedeker & Gibbons, 2006; McKelvey & Zavoina, 1975; 

Winship & Mare, 1984). However, the limitations outlined here demonstrate that these concerns 

are further compounded with ordinal-count data because standard linear mixed effects models 

are not optimal from quantitative or substantive standpoints. 

Proportional Odds Mixed Effects Model (PO-MM) 

The ordinal proportional odds mixed effects model (PO-MM) is an alternative modeling 

strategy used by substance use researchers for ordinal-count data (Hedeker & Gibbons, 1994; 

Hedeker, & Mermelstein, 2000). The logistic PO-MM for ordinal data with           

response categories can be expressed in terms of cumulative log-odds (or logits) as 

   [
    

      
]     [   

      
   ]                                                

where    [ ] is the natural log function,               ,    are the M - 1 intercepts,     is a 

      vector of covariates with the corresponding       vector of regression coefficients,  . 

Additionally,     represents a       vector of random effect variables (again, usually including 

“1” as the first element for the intercept) with a corresponding       vector of random subject 

effects,   . The random effects,   , are assumed to be distributed         . 

There are several reasons why these mixed effects models are not ideal for substance use 

research. First, like the linear mixed effects model, the proportional odds mixed effects model 

does not provide ideal substantive interpretations. The model parameters are interpreted at the 

level of the observed response categories and reflect covariate effects across the cumulative log-

odds. As a result, these models provide no substantive insight on the underlying count process. 

Second, the standard PO-MM is not parsimonious. Ordinal-count substance use data often 

have many response categories (e.g., 5-12 categories). This requires researchers to fit 

proportional odds mixed effects models with many parameters because M -1 intercepts (or 
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thresholds) must be estimated. Third, the key assumption of proportional odds may not hold for 

substance use ordinal-count data. The proportional odds assumption requires that the same 

covariate effect holds across all of the cumulative logits. This assumption may be particularly 

untenable in substance use research given the large number of response categories. For instance, 

with a ten category ordinal-count scale, covariates would be assumed to have exactly the same 

effect across nine different cumulative logits.  

From a substantive standpoint, violations of the proportional odds assumption could be 

expected. For example, it is conceivable that the effect of covariates on the log-odds of use 

versus non-use (e.g., first category vs. all other categories) could be different from other 

cumulative log-odds comparisons. In this case, the proportional odds assumption would not hold. 

Alternative models such as non-proportional odds and partial proportional odds mixed effects 

models exist, but they add significant complexity in estimation and produce results that are 

difficult to interpret. In order for a model to be consistent with the count construct of actual 

substantive interest, the parameter estimates should reflect how changes in covariates impact the 

mean of the underlying unobserved count construct. 

Fourth, from a conceptual standpoint, the latent response variable motivation for the 

proportional odds model is inconsistent with the true nature of ordinal-count data. Although this 

latent response variable motivation is not a strict requirement for the PO-MM (McCullagh & 

Nelder, 1989), it is widely used for pedagogical purposes in substance use research so it should 

be addressed (Feldman, Masyn, & D. Conger, 2009; Hedeker & Mermelstein, 2000). The 

standard latent variable motivation states that underlying the observed ordinal responses is an 

unobserved latent variable,   , that follows a logistic distribution (ordered logistic). This 

underlying continuous latent variable is then divided by estimated thresholds, which are the 
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negative of the intercepts, corresponding to the response categories. The left panel of Figure 1 

displays a visualization of the standard latent response variable motivation assuming a seven 

category substance use measure like in Table 1.  

 

Figure 1. Comparison of underlying logistic and negative binomial latent response variables. 

 

Note: Cut-points are typically estimated in the ordinal logistic whereas they are treated as fixed 

and known in the ordinal negative binomial. 

 

 

Conceptually, there is a clear disjoint between this underlying logistic/normal latent variable 

and the ordinal-count scale that is known to represent collapsed counts. Thus, ordinal-count data 

should be conceptualized from an underlying count latent response variable motivation as shown 

in the right panel of Figure 1. The count latent response variable is characterized by fixed and 

known thresholds, or intercepts,  (denoted by the vertical bars in Figure 1) and assumes that 

underlying the observed ordinal responses is an unobserved count variable,   . In Figure 1, the 

underlying latent count variable follows a negative binomial distribution, but other distributions 

are plausible. In sum, these shortcomings illustrate that the mixed effects proportional odds 



 
 

9 
 

model lacks the flexibility necessary to handle ordinal-count substance use data. For this reason, 

we recently developed the ordinal-count modeling framework. 

Proposed Ordinal-Count Mixed Effects Modeling Framework 

Statisticians and economists have discussed methods for handling grouped, or collapsed, 

count data for over four decades (Carter, Bowen, & Myers, 1971; Carter & Myers, 1973; 

Moffatt, 1995; Moffatt & Peters, 2000). McGinley, Curran, and Hedeker (under review) recently 

analytically and empirically demonstrated how this work can be expanded and cast more broadly 

within an ordinal modeling perspective motivated by an underlying latent variable methodology. 

Our ordinal-count modeling framework explicitly links the observed ordinal responses to a 

suitable underlying count distribution through the known response scale cut-points. In doing so, 

researchers can fit count models to ordinal-count data as if the underlying discrete counts were 

actually observed. This methodology appropriately matches the statistical model with the true 

substance use constructs of interest and permits thorough evaluations of intricate hypotheses.  

My dissertation significantly expands on this earlier work in two ways. First, I outline 

two innovative longitudinal ordinal-count models that include random effects so that the models 

explicitly account for the clustering of time-points within individuals. I focus on an ordinal 

negative binomial mixed effects model (ONB-MM) and an ordinal zero-inflated negative 

binomial mixed effects model (OZINB-MM) but, the logic that I describe holds for applying 

other mixed effects count models to ordinal-count data. To my knowledge, no previous studies 

have proposed longitudinal ordinal models with random effects that assume an underlying count 

distribution instead of the typical underlying continuous normal or logistic distributions. Second, 

I evaluate and discuss results from simulation studies that considered several critical factors 

directly relevant to longitudinal substance use research. These factors include different numbers 
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of time-points, ordinal-count response scales, and data generating mechanisms. In summary, my 

dissertation provides a comprehensive evaluation of two novel longitudinal models that are 

highly applicable to substance use research. 

Ordinal Negative Binomial Mixed Effects Model (ONB-MM) 

In order to model the ordinal-count responses as a function of a negative binomial 

distribution, we first assume that underlying the observed ordinal responses,    , is an unobserved 

count latent variable,    
 . The probability mass function (PMF) for the negative binomial 

distribution can then be expressed in terms of    
  

     
        

     
   

     
       

            
    

(   
     

 )
   
 

           
   (   

      )         
                    

where      
      

 ,        
      

        
    and    is the dispersion parameter for the negative 

binomial distribution underlying the observed ordinal responses. The negative binomial 

distribution reduces to the better known Poisson distribution when the dispersion parameter is 

zero (e.g.,   = 0). The cumulative distribution function (CDF) for the negative binomial 

distribution is the sum of the PMFs such that 

     
   ∑    

   
 

   

                                                                      

where the cumulative probability is evaluated at    
 . We then can use the natural log function to 

model the mean of    
  as a function of covariates. 

       
      

      
                                                               

where     is a       vector of covariates (typically including “1” as the first element for the 

intercept) with the corresponding       vector of regression coefficients,  . Additionally,     

represents a       vector of random effect variables (again, usually including “1” as the first 

element for the intercept) with a corresponding       vector of random subject effects,   . The 
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random effects are assumed to follow a multivariate normal distribution with a       mean vector 

  and a       variance-covariance matrix  . We can also solve for    
  using the inverse link 

   
      

      
                                                                         

Next, we link the observed ordinal outcome,    , to the unobserved underlying count 

latent variable,    
 . This linking procedure occurs through the fixed and known cut-points, which 

are defined by the ordinal response scale. Specifically, 

                   
                                                                

where    is the count number that defines the upper bound of ordinal response category c. We 

can thus express the probability of observing a response in category c for subject i at time t as a 

function of the cumulative probabilities from the underlying    
  distribution. 

                   
                                                  

with       and         designating the CDFs evaluated at the known upper count numbers for 

categories c and c-1 for a distribution with a mean of    
  and dispersion of   .  

The ordinal negative binomial mixed effects model can be estimated using marginal 

maximum likelihood estimation (MML). The marginal likelihood for the ONB-MM is  

     ∏∫       |        

 

   

                                                       

where        |   is the conditional likelihood for the ordinal-count data using and underlying 

negative binomial distribution (hence the ONB subscript) weighted by the multivariate normal 

density for random effects,     . For the conditional likelihood,        |  , we expand on 

Equation 8, which expresses the probability of observing a response in category c for subject i at 

time t as function of the cumulative probabilities from the underlying    
  distribution. Letting 

(    , . . . ,     ) represent binary reference codes indicative of the response for subject i at time t 
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(e.g.,        if       and 0 otherwise), the conditional likelihood for the ordinal data 

following an underlying negative binomial distribution is 

       |    ∏[∏[             ]
    

 

   

]

  

   

                                           

The log-likelihood is often used for optimization, which is the natural log of Equation 9. 

        ∑         

 

   

                                                                 

Computation of the integral over the random effects can be done using adaptive Gaussian 

quadrature. Next, I describe how the ordinal zero-inflated negative binomial model can be 

extended to accommodate random effects. 

Ordinal Zero-Inflated Negative Binomial Mixed Effects Model (OZINB-MM) 

In substance use research, especially involving adolescents, researchers encounter 

ordinal-count data with a large proportion of participants reporting “no use” over the assessed 

time-period. For example, consider an outcome that represents the number of drinking occasions 

over the past 30 days. Many adolescent will report “zero days” for this outcome. In the count 

literature, these data are often referred to as being zero-inflated. Over the past several decades, 

statisticians have proposed zero-inflated Poisson (ZIP) and negative binomial models (ZINB) for 

cross-sectional data that exhibit this characteristic (Greene, 1994; Lambert, 1992). The ZIP and 

ZINB models function similarly except the ZINB extends the ZIP by incorporating the 

dispersion parameter, which allows the variance of the count response to differ from its mean. 

These models assume a mixture distribution with a binary process (e.g., logistic or probit 

regression) and a count process (e.g., Poisson or negative binomial regression). As a result, 

zeroes arise from two distinct sources; individuals that are not at-risk for a given outcome (e.g., 
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lifetime non-smokers report no smoking) or individuals who are at-risk that do not experience 

the outcome over the assessment period (e.g., smokers who did not smoke over the assessed 

timeframe). Various sources have demonstrated how the ZIP and ZINB can be extended to 

accommodate random effects (e.g., Hall, 2000; Hur, Hedeker, Henderson, Khuri, & Daley, 2002; 

Min & Agresti, 2005, Yau, Wang, & Lee, 2003), but no prior studies have shown how these 

models can be used with ordinal-count data. 

We can logically extend the outlined ONB-MM to account for zero-inflation. Similar to 

Lambert (1992), we can express the ordinal zero-inflated negative binomial mixed effects model 

(OZINB-MM) with regard to the underlying unobserved    
  

   
                                                 

               
        

                                           
                                              

where      
  , is the negative binomial PMF from Equation 3 and      is the probability of being 

an inflated, or “excess”, zero for subject i at time t. The PMF can then be expressed as  

         
                        

                             
     

                
                 

                                          

where      is the probability that    
    based on the negative binomial PMF shown in 

Equation 3. 

I will model the binary zero process through a logistic model. 

              
      

                                                                

where     is a       vector of covariates (typically including “1” as the first element for the 

intercept) with the corresponding       vector of regression coefficients,  . Additionally,     

represents a       vector of random effect variables (again, usually including “1” as the first 

element for the intercept) with a corresponding       vector of random subject effects,   . We 

can also solve for     using the inverse link 
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    (   
      

   )
                                                             

The count process for the OZINB-MM is modeled as explained in Equations 5 and 6. It is 

important to highlight that the count and binary processes can have the same, or different, 

predictors. The random effects are assumed to follow a multivariate normal distribution with a 

          mean vector   and a                variance-covariance matrix,  . This is 

because there are   count-part random effects and   logistic-part random effects, all of which 

potentially covary. Clearly, this leads to a substantial increase in model complexity. For instance, 

consider a plausible theoretical model in which there are random intercepts and slopes on the 

count negative binomial process and the logistic process. In this case,   is a symmetric       

matrix. 

   

[
 
 
 
 
   

 

     
   

 

     
     

   
 

     
     

     
   

 
]
 
 
 
 

                                                          

Thus, we would need to estimate four variances and six covariances. However, a 

reasonable way to simplify the random effects structure is to exclude the random slopes from 

both the count and logistic processes (e.g., Hedeker & Gibbons, 2006). This results in correlated 

random intercepts from the count and logistic processes and   is a symmetric       matrix.  

   [
   

 

     
   

 ]                                                                        

I focus on this random effects structure for my dissertation because it is used in applied 

research, but other structures are possible. Although outside the scope of my dissertation, a much 

needed direction for future research is investigating how to specify these random effects 

structures for longitudinal substance use research. 
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The OZINB-MM can be estimated using marginal maximum likelihood estimation (MML). 

The marginal likelihood is  

     ∏∫       |        

 

   

                                                        

where        |   is the conditional likelihood for the ordinal-count data assuming an underlying 

zero-inflated negative binomial distribution weighted by the multivariate normal density for 

random effects,     . I used   to denote random effects from the count,  , and binary processes, 

 . The conditional likelihood,        |  , is  

       |     ∏[∏[       (             )             ]
    

 

   

]

  

   

                    

where          is an indicator function that equals one when       (e.g. when the first 

response category representing zero is selected) and zero otherwise.  

The marginal log-likelihood is then simply the natural log of Equation 18.  

        ∑         

 

 

                                                                   

Like the ONB-MM, computation of the integral over the random effects can be done using 

adaptive Gaussian quadrature. In sum, I have outlined how the novel ordinal-count modeling 

framework can be extended to accommodate random effects with specific emphasis on the ONB-

MM and OZINB-MM. Next, I discuss the specific research goals of my dissertation. 

Current Research 

I had three general goals for the current research. The first goal was to establish that the 

proposed ordinal-count mixed effects modeling framework effectively recovers the true 

underlying count process. Second, I evaluated which situations improve or worsen the 
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performance of the proposed ordinal-count mixed effects models. Third, I compared the 

proposed ordinal-count mixed effects models to existing mixed effects models used for substance 

use research. Taken together, these three components demonstrated the usefulness of these novel 

models for substance use research above and beyond statistical methods currently available. 

My simulation studies evaluated the performance of ordinal-count models with random 

effects for longitudinal substance use research across a number of conditions. These ordinal-

count models are novel and, to my knowledge, have not been discussed in the quantitative or 

substantive literatures. In my simulations, I considered important simulation factors such as 

different underlying data generating mechanisms, sample sizes, number of time-points, and 

response scales. In addition to the ONB-MM and OZINB-MM, I evaluated the standard linear 

mixed effects model (L-MM) and proportional odds mixed effects models (PO-MM) for 

longitudinal ordinal-count data. Despite the previously outlined shortcomings of L-MM and PO-

MM, these models were important to consider since they are widely used by substance use 

researchers. My simulation studies focused on testing four specific hypotheses. The first two 

hypotheses pertained to the ONB-MM and the second two focused on the OZINB-MM. 

Hypotheses Regarding the ONB-MM  

First, I hypothesized that the ONB-MM fitted to longitudinal ordinal-count data would 

accurately recover the population generating values from the underlying count process across all 

conditions. Both sample size and number of time-points were expected to influence the ONB-

MM model performance in predictable ways. More precisely, the ONB-MM should have higher 

convergence rates, more accurate estimates, and smaller standard errors as the number of time-

points and subjects increase (e.g., n=1000 and t=7). With a smaller number of time-points (e.g., 

t=3), the ONB-MM should have more non-converged models because of difficulty in estimating 
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the random slope variance component. Similar convergence issues were also expected to arise 

with the PO-MM and L-MM. I did not anticipate that the number of response categories (5pt 

scale versus 10pt scale) would impact the accuracy of parameter estimates. However, I did 

expect slightly larger standard errors for the 5pt scale compared to the 10pt scale due to the 

reduced amount of available information.  

Second, I hypothesized that the ONB-MM would outperform the existing PO-MM and L-

MM. I evaluated this hypothesis by examining model fit, empirical power, Type I error, and 

relative efficiency of predictions. In terms of model fit, I expected the ONB-MM to have better 

model fit criteria (e.g., lower AIC and BIC values) compared PO-MM and L-MM fitted to the 

same ordinal-count data. The proposed ONB-MM was hypothesized to have superior model fit 

because it was the only model that properly specified the underlying count data generating 

mechanism. I also expected the PO-MM to provide better model fit than the L-MM because it 

explicitly accounts for the ordinal nature of the response variable. I did not expect large 

differences in empirical power among the ONB-MM, PO-MM, and L-MM. However, it was 

plausible for the ONB-MM and L-MM to have slightly higher empirical power than the PO-MM 

because less total parameters were estimated (the PO-MM required the estimation of several 

intercepts). The predictions produced by the ONB-MM should be superior to both the PO-MM 

and the L-MM because the ONB-MM accounted for the true underlying count structure. I 

expected the PO-MM to again outperform the L-MM because the PO-MM accounted for the 

ordinal scale. 

Hypotheses Regarding the OZINB-MM 

Third, like the ONB-MM, I hypothesized that the OZINB-MM fitted to longitudinal zero-

inflated ordinal-count data would accurately recover the underlying zero-inflated count process 
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across all conditions. The performance of the OZINB-MM was expected to be best with more 

subjects and time-points. Given the structure of the random effects (random intercepts in the zero 

and count processes with no random time effects), the smaller number of time-points (e.g., t=3) 

should not impact model convergence with a large sample size (e.g., n=1000). However, I 

anticipated convergence issues when both the sample size and number of time-points are small 

(e.g., n=300, t=3) because of the high degree of model complexity. Similar to the ONB-MM, I 

expected smaller standard errors with increased sample size and time-points. I did not expect the 

number of response categories to impact model performance in any substantively meaningful 

way beyond slightly smaller standard errors. 

Fourth, I hypothesized that the OZINB-MM would outperform the existing PO-MM and 

L-MM. Like the ON-MM, I evaluated this hypothesis by investigating model fit, empirical 

power, Type I error, and relative efficiency of predictions. Because the PO-MM and L-MM were 

fitted with correlated random intercept and time effects and the zero-inflated data were generated 

without a random time effect, I expected low rates of model convergence for these models 

compared to the OZINB-MM. I anticipated that the OZINB-MM would have substantially better 

model fit compared PO-MM and L-MM because the OZINB-MM explicitly accounted for the 

underlying zero-inflated process.   

Evaluating empirical power and Type I errors across the OZINB-MM, PO-MM, and L-

MM was not straightforward because the models have substantially different interpretations. 

However, I hypothesized that the PO-MM and L-MM could produce unexpected patterns of 

significant effects (e.g., spurious effects). For example, a predictor with no effect in the 

generating zero-inflated population model may have elevated Type I error rates when fitting the 

PO-MM or L-MM because of model misspecification and violations of key model assumptions. 
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Relatedly, I expected empirical power for the PO-MM and L-MM to be heavily influenced by 

model misspecification (e.g., ignoring the zero process). For instance, suppose that increases in 

predictor A lead to increases in the log-odds of being non-user (e.g. zero process). However, 

among users, increases in predictor A lead to decreases in use (e.g., count process). This pattern 

of effects should reduce the level of empirical power for predictor A in the L-MM and PO-MM 

compared to the count process in the OZINB-MM. This is because the effect in the binary 

process effectively washes out the effect in count process when fitting the L-MM and PO-MM. 

The opposite pattern could also occur (e.g., decrease in log-odds/increase in use) and result in 

higher levels of empirical power for the L-MM and PO-MM compared to the OZINB-MM count 

process. Lastly, I posited that predictions from the OZINB-MM would be superior to those 

produced by the PO-MM and L-MM because the OZINB-MM explicitly models the true 

underlying zero-inflated count structure. The PO-MM was hypothesized to outperform the L-

MM because it accounts for the ordinal nature of the response variable. 

Summary of Current Research 

 In order to test my research hypotheses, I conducted two simulation studies. The first 

simulation study evaluated hypotheses one and two which pertained to the ONB-MM. The 

second simulation study evaluated hypotheses three and four which related to the OZINB-MM. I 

next provide a brief summary of the studies and how they address my research hypotheses. 

 I generated longitudinal ordinal-count data from an underlying negative binomial 

distribution for the first simulation study and longitudinal ordinal-count data from an underlying 

zero-inflated negative binomial distribution for the second simulation study. In both studies, I 

incorporated important design factors such as response scale, sample size, and number of time-
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points. Additionally, I considered commonly used PO-MM and L-MM to compare my proposed 

modeling framework to current best practices in substance use research.  

 I evaluated hypotheses one and three, which focused on the general performance of the 

ON-MM and OZINB-MM, using measures of bias and accuracy for the parameter estimates. 

These measures provided insight on how well the proposed ordinal-count mixed effects models 

recovered the true underlying count process of substantive interest. I evaluated hypotheses two 

and four, which compared the proposed ordinal-count mixed effects models to existing models, 

by investigating model fit (e.g., -2 log-likelihood, AIC, BIC), empirical power, Type I error, and 

relative efficiency.  

Collectively, my simulation studies investigated ordinal outcomes with underlying counts 

across a variety of conditions consistent with substance use research. They provided information 

about the general utility of the proposed models and helped to identify factors that improve and 

worsen model performance. The simulations studies also served as a means for assessing the 

advantages of the proposed ordinal-count methods over models widely used in practice.  
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CHAPTER 2: STUDY 1: EVALUATING THE ORDINAL NEGATIVE  

BINOMIAL MIXED EFFECTS MODEL (ONB-MM) 

I evaluated the proposed ONB-MM by simulating longitudinal ordinal-count data that 

were consistent with those observed in adult substance use studies (e.g., ages from mid-twenties 

into early thirties). I then fitted ONB-MM, PO-MM, and L-MM to the ordinal-count data. My 

first hypothesis focused on evaluating whether or not the proposed ONB-MM could recover the 

true underlying count population generating values even though the response variable was 

ordinal. I hypothesized that the ONB-MM would adequately recover the population generating 

values from the underlying negative binomial count process. I expected the ONB-MM to 

perform best (e.g., highest convergence rates, smallest standard errors, most accurate estimates) 

with more subjects and time-points (e.g., n=1000, t=7). To quantify the general performance of 

the ONB-MM, I examined several measures of bias and accuracy. I expected that, with less data, 

model performance would deteriorate slightly but still be acceptable. I also hypothesized that the 

ONB-MM would provide superior fit to the ordinal-count data and produce more efficient 

predictions relative to the existing proportional odds and linear mixed effects models.  

The longitudinal ordinal-count data were generated from a negative binomial distribution 

with correlated random intercepts and time effects. The selection of my population generating 

parameters was guided by count mixed effects models fitted to real empirical substance use data. 

I included time-varying predictors, time-invariant predictors, and time varying-by-time invariant 

predictor interactions in the population generating model. Given my proposed hypotheses, I 

employed eight unique condition combinations. There were two sample sizes (n=1000, 300), two 



 
 

22 
 

numbers of time-points (t=3, 7), and two response scales (5pt, 10pt). I next describe the specifics 

of my simulation design with regards the population generating model, data generation, fitted 

models, and simulation outcome measures. 

Simulation Study Design 

 The population generating parameters were partially based on results obtained by fitting 

count negative binomial mixed effects models to adult (e.g., ages 24 to 30) frequency of past 30 

day alcohol use data from the 1997 National Longitudinal Survey of Youth (NLSY97). These 

parameters value were intended to represent those likely obtained in practice by adult substance 

use researchers. In order to establish a range of effects, the fixed effects values were based on 

empirical power levels derived by fitting count mixed effects models in my preliminary pilot 

work. The population model included correlated random intercept and linear time effects. The 

covariates included a time-varying linear time predictor,   , two standard normal continuous 

time-invariant predictors     and     correlated .3, and interactions between the time-invariant 

predictors and time. A summary of population generating parameters is listed in the first column 

of Table 4.  

For each condition, there were r=250 replications. I used SAS 9.3 to generate open-ended 

longitudinal count data from a negative binomial distribution and these counts were collapsed 

into ordinal-count responses according the two unique response scales in Table 2. I fitted ordinal 

negative binomial (ONB-MM), proportional odds (PO-MM), and linear (L-MM) mixed effects 

models to each of the datasets. All of the models had properly specified fixed and random effects 

and were fitted in PROC NLMIXED in SAS using adaptive quadrature with five quadrature 

points and dual quasi-Newton optimization. This resulted in a total of 6,000 fitted models. The 

variance components for the random effects were modeled in terms of standard deviations to 
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help with convergence in PROC NLMIXED. This is common practice with these types of 

models (Kiernan, Tao, & Gibbs, 2012). 

 

Table 2. Ordinal response scales used in the simulation studies. 

Five Point Scale Ten Point Scale 

On how many occasions did 

you drink alcohol in the last 

30 days?    

 

0. Never 

1. 1 to 2 Occasions 

2. 3 to 6 Occasions 

3. 7 to 14 Occasions 

4. 15+ Occasions 

 

On how many occasions did 

you drink alcohol in the last 

30 days?    

 

0. Never 

1. 1 Occasion 

2. 2 Occasions 

3. 3 Occasions 

4. 4 to 5 Occasions 

5. 6 to 7 Occasions 

6. 8 to 10 Occasions  

7. 11 to 15 Occasions 

8. 16 to 24 Occasions    

9. 25+ Occasions 

 

 

I evaluated my first hypothesis that focused on the general performance of the ONB-MM, 

using several criteria including raw bias (Bias), standardized bias (SB), root mean square error 

(RMSE), and 95% CI coverage probabilities. These measures provided valuable insights on how 

well the proposed ordinal-count mixed effects model recovered the true underlying count process 

of substantive interest. The bias measures were critical for evaluating the deviation in estimates 

from the true population value. Raw bias represented the difference between the mean estimate 

and the population value (e.g.,  ̅̂   ). Researchers have suggested that raw bias may be 

problematic at levels anywhere from one-half to two times the empirical standard error 

(Rubinstein, 1981; Schafer & Graham, 2002). The standardized bias measure calculates bias as a 

function of the empirical standard error. This provided a measure of bias that depends directly on 
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the uncertainty in the parameter estimate (e.g., (
 ̅̂  

  ( ̂)
)     ). Researchers have suggested that a 

standardized bias of +/- 40 percent can be problematic (Collins, Schafer, & Kam, 2001). The 

RMSE provided a measure of overall accuracy that incorporates both bias and variability on the 

same scale as the parameter (e.g., √( ̅̂   )
 

 (  ( ̂))
 

 ). The 95% CI coverage provided an indicator 

of the proportion of times the confidence interval contains the true population value. This helped 

determine if the proposed ordinal-count mixed effects model produces results that are too liberal 

or conservative with regard to Type I error rate and power.  

 I evaluated my second hypothesis that compared the proposed ordinal negative binomial 

mixed effects models to existing models by examining model fit, empirical power, Type I error, 

and relative efficiency of predictions. For model fit, I examined the average -2 log-likelihoods, 

Akaike information criterion (AIC), and Bayesian information criterion (BIC) across the 

replications with properly converged solutions (Akaike, 1973; Schwarz, 1978). Empirical power 

was computed by recording the proportion of significant effects across the converged 

replications using a standard alpha level of .05. The relative efficiency of predictions was 

computed by taking the respective ratios of the efficiency of the existing PO-MM and L-MM to 

the proposed ONB-MM. Efficiency was computed by taking the average of ∑ ∑ ( ̂      )
 

   

across the converged replications. Here,     denotes the  [   |      ] based on the true 

population generating model. In the L-MM,  ̂   was the predicted value of the ordinal-count 

outcome scored as category numbers (e.g., 0, 1, 2, etc.) for person i at time t. For the ONB-MM 

and PO-MM,  ̂   was ∑      ̂     where  ̂    was the subject specific predicted probability of 

person i at time t being in category c. Predictions were computed using the parameter estimates 

and empirical Bayes estimates of the random effects. Since I defined relative efficiency as a ratio 
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of efficiencies (e.g.,     

   

,    

   

), a relative efficiency greater than 1 suggests that the 

proposed ordinal-count models are preferred.  

I used meta-models to help examine the performance of the proposed ONB-MM. The 

mixed effects meta-models included random intercepts because different models were fitted to 

the same datasets and the 5pt and 10pt response scales had the same underlying count data. I 

created a pseudo Cohen’s    to provide a measure of local effect size for linear meta-models 

fitted to raw bias. Specifically, Cohen’s    is defined as    
   

    
 

     
  where B is the variable of 

interest above and beyond the other set of variables designated as A. I defined    as    

           

     
 where       is the total variance (between variance + within variance) for the 

intercept-only model and       is the total variance for the full model that had several variants 

depending on if   
  or    

  was calculated for a given predictor. I compared this measure of 

effect size to the standard Cohen’s    from standard linear regression models ignoring clustering 

and the general results did not meaningfully change. Cohen (1988) suggested that    values 

0.02, 0.15, and 0.35 constitute small, moderate, and large effects. The meta-models evaluating 

empirical power were logistic mixed effects models that modeled the probability of obtaining a 

significant effect. The meta-models considered simulation factors such as sample size, number of 

time-points, number of response categories, model fitted, and their respective interactions. In 

building the meta-models, I included all condition main effects and significant interactions using 

an alpha .01 to coarsely adjust for multiple testing and high statistical power. 

Taken together, my simulation study provided a thorough evaluation of the proposed 

ordinal negative binomial mixed effects model for longitudinal substance use research. In 

addition, my simulation offered insights on how the proposed model performs relative to widely 
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utilized existing techniques. Finally, this research considers critical factors such as response 

scales, sample size, and number of time-points to help determine the necessary conditions for 

effectively implementing this novel longitudinal modeling approach. 

Results 

Overall Performance of ONB-MM 

Model non-convergence was only notable when the number of time-points was small 

(e.g., t=3) and the convergence rate improved with added subjects. The rates of convergence 

differed slightly by number of response categories. When n=300, the 5pt scale had a smaller 

number of converged models compared to the 10pt scale (5pt: 69.6%, 10pt: 70.8%). When 

n=1000, the 5pt scale had a larger number of converged models compared to the 10 points scale 

(5pt: 86.8%, 10pt: 83.3%).  

 Table 3 through Table 5 show that, across all conditions, the ONB-MM recovered the 

assigned parameter values adequately. Results showed small biases, RMSE, and close to 95% 

coverage rates. The meta-model results displayed in Table 3 show little impact of the simulation 

conditions on raw bias. The most notable effect was an interaction between sample size and 

number of time-points on bias in the random time standard deviation (p<.0001,   =.04). 

Specifically, when n=300, the number of time-points had a small-moderate effect such that more 

time-points predicted less bias (p<.0001,   =.09). However, when n=1000, the number of time-

points did not predict raw bias (p=.58,   =0). Examination of Table 4 and Table 5 shows that 

bias in estimating the random time effect standard deviation was large when n=300 and t=3 and 

decreases with more observations and subjects. A similar pattern also occurred with the 

dispersion parameter and random intercept-time covariance, but these trends did not appear to be 

overly problematic. As expected, the standard errors were smaller as the number of time-points 
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and subjects increased. Results suggested that the number of response categories did not impact 

model performance with regard to bias, efficiency, or coverage. 
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Table 3. Results from linear mixed effects meta-models fitted to raw bias for the ONB-MM. 
 

 
                                                   

 F(1,851) p f
2
 F(1,852) p f

2
 F(1,852) p f

2
 F(1,852) p f

2
 F(1,852) p f

2
 F(1,852) p f

2
 

N .20 .67 0 1.75 .19 .002 .48 .49 .001 .22 .64 0 .81 .37 0 .16 .69 0 

TP .04 .84 0 2.29 .13 .002 1.42 .23 .002 2.19 .14 .002 .03 .85 0 .14 .70 0 

Scale 4.99 .03 0 1.36 .24 0 .02 .88 0 .06 .81 0 .11 .73 0 .44 .51 0 

N*Scale 7.37 .007 0 -  - - - - - - - -  - - - - 

     
     

     
         

 F(1,851) p f
2
 F(1,852) p f

2
 F(1,851) p f

2
 F(1,852) p f

2
       

N .05 .83 0 36.21 <.0001 .07 9.99 .002 .02 3.23 .07 .004       

TP .57 .45 0 50.82 <.0001 .09 12.80 .0004 .02 19.39 <.0001 .02       

Scale 3.78 .05 0 4.38 .04 .001 4.07 .04 0 2.01 .16 0       

N*Scale 7.21 .007 0 - - - 6.84 .003 .0003 - - -       

N*TP - - - 40.36 <.0001 .04 9.01 .009 .01 - - -       

Note: N denotes sample size and TP denotes time-points. f
2 
denotes the pseudo Cohen’s f

2
. 
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Table 4. Recovery of population generating values for the ONB-MM when n=300. 

  n=300 

  3 Time-points 

  5 Response Categories 10 Response Categories 

 True Est SE Bias SB RMSE 95%CI Est SE Bias SB RMSE 95%CI 

   1.00 1.00 0.12 0.00 2.07 0.12 0.95 1.01 0.12 0.01 4.98 0.12 0.94 

        -0.05 -0.06 0.06 -0.01 -10.44 0.06 0.95 -0.06 0.06 -0.01 -13.01 0.06 0.95 

         0.00 -0.01 0.11 -0.01 -10.32 0.11 0.98 -0.01 0.11 -0.01 -12.19 0.11 0.94 

         0.22 0.23 0.12 0.01 12.86 0.12 0.94 0.23 0.11 0.01 9.06 0.11 0.95 

           0.03 0.03 0.06 0.00 -0.58 0.06 0.94 0.03 0.06 0.00 5.62 0.06 0.94 

           0.00 0.00 0.05 0.00 -2.18 0.05 0.96 0.00 0.06 0.00 2.31 0.06 0.95 

  0.75 0.72 0.09 -0.03 -32.30 0.09 0.96 0.73 0.08 -0.02 -28.88 0.09 0.97 

    
 1.41 1.42 0.12 0.01 9.29 0.12 0.95 1.41 0.11 0.00 2.96 0.11 0.97 

    
 0.23 0.29 0.10 0.06 60.56 0.12 0.94 0.28 0.09 0.05 59.02 0.10 0.95 

    
 -0.15 -0.19 0.14 -0.04 -28.72 0.15 0.97 -0.18 0.12 -0.03 -27.05 0.12 0.98 

           7 Time-points 

   1.00 1.00 0.10 0.00 -3.61 0.10 0.94 1.00 0.10 0.00 -2.13 0.10 0.96 

        -0.05 -0.05 0.02 0.00 1.75 0.02 0.93 -0.05 0.02 0.00 0.03 0.02 0.94 

         0.00 0.00 0.10 0.00 5.00 0.10 0.97 0.00 0.10 0.00 4.10 0.10 0.97 

         0.22 0.22 0.10 0.00 -4.20 0.10 0.96 0.22 0.10 0.00 -4.75 0.10 0.95 

           0.03 0.03 0.02 0.00 -2.30 0.02 0.94 0.03 0.02 0.00 -1.17 0.02 0.94 

           0.00 0.00 0.02 0.00 -8.78 0.02 0.95 0.00 0.02 0.00 -8.49 0.02 0.96 

  0.75 0.75 0.05 0.00 3.28 0.05 0.95 0.75 0.05 0.00 2.44 0.05 0.94 

    
 1.41 1.40 0.09 -0.01 -6.33 0.09 0.94 1.40 0.09 -0.01 -10.57 0.09 0.94 

    
 0.23 0.23 0.02 0.00 -8.28 0.02 0.95 0.23 0.02 0.00 -10.39 0.02 0.96 

    
 -0.15 -0.15 0.04 0.00 -4.12 0.04 0.96 -0.15 0.04 0.00 0.40 0.04 0.96 

Note. Est is the average estimate, SE is the empirical standard error, Bias is raw bias, SB is standardized 

bias, RMSE is root mean squared error, and 95% CI is the coverage for the 95% CI. Values are bolded to 

highlight particularly interesting results.
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Table 5. Recovery of population generating values for the ONB-MM when n=1000. 

  n=1000 

  3 Time-points 

  5 Response Categories 10 Response Categories 

 True Est SE Bias SB RMSE 95%CI Est SE Bias SB RMSE 95%CI 

   1.00 1.00 0.07 0.00 -7.54 0.07 0.95 0.99 0.06 -0.01 -8.64 0.06 0.96 

        -0.05 -0.05 0.03 0.00 -1.03 0.03 0.96 -0.05 0.03 0.00 1.65 0.03 0.96 

         0.00 0.01 0.06 0.01 8.56 0.06 0.95 0.00 0.06 0.00 3.78 0.06 0.94 

         0.22 0.22 0.06 0.00 -4.20 0.06 0.97 0.22 0.06 0.00 2.92 0.06 0.97 

           0.03 0.03 0.03 0.00 -7.71 0.03 0.92 0.03 0.03 0.00 -6.51 0.03 0.91 

           0.00 0.00 0.03 0.00 -5.37 0.03 0.95 0.00 0.03 0.00 -7.92 0.03 0.96 

  0.75 0.74 0.05 -0.01 -18.43 0.05 0.96 0.74 0.05 -0.01 -16.56 0.05 0.94 

    
 1.41 1.41 0.07 0.00 -4.49 0.07 0.93 1.41 0.07 0.00 -6.72 0.07 0.94 

    
 0.23 0.24 0.07 0.01 11.36 0.07 0.96 0.23 0.07 0.00 3.01 0.07 0.95 

    
 -0.15 -0.16 0.08 -0.01 -7.15 0.08 0.96 -0.15 0.07 0.00 -5.64 0.07 0.94 

           7 Time-points 

   1.00 1.00 0.05 0.00 -1.39 0.05 0.96 1.00 0.05 0.00 -0.07 0.05 0.96 

        -0.05 -0.05 0.01 0.00 -0.41 0.01 0.97 -0.05 0.01 0.00 -1.68 0.01 0.97 

         0.00 0.00 0.05 0.00 -1.01 0.05 0.97 0.00 0.05 0.00 -2.13 0.05 0.97 

         0.22 0.22 0.06 0.00 3.76 0.06 0.94 0.22 0.06 0.00 3.87 0.06 0.94 

           0.03 0.03 0.01 0.00 -2.17 0.01 0.92 0.03 0.01 0.00 -1.82 0.01 0.94 

           0.00 0.00 0.01 0.00 -2.88 0.01 0.95 0.00 0.01 0.00 -4.37 0.01 0.95 

  0.75 0.75 0.03 0.00 7.70 0.03 0.94 0.75 0.03 0.00 7.75 0.03 0.92 

    
 1.41 1.41 0.05 0.00 2.83 0.05 0.98 1.41 0.04 0.00 2.54 0.04 0.97 

    
 0.23 0.23 0.01 0.00 -4.66 0.01 0.96 0.23 0.01 0.00 -8.65 0.01 0.96 

    
 -0.15 -0.15 0.02 0.00 -0.60 0.02 0.98 -0.15 0.02 0.00 0.90 0.02 0.97 

Note. Est is the average estimate, SE is the empirical standard error, Bias is raw bias, SB is standardized bias, 

RMSE is root mean squared error, and 95% CI is the coverage for the 95% CI. Values are bolded to highlight 

particularly interesting results. 
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Comparing ONB-MM with Existing Models 

Model Convergence and Model Fit 

 Next, I will discuss the performance of the ONB-MM compared to commonly-used 

longitudinal methods. In general, across all models fitted, model non-convergence was only notable 

with a small number of time-points, see Table 6. In these conditions, the PO-MM had a slightly 

higher rate of model convergence compared the proposed ONB-MM. For instance, when n=300 and 

t=3, the 5pt and 10pt response scales had 72.4% and 73.6% of PO-MM converge compared to 

70.8% and 69.4% ONB-MM. When n=1000 and t=3, the respective convergence rates for the 5pt 

and 10pt scales were 86% and 90.4% for the PO-MM compared to 83.2% and 86.8% for the ONB-

MM. Interestingly, the model convergence rates for the L-MM were much lower than the ONB-

MM and PO-MM, especially with 10 response categories. For n=300 and t=3, the 5pt scale and 10pt 

scale convergence rates were 68.8% and 42.4%. For n=1000 and t=3, the 5pt and 10pt scale 

convergences rates were 77.6% and 37.6%. Table 6 also provides the average -2ll, AIC, and BIC 

values across the converged replications for the ONB-MM, PO-MM, and L-MM. Results indicated 

that across all conditions the proposed ordinal negative binomial mixed effects model fitted the 

ordinal-count data better than both the existing models (e.g., smaller -2ll, AIC, and BIC). Further, 

the proportional odds mixed effects model provided better fit to the ordinal-count data compared to 

the commonly used linear mixed effects model.  
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Table 6. Number of converged models and model fit for the ONB-MM, PO-MM, and L-MM across conditions. 

 n=300 

 3 Time-points 7 Time-points 

 5 Response Categories 10 Response Categories 5 Response Categories 10 Response Categories 

 ONB-MM PO-MM L-MM ONB-MM PO-MM L-MM ONB-MM PO-MM L-MM ONB-MM PO-MM L-MM 

# Converged 

(max=250) 
177 181 172 174 184 106 250 250 250 250 249 250 

-2LL 2522.28 2532.07 2799.40 3488.09 3494.29 4168.87 5573.85 5622.10 6232.83 7738.55 7792.32 9376.35 

AIC 2542.28 2556.07 2819.40 3508.09 3528.29 4188.87 5593.85 5646.10 6252.83 7758.55 7826.32 9396.35 

BIC 2579.31 2600.52 2856.44 3545.13 3591.25 4225.91 5630.89 5690.54 6289.87 7795.59 7889.29 9433.39 

 n=1000 

 ONB-MM PO-MM L-MM ONB-MM PO-MM L-MM ONB-MM PO-MM L-MM ONB-MM PO-MM L-MM 

# Converged 

(max=250) 
208 215 194 217 226 95 250 250 250 249 249 250 

-2LL 8415.56 8461.12 9331.13 11622.88 11672.27 13856.06 18583.70 18754.88 20800.72 25787.83 25988.65 31279.11 

AIC 8435.56 8485.12 9351.13 11642.88 11706.27 13876.06 18603.70 18778.88 20820.72 25807.83 26022.65 31299.11 

BIC 8484.64 8544.01 9400.21 11691.95 11789.71 13925.13 18652.78 18837.78 20869.80 25856.91 26106.08 31348.19 
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Empirical Power and Type I Error 

I used meta-models to investigate differences in empirical power across conditions. 

Specifically, I used logistic mixed effects models to assess the probability of finding significant 

effects for the non-zero effects (e.g.,   ,   ,   ). Table 7 provides a summary of the omnibus effects 

for the non-zero parameters. Results showed that sample size, number of time-points, and models 

fitted impacted empirical power. Further, Tables 8 and 9 provide the average parameter estimates, 

average standard errors, empirical power, and Type I error rates for the converged ordinal-negative 

binomial, proportional odds, and linear mixed effects models. I next discuss the effects of the 

simulation conditions on empirical power from the meta-models. 

 

Table 7. Results from logistic mixed effects meta-models for empirical power across the ONB-MM, 

PO-MM, and L-MM. 

                              

Effect Num. DF F(4184) p F(4186) p F(4186) p 

N 1 85.90 <.0001 233.09 <.0001 70.09 <.0001 

TP 1 178.03 <.0001 0.01 .94 164.62 <.0001 

Scale 1 5.75 .02 0.31 .57 0.42 .52 

Models 2 18.84 <.0001 1.41 .24 9.06 <.0001 

N*TP 1 17.54 <.0001 - - 31.43 <.0001 

TP *Models 2 55.81 <.0001 - - - - 

      
     

     
 

 Num. DF F(Den.df) p F(1689) p F(1689) p 

N 1 - - 19.89 <.0001 89.19 <.0001 

TP - - - - - - - 

Scale 1 - - 16.39 <.0001 33.94 <.0001 

Models 2 - - 4.36 .013 8.79 .0002 

Note. N denote sample size and TP denote time-points. F denotes the F-statistic with the 

Denominator DF in parentheses. Empirical power for the random intercept standard deviation     
 

was 1.0 so a meta-model was not used. Empirical power for the random slope standard deviation 

and intercept-slope covariance was also almost always 1.0 across conditions when t=7. For this 

reason, meta-models for these random effect components examined the effects of sample size, 

response scale, and models when t=3. 
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Table 8. Average estimate, average standard error, and proportion significant across the ONB-MM, PO-MM, and L-MM for n=300. 

  n=300 

  5 Response Categories 10 Response Categories 

             3 Time-points 

  ONB-MM PO-MM L-MM ONB-MM PO-MM L-MM 

 True Est(se) Sig Est(se) Sig Est(se) Sig Est(se) Sig Est(se) Sig Est(se) Sig 

   1.00 1.00(.12) 1.00 - - 1.50(.07) 1.00 1.01(.11) 1.00 - - 2.88(.16) 1.00 

        -0.05 -0.06(.06) 0.15 -0.09(.09) 0.18 -0.05(.04) 0.28 -0.06(.06) 0.17 -0.09(.09) 0.19 -0.11(.08) 0.26 

         0.00 -0.01(.11) 0.02 -0.03(.17) 0.04 0.00(.08) 0.04 -0.01(.11) 0.06 -0.03(.17) 0.05 -0.03(.17) 0.08 

         0.22 0.23(.11) 0.59 0.36(.17) 0.54 0.15(.08) 0.52 0.23(.11) 0.56 0.36(.17) 0.57 0.35(.17) 0.60 

           0.03 0.03(.06) 0.11 0.05(.09) 0.12 0.02(.04) 0.12 0.03(.06) 0.10 0.05(.09) 0.10 0.05(.09) 0.11 

           0.00 0.00(.06) 0.04 -0.01(.09) 0.03 0.00(.04) 0.03 0.00(.06) 0.05 0.00(.09) 0.03 0.00(.09) 0.04 

    
 1.41 1.42(.13) 1.00 2.16(.25) 1.00 1.00(.07) 1.00 1.41(.12) 1.00 2.19(.23) 1.00 2.21(.15) 1.00 

    
 0.23 0.29(.18) 0.51 0.49(.31) 0.43 0.21(.14) 0.46 0.28(.16) 0.51 0.48(.29) 0.52 0.46(.28) 0.54 

    
 -0.15 -0.19(.15) 0.18 -0.50(.39) 0.14 -0.09(.06) 0.26 -0.18(.13) 0.22 -0.51(.36) 0.21 -0.47(.30) 0.30 

             7 Time-points 

   1.00 1.00(.10) 1.00 - - 1.47(.07) 1.00 1.00(.10) 1.00 - - 2.80(.15) 1.00 

        -0.05 -0.05(.02) 0.68 -0.07(.03) 0.67 -0.03(.01) 0.65 -0.05(.02) 0.73 -0.07(.03) 0.69 -0.07(.03) 0.65 

         0.00 0.00(.10) 0.03 0.01(.15) 0.03 0.01(.07) 0.03 0.00(.10) 0.03 0.01(.15) 0.04 0.01(.15) 0.03 

         0.22 0.22(.10) 0.52 0.31(.15) 0.50 0.15(.07) 0.53 0.22(.10) 0.52 0.32(.15) 0.51 0.33(.15) 0.52 

           0.03 0.03(.02) 0.32 0.04(.03) 0.25 0.02(.01) 0.26 0.03(.02) 0.30 0.04(.03) 0.27 0.04(.03) 0.29 

           0.00 0.00(.02) 0.05 0.00(.03) 0.06 0.00(.01) 0.05 0.00(.02) 0.04 0.00(.03) 0.05 -0.01(.03) 0.05 

    
 1.41 1.40(.09) 1.00 2.09(.15) 1.00 1.00(.05) 1.00 1.40(.09) 1.00 2.12(.14) 1.00 2.22(.12) 1.00 

    
 0.23 0.23(.02) 1.00 0.34(.04) 1.00 0.16(.01) 1.00 0.23(.02) 1.00 0.35(.03) 1.00 0.35(.03) 1.00 

    
 -0.15 -0.15(.04) 0.98 -0.36(.10) 1.00 -0.08(.02) 1.00 -0.15(.04) 0.99 -0.37(.10) 1.00 -0.43(.09) 1.00 

Note. The dispersion parameter,  , had an empirical power of 1.0 across all conditions. Est is the average estimate, SE is the average standard 

error, and Sig is the proportion of significant effects at alpha=.05. 
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Table 9. Average estimate, average standard error, and proportion significant across the ONB-MM, PO-MM, and L-MM for n=1000.  

  n=1000 

  5 Response Categories 10 Response Categories 

  3 Time-points 

  ONB-MM PO-MM L-MM ONB-MM PO-MM L-MM 

 True Est(se) Sig Est(se) Sig Est(se) Sig Est(se) Sig Est(se) Sig Est(se) Sig 

   1.00 1.00(.06) 1.00 - - 1.49(.04) 1.00 0.99(.06) 1.00 - - 2.83(.09) 1.00 

        -0.05 -0.05(.03) 0.33 -0.08(.05) 0.40 -0.05(.02) 0.59 -0.05(.03) 0.34 -0.08(.05) 0.42 -0.11(.04) 0.67 

         0.00 0.01(.06) 0.05 0.01(.09) 0.05 0.00(.04) 0.04 0.00(.06) 0.06 0.00(.09) 0.06 0.01(.09) 0.01 

         0.22 0.22(.06) 0.96 0.32(.09) 0.94 0.15(.04) 0.95 0.22(.06) 0.96 0.33(.09) 0.94 0.33(.09) 0.95 

           0.03 0.03(.03) 0.14 0.04(.05) 0.15 0.02(.02) 0.16 0.03(.03) 0.19 0.04(.05) 0.15 0.04(.05) 0.14 

           0.00 0.00(.03) 0.05 0.00(.05) 0.05 0.00(.02) 0.06 0.00(.03) 0.04 -0.01(.05) 0.05 0.00(.05) 0.07 

    
 1.41 1.41(.07) 1.00 2.11(.13) 1.00 0.98(.04) 1.00 1.41(.06) 1.00 2.16(.13) 1.00 2.20(.08) 1.00 

    
 0.23 0.24(.11) 0.60 0.40(.19) 0.63 0.17(.09) 0.55 0.23(.10) 0.67 0.41(.17) 0.69 0.18(.16) 0.75 

    
 -0.15 -0.16(.08) 0.49 -0.41(.20) 0.54 -0.07(.04) 0.58 -0.15(.07) 0.59 -0.44(.19) 0.62 -0.41(.16) 0.74 

            7 Time-points 

   1.00 1.00(.05) 1.00 - - 1.47(.04) 1.00 1.00(.05) 1.00 - - 2.80(.08) 1.00 

        -0.05 -0.05(.01) 1.00 -0.07(.02) 0.99 -0.03(.01) 0.99 -0.05(.01) 0.99 -0.07(.02) 0.99 -0.07(.02) 0.99 

         0.00 0.00(.06) 0.03 0.00(.08) 0.03 0.00(.04) 0.03 0.00(.06) 0.03 0.00(.08) 0.03 0.00(.09) 0.04 

         0.22 0.22(.06) 0.97 0.33(.08) 0.97 0.15(.04) 0.98 0.22(.06) 0.98 0.33(.08) 0.97 0.34(.09) 0.97 

           0.03 0.03(.01) 0.75 0.04(.02) 0.68 0.02(.01) 0.69 0.03(.01) 0.75 0.04(.02) 0.71 0.04(.02) 0.67 

           0.00 0.00(.01) 0.05 0.00(.02) 0.05 0.00(.01) 0.07 0.00(.01) 0.05 0.00(.02) 0.05 -0.01(.02) 0.07 

    
 1.41 1.41(.05) 1.00 2.09(.08) 1.00 1.00(.03) 1.00 1.41(.05) 1.00 2.13(.08) 1.00 2.23(.07) 1.00 

    
 0.23 0.23(.01) 1.00 0.34(.02) 1.00 0.16(.01) 1.00 0.23(.01) 1.00 0.35(.02) 1.00 0.36(.02) 1.00 

    
 -0.15 -0.15(.02) 1.00 -0.36(.05) 1.00 -0.08(.01) 1.00 -0.15(.02) 1.00 -0.37(.05) 1.00 -0.42(.05) 1.00 

Note. The dispersion parameter,  , had an empirical power of 1.0 across all conditions. Est is the average estimate, SE is the average standard 

error, and Sig is the proportion of significant effects at alpha=.05 
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Empirical Power for Non-Zero Effects:   ,   ,    

For the time-varying time predictor effect,   , the impact of sample size depended on the 

number of time-points. Specifically, increased sample size had a greater impact with more time-

points (t=3: OR=7.27, p<.0001, t=7: OR=191.22, p<.0001). There was no effect of response 

category using an alpha=.01 (p=.02). Results also indicated that the ONB-MM, PO-MM, and L-

MM differed in empirical power and these relationships depended on number of time-points. The 

top panel of Figure 2 displays these differences. For instance, when t=3, the odds of a significant 

   effect were larger for the PO-MM versus the ONB-MM and the L-MM versus the ONB-MM 

(PO-MM vs. ONB-MM: OR=2.00, p=.0002; L-MM vs. ONB-MM: OR=12.19, p<.0001). The 

odds were also larger for the L-MM compared to the PO-MM (OR=6.08, p<.0001) when t=3. 

When t=7, the odds of a significant    effect did not differ between the PO-MM and ONB-MM 

(p=.11) but, the odds were lower for the L-MM compared to the ONB-MM (OR=.49, p=.002). 

The odds for the L-MM compared to the PO-MM did not significantly differ (p=.12). 
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Figure 2. Visualizing differences in empirical power for the non-zero effects across the ONB-

MM, PO-MM, and L-MM 

 

Note. The plotted values are collapsed over the 5 and 10 response category conditions. 

 

 

Results from the meta-model examining the    main effect for     were straightforward. 

The number of time-points, number of response categories, and models fitted did not impact 

empirical power for    effect (time-points: p=.94; scale: p=.57; models: p=.24). However, there 

was an effect of sample size such that the odds of significant    effect were larger for n=1000 
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than n=300 (OR=88.36, p<.0001). The empirical power levels for n=300 were .50-.60 compared 

to .94-.98 for n=1000. The middle panel of Figure 2 shows these differences in empirical power. 

Next, I address empirical power for the          effect. 

The final meta-model examined the   -by-    interaction effect,   . Results from this 

meta-model indicated that the number of response categories did not impact the odds of a 

significant    interaction effect (p=.52). The effect of sample size depended on the number of 

time-points (p<.0001). Specifically, when t=3, there was no effect of sample size (p=.08) but, 

when t=7, the sample size of n=1000 had larger odds compared to n=300 (OR=24.47, p<.0001). 

Results indicated that the odds of a significant     effect differed across the ONB-MM, PO-MM, 

and L-MM. While the L-MM and PO-MM did not differ (p=.95), the odds of significant    were 

lower for both the PO-MM and the L-MM compared to the ONB-MM (PO-MM vs. ONB-MM: 

OR=.61, p<.0001; L-MM vs. ONB-MM: OR=.60, p<.0001).  

Empirical Power for the Random Effects Components:     
,     

,     
 

Across all conditions and models the random intercept standard deviation had an 

empirical power of 1.00. Similarly, when t=7, the random slope standard deviation and intercept-

slope covariance almost always had empirical power of 1.00. When t=3, the odds of significant 

variability in the random time effect were larger for n=1000 than n=300 (OR=2.60, p<.0001) and 

for the 10pt scale than the 5pt scale (OR=1.60, p<.0001). The odds did not vary across the ONB-

MM, L-MM, and PO-MM (p=.013). When t=3, the odds of a significant intercept-slope 

covariance were higher for n=1000 than n=300 (OR=10.75, p<.0001) and 10pt scale than 5pt 

scale (OR=2.18, p<.0001). The L-MM had a higher odds than both the ONB-MM (OR=2.00, 

p<.0001) and PO-MM (1.70, p=.002), but the ONB-MM and PO-MM did not differ (p=.29). 
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Type 1 Error for Null Effects:   ,    

 Tables 8 and Table 9 also shows that for the null effects, the Type I error rates were 

acceptable across models and conditions. The majority of the false positive rates were equal to or 

less than .05. The L-MM had a few cases of slightly higher Type I error rates (e.g., .07, .08), but 

these did not appear problematic. 

Summarizing Empirical Power and Type I Errors 

The results did not show unexpected patterns of effects as a function of the conditions or 

models fitted. Results indicated reasonable Type I error rates for the null effects (e.g.,    and   ) 

across conditions and models. Unsurprisingly, there was a clear relationship between empirical 

power and the amount of data present. Further, the meta-models reveled that empirical power 

varied in slightly complicated ways for the    and     effects. I next discuss the relative 

efficiency of predictions across the evaluated models. 

Comparing the Relative Efficiency of Predictions 

Table 10 displays the relative efficiency of predictions produced from the existing and 

proposed mixed effects models. Results showed that the predictions from the proposed ONB-

MM were more efficient than both the PO-MM and L-MM (e.g., the relative efficiencies were 

greater than 1). The L-MM and PO-MM displayed more inefficiency relative to the ONB-MM as 

the number of time-points and number of response categories increased, but sample size had 

little impact. For example, with t=3 and the 5pt scale, the efficiency of predictions for the PO-

MM was 8% larger than the ONB-MM compared to 13% when t=7 with a 10pt scale. A similar 

trend held for the L-MM compared to the ONB-MM, but with ratios closer to 1. The efficiency 

ratios for the PO-MM relative to the L-MM were between 1.03 and 1.06, suggesting that the L-

MM was more efficient.  
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Table 10. Relative efficiency of predictions from the ONB-MM, PO-MM, and L-MM across 

conditions. 

 n=300 

 3 Time-Points 7 Time-Points 

 5 Categories 10 Categories 5 Categories 10 Categories 

    
   

 1.08 1.10 1.10 1.13 

   
   

 1.03 1.04 1.06 1.07 

    
 

 1.05 1.06 1.03 1.05 

 n=1000 

    
   

 1.09 1.10 1.10 1.13 

   
   

 1.04 1.04 1.06 1.07 

    
 

 1.04 1.06 1.04 1.05 

Note. Relative efficiencies greater than 1 indicate that the model in the denominator produced 

more efficient predictions. 

Summary of Simulation Study Results 

 Taken together, the result showed that the proposed ONB-MM performed well across the 

full range of conditions. As expected, the proposed model performed best with more subjects and 

time-points. However, the number of response categories did not meaningfully impact model 

performance. The ordinal negative binomial mixed effects model provided better fit to the 

ordinal-count data than existing models and produced more efficient predictions. Meta-models 

also suggested that empirical power differed across the evaluated models and simulation 

conditions. 
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CHAPTER 3: STUDY 2: EVALUATING THE ORDINAL ZERO-INFLATED 

NEGATIVE BINOMIAL MIXED EFFECTS MODEL (OZINB-MM) 

I assessed the proposed ordinal zero-inflated negative binomial mixed effects model 

(OZINB-MM) by simulating longitudinal zero-inflated ordinal-count data consistent with those 

arising in adolescent substance use research. I then fitted the OZINB-MM along with commonly 

used proportional odds and linear mixed effects models to the simulated data to evaluate my 

hypotheses. First, I tested whether the proposed OZINB-MM recovered the true underlying count 

population generating values despite the response variable being defined by ordinal categories. I 

expected the OZINB-MM to adequately recover the population generating values from the 

underlying zero-inflated count process. I anticipated optimal performance from the OZINB-MM 

(e.g., highest convergence rates, smallest standard errors, most accurate estimates) with more 

subject and time-points (e.g., n=1000, t=7). I posited that model performance in conditions with 

less data would slightly worsen. In comparison to the existing proportional odds and linear 

mixed effects models, I expected my proposed OZINB-MM to provide superior fit and produce 

more efficient predictions. 

The ordinal-count data were generated from a zero-inflated negative binomial distribution 

with correlated random intercepts in the binary (logistic) and count (negative binomial) 

processes. The selection of my population generating parameters was guided by zero-inflated 

count mixed effects models fitted to real adolescent substance use data. I included time-varying 



 
 

42 
 

predictors, time-invariant predictors, and time-varying by time-invariant predictor interactions in 

the population generating model for both the binary and count processes. I created eight unique 

condition combinations. There were two sample sizes (n=1000, 300), two numbers of time-

points (t=3, 7), and two response scales (5pt, 10pt). Three mixed effects models (OZINB-MM, 

PO-MM, and L-MM) were fitted to each of the unique datasets. 

Simulation Study Design 

 The overall design of my simulation study mirrored that described in Chapter 2 for the 

ONB-MM. The population generating parameters were partially based on results obtained by 

fitting count zero-inflated negative binomial mixed effects models to adolescent (e.g., ages 13 to 

17) frequency of past 30 day alcohol use data from the 1997 National Longitudinal Survey of 

Youth (NLSY97). I tailored the generating values to represent realistic values that adolescent 

substance use researchers may encounter in practice. In order to establish a range of effects, the 

population generating fixed effects were partly based on empirical power levels derived by 

fitting count mixed effects models in pilot work. The population model included correlated 

random intercepts from the binary and count processes and no random time effects. The 

covariates included a time-varying linear time predictor,   , two standard normal continuous 

time-invariant predictors     and     correlated .3, and interactions between the time-invariant 

predictors and time. A summary of population generating parameters is listed in the first column 

of Table 12.  

For each condition, there were r=250 replications. I used SAS 9.3 to generate open-ended 

longitudinal count data from a zero-inflated negative binomial distribution and the counts were 

collapsed into ordinal-count responses according the two unique response scales in Table 2. I 

fitted the ordinal zero-inflated negative binomial (OZINB-MM), proportional odds (PO-MM), 
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and linear (L-MM) mixed effects models to each of the datasets. The OZINB-MM had properly 

specified fixed and random effects. The PO-MM and L-MM had the same set of fixed effects 

predictors without the “zero” class. The L-MM and PO-MM included correlated random 

intercept and time effects to be consistent with what is commonly done in adolescent substance 

use research. I fitted all models using PROC NLMIXED in SAS using adaptive quadrature with 

nine points and dual quasi-Newton optimization. The variance components for the random 

effects were modeled in terms of standard deviations to help with convergence in PROC 

NLMIXED. This is recommended with these types of models (Kiernan, Tao, & Gibbs, 2012). 

First, I assessed the general performance of the OZINB-MM using raw bias (Bias), 

standardized bias (SB), root mean square error (RMSE), and 95% CI coverage probabilities. 

Each of these outcome measures are described in detail in Chapter 2. I used meta-models to 

examine raw bias in the OZINB-MM. Second, I compared the proposed ordinal zero-inflated 

negative binomial mixed effects models to existing proportional odds and linear mixed effects 

models. I accomplished this by examining model fit, empirical power, Type I error, and relative 

efficiency of predictions. I defined each of these aspects in Chapter 2. I used logistic mixed 

effects meta-models to examine empirical power across the models and conditions. However, it 

is important to note that the parameters from the OZINB-MM are substantively different from 

the PO-MM and L-MM. For this reason, I also examined empirical power across the models 

from a qualitative perspective. For example, I evaluated whether or not the average pattern and 

direction of effects were similar across models. 

In sum, my simulation study provided a realistic evaluation of the proposed ordinal zero-

inflated negative binomial mixed effects model for longitudinal adolescent substance use 

research. My simulation offered insights into how the proposed ordinal-count zero-inflated 
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model performs relative to widely utilized existing techniques. Importantly, my simulation study 

considered critical factors such as response scales, sample size, and number of time-points to 

help determine the necessary conditions for effectively implementing this innovative longitudinal 

modeling approach. 

Results 

Overall Performance of OZINB-MM 

Model convergence rates across conditions were generally high across all conditions. 

Within sample size by time-point conditions, the 10pt scale consistently had higher convergence 

rates than the 5pt scale. When n=300 and t=3, convergence rates for the 5pt and 10pt scales were 

86.8% and 92%.  Across the other conditions, the model convergence rate was no less than 

96.4%. It was interesting that there were more non-converged models when n=1000 and t=7 

compared when n=300 and t=7 or n=1000 and t=3.  

Tables 11 through Table 15 show that, across all conditions, the OZINB-MM generally 

recovered the assigned parameter values. There were small biases, RMSE, and close to 95% 

coverage. Results from the meta-models fitted to raw bias also confirmed the strong performance 

of the OZINB-MM across simulation conditions. The meta-model results showed that raw bias 

did not differ across simulation conditions for the fixed effects. Raw bias was only notable for 

the logistic random intercept standard deviation    
, the covariance between the random 

intercepts      
, and the dispersion parameter.  These raw biases were larger when n=300 and 

t=3 and generally became less severe, or non-existent, as the number of time-points and sample 

size increased. It was interesting that standardized bias was slightly higher for these parameters 

when n=1000 and t=7 because of smaller empirical standard errors. However, these standard bias 

values were still not overly concerning at less than +/- 40%. The pseudo Cohen’s    values from 
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the meta-models fitted to the raw bias of the random effect standard deviations and covariance 

suggested that the significant condition effects were small in magnitude. Further, the 95% 

coverage for dispersion parameter was low, especially when n=300 and t=3. The standard errors 

for the parameters became smaller as the number of time-points and subjects increased. Results 

also suggested that having more response categories resulted in slightly smaller standard errors, 

especially when t=3
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Table 11. Results from linear mixed effects meta-models fitted to raw bias for the OZINB-MM. 
Count Process 

 

 
                                                     

 F p f2 F p f2 F p f2 F p f2 F p f2 F p f2 F p f2 

N .43 .51 0 .01 .93 0 3.42 .06 .003 2.26 .13 .002 .75 .39 .001 .01 .91 0 1.96 .16 .002 

TP 4.83 .03 .004 4.92 .03 .004 1.85 .17 .002 .01 .94 0 1.15 .28 .001 0 .96 0 .01 .94 0 

Scale .40 .40 0 0 .96 0 .45 .50 0 2.29 .13 0 .11 .74 0 1,54 .21 0 .55 .46 0 

Zero Process 

                                                       

 F p f2 F p f2 F p f2 F p f2 F p f2 F p f2    

N .94 .33 .001 .28 .60 0 .06 .80 0 .54 .46 .001 .08 .78 0 .17 .68 0    

TP .41 .52 0 1.59 .21 .002 3.68 .06 .004 1.55 .21 .002 .72 .40 .001 .53 .47 0    

Scale .39 .53 0 1.04 .31 0 1.22 .27 0 5.30 .02 0 .22 .64 0 3.43 .06 0    

                                                              Random Effects 

    
    

      
             

 F p f2 F p f2 F p f2             

N .33 .57 .001 9.77 .002 .009 .16 .69 0             

TP 3.53 .29 .002 13.73 .0002 .01 5.08 .02 .004             

Scale 11.53 .0007 .001 2.12 .15 0 0 .97 0             

TP*Scale 9.36 .002 .001 - - - - - -             

Note. N denote sample size, TP denote time-points, F denote the F-statistic, p denote the p-value, and f
2 

denote the pseudo Cohen’s f
2
. 

All F statistics had a Numerator DF of 1 and Denominator DF of 948 except for the meta-model fitted to the    
, which had a 

Numerator DF of 1 and Denominator DF of 947. 
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Table 12. Recovery of population generating values for the OZINB-MM when n=300 and t=3. 

  n=300 and t=3 

  5 Response Categories (r=217) 10 Response Categories (r =230) 

             Count Process 

 True Est SE Bias SB RMSE 95%CI Est SE Bias SB RMSE 95%CI 

   0.20 0.19 0.40 -0.01 -1.74 0.40 0.97 0.18 0.39 -0.02 -4.82 0.39 0.95 

        0.35 0.36 0.14 0.01 3.91 0.14 0.98 0.36 0.14 0.01 7.50 0.14 0.97 

         0.00 0.01 0.28 0.01 1.85 0.28 0.92 0.00 0.26 0.00 1.80 0.26 0.93 

         0.35 0.33 0.27 -0.02 -6.52 0.27 0.94 0.34 0.24 -0.01 -3.20 0.24 0.96 

           0.06 0.06 0.18 0.00 1.55 0.18 0.92 0.06 0.16 0.00 0.57 0.16 0.93 

           0.00 0.00 0.16 0.00 -1.52 0.16 0.93 0.00 0.15 0.00 -1.23 0.15 0.93 

  1.00 0.96 0.40 -0.04 -9.02 0.41 0.85 0.96 0.35 -0.04 -11.27 0.35 0.85 

   
 1.00 1.01 0.21 0.01 2.56 0.21 0.97 0.99 0.18 -0.01 -4.13 0.18 0.97 

  Zero Process 

   2.00 2.04 0.52 0.04 8.40 0.52 0.96 2.05 0.50 0.05 9.70 0.51 0.97 

        -0.65 -0.67 0.32 -0.02 -4.86 0.33 0.95 -0.67 0.32 -0.02 -5.29 0.32 0.95 

         0.00 -0.01 0.44 -0.01 -2.23 0.44 0.97 -0.02 0.42 -0.02 -4.72 0.42 0.97 

         -0.55 -0.54 0.48 0.01 2.11 0.48 0.95 -0.52 0.44 0.03 6.91 0.44 0.95 

           0.12 0.12 0.29 0.00 0.97 0.29 0.95 0.12 0.29 0.00 1.66 0.29 0.95 

           0.00 -0.01 0.32 -0.01 -2.08 0.32 0.96 -0.02 0.31 -0.02 -6.41 0.31 0.97 

   
 2.45 2.62 0.84 0.17 20.19 0.86 0.92 2.60 0.80 0.15 18.34 0.81 0.93 

     
 -1.00 -1.08 1.49 -0.08 -5.30 1.49 1.00 -1.13 1.17 -0.13 -11.40 1.17 0.98 

Note. Est is the average estimate, SE is the empirical standard error, Bias is raw bias, SB is standardized bias, RMSE is root mean 

squared error, and 95% CI is the coverage for the 95% CI. Values are bolded to highlight particularly interesting results.  
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Table 13. Recovery of population generating values for the OZINB-MM when n=300 and t=7. 

  n=300 and t=7 

  5 Response Categories (r=248) 10 Response Categories (r=249) 

             Count Process 

 True Est SE Bias SB RMSE 95%CI Est SE Bias SB RMSE 95%CI 

   0.20 0.21 0.17 0.01 3.81 0.17 0.97 0.20 0.16 0.00 2.57 0.16 0.96 

        0.35 0.35 0.03 0.00 -2.56 0.03 0.95 0.35 0.03 0.00 -3.78 0.03 0.95 

         0.00 0.03 0.16 0.03 16.94 0.16 0.94 0.02 0.15 0.02 15.21 0.15 0.95 

         0.35 0.34 0.16 -0.01 -5.84 0.16 0.96 0.34 0.15 -0.01 -4.97 0.15 0.95 

           0.06 0.05 0.03 -0.01 -20.09 0.03 0.92 0.05 0.03 -0.01 -17.94 0.03 0.95 

           0.00 0.00 0.03 0.00 0.03 0.03 0.97 0.00 0.03 0.00 -0.33 0.03 0.96 

  1.00 0.98 0.13 -0.02 -15.36 0.13 0.91 0.98 0.11 -0.02 -18.71 0.11 0.92 

   
 1.00 0.99 0.09 -0.01 -8.42 0.09 0.98 1.00 0.09 0.00 -4.35 0.09 0.96 

  Zero Process 

   2.00 2.00 0.28 0.00 -1.57 0.28 0.94 2.00 0.28 0.00 -1.24 0.28 0.94 

        -0.65 -0.65 0.08 0.00 0.96 0.08 0.92 -0.65 0.08 0.00 0.72 0.08 0.91 

         0.00 0.02 0.25 0.02 8.08 0.25 0.97 0.02 0.25 0.02 7.42 0.25 0.96 

         -0.55 -0.57 0.28 -0.02 -8.10 0.28 0.95 -0.57 0.28 -0.02 -7.82 0.29 0.94 

           0.12 0.11 0.06 -0.01 -8.02 0.06 0.96 0.12 0.06 0.00 -7.27 0.06 0.96 

           0.00 0.00 0.06 0.00 7.17 0.06 0.97 0.00 0.06 0.00 6.47 0.06 0.96 

   
 2.45 2.43 0.27 -0.02 -6.81 0.27 0.93 2.43 0.27 -0.02 -6.88 0.27 0.93 

     
 -1.00 -1.00 0.35 0.00 1.02 0.35 0.94 -1.00 0.34 0.00 -0.25 0.34 0.94 

Note. Est is the average estimate, SE is the empirical standard error, Bias is raw bias, SB is standardized bias, RMSE is root mean 

squared error, and 95% CI is the coverage for the 95% CI. Values are bolded to highlight particularly interesting results. 
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Table 14. Recovery of population generating values for the OZINB-MM when n=1000 and t=3. 

  n=1000 and t=3 

  5 Response Categories (r=249) 10 Response Categories (r=250) 

             Count Process 

 True Est SE Bias SB RMSE 95%CI Est SE Bias SB RMSE 95%CI 

   0.20 0.16 0.25 -0.04 -15.49 0.25 0.93 0.16 0.22 -0.04 -16.62 0.23 0.95 

        0.35 0.36 0.08 0.01 10.31 0.08 0.96 0.36 0.08 0.01 13.47 0.08 0.94 

         0.00 -0.01 0.13 -0.01 -6.96 0.13 0.96 -0.01 0.12 -0.01 -8.83 0.12 0.94 

         0.35 0.36 0.14 0.01 4.00 0.14 0.93 0.36 0.13 0.01 7.98 0.13 0.92 

           0.06 0.06 0.08 0.00 5.72 0.08 0.96 0.07 0.07 0.01 8.28 0.07 0.97 

           0.00 0.00 0.08 0.00 2.00 0.08 0.95 0.00 0.08 0.00 -4.14 0.08 0.96 

  1.00 1.00 0.25 0.00 0.67 0.25 0.91 1.00 0.21 0.00 0.16 0.21 0.93 

   
 1.00 1.01 0.11 0.01 8.26 0.11 0.96 1.00 0.09 0.00 3.48 0.09 0.94 

  Zero Process 

   2.00 1.99 0.24 -0.01 -3.69 0.24 0.96 1.99 0.23 -0.01 -4.05 0.23 0.97 

        -0.65 -0.66 0.14 -0.01 -7.30 0.15 0.96 -0.66 0.14 -0.01 -4.46 0.14 0.95 

         0.00 -0.02 0.20 -0.02 -9.36 0.21 0.94 -0.02 0.20 -0.02 -10.17 0.20 0.94 

         -0.55 -0.54 0.22 0.01 5.31 0.22 0.96 -0.53 0.21 0.02 7.92 0.21 0.95 

           0.12 0.13 0.14 0.01 4.92 0.14 0.94 0.13 0.14 0.01 5.66 0.14 0.94 

           0.00 0.00 0.14 0.00 1.70 0.14 0.95 0.00 0.13 0.00 -1.39 0.13 0.96 

   
 2.45 2.46 0.33 0.01 1.59 0.33 0.97 2.45 0.31 0.00 -1.23 0.31 0.95 

     
 -1.00 -1.08 0.57 -0.08 -14.57 0.57 0.96 -1.07 0.50 -0.07 -14.97 0.51 0.96 

Note. Est is the average estimate, SE is the empirical standard error, Bias is raw bias, SB is standardized bias, RMSE is root mean 

squared error, and 95% CI is the coverage for the 95% CI. Values are bolded to highlight particularly interesting results. 
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Table 15. Recovery of population generating values for the OZINB-MM when n=1000 and t=7. 

  n=1000 and t=7 

  5 Response Categories (r=241) 10 Response Categories (r=246) 

             Count Process 

 True Est SE Bias SB RMSE 95%CI Est SE Bias SB RMSE 95%CI 

   0.20 0.20 0.10 0.00 -1.86 0.10 0.97 0.19 0.10 -0.01 -6.74 0.10 0.95 

        0.35 0.35 0.02 0.00 -6.21 0.02 0.95 0.35 0.02 0.00 0.24 0.02 0.96 

         0.00 0.00 0.08 0.00 -0.45 0.08 0.95 0.00 0.08 0.00 -2.35 0.08 0.95 

         0.35 0.35 0.08 0.00 4.53 0.08 0.95 0.35 0.08 0.00 5.23 0.08 0.96 

           0.06 0.06 0.02 0.00 0.77 0.02 0.94 0.06 0.02 0.00 4.36 0.02 0.93 

           0.00 0.00 0.02 0.00 -10.16 0.02 0.95 0.00 0.02 0.00 -8.37 0.02 0.95 

  1.00 0.99 0.07 -0.01 -16.72 0.07 0.93 0.99 0.06 -0.01 -11.47 0.06 0.93 

   
 1.00 0.99 0.05 -0.01 -11.98 0.05 0.97 1.00 0.05 0.00 -5.51 0.05 0.95 

  Zero Process 

   2.00 2.02 0.16 0.02 9.97 0.16 0.95 2.01 0.16 0.01 5.67 0.16 0.96 

        -0.65 -0.65 0.04 0.00 3.58 0.04 0.94 -0.65 0.04 0.00 2.42 0.04 0.95 

         0.00 0.01 0.14 0.01 9.95 0.14 0.95 0.01 0.14 0.01 10.05 0.14 0.95 

         -0.55 -0.55 0.15 0.00 2.52 0.15 0.96 -0.55 0.15 0.00 3.25 0.15 0.96 

           0.12 0.12 0.03 0.00 -8.82 0.03 0.95 0.12 0.03 0.00 -5.74 0.03 0.95 

           0.00 0.00 0.03 0.00 -5.66 0.03 0.95 0.00 0.03 0.00 -4.07 0.03 0.94 

   
 2.45 2.41 0.14 -0.04 -25.97 0.15 0.95 2.42 0.14 -0.03 -24.10 0.14 0.96 

     
 -1.00 -1.02 0.18 -0.02 -13.55 0.18 0.96 -1.03 0.17 -0.03 -15.74 0.17 0.96 

Note. Est is the average estimate, SE is the empirical standard error, Bias is raw bias, SB is standardized bias, RMSE is root mean 

squared error, and 95% CI is the coverage for the 95% CI. Values are bolded to highlight particularly interesting results.
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In sum, the proposed ordinal zero-inflated negative binomial mixed effects model 

generally recovered the underlying count process. Model convergence rates for the OZINB-MM 

were high across conditions. At a smaller sample size and number time-points, there was bias for 

the random effect components and the dispersion parameter. The dispersion parameter also had 

lower 95% coverage, particularly when n=300 and t=3. However, the raw biases and coverage 

rates improved with added subjects and time-points. 

Comparing OZINB-MM with Existing Models 

Model Convergence and Model Fit 

 Next, I will discuss the performance of the OZINB-MM compared to commonly-used 

longitudinal methods. Table 16 displays the number of converged models and average model fit 

across conditions and fitted models. The OZINB-MM had higher model convergence rates 

compared to the PO-MM and L-MM and the PO-MM had higher convergence rates than the L-

MM across all simulation conditions. Although the convergence rates were satisfactory for the 

OZINB-MM across conditions, the proportional odds mixed effects models required more time-

points to achieve acceptable convergence rates. For instance, when n=300 and t=3, the model 

respective convergence rates for the 5pt and 10pt scales were 31.2% and 25.6% compared to 

97.6% and 99.6% when n=1000 and t=7. The rates of model convergence for the linear mixed 

effects models were low across all conditions (e.g., max: 28.8%; min: 6.8%). The L-MM 

convergence rates were lowest when n=1000 and the response scale had 10 levels (e.g., t=3: 

8.8%; t=7: 6.8%). 

Table 16 provides the average -2ll, AIC, and BIC values across the converged 

replications for the OZINB-MM, PO-MM, and L-MM. Results indicated that across all 

conditions the proposed ordinal negative binomial mixed effects model fitted the ordinal-count 
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data better than both the existing models (e.g., smaller -2ll, AIC, and BIC). Further, the 

proportional odds mixed effects model provided better fit to the ordinal-count data compared to 

the linear mixed effects model. 



 

 
 

5
3
 

Table 16. Number of converged models and model fit for the OZINB-MM, PO-MM, and L-MM across conditions. 

 n=300 

 t=3 t=7 

 5 Response Categories 10 Response Categories 5 Response Categories 10 Response Categories 

Fit Measure 
OZINB-

MM 
PO-MM L-MM 

OZINB-

MM 
PO-MM L-MM 

OZINB-

MM 
PO-MM L-MM 

OZINB-

MM 
PO-MM L-MM 

# Converged 

(r=250) 
217 78 48 230 64 34 248 209 71 249 216 27 

-2LL 1354.83 1386.86 2291.24 1679.57 1711.54 3535.70 4197.71 4271.23 6376.72 5467.84 5549.68 9479.31 

AIC 1386.83 1410.86 2311.24 1711.57 1745.54 3555.70 4229.71 4295.23 6396.72 5499.84 5583.68 9499.31 

BIC 1446.09 1455.31 2348.27 1770.83 1808.51 3592.74 4288.97 4339.68 6433.76 5559.10 5646.64 9536.35 

 n=1000 

Fit Measure 
OZINB-

MM 
PO-MM L-MM 

OZINB-

MM 
PO-MM L-MM 

OZINB-

MM 
PO-MM L-MM 

OZINB-

MM 
PO-MM L-MM 

# Converged 

(r=250) 
249 123 34 250 91 22 241 244 54 246 249 17 

-2LL 4551.89 4585.62 7713.09 5633.23 5676.24 11914.65 13991.59 14239.60 21316.77 18224.31 18503.84 31830.57 

AIC 4583.89 4609.62 7733.09 5665.23 5710.24 11934.65 14023.59 14263.60 21336.77 18256.31 18537.84 31850.57 

BIC 4662.42 4668.52 7782.16 5743.75 5793.67 11983.73 14102.12 14322.49 21385.84 18334.83 18621.27 31899.65 
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Empirical Power and Type I Error 

Table 17 and Table 18 provide results from logistic mixed effects meta-models predicting 

the log-odds of a significant effect for the count and zero process parameters. Table 19 through 

Table 22 provide the average parameter estimates, average standard errors, and empirical power 

for the converged ordinal zero-inflated negative binomial, proportional odds, and linear mixed 

effects models. I compared results from the count process of the OZINB-MM to those from the 

linear and proportional odds mixed effects models. In practice, these results would be similarly 

interpreted from a substantive perspective net the zero class in OZINB-MM. It is important to 

note that few of the L-MM models converged and care must be taken in interpreting the results.
1
 

Table 17. Results from logistic mixed effects meta-models for empirical power and Type I errors 

in count process across the OZINB-MM, PO-MM, and L-MM. 

Non-Zero Effects (Count Process) 

                             

Effect Num. DF F(Den DF) p F(2518) p F(2514) p 

N 1 - - 278.65 <.0001 6.63 .01 

TP 1 - - 131.37 <.0001 57.16 <.0001 

Scale 1 - - 3.80 .05 10.50 .001 

Models 2 - - 110.04 <.0001 89.09 <.0001 
N*TP 1 - - - - 64.90 <.0001 

N*Models 2 - - - - 33.60 <.0001 
TP*Models 2 - - - - 30.08 <.0001 

Null Effects (Count Process)    

                         

Effect Num. DF F(2514) p F(2514) p    

N 1 0.41 .52 10.16 0.002    

TP 1 9.27 .002 14.12 0.0002    

Scale 1 1.35 .24 0.85 0.36    

Models 2 2.26 .10 183.37 <.0001    

N*Models 2 27.23 <.0001 16.77 <.0001    

TP*Models 2 34.47 <.0001 24.82 <.0001    

Note. N denotes sample size and TP denotes time-points. I could not test a meta-model for    

because the empirical power level was often 1 across the conditions. Effect size measures (e.g., 

odds ratios) corresponding to the probed interactions are presented in the text.  

 

                                                           
1
 I did not generate more datasets and refit L-MM to adjust for the low convergence rates because I wanted to 

examine the relative performance of models when fitted to exactly the same data.   
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Table 18. Results from logistic mixed effects meta-models for empirical power in the binary zero 

process for the OZINB-MM. 

 

Note: N denotes sample size and TP denotes time-points. I could not test a meta-model for    

because the empirical power level was often 1 across conditions. Meta-models for the null 

effects (  and   ) were not conducted because the Type I error rates were acceptable across all 

conditions.

Non-Zero Effects (Binary Process) 

                             

Effect Num. DF F(Den. DF) p F(948) p F(948) p 

N 1 - - 228.48 <.0001 117.06 <.0001 

TP 1 - - 96.38 <.0001 287.44 <.0001 

Scale 1 - - 0.29 .59 0.47 .49 

N*TP 1 - - - - 38.99 <.0001 
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Table 19. Average estimate, average standard error, and proportion significant across the OZINB-MM, PO-MM, and L-MM for 

n=300 and t=3. 

                                                                                       n=300 and t=3 

  5 Response Categories 10 Response Categories 

             Count Process 

  OZINB PO-MM L-MM OZINB PO-MM L-MM 

 True Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig 

   0.20 0.19(.44) 0.07 - - 0.30(.04) 1.00 0.18(.40) 0.07 - - 0.53(.09) 1.00 

        0.35 0.36(.15) 0.72 0.57(.22) 0.76 0.16(.03) 1.00 0.36(.14) 0.78 0.52(.22) 0.70 0.31(.07) 1.00 

         0.00 0.01(.24) 0.08 -0.04(.22) 0.03 -0.01(.05) 0.02 0.00(.22) 0.07 -0.03(.22) 0.03 0.01(.09) 0.06 

         0.35 0.33(.24) 0.27 0.55(.23) 0.65 0.11(.05) 0.63 0.34(.23) 0.33 0.53(.23) 0.66 0.21(.09) 0.50 

           0.06 0.06(.15) 0.10 0.00(.13) 0.09 0.00(.03) 0.13 0.06(.14) 0.10 -0.01(.13) 0.08 0.00(.07) 0.09 

           0.00 0.00(.15) 0.07 0.03(.14) 0.12 0.04(.03) 0.27 0.00(.14) 0.07 0.06(.14) 0.14 0.09(.07) 0.24 

  1.00 0.96(.38) 0.93 - - - - 0.96(.32) 0.98 - - - - 

   
 1.00 1.01(.22) 1.00 1.95(.41) 1 0.41(.07) 1.00 0.99(.19) 1.00 1.91(.40) 1.00 0.81(.15) 1.00 

   
 - - - .60(.47) .45 .26(.07) 0.94 - - 0.66(.37) 0.52 0.55(.13) 0.94 

    
 - - - -0.15(.62) 0 0.04(.03) 0.17 - - -0.10(.59) 0.00 0.17(.14) 0.18 

  Zero Process 

   2.00 2.04(.52) 0.96     2.05(.50) 0.97     

        -0.65 -0.67(.29) 0.68     -0.67(.28) 0.77     

         0.00 -0.01(.42) 0.03     -0.02(.40) 0.03     

         -0.55 -0.54(.44) 0.25     -0.52(.42) 0.26     

           0.12 0.12(.27) 0.05     0.12(.26) 0.06     

           0.00 -0.01(.27) 0.04     -0.02(.26) 0.03     

   
 2.45 2.62(.76) 0.96     2.60(.71) .98     

     
 -1.00 -1.08(1.18) 0.23     -1.13(1.01) .28     

Note. Est is the average estimate, SE is the average standard error, and Sig is the proportion of significant effects at alpha=.05. 
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Table 20. Average estimate, average standard error, and proportion significant across the OZINB-MM, PO-MM, and L-MM for 

n=300 and t=7. 
  n=300 and t=7 

  5 Response Categories 10 Response Categories 

           Count Process 

  OZINB PO-MM L-MM OZINB PO-MM L-MM 

 True Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig 

   0.20 0.21(.18) 0.22 - - 0.22(.05) 1.00 0.20(.16) 0.24 - - 0.34(.09) 1.00 

        0.35 0.35(.03) 1.00 0.60(.04) 1.00 0.25(.01) 1.00 0.35(.03) 1.00 0.61(.04) 1.00 0.51(.03) 1.00 

         0.00 0.03(.15) 0.06 -0.15(.17) 0.11 -0.01(.05) 0.07 0.02(.14) 0.05 -0.15(.17) 0.14 -0.01(.10) 0.04 

         0.35 0.34(.15) 0.60 0.57(.17) 0.89 0.14(.05) 0.86 0.34(.14) 0.64 0.56(.17) 0.88 0.28(.10) 0.89 

           0.06 0.05(.03) 0.40 0.02(.03) 0.12 0.00(.01) 0.07 0.05(.03) 0.49 0.03(.03) 0.14 0.02(.03) 0.07 

           0.00 0.00(.03) 0.03 0.00(.03) 0.05 0.03(.01) 0.70 0.00(.03) 0.04 0.00(.03) 0.06 0.07(.03) 0.70 

  1.00 0.98(.12) 1.00 - - - - 0.98(.11) 1.00 - - - - 

   
 1.00 0.99(.10) 1.00 1.90(.21) 1.00 .42(.06) 1.00 1.00(.09) 1.00 1.90(.20) 1.00 0.82(.14) 1.00 

   
 - - - 0.15(.07) 0.63 .14(.02) 1.00 - - 0.16(.07) 0.65 0.08(.03) 1.00 

    
 - - - -0.09(.10) 0.05 .04(.01) 0.96 - - -0.08(.10) 0.05 0.17(.05) 0.96 

  Zero Process 

   2.00 2.00(.28) 1.00     2.00(.28) 1.00     

        -0.65 -0.65(.07) 1.00     -0.65(.07) 1.00     

         0.00 0.02(.27) 0.03     0.02(.27) 0.04     

         -0.55 -0.57(.27) 0.56     -0.57(.27) 0.58     

           0.12 0.11(.06) 0.44     0.12(.06) 0.45     

           0.00 0.00(.06) 0.03     0.00(.06) 0.04     

   
 2.45 2.43(.28) 1.00     2.43(.27) 1.00     

     
 -1.00 -1.00(.34) .85     -1.00(.32) 0.85     

Note. Est is the average estimate, SE is the average standard error, and Sig is the proportion of significant effects at alpha=.05. 
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Table 21. Average estimate, average standard error, and proportion significant across the OZINB-MM, PO-MM, and L-MM for 

n=1000 and t=3. 

  n=1000 and t=3 

  5 Response Categories 10 Response Categories 

            Count Process 

  OZINB PO-MM L-MM OZINB PO-MM L-MM 

 True Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig 

   0.20 0.16(.24) 0.24 - - 0.29(.02) 1.00 0.16(.22) 0.12 - - 0.53(.05) 1.00 

        0.35 0.36(.08) 1.00 0.61(.12) 1.00 0.17(.02) 1.00 0.36(.08) 1.00 0.60(.12) 1.00 0.34(.04) 1.00 

         0.00 -0.01(.13) 0.04 -0.01(.12) 0.02 0.00(.03) 0.06 -0.01(.12) 0.06 -0.02(.12) 0.03 0.00(.05) 0.05 

         0.35 0.36(.13) 0.76 0.57(.13) 0.99 0.11(.03) 1.00 0.36(.13) 0.80 0.57(.13) 1.00 0.22(.05) 1.00 

           0.06 0.06(.08) 0.13 -0.02(.07) 0.06 0.00(.02) 0.09 0.07(.07) 0.18 -0.01(.07) 0.02 0.01(.04) 0.05 

           0.00 0.00(.08) 0.05 0.02(.07) 0.02 0.04(.02) 0.59 0.00(.08) 0.04 0.03(.07) 0.02 0.08(.04) 0.59 

  1.00 1.00(.22) 1.00 - - - - 1.00(.19) 1.00 - - - - 

   
 1.00 1.01(.11) 1.00 1.99(.23) 1.00 0.39(.04) 1.00 1.00(.10) 1.00 1.97(.22) 1.00 0.76(.09) 1.00 

   
 - - - 0.46(.29) 0.50 0.25(.04) 1.00 - - 0.48(.25) 0.65 0.52(.07) 1.00 

    
 - - - -0.07(.33) 0.01 0.07(.02) 0.91 - - -0.09(.32) 0.02 0.28(.08) 1.00 

  Zero Process 

   2.00 1.99(.26) 1.00     1.99(.25) 1.00     

        -0.65 -0.66(.14) 1.00     -0.66(.14) 1.00     

         0.00 -0.02(.20) 0.06     -0.02(.20) 0.06     

         -0.55 -0.54(.21) 0.76     -0.53(.21) 0.77     

           0.12 0.13(.13) 0.16     0.13(.13) 0.18     

           0.00 0.00(.13) 0.05     0.00(.13) 0.04     

   
 2.45 2.46(.36) 1.00     2.45(.34) 1.00     

     
 -1.00 -1.08(.51) .64     -1.07(.47) 0.68     

Note. Est is the average estimate, SE is the average standard error, and Sig is the proportion of significant effects at alpha=.0 
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Table 22. Average estimate, average standard error, and proportion significant across the OZINB-MM, PO-MM, and L-MM for 

n=1000 and t=7. 

  n=1000 and t=7 

  5 Response Categories 10 Response Categories 

            Count Process 

  OZINB PO-MM L-MM OZINB PO-MM L-MM 

 True Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig Est(SE) Sig 

   0.20 0.20(.10) 0.53 - - 0.21(.02) 1.00 0.19(.09) 0.57 - - 0.35(.05) 1.00 

        0.35 0.35(.02) 1.00 0.61(.02) 1.00 0.25(.01) 1.00 0.35(.02) 1.00 0.61(.02) 1.00 0.52(.02) 1.00 

         0.00 0.00(.08) 0.05 -0.16(.09) 0.39 -0.01(.03) 0.02 0.00(.08) 0.05 -0.17(.09) 0.45 -0.02(.05) 0.00 

         0.35 0.35(.08) 1.00 0.55(.09) 1.00 0.13(.03) 1.00 0.35(.08) 1.00 0.55(.09) 1.00 0.27(.05) 1.00 

           0.06 0.06(.02) 0.95 0.02(.02) 0.29 0.00(.01) 0.06 0.06(.02) 0.98 0.03(.02) 0.40 0.02(.02) 0.18 

           0.00 0.00(.02) 0.05 0.00(.02) 0.05 0.03(.01) 0.98 0.00(.02) 0.05 0.01(.02) 0.07 0.08(.02) 1.00 

  1.00 1.00(.07) 1.00 - - - - 0.99(.06) 1.00 - - - - 

   
 1.00 0.99(.05) 1.00 1.92(.11) 1.00 0.40(.04) 1.00 1.00(.05) 1.00 1.91 (.11) 1.00 0.76(.08) 1.00 

   
 - - - 0.16(.04) 0.95 0.13(.01) 1.00 - - 0.16(.04) 0.94 0.31(.02) 1.00 

    
 - - - -0.09(.06) 0.32 0.04(.01) 1.00 - - -0.08(.06) 0.31 0.20(.03) 1.00 

  Zero Process 

   2.00 2.02(.15) 1.00     2.01(.15) 1.00     

        -0.65 -0.65(.04) 1.00     -0.65(.04) 1.00     

         0.00 0.01(.14) 0.05     0.01(.14) 0.05     

         -0.55 -0.55(.15) 0.98     -0.55(.14) 0.97     

           0.12 0.12(.03) 0.98     0.12(.03) 0.98     

           0.00 0.00(.03) 0.05     0.00(.03) 0.06     

   
 2.45 2.41(.15) 1.00     2.42(.14) 1.00     

     
 -1.00 -1.02(.18) 1.00     -1.03(.17) 1.00     

Note. Est is the average estimate, SE is the average standard error, and Sig is the proportion of significant effects at alpha=.05.
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Empirical Power for Count Non-Zero Parameters:   ,   ,    

 The models showed high empirical power in identifying the positive linear age effect,   , 

see top panel of Figure 3 below for a graphical depiction. In fact, all of the models achieved an 

empirical power of 1 across all conditions except the OZINB-MM and PO-MM when n=300 and 

t=3. In this case, the OZINB-MM had the smallest empirical power for the 5pt scale whereas the 

PO-MM had the smallest empirical power for the 10pt scale. The increase in empirical power for 

the OZINB-MM in 10pt scale versus the 5pt scale appeared to be due to a decrease in estimated 

standard errors. 
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Figure 3. Visualizing differences in empirical power for the non-zero effects in the count process 

across the OZINB-MM, PO-MM, and L-MM. 

 

Note. The plotted values are collapsed over the 5 and 10 response category conditions. 

 

For the non-zero    effect, the meta-model indicated that odds of obtaining a significant 

effect depended on the sample size, number of time-points, and models fitted. The odds of 

significant     were larger when n=1000 than n=300 (OR=24.85, p<.0001) and t=7 than t=3 

(OR=7.91, p<.0001). Further the odds of a significant effect were higher for the PO-MM than 
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OZINB-MM (OR=9.18, p<.0001) and L-MM than OZINB-MM (OR=6.82, p<.0001). The odds 

of significant effect did not differ between the L-MM and PO-MM (p=.25).  The middle panel of 

Figure 3 above shows how these differences in empirical power unfolded across conditions.  

The meta-model indicated that empirical power for the     interaction effect depended on 

a series of interactions between conditions. More precisely, sample size interacted with both 

number of time-points and model fitted and time-points interacted with model fitted in predicting 

the log-odds of a significant    effect. When n=300 and t=3, the proposed OZINB-MM did not 

differ from the PO-MM (p=.99) or L-MM (p=.21) and the PO-MM did not differ from the L-

MM (p=.31). However, when n=1000 and t=7, the odds of significant    were larger for OZINB-

MM than the PO-MM (OR=89.74, p<.0001) and L-MM (OR=614.99, p<.0001) and the odds 

were greater for the PO-MM than the L-MM (OR=6.85, p<.0001). Figure 3 above clearly shows 

the differences in empirical power across conditions. 

Type I for Count Null Parameters:    and    

Table 17 shows the results from the logistic mixed effects meta-models fitted to the null 

population parameters. The meta-model for the    effect showed that the differences in Type I 

errors among the models depended on both sample size and number of time-points. When n=300 

and t=3, the odds of significant effect were higher for the OZINB-MM than the PO-MM 

(OR=13.74, p<.0001), but not compared to the L-MM (p=.46). The L-MM odds were higher 

than those of the PO-MM (OR=8.98, p=.002). The Type I error rate for the OZINB-MM was 

only .08 so this did not seem to be overly problematic. When n=1000 and t=7, the odds of a 

significant    were higher for the PO-MM than the OZINB-MM (OR=14.25, p<.0001) and L-

MM (OR=20.80, p=.005), but there was no difference between the OZINB-MM and L-MM 

(p=.54). The Type I error rate was high for the PO-MM (.39-.45) given that there was no main 
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effect of     in the generating model. The Type I error rates for the OZINB-MM and L-MM were 

acceptable. The top panel of Figure 4 also illustrates these findings. 

 

Figure 4. Visualizing differences in Type I errors for the null effects in the count process across 

the OZINB-MM, PO-MM, and L-MM 

 

Note. The plotted values are collapsed over the 5 and 10 response category conditions. 

 

The meta-model for the    effect also showed that differences in Type I errors among the 

models depended on both sample size and number of time-points. However, the L-MM had a 

greater proportion of spurious interaction effects. When n=300 and t=3, the odds of significant 

effect were higher for the L-MM than the OZINB-MM (OR=4.28, p<.0001) and PO-MM 

(OR=3.65, p=.0009) whereas the PO-MM and OZINB-MM did not differ (p=.36). The Type I 

error rate was acceptable for the OZINB-MM and PO-MM, but the rate for the L-MM was high. 
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This same general pattern occurred for the other sample size by time-point combinations except 

the Type I error rate for the L-MM increased with more data while the Type I error rates for the 

OZINB-MM and PO-MM remained in an acceptable range. For instance, when n=300 and t=7, 

the odds of significant effect were substantially higher for the L-MM than the OZINB-MM 

(OR=81.17, p<.0001) and PO-MM (OR=52.03, p<.0001) whereas the PO-MM and OZINB-MM 

did not differ (p=.11). The bottom panel of Figure 4 shows this trend in Type I error rates across 

conditions. 

With regards to the random effects components, the random intercept standard deviation 

   
was statistically significant across all models and conditions. Interestingly, for the converged 

PO-MM and L-MM, there was quite often significant variability in the time effect    
. The odds 

of significant random slope variability,    
, increased with more subjects (OR=3.78, p<.0001) 

and time-points (OR=4.11, p<.0001), but the number of response categories had no impact 

(p=.44). The linear mixed effects model had a higher proportion of significant random slope 

variance components but, again, it is important to recognize that far fewer L-MM models 

converged. These finding are especially notable because the population generating model did not 

include a random time effect. Empirical power for the random intercept and time covariance, 

    
, was generally low for the PO-MM (except when n=1000 and t=7), but quite high for the L-

MM across conditions.  

Summary of Count Process Results 

 In sum, the results for the count process indicated that empirical power and Type I error 

rates varied substantially across the ordinal zero-inflated negative binomial, proportional odds, 

and linear mixed effects models. These differences often depended on conditions such as sample 

size and number of time-points, but number of response categories had no meaningful impact. 
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Results showed that null generating effects were often statistically significant using the existing 

modeling techniques, which ignore the zero process. I next discuss empirical power and Type I 

errors for the logistic process of the OZINB-MM.  

Empirical Power and Type I Errors in Logistic Process 

The empirical power and Type I error results for the binary zero-process were as 

expected. Empirical power for the    time effect was 1.0 for all conditions except n=300 and t=3, 

where it was .96-.97. For the    effect, the odds of significant effect were higher for n=1000 than 

n=300 (OR=21.74, p<.0001) and t=7 than t=3 (OR=7.08, p<.0001), but the number of response 

categories had no effect (p=.59). Results from the meta-model for the    effect indicated that 

sample size interacted with number of time-points such that, when n=1000, having time-points 

had a stronger impact (OR=572.09, p<.0001) compared to when n=300 (OR=18.76, p<.0001). 

The empirical power for the logistic random intercept component was 1.00 for all conditions 

except when n=300 and t=3, where it was .97-.98. The odds of a significant covariance between 

the random count and logistic intercepts increased with more subjects (OR=10.55, p<.0001) and 

time-points (OR=37.19, p<.0001), but the number of response categories had no effect (p=.10). 

Further, the Type I error rates for the null   and   effects were acceptable across all conditions. 

Comparing the Relative Efficiency of Predictions 

Table 23 displays the relative efficiency of predictions produced by the existing and 

proposed mixed effects models. Results showed that the predictions from the proposed OZINB-

MM were more efficient than both the PO-MM and L-MM (e.g., the relative efficiencies were 

greater than 1). The L-MM and PO-MM displayed more inefficiency relative to the OZINB-MM 

as the number of time-points and number of response categories increased. The efficiency ratio 

for the PO-MM relative to the L-MM were similar when n=300 and t=3. However, the PO-MM 
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had better efficiency than the L-MM for all other conditions, particularly with seven time-points. 

These results were difficult to interpret because both the PO-MM and L-MM had low rates of 

model convergence when n=300 and t=3 and the L-MM had very low rates of model conversion 

when t=7.  

Table 23. Relative efficiency of predictions from the OZINB-MM, PO-MM, and L-MM across 

conditions. 

 n=300 

 3 Time-Points 7 Time-Points 

 5 Categories 10 Categories 5 Categories 10 Categories 

    
     

 1.11 1.14 1.10 1.15 

   
     

 1.11 1.12 1.33 1.39 

    
 

 1.00 1.02 .83 .83 

 n =1000 

    
     

 1.08 1.12 1.10 1.15 

   
     

 1.11 1.19 1.35 1.45 

    
 

 .97 .94 .81 .79 

Note. Relative efficiencies greater than 1 indicate that the model in the denominator produced 

more efficient predictions. 

 

Summary of Simulation Study Results 

 Taken together, the results showed that the proposed OZINB-MM performed well across 

all conditions. The proposed model performed best with more subjects and time-points. The 

number of response categories did not have a significant impact on model performance. 

Unsurprisingly, the ordinal zero-inflated negative binomial mixed effects model fitted the 

ordinal-count data better than the existing proportional odds and linear mixed effects models and 

produced more efficient predictions. The convergence rates for the L-MM were systematically 

low and the PO-MM had lower convergence rates with less subjects and time-points. Results 

also showed that the existing models can lead to spurious effects, partially because they 

disregard the zero process. 
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CHAPTER 4: DISCUSSION 

I have introduced a novel modeling framework for longitudinal ordinal data that represent 

ranges of underlying counts. The framework explicitly links ordinal responses to an underlying 

count construct of substantive interest through cumulative probabilities. My simulation studies 

evaluated the ordinal negative binomial mixed effects model (ONB-MM) and ordinal zero-

inflated negative binomial mixed effects model (OZINB-MM) for substance use data. Each of 

the studies assessed the general performance of the ordinal-count mixed effects models with 

regards to parameter recovery and the relative performance of proposed models compared to 

existing linear (L-MM) and proportional odds (PO-MM) mixed effects models. I will next 

discuss how the simulation studies supported my research hypotheses pertaining to the general 

performance of the ONB-MM and OZINB-MM. Then, I will discuss how the simulation results 

supported my hypotheses about the advantages of the proposed models and summarize the 

unique contributions of the present studies. Finally, I will provide recommendations for applied 

researchers, highlight limitations of the current studies, and offer directions for future research. 

General Performance of ONB-MM and OZINB-MM 

 Results from the simulation studies supported my hypotheses that the ordinal negative 

binomial and ordinal zero-inflated negative binomial mixed effects models would adequately 

recover the population generating values across the full range of conditions. Slight biases in the 

random effects variance-covariance parameters and dispersion parameters occurred when the 

number of time-points and subjects were low. However, the performance of both models 

improved with more time-points and subjects (e.g., less bias, better accuracy, smaller standard 
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errors, and higher rate of model convergence). The OZINB-MM showed low coverage for the 

95% confidence interval of the dispersion parameter, but these coverage rates improved with 

added subjects and time-points. The number of response categories had a minimal impact on 

performance beyond slightly smaller standard errors for some parameters, which in turn 

influenced empirical power. The general pattern of results were consistent with analytic theory 

and prior research on ordinal and ordinal-count models with larger numbers of response 

categories (Bauer & Sterba, 2011; McGinley, Curran, & Hedeker, under review). In sum, my 

simulation studies showed that, assuming the underlying construct of interest truly follows the 

specified count distribution (e.g., negative binomial, zero-inflated negative binomial), the 

proposed ordinal-count models performed well. 

Comparing ONB-MM and OZINB-MM with Existing Models 

 Results from the simulation studies also supported my hypotheses that the proposed 

ordinal-count mixed effects models would outperform commonly used linear and proportional 

odds mixed effects models. The model convergence rates for the ONB-MM were similar to the 

PO-MM and higher than the L-MM. When t=3, the convergence rates of the L-MM were low. 

Across all conditions, the ONB-MM had better model fit than the PO-MM and the PO-MM had 

better model fit than the L-MM. The empirical power rates differed across the models and 

conditions, but there were not meaningful substantive differences between the models (e.g., 

different patterns of effects). The number of subjects had a strong effect on empirical power for 

the    effect corresponding to the time-invariant predictor,    , whereas both the number of 

subjects and the number of time-points influenced empirical power for the       interaction 

effect,   . Type I error rates were not concerning across the conditions. Results also 

demonstrated that the proposed ordinal negative binomial mixed effects model produced more 
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efficient predictions relative to the existing models. Interestingly, the linear mixed effects model 

produced more efficient predictions than the proportional odds mixed effects model. This finding 

was unexpected and is worth future investigation for researchers that are interested in the 

efficiency of predictions. 

 As hypothesized, the OZINB-MM outperformed the existing models across all of the 

outcomes. The proposed ordinal zero-inflated negative binomial mixed effects model had higher 

convergence rates than the PO-MM and the PO-MM had higher convergence rates than the L-

MM. The convergence rates for the L-MM were very low. This was not surprising because the 

zero-inflated ordinal-count data were not generated with a random time effect. As a result, fitting 

L-MM with correlated random intercept and slope effects caused difficulties in estimation. Given 

these low convergence rates, the L-MM results with the zero-inflated ordinal-count data may 

lack generalizability. I did not expect the PO-MM to have such high convergence rates or 

variability in the random time effect. The OZINB-MM provided better model fit and more 

efficient predictions than the PO-MM and L-MM. The PO-MM provided better model fit and 

more efficient predictions than the L-MM. However, I am uncertain whether the PO-MM was 

truly more efficient than the L-MM because such a small number of L-MM converged.  This 

finding also conflicted with results from the underlying negative binomial distribution where the 

L-MM produced more efficient predictions than the PO-MM.  

Results from my investigation of empirical power and Type I errors for the proposed 

OZINB-MM and existing PO-MM and L-MM fitted to the zero-inflated ordinal-count data were 

notable. The    effect had substantially higher empirical power in the existing L-MM and PO-

MM compared to the proposed OZINB-MM because the existing models ignored the zero 

process that also had a non-zero negative effect for     (e.g.,   ). For example, the positive    
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effect indicated that increases in     led to increases in the log expected counts for drinkers and 

the negative    indicated that increases in     led to decreases in the log-odds of being a non-

drinker. The opposite trend happened with the    interaction effect. Specifically, the positive    

suggested that the log expected counts increased more over time for individuals with higher 

levels of    , but the positive    from the zero process indicated that log-odds of being a non-

drinker decreased less over time for individuals with higher levels of    . This pattern of effects 

led to decreased empirical power for the    interaction in the existing linear and proportional 

odds mixed effects models compared to the proposed OZINB-MM. In other words, the    effect 

from the zero process often washed out the count process    effect causing the empirical power 

to decrease. These findings are especially important because prior substance use researchers have 

found that the direction of effects may take the same or different directional signs (e.g., positive 

or negative) for the count and binary zero processes (Sheu, Hu, Keeler, Ong, Sung, 2004; Mrug 

& McCay, 2013). Thus, substantive conclusions drawn from existing models may be biased if a 

true underlying zero-inflated distribution is ignored. 

Type I error rates for the OZINB-MM were adequate across all conditions. However, the 

L-MM and PO-MM had high Type I error rates when fitted to the zero-inflated data. 

Specifically, the proportional odds model had high Type I error rates for the null    effect and 

the L-MM had high Type I error rates for the    null interaction effect. These spurious effects 

were unexpected given that     and       had null generating effects in both the count and zero 

processes. It seems plausible that assumption violations (e.g., proportional odds) and model 

misspecification (e.g., ignoring the zero process) impacted these Type I error rates. These 

findings are significant because applied researchers could draw incorrect inferences from 

standard models fitted to zero-inflated ordinal-count data. However, it should be noted that the 
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OZINB-MM has a unique interpretation compared to the existing models because it is a mixture 

of negative binomial (count) and logistic distributions (binary). Model non-convergence was also 

a concern with zero-inflated data, especially for the L-MM and the PO-MM when t=3. In sum, 

my two simulation studies demonstrated that the proposed ordinal-count mixed effects models 

effectively recovered the underlying count processes and showed advantages over commonly 

used mixed effects models.  

Unique Contribution of the Present Studies 

 Methodologists have previously discussed statistical models for longitudinal substance 

use data (Rose, Chassin, Presson, Sherman, 2000). This work often aims to disseminate 

proportional odds models for ordinal outcomes, linear models fitted to ordinal outcomes, and 

various count mixed effects models for count outcomes using empirical demonstrations (Atkins, 

Baldwin, Zheng, Gallop, & Neighbors, 2013; Curran, 2000; Hedeker, Gibbons, & Flay, 1994). 

However, few studies focus on rigorously evaluating the appropriateness of these methods for 

substance use research using simulation studies. Further, to my knowledge, no previous studies 

have outlined how to fit count mixed effects models to longitudinal ordinal data. In fact, 

methodologists have suggested that this is not even possible (Koran & Hancock, 2010).  

A small number of researchers have developed methods for handling grouped counts 

(Carter, Bowen, & Myers, 1971; Carter & Myers, 1973; Moffatt, 1995; Moffatt & Peters, 2000). 

However, we were the first to embed this methodology within the broader ordinal modeling 

perspective motivated by an underlying count latent response variable (McGinley, Curran, & 

Hedeker, under review).My work here is unique from prior research in three ways. First, I 

described how the ordinal-count framework can be extended to longitudinal data. I focused on 

outlining two novel ordinal-count mixed effects models (the ONB-MM and OZINB-MM) that 
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are applicable for substance use research. Second, I evaluated the performance of these models 

across a variety of conditions using simulation studies. Third, I demonstrated the substantive and 

quantitative benefits of the proposed ordinal-count mixed effects models compared to existing 

methods currently used by substance use researchers.  

Recommendations for Applied Researchers 

Substance use outcomes are regularly collected as ordinal items with underlying counts 

(Currie et al., 2012; Johnston et al., 2012; NIAAA, 2003). However, researchers are rarely 

interested in these ordinal variables at the level of the response categories themselves (e.g., 

category 1 compared to all other categories; categories 1 and 2 compared to all other categories, 

etc.). This disjoint between the fitted models and the substantive construct of interest is a 

significant limitation of the proportional odds mixed effects model. Similarly, substance use 

researchers regularly utilize standard linear mixed effects models with ordinal category number 

scores to make inferences even though this strategy lacks a clearly defined metric. In addition to 

this interpretational disconnect, my simulation studies suggested that there may be situations 

when fitting these existing models to ordinal-count data leads to spurious effects (e.g., high Type 

I error rates) and erroneous inferences. Together, these limitations impact the researchers’ ability 

to accurately and reliably test theory. 

Fortunately, my proposed ordinal-count mixed effects models permit researchers to make 

inferences about the count constructs that underlie the ordinal categories. My simulation studies 

showed that the ordinal negative binomial and ordinal zero-inflated negative binomial mixed 

effects models performed well across a variety of conditions. Results suggested that researchers 

should be able to reliably fit these models with a reasonable amount of data. More complicated 

random effects structures (e.g., polynomial time trends for the ONB-MM or random time effects 
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for the OZINB-MM) would likely require more data for satisfactory performance. As always, 

increased subjects and repeated measures will improve model performance but increasing the 

number of response categories will likely have little impact if the categories are reasonably 

defined. Researchers should be conscientious about how the underlying count distribution is 

specified in these models (e.g., Poisson vs. negative binomial vs. zero-inflated). The selection of 

an appropriate underlying count distribution can be guided by both empirical theory and model 

comparisons. 

Applied researchers should also be aware of potential difficulties associated with these 

ordinal-count mixed effects models. First, the proposed mixed effects models were fitted using 

PROC NLMIXED in SAS, which is not especially user friendly. These models cannot currently 

be fitted in other more accessible statistical software packages. Second, these models may 

require good starting values to reach convergence. Prior research and experience can be useful to 

help guide the selection of these values. Third, fitting these models is computationally 

burdensome. In the simulation studies, convergence for a single replication of the ONB-MM 

usually took between 30 minutes and 90 minutes and the OZINB-MM took upwards to four 

hours. Applied researchers can use some strategies to reduce this burden (e.g., decreasing the 

number of quadrature points, using different optimizations methods, loosening convergence 

criteria), however these changes can also negatively impact model performance. This 

computational burden may restrict researchers’ ability to test a large number of competing 

models. In sum, although there are currently a few practical concerns with ordinal-count mixed 

effects models, these novel methods are generally quite robust and well suited for substance use 

data. 

 



 
 

74 
 

Limitations and Future Directions 

 My simulation studies considered two potential ordinal-count mixed effects models. I 

focused on the ordinal negative binomial and ordinal zero-inflated negative binomial mixed 

effects models because they aligned with substance use research. However, there many other 

possible models that I did not consider including Poisson models, negative binomial models with 

heterogeneous dispersion, Poisson and negative binomial Hurdle models, and more (Hilbe, 

2011). Further, empirical theory may posit alternative random effects structures (e.g., random 

time effects for the ordinal zero-inflated model). It is unknown whether or not the findings here 

generalize to these other models. I also examined commonly employed linear and proportional 

odds mixed effects models, but other lesser used models could have been considered (e.g., partial 

proportional odds, non-proportional odds, nominal models). It should be restated that, in certain 

conditions, the existing mixed effects models frequently failed to converge and were not re-

estimated. Thus, it is unknown to what extent using only the converged models influenced the 

model comparison findings. 

A limitation of the ordinal-count modeling framework is that it assumes that the cut-

points are fixed and known. If these cut-points are not known, the modeling strategy cannot be 

used. Further, ordinal-count models face limitations similar to their standard count model 

counterparts. For instance, if the underlying distribution is misspecified the accuracy of results 

will be impacted. Although it does not undermine the findings here, future research should 

investigate the performance of a wider array of ordinal-count mixed effects models under various 

conditions (e.g., missing data, varying effect sizes, alternative generating distributions, different 

random effects structures, unreliability in participant responses). Despite these potential 

limitations, my studies provide several unique contributions above and beyond the existing 
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literature. I outlined two new ordinal models that link observed longitudinal ordered data to 

underlying count constructs and used simulation studies to evaluate the performance of these 

models across a variety of conditions. Finally, I demonstrated that ordinal-count mixed effects 

models offer both substantive and quantitative advantages compared to existing techniques that 

can help advance substance use research in meaningful ways. 
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