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ABSTRACT 

Peng Gong: Sensory Input Transformation in Layer 4 of Primary Somatosensory 
Cortex 

(Under the direction of Dr. Oleg V. Favorov) 

 

 Neural representation of sensory information in the cerebral cortex undergoes 

a series of transformations, starting from its initial form at the level of thalamic 

neurons through a succession of cortical layers of multiple cortical areas. In the 

somatosensory system, the first such transformation takes place in the input layer, or 

Layer 4, of area 3b. This study explores several of its known properties: (1) the 

cortex is organized as a set of minicolumns, each a radial cord of cells 30-50 μm in 

diameter; (2) receptive fields of neighboring minicolumns occupy shuffled positions 

on the skin; (3) Layer 4 neurons possess more complex functional properties than 

the thalamic neurons from which they receive their inputs; and (4) neighboring 

neurons are decorrelated in their stimulus response behaviors. The neural 

mechanisms responsible for these properties were investigated in this study in a 

computational model of a field of minicolumns with self-organized Hebbian 

thalamocortical connections. A parametric study of this model optimized its 

performance on an “omnipotency” test, which measures the capacity of a set of 

Layer 4 neurons in the model to represent arbitrarily defined nonlinear functions. The 

maximal omnipotency was achieved in the model in which: (1) adjacent minicolumns 

had fixed inhibitory interconnections; (2) more widely separated minicolumns had 
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anti-Hebbian inhibitory interconnections; and (3) each neuron was modeled as an 

electric circuit consisting of two serially connected electrical compartments, with 

thalamic and anti-Hebbian inhibitory connections terminating in the distal 

compartment, and the fixed inhibitory connections terminating in the proximal 

compartment. When optimized for omnipotency, such a model exhibited among its 

emergent properties the shuffled receptive fields, decorrelated stimulus-response 

behaviors, and higher-order functional properties characteristic of the real cortical 

networks. In conclusion, this modeling study suggests that stimulus information is 

transformed in Layer 4 to maximize its linear coding of higher-order stimulus 

features via (1) fixed inhibitory interactions among adjacent minicolumns, carried out 

by connections of chandelier cells on the initial axon segments of spiny-stellate cells; 

and (2) anti-Hebbian inhibitory interactions among more distant minicolumns, carried 

out by connections of basket cells on the somata and dendrites of the spiny-stellate 

cells. 
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CHAPTER 1 

INTRODUCTION 

 

 The cerebral cortex is the body organ whose task is, most fundamentally, to 

process sensory information.  This information enters the cortex via the thalamus in 

its “raw” form, in which stimuli are reflected in the spatiotemporal patterns of 

activities of the thalamic cells in an essentially isomorphic (photographic image-like) 

and difficult to interpret manner.  In the cortex this initial representation of the 

sensory information undergoes a series of transformations in a more-or-less 

hierarchical sequence of cortical areas, which extract and make progressively more 

explicit the neural representation of the behaviorally significant information 

(Bankman et al., 1990).  The nature of these transformations and the neural 

mechanisms that accomplish them remain poorly understood.  This dissertation 

investigates the first of these transformations in the somatosensory system, which 

takes place in the input layer, or layer 4, of the cytoarchitectonically defined 

Brodmann’s area 3b of the primary somatosensory cortex (SI).  Area 3b receives 

input primarily from cutaneous mechanoreceptors and responds to tactile stimuli. 

 Information from skin receptors is transmitted to the Ventral Posterior Lateral 

(VPL) nucleus in the thalamus via synaptic relay in the Dorsal Column Nuclei (DCN) 

of the brainstem.  From VPL this information is delivered to neurons comprising layer 

4 of area 3b in SI, as well as to neurons in the other cortical areas that make up SI 
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(i.e., areas 3a, 1, and 2).  The information that flows from the skin via the thalamic 

relay to the cortex is reflected in the receptive fields of somatosensory receptors and 

DCN, VPL and cortical neurons. Receptive field of a neuron is the sensory area 

within which a stimulus can evoke a response of the neuron. The receptive fields of 

somatosensory receptors are very small and uniformly excitatory. Since the 

receptive fields of the relay neurons are defined by the presynaptic afferent neurons 

that converge on them, their receptive fields grow in size. In addition, inhibitory 

interneurons participate and reshape the receptive fields of higher-level neurons to 

have both excitatory and inhibitory subregions, which enhance the contrast between 

stimuli. Although along the ascending somatosensory pathways each presynaptic 

neuron has divergent presynaptic connections with multiple postsynaptic neurons, 

and each postsynaptic neuron has convergent postsynaptic connections with 

multiple presynaptic neurons, the topographic arrangement of receptive fields is 

preserved (to varying degrees) in the thalamus and in the somatosensory cortex. 

 The excitatory and inhibitory regions of receptive fields can not only enhance 

the contrast between stimuli, but also give rise to more complex feature-detecting 

abilities of higher-order neurons. To illustrate on an example from the visual system, 

the receptive fields of retinal bipolar and ganglion cells and thalamic neurons in the 

lateral geniculate nucleus (LGN) are roughly circular and share an antagonistic 

center-surround organization. Their receptive fields are either ON-CENTER or OFF-

CENTER and they respond optimally to differential illumination of the receptive field 

center and surround. The ON-CENTER cell can be most effectively excited by a 

small spot of light applied on the circular center of its receptive field and inhibited by 
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a ring of light shining on the entire surround of its receptive field. The responses of 

the OFF-CENTER cell are the opposite. Diffuse illumination on the entire receptive 

field of either the ON-CENTER or OFF-CENTER cell will produce only weak 

responses because the evoked excitation and inhibition cancel each other out 

almost completely. Therefore, due to their ON-CENTER or OFF-CENTER receptive 

fields, the bipolar cells, ganglion cells and neurons in the lateral geniculate nucleus 

are capable of measuring local contrast in light intensity. However, neurons in the 

primary visual cortex (V1) respond weakly to a beam of light but best to a bar of light 

with a specific axis of orientation. Their receptive fields are no longer circular but 

elongated, with the excitatory region in the middle flanked by the inhibitory regions 

on one or both sides, or vice versa. The resulting rectilinear receptive fields enable 

cells in the primary visual cortex to respond optimally to light stimuli with matching 

geometrical characteristics – in this case a line, bar or edge – and axis of orientation. 

Therefore the higher-order neurons in the primary visual cortex are capable to detect 

a novel kind of feature: an edge with a specific axis of orientation. These receptive 

fields result from the appropriate thalamocortical connection pattern: the excitatory 

regions in the receptive fields of layer 4 cells in the primary visual cortex largely 

overlap with the receptive fields of their input ON-CENTER thalamic neurons in the 

lateral geniculate nucleus, and the inhibitory regions in the cortical receptive fields 

coincide with the receptive fields of their OFF-CENTER thalamic neurons in the 

lateral geniculate nucleus (see, for example, Miller et al., 2001). In addition, the feed-

forward inhibition from interneurons driven by the thalamus plays an important role in 

this orientation tuning of layer 4 neurons, along with the feed-forward excitation 
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directly from the thalamus. The feed-forward inhibition dominates the feed-forward 

excitation in most non-preferred orientations. Only within a very narrow range around 

the preferred orientation, the feed-forward excitation exceeds the feed-forward 

inhibition. The feed-forward inhibition thus helps to further sharpen the orientation 

tuning of layer 4 neurons. 

 The cerebral cortex is organized into vertical columns running through the 

entire six layers of the cerebral cortex from the pial cortical surface to the white 

matter (Mountcastle, 1978, 1997). This columnar organization is regarded as the 

basic structural principle of the cerebral cortex. This columnar organization is 

determined by intrinsic connectivity of the cerebral cortex, which is dominantly 

vertical. The spiny stellate neurons, located in the input layer 4, are the principal 

neurons receiving afferent input from the thalamus or other cortical areas. The 

pyramidal neurons are located in almost every layer, except for layer 1, and they are 

the principal output neurons. The axons of the spiny stellate neurons spread 

vertically towards the surface of the cerebral cortex. Also both the apical dendrites 

and axons of the pyramidal neurons are oriented perpendicular to the cortical 

surface, thus parallel to the axons of the spiny stellate neurons, and forming vertical 

bundles, which establish the anatomical basis of the vertical columns. Figure 1.1 

illustrates the histology of the somatosensory cortex, and the vertical strands of cells 

are clearly identifiable there. The smallest possible unit of columnar organization is a 

single cell-wide column, termed a minicolumn. The minicolumn is approximately 50 

μm in diameter and 2 mm in depth, and composed of 80 to 100 cortical neurons. In 

1978, Mountcastle proposed that the minicolumn is the smallest structural and 
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functional unit of the cerebral cortex, which has been since supported by extensive 

anatomical and physiological evidence (see for example a recent review by 

Tommerdahl et al., 2005). 

 Receptive fields of neurons located in close proximity to each other in the 

cortex are not uniform, but can vary prominently in their sizes, shapes, and positions 

on the skin.  Figure 1.2, adapted from Favorov and Diamond (1990), illustrates such 

diversity in a typical near-radial microelectrode penetration of area 3b of a cat, in 

which 21 neurons were isolated and their receptive fields mapped. Significant 

differences in shape, size and skin position are evident in 21 individual receptive 

fields, though there is a very small common area shared by all the 21 individual 

receptive fields (see black region in the superimposed plot of the outlines of all 21 

receptive fields in the left-bottom panel). Similarly diverse receptive fields among 

neighboring cortical neurons can be found in the primate somatosensory cortex 

(Powell and Mountcastle, 1959; McKenna et al., 1982; Iwamura et al., 1985; Favorov 

and Whitsel, 1988a,b; and Favorov and Diamond, 1990), in the visual cortex (Hubel 

and Wiesel, 1962, 1974a,b; Creutzfeldt et al., 1974; Albus, 1975a; Zohary et al., 

1994; Gochin et al., 1991; Fujita et al., 1992; and Gawne and Richmond, 1993), and 

in the auditory cortex (Abeles and Goldstein, 1970). 

 Such diversity in receptive fields of neighboring cortical neurons is most 

prominent when those neurons are located in different minicolumns. Figure 1.3 

schematically illustrates this idea on hypothetical data.  On the left, shown as black 

dots are individual neurons in a Nissl-stained histological section of the primary 

somatosensory cortex.  The physiological centers of receptive fields of these 
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neurons are shown as black dots in a two-finger figurine on the right.  According to 

this figure, which summarizes experimental findings of Favorov and Whitsel (1988b), 

Favorov and Diamond (1990) and Tommerdahl et al. (1993), as long as neurons are 

located in the same minicolumn (e.g., neurons a-g in the figure), their receptive 

fields are very similar to each other.  On the other hand, when neurons are 

compared across a sequence of minicolumns (e.g., neurons 1-30), their receptive 

fields bounce back and forth randomly around a common center, forming a cluster.  

Such seemingly random shuffling of receptive field centers is a characteristic of local 

groups of minicolumns, which are separated by sharp boundaries, crossing which 

shifts receptive fields to a new skin region. These sharp boundaries partition the 

somatosensory cortex into a honeycomb-like mosaic, resulting in larger columnar 

units named “segregates” (Favorov et al., 1987; Favorov and Whitsel, 1988a; 

Favorov and Diamond, 1990). A segregate is approximately 0.3-0.6 mm in diameter 

and consists of 60-80 minicolumns. The receptive fields of the minicolumns within a 

segregate together cover an extended skin region, although receptive fields of most 

minicolumns in a segregate overlap only minimally and, consequently, all together 

they share only a very small skin region in common, called the segregate receptive 

field center (see Figure 1.2).  Segregate receptive field centers are arranged 

somatotopically across area 3b in an orderly two-dimensional map of the skin 

surface. 

 Columnar structures similar to segregates have been recognized in other 

sensory systems. For example, in the primary visual cortex, Hubel and Wiesel 

(1974a) described the “hypercolumn” which is composed of a group of minicolumns 
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responsive to light bar stimuli of all orientations from a particular region in the visual 

field. In rodent primary somatosensory cortex, Woolsey and Van der Loos (1970) 

discovered the “barrels” which are discrete structural and functional units that 

receive and process input from individual “principal” facial whiskers. In general, such 

larger-scale discrete vertical columnar units are called macrocolumns (Mountcastle, 

1978). A macrocolumn is composed of minicolumns that share certain functional 

properties. Macrocolumns are regarded as computational modules, each of which 

receives specific input information, transforms that information, and sends the output 

to other higher-level associative cortical areas. The anatomical basis of 

macrocolumns is that minicolumns within the same macrocolumn share similar 

thalamocortical afferent input connections. 

 Traditionally, since the macrocolumn has been regarded as a functional 

module, the similarities among minicolumns within a macrocolumn have been 

emphasized. However, as reviewed above, there exist prominent differences in 

some of the functional properties among minicolumns within a macrocolumn, such 

as for example diversity in exact receptive field positions on the skin. In order to 

investigate the possible underlying mechanisms responsible for such diversity of 

receptive fields of minicolumns within a macrocolumn and their potential significance 

for the functional properties of the macrocolumn, Favorov and Kelly (1994a,b) 

developed a computational model of a single macrocolumn as a set of 61 

minicolumns. 

 The model’s connectional architecture is shown in Figure 1.4.  In it the 

thalamic nucleus receives input from the two-dimensional “skin” and then relays it to 
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the cortex. The receptive fields of the thalamic neurons are circular and are 

topographically arranged on the skin, thus resulting in a two-dimensional array on a 

two-dimensional surface. The cortex in this computational model is composed of 

regular hexagon-shaped macrocolumns, each macrocolumn is made up of 61 

cylinder-shaped minicolumns, and each minicolumn is represented by three cortical 

cells of three distinct types: a spiny stellate cell, a pyramidal cell and a double 

bouquet cell. The spiny stellate cell receives excitatory afferent input from multiple 

thalamic neurons and feed-forwards the excitation to the pyramidal cell and the 

double bouquet cell within the same minicolumn, and to a smaller magnitude, to the 

neighboring spiny stellate cells up to two minicolumns away. The double bouquet cell 

inhibits only the pyramidal and spiny stellate cells of the immediately adjacent 

minicolumns. The synaptic connections between the thalamic neurons and the spiny 

stellate cells are plastic. The thalamocortical synaptic connection strengths are 

initialized randomly and then adjusted according to the Hebbian Synaptic Plasticity 

Rule until they are stabilized during the “developmental” stage in which the whole 

thalamocortical network is trained by a long series of point stimuli on the two-

dimensional skin surface. All the other synaptic connection strengths are 

predetermined and fixed throughout the simulation. In the following text, this 

computational model will be referred to as the 1994 Favorov-Kelly model. 

 The 1994 Favorov-Kelly model successfully reproduced experimental 

observations of shuffled receptive fields of minicolumns within the same 

macrocolumn. However, it has two noteworthy limitations. The first limitation is that 

there are still somewhat significant discrepancies between real cortical neurons and 
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simulated neurons based on the 1994 Favorov-Kelly model in functional properties, 

such as orientation tuning.  The model cells can develop only very modest 

orientation tuning, much weaker than that of real neurons in the primary 

somatosensory cortex (Bensmaia et al., 2008). 

 The second limitation concerns the double bouquet cell, which is proposed to 

provide fixed lateral inhibition in the 1994 Favorov-Kelly model. There are two 

problems associated with the double bouquet cell. The first problem is that only in 

primates double bouquet cells contact spiny-stellates (Casanova, 2005), which 

renders the 1994 Favorov-Kelly model more specialized and less generic. The 

second problem is that even in primates double bouquet cells cannot exert strong 

enough inhibition on spiny stellate cells. The closer the inhibition is to the axonal 

output part of a neuron, the more effective the inhibition is. Real double bouquet 

cells synapse on dendrites of spiny stellate cells, which correspond to the distal 

electrical compartment of the spiny stellate cells in the 1994 Favorov-Kelly model. 

However, in the 1994 Favorov-Kelly model, fixed lateral inhibition is placed in the 

proximal electrical compartment, which corresponds to the soma of spiny stellate 

cells. Therefore, the double bouquet cell is not a good candidate for providing fixed 

lateral inhibition in the 1994 Favorov-Kelly model. 

 In this dissertation work, we developed a computational system largely based 

on the 1994 Favorov-Kelly model to simulate information processing in cortical layer 

4 of a macrocolumn composed of minicolumns. Besides addressing the above two 

limitations, we used this system to investigate the potential contribution of lateral 

inhibition to two other important properties of sensory input transformation in layer 4. 
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 The first property is that the activities of neighboring cortical neurons are 

essentially fully decorrelated.  It is well known that neurons located in close proximity 

to each other in cortical gray matter tend to have similar stimulus response 

properties, and thus they tend to respond similarly to test stimuli.  They are also 

known to synchronize their spike discharges temporarily in response to some of the 

test stimuli.  However, despite such notable similarities, the response properties of 

nearby cortical neurons are still quite diverse (as reviewed above), so that across 

the full repertoire of stimulus patterns experienced in the individual’s regular life, 

neighboring cortical neurons turn out to be essentially fully decorrelated in their 

response behaviors.  That is, when compared across ethologically representative 

sets of stimuli, responses of neighboring neurons in a cortical column are found 

close to be statistically independent (Gawne and Richmond, 1993; Ghose et al., 

1994; Zohary et al., 1994; Gawne et al., 1996; Vinje and Gallant, 2000; Reich et al., 

2001). 

 The second property that we postulate for the layer 4 transform of its afferent 

information might be defined as a “hidden information maximization” principle.  To 

explain, considering information coding abstractly, the same information can be 

coded, or represented, in a set of information-carrying channels in a wide variety of 

ways.  The coding strategies can vary, however, in how computationally easily can 

this information be “read” by an intended “user” (or, in other words, be isolated or 

extracted or, in general, made use of in interpretation or decision making).  The 

algorithmic complexity of information extraction/utilization can vary from the 

simplest (using a dedicated channel to represent this and only this information) to 



 11

very complex (requiring highly nonlinear integration of the states of many channels).  

The dedicated channel strategy is not practical because of its limited 

representational capacity, compared to distributed codes, in which multiple 

channels carry information about a given item together with information about some 

other such items. 

 Among the distributed codes, the algorithmically simplest ones are those that 

to extract particular information require only linear summation of the states of the 

relevant channels.  Such codes can be easily used by biological neurons, by linear 

dendritic summation of their synaptic inputs.  We can call this linear-summation type 

of information representation “explicit.”  In contrast, the codes that require 

algorithmically complex (nonlinear) means of information extraction can be called 

“implicit.” 

 Using this terminology, we can state that most of the information coming from 

the outside world to the brain is represented only implicitly by the activities of 

sensory receptors.  Such “deeply hidden,” or “high-level,” information is also turns 

out to be most important to situation comprehension and behavioral decision making.  

The basic task of the sensory cortex is to convert the originally implicit 

representations of behaviorally-significant information into algorithmically simpler – 

explicit – representations suitable for behavioral decision making.  This task is 

accomplished by the cortex incrementally and requires participation of multiple 

cortical areas. 

 Considered in this light, the task of layer 4 input transform might be expected 

to be to make explicit in its output as much of hidden, or implicit, behaviorally-
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significant sensory information as possible.  However, layer 4 of the primary 

somatosensory cortex, as the first stage in sensory input transformation, might not 

be in a position to anticipate which information items might be behaviorally 

significant and therefore should be made more explicit.  Instead, a more general 

“omnipotency” strategy might be to make more explicit as much of the hidden 

sensory information as possible.  Such an omnipotency strategy, referred to as 

kernel-based methods, has been found highly successful in computational fields of 

Machine Learning and Pattern Recognition (Vapnik, 1995; Schölkopf and Smola, 

2002). 

 In developing our minicolumnar model of somatosensory cortical layer 4 

network, we hypothesized that in order to achieve maximal omnipotence, the 

neurons in layer 4 must be essentially decorrelated, which would require strong 

lateral inhibition among them. In turn, lateral inhibition can bring about nonlinearity in 

information transformation in cortical layer 4, which is necessary for extracting 

hidden information. In the following chapters, we show that omnipotency, 

decorrelation, inhibition, and receptive field shuffling do indeed go together and their 

optimization endows the model network with biologically realistic properties. 
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Figure 1.1. Histological section of primate somatosensory cortex. 
Radial strands of cells, or minicolumns, are clearly visible in this Nissl-stained 
section. 
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Figure 1.2. Local receptive field diversity in primary somatosensory cortex. 
A, 21 single units were isolated in this typical near-radial microelectrode penetration 
of cat's primary somatosensory cortex. Their receptive fields are shown in B, and 
plotted superimposed in C. COR - coronal sulcus. The blackened region in C is 
included in all 21 receptive fields (from Favorov and Diamond, 1990). 
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Figure 1.3. A hypothetical illustration of shuffled minicolumnar receptive field 
centers and macrocolumnar organization. 
Hypothetically, in the somatosensory cortical area receiving input from fingers, a 
series of neurons a-g, confined within a single minicolumn have very close receptive 
field centers. A series of neurons 1-30, located in a series of minicolumns, have 
receptive field centers that do not shift continuously but bounce back and forth 
forming several clusters with sharp boundaries. Those boundaries partition the 
cortex into honeycomb-like mosaic, termed "segregates" in the somatosensory 
cortex, or "macrocolumns" in general (from Tommerdahl et al., 2005). 
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Figure 1.4. 1994 Favorov-Kelly model. 
The basic scheme of the 1994 Favorov-Kelly model and its settings for synaptic 
connections are illustrated. On the left, somatosensory information processing is 
simplified to consist of only three layers: the skin layer, the thalamic layer and the 
cortical layer. Thalamic units have circular receptive fields with identical size in the 
skin field. The mapping from the skin field to the thalamic field is perfectly 
somatotopic. Stimuli delivered within the skin field are transmitted to thalamic units 
first and in turn relayed to cortical units. The cerebral cortex is modeled to be 
organized into regular hexagon-shaped macrocolumns and a macrocolumn is 
modeled to be composed of 61 cylinder shaped minicolumns. On the right, a 
minicolumn is modeled to consist of three representative cells: input spiny-stellate 
cells (denoted by solid diamonds), output pyramidal cells (denoted by solid triangles), 
and inhibitory double-bouquet cells (denoted by solid circles). The spiny-stellate cell 
receives excitatory thalamic input and relays it to the pyramidal cell and the double-
bouquet cell within the same minicolumn. To a less extent, the spiny-stellate cell also 
excites the spiny-stellate cells in its neighboring minicolumns within a radius of two 
minicolumns. The double-bouquet cell inhibits the pyramidal cells and the spiny-
stellate cells in its immediate neighboring minicolumns within a radius of one 
minicolumn (from Favorov and Kelly, 1994a). 



CHAPTER 2 

METHODS 

 

 Our current computational system was developed primarily based on the 

1994 Favorov-Kelly model (Favorov and Kelly, 1994a,b). The three-layer hierarchical 

organization of the 1994 Favorov-Kelly model (Figure 2.1) was retained. It includes a 

skin layer, a layer of thalamic units representing thalamic neurons, and a layer of 

minicolumnar units representing layer 4 part of minicolumns. The skin is modeled as 

a two-dimensional flat surface. The receptive fields of the thalamic units are 

topographically arranged on the skin and have identical circular shape and identical 

size. During computer simulations, multi-point stimuli are applied to the skin field. 

The activity of each thalamic unit evoked by a single point stimulus is solely 

determined by the distance between the position of the point stimulus and the 

receptive field center of the thalamic unit in the skin field. The activity of each 

thalamic unit evoked by a multi-point stimulus is calculated as the sum of the 

activities of that thalamic unit evoked by each component point stimulus individually. 

A minicolumnar unit receives excitatory afferent inputs from all the thalamic units. 

Inputs from thalamic units and lateral inputs from surrounding minicolumnar units are 

the driving forces to shape the receptive fields and functional properties of 

minicolumnar units. The thalamocortical synaptic connections are plastic. The lateral 

connections are inhibitory. 
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 As in 1994 Favorov-Kelly model, a single macrocolumn is modeled as 

composed of 61 minicolumnar units organized into a regular hexagon shape 

structure (Figure 2.1). Each minicolumn is represented by a prototypical neuron that 

is modeled as a two-compartmental electrical circuit (illustrated in Figure 2.2). Each 

minicolumn inhibits its immediate neighboring minicolumns via fixed inhibitory lateral 

connections and it also inhibits all other 60 minicolumns via Anti-Hebbian plastic 

inhibitory lateral connections. 

 Both the excitatory thalamocortical afferent connections and the Anti-Hebbian 

plastic inhibitory lateral connections are modifiable according to the Hebbian Rule 

(Fyffe, 2005) in the “connection development” stage of computer simulations. The 

correlation between the activity of a thalamic unit and the activity of a minicolumnar 

unit is used to determine the strength of Hebbian excitatory thalamocortical 

connection between them. The correlation between activities of two minicolumns is 

used to determine the strength of the Anti-Hebbian plastic inhibitory lateral 

connection between them. The strength of the fixed lateral inhibitory connections 

between immediate neighboring minicolumns is constant and uniform. 

 In this newly developed computational system, the minicolumn-representing 

neuron is modeled as a two-compartmental electrical circuit, illustrated in Figure 2.2. 

The two compartments are differentiated as the distal compartment and the proximal 

compartment. In the 1994 Favorov-Kelly model, the spiny stellate cell was modeled 

as a two-compartmental electrical circuit with the distal compartment referred to the 

distal dendrites and the proximal compartment referred to the proximal dendrites and 

soma. The fixed lateral excitatory inputs and the fixed lateral inhibitory inputs were 
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placed on the distal compartment and the proximal compartment, respectively. In our 

new system lateral excitation is excluded and two types of lateral inhibition are 

placed on the distal compartment and the proximal compartment. In Figure 2.2, deG  

is the conductance of excitatory synapses on the distal compartment. diG  and piG  

are the conductances of inhibitory synapses on the distal compartment and the 

proximal compartment, respectively. dmG  and pmG  are passive membrane 

conductances of the distal compartment and the proximal compartment, respectively. 

LG  is the longitudinal conductance connecting the distal compartment and the 

proximal compartment. deE  is the reversal potential of excitatory synapses on the 

distal compartment. diE  and piE  are the reversal potentials of inhibitory synapses on 

the distal compartment and the proximal compartment, respectively. drE  and prE  are 

resting membrane potentials of the distal compartment and the proximal 

compartment, respectively. dV  and pV  are membrane potentials of the distal 

compartment and the proximal compartment, respectively. 

 Computer simulation of the model is divided into two stages. The first stage is 

the “connection development” or “self-organization” stage. Initially, the weights of 

thalamocortical connections and the Anti-Hebbian plastic inhibitory lateral 

connections are assigned randomly. Then the system is trained by applying 

randomly picked multi-point stimuli to the skin. The reason that we chose to use 

multi-point stimuli instead of single-point stimuli was to increase the complexity of 

training patterns in order to explore the state space more extensively. The second 

stage is the “evaluation” stage during which we ran various tests on the developed 
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system. 

 The connection-development program updated the plastic connections after 

every 1000 randomly generated 5-point stimuli. In response to each five-point 

stimulus applied to the skin field, we calculated the instantaneous firing rate for each 

minicolumn-representing neuron. First, we calculated the activity of every thalamic 

unit evoked by each of the five points. The activity TH
ijF  of the thalamic unit i  evoked 

by the single-point stimulus j  was calculated as: 

 +−= )1(max TH
ijTHTH

ij R
D

FF , 

where THFmax   = 1 is the maximal possible activity of a thalamic unit which could be 

evoked by a single-point stimulus. ijD  is the distance from the position of the point 

stimulus j  to the receptive field center of the thalamic unit i . THR  is the radius of the 

receptive field of a thalamic units and it was set to 3, as in 1994 Favorov and Kelly 

model. The plus sign indicates the calculated value inside the parentheses should be 

set to zero if it is negative. Next, the activity TH
iF  of the thalamic unit i  evoked by the 

five-point stimulus was calculated as the sum of activities of the thalamic unit i  

evoked by each of the five points individually: 
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The force f  of every five-point stimulus applied on the skin gradually increased from 

zero magnitude to full magnitude (set to 1) in 10 time steps and was held for the next 

40 time steps, as illustrated in Figure 2.3. For each time step, the total thalamic input 

AF
iF  to minicolumn neuron i  was then calculated as: 
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where TH
ijW  is the strength of the thalamocortical synaptic connection between the 

thalamic unit j  and neuron i . Next, the conductances of the excitatory and inhibitory 

synapses on the distal compartment and the inhibitory synapses on the proximal 

compartment were calculated according to the following differential equations: 
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where MC
jF is the output activity of minicolumn j, μ is a time constant, diC  and piC  

are scaling constants for inhibition in the distal and proximal compartments, 

respectively, and di
ijW is the weight of the inhibitory connection from minicolumn j to 

minicolumn i. These differential equations were solved numerically using Euler 

method as follows: 
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The time step tΔ  and time constant μ  were set to 1 millisecond and 4 milliseconds, 

respectively. ∑
k

MC
kF  denotes the summation of activities of immediately neighboring 

minicolumns. ∑
j

MC
j

di
ij FW  denotes the weighted summation of activities of all other 60 
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minicolumns. The membrane potential dV of the distal compartment and the 

membrane potential pV  of the proximal compartment are determined as follows: 
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where LG  is the longitudinal conductance connecting the distal compartment and 

the proximal compartment. The “activity,” in a form of an instantaneous firing rate, 

MC
iF  of the neuron representing minicolumn i  is determined by its membrane 

potential of the proximal compartment pV : 
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At the end of each round of 1000 randomly chosen five-point stimuli, the plastic 

connections were updated as follows: 
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RM  is the rate of connection maturation, set to 0.1. ()sign  function outputs 

positive or negative sign depending on the value inside the parenthesis. ()corr  

function calculates the correlation between given variables. Therefore, the synaptic 

strength of the thalamocortical connection between a minicolumnar unit and a 

thalamic unit was determined by the correlation between the distal membrane 

potential of the minicolumnar unit and the activity of the thalamic unit; while the 

synaptic strength of the Anti-Hebbian plastic lateral inhibitory connection between a 

presynaptic minicolumnar unit and a postsynaptic minicolumnar unit was determined 
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by the correlation between the output activity of the presynaptic minicolumnar unit 

and the distal membrane potential of the postsynaptic minicolumnar unit. These 

correlations were computed over the values of the variables taken on the 50th time 

step of the network’s responses to 1000 randomly chosen 5-point skin stimuli. In 

order to prevent the activities of minicolumns from becoming excessively large or 

invariably zero, we normalized the thalamocortical connection weights of each 

neuron by summing all of its thalamocortical connection weights and then dividing 

each thalamocortical connection weights by this sum. Finally, to ensure that all 

neurons will have the average output activity in response to 5-point stimuli close to a 

certain desired value (chosen to be 0.075), the normalized thalamocortical 

connection weights were further scaled by iFSS/075.0 , where iFSS is the average 

activity of neuron i  across the previous 1000 stimuli. 

 After the excitatory thalamocortical afferent connections and the Anti-Hebbian 

plastic inhibitory lateral connections were fully developed, we characterized the 

system’s performance by computing the average distance between receptive field 

centers of immediate neighboring minicolumns and the average correlation between 

activities of all pairs of minicolumns in response to 1000 randomly chosen 5-point 

stimuli. We then ran an omnipotency test. 

 As the system was developing its plastic connections, the trajectories of the 

receptive field centers were displayed in real time to monitor the progress of the 

connection development. When the system reached the steady state, the receptive 

field centers stopped traveling. Then we generated a “receptive field shuffling” plot 

by connecting the receptive field centers of immediate neighboring minicolumns with 
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straight lines to demonstrate their relative positions and how well they shuffled. The 

less the lines crossed one other, the less prominently the receptive field centers of 

minicolumns within the same macrocolumn shuffled. The average distance between 

receptive field centers of adjacent minicolumns was calculated to indicate to what 

extent the receptive field centers of immediate neighboring minicolumns were 

separated. The greater the average distance was, the more spread out the receptive 

field centers were and the more they shuffled. We also produced a color-coded map 

to demonstrate the positions of receptive field centers of the minicolumns on the skin. 

Different colors were used to distinguish different regions of the skin field. The 

receptive field centers were represented by white dots scattered in the color-coded 

skin field. In the accompanying color-coded honeycomb-like macrocolumn image, 

each of the 61 minicolumns was colored depending on the color of the region in the 

skin field where its receptive field center was located. A pattern of gradual transition 

or systematic alternation in color of 61 minicolumns within the same macrocolumn 

would indicate a somatotopic map. We expect to observe each minicolumn in a 

distinctive color and the colors of neighboring minicolumns referred to very different 

regions of the skin field. 

 In order to assess how well the 61 minicolumns within the same macrocolumn 

were decorrelated, we calculated the correlations between the activities of every pair 

of minicolumns, altogether 1830 pairs. Besides the average squared correlation, 

which could be used as an indicator of decorrelation, we generated the histogram of 

the correlations to further demonstrate and analyze the distribution of the 

correlations. Ideally, we would expect that the average correlation was nearly zero 
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and the histogram of the correlations demonstrated that the percentages of high 

correlations were nearly 0 and most correlations were negative or close to 0. 

 The network with fully developed thalamocortical and anti-Hebbian inhibitory 

connections was evaluated for its “omnipotency,” defined as the capacity to 

represent any arbitrarily defined nonlinear features of stimulus patterns.  Any such 

stimulus feature can be defined as a function over the stimulus/input space. Thus, 

our omnipotency test involves defining an arbitrary test function T(S) on an arbitrarily 

chosen set of 5-point stimuli S1 … Sn.  Typically in our studies we use n = 20. The 

test function T(S) is given a value of 0 or 1 on each of the n test stimuli, such that for 

each thalamic unit the correlation coefficient between its responses to these n test 

stimuli and T(S) is equal to zero. This means that this test function – or stimulus 

feature – is “hidden” at the level of the thalamic units; i.e., it is represented only 

implicitly in the thalamic layer and cannot be extracted (i.e., made explicit) by any 

linear summation of the activities of the thalamic units. 

 Next, we compute the responses MCMC FF 611 ... of all 61 minicolumns to each of 

the n test stimuli. As a rule, because the minicolumnar output is a nonlinear 

transform of the thalamic input, the correlation coefficient between responses of any 

given minicolumn to the test stimuli and T(S) is most likely to be non-zero. The 

question is: Will the test function T(S) be represented explicitly – and to what degree 

– by outputs of the 61 minicolumns? How well would a hypothetical neuron in the 

other cortical layers be able to represent function T(S) by computing a weighted sum 

of outputs of the 61 minicolumns?  Of course, if we used error-correction learning, 

we would be able to train such a neuron to produce 100% accurate outputs to the n 
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test stimuli (since the number of its input channels, 61, is much larger than the 

number of training samples, n = 20). However, assuming that cortical neurons do not 

use error-correction learning, but Hebbian learning, our hypothetical neuron will not 

be as successful. To approximate Hebbian limitations, for each minicolumn i we 

compute the correlation coefficient rT,i  between T(S) and the responses of that 

minicolumn to the n test stimuli. Now we can compute the output of the hypothetical 

neuron in response to a given test stimulus s as: 
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 How well will F(S) approximate T(S) on test stimuli S1 … Sn?  We measure it 

by computing the correlation coefficient rT,F  between F(S) and T(S), giving us the 

upper bound for the ability of the outputs of the 61 minicolumns together to linearly 

represent the test function T(S). 

 Finally, to obtain a general estimate of this ability to represent arbitrary test 

functions, we repeat this test study 100 times, each time using different test 

functions T(S) defined on different sets of test stimuli S1 … Sn, and use the average 

squared correlation coefficient 2
,FTr as our measure of representational 

omnipotency of the studied minicolumnar network. 

 Lastly, to evaluate minicolumns for their sensitivity to orientation of elongated 

skin stimuli, for each minicolumn we applied a series of line stimuli centered on its 

receptive field center with varying orientations ranging from 0 degree to 179 degrees, 

in 1 degree steps. The line stimulus was simulated by exactly the same way as the 

multi-point stimuli used in connection development, except that in the latter case 

points were picked randomly while in the former case points were arranged in a 
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straight line. The activities of minicolumns evoked by those line stimuli in every 

orientation were recorded and displayed in two different ways. One was to simply 

plot the activity as a function of stimulus orientation. The other was to draw every 

line stimulus in its proper orientation, but with its length determined by the activity of 

the minicolumn in response to that line. 
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Figure 2.1. Three-layer structure of somatosensory minicolumnar model. 
The functional module of cerebral cortex is assumed to be macrocolumn, which is 
composed of 61 minicolumns. Minicolumns, or cortical units, receive inputs from 127 
thalamic cells. Thalamic cells receive inputs from the skin field. Each thalamic unit 
has a circular receptive field placed somatotopically on the skin. 
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Figure 2.2. Neuron representing a minicolumn is modeled as a two-
compartmental electrical circuit. 
 



 30

 

 
 
Figure 2.3. Coordinates of receptive field centers of thalamic units and 
stimulus strength as a function of time. 
The left panel shows the coordinates of receptive field centers (blue crosses) of 127 
thalamic units (white regular shaped hexagons). The right panel shows that stimulus 
strength increases from 0 to 1 in the first 10 time steps and remains at 1 for the next 
40 time steps. 



CHAPTER 3 

RESULTS 

 

 We first establish that the new model can successfully reproduce the shuffled 

receptive fields of minicolumns similar to those obtained by the 1994 Favorov-Kelly 

model. As illustrated in Figure 3.1 – 3.6, the new model was not only able to 

reproduce the shuffled receptive fields of minicolumns, but also improved 

decorrelation among minicolumns. 

 The network’s starting state before the development of thalamocortical 

connections and its stable state after the development are shown in Figures 3.1 – 

3.6. Since there were significant modifications made to the 1994 Favorov-Kelly 

model, we used equivalent rather than identical parameters in our simulation to 

approximate the old results. All the parameters are documented in Tables 3.1 – 3.4, 

if not mentioned otherwise. Since the thalamocortical connections were prescribed 

randomly initially, the receptive field centers of 61 minicolumns within the same 

macrocolumn are randomly dispersed within a relatively small skin region with an 

average distance of 1.628 units between immediate neighboring minicolumns 

(Figure 3.1 – 3.2). In the circular color-coded skin map (Figure 3.2), most of the 

receptive field centers are scattered more towards the center of the skin. In the 

corresponding honeycomb shaped macrocolumn, there was no systematic 

alternation in color coding of 61 minicolumns (Figure 3.2). However, after the 
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thalamocortical connections reached the steady state, the receptive field centers of 

the 61 minicolumns within the macrocolumn become distributed in a much larger 

region with an average distance of 4.269 units between immediate neighboring 

minicolumns (Figure 3.4). Figure 3.4 demonstrates the relative positions of receptive 

field centers with lines connecting the immediate neighboring minicolumns. It was 

observed, interestingly, that the image is composed of numerous triangles rotating 

from and superimposed on each other. The circular color-coded skin map clearly 

demonstrates that the receptive field centers are scattered more towards the skin 

margins, resulting in a vast empty space at the center of the skin field (Figure 3.5). 

 Although the new model did successfully reproduce the shuffled receptive 

fields of the 61 minicolumns, the patterns of the shuffled receptive field centers were 

different between the new model and the 1994 Favorov-Kelly model (Favorov and 

Kelly, 1994 a). It was not only due to the non-identical parameters but also, more 

importantly, due to the modifications made to the 1994 Favorov-Kelly model. In short, 

the new model does not have parasynaptic influences from surrounding 

macrocolumns imposed on the 61 minicolumns within the central macrocolumn 

because only the central macrocolumn is modeled now. In the 1994 Favorov-Kelly 

model, the receptive field centers of the 61 minicolumns within the central 

macrocolumn reached the equilibrium when influences from the central 

macrocolumn were balanced with those from the surrounding 6 macrocolumns. 

Minicolumns that were closer to the borders of the central macrocolumn were more 

affected by the neighboring macrocolumns. Therefore, the 1994 Favorov-Kelly 

model produced a pattern in which the shuffled receptive field centers were more or 
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less distributed evenly throughout the skin field. However, in this new model, there 

are no such surrounding macrocolumns and parasynaptic influences. It is the strong 

fixed lateral inhibition between immediate neighboring minicolumns that is primarily 

responsible for driving the receptive field centers of all 61 minicolumns away from 

the center of the skin field. Because of the repulsive nature of the inhibition, the 

strong fixed lateral inhibition between immediate neighboring minicolumns tends to 

drive the receptive fields of minicolumns as far apart as possible. The above 

explanation is confirmed by the pattern of color alternation of the 61 minicolumns in 

the left panel of Figure 3.5. For example, the minicolumn at the upper rightmost 

corner of the macrocolumn is color-coded in vivid-blue, but two of its three 

immediate neighboring minicolumns are in brown and the third one is in green. From 

the corresponding color-coded skin field, the vivid blue is almost opposite to the 

brown and nearly opposite to the green. 

  Another undesired feature produced by the new model is that although the 

immediate neighboring minicolumns have very different receptive fields, more distant 

minicolumns share similar receptive fields. As illustrated in Figure 3.5, taking the 

minicolumn at the upper rightmost corner of the macrocolumn as an example again, 

there are two minicolumns color-coded in dark-blue within a radius of two 

minicolumns. 

 The existence of similar receptive fields among non-adjacent minicolumns 

suggests the existence of high correlation between their activities evoked by the 

same point stimuli, which is confirmed by Figure 3.6 which shows the histogram of 

the correlations of all 1830 pairs of minicolumns in terms of their activities evoked by 
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the 5-point stimuli. In contrast to the histogram of the correlations of the starting state 

(Figure 3.3), which was almost flat and evenly distributed ranging from -0.25 to +1, 

the histogram of the correlations of the stable state indicates that during computer 

simulation a significant number of pairs of minicolumns were indeed decorrelated, 

resulting in a significant increase in the percentage of correlations close to 0. 

However, the percentage of the correlations with value 1 also increased and 

therefore confirmed the existence of highly correlated pairs of minicolumns, which is 

undesirable since we hypothesized that minicolumns in the cerebral cortex should 

be essentially decorrelated and independent from each other in order to reduce 

redundant information and achieve the maximal omnipotency in information 

transformation. In turn, the results obtained from the omnipotency test indicates that 

there was no significant improvement over the omnipotency and the omnipotency 

scores were nearly zero for both the starting state and the steady state, which 

suggest that the new model needs parameter optimization. 

 After searching systematically through the parameter space, we narrowed 

down the number of critical parameters to 3 that maximize the network’s 

omnipotency. Figures 3.7 – 3.10 illustrate the trajectories of minicolumnar receptive 

field centers during the optimal development (Figure 3.7), the shuffled receptive field 

centers (Figures 3.8 – 3.9) and the histogram of the correlations (Figure 3.10). There 

were several significant improvements in the optimal model. First, the receptive field 

centers of all 61 minicolumns were distributed more evenly throughout the skin field 

rather than more towards the periphery (Figure 3.9), which was ideal and closer to 

the distribution of the receptive fields of real cortical neurons observed in 
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experiments. The receptive field centers of neighboring minicolumns were dispersed 

in a more complex pattern rather than the “zigzag” and the “triangles” (Figure 3.8). 

The pattern of the color alternation of the 61 minicolumns within the same 

macrocolumn represented more diversity and fewer stereotypes (Figure 3.9). In the 

histogram of the correlations, the percentage of the correlations with values close to 

1 was zero and the majority of the correlations were close to 0. The overall profile of 

the histogram was closer to a normal distribution centered around 0 (Figure 3.10). 

The average correlation and omnipotency score were improved to 0.039 and 0.497, 

respectively. 

 We further investigated the contributions of the three critical parameters to 

this newly developed minicolumnar model individually, focusing on decorrelation and 

omnipotency. The results are illustrated in Figure 3.11 – 3.18. 

 First, we assessed the importance of the fixed lateral inhibition, which was 

included in both the 1994 Favorov-Kelly model and the new model. We varied the 

strength of the fixed lateral inhibition, ranging from 0 to 30, while setting all other 

parameters to the optimal values (Figure 3.11 – 3.12). The average correlation did 

clearly show the trend of descending and stabilizing roughly after the strength was 

more than 15, which was the optimal parameter we chose for the strength of the 

fixed lateral inhibition. Correspondingly, the omnipotency score increased gradually 

from almost 0 to 0.5 and became saturated after the strength was more than 15. 

Figure 3.11 – 3.12 revealed that the stronger the fixed lateral inhibition, the lower the 

average correlation and the higher the omnipotency score. But the overall 

performance was not improved significantly after the strength was more than 15. 
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 Next, we kept all the parameters and settings the same as those in the 

optimal condition, but extended the radius of the fixed lateral inhibition to 2 

minicolumns. The results are illustrated in Figure 3.13. There was not much 

difference in terms of the shuffled receptive fields except that the receptive field 

centers were distributed more towards the center of the skin field in this trial, while 

the receptive field centers were more spread out under the optimal condition. The 

histogram of the correlations was less ideal than the one observed with the optimal 

condition and the percentage of high correlations increased. Although the average 

correlation remained nearly zero, the omnipotency score dropped significantly from 

0.497 under the optimal condition to 0.140 in this trial! These results suggest that 

this neural network achieves its best performance with the fixed lateral inhibition 

restricted to immediate neighboring minicolumns. 

 Next, we evaluated the importance of the Anti-Hebbian plastic lateral 

inhibition, which was introduced in this new model. Again, we retained the optimal 

parameters and settings except for varying the scaling constant controlling the 

strength of the Anti-Hebbian plastic lateral inhibition, ranging from 0 to 20 (Figures 

3.14 – 3.15). Both the average correlation and the omnipotency score showed sharp 

transitions from 0 to 2 but the overall trends were similar to the ones we observed in 

the case of the fixed lateral inhibition previously, which suggested that even very 

small Anti-Hebbian plastic lateral inhibition was effective enough to decorrelate the 

minicolumns and improve the omnipotency of the neural network and that stronger 

Anti-Hebbian plastic lateral inhibition was not necessary. 

 Next, we moved the Anti-Hebbian plastic lateral inhibition on the proximal 
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compartment, while retaining all the other optimal parameters and settings. The 

results are illustrated in Figure 3.16. Once again, the omnipotency score dropped 

significantly from 0.497 under the optimal condition to 0.139 in this trial, which 

suggested that it was critical to place the Anti-Hebbian plastic lateral inhibition on the 

distal compartment. 

 Next, we investigated the importance of the longitudinal conductance. The 

results are illustrated in Figures 3.17 – 3.18, which clearly demonstrate that the 

larger the longitudinal conductance, the higher the average correlation and the lower 

the omnipotency score. Therefore, the smallest possible value of 2 was determined 

to be the optimal value for the longitudinal conductance. The longitudinal 

conductance connecting the distal compartment and the proximal compartment 

controlled the influence imposed from one compartment on the other. Zero 

longitudinal conductance separated the two compartments completely and 

excessively large longitudinal conductance made the two compartments behave 

essentially equivalent to one compartment. An effective two-compartment model is 

necessary to the functioning of the newly developed minicolumnar model. 

Separating the excitatory inputs (thalamic afferent inputs) from the fixed lateral 

inhibitory inputs by placing them on different compartments helps to make them 

more effective in the development of the thalamocortical connections and their 

functional properties. Therefore, the smallest possible longitudinal conductance was 

critical to the success of this newly developed minicolumnar model. 

 Lastly, in order to test the robustness of our newly developed minicolumnar 

model, we evaluated neurons’ stimulus orientation sensitivity. The results are shown 
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and compared with the published results based on the 1994 Favorov-Kelly model in 

Figures 3.19 – 3.20. In Figure 3.19, although in the previous model we observed 

differential responses of an example minicolumn to a vertically-oriented bar stimulus 

and a horizontally oriented bar stimulus, the difference was not very big: the bar 

stimulus in the non-preferred orientation (horizontal) still evoked strong response. 

However, in the new model, most of the minicolumns are sensitive to narrow ranges 

of stimulus orientations. A sharp peak in orientation tuning suggests that the 

minicolumn responds actively only when the bar stimuli were closely aligned with its 

preferred orientation. Figure 3.20 demonstrates the preferred orientations in an 

alternative way. The results of orientation tuning obtained in the new model are 

closer to the experimental results observed in real cortical neurons. 
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Index RM  LG deC  piC  diC #  aveD aveC Omni Figure 
1 0.1 2 0.05 2 0 10 1.628 0.324 0.030 3.1 - 3.3 
2 0.1 2 0.05 2 0 200 4.269 0.200 0.055 3.4 - 3.6 

3 0.1 2 0 15 10 200 5.120 0.039 0.497 
3.7 - 3.10, 3.13, 3.16, 

3.19, 3.20 
 
Table 3.1. Parameters used in simulations and summary of results. 
RM  (Rate of Maturation), LG  (Longitudinal Conductance), deC  (the strength of the 
lateral excitation placed on the distal compartment), piC  (the strength of the fixed 
lateral inhibition placed on the proximal compartment), diC  (the strength of the Anti-
Hebbian plastic lateral inhibition placed on the distal compartment), #  (the number 
of connection updates), aveD  (the average distance between the receptive field 
centers of immediate neighboring minicolumns in the skin field), aveC  (the average 
correlations of activities of all 1830 pairs of minicolumns), Omni  (the omnipotence 
score of the minicolumnar network or the macrocolumn). 
Index 1 refers to the starting state before connection development with equivalent 
parameters and settings to the 1994 Favorov-Kelly model and Figure 3.1 – 3.3. 
Index 2 refers to the stable state after connection development with equivalent 
parameters and settings to the 1994 Favorov-Kelly model and Figure 3.4 – 3.6. 
Index 3 refers to the stable state after connection development with the optimal 
parameters and settings and Figure 3.7 – 3.10, 3.13, 3.16, 3.19, and 3.20. 
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piC  aveC  Omni  

0.0 0.094 0.016 
2.5 0.083 0.126 
5.0 0.065 0.323 
7.5 0.052 0.424 
10.0 0.045 0.467 
12.5 0.043 0.496 
15.0 0.039 0.497 
17.5 0.038 0.505 
20.0 0.037 0.496 
22.5 0.038 0.500 
25.0 0.035 0.506 
27.5 0.037 0.502 
30.0 0.035 0.500 

 
Table 3.2. The strength of fixed lateral inhibition placed on the proximal 
compartment against average correlation and omnipotency score. 
The data refers to Figure 3.11 and 3.12. 
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diC  aveC  Omni  

0 0.207 0.108 
2 0.056 0.406 
4 0.046 0.447 
6 0.043 0.462 
8 0.041 0.494 
10 0.039 0.497 
12 0.038 0.500 
14 0.038 0.501 
16 0.037 0.507 
18 0.037 0.510 
20 0.035 0.507 

 
Table 3.3. The strength of Anti-Hebbian plastic lateral inhibition placed on the 
distal compartment against average correlation and omnipotency score. 
The data refers to Figure 3.14 and 3.15. 
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LG  aveC  Omni  

2 0.039 0.497 
4 0.044 0.462 
8 0.049 0.423 
16 0.057 0.368 
32 0.062 0.299 
64 0.065 0.271 

128 0.068 0.245 
256 0.069 0.234 
512 0.070 0.229 
1024 0.070 0.226 
2048 0.070 0.225 

 
Table 3.4. Longitudinal conductance against average correlation and 
omnipotency score. 
The data refers to Figure 3.17 and 3.18. 
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Figure 3.1. Receptive field centers of minicolumns before connection 
development. 
Receptive field centers (red dots) of immediate neighboring minicolumns within the 
same macrocolumn are connected by straight lines. 
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Figure 3.2. Color-coded skin field and minicolumns colored by the position of 
their receptive fields before connection development. 
The receptive field centers (white dots) of minicolumns are dispersed in color-coded 
circular skin field on the right panel. On the left panel, 61 minicolumns are colored 
according to the color of the region where their receptive field centers locate. 
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Figure 3.3. Histogram of correlations before connection development. 
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Figure 3.4. Shuffled receptive field centers of minicolumns after connection 
development. 
Receptive field centers (red dots) of immediate neighboring minicolumns are 
connected by straight lines. 
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Figure 3.5. Color-coded skin field and minicolumns colored by the position of 
their receptive fields after connection development. 
The receptive field centers (white dots) of minicolumns are shown in color-coded 
circular skin field on the right panel. In the left panel, 61 minicolumns are colored 
according to the color of the region where their receptive field centers locate. 
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Figure 3.6. Histogram of correlations after connection development. 
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Figure 3.7. Trajectories of receptive field centers of minicolumns during 
connection development with optimal parameters and settings. 
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Figure 3.8. Shuffled receptive field centers of minicolumns after connection 
development with optimal parameters and settings. 
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Figure 3.9. Color-coded skin field and minicolumns colored by the position of 
their receptive fields after connection development with optimal parameters 
and settings. 
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Figure 3.10. Histogram of correlations after connection development with 
optimal parameters and settings. 
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Figure 3.11. Average correlation plotted against fixed lateral inhibition 
strength. 
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Figure 3.12. Omnipotency score plotted against fixed lateral inhibition 
strength. 
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Figure 3.13. Fixed lateral inhibition is extended to a radius of 2 minicolumns. 
All the other optimal parameters and settings are retained. The resulting histogram 
of the correlations (CR) of 1830 pairs of minicolumns is plotted in the upper panel. 
The resulting color-coded skin field and minicolumns reflecting the shuffled receptive 
fields of minicolumns after connection development are plotted in the lower panel. 
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Figure 3.14. Average correlation plotted against Anti-Hebbian plastic lateral 
inhibition strength. 
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Figure 3.15. Omnipotency score plotted against Anti-Hebbian plastic lateral 
inhibition strength. 
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Figure 3.16. Anti-Hebbian plastic lateral inhibition is placed in the proximal 
compartment. 
All the other optimal parameters and settings are retained. The resulting histogram 
of the correlations (CR) of 1830 pairs of minicolumns is plotted in the upper panel. 
The resulting color-coded skin field and minicolumns reflecting the shuffled receptive 
fields of minicolumns after connection development are plotted in the lower panel. 
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Figure 3.17. Average correlation plotted against longitudinal conductance. 
 



 60

 

 
 
Figure 3.18. Omnipotency score plotted against longitudinal conductance. 
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Figure 3.19. Orientation tuning plot 1. 
Based on 1994 Favorov-Kelly model, activities of an exemplary simulated 
minicolumn in response to vertically oriented bar stimulus and horizontally oriented 
bar stimulus are shown in the right panel (Favorov and Kelly, 1994 b). Although there 
is observable difference in the activity level of simulated minicolumn, the unfavorable 
horizontal bar stimulus still activates the minicolumn. In the left panel, based on the 
new model with the optimal parameters and settings, most simulated minicolumns 
demonstrate high sensitivity to narrow range of orientations. 
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Figure 3.20. Orientation tuning plot 2. 
For each minicolumn, line stimuli centered at its receptive field center with different 
orientations are across its entire receptive field. Not only those line stimuli are plotted 
but also the length of each line stimulus is scaled according to the minicolumnar 
activity evoked by it. There exists more diversity in orientation tuning in simulated 
minicolumns based on the new model with the optimal parameters and settings than 
in the 1994 Favorov-Kelly model (Favorov and Kelly, 1994b). 



CHAPTER 4 

DISCUSSIONS 

 

 In this dissertation work, we developed a dynamic system to approximate the 

layer 4 cortical network based on the 1994 Favorov-Kelly model. We simplified the 

original model, placing emphasis on lateral inhibition. With this setup, we 

successfully reproduced some characteristic features observed in real cortical 

networks, such as shuffled receptive fields and emergence of prominent orientation 

tuning. After numerous trials with a large variety of parameter settings, we finally 

narrowed down the number of critical parameters to 3. These parameters were: (1) 

the strength of the fixed lateral inhibition applied on the proximal compartment, (2) 

the existence of the Anti-Hebbian plastic lateral inhibition imposed on the distal 

compartment, and (3) the small longitudinal conductance between the proximal 

compartment and the distal compartment of the modeled minicolumn-representing 

neuron. Under the optimal condition, defined by the maximal omnipotence in the 

neural network, the system achieves nearly zero average correlation between any 

pair of its neurons, prominent receptive field shuffling, and well-developed higher-

level feature sensitivities. 

 The reason why the two-compartment design of modeled neurons was 

necessary to the successful functioning of the system is as follows. Since the system 

was expected to be able to reproduce some heterogeneous characteristics observed 
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in the real cortical neurons and the characteristics of the model neuron were 

determined at least in part by its thalamocortical connections, the lateral inhibition 

must exist among the model neurons because of its influence on the development of 

the thalamocortical connections. The existence of the lateral inhibition among the 

model neurons forces each of them to develop different sets of thalamocortical 

connections, resulting in receptive field positional heterogeneity. However, the 

development of the thalamocortical connections primarily follows the Hebbian Rule. 

If we adopted a one-compartment neuron model, the thalamocortical connections of 

a neuron would continue to change until its excitatory thalamic input is balanced with 

its inhibitory lateral input. At its full development, the excitation would cancel out the 

inhibition completely. Therefore, in a one-compartment model, the development of 

the thalamocortical connections following the Hebbian Rule eventually neutralizes 

the impact of the lateral inhibition in shaping the properties of the output. But by 

adopting a two-compartment model and separating the excitatory input from the 

inhibitory lateral input, a win-win situation could be achieved. In order to approximate 

real cortical neurons, the excitatory thalamic afferent input was placed on the distal 

compartment and the inhibitory lateral input was arranged on the proximal 

compartment. The influence imposed on one compartment from the other 

compartment was controlled by the longitudinal conductance between the proximal 

compartment and the distal compartment. The larger the longitudinal conductance, 

the more comparable the behavior of the two-compartment model was to that of the 

one-compartment model. The smaller the longitudinal conductance, the less the 

influence was imposed on the state of the distal compartment, dominated by the 
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excitatory thalamic afferent input, by the state of the proximal compartment, 

dominated by the inhibitory lateral input. Therefore, with a small enough longitudinal 

conductance between the two compartments, the two-compartment model can 

satisfy our design requirements for the model neuron. That is, in the distal 

compartment, the thalamocortical connections were developed following the 

Hebbian Rule based on the correlation of the activities of the presynaptic cell and 

the postsynaptic cell; meanwhile, in the proximal compartment, the lateral inhibition 

was predominant and capable of shaping the functional properties of the model 

neuron. 

 Results of computer simulations of the model presented in Chapter 3 

demonstrate the importance of the lateral inhibition in improving the performance of 

the neural network in decorrelation and omnipotence. But why the fixed lateral 

inhibition had to be placed on the proximal compartment and restricted locally 

between the immediate neighboring neurons, while the Anti-Hebbian plastic lateral 

inhibition had to be placed on the distal compartment and link all pairs of 

minicolumns in the macrocolumn? First of all, the closer the inhibitory input is to the 

output, the more effective the inhibition is. The fixed lateral inhibition between two 

immediate neighboring minicolumns could sculpt their receptive fields to certain 

nonlinear features. For example, as illustrated in Figure 4.1, we assumed that the 

thalamocortical connections of two hypothetical neurons had already reached the 

steady state and the profile of their receptive fields in a unidimensional state space is 

gaussian. In addition, these two neurons have largely overlapping receptive fields. If 

there were no lateral inhibition between them, their receptive fields would maintain 
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gaussian profiles (shown by the red dashed line and the blue dashed line, 

respectively, in Figure 4.1). However, if there was fixed lateral inhibition between 

them, their receptive fields would be significantly altered, as indicated by the red 

solid line and the blue solid line, respectively, in Figure 4.1, and their receptive field 

profiles are no longer gaussian. A nearly complete inhibitory region is produced 

between the excitatory regions of these two neurons, thereby creating a new feature 

sensitivity. 

 The Anti-Hebbian plastic lateral inhibition between all pairs of the model 

minicolumns helps to shuffle the receptive fields of the minicolumns across the entire 

macrocolumn more thoroughly. As pointed out in Chapter 3, with the fixed lateral 

inhibition between immediately neighboring minicolumns alone, the shuffled 

receptive field centers of minicolumns were distributed in a “zigzag” pattern and 

there were pairs of minicolumns which were highly correlated in response to skin 

stimuli, resulting in lower performance in omnipotence. With the assistance from the 

Anti-Hebbian lateral inhibition between all pairs of minicolumns, they all become 

more or less decorrelated. Because the receptive field of a minicolumn was 

determined primarily by the thalamocortical connections, the Anti-Hebbian plastic 

lateral inhibitory input was placed on the distal compartment together with the 

excitatory thalamic afferent input to participate in selection of the thalamocortical 

connections. In turn, it improved not only the decorrelation but also the omnipotence 

of the neural network, as demonstrated in Chapter 3. 

 The biological identities of the structural features of this newly developed 

neural network are suggested in Figure 4.2. Since the spiny stellate cell is the 
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predominant excitatory cell type in the input cortical layer 4, receiving the thalamic 

afferent input and then relaying it to cells in the other cortical layers. The two-

compartment model neuron can be identified with the spiny stellate cell in the layer 4. 

Two other types of cortical cells are very likely candidates to provide the lateral 

inhibition. They are the chandelier cell (Peters, 1984) and the basket cell (Jones and 

Hendry, 1984). The chandelier cell synapses exclusively on the initial segment of the 

axon of the excitatory cortical cells, which renders it the most effective inhibitory cell 

in the cerebral cortex. In addition, the layer 4 chandelier cells inhibit only neighboring 

cortical cells due to their relatively confined axonal branches. Therefore, the cell 

providing the fixed lateral inhibition locally in our model can be identified with the 

chandelier cell. The basket cells exist in all cortical layers and synapse on both 

dendrites and somata of the cortical cells in a much wider spatial range due to their 

relatively large macrocolumn-sized axon arbor. Therefore, the cell providing the Anti-

Hebbian plastic lateral inhibition in our model can be identified with the basket cell. 

Accordingly, the biological identities of the distal and proximal compartments in the 

new model are not the same as in the 1994 Favorov-Kelly model. In the 1994 

Favorov-Kelly model, the distal compartment and the proximal compartment were 

referred to the dendrites and the soma of the spiny stellate cell, respectively. But in 

this new model, the proximal compartment is identified with the initial axon segment 

of the spiny stellate cell, and the distal compartment is identified with the dendrites 

and soma of the spiny stellate cell. 
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Figure 4.1. Mutual fixed lateral inhibition between two neighboring cortical 
neurons with largely overlapped receptive fields. 
Two cortical neurons (denoted by red and blue solid triangles) with fully developed 
connections with thalamic neurons (denoted by Carolina blue solid circles) have 
largely overlapped unidimensional receptive fields. Their receptive field profiles are 
gaussian and distinguished by red and blue dashed lines, if there is no mutual lateral 
inhibition between them. If there is mutual fixed lateral inhibition between them 
(denoted by black arrows and negative signs close to arrow heads), the receptive 
field profiles are significantly alternated and distinguished by red and blue solid lines. 
In addition, a nearly completely inhibitory region between their excitatory regions is 
produced. 
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Figure 4.2. Biological identities of the new minicolumnar model. 
We suggest that the biological identities referred to our new minicolumnar model are 
as follows. The two-compartmental neuronal model refers to the spiny stellate cell. 
The distal compartment refers to dendrites and soma of the spiny stellate cell. The 
proximal compartment refers to the initial segment of the axon of the spiny stellate 
cell. The basket cell provides Anti-Hebbian plastic lateral inhibition on dendrites and 
soma of the spiny stellate cell (the distal compartment). The chandelier cell provides 
fixed lateral inhibition on the initial segment of the axon of the spiny stellate cell (the 
proximal compartment). 



CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 In this dissertation project we developed a simplified layer 4 minicolumnar 

model based on the 1994 Favorov-Kelly model, emphasizing the lateral inhibition. In 

this model we not only successfully reproduced the shuffled receptive fields and 

other characteristic features of cortical layer 4 neurons observed previously, but also 

further established the importance and the precise organization of the lateral 

inhibition, especially the strong fixed lateral inhibition, in decorrelating cortical 

neurons, introducing nonlinearity and maximizing omnipotence. The Anti-Hebbian 

plastic lateral inhibition among cortical neurons was found to be also critical to the 

performance of the neural network. The small longitudinal conductance was found to 

be necessary in our two-compartmental model of the cortical neuron. Finally, we 

suggested the most likely biological identities for each component of this model. 

That is, the spiny stellate cell receives its excitatory thalamic afferent input and Anti-

Hebbian plastic lateral inhibitory input from basket cells on its dendrites and soma 

(which are referred to as the distal compartment in the model), and it receives its 

strong fixed lateral inhibitory input from chandelier cells on its initial axon segment 

(which is referred to as the proximal compartment in the model). 

 The core of this newly developed model is the importance of strong lateral 

inhibitory interactions among layer 4 neurons in adjacent minicolumns. Therefore, 
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the first priority must be given to seeking the actual experimental evidence to 

demonstrate that direct activation of spiny stellate cells in one minicolumn 

significantly inhibits spiny stellate cells in adjacent minicolumns. 

 We are also planning to further investigate the capabilities of the model to 

handle more natural stimulus patterns, such as images, instead of randomly picked 

5-point stimuli. Since we already have a well-developed model of a single 

macrocolumn, we are now in a position to build a larger-scale neural network 

composed of multiple macrocolumns and simulate their interactions. 

 My dissertation work is only part of a bigger and ambitious effort focusing on 

unveiling the mystery of information transformation in the cerebral cortex. How the 

information is being further processed in the higher output layers is the next big 

question. We humbly believe we are on the right track. 
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APPENDIX – SOURCE CODE IN MATLAB 

 

honeycomb.m 

This program will return the total number of minicolumns and the coordinates of 

centers of minicolumns, given the number of minicolumns along one side of a 

macrocolumn of which the center coordinate is (0, 0). 

 
function [coor num] = honeycomb(N) 
 
num = (((N+(N*2-1))*N)/2)*2-(N*2-1); 
 
coor = zeros(num, 2); 
 
constantHeight = sqrt(0.75); 
 
start = 1; 
inc = N-1; 
for i = 1 : 1 : (N*2-1) 
    if ((i > 1) && (i <= (N+1))) 
        inc = inc+1; 
        start = start+inc; 
    elseif (i > (N+1)) 
        inc = inc-1; 
        start = start+inc; 
    end 
    if (i <= N) 
        coor(start, :) = [(0-((N-1)+(i-1))*0.5), (0+((N-1)-(i-
1))*constantHeight)]; 
        for j = 1 : 1 : ((N-1)+(i-1)) 
            coor(start+j, :) = [(coor(start, 1)+j), coor(start, 2)]; 
        end 
    elseif (i > N) 
        coor(start, :) = [(0-(N-1)+(i-N)*0.5), (0-(i-N)*constantHeight)]; 
        for j = 1 : 1 : (((2*N-1)-1)-(i-N)) 
            coor(start+j, :) = [(coor(start, 1)+j), coor(start, 2)]; 
        end 
    end 
end 
 
end 

 

main.m 

clear; 
clc; 
format long g; 
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rand('twister', 5489); 
  
[coorMC numMC] = honeycomb(5); 
  
[coorTH numTH] = honeycomb(7); 
  
setExd = zeros(numMC, numMC); 
setInhp = zeros(numMC, numMC); 
setInhd = zeros(numMC, numMC); 
for i = 1 : 1 : numMC 
    temp = sqrt(sum((coorMC-ones(numMC, 1)*coorMC(i, :)).^2, 2)); 
    setExd(:, i) = temp < 2.5; 
    setExd(i, i) = 0; 
    setInhp(:, i) = temp < 1.5; 
    setInhp(i, i) = 0; 
    setInhd(i, i) = 0; 
end 
  
Wth_mc = rand(numTH, numMC); 
Cth_mc = ones(numTH, numMC); 
Wth_mc = (Wth_mc./(ones(numTH, 1)*sum(Wth_mc))).*Cth_mc; 
  
numTimeStep = 50; 
FmaxTH = 1; 
rfrTH = 3; 
numUpdates = 200; 
counterP = 1000; 
num = 5; 
Cth = 1.5; 
Tau = 4; 
Cexd = 0; 
Cinhp = 15; 
Cinhd = 10; 
Gl = 2; 
RM = 0.1; 
Fth_mc = 0.075; 
  
force = 0.1 : 0.1 : (numTimeStep*0.1); 
force = force.*(force < 1)+(force >= 1); 
  
N = 3; 
[coorTemp numTemp] = honeycomb(15*N); 
coorTemp = coorTemp/N; 
numP = 0; 
for i = 1 : 1 : numTemp 
    activityTH = sqrt(sum((coorTH-ones(numTH, 1)*coorTemp(i, :)).^2, 
2))*(((-1)*FmaxTH)/rfrTH)+FmaxTH; 
    if (size(find(activityTH > 0), 1) > 0) 
        numP = numP+1; 
        activity(numP, 1) = numP; 
        activity(numP, 2 : 3) = coorTemp(i, :); 
        activity(numP, 4) = 1; 
        activity(numP, 5 : 4+numTH) = (activityTH.*(activityTH > 0))'; 
    end 
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end 
  
for update = 1 : 1 : numUpdates 
  
    temp = round(rand(counterP, num)*numP); 
    temp = temp+(temp <= 0); 
    activityPattern = zeros(counterP, numTH); 
    for i = 1 : 1 : counterP 
        for j = 1 : 1 : num 
            activityPattern(i, :) = activityPattern(i, :)+activity(temp(i, 
j), 5 : 4+numTH); 
        end 
    end 
  
    FMCFinal = zeros(numMC, counterP); 
    Vd = zeros(numMC, counterP); 
    for iP = 1 : 1 : counterP 
        Gexd = zeros(numMC, 2); 
        Ginhp = zeros(numMC, 2); 
        Ginhd = zeros(numMC, 2); 
        FMC = zeros(numMC, 2); 
        inputTH = (((activityPattern(iP, :)*Wth_mc)')*force)*Cth; 
        for i = 1 : 1 : numTimeStep 
            Gexd(:, 2) = (1-(1/Tau))*Gexd(:, 1)+(1/Tau)*(inputTH(:, 
i)+Cexd*(setExd*FMC(:, 1))); 
            Ginhp(:, 2) = (1-(1/Tau))*Ginhp(:, 
1)+(1/Tau)*(Cinhp*(setInhp*FMC(:, 1))); 
            Ginhd(:, 2) = (1-(1/Tau))*Ginhd(:, 
1)+(1/Tau)*(Cinhd*(setInhd*FMC(:, 1))); 
            Vp = (Gl*Gexd(:, 1))./((Gexd(:, 1)+Ginhd(:, 1)+1).*(Ginhp(:, 
1)+Gl+1)+Gl*(Ginhp(:, 1)+1)); 
            if (i == numTimeStep) 
                Vd(:, iP) = (Gexd(:, 1).*(Ginhp(:, 1)+Gl+1))./((Gexd(:, 
1)+Ginhd(:, 1)+1).*(Ginhp(:, 1)+Gl+1)+Gl*(Ginhp(:, 1)+1)); 
            end 
            FMC(:, 2) = (Vp.^3)./(0.01+(Vp.^3)); 
            Gexd(:, 1) = Gexd(:, 2); 
            Ginhp(:, 1) = Ginhp(:, 2); 
            Ginhd(:, 1) = Ginhd(:, 2); 
            FMC(:, 1) = FMC(:, 2); 
        end 
        FMCFinal(:, iP) = FMC(:, 2); 
    end 
  
    temp = corr(activityPattern, Vd'); 
    Wth_mc = Wth_mc*(1-RM)+(sign(temp).*(temp.^2))*RM; 
    Wth_mc = Wth_mc.*(Wth_mc > 0); 
    Cth_mc = (1-RM)*Cth_mc+RM*(((Fth_mc*ones(numTH, numMC))./(ones(numTH, 
1)*((mean(FMCFinal, 2))'))).*Cth_mc); 
    Wth_mc = (Wth_mc./(ones(numTH, 1)*sum(Wth_mc))).*Cth_mc; 
  
    temp = corr(Vd', FMCFinal'); 
    for i = 1 : 1 : numMC 
        temp(i, i) = 0; 
    end 
    setInhd = (1-RM)*setInhd+RM*temp; 
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    setInhd = setInhd.*(setInhd > 0); 
    for i = 1 : 1 : numMC 
        setInhd(i, i) = 0; 
    end 
  
end 
  
corrMC = corr(FMCFinal'); 
temp = corrMC.*(corrMC > 0); 
for i = 1 : 1 : numMC 
    temp(i, i) = 0; 
end 
temp = temp.^2; 
aveCorrMC = mean(temp(:)); 
display(num2str(aveCorrMC, '%4.3f')); 
  
figure; 
xlim([-1 1]); 
hold on; 
grid on; 
hist(corrMC(:), 100); 
  
temp = sum(Wth_mc); 
temp = (temp > 0).*temp+(temp <= 0)*0.001; 
newCoorMC = ((Wth_mc')*coorTH)./((temp')*ones(1, size(coorTH, 2))); 
  
counterLine = 0; 
for i = 1 : 1 : numMC 
    if ((abs(newCoorMC(i, 1)) < 100) && (abs(newCoorMC(i, 2)) < 100)) 
        temp = find(setInhp(i, :) == 1); 
        for j = 1 : 1 : size(temp, 2) 
            if ((abs(newCoorMC(temp(1, j), 1)) < 100) && 
(abs(newCoorMC(temp(1, j), 2)) < 100))  
                counterLine = counterLine+1;     
                distance(counterLine) = sqrt(sum((newCoorMC(i, :)-
newCoorMC(temp(1, j), :)).^2)); 
            end 
        end 
    end 
end 
aveDistance = mean(distance); 
display(num2str(aveDistance, '%4.3f')); 
  
figure; 
axis equal; 
xlim([-5 5]); 
ylim([-5 5]); 
hold on; 
grid on; 
for i = 1 : 1 : numMC 
    if ((abs(newCoorMC(i, 1)) < 100) && (abs(newCoorMC(i, 2)) < 100)) 
        temp = find(setInhp(i, :) == 1); 
        for j = 1 : 1 : size(temp, 2) 
            if ((abs(newCoorMC(temp(1, j), 1)) < 100) && 
(abs(newCoorMC(temp(1, j), 2)) < 100)) 
                plot([newCoorMC(i, 1), newCoorMC(temp(1, j), 1)], ... 
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                    [newCoorMC(i, 2), newCoorMC(temp(1, j), 2)], 'k'); 
            end 
        end 
    end 
end 
plot(newCoorMC(:, 1), newCoorMC(:, 2), 'ro', 'MarkerFaceColor', 'r', 
'MarkerSize', 5); 
  
data = zeros(numMC, 180); 
  
for indexMC = 1 : 1 : numMC 
  
    activityPattern = zeros(180, numTH); 
    counterP = 0; 
    for angle = 0 : 1 : 179 
        counterP = counterP+1; 
        for radius = 0 : 1 : 10 
            x = radius*cos((angle*pi)/180)+newCoorMC(indexMC, 1); 
            y = radius*sin((angle*pi)/180)+newCoorMC(indexMC, 2); 
            activityTH = sqrt(sum((coorTH-ones(numTH, 1)*[x y]).^2, 
2))*(((-1)*FmaxTH)/rfrTH)+FmaxTH; 
            activityTH = activityTH.*(activityTH > 0); 
            activityPattern(counterP, :) = 
activityPattern(counterP, :)+(activityTH)'; 
  
            x = radius*cos(((angle+180)*pi)/180)+newCoorMC(indexMC, 1); 
            y = radius*sin(((angle+180)*pi)/180)+newCoorMC(indexMC, 2); 
            activityTH = sqrt(sum((coorTH-ones(numTH, 1)*[x y]).^2, 
2))*(((-1)*FmaxTH)/rfrTH)+FmaxTH; 
            activityTH = activityTH.*(activityTH > 0); 
            activityPattern(counterP, :) = 
activityPattern(counterP, :)+(activityTH)'; 
        end 
    end 
  
    FMCFinal = zeros(numMC, counterP); 
    Vd = zeros(numMC, counterP); 
    for iP = 1 : 1 : counterP 
        Gexd = zeros(numMC, 2); 
        Ginhp = zeros(numMC, 2); 
        Ginhd = zeros(numMC, 2); 
        FMC = zeros(numMC, 2); 
        inputTH = (((activityPattern(iP, :)*Wth_mc)')*force)*Cth; 
        for i = 1 : 1 : numTimeStep 
            Gexd(:, 2) = (1-(1/Tau))*Gexd(:, 1)+(1/Tau)*(inputTH(:, 
i)+Cexd*(setExd*FMC(:, 1))); 
            Ginhp(:, 2) = (1-(1/Tau))*Ginhp(:, 
1)+(1/Tau)*(Cinhp*(setInhp*FMC(:, 1))); 
            Ginhd(:, 2) = (1-(1/Tau))*Ginhd(:, 
1)+(1/Tau)*(Cinhd*(setInhd*FMC(:, 1))); 
            Vp = (Gl*Gexd(:, 1))./((Gexd(:, 1)+Ginhd(:, 1)+1).*(Ginhp(:, 
1)+Gl+1)+Gl*(Ginhp(:, 1)+1)); 
            if (i == numTimeStep) 
                Vd(:, iP) = (Gexd(:, 1).*(Ginhp(:, 1)+Gl+1))./((Gexd(:, 
1)+Ginhd(:, 1)+1).*(Ginhp(:, 1)+Gl+1)+Gl*(Ginhp(:, 1)+1)); 
            end 
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            FMC(:, 2) = (Vp.^3)./(0.01+(Vp.^3)); 
            Gexd(:, 1) = Gexd(:, 2); 
            Ginhp(:, 1) = Ginhp(:, 2); 
            Ginhd(:, 1) = Ginhd(:, 2); 
            FMC(:, 1) = FMC(:, 2); 
        end 
        FMCFinal(:, iP) = FMC(:, 2); 
    end 
  
    data(indexMC, :) = FMCFinal(indexMC, :); 
  
end 
  
radius = 0.5/sin((60/180)*pi); 
angle = 30 : 60 : 330; 
coor = zeros(6, 2); 
coor(:, 1) = radius*cos((angle*pi)/180); 
coor(:, 2) = radius*sin((angle*pi)/180); 
  
figure; 
axis equal; 
xlim([-5 5]); 
ylim([-5 5]); 
hold on; 
angle = 0 : 1 : 179; 
angle = (angle/179)*0.8-0.4; 
for i = 1 : 1 : numMC 
    x = coor(:, 1)+coorMC(i, 1); 
    y = coor(:, 2)+coorMC(i, 2); 
    fill(x, y, 'w'); 
    plot([coorMC(i, 1)-0.4 coorMC(i, 1)+0.4], [coorMC(i, 2)-0.25 coorMC(i, 
2)-0.25], 'k', 'LineWidth', 2); 
    tempX = angle+coorMC(i, 1); 
    tempY = FMCFinal(i, :)*0.5+coorMC(i, 2)-0.25; 
    temp = coorMC(i, 2)-0.25; 
    for j = 1 : 1 : 180 
        plot([tempX(1, j) tempX(1, j)], [tempY(1, j) temp], 'r'); 
    end 
end 
  
figure; 
axis equal; 
xlim([-5 5]); 
ylim([-5 5]); 
hold on; 
for i = 1 : 1 : numMC 
    x = coor(:, 1)+coorMC(i, 1); 
    y = coor(:, 2)+coorMC(i, 2); 
    fill(x, y, 'w'); 
end 
for i = 1 : 1 : numMC 
    for angle = 0 : 1 : 179 
        radius = FMCFinal(i, angle+1)*0.6; 
        x1 = radius*cos((angle*pi)/180)+coorMC(i, 1); 
        y1 = radius*sin((angle*pi)/180)+coorMC(i, 2); 
        x2 = radius*cos(((angle+180)*pi)/180)+coorMC(i, 1); 
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        y2 = radius*sin(((angle+180)*pi)/180)+coorMC(i, 2); 
        plot([x1 x2], [y1 y2]); 
        plot(coorMC(i, 1), coorMC(i, 2), 'r+'); 
    end 
end 
  
rand('twister', 5489); 
  
counterP = 20; 
num = 100; 
  
corrYMC = zeros(num, 1); 
  
Y = zeros(counterP, 1); 
Y(counterP/2+1 : counterP, 1) = ones(counterP/2, 1); 
  
for numUpdates = 1 : 1 : num 
  
    FTH = rand(counterP, numTH); 
    FTH(counterP/2, :) = ones(1, numTH)*((counterP/2)*0.5)-sum(FTH(1 : 
counterP/2-1, :), 1); 
    FTH(counterP, :) = ones(1, numTH)*((counterP/2)*0.5)-
sum(FTH(counterP/2+1 : counterP-1, :), 1); 
    for i = 1 : 1 : numTH 
        if (FTH(counterP/2, i) < 0) 
            scaleFactor = ((counterP/2)*0.5)/sum(FTH(1 : counterP/2-1, i)); 
            FTH(1 : counterP/2-1, i) = FTH(1 : counterP/2-1, 
i)*scaleFactor; 
            FTH(counterP/2, i) = 0; 
        elseif (FTH(counterP/2, i) > 1) 
            scaleFactor = ((counterP/2)*0.5-1)/sum(FTH(1 : counterP/2-1, 
i)); 
            FTH(1 : counterP/2-1, i) = FTH(1 : counterP/2-1, 
i)*scaleFactor; 
            FTH(counterP/2, i) = 1; 
        end 
        if (FTH(counterP, i) < 0) 
            scaleFactor = ((counterP/2)*0.5)/sum(FTH(counterP/2+1 : 
counterP-1, i)); 
            FTH(counterP/2+1 : counterP-1, i) = FTH(counterP/2+1 : 
counterP-1, i)*scaleFactor; 
            FTH(counterP, i) = 0; 
        elseif (FTH(counterP, i) > 1) 
            scaleFactor = ((counterP/2)*0.5-1)/sum(FTH(counterP/2+1 : 
counterP-1, i)); 
            FTH(counterP/2+1 : counterP-1, i) = FTH(counterP/2+1 : 
counterP-1, i)*scaleFactor; 
            FTH(counterP, i) = 1; 
        end 
    end 
  
    FMCFinal = zeros(numMC, counterP); 
    Vd = zeros(numMC, counterP); 
    for iP = 1 : 1 : counterP 
        Gexd = zeros(numMC, 2); 
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        Ginhp = zeros(numMC, 2); 
        Ginhd = zeros(numMC, 2); 
        FMC = zeros(numMC, 2); 
        inputTH = (((FTH(iP, :)*Wth_mc)')*force)*Cth; 
        for i = 1 : 1 : numTimeStep 
            Gexd(:, 2) = (1-(1/Tau))*Gexd(:, 1)+(1/Tau)*(inputTH(:, 
i)+Cexd*(setExd*FMC(:, 1))); 
            Ginhp(:, 2) = (1-(1/Tau))*Ginhp(:, 
1)+(1/Tau)*(Cinhp*(setInhp*FMC(:, 1))); 
            Ginhd(:, 2) = (1-(1/Tau))*Ginhd(:, 
1)+(1/Tau)*(Cinhd*(setInhd*FMC(:, 1))); 
            Vp = (Gl*Gexd(:, 1))./((Gexd(:, 1)+Ginhd(:, 1)+1).*(Ginhp(:, 
1)+Gl+1)+Gl*(Ginhp(:, 1)+1)); 
            if (i == numTimeStep) 
                Vd(:, iP) = (Gexd(:, 1).*(Ginhp(:, 1)+Gl+1))./((Gexd(:, 
1)+Ginhd(:, 1)+1).*(Ginhp(:, 1)+Gl+1)+Gl*(Ginhp(:, 1)+1)); 
            end 
            FMC(:, 2) = (Vp.^3)./(0.01+(Vp.^3)); 
            Gexd(:, 1) = Gexd(:, 2); 
            Ginhp(:, 1) = Ginhp(:, 2); 
            Ginhd(:, 1) = Ginhd(:, 2); 
            FMC(:, 1) = FMC(:, 2); 
        end 
        FMCFinal(:, iP) = FMC(:, 2); 
    end 
  
    temp = zeros(numMC, 1); 
    for i = 1 : 1 : numMC 
        if (isequal(FMCFinal(i, :), zeros(1, counterP)) == 0) 
            temp(i, 1) = corr(FMCFinal(i, :)', Y); 
        else 
            temp(i, 1) = 0; 
        end 
    end 
    corrYMC(numUpdates, 1) = corr(Y, (FMCFinal')*temp); 
  
end 
  
display(num2str(mean(corrYMC.^2), '%4.3f')); 
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