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ABSTRACT 

Katherine A. Hoadley: Development of Biologically Based Therapies for Basal-like Breast 
Tumors 

(Under the direction of Charles M. Perou) 
 
 

There have been many experiments on breast cancer cell lines and tumors with 

respect to identifying genes/pathways that are involved in cancer initiation, progression and 

response to therapy; however, only a few actually make suggestions that might affect 

treatment.  The knowledge that breast cancer actually represents several diseases that arise 

from at least two different epithelial cells has been a major stepping-stone for stratifying 

patients and identifying more selective and biology-based therapies.  Drugs aimed at the 

estrogen receptor, estrogen production, and HER2 have been very successful in the many 

patients whose tumors are dependent upon these signaling pathways for growth.  

Unfortunately for tumors that lack these markers, such as basal-like subtype, there are few 

treatment options.  Until recently, few studies had actually considered if there were subtype-

specific differences in response to chemotherapy. This dissertation focuses on the basal-like 

subtype of cancer and examines responses to chemotherapeutics relative to the luminal 

subtypes and evaluates the EGFR pathway as a place for potential therapeutic intervention.  

In response to two chemotherapeutics – doxorubicin and 5-fluorouracil – a general 

stress response was the dominant profile and this profile varied both in vitro and in vivo 

between the subtypes.  The drug-specific response was more similar in the subtypes. A 

predictive gene list was identified that could predict both subtype and drug treatment with 

 ii



fairly high accuracy suggesting some degree of subtype-specific mechanism of action.  The 

different responses to doxorubicin and 5-fluorouracil led us to evaluate sensitivity to a larger 

panel of drugs and cell lines and we determined that the basal-like subtype was more 

sensitive to carboplatin.  While identification of chemotherapy regimens that are beneficial to 

the basal-like subtype is needed, drugs targeted to specific deregulated pathways in this 

subtype will be more effective in the long run.  My work evaluated the EGFR pathway and 

determined it is high in 90% of all basal-like tumors, but I also identified high expression of 

genes downstream of EGFR that can induce EGFR-independent activation of this pathway.  

My data suggest that inhibition of MEK or PI3K, along with chemotherapeutics, may be an 

effective regimen for basal-like patients.
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CHAPTER I 

INTRODUCTION 

 

Breast cancer is the second most common cancer in women, affecting approximately 

1 in 7.  There has been a slight increase in the incidence of breast cancer over the past few 

years.  This may be the result of better screening or an increase in longevity.  Over this same 

time period, there has been a decline in the mortality rate (American Cancer Society), but 

there is still a great need to improve upon our ability to accurately predict patient outcomes 

and to treat patients more effectively.  Even today, intensive chemotherapy regimens with 

side effects that are difficult to tolerate are the standard of care for some patients, and often a 

long-term response is not achievable. Therefore, my research has focused on two important 

treatment refinements, namely identifying the right chemotherapy for the main tumor 

subtypes, and on investigating the involvement of the epidermal growth factor receptor 

(EGFR)-pathway in breast tumors and identifying those patients that might benefit from 

EGFR inhibitor containing therapies.  

 

Normal Breast Development 

An understanding of the biology of the normal breast epithelial cells is needed as the 

basis for understanding the diversity of breast tumor subtypes. In the normal human breast, 

the architecture of breast tissue is very diverse with many types of cells present.  The breast 

is made up of a series of ducts, as well as structural tissue, that develop during several stages 



of a female’s lifespan (Howard and Gusterson, 2000; Russo and Russo, 2004).  Prenatally, 

rudimentary duct structures are formed with two layers of epithelial cells, the beginning of 

the basement membrane, as well as the stromal layer.  This two cell layer thick duct is 

composed of the inner luminal epithelial cells (which are sometimes hormone receptor 

positive) and the outer myoepithelial cell layer (which shows characteristics of basal 

epithelia). The stroma is a connective tissue consisting of fibroblasts, endothelial cells, 

lymphocytes, and adipocytes that supports the ducts and lobules.  Cross talk between the 

stromal fibroblasts and epithelial cells influences normal development (Wiseman and Werb, 

2002).  Around the onset of puberty, the rudimentary duct structures proliferate and 

differentiate into elongated ducts and lobules with the formation of terminal and alveolar 

buds.  The stroma also proliferates and starts accumulating fat.  During pregnancy, there is a 

massive increase in proliferation and formation of acini in the alveolar buds.  The breast 

proliferation increases so much that it is difficult to even distinguish the main duct from its 

side branches.  After giving birth, milk is secreted from the alveolar/luminal cells and travels 

through the ducts to the nipple.  Once lactation is complete, the breast goes through a period 

of involution, whereby the massive secondary and tertiary breast structures are reduced to 

near pre-pregnancy levels through apoptosis (Schorr et al., 1999; Strange et al., 2001).   

 

Microarray Analysis for Identification of Breast Cancer 

In the past decade, the use of DNA microarrays has greatly expanded our 

understanding of breast tumor biology.  This technology allows for the identification of gene 

expression changes by the binding of fluorescently labeled RNA or cDNA to complementary 

cDNA or synthesized oligonucleotides that have been spotted onto known positions on a 
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glass slide (Duggan et al., 1999; Lockhart and Winzeler, 2000).  In dual-color arrays, the 

ratio of the intensity of the experimental sample versus a reference sample can be calculated 

to determine the expression levels of genes within any sample tested.  Microarrays have now 

been used to examine gene expression in a number of breast tumor patient cohorts from 

multiple groups (Perou et al., 2000; Alizadeh et al., 2001; Sørlie et al., 2001; van de Vijver et 

al., 2002; Sørlie et al., 2003; Sotiriou et al., 2003; Weigelt et al., 2003; Ma et al., 2004; 

Chang et al., 2005; Paik et al., 2006). Since breast tumor samples contain the many cell types 

present in the breast, in addition to the tumor tissue, and each breast has differences in 

development and structure, the composition of each tumor section will vary from sample to 

sample.  Gene expression analysis identified the various cell types within each tumor section 

such as endothelial cells, stromal cells, adipose-enriched cells, B and T lymphocytes, 

macrophages and epithelial cells (Perou et al., 2000); thus the gene expression patterns 

recapitulate the complex histology of tumors. 

Since the unsupervised approach included the expression of non-tumor cells, 

additional classification gene lists have been developed that can predict patients’ outcomes 

(Perou et al., 2000). Our approach has been to use an “intrinsic analysis” for gene/feature 

selection, which is an analysis based upon paired samples that identifies genes that vary little 

within repeated samples of the same tumor, but which vary significantly across different 

tumors (Sørlie et al., 2001; Sørlie et al., 2003; Hu et al., 2006). Hierarchical clustering of 

tumors based on the intrinsic gene list stratifies tumors into several subtypes (Figure 1.1). 

The tumors separated into two main branches defined largely by the expression of the 

luminal epithelial gene set that contains the estrogen receptor (ER), a key breast cancer  

 3



 

 

Figure 1.1 

 4



 

 

 

 

 

 

 

 

Figure 1.1. Breast tumors analyzed using hierarchical clustering and the 
intrinsic gene list. A single data set of 340 samples from University of North 
Carolina at Chapel Hill and 337 from the Netherlands Cancer Institute were 
combined using Distance Weighted Discrimination (Benito et al., 2004), and then 
clustered together with the 1300 intrinsic gene list (Hu et al., 2006) to yield a large, 
homogenous data set containing over 470 different tumors with RFS and OS data. 
The clustering analysis identified the five major intrinsic subtype of Luminal A, 
Luminal B, Normal-like, Basal-like and HER2+/ER-. The Luminal A tumors can be 
further subdivided into Luminal A and Luminal A-Prime. A) HER2-amplicon gene set. 
B) Basal epithelial gene set. C) Luminal epithelial gene set. D) Proliferation gene set.  
E) Kaplan-Meier plots for Relapse-Free Survival for the six groups described in this 
Figure (Luminal A-Prime, Luminal A, Luminal B, Basal-like, HER2+/ER-, and 
Normal-like).  G) Kaplan Meier plots for Overall Survival for the six groups. 
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marker that has been used for classifying breast cancer because it is a drug target (Figure 

1.1C).  Within the luminal/ER+ tumors were at least two sub-branches termed luminal A and 

luminal B.  These tumors expressed keratins 8 and 18, as well as the ER and estrogen 

regulated-regulated genes including RERG and LIV1.  The main difference between these 

two subtypes is that the luminal B subtype has reduced expression level of the luminal/ER+ 

cluster and has higher expression of a gene set that is indicative of cellular proliferation rates 

(Figure 1.1D) (Whitfield et al., 2002; Whitfield et al., 2006).  Our lab has further stratified 

the luminal A tumors into two groups of which one we have termed luminal A-prime.  These 

tumors are characterized by low proliferation and low recurrence score based on Paik et al.’s 

predictor (Paik et al., 2006).  Also in this branch was the normal breast and normal-like 

breast tumor with expression of genes from adipose cells and cytokeratin 5/6 expression 

(Figure 1.1B). The tumor samples that cluster with the normal tissue samples may have 

clustered in this branch because the sampled tumor section contained high amounts of 

surrounding normal tissue.   

The ER-negative dendrogram branch contained at least two sub-branches.  One of 

these branches included the other main breast cancer marker, v-erb-b2 erythroblastic 

leukemia viral oncogene homolog 2 (HER2) and defines the HER2+/ER- subtype, which 

showed high expression of HER2 and many other genes on the 17q amplicon.  The basal-like 

subtype lacked both expression of ER and the overexpression of HER2.  This group had high 

expression levels of proliferation genes and was positive for keratins 5, 6 and 17 (van de Rijn 

et al., 2002), which are typically expressed in basal epithelia of the human body.  Using IHC 

(Perou et al., 2000) or immunofluorescence, these subtypes were hypothesized to arise from 

different cells within the breast based in part upon their unique keratin expression patterns 
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(Figure 1.2).  Keratin 8 and 18 were present in the luminal cells that line the lumen and are 

hormonally responsive, and also present in all tumors called luminal by gene expression 

(Figure 1.2A and F). Conversely, keratin 5/6 were present in myoepithelial and basal-like 

cells surrounding the layer of luminal cells, as well as most tumors called basal-like by gene 

expression (Figure 1.2B and E).  Overlay of the two images shows that the Keratin 8/18 and 

5/6 expression were mostly mutually exclusive in normal breast tissues, thus providing 

evidence that breast cancer is a heterogeneous disease arising from at least two different 

epithelial cell lineages within the breast (Figure 1.2D). 

Both the diversity of the breast tissue as well as the heterogeneity of epithelial breast 

cancers was observable at the gene expression level.  In addition, individual variation was 

also observable.  Gene expression signatures of before and after chemotherapy pairs, or 

tumor-lymph node metastasis pairs, were typically much more similar to each other and 

clustered on terminal branches of the dendrogram (Perou et al., 2000).  This underscores the 

individuality of every tumor.  Therefore, one-size-fits-all treatments will not work for all.   

 

Breast Cancer Subtypes Predict Outcomes 

Based on gene expression, breast tumors can be stratified into several subtypes, as 

described above.  However, one may argue that the stratification of breast cancer will merely 

result in a host of subtypes without any clinical results, but these subtypes significantly 

predict survival outcomes.  Kaplan-Meier survival analysis of overall survival (OS) and 

relapse free survival (RFS) data shows that these subtypes have significantly different  
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gure 1.2. Immunofluorescence of normal breast ducts and breast tumors.  A) A normal 
east duct probed with FITC-conjugated antibodies to Cytokeratin (K) 8/18; K8/18 is 
pressed in luminal epithelial cells.  B) Normal breast duct probed with Rhodamine-
njugated antibody to K5; K5 is expressed in myoepithelial cells.  C) Light field image of 
rmal breast duct.  D) Merged Field, notice compartmentalization of K8/18 and K5.  E) 
filtrating basal-like breast tumor (top right of image) with K5 expression and presence of 
rmal breast duct (bottom left) with K5 expression in myoepithelial and K8/19 expression 
 luminal cells.  F) Luminal tumors with only K8/18 expression. Immunofluorescence was 
rformed by Xiaping He. 
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outcomes (Sørlie et al., 2001; Sørlie et al., 2003; Hu et al., 2006) (Figure 1.1).  Luminal A-

Prime tumors have the best survival outcomes while the luminal B, HER2+/ER-, and basal-

like have poor outcomes.  While each breast tumor has individual characteristics, they share 

subtype characteristics that can predict outcome.   

Subtype identification through intrinsic analysis holds up among multiple 

independent, therapy-treated and non-treated patient sets (Hu et al., 2006).  The most recent 

intrinsic list was derived from 105 UNC tumors on a large array platform to create a list with 

1300 genes and included a proliferation signature (Hu et al., 2006).  In all the data sets, the 

intrinsic subtypes were identified and they shared similar outcome predictions across data 

sets as well.  The different data sets were also combined into a single data set using Distance 

Weighted Discrimination (DWD), which is a correction tool to allow direct comparison and 

integration of the different data sets (Benito et al., 2004).  The intrinsic subtypes can be 

identified even in this large mixed dataset and the samples cluster based on subtype and not 

by platform or user.   This once again showed difference in patient outcomes and supports 

the robustness of the intrinsic list to identify the prognostic subtypes.   

 

Model of Breast Epithelial Differentiation 

Several labs have hypothesized a model for the development of the epithelial layers 

of the breast, and we believe that the subtypes described above are highly related to potential 

stages of breast epithelial cell development.  As mentioned above, the breast is a dynamic 

tissue that undergoes several stages of growth mostly at sexual maturity and during 

pregnancy where there is a large increase in proliferation followed by involution at the end of 

lactation (Russo and Russo, 2004).  The ability of the breast to go through numerous rounds 
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of proliferation, differentiation, and involution has led to the hypothesis of a breast stem cell 

(Boecker and Buerger, 2003; Clarke, 2005; Woodward et al., 2005).  Indeed, several labs 

have shown in mice the ability to regenerate an entire functional murine mammary gland in a 

cleared mammary fat pad from a single mammary cell (Shackleton et al., 2006; Stingl et al., 

2006).  Human mammary duct structures have also been generated from small numbers of 

organoids transplanted into in a cleared murine mammary fat pad of NOD/SCID mice 

(Kuperwasser et al., 2004). 

Several labs have hypothesized models of breast differentiation.  Upon signals for 

growth, a breast stem cell will differentiate into a committed progenitor that expresses 

keratins 5/6 (Figure 1.3).  This cell has the potential for multi-potent differentiation. We 

postulate that one lineage option is to gain expression of smooth muscle actin and p63 to 

become a myoepithelial cell.  Myoepithelial cells make up the layer of cells that surround the 

luminal cells and excrete collagens, intregrins, and laminins into the basement membrane 

which helps keep the epithelial cells correctly organized and oriented (Gudjonsson et al., 

2002).  Myoepithelial cells rarely develop into cancer, potentially due to the observation that 

myoepithelial cells have a number of tumor suppressors, which make them highly resistant to 

transformation (Sternlicht et al., 1997; Barsky, 2003). The other main lineage option is to 

gain expression of keratins 8/18, lose expression of keratins 5/6, and later gain expression of 

ER and other ER-regulated genes.   

Based on this theory, we hypothesize that the luminal cells arise from the more 

differentiated cells with the keratins 8/18 and ER expression.  The HER2 positive tumors 

may arise from the intermediates between the committed progenitor and the fully 

differentiated luminal cells since HER2+ tumors can be either ER+ or ER-.  The basal-like  
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Figure 1.3. Model of breast epithelial differentiation.  A mammary stem cell has been 
hypothesized to give rise to the different epithelial lineages in the breast. In this model there 
is a long term repopulating stem cell within a stem cell niche.  Progressive differentiation can 
lead to a committed progenitor that is positive for keratins 5/6.  One possible avenue for 
further differentiation is to gain expression of keratins 8/18 and eventual loss of keratin 5/6 
expression.  The luminal intermediate cell may develop into an ER positive cell, an ER 
negative cell, or an alveolar secretory cell.  The luminal cells line the lumen of the milk duct 
and the alveolar cells line the buds at the end of the duct and produce milk.  Another avenue 
for differentiation is to gain smooth muscle actin (SMA) and p63 to become a myoepithelial 
cell that surrounds and provides support for the luminal and alveolar cells.  Cell images were 
designed by Jason Herschkowitz. 
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tumors most probably arise from the committed progenitor as opposed to a mature 

myoepithelial cells because we know that the basal-like tumors lack the expression of p63  

and smooth muscle actin, which define myoepithelial cells and their true tumors, seen as rare 

myoepitheliomas (Livasy et al., 2006).   

 

Treatment Options 

Much of the inability to accurately predict patient outcomes is due to the fact that 

breast cancer is heterogeneous.  For years, clinicians have used the presence of two markers, 

ER and HER2, as well as size, grade, node status, age, and morphology, to help categorize 

breast tumors in order to guide treatment.  ER is high in a subset of patients while HER2 is 

amplified in another subset of tumors.  The identification of these markers led to the 

development of several effective inhibitors that are specific for these molecules.  Tamoxifen, 

an estrogen-like compound that binds ER and prevents growth, was developed in the 1960s 

(Jordan, 2003).  In addition, aromatase inhibitors have been developed that prevent the 

production of estrogen from androgens in postmenopausal women (Brueggemeier, 2006).  

Hormonal therapy has become a standard treatment regimen for ER positive tumors.  

Trastuzumab, a monoclonal antibody to the extracellular ligand-binding domain of HER2, 

prevents subsequent downstream signaling that leads to increased growth and decreased 

apoptosis.  Trastuzumab clinical trials showed significant improvement with treatment and 

was recently approved for wide spread clinical use (Romond et al., 2005).  These drugs have 

made huge advancements in breast cancer patient survival because they target the selected 

cancer cells with fewer side effects than chemotherapy, and because they are only given to 

the patients who express the drugs’ target. Thus, the development of diagnostics to identify 
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the patients that might benefit from these drugs was almost as important as the development 

of the drugs themselves.  However, some patients eventually do succumb while on these 

therapies suggesting that additional therapies are needed. Obviously, there is a lot of 

variation among tumors and a better understanding of the underlying genetic variation across 

the tumors might give more insight into how to treat breast tumors.   

Chemotherapy is the standard of care for almost all intermediate and high-risk breast 

cancer patients; however, treatment regimens vary from location to location and from 

physician to physician.  Guidelines have been developed for adjuvant chemotherapy from 

consensus panels at several conferences, such as St. Gallen and National Institute of Health, 

to help guide treatment options based on clinical and pathological information (Eifel et al., 

2001; Goldhirsch et al., 2005).  Two online websites, Nottingham Prognostic Index (Galea et 

al., 1992) and Adjuvant! Online (Ravdin et al., 2001), have also been developed to help guide 

treatment regimens.  However, these methods could be improved upon if they could 

incorporate some of the genomic information that was described above. 

To best determine treatment, we need to have a better understanding of the biology of 

these subtypes and how the subtypes interact with the current biomarkers that guide therapy.  

The gene expression data identified in the intrinsic subtypes have provided additional 

knowledge about the different subtypes.  The luminal/ER+ tumors typically have better 

outcomes than the other subtypes.  However, even within the luminal tumors gene expression 

studies have been able to further elucidate treatment options.  Paik et al classified ER 

positive, node-negative tumors according to a Recurrence Score (RS) based on the gene 

expression levels of 21 genes that predicts the tumors propensity to recur (Paik et al., 2006).  

They showed that high RS scores correlated with a high likelihood of recurrence and a large 
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benefit from chemotherapy, whereas, low or moderate RS scores gave lower propensities to 

recur, no benefit from adjuvant chemotherapy and these patients gained a benefit from 

tamoxifen. High RS trended to show high proliferation and we have shown that the high RS 

ER-positive tumors are typically luminal B (Fan et al., 2006).  This sort of knowledge can 

help improve the treatment option for these patients by directing chemotherapy regimens to 

those patients that will actually benefit.  

For ER-negative tumors, the benefit of chemotherapy is better established. The basal-

like group, which lacks ER and HER2 expression, is currently limited to the cytotoxic 

chemotherapy.  A major concern with a chemotherapy-only option for the basal-like subtype 

is that the majority of the preclinical and clinical testing was performed on unselected 

subtype populations that contained high percentages of the more prevalent and better 

outcome luminal subtype.  Therefore, it is necessary to have a better understanding of the 

biology behind the basal-like subtype and how it responds to chemotherapy.  There is also a 

need for the development of targeted therapies for the basal-like subtype.  Unlike 

chemotherapy which affects all rapidly dividing cells, thus leading to side effects, therapies 

that target specific molecules unique to the tumor will allow for a more efficient treatment 

with fewer side effects and potentially a better outcome.   

 

Research Introduction 

Noting these issues with treatment decisions, especially concerning basal-like tumors, 

Chapter 2 and Chapter 3 are devoted to evaluating the chemotherapeutic-induced gene 

expression responses in two subtypes of breast cancer, the basal-like and luminal.  As 

mentioned previously, most in vitro and in vivo studies have included the luminal subtype 
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when observing effects of chemotherapeutics; however, a focus on the basal-like subtype has 

been lacking. Therefore, one main goal was to determine if similar or distinct responses to 

common chemotherapeutics between these two subtypes occurred.  5-fluorouracil (5FU) and 

doxorubicin (DOX) were chosen based on availability of in vivo tumor gene expression data 

from patients who had been treated with these drugs.  Therefore, we could observe gene 

expression in both cell lines and tumors.  We detail the dramatically different responses that 

we observed.  In Chapter 2, a general stress response to both 5FU and DOX was noted to be 

the dominant profile, and in Chapter 3 we identify smaller, drug-specific signatures.  The 

basal-like tumors are ER-, progesterone receptor (PR)- and HER2-, and thus, they are in 

desperate need of a biologically targeted agent(s). In Chapter 4, the focus turns to the EGFR 

pathway as a possible biologically based target pathway present within basal-like tumors.  
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CHAPTER II 

CELL-TYPE-SPECIFIC RESPONSES TO CHEMOTHERAPEUTICS IN BREAST 
CANCER 
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ABSTRACT 

Recent microarray studies have identified distinct subtypes of breast tumors that arise 

from different cell types and that show statistically significant differences in patient outcome. 

To gain insight into these differences, we identified in vitro and in vivo changes in gene 

expression induced by chemotherapeutics. We treated two cell lines derived from basal-like 

epithelium (immortalized human mammary epithelial cells) and two lines derived from 

luminal epithelium (MCF-7 and ZR-75-1) with chemotherapeutics used in the treatment of 

breast cancer and assayed for changes in gene expression using DNA microarrays. Treatment 

doses for doxorubicin and 5-fluorouracil were selected to cause comparable cytotoxicity 

across all four cell lines. The dominant expression response in each of the cell lines was a 

general stress response; however, distinct expression patterns were observed. Both cell types 

induced DNA damage response genes such as p21waf1, but the response in the luminal cells 

showed higher fold changes and included more p53-regulated genes. Luminal cell lines 

repressed a large number of cell cycle regulated genes and other genes involved in cellular 

proliferation, whereas the basal-like cell lines did not. Instead, the basal-like cell lines 

repressed genes that were involved in differentiation. These in vitro responses were 

compared with expression responses in breast tumors sampled before and after treatment 

with doxorubicin or 5-fluorouracil /mitomycin C. The in vivo data corroborated the cell-type 

specific responses to chemotherapeutics observed in vitro, including the induction of p21waf1.  

Similarities between in vivo and in vitro responses help to identify important response 

mechanisms to chemotherapeutics. 
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INTRODUCTION 

The response of breast tumors to cytotoxic chemotherapeutic agents such as 

doxorubicin (DOX) and 5-fluoruracil (5FU) varies significantly across individuals.  

Sensitivity to these compounds is associated with HER2 overexpression (Thor et al., 1998), 

p53 status (Aas et al., 1996), and topoisomerase IIα amplification or deletion (Jarvinen et al., 

2000), but the mechanisms of chemoresistance are still poorly understood.  To better 

understand variations in clinical responses to treatment, recent studies have used gene 

expression patterns to identify major biological subtypes of breast cancer.  These studies 

identified a previously unrecognized tumor subtype with characteristics of breast basal-like 

epithelium (Perou et al., 2000; Sørlie et al., 2001; van 't Veer et al., 2002; Sørlie et al., 2003; 

Sotiriou et al., 2003).  Basal-like tumors are estrogen receptor α (ERα)-negative, do not 

overexpress HER2, and they have a poor prognosis compared to tumors derived from luminal 

epithelium (Sørlie et al., 2001; Sørlie et al., 2003).  

Basal-like and luminal breast tumors are often treated with the same 

chemotherapeutic agents, but little is known about how each cell type responds to these 

drugs. To improve our understanding of how basal-like and luminal epithelium differ in their 

responses to chemotherapy, we selected two representative cell lines from each of these 

breast epithelial cell types to study; two human mammary epithelial (HME) cell lines 

immortalized by the overexpression of the catalytic subunit of telomerase (hTERT) represent 

the basal-like subtype, and two breast tumor-derived cell lines (MCF-7 and ZR-75-1) 

represent the luminal subtype (Ross et al., 2000). All four cell lines express wildtype p53 

protein. True to their corresponding tumor subtypes, the HME lines are ERα-negative and the 
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luminal cancer cell lines are ERα-positive. We treated all four cell lines with DOX and 5FU 

and performed expression profiling to identify patterns of response. 

Transcriptional profiling is a powerful approach for investigating cellular responses to 

drugs. This approach has led to greater understanding of pathway inhibition and off-target 

drug effects (Hughes et al., 2000), the response of yeast to genotoxic agents and 

environmental stresses (Gasch et al., 2000), and the effects of different kinds of DNA-

damaging agents in human cells (Heinloth et al., 2003). Our analyses showed that the 

transcriptional responses of the basal-like and luminal cell lines to chemotherapeutics are 

quite distinct. We also correlated our in vitro data with in vivo data on breast tumors sampled 

before and after treatment with DOX or 5FU/mitomycin C (Perou et al., 2000; Sørlie et al., 

2001; Sørlie et al., 2003) and we identified commonalities. Taken together, these in vitro and 

in vivo data sets illustrate that cell type is an important determinant of response to commonly 

used chemotherapeutics. 

 

MATERIALS AND METHODS 

Cells and Culture Conditions 

HME31-hTERT no. 16C (ME16C) cells were derived from a clone of a finite lifespan 

HME cell culture isolated from the uninvolved tissue of a 53-year-old woman with unilateral 

breast cancer and no family history of breast cancer; HME31 postselection cells were 

infected with the retrovirus pBABE-puro-hTERT and an immortal population was 

established (ME16C). A second immortal HME clone, HME-CC, was a gift from 

Christopher Counter (Duke University, Durham NC); to derive the HME-CC cells, a HME 

cell isolate (Clonetics) was infected with the retrovirus pBabe-hygro-hTERT and an 
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immortal population was established. ME16C and HME-CC cells were maintained in 

mammary epithelium growth media (Cambrex Bio Science, Walkersville, MD). Karyotyping 

on the ME16C and HME-CC lines was conducted as described in Wang and Fedoroff (Wang 

and Fedoroff, 1972) at the University of North Carolina at Chapel Hill Chromosome Imaging 

Core Facility. A single isolate of the HME-CC was found to be trisomic for chromosome 20 

in 65% of metaphase spreads and contained 9q+ and 18q+ in 25% of metaphase spreads.  

Two different isolates of ME16C were studied, and both were shown to be trisomic for 

chromosome 20 in 50% of metaphase spreads and marker chromosomes 3p- and iso10q were 

recognized in 25% of metaphase spreads. MCF-7 cells (a gift from F. Tamanoi, UCLA) and 

ZR-75-1 cells (American Type Culture Collection) were maintained in RPMI 1640 

supplemented with L-glutamine (GIBCO), 10% Fetal Bovine Serum (Sigma), and 50 

unit/mL penicillin/50 unit/mL streptomycin. Before conduction these experiments and at 

regular intervals, thereafter, all cell lines were tested by the University of North Carolina at 

Chapel Hill Tissue Culture Facility and were found to be negative for Mycoplasma 

contamination. Cells were maintained at 37 °C and 5% carbon dioxide. 

 

Cytotoxicity Assay 

A mitochondrial dye conversion assay (Cell Titer 96, Promega) was used to 

quantitate cell line responses to chemotherapeutics. Five thousand cells were seeded per well 

of a 96-well plate. The cells were allowed to adhere overnight and then the media was 

replaced with fresh media containing a range of drug doses (DOX: 0 – 10 µM, 5FU: 0 – 10 

mM). After 36h of drug treatment, 15 µL of tetrazolium dye solution were added, and 

incubated at 37°C for 1h before adding Cell Titer 96 Stop Solution. Dye conversion products 
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were allowed to solubilize in a humidified chamber overnight, and absorbance was measured 

at 570 nm (minus background absorbance at 650 nm). 

 

Estimating the Inhibitory Concentration 50% (IC50) 

The IC50 for 36h of treatment for each drug in each cell line was estimated using 

nonlinear regression (SAS Statistical Software, Cary, NC) and the following relationship: 

bxx
ky

)/(1 0+
=      

where y is the absorbance value corrected for media-only wells, and x is the dose (in µM for 

DOX and in mM for 5FU; Ref. (Van Ewijk and Hoekstra, 1993)). The parameter k represents 

the value of y (in absorbance units) when x is zero. The IC50 value is represented by x0, and 

–b is a unitless scalar representing the slope of the line on logit-log scale. In our experiments, 

if b is greater than zero, the response is monotonically decreasing.  

 

Collection of mRNA for Microarray Experiments 

Cell lines were grown in 150-mm dishes to 70-80% confluence and then were treated 

for 3h, 12h, 24h, or 36h with DOX (doxorubicin hydrochloride) or 5FU (Sigma) at the IC50 

concentration. Cells were harvested by scraping and mRNA was isolated using a Micro-

FastTrack kit (Invitrogen). To generate feeding control (sham) mRNA samples for each cell 

line, cells were treated with media only, in parallel with drug-treated samples. Individual 

harvests of treated or sham mRNA were not pooled prior to microarray analysis.  However, a 

reference mRNA sample was generated for each of the four cell lines by harvesting untreated 

mRNA from each cell line at 80% confluence and then pooling four harvests together (i.e. 

four MCF-7 harvests were pooled and served as the reference mRNA for all MCF-7 
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experiments), using each cell line as its own reference controlled for baseline differences 

between the cell lines. 

 

Microarray Experiments 

Syntheses of labeled cDNA were performed as described previously (Perou et al., 

2000), with reference cDNAs labeled with Cy3-dUTP and treated and sham cDNAs labeled 

with Cy5-dUTP. Each cDNA sample mix was hybridized overnight to an oligonucleotide 

microarray created in the University of North Carolina at Chapel Hill Genomics Core 

Facility [http://genomicscore.unc.edu/]. These microarrays were created by spotting the 

Compugen Human oligomers library representing 18,861 human genes 

[http://www.labonweb.com/chips/libraries.html] onto coated microarray slides (Corning no. 

40016). All of the microarray raw data tables are available at the UNC Microarray Database 

[https://genome.unc.edu/], at the supporting website for this chapter 

[https://genome.unc.edu/pubsup/TOX/], and have been deposited in the Gene Expression 

Omnibus under the accession number of GSE763 (submitter C. Perou).  The direction of 

gene expression change was verified by real-time reverse transcription PCR for a subset of 

samples using commercially available primers (Applied Biosystems) for p21waf1, ferredoxin 

reductase, prostate differentiation factor, inhibitor of DNA binding 3, and chitinase 3-like 1.  

To normalize the target sample variation, we used the average of three control genes: splicing 

factor 3A subunit 1 (SF3A1), pumilio homolog 1 (PUM1), and β-actin.  SF3A1 and PUM1 

were selected as control genes because they had the lowest variation across the tumor data set 

presented in Perou et al. (Perou et al., 2000).  Sham-adjusted real-time PCR values were 
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regressed on the average of sham-adjusted log2 (red/green ratio) array values for each gene; 

the regression yielded a positive slope of 4.3, Pearson r = 0.75 (data not shown). 

  

SAM Using Cell Line Data 

Genes that were significantly induced or repressed were identified using the 

Significance Analysis of Microarrays (SAM) package Add-In for Microsoft Excel (Tusher et 

al., 2001). Before conducting SAM, genes were excluded that did not have a mean signal 

intensity greater than twice the median background value for both the red and green channel 

in at least 70% of the experiments.  For genes that passed these filtering criteria, the log-base-

2 of median red intensity over median green intensity was calculated.   

The gene expression changes in the 3h time points were very modest (data not 

shown); therefore, this time point was excluded from all analyses. To identify genes whose 

steady-state expression was altered, we combined the 12h, 24h, and 36h time points for each 

cell line and treatment group into a single class. This eliminated artifacts caused by random 

temporal variation in steady state RNA levels. Two or three replicate arrays were used for 

each treatment condition for each cell line. 

To identify a general stress response pattern, DOX-treated and 5FU-treated 

experiments were combined into a single class and compared against sham experiments for 

each cell line (i.e. MCF-7 DOX-treated and 5FU-treated vs. MCF-7 sham). Missing data 

were imputed using SAM with 100 permutations and 10 k-nearest neighbors. A two-class 

unpaired SAM analysis was conducted on the imputed data set. The SAM delta values were 

adjusted to obtain the largest gene list that gave a false discovery rate of less than 5%. 
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SAM Using Breast Tumor Data 

All tumor data were previously published (Sørlie et al., 2001; Sørlie et al., 2003) 

except for data from five new tumors samples collected after chemotherapy, which are now 

publicly available at the Stanford Microarray Database [http://genome-www5.stanford.edu/]. 

This breast tumor dataset encompassed two different cohorts of breast cancer patients, one of 

which received neoadjuvant doxorubicin and a second of which received neoadjuvant 5FU 

and Mitomycin C (Geisler et al., 2001; Geisler et al., 2003); in both cohorts, we obtained 

samples of the tumors before therapy and at the time of surgical resection (after therapy 

sample). All before and after samples were labeled with Cy5-dUTP, mixed with Cy3-dUTP-

labeled Stanford common reference sample, and hybridized to cDNA microarrays produced 

at Stanford University (Perou et al., 2000). The gene expression patterns of all before 

samples were compared to the gene expression patterns of all after samples using a two-class, 

unpaired SAM analysis. A total of 81 before and 50 after samples were assessed, 

representing all of the tumor subtypes identified in Sørlie et al.(Sørlie et al., 2001). 

Consistent with the in vitro data analyses, SAM delta values were adjusted to obtain the 

largest gene list that gave a false discovery rate of less than 5%. 

To study the genes differentially regulated in basal-like or luminal tumor subtypes 

separately, we also classified each tumor into one of two groups using the intrinsic list of 

Sørlie et al.(Sørlie et al., 2003): one group contained those tumors that represented the 

luminal epithelium-derived tumors (both Luminal A and B for a total of 51 before and 30 

after samples) and a second group representing the basal-like subtype (for a total of 11 before 

and 10 after). Each of these two groups was then analyzed using a two-class unpaired SAM 
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analysis; gene expression patterns of before samples were compared to gene expression 

patterns of after samples and false discovery rates were estimated. 

 

Hierarchical Clustering of Gene Expression Responses 

Average linkage hierarchical cluster analysis using Pearson correlation was 

conducted using the program Cluster, and the data were visualized in Treeview (Eisen et al., 

1998; Eisen and Brown, 1999). To visualize the gene expression patterns for the luminal cell 

lines, the data from the union of the genes identified by SAM for MCF-7 and ZR-75-1 were 

identified, combined into a non-redundant list, and clustered.  These clusters illustrate the 

fold change relative to control levels for each gene. Following the same procedure, data from 

the union of the genes sets identified for ME16C and HME-CC were extracted, combined 

into a non-redundant list, and clustered. Cluster analysis was also performed using the top 

100 genes identified by SAM for distinguishing between luminal versus basal-like cell lines 

responses to DOX-treatment and 5FU-treatment. For all of the clusters, genes were excluded 

that did not have a mean intensity greater than twice the median background for both the red 

and green channel in at least 80% of the experiments. For the breast tumor data, similar gene 

filtering, SAM, and clustering analyses were performed. 

 

Western Blot Analysis 

Cells were treated for 36h with DOX or 5FU at the 36h IC50 concentration. Cells 

were rinsed with PBS and then harvested with M-PER Mammalian Protein Extraction 

Reagent (Pierce) containing Halt Protease Inhibitor and 5 mM EDTA (Pierce). Protein 

concentrations were determined using Micro BCA Protein Assay Reagent Kit (Pierce). 
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Lysates were combined with 2X Laemmli Sample Buffer (BioRad) containing β-

mercaptoethanol and were boiled for 5 min. Forty µg of protein were electrophoresed on a 4-

20% Tris-HCl Criterion precast gel (Bio-Rad) and transferred to a Hybond-P membrane 

(Amersham Biosciences) by electroblotting. The blots were probed with antibodies against 

p21waf1 (Neomarkers; Ab-11) and β-actin (Abcam, AC-15). Blots were washed three times 

with Tris-buffered saline supplemented with 0.1% TWEEN and then were probed with anti-

mouse IgG horseradish peroxidase-linked whole antibody from sheep (Amersham). The blots 

were rewashed and detection was by enhanced chemiluminescence (SuperSignal West Pico 

Chemiluminescent Substrate, Pierce). 

 

RESULTS 

Cell-Type-Specific Transcriptional Responses In Vitro 

To investigate the response of four distinct cell lines to treatment with 

chemotherapeutics, we used a mitochondrial dye conversion assay [3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide (MTT)] to measure the cytotoxicity of 5FU and DOX 

after 36h of treatment. We then treated these four cell lines (MCF-7, ZR-75-1, ME16C and 

HME-CC) with two mechanistically distinct chemotherapeutics (DOX and 5FU) at doses that 

produced similar levels of toxicity across all four lines (IC50). The IC50 concentrations and 

their 95% confidence intervals are shown in Table 2.1. 

Our experimental design was aimed at identifying the steady-state and cell-type-

specific transcriptional response of these cell lines and was not focused on defining 

chemotherapeutic-specific responses or temporal variation. By combining 12h, 24h, and 36h  
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Table 2.1.  Estimated inhibitory concentration 50% for 5-fluorouracil and doxorubicin based 
on mitochondrial dye conversion assay 
 Cell Line IC50a Treatment Dose 

5-Fluorouracil   
 MCF-7  0.34 mM (0.13 - 0.55) 0.3 mM 
 ZR-75-1 3.3 mM (2.8 - 3.7) 3.0 mM 
 ME16C    0.064 mM (0.055 - 0.074) 0.06 mM 
 HME-CC    0.011 mM (0.009 - 0.013) 0.01 mM 
Doxorubicin   
 MCF-7   0.86 µM (0.74 - 0.97) 0.9 µM 
 ZR-75-1  0.43 µM (0.37 - 0.50) 0.4 µM 
 ME16C  0.52 µM (0.49 - 0.54) 0.5 µM 
 HME-CC  0.16 µM (0.14 - 0.18) 0.2 µM 

aValues in parentheses represent 95% confidence intervals. 
 
 
 
 
 
 
Table 2.2.  Number of oligonucleotides significantly altered by treatment with 
chemotherapeutic as determined by Significance Analysis of Microarrays 

Sample No. of Oligos No. of False Significanta 

MCF7 treated 998 48.5 (4.9) 
ZR-75-1 treated 783 38.5 (4.9) 
ME16C treated 84 3.3 (3.9) 
HME-CC treated 84 3.0 (3.4) 
All tumors 28 0.7 (2.5) 
Luminal tumors  15 0.8 (5.3) 
Basal-like tumors 10 2 (20) 
aPercent false significant indicated in parentheses.  
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treated experiments into a single class for supervised analyses, we avoided temporal artifacts 

and identified only those gene expression changes that were consistent over time. 

 

Chemotherapeutic-Induced Gene Expression Patterns in Luminal Cell Lines. 

Differences between basal-like and luminal cell lines responding to treatment were 

immediately evident given the absolute number of genes whose expression was altered when 

treated experiments were compared to sham experiments (Table 2.2). In each luminal cell 

line, approximately 10-fold more genes were altered in response to drug. To visualize these 

expression changes, we combined the SAM supervised lists for the two luminal cell lines and 

performed a hierarchical clustering analysis (Figure 2.1). Each cell line had a unique 

expression response to chemotherapy that was distinct enough to cause the two treated 

luminal lines to cluster into different dendrogram branches (Figure 2.1B).  

Common features dominated the overall expression patterns in the two luminal cell 

lines despite some cell line specific responses. For example, a cluster of genes that reflect 

cell proliferation in vitro and in vivo (Perou et al., 1999; Perou et al., 2000; Ross et al., 2000; 

Sørlie et al., 2001; Whitfield et al., 2002) was identified (Figure 2.1C). These genes had 

slightly increased expression in the sham experiments because of feeding, but had greatly 

diminished expression during drug treatment. This cluster included well characterized cell 

cycle regulators (Whitfield et al., 2002) such as cyclin A2, cyclin B1, cell division cycle 2, 

and many genes involved in specific phases of the cell cycle such as Ki-67, ribonucleotide 

reductase M2, polo-like kinase, and topoisomerase IIA.  This cluster also included pituitary 

tumor-transforming 1, a gene that is overexpressed in many cancers, is tumorigenic in vivo, 

and has been shown to bind p53 (Bernal et al., 2002). The gene product of serine/threonine  
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Figure 2.1. Gene expression pattern for genes significantly altered in MCF-7 and ZR-
75-1 cell lines responding to chemotherapeutics. Cluster analysis was conducted using 26 
treated and 12 sham experiments. Data from the union of the genes identified by SAM for 
MCF-7 and ZR-75-1 were identified, combined into a non-redundant list, and the compressed 
cluster diagram is shown in A. Colored bars in A illustrate the location of clusters C and D. 
The dendrogram in B shows that experiments were divided into two primary branches 
(treated and sham), and the treated branch was subdivided into two secondary branches: 
MCF-7 experiments (in red) and ZR-75-1 experiments (in blue). A large cluster enriched for 
genes involved or correlated with proliferation (C) and a cluster enriched for genes involved 
in responding to stress or DNA-damage (D) are shown. Genes discussed in the text are 
highlighted in red. 
 

 

 

 

 

 

 35



 

kinase 6 (STK6) is also present and has cell-cycle dependent expression, with maximum 

expression in G2-M (Kimura et al., 1997); in addition, STK6 has been shown to bind 

chromosome 20 open reading frame 1 (Kufer et al., 2002), which is also repressed and in this 

cluster. Squalene epoxidase was down-regulated in the luminal cell lines and is a gene that 

was differentially expressed between luminal and basal-like tumors in vivo (Sørlie et al., 

2001).   

A large cluster of genes that include DNA-damage and stress response genes was up-

regulated in response to treatment in the luminal lines (Figure 2.1D). p21waf1 and the DNA-

damage response gene GADD45 were induced strongly in both lines. Also present in this 

cluster were a number of genes involved in xenobiotic metabolism including 

carboyxlesterase 2, epoxide hydrolase, and ferredoxin reductase. The latter two of these 

genes, along with p21waf1 and GADD45, are all known to be p53-regulated (Liu and Chen, 

2002; Park et al., 2002).  Induction of xenobiotic metabolism genes may represent a 

stereotyped adaptive response of the cell to DNA damage.  

 

Chemotherapeutic-Induced Gene Expression Patterns in Basal-Like Cell Lines 

A much smaller list of genes showed significantly altered expression in the ME16C 

or HME-CC basal-like cell lines (Figure 2.2). Using the combined list of genes that were 

significantly altered in either basal-like cell line in a hierarchical clustering analysis showed 

that the basal-like lines did not cluster as distinctly as the luminal cell lines (Figure 2.2B). 

Within the treated branch, some time points for the HME-CC line clustered on separate 

branches, but the drug-treated ME16C experiments all grouped together. This suggests that 

the changes induced in basal-like cells treated with chemotherapeutics were subject to more  
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Figure 2.2. Gene expression pattern for genes significantly altered by 
chemotherapeutics in ME16C and HME-CC cell lines. Cluster analysis was conducted 
using 25 treated and 12 sham experiments. Data from the union of the genes identified by 
SAM for ME16C or HME-CC were identified, combined into a non-redundant list, and the 
scaled down cluster diagram is shown in A. Colored bars illustrate the location of clusters C 
and D. The dendrogram in B shows that the experiments were divided into two primary 
branches, one consisting primarily of treated experiments (ME16C in red, HME-CC in blue) 
and one consisting exclusively of shams. A large cluster enriched for genes involved in 
differentiation and possibly correlated with proliferation (C) and a cluster enriched for genes 
involved in responding to stress or DNA-damage (D) are shown. Genes discussed in the text 
are highlighted in red. 
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temporal variation. The changes also appeared more subtle; strong signatures like those 

observed in the luminal cell lines were not nearly as evident in these basal-like cell lines. We 

identified a small cluster of genes that was slightly induced in the sham experiments, but that 

was down-regulated in the treated experiments (Figure 2.2C). Many of these genes are 

involved in cellular differentiation including integrin-β4, collagen type XII α1, COX2 and 

core promoter element binding protein. A proliferation signature (similar to Figure 2.1C) was 

not identified in the treated basal-like lines. However, a set of genes involved in the DNA 

damage and/or stress response was identified (Figure 2.2D) and similar to the luminal cell 

lines (Figure 2.1D), p21waf1 was induced, although less dramatically. Several xenobiotic 

metabolism genes were also up-regulated including the p53-regulated genes ferredoxin 

reductase and quinone oxidoreductase homolog, as well as glutathione-S-transferase pi 

(GST-π). Inhibitor of DNA binding 3, an inhibitor of differentiation (Sikder et al., 2003), was 

also induced in both basal-like cell lines. 

 

Comparison of Basal-Like versus Luminal Cell Lines 

In the analyses above, we identified genes that differed between shams and treated 

samples on a cell line by cell line basis.  To assess differences between basal-like and 

luminal cell lines, we first compared the lists of chemotherapeutic-induced genes for the 

luminal (1000 genes) and the basal-like (100 genes) cell lines. There were 42 genes on both 

lists, but only two genes (chitinase 3-like 1 and p21waf1) were up-regulated in all four lines 

(no genes down-regulated). We then used SAM to directly identify the set of genes that 

distinguished the treated luminal lines from the treated basal-like lines. With a 5% false 

discovery rate, 920 genes were statistically different. The top 100 distinguishing genes were  
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Figure 2.3. Gene expression pattern of top 100 genes that distinguished between basal-
like and luminal chemotherapeutic-treated cell lines. Cluster analysis was conducted on 
the 51 chemotherapeutic-treated MCF-7, ZR-75-1, HME-CC and ME16C experiments. The 
scaled down cluster diagram is shown in A. Colored bars illustrate the location of clusters C, 
D, E, and F. The dendrogram in B shows that the 51 experiments were divided into two 
dendrogram branches based on gene expression.  The luminal and basal-like cell lines are 
shown in blue and red, respectively. Clusters of genes are shown whose expression were 
more drastically down-regulated (C and D) or up-regulated (E and F) in luminal cell lines 
compared to basal-like cell lines. Genes discussed in the text are highlighted in red.   
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used to cluster the experiments (Figure 2.3). The grouping of the cell lines identified two 

primary dendrogram branches (Figure 2.3B), one representing only basal-like cell lines and 

one representing predominantly luminal cell lines. A few of the late time points for the basal-

like cell lines fell within the luminal branch but remained distinct on their own secondary 

branches due to their unique expression profiles. This finding again illustrates the temporal 

variability across the basal-like cell lines time points.   

Consistent with our previous analysis, the luminal cell lines showed a greatly reduced 

proliferation signature, which was relatively unchanged in the basal-like cell lines (Figures 

2.3C and 2.3D). This gene set included retinoblastoma 1, ribonucleotide reductase M2, 

MCM4, chromosome 20 open reading frame 1 and pituitary tumor-transforming 1, all of 

which regulate cell proliferation or have cell cycle-dependent expression (Whitfield et al., 

2002).  A cluster of genes whose expression was induced in luminal lines and repressed in 

basal-like lines is shown in Figure 2.3E, wheras the gene set in Figure 2.3F was induced in 

both cell types, but was more highly induced in luminal cells versus basal-like cells. Among 

these genes was X-box binding protein 1 (XBP1), a gene whose expression was previously 

shown to be highly expressed in luminal tumors in vivo (Sørlie et al., 2001). XBP1 is a 

transcription factor involved in mediating the unfolded protein response (Ma and Hendershot, 

2001), which may represent a stress response that is more prominent in secretory luminal 

cells.  HER2 also appeared to be induced more distinctly in luminal cells treated with 

chemotherapeutics (Figure 2.3E). HER2 has been extensively studied in breast cancer and it 

has been shown that MCF-7 cells that over-express HER2 retained their proliferative 

advantage following DOX treatment in a human breast cancer xenograft model (Pegram et 

al., 1997). Figure 2.3F illustrates that the DNA damage response was much more dramatic in  
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the luminal cell lines, with expression of p21waf1 and prostate differentiation factor being 

highly up-regulated in luminal cells and less dramatically induced in basal-like cell lines. We 

also confirmed the cell-type-specific differences in basal-like versus luminal induction of 

p21waf1 on the protein level by Western blot (Figure 2.4). 

 

In Vivo Responses to Chemotherapeutics 

We have previously profiled 115 breast tumors and have identified clinically distinct 

subtypes using patterns of gene expression (Perou et al., 2000; Sørlie et al., 2001; Sørlie et 

al., 2003). Tumor biopsies were sampled before chemotherapy, and for 46 of these tumors, 

tumor biopsies were also sampled after chemotherapy (Geisler et al., 2001; Geisler et al., 

2003). To allow comparisons with our in vitro work, we conducted a supervised analysis 

using SAM to identify gene expression differences between before and after chemotherapy 

samples.  For the first analysis, we disregarded tumor subtype differences and treatment 

differences (patients were treated with either DOX or 5FU/mitomycin) and looked for 

consistent differences between 81 before samples and 50 after samples. All breast tumor 

subtypes identified in Sørlie et al. (Sørlie et al., 2003) were represented. The list of genes that 

differed between the before and after samples is shown in a cluster diagram (Figure 2.5A) in 

which the samples are arranged and ordered by tumor subtype as defined in Sørlie et al. 

(Sørlie et al., 2003); genes were clustered and all fold-changes are displayed relative to the 

median gene expression level. A total of 28 cDNA clones representing 23 genes were more 

highly expressed in the after samples relative to the before samples (no genes were 

significantly lower in the after samples). These findings agree (at least 13 genes in common) 

with a similar analysis performed on a subset of this data (Korn et al., 2002). Among these 23  
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Figure 2.4. Protein levels of p21waf1 in chemotherapeutic-treated basal-like and luminal 
cell lines.  Cell lines were treated with an IC50 dose of DOX or 5FU, and lysates were 
collected at 36h. p21waf1 levels were induced in all chemotherapeutic-treated samples relative 
to sham samples. β-actin was assayed as a loading control. 
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Figure 2.5. Gene expression pattern for genes altered by chemotherapeutics in tumors. 
A, Median-centered expression data using the gene set determined by SAM to be 
significantly changed in the before versus the after DOX-treated and 5FU-treated tumors. 
Tumor pairs from all of the tumor subtypes characterized in Sørlie et al. (Sørlie et al., 2001) 
are included; tumor samples in red are basal-like; tumor samples in blue are luminal (subtype 
A and B); tumor samples in pink are ERBB2/HER2 positive; tumor samples in green are 
normal-like. B, Each after sample in 5A was normalized to the expression value for its 
corresponding before sample. A gray square was assigned to both samples if either the before 
or after sample had missing data.  A and B exclude all tumor samples for which a complete 
before and after set was unavailable.  
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genes were the AP-1 co-activators FOS and JUN, p21waf1, and a number of other genes 

involved in wound healing including connective tissue growth factor and matrix 

metalloproteinase 9.  The genes are listed in Appendix IIA. 

In Figure 2.5B, we normalized the expression ratio in each after sample to its paired 

before sample (displayed in black) on a gene-by-gene basis. This allowed visualization of the 

changes caused by chemotherapy in each patient. These changes are difficult to discern in 

Figure 2.5A due to the diversity of initial expression values in the before samples. Relative to 

the paired before samples, nearly all of the after samples in all four tumor subtypes showed 

induced expression of these genes, despite their diverse expression ranges in Figure 2.5A. A 

few of the tumors had anomalous behavior, underscoring the individuality of tumor 

responses even within a subtype. 

Based upon our cell line data, we hypothesized that there might also be tumor 

subtype-specific responses, so we conducted analyses on the before samples versus the after 

samples for the basal-like and luminal subtypes separately. Using 81 luminal tumor samples 

and SAM analysis, we identified 14 genes that were changed in expression after treatment 

(Table 2.3 and Appendix IIB). Using 21 basal-like tumor samples, we identified nine genes 

that were induced after treatment (Table 2.3 and Appendix IIC). In this analysis, there was a 

five-gene overlap between the basal-like and luminal gene lists. A number of genes that were 

seen in the combined analysis were significantly altered in only one of the subtypes. For 

example, p21waf1 was only present on the luminal list and core promoter element binding 

protein (COPEB) was only present on the basal-like list. Next, we compared each cell type’s 

in vivo list with its corresponding in vitro list and identified four genes that were altered in 

luminal tumors and luminal cell lines (p21waf1, elongin A, prostate differentiation factor and  
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Table 2.3.  Genes altered by chemotherapy in luminal and basal-like breast tumor subtypes. 
Luminal Tumors Basal-Like Tumors
connective tissue growth factor AA598794 connective tissue growth factor AA598794 
connective tissue growth factor AA044993 connective tissue growth factor AA044993 
Early growth response 1 AA486533 early growth response 1 AA486533 
Early response protein NAK1 N94487 early response protein NAK1  N94487 
§elongin A AA128607 elongin A AA128607 
FOS N36944 FOS R12840 
Corticotropin releasing hormone binding  
     protein AA286752 

§core promoter element binding protein  
     AA013481 

cyclin-dependent kinase 5, regulatory subunit 
     1 (p35) AA442853 

dermatan sulfate proteoglycan 3 
     AA131238 

§cyclin-dependent kinase inhibitor 1A,  
     p21waf1 N23941 Homo sapiens mRNA  AA135912 

dihydropyrimidinase-like 3 AI831083 RAB21  AA076645 
**dopachrome tautomerase AA478553  
Kinase-inducible Ras-like protein AA418077  
§**prostate differentiation factor N26311  
spondin 1 H09099  
§thrombospondin 1 AA464532  
§ This gene was also altered by treatment in the corresponding cell line experiments. 
**A potentially chimeric cDNA clone that maps to two different Unigene entries. 
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thrombospondin 1). COPEB was the only gene that was significantly altered in both the 

basal-like tumors and cell lines.  

Finally, to identify additional similarities between the cell line and tumor data sets, 

we used the SAM-generated luminal and basal-like cell line-derived gene lists in a clustering 

analysis of the tumor samples. Basal-like and luminal gene expression signatures identified 

in the cell lines also appeared differentially expressed in tumor subtypes (data not shown). 

For example, when the basal-like cell line list was used to cluster all tumor samples, p21waf1 

and MDM2 clustered together and showed higher expression in the luminal tumors, while 

COPEB and GST-pi showed higher expression in the basal-like tumors. When the luminal 

cell line list was used to cluster all tumor samples, subtype specific responses were also 

evident; for example, the basal-like tumors showed high expression of the proliferation 

signature both before and after chemotherapy.  This is consistent with the in vitro findings 

because the proliferation signature was unchanged in the basal-like cell lines after 

chemotherapy treatment. 

 

DISCUSSION 

The mammary gland contains a heterogeneous population of epithelial cells in 

different stages of differentiation. Basal-like and luminal epithelium represent two cell 

populations that are thought to arise from a common progenitor, but they each express unique 

markers and perform unique functions (Pechoux et al., 1999; Smith and Chepko, 2001). 

Luminal epithelia are widely believed to give rise to the majority of breast cancers, but there 

is evidence that up to 15% of breast cancers show some characteristics of basal-like 

epithelium (Perou et al., 2000; Sørlie et al., 2001). MCF-7 cells and HME cell lines have 
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been extensively studied as models of breast cancer; however, they represent different types 

of breast cancers. MCF-7 and ZR-75-1 cells (data not shown) have expression similarities 

with ERα-positive breast tumors, while HME lines (finite life span or immortalized) have 

expression similarities with basal-like breast tumors (Ross and Perou, 2001). 

In our model of breast cancer, basal-like and luminal epithelial cells have unique 

transcriptional responses to the chemotherapeutics DOX and 5FU. The two luminal cell lines 

showed similar response patterns to one another including the strong induction of DNA 

damage/stress response genes, notably p21waf1 (Figures 2.1D and 2.3F). The basal-like cell 

lines showed a much less dramatic induction of p21waf1 (Figure 2.2D and 2.3F). All four of 

our cell lines are wildtype for p53 by sequence analysis and express p53 protein (data not 

shown), so the differences in p21waf1 expression cannot be attributed to differences in p53 

status. p21waf1 is involved in the G1 checkpoint response, and others have reported an 

impaired G1 checkpoint in HME cell lines (Meyer et al., 1999). Consistent with a strong cell 

cycle checkpoint in the luminal cell lines, MCF-7 and ZR-75-1 cells also repressed a large set 

of proliferation genes (Figure 2.1C). This suggests that their G1 checkpoint in response to 

DNA damage is intact (Whitfield et al., 2002). The two basal-like cell lines did not repress 

the proliferation signature, but they did down-regulate genes involved in differentiation 

(Figure 2.2C). 

The basal-like cell lines we used for this study were hTERT immortalized HME cells, 

whereas the luminal cell lines were derived from human tumors.  Telomerase expression is a 

hallmark of breast cancer (Herbert et al., 2001), but increased telomerase expression is one of 

many changes that are observed as cells progress toward a malignant state (Hanahan and 

Weinberg, 2000). Although breast tumor derived cell lines of luminal origin are widely 
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studied, analogous lines of basal-like origin have not yet been identified. We acknowledge 

that comparison of breast cancer lines versus immortalized breast lines represents a starting 

point for investigations of these cell types.  Future comparisons using additional cell lines, 

and preferably cancer cell lines of basal-like origin, may yield more data of greater 

significance.  We note that some of the expression differences observed between the basal-

like and luminal cell lines could be due to differences in tumorigenicity. However, we found 

that our cell lines recapitulated some of the cell type differences seen in vivo in response to 

these same agents (Table 2.3). The overlap observed between the tumors and cell lines is 

significant, especially considering three differences between these data sets: (a) the tumor 

data was acquired using cDNA microarrays and a common reference sample whereas the cell 

lines were assayed using 60-mer oligonucleotide arrays and a cell-line specific reference 

(untreated pooled reference); (b) the cell lines were all p53 wild type, while approximately 

40% of the tumors were p53 mutant. Thus, the in vivo analysis is more likely to have 

excluded some p53-dependent responses to chemotherapy; and (c) the tumors represent a 

heterogeneous cell population and the cell lines represent only a single cell type.  

A strength of tumor profiling studies is that they capture the heterogeneity of tumors 

in their natural environment. However, this heterogeneity makes it difficult to study the 

chemotherapy responses of specific cell types. The role of each cell type in a tumor can begin 

to be dissected using cell-line models, preferably with multiple cell lines representing each 

subtype. Cell lines are as unique as the tumors from which they were derived, but common 

response patterns can only become identifiable when looking at multiple cell lines in concert. 

This was illustrated in a recent study of 60 cell lines and 60,000 compounds (Scherf et al., 

2000; Ross and Perou, 2001) in which relationships between sets of cell lines, sets of genes, 
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and toxicant sensitivity were identified. In the work presented here, we used four cell lines 

with two cell lines representing each of two tumor subtypes. Characterizing common 

responses and inter-individual variation in these cell lines will help to identify those 

responses that are stereotypical for each subtype. 

Recent studies have demonstrated that DNA-damaging agents induce generic stress 

responses. In 2000, Gasch et al. (Gasch et al., 2000) showed that yeast displayed a 

stereotypic pattern of gene expression when exposed to a wide range of stresses including 

heat shock, growth factor deprivation, and treatment with hydrogen peroxide. These authors 

termed the stereotypic response the “environmental stress response” (ESR). The ESR 

included repression of growth-related genes and genes encoding ribosomal proteins and 

induction of genes involved in DNA damage response and metabolism. These results are in 

agreement with our finding that a major response to treatment included repression of genes 

involved in cell growth and induction of DNA damage response genes. Our work with breast 

cell lines corroborates other recent human cell line studies that have demonstrated common 

stress responses following DNA damaging treatments (Morgan et al., 2002; Park et al., 2002; 

Sesto et al., 2002; Weigel et al., 2002; Heinloth et al., 2003). In this chapter, we have 

demonstrated that some of the changes seen in vitro were also observed in vivo. 

Finally, we note that DOX and 5FU have distinct mechanisms of action (Gewirtz, 

1999; Longley et al., 2003). For example, DOX is thought to target topoisomerase IIA 

blocking the G2 to M transition and 5FU targets thymidylate synthase blocking S-phase 

progress. In our experiments with luminal cell lines, both drugs affected gene expression in 

all phases of the cell cycle (Figure 2.1C). These cell cycle genes serve as proliferation 

markers and are not specific to a single mode of action. The specific mechanisms of action of 
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DOX and 5FU may be evident in a subset of genes expressed in our experiments and 

subsequent analyses will attempt to identify this gene set. However, to fully validate 

toxicant-specific gene sets, it must also be demonstrated that the gene set predicts mode of 

action for independent data sets on mechanistically similar drugs. Our primary objective for 

this work was to understand how cell types differed in their stress response patterns, which 

are the dominant gene expression responses to DNA damage. The identification of cell-type 

specific stress responses in vitro and in vivo has implications for understanding the biological 

response to therapy. 
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CHAPTER III 

PREDICTION OF TOXICANT-SPECIFIC GENE EXPRESSION SIGNATURES AFTER 
CHEMOTHERAPEUTIC TREATMENT OF BREAST CELL LINES 

 

PREFACE 

This work was previously published and represents a co-first author effort between 

Melissa Troester and myself.  I performed the experiments with 5-fluorouracil treatment and 

performed data analysis.  Melissa Troester performed the experiments with doxorubicin 

treatment and performed data analysis.   Melissa Troester and I equally contributed to the 

writing of the manuscript.  Joel Parker performed the PAM and KNN analyses. Charles 

Perou conceived the project. 

 

Melissa A. Troester, Katherine A. Hoadley, Joel S. Parker, and Charles M. Perou. 

(2004). Prediction of toxicant-specific gene expression signatures after 

chemotherapeutic treatment of breast cell lines. Environmental Health 

Perspectives 112(16): 1607-1613. 

 

ABSTRACT 

 Global gene expression profiling has demonstrated that the predominant cellular 

response to a range of toxicants is a general stress response.  This stereotyped environmental 

stress response commonly includes repression of protein synthesis and cell-cycle-regulated 

genes and induction of DNA damage and oxidative stress-responsive genes.  Our laboratory 



has recently characterized the general stress response of breast cell lines derived from basal-

like and luminal epithelium following treatment with doxorubicin (DOX) or 5-fluorouracil 

(5FU) and showed that each cell type has a distinct response.  However, we expected that 

some of the expression changes induced by DOX and 5FU would be unique to each 

compound and might reflect the underlying mechanisms of action of these agents. Therefore, 

we employed supervised analyses (Significance Analysis of Microarrays) to identify genes 

that showed differential expression between DOX-treated and 5FU-treated cell lines. We 

then used cross-validation analyses and identified genes that afforded high predictive 

accuracy in classifying samples into the two treatment classes.  To test whether these gene 

lists had good predictive accuracy in an independent data set, we treated our panel of cell 

lines with etoposide, a compound mechanistically similar to DOX.  We demonstrated that 

using expression patterns of 100 genes we were able to obtain 100% predictive accuracy in 

classifying the etoposide samples as being more similar in expression to DOX-treated than 

5FU-treated samples. These analyses also showed that toxicant-specific gene expression 

patterns, similar to general stress responses, vary according to cell type. 

 

INTRODUCTION 

A stereotyped environmental stress response to a wide range of stressors and 

toxicants was first demonstrated in yeast (Gasch et al., 2000) and has subsequently been 

observed in a variety of mammalian cell models (Morgan et al., 2002; Park et al., 2002; Sesto 

et al., 2002; Weigel et al., 2002; Heinloth et al., 2003; Murray et al., 2004).  We have 

previously used DNA microarray experiments to characterize the transcriptional responses of 

four breast cell lines to the chemotherapeutics doxorubicin (DOX) and 5-fluorouracil (5FU); 
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these cell lines included two hTERT-immortalized human mammary epithelial (HME) cell 

lines and two tumor-derived cell lines of luminal epithelial origin (MCF-7 and ZR-75-1).  A 

general stress response was shown to predominate when these cells were treated with DOX 

and 5FU (Troester et al., 2004). All four cell lines repressed genes involved in cell growth 

and induced DNA-damage response and xenobiotic metabolism genes, but there were 

differences in the general stress responses depending upon the cell type or origin of the cell 

line.   

The mechanisms of action of DOX and 5FU are distinct.  DOX is a topoisomerase 

IIA (TOP2A) poison. TOP2A is a nuclear enzyme that transiently breaks and rejoins the 

phosphodiester backbone of both strands of the double helix.  As such, it is vital for DNA 

replication, chromosome segregation, and maintenance of chromosome structure.  In 

previous studies (Tewey et al., 1984), DOX formed a stable ternary complex with DNA and 

TOP2A, thereby inhibiting the normal function of the enzyme.  The complexed enzyme is 

unable to re-ligate DNA so complex formation increases DNA strand breaks.  TOP2A is 

highly expressed during S-phase, but TOP2A poisoning causes cell cycle arrest in G2-M.  

The commonly used chemotherapeutic 5FU has several known mechanisms of action that 

distinguish it from DOX.  5FU covalently binds to thymidylate synthase, preventing de novo 

production of thymidine. It also incorporates into DNA and RNA (Pizzorno et al., 2000; 

Longley et al., 2003).  The importance of each of these 5FU-mediated disruptions in cellular 

metabolism varies across cell lines and patients, but current studies emphasize the role of 

thymidylate synthase inhibition (Banerjee et al., 2002; Peters et al., 2002; Longley et al., 

2003).  Thymidylate synthase is highly expressed during S-phase and its inhibition is thought 

to cause cell cycle arrest in S-phase. 
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Using microarrays, it is often possible to identify unique patterns associated with 

specific toxicants in addition to common patterns of response.  We used our panel of treated 

breast cell lines (Troester et al., 2004) to identify toxicant-specific expression signatures for 

DOX and 5FU.  Cell lines derived from breast basal-like and luminal epithelium had distinct 

toxicant-specific patterns of response.  Using two statistical methods for class prediction, we 

then identified lists of genes that distinguish DOX-TREATED and 5FU-treated cells and 

used these lists to predict the mechanism of etoposide (ETOP), a drug that is mechanistically 

similar to DOX. 

 

MATERIALS AND METHODS 

Cells and Cell Culture Conditions 

ME16C and HME-CC cells, two basal-like hTERT-immortalized HME cell lines 

described by Troester et al. (Troester et al., 2004), were gifts from Jerry W. Shay at the 

University of Texas Southwestern Medical Center and Christopher Counter at Duke Medical 

Center, respectively.  ME16C cells and HME-CC cells were maintained in Mammary 

Epithelium Growth Media (Cambrex Bio Science Walkersville).  MCF-7 cells (a gift from F. 

Tamanoi at University of California at Los Angeles) and ZR-75-1 cells (American Type 

Culture Collection) were maintained in RPMI 1640 with L-glutamine (GIBCO) 

supplemented with 10% Fetal Bovine Serum (Sigma), and 50 unit/mL penicillin, 50 unit/mL 

streptomycin (GIBCO).  All cell lines were tested for Mycoplasma by the University of 

North Carolina at Chapel Hill Tissue Culture Facility prior to conducting experiments and at 

regular intervals thereafter.  Cells were maintained at 37°C and 5% carbon dioxide. 
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Cytotoxicity Assay 

A mitochondrial dye conversion assay (Cell Titer 96, Promega) was used to measure 

cell viability following treatment.  This assay was conducted according to manufacturer’s 

instructions, with modification as follows.  Briefly, 5,000 cells were seeded per well of a 96-

well plate.  Cells were allowed to adhere overnight and then media were replaced with fresh 

media containing a range of drug doses (DOX: 0 – 1 µM, ETOP:  0 – 500 µM, 5FU: 0 – 10 

mM).  After 36 h of drug treatment, 15 µL of tetrazolium dye solution were added and 

incubated for 1 h at 37 °C before adding stop solution.  Dye conversion products were 

solubilized in a humidified chamber overnight, and absorbance was measured at 570 nm 

(minus background absorbance at 650 nm).  The IC50 for 36h of treatment with each drug in 

each cell line was estimated using nonlinear regression (SAS Statistical Software, version 8; 

SAS Institute Inc., Cary, NC) as described previously (Troester et al., 2004). 

 

Collection of mRNA for Microarray Experiments 

Cell lines were grown in 150-mm dishes to 70-80% confluence and then treated for 

12h, 24h, or 36h with toxicant at the IC50 concentration.  The cells were harvested by 

scraping and cell lysates were enriched for mRNA using a Micro-FastTrack kit (Invitrogen).  

The reference RNA was generated by harvesting mRNA from each cell line at 80% 

confluence and pooling four such harvests (i.e. four MCF-7 harvests were pooled and served 

as reference mRNA for all MCF-7 experiments).   
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Microarray Experiments 

To synthesize labeled cDNA, reverse transcription reactions were carried out using 3 

µg of mRNA as described previously (Perou et al., 2000; Troester et al., 2004).  Briefly, 

5FU, DOX, ETOP, and vehicle controls were labeled with Cy5-dUTP and the pooled cell 

line control was labeled with Cy3-dUTP.  The Cy3- and Cy5-labeled sampled were 

combined and hybridized overnight at 65 ºC to a custom oligonucleotide microarray created 

in the University of North Carolina at Chapel Hill Genomics Core Facility.  Arrays were 

spotted with Compugen Human oligos representing approximately 22,000 genes.  Two 

replicate arrays for each sample were selected for subsequent analysis. All microarray raw 

data tables are available at the UNC Microarray Database [https://genome.unc.edu/] and have 

been deposited in the Gene Expression Omnibus under the accession number GSE1647 

(submitter C. Perou). 

 

Significance Analysis of Microarrays 

Genes that were significantly up- or down-regulated were identified using the 

Significance Analysis of Microarrays (SAM) Add-In for Microsoft Excel (Tusher et al., 

2001).  For SAM analysis, data were excluded for genes that did not have mean intensity 

greater than twice the median background for both the red and green channel in at least 70% 

of the experiments.  The log-base-2 of the median red intensity over median green intensity 

was calculated for each gene.  Missing data were imputed using the SAM for Excel plug-in 

with 100 permutations and k-nearest neighbors (KNN) with k=10.  For each cell line, 12h, 

24h, and 3h DOX-treated arrays were coded as one class and were compared the 12h, 24h, 

and 36h 5FU-treated arrays using a two-class, unpaired SAM analysis.  Delta values were 
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adjusted to obtain the largest gene list with a false discovery rate less than 5%.  The effects of 

adding media would be present in the signatures of both compounds and would not be 

identified as significantly associated with either toxicant.  However, because DOX was 

solubilized in water and ETOP and 5FU were solubilized in dimethylsulfoxide (DMSO), we 

also collected mRNA from each cell line treated with DMSO only for 12h, 24h, or 36h hours 

(data not shown).  We compared these DMSO-treated samples to sham (media only) samples 

for the same time points using SAM.  The lowest false discovery rate obtained was 15.3% 

(15 genes with 2.29 false significant).  The toxicant-specific changes we detected using these 

analyses are therefore unlikely to reflect changes induced by vehicle. 

 

Class Prediction 

The number of genes needed to distinguish DOX and 5FU samples were identified 

using 10-fold cross validation (CV) analysis using Prediction Analysis of Microarrays 

(PAM) and a KNN classifier. The KNN metric uses the Euclidian distance to determine the 

similarity of a sample to its k nearest sample neighbors. To select genes for the KNN method, 

we used a gene selection method that was first described by Dudoit and Fridlyand (2002); the 

KNN genes were identified in the training set according to the ratio of between-group to 

within-group sums of squares (Dudoit and Fridlyand, 2002). The top n ranked genes were 

used for each round of cross-validation. The size of the gene subset was increased for 

subsequent rounds of CV. The n top ranked genes that gave the highest average prediction 

accuracy during CV was also determined and reported. Gene selection using PAM was 

completed as described previously (Tibshirani et al., 2002). Genes were selected that yielded 

the greatest predictive accuracy in classifying DOX versus 5FU using a 10-fold CV analysis.   

 63



For class prediction, we performed a 10-fold CV analysis to iteratively optimize the 

list of genes and to determine prediction accuracies. Each round of CV would begin by 

splitting the samples into a training set (90% of the samples) and a test set (10% left-out 

samples), with gene selection and training being performed on the 90% and then used to 

predict the status of the withheld 10%. This was repeated 10 times, each time using a 

different 10% subset and a different gene set. Our reported prediction accuracies are the 

average of these iterative cycles of prediction for the optimized model.  To independently 

assess the validity of these gene lists, we used them to predict class for ETOP samples; this 

analysis is independent because the ETOP samples were not used to train the predictor.   

 

Clustering of Toxicant-Specific Responses 

Once gene lists had been identified for the toxicant-specific responses of each cell 

line, cluster analysis was conducted using Cluster to perform uncentered, average-linkage 

clustering; the data were visualized using Treeview (Eisen et al., 1998; Eisen and Brown, 

1999).  The gene lists generated with SAM for the luminal lines (MCF-7 and ZR-75-1) were 

combined into a non-redundant list, and data for these genes were compiled for all MCF-7 

and ZR-75-1 samples.  Likewise, the gene lists for the two basal-like lines (ME16C and 

HME-CC) were combined into a non-redundant list and data for these genes were compiled 

for all HME-hTERT samples.  For clustering and displaying results, data were excluded for 

genes that did not have mean intensity greater than twice the median background for both the 

red and green channel in at least 80% (Figures 3.1 and 3.2) or 70% (Figure 3.3) of the 

experiments.   
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RESULTS 

Toxicant-Specific Transcriptional Responses 

To investigate the toxicant-specific responses of four breast cell lines treated with 

chemotherapeutics, we collected mRNA from MCF-7, ZR-75-1, ME16C and HME-CC cell 

lines after treating with DOX and 5FU at doses that produced similar levels of toxicity 

(IC50) across all four lines. 

The IC50 concentration was estimated from mitochondrial dye conversion assay 

results after 36h treatments with 5FU and DOX. The IC50 concentrations and their 95% 

confidence intervals are shown in Table 3.1.  For DOX and 5FU, the doses selected are 

consistent with physiological doses expected in patients receiving treatment with DOX 

(Gewirtz, 1999) or 5FU (Peters et al., 1993; Terret et al., 2000).  This experimental design 

was aimed at defining the steady-state transcriptional response of these cell lines to toxicants 

and on defining chemotherapeutic-specific responses that were consistent over time.  By 

combining 12h, 24h, and 36h treated experiments into a single class for all supervised 

analyses; we identified genes that had a consistent pattern of expression across all three time 

points.  These genes are most likely to be consistent with in vivo experiments or patient 

samples, where it is difficult to assess how long a tissue sample has been exposed to a toxic 

agent. While we did not specifically study temporal variation in our SAM analyses, some of 

the temporal variation in gene expression can be observed in the clusters.   

 

Toxicant-Specific Responses in Luminal Cell Lines 

A large list of genes was identified for MCF-7 (974 genes with 44.7 false significant) 

and for ZR-75-1 (883 genes with 41.6 false significant) when supervised analyses were  
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Table 3.1:  Estimated inhibitory concentration 50% (IC50) for 5-fluorouracil, doxorubicin, 
and etoposide based on mitochondrial dye conversion assaya 

 Cell Line IC50b Treatment Doseb 

MCF-7 0.034 (0.13, 0.55) 0.3 
ZR-75-1 3.3 (2.8, 3.7) 3.0 
ME16C 0.064 (0.055, 0.074) 0.06 5-Fluorouracil 

HME-CC 0.011 (0.009, 0.013) 0.01 
MCF-7  0.86 (0.74, 0.97) 0.9 
ZR-75-1 0.43 (0.37, 0.50) 0.4 
ME16C 0.52 (0.49, 0.54) 0.5 Doxorubicin 

HME-CC 0.16 (0.14, 0.18) 0.2 
MCF-7 35 (30, 40) 40 
ZR-75-1 26 (8.6, 43) 30 
ME16C 21 (18,23) 20 Etoposide 

HME-CC 6.1 (5.6, 6.7) 10 
aIC50 values for 5-fluorouracil and doxorubicin were previously reported (Troester et al., 
2004). 
bValues in parentheses represent 95% confidence intervals. Doses for 5-fluorouracil in mM; 
those for doxorubicin and etoposide in µM. 
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conducted to compare DOX-treated versus 5FU-treated samples.  Hierarchical clustering 

analysis of the MCF-7 and ZR-75-1 experiments using the combined and non-redundant gene 

lists showed distinct responses for each toxicant (Figure 3.1).  The primary dendrogram 

branches for DOX-treated and 5FU-treated experiments were subdivided into MCF-7 and 

ZR-75-1 branches (Figure 3.1B); this suggests that the majority of variation in these genes is 

attributable to the toxicant, but that cell lines also contribute to the variation.  A total of 191 

genes (77 down-regulated and 114 up-regulated) appeared on the SAM lists for both MCF-7 

and ZR-75-1.  However, there are many more genes that show qualitative similarity in the 

toxicant-specific responses of MCF-7 and ZR-75-1 cells (Figure 3.1) than is captured using 

the strict SAM analysis.  Figure 3.1D shows a cluster of genes that is up-regulated in MCF-7 

cells following DOX treatment, but which is down-regulated in ZR-75-1 cells following both 

treatments; thymidylate synthase is included in this cluster.  Recent studies have shown that 

thymidylate synthase protein, the target of 5FU, binds p53 mRNA and regulates the 

expression of p53 at the translational level (Chu et al., 1999; Ju et al., 1999).  This is 

interesting because p53 expression is slightly induced by DOX in MCF-7 cells, but not in 

ZR-75-1 cells nor by 5FU treatment in either cell line (Figure 3.1E).   

The gene set in Figure 3.1E also shows that several other genes had slightly higher 

expression in MCF-7 cells treated with DOX, and that these genes were typically repressed 

in ZR-75-1 cells.  For example, the mismatch repair gene mutL homolog 1 (MLH1) was 

unchanged by DOX, and N-methyl-purine-DNA glycosylase, a base excision repair gene was 

repressed by 5FU.  Both DOX and 5FU can cause DNA damage, but differences in the 

profiles of damage induced by each compound may account for differently regulated repair 

enzymes.  Cyclin E1 was also slightly induced in DOX-treated MCF-7 cells, as has been  
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Figure 3.1:  Gene expression patterns for genes that distinguish between DOX-treated 
and 5FU-treated luminal cells (MCF-7 and ZR-75-1).  Hierarchical clustering analysis 
was conducted using 13 DOX-treated and 13 5FU-treated samples.  Data from the union of 
the genes identified by SAM for MCF-7 and ZR-75-1 were identified and combined into a 
non-redundant list, and the compressed cluster is shown in A.  Colored bars in A illustrate the 
location of clusters shown in C-G.  The dendrogram in B shows that the samples clustered 
into two groups according to treatment (DOX experiments labeled in red, 5FU experiments 
labeled in blue), but within each treatment branch, cell-line-specific branches are also 
identifiable. Gene names highlighted in red are discussed in the text. 
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shown in previous studies (Arooz et al., 2000).  Cyclin E1, along with v-myb myeloblastosis 

viral oncogene homolog avian-like 2 (MYBL2), are important genes involved in the G1-S 

transition and are transcriptional targets of E2F (Yasui et al., 2003). 

Figure 3.1F shows that ZR-75-1 cells have a unique response to DOX compared to 

MCF-7 cells and 5FU-treated cells.  In concordance with increased E-cadherin expression 

shown in this cluster, an increase in E-cadherin mRNA (and E-cadherin-mediated cell-cell 

adhesion) has been shown previously in another breast cancer cell line following treatment 

with DOX (Yang et al., 1999).  Cyclin G2 was also induced in ZR-75-1 cells treated with 

DOX.  This cyclin is inducible by DNA damage in a p53-independent manner (Bates et al., 

1996). 

Figures 3.1C and G show clusters of genes that are induced by 5FU in both cell lines 

and either unchanged or only modestly changed in DOX-treated lines.  For example, 

inhibitor of DNA binding 3 (ID3) (Figure 3.1C) and inhibitor of DNA binding 1 (ID1) (Figure 

3.1G) were strongly induced only in the 5FU-treated samples.  The Id proteins control 

cellular differentiation and cell-cycle progression by preventing transcription factors from 

binding DNA (Norton et al., 1998).  These proteins target basic helix-loop-helix proteins that 

regulate cell-type-specific and cell-cycle-regulatory gene expression (Lassar et al., 1994); 

however, the role of these proteins in the response to 5FU is not known. 

 

Toxicant-Specific Responses in Basal-Like Cell Lines 

A smaller list of toxicant-specific genes was identified for ME16C (76 genes with 3.7 

false significant) and HME-CC (193 genes with 8.6 false significant) cells when SAM was 

used to compare DOX-treated with 5FU-treated samples. Hierarchical clustering using the 
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combined and non-redundant gene lists for these two cell lines showed that there were 

distinct responses by toxicant (Figure 3.2).  However, the primary dendrogram branch for 

5FU-treated basal-like cell lines also included two early time points for DOX-treated ME16C 

(Figure 3.2B). The 12h ME16C time point has many gene expression changes in response to 

treatment (Troester et al., 2004), but this time point does not exhibit the same toxicant-

specific signature as the 24h and 36h time points.  These temporal differences likely account 

for the grouping of toxicant-specific signatures in Figure 3.2.  As we have also seen in our 

previous study of the general stress response of these cell lines, the temporal response to 

these two toxicants varies by cell line. 

Figure 3.2C shows a cluster of genes that is up-regulated in DOX-treated basal-like 

cell lines, but down-regulated in 5FU-treated basal-like cells.  These genes differ in both 

magnitude and direction of change. A number of these genes play a role in mediating DNA 

repair, including the ubiquitin conjugating enzyme E2A, which is a member of the RAD6 

pathway that uses ubiquitin conjugation to control DNA damage-induced mutagenesis 

(Stelter and Ulrich, 2003).  Similarly, DNA polymerase delta is known to repair single strand 

DNA interruptions produced during the process of base excision repair (Ho and Satoh, 2003). 

Cell division cycle 25B, an important regulator of mitosis, is also found in this cluster. 

The cluster in Figure 3.2D contains several mitochondrial genes (indicated in red).  

The altered expression of mitochondrial genes might be expected based on a recent study that 

demonstrated that anthracyclines, such as DOX, impair cellular respiration (Souid et al., 

2003). Figure 3.2E consists of a set of genes that are clearly enriched for ribosomal proteins.  

Disruption of protein biosynthesis has been associated with alterations in the cell cycle and 

cell growth (Ruggero and Pandolfi, 2003). Five ribosomal proteins are highlighted in red and  
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Figure 3.2: Gene expression patterns for genes that distinguish between DOX-treated 
and 5FU-treated basal-like cells (ME16C and HME-CC).  Hierarchical clustering analysis 
was conducted using 13 DOX-treated and 12 5FU-treated samples.  Data from the union of 
the genes identified by SAM for ME16C and HME-CC were identified and combined into a 
non-redundant list, and the compressed cluster is shown in A.  Colored bars in A illustrate the 
location of clusters shown in C-E.  The dendrogram in B shows that the samples clustered 
into two groups according to treatment (DOX experiments labeled in red, 5FU experiments 
labeled in blue); however, the early time points for DOX-treated ME16C samples clustered 
with the 5FU treated samples. Gene names highlighted in red are discussed in the text. 
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AL110170 is a hypothetical protein with 65% homology to ribosomal protein L22.  The 

genes for these proteins are induced in the DOX-treated HME-CC cell line after 36 hours, but 

are repressed in the ME16C cells at this and all other time points assayed. 

 

Class Prediction and Sample Classification for Etoposide Treated Samples 

Having identified a number of genes that distinguish DOX-treated from 5FU-treated 

breast cell lines using SAM, we next performed class prediction analyses to assess whether 

these differences could be used to classify an independent data set collected using the same 

four cell lines.  Because SAM does not perform classification, we used ten-fold CV with 

PAM (Tibshirani et al., 2002) and a KNN metric based upon the work of Dudoit and 

Fridlyand (Dudoit and Fridlyand, 2002).  CV was implemented to optimize the number of 

neighbors (k) and the number of genes for KNN and to optimize the shrinkage parameter 

(delta) for PAM.   Parameters were selected that generated the highest CV accuracy (internal 

validation) when distinguishing the DOX-treated and 5FU-treated samples.  Then, using the 

optimized models, we made predictions on a test set of ETOP-treated samples (external 

validation). [Note that because CV excludes samples and the final model using the optimized 

parameters does not, the delta value selected during CV with PAM may correspond to a 

different number of genes during prediction.  However, the number of genes selected in cross 

validation is held constant for a KNN-based prediction.]  The results of all CV analyses using 

PAM and KNN are presented in Appendices IIIA-D. 

We expected that because ETOP and DOX both inhibit TOP2A, their resulting 

transcriptional profiles should be similar. Therefore, we consider ETOP samples correctly 

classified if they were classified as DOX.  In the two-class analysis (DOX versus 5FU), we 
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obtained a high degree of cross validation accuracy (80-98%) during training and a high 

degree of predictive accuracy (100%) in assigning the ETOP experiments as more similar to 

DOX than 5FU (Table 3.2).  However, when we attempted to further subclassify the DOX 

and 5FU samples according to cell-type (basal-like-DOX versus basal-like-5FU versus 

luminal-DOX versus luminal-5FU), our cross validation (76-80%) and prediction (75%) 

accuracies were diminished (Table 3.3). The errors in four-class prediction occurred in the 

12h basal-like samples.  This is not surprising based on our SAM results in Figure 3.2, where 

the early time points in one of the basal-like cell lines appeared distinct from later points.   

To visualize the expression differences from the two-class DOX versus 5FU predictor 

using Euclidian-KNN, we took these samples and the 100 gene set shown to be 98% accurate 

in prediction and performed hierarchical clustering analysis (Figure 3.3). The similarities 

between the ETOP and DOX samples are observable across this gene set. This analysis 

showed two separate dendrogram branches in Figure 3.3B with one branch containing all of 

the 5FU samples and the other containing all of the ETOP and DOX samples. Some of the 

genes identified in the earlier supervised analysis were recapitulated in this predictive gene 

set.  Notably, ID3 appears in Figure 3.3C and p53 appears in Figure 3.3E.  An interesting 

cluster of genes that was more strongly induced in DOX and ETOP samples appears in 

Figure 3.3D, which includes the genes cathepsin L and cystatin C.  The activity of cysteine 

protease cathepsin L is regulated by the cystatins (a family of cysteine proteinase inhibitors) 

and their imbalance is associated with increased invasiveness and development of the 

malignant cell phenotype (Kos and Lah, 1998).   
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Table 3.2:  Two-class cross-validation and prediction accuracy for etoposide samples. 
 Cross-Validation Accuracy Prediction Accuracy 
Method PAM KNNa PAM KNN a 
No. genes 2460 (2.75)b 100 279 (2.75)a 100 
Accuracy 80% 96% 100% 100% 
ak=11; bDelta value is shown in parentheses. 
 

 

Table 3.3:  Four-class cross-validation and prediction accuracy for etoposide samples. 
 Cross-Validation Accuracy Prediction Accuracy 

Method PAM KNN a PAM KNN a 
No. genes 652 (3.5)b 100 465 (3.5)a 100 
Accuracy 76% 86% 75% 75% 
ak=9; bDelta value is shown in parentheses. 
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Figure 3.3:  Gene expression patterns for genes selected for a two-class (DOX vs. 5FU) 
predictive model.  Hierarchical clustering analysis was conducted using 26 DOX-treated, 25 
5FU-treated samples and 8 ETOP-treated samples.  Data from the genes identified using a 
KNN classifier for DOX-treated versus 5FU-treated experiments are displayed in the 
compressed cluster shown in A.  Colored bars in A illustrate the location of clusters shown in 
C-E.  The dendrogram in B shows that the samples clustered into two groups according to 
treatment (DOX experiments labeled in red, 5FU experiments labeled in blue, and ETOP 
experiments labeled in orange).  Gene names highlighted in red are discussed in the text. 
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DISCUSSION 

Most changes that occur in gene expression after treatment with either DOX or 5FU 

are indicative of a general stress response (Troester et al., 2004).  However, in the work 

presented here, we were interested in identifying the toxicant-specific transcriptional 

responses to DOX and 5FU in breast epithelial cell lines. We conducted several different 

supervised analyses to find genes that distinguished between DOX and 5FU and were able to 

define toxicant-specific profiles. Using SAM, we found that each cell type (basal-like or 

luminal-derived) and each cell line had unique responses to DOX and 5FU.  Similar to our 

previous observations for general stress responses (Troester et al., 2004), we found that the 

luminal cell lines tended to respond to treatment by differentially regulating a large number 

of genes, while the basal-like cell lines had fewer gene changes in response to treatment. In 

addition, the basal-like cell lines showed greater temporal variation in expression than the 

luminal lines.  Some of the genes that comprised the general stress signature for each cell 

type were also found to have toxicant-specific expression in our supervised analyses.  This 

occurred in cases where both DOX and 5FU induced or repressed gene expression relative to 

shams, but where one treatment induced a change with greater magnitude.  For example, the 

expression of cystatin C was induced more strongly by TOP2A inhibitors than by 5FU 

(Figure 3.3D), but was induced in both treatments relative to sham (Troester et al., 2004).  

Thus, cystatin C is a general stress response gene with a toxicant-specific gene expression 

signature. 

Toxicant-specific expression responses in our data were corroborated in many cases 

by published reports with these drugs in the same or similar cell lines.  For example, 

impaired cellular respiration following DOX treatment has been previously reported (Souid 
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et al., 2003), and in our data, mitochondrial gene expression was altered (Figure 3.2D).  

Earlier studies have shown that 5FU’s target protein thymidylate synthase can bind p53 (Chu 

et al., 1999; Ju et al., 1999), and we show that p53 mRNA levels are reduced in our 5FU-

treated cells.  Thus, many of the gene expression changes that we identified recapitulated 

previous findings.  However, a number of significant changes that were not anticipated based 

upon the literature were identified and may have functional importance in the response to 

these drugs.  For example, the induction of ID1 and ID3 has not previously been reported for 

5FU.  The importance of the Id proteins has only recently begun to be investigated (Norton et 

al., 1998); our findings suggest that these pathways may be responsive to toxicant treatment 

and warrant further investigation. 

In addition to characterizing the toxicant-specific changes by cell line and cell type, 

we used toxicant-specific gene lists to make predictions on a third toxicant (ETOP) that is 

believed to have a similar mechanism of action as one of the training toxicants (DOX). 

Successfully classifying similar compounds establishes that observed transcriptional 

responses reflect underlying mode of action.  Using as few as 100 genes we were able to 

classify ETOP samples as being similar to DOX treated samples with 100% predictive 

accuracy.  This predictive accuracy was reduced to 75% when we attempted to further 

subclassify the DOX and 5FU samples according to cell type of origin.  However, 

considering that with a four-class model, the likelihood of correctly classifying samples by 

chance is only 25% (compared with 50% for a two-class model), the four-class model still 

performs very well. The samples that were misclassified were the early time points in basal-

like cell lines, which is consistent with our previous findings that the basal-like cell lines 

have distinct expression profiles at 12h compared to 24h and 36h (Troester et al., 2004). 
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We have used computational analyses to demonstrate that distinct transcriptional 

patterns can be identified for mechanistically dissimilar compounds and that toxicants with 

similar mechanisms can be classified accordingly.  We selected two compounds with distinct 

mechanisms to train our model and a test compound with a mechanism similar to one of the 

training compounds.  These kinds of mechanistic analyses are critical for predictive 

toxicology using gene arrays. Many studies in the field of toxicogenomics are aimed at 

populating databases with expression data for diverse toxicants with known mechanisms of 

action (Hamadeh et al., 2002).  These databases can then be used to infer mechanism of 

action for new compounds. Our data show that this approach is feasible and identifies many 

new genes and pathways that are important in the response to these toxicants. 
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ABSTRACT 

The epidermal growth factor receptor (EGFR/HER1) protein and its downstream 

signaling events are important for regulating cell growth and behavior in many epithelial 

tumors including lung and colon. In breast cancers, the role of EGFR is complex and may 

vary with estrogen receptor (ER) status. To investigate the role of EGFR signaling in breast 

cancer, several breast basal-like and luminal epithelial cell lines were examined for 

sensitivity to EGFR inhibitors gefitinib and cetuximab. We identified an EGFR-activation 

profile in the basal-like breast cancer cell line SUM102 and analyzed expression of these 

genes in human breast tumors.  The breast basal-like cell lines were generally more sensitive 

to gefitinib compared to the luminal lines.  The basal-like cell line SUM102 was the only cell 

line sensitive to cetuximab. The basal-like tumor derived lines were also the most sensitive to 

carboplatin, which acted synergistically with cetuximab. Using SUM102 cells, we identified 

an EGFR-activation profile that included a strong MEK-dependent signature. The EGFR-

activation signature was used to cluster a large panel of breast tumors.  Three distinct clusters 

of genes were evident in vivo, two of which were strongly predictive of poor patient 

outcomes. These two poor prognostic signatures were highly expressed in most basal-like 

and in approximately half of HER2+/ER- and luminal B tumors. Ninety percent of the basal-

like tumors that showed high expression the EGFR-activation profiles also showed high 

expression of CRYAB and/or a KRAS-amplicon signature.  These data suggest that most 

basal-like tumors have an EGFR-activation profile, however, few are likely to respond to the 

direct inhibition of EGFR due to ligand independent activation of the EGFR-RAS-MEK 

pathway via CRYAB or KRAS function. Thus, for those tumors that show a ligand 

 85



 

independent EGFR-activation profile, alternative strategies that target downstream 

components like MEK may prove to be viable alternatives.  

 

INTRODUCTION 

The epidermal growth factor receptor (EGFR/HER1) is a member of the human 

epidermal growth factor receptor (HER) family of transmembrane receptor tyrosine kinases 

that is linked to growth control, cell adhesion, mobility, and apoptosis (Yarden and 

Sliwkowski, 2001).  As such, EGFR is an important regulator of epithelial cell biology, but 

its function in breast tumors may vary according to other clinical features like estrogen 

receptor (ER) status. Microarray studies have identified several subtypes of breast cancer 

arising from at least two different epithelial cell types (Perou et al., 2000; Sørlie et al., 2001; 

Sørlie et al., 2003; Hu et al., 2005). One of the molecular subtypes of breast cancer is partly 

defined by the expression of ER while another is partly defined by the genomic DNA 

amplification and high expression of HER2 (i.e. HER2+/ER-, see (Hu et al., 2005)).   The 

basal-like subtype has low expression of both ER and HER2.  EGFR was found to have high 

expression in many of the basal-like tumors as assessed by both gene and protein expression 

(Nielsen et al., 2004).   

EGFR overexpression has been reported in a variety of epithelial tumors (Salomon et 

al., 1995), leading to the development of drugs directed against this receptor (Baselga, 2002; 

Mass, 2004).  One of these targeting strategies employs monoclonal antibodies (cetuximab) 

that bind the extracellular ligand-binding domain, while other strategies include small 

molecule inhibitors (gefitinib and erlotinib) that compete with ATP for binding to the 

intracellular tyrosine kinase domain (Culy and Faulds, 2002; Graham et al., 2004; Dowell et 
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al., 2005).  In non-small cell lung cancer and breast cancer cell lines, it has been shown that 

some small molecule EGFR inhibitors increase cell killing when used in combination with 

chemotherapeutics (Ciardiello et al., 2000; Tamura and Fukuoka, 2003); therefore, the 

interactions between HER1 inhibitors and cytotoxic agents represent a promising 

combination for the future treatment of epithelial tumors that are dependent upon EGFR-

signaling. 

The lack of clinical response in breast cancers to gefitinib in vivo has been partially 

attributed to activation of this pathway downstream of EGFR.  Several studies have 

implicated the PI3K/AKT and MEK/ERK pathways as being responsible for EGFR inhibitor 

resistance due to downstream activation. EGFR-independent activation of the PI3K/AKT 

pathway may occur through either loss of PTEN or mutation/activation of PI3K, both of 

which have been linked to gefitinib (Moasser et al., 2001; Bianco et al., 2003; She et al., 

2003). Others have suggested that the MEK/ERK pathway may play a more important role in 

resistance to EGFR inhibitors (Lev et al., 2004; Janmaat et al., 2006; Normanno et al., 2006).  

Recently, Moyano et al. identified αB-Crystallin (CRYAB) as a protein that can 

constitutively activate the MEK/ERK pathway in breast cancer cells and cause a breast 

epithelial cell line to become EGF independent (Moyano et al., 2006).  

In this study, we used basal-like breast cell lines to examine the EGFR signaling 

pathway and its interactions with cytotoxic chemotherapy. Using an EGFR-activation profile 

derived from a basal-like tumor derived cell line, we determined that most basal-like and 

approximately 50% of Luminal B and HER2+/ER- tumors showed an EGFR-activation 

profile.  EGFR-activation signatures may be useful in selecting patients for therapeutics that 

target the EGFR-RAS-MEK pathway.  

 87



 

 

MATERIALS AND METHODS 

Cell Culture 

SUM102 and SUM149 cells were a gift from Steve Ethier of Wayne State University 

[http://www.asterand.com/Asterand/BIOREPOSITORY/hbreastcancercelllines.aspx] and 

represent cell lines derived from ER- and HER2- basal-like breast tumors.  The SUM lines 

were maintained in an Epithelial Growth Medium developed by the Tissue Culture Facility at 

the University of North Carolina at Chapel Hill [http://www.unc.edu/depts/tcf/info.html], and 

the SUM149 line was further supplemented with 5% FBS. The MCF-7, ZR-75-1, HME-CC 

and ME16C cell lines were obtained and maintained as previously described (Troester et al., 

2004; Troester et al., 2004). 

 

Cytotoxicity Assay 

Cell line sensitivities to drugs were assessed using a mitochondrial dye conversion 

assay (MTT, Cell Titer 96, Promega) as described previously with the following 

modifications (Troester et al., 2004).  Cells were seeded into triplicate 96-well plates 

(SUM102, HME-CC, and ME16C – 5,000 cells/well, SUM149 – 10,000 cells/well, MCF-7 

and ZR-75-1 – 7,000 cells/well) and allowed to adhere overnight.  Cells were treated for 72h 

with a range of doses of individual drugs. Carboplatin, doxorubicin, 5-fluorouracil, 

paclitaxel, and LY294002 were purchased from Sigma. Gefitinib was a gift from 

AstraZeneca and cetuximab was purchased from the UNC Hospitals Pharmacy Storeroom. 

U0126 was purchased from Cell Signaling. The inhibitory concentration that caused a 50% 
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reduction in MTT dye conversion (IC50) dose was determined as previously described 

(Troester et al., 2004). 

Drug combination interactions were analyzed using methods developed by Chou and 

Talalay (Chou and Talalay, 1984). Using cell lines plated as described above, seven 

treatment combinations consisting of constant ratios of IC50 doses (ranging from one-eighth 

of each dose to eight times the IC50) were applied to cells and growth compared to untreated 

controls using the MTT assay. Four treatment schedules were tested: 72h concurrent, 72h 

inhibitor followed by 72h chemotherapeutic, 72h chemotherapeutic followed by 72h 

inhibitor, and a 144h concurrent dose with a media change at 72h (similar to the sequential 

treatments).  CalcuSyn (BioSoft) was used to determine the combination index, which is a 

measurement of the type of drug interactions.  A combination index (CI) of one indicates an 

additive response, less than one indicates a synergistic response (greater than additive), and 

greater than one indicates an antagonistic response (less than additive).   

 

Collection of mRNA for Cell Line Experiments 

For each treatment, the SUM102 cells were grown in 15-cm dishes until 50-60% 

confluence.  SUM102 cells were treated for 48h with a dose equivalent to two times the 72h-

IC50 dose of each inhibitor (treated samples). To identify EGFR, MEK, and PI3K activation 

signatures, medium was removed after 48h of inhibitor treatment and replaced with fresh 

medium without inhibitor.  mRNA was harvested at 4h, 8h, and 24h (post treatment 

samples).  Cells were harvested by scraping, quickly placed into RNA lysis buffer, and 

mRNA was isolated using the Micro-FastTrack kit (Invitrogen).   
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Collection of RNA for Human Tumor Samples 

248 breast tissue samples represented by 241 fresh frozen breast tumor samples and 7 

normal breast tissue samples were obtained from four different sources using IRB approved 

protocols from each participating institution: the University of North Carolina at Chapel Hill, 

The University of Utah, Thomas Jefferson University and the University of Chicago; many 

of these samples have appeared in previous publications (Weigelt et al., 2005; Hu et al., 

2006; Oh et al., 2006; Perreard et al., 2006), and 117 are new to this study. Patients were 

heterogeneously treated in accordance with the standard of care dictated by their disease 

stage, ER, and HER2 status. 

 

Tumor Sequence Analysis 

Tumor genomic DNA samples were isolated from 96 tumors using Qiagen DNeasy 

Kits according to the manufacturers protocol. Gene resequencing analyses were performed at 

Polymorphic DNA Technologies (Alameda, CA) using an ABI 3730xl DNA sequencer and 

cycle sequencing, according to the manufacturers protocol. A two-step "boost/nested" PCR 

strategy was used where first a PCR reaction is performed to generate a larger DNA 

fragment, which is then used as a template for the nested reaction with a second set of PCR 

primers.  Double stranded sequencing is performed on the nested product using the nested 

PCR primers as the sequencing primers. Exons 19 and 21 of EGFR were sequenced across all 

96 patients, while exons 1 and 2 of KRAS2, 1 and 2 of HRAS, and 11 and 15 of BRAF were 

sequenced across 54 patients. No somatic alterations were detected in any gene in any 

sample.  
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Microarray Experiments  

For the human tumor samples, the total RNA isolation and microarray protocols were 

performed as described in Hu et al. (Hu et al., 2005); in this study, a number of tumor 

samples from previous studies were retested using a new custom Agilent microarray enriched 

for breast cancer genes. For cell lines experiments, labeled cRNA was generated from the 

mRNA using Agilent’s Low RNA Input Linear Amplification Kit as described in Hu et al. 

(Hu et al., 2005). The 48h treated samples were compared to an untreated cell line reference 

to look for effects of an inhibitor and to post treatment samples to identify the activation 

signature for that drug/pathway. Labeled experimental sample (Cy5 CTP) and reference (Cy3 

CTP) were mixed and co-hybridized overnight on the same Custom 22K Agilent Human 

Whole Genome Oligonucleotide Microarray described above. Two to four microarrays per 

experimental condition were performed, including a dye-flip replicate for gefitinib- and 

cetuximab-treated samples.  Microarrays were scanned on an Axon GenePix 4000B 

microarray scanner and analyzed using GenePix Pro 5.1 software.  Microarray raw data were 

uploaded into the UNC Microarray Database and Lowess normalization was performed on 

the Cy3 and Cy5 channels. The microarray and patient clinical data are available at UNC 

Microarray Database [https://genome.unc.edu/cgi-

bin/SMD/publication/viewPublication.pl?pub_no=63] and have been deposited in the Gene 

Expression Omnibus under the accession number GSE6128. 

 

Statistical Analyses 

Intraclass correlations between cell line microarray experiments were performed to 

judge agreement between replicate experiments as described in Hu et al. (Hu et al., 2005). 
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Unsupervised analyses of the cell line samples were performed by selecting genes with an 

absolute signal intensity of at least 30 units in both channels in at least 70% of the samples 

tested and that also showed a Log2 R/G Lowess normalized ratio of two on at least two 

arrays. The program Cluster was used to hierarchically cluster samples and genes, and 

Treeview was used to view the data (Eisen et al., 1998; Eisen and Brown, 1999). Using the 

SUM102 treated cells, a one-class Significance Analysis of Microarrays (SAM) was used  to 

identify significantly induced genes in all the post treatment experiments (two to three arrays 

for each experimental timepoint) (Tusher et al., 2001). Gene ontology enrichment was 

assessed using EASE (Hosack et al., 2003).  

Analyses of the primary tumor data used top 500 induced genes from the cell line 

SAM analysis described above, after filtering for 30 units in both channels in at least 70% of 

the samples.  These genes were examined in a two-way hierarchical clustering analysis with 

the 248 UNC tumor sample set.  Three distinct expression patterns were observed and 

labeled as Clusters #1-3. Next, the genes in each of these three tumor-defined clusters were 

identified in the NKI295 patient data set (van de Vijver et al., 2002; Chang et al., 2005), and 

a mean expression value for each cluster for each patient was determined.  The NKI295 

patients were then rank-ordered and separated into (a) two equal groups representing low and 

high, or (b) three equal groups representing low, medium, and high average expression for 

each cluster.  In addition, similar gene-based rank order patient stratifications were 

performed for individual genes that included EGFR, HER2, HER4, EGF, TGFA, AREG, 

CRYAB, KRAS, KRAS-amplicon profile, HRAS, NRAS, PIK3CA, PIK3R1, AKT1, AKT2, 

AKT3, MEK1, MEK2, ERK1, and ERK2.  Survival analyses were performed using Cox-

Mantel log-rank test in Winstat for Excel (R. Fitch Software).  Multivariate Cox proportional 
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hazards analysis was performed in SAS v9.0 (SAS Statistical Software, Cary, NC) to 

estimate the hazard ratio associated with cluster expression in the three groups after 

controlling for standard clinical predictors (age, ER status, size, grade, and node status). Chi 

Square tests (SAS v9.0) was used to examine correlations between cluster groups, individual 

genes, and tumor subtype. 

Gene expression relative levels were visualized in relation to the EGFR signaling 

pathway using Cytoscape [www.cytoscape.org] (Shannon et al., 2003).  The pathway was 

built de novo based on information from KEGG [http://www.genome.ad.jp/kegg/] (Ogata et 

al., 1999), BioCarta [http://www.biocarta.com], and a review by Yarden and Silowkoski 

(Yarden and Sliwkowski, 2001) with a focus on the RAS-MEK and PI3K/AKT.  Using the 

UNC breast tumor microarray dataset, an average gene expression profile is displayed for the 

luminal A, luminal B, basal-like, and HER2+/ER- tumors.  Tumor “intrinsic” subtype was 

determined for each sample using the 306 gene Centroid Predictor described in Hu et al. (Hu 

et al., 2006); the subtype classifications used for the NKI295 sample set were also derived 

from this same centroid predictor and are described in Fan et al. (Fan et al., 2006). 

 

RESULTS 

Cell Line Models of Breast Cancer 

Breast cancer is a heterogeneous disease arising from at least two distinct epithelial 

cell populations; therefore, we selected cell lines models of basal-like and luminal cells to 

begin our investigations of the EGFR-pathway. The MCF-7 and ZR-75-1 cell lines were 

derived from breast tumors of luminal origin and have expression of CK8/18 and ER. Our 

previous studies examining cell lines of basal-like origin used immortalized human 
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mammary epithelial cell lines (HMECs) (Troester et al., 2004; Troester et al., 2004); 

however, these lines are derived from normal rather than tumor tissue. Two ER-negative and 

HER2-non-amplified tumor-derived cell lines, SUM149 and SUM102, have been previously 

shown to express EGFR (Sartor et al., 1997; Lev et al., 2004) and show basal-like profiles 

(Bertucci et al., 2005). The SUM102 and SUM149 lines share many characteristics with the 

basal-like tumors including expression of CK5/6; therefore, we used these two tumor-derived 

lines as in vitro models of basal-like breast cancers. By microarray analysis, EGFR gene 

expression was very low in the luminal cell lines and higher in the basal-like lines.  EGFR 

protein expression by Western blot analysis was detectable in basal-like, but not in the 

luminal lines (data not shown).   

 

Drug Sensitivity Assays  

To assess EGFR inhibitor sensitivity, the six cell lines were treated for 72h with a 

range of doses of gefitinib or cetuximab and an MTT assay was used to determine IC50 

doses (Table 4.1). In response to gefitinib, the basal-like tumor-derived cell lines (SUM149 

and SUM102) were two- to 100-fold more sensitive than the luminal lines.  The two 

immortalized HMEC lines were also 33- and 50-fold more sensitive to gefitinib than the 

luminal lines, suggesting that the basal-like cell type as a whole is more sensitive to gefitinib 

than the luminal cell type. Cetuximab sensitivity was observed only in a single cell line 

(SUM102, IC50=2ug/ml), with IC50 doses for MCF-7, ZR-75-1, SUM149, ME16C2, and 

HME-CC not achievable even with cetuximab doses as high as 100ug/ml.  These cell lines 

were also treated with inhibitors that affect targets downstream of EGFR in its pathway 

including U1026 (MEK1/2 inhibitor) and LY294002 (PI3K inhibitor).  Most of the cell lines 
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Table 4.1.  Estimated IC50 doses of six breast cell lines for the EGFR inhibitors gefitinib, 
cetuximab, the MEK1/2 inhibitor U0126, and the PI3K inhibitor LY294002 

Cell Line Gefitinib 
(µM) 

Cetuximab 
(µg/mL) 

U0126 
(uM) 

LY294002 
(uM) 

ME16C   0.3 (0.02) >100a 19.7 (0.66) 21.2 (0.63) 
HME-CC   0.2 (0.01) >100a 12.7 (0.33)   7.3 (0.17) 
SUM102     0.1 (0.002) 2.3 (0.15)   4.3 (0.20)   3.4 (0.10) 
SUM149   4.7 (0.14) >100a 21.8 (0.80) 18.4 (0.48) 
MCF-7 21.1 (0.29) >100a 17.0 (1.15)   3.9 (0.13) 
ZR-75-1 11.1 (0.12) >100a 25.0 (0.74)   2.4 (0.05) 
Note that the standard errors are presented within () 
aNo achievable IC50 dose with doses up to 100µg/mL 
 
 
 
 
Table 4.2. Estimated IC50 doses of six breast cell lines treated with chemotherapeutics 

Cell Line 5-Florouracil 
(uM) 

Doxorubicin 
(nM) 

Carboplatin 
(uM) 

Paclitaxel 
(nM) 

ME16C   6.0 (0.29) 32.8 (1.89) 37.5 (0.63) 0.052 (0.004) 
HME-CC   1.1 (0.07) 35.5 (3.26) 48.3 (1.41) 0.025 (0.003) 
SUM102 16.8 (0.82)   5.1 (0.27) 11.7 (0.26) 0.00057 (0.00001) 
SUM149 28.6 (1.33) 45.0 (3.06)   7.7 (0.24)   0.71 (0.006) 
MCF-7   1.2 (0.15) 56.9 (4.26) 89.4 (3.79) 0.23 (0.02) 
ZR-75-1   8.4 (1.06) 26.5 (1.39) 62.6 (1.98) 0.99 (3.34) 
Note that the standard errors are presented within (). 
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had a similar level of sensitivity to U0126 with the exception that SUM102 was 

approximately 5-fold more sensitive. IC50 doses for LY294002 were similar for most lines 

with the exception of ME16C and SUM149 cells, which were approximately 5-fold more 

resistant than the other lines. The SUM102 line was the only cell line that was sensitive to all 

four inhibitors and has previously been shown to be EGFR-dependent (Sartor et al., 1997), 

and thus was chosen for further analyses of the EGFR-pathway.  

 

Drug Combination Analyses 

A phase II clinical trial is currently recruiting breast cancer patients who are ER-

negative, Progesterone Receptor-negative, and HER2 non-amplified  (i.e. basal-like patients) 

to assess treatment responses to cetuximab alone or in combination with carboplatin 

[http://www.clinicaltrials.gov/ct/show/NCT00232505].  A second phase II trial in a 

nonselected population of metastastic breast cancer patients is also evaluating cetuximab in 

combination with carboplatin and irinotecan 

[http://www.clinicaltrials.gov/ct/show/NCT00248287].  Therefore, we examined the 

combined effects of cetuximab and carboplatin, as well as three additional chemotherapeutics 

(doxorubicin, 5-fluorouracil, and paclitaxel), in SUM102 cells. We also tested the combined 

effects of gefitinib, U0126, and LY294002 with chemotherapeutic agents. Individual drug 

sensitivity (IC50 doses) for each chemotherapeutic was determined for all six cell lines 

(Table 4.2).  The relative sensitivities varied across the cell lines and did not appear to 

correlate with subtype, with the exception of two basal-like tumor-derived cell lines 

(SUM102 and SUM149) that were at least three-fold more sensitive to carboplatin and at 
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Figure 4.1.  Effects of different combination schedules of cetuximab with 
chemotherapeutics in SUM102 cells.  Cells were treated with four different combination 
schedules: 1) 72h cetuximab followed by 72h chemotherapy, 2) 72h chemotherapy followed 
by 72h cetuximab, 3) 72h concurrent chemotherapy and cetuximab, and 4) 144h concurrent 
chemotherapy and cetuximab.  A) Growth inhibitory effects of cetuximab and carboplatin 
combinations.  B) Combination analysis of cetuximab and carboplatin treatments.  C) Growth 
inhibitory effects of cetuximab and paclitaxel combinations.  D) Combination analysis of 
cetuximab and paclitaxel treatments. E) Growth inhibitory effects of cetuximab and 5-
fluorouracil combinations. F) Combination analysis of cetuximab and 5-fluorouracil 
treatments. G) Growth inhibitory effects of cetuximab and doxorubicin combinations. H) 
Combination analysis of cetuximab and doxorubicin treatments. Combination Index (CI) 
values below one are synergistic, equal to one are additive, and greater than one are 
antagonistic. 
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least two-fold more resistant to 5-fluorouracil when compared to their “normal” HMEC 

counterparts or the luminal cell lines.   

The interaction of cetuximab with a chemotherapeutic in combination was examined 

solely in the SUM102 line because this was the only cetuximab sensitive line. As a starting 

point, we treated SUM102 cells for 72h with cetuximab and a chemotherapeutic 

simultaneously.  Synergistic interactions were not evident in any combination; all 

combinations were highly antagonistic as assessed by the method of Chou and Talalay in 

CalcuSyn (Chou and Talalay, 1984) (Figure 4.1). We next analyzed the effect of sequential 

treatment: cells were treated for (a) for 72h with cetuximab followed by 72h with 

chemotherapy, (b) for 72h with chemotherapy followed by 72h with cetuximab, or (c) with 

cetuximab and chemotherapy simultaneously for 144h. Chemotherapy followed by 

cetuximab was generally more growth inhibitory than cetuximab followed by chemotherapy 

(Figure 4.1A-H). The one exception was cetuximab with paclitaxel, where all sequence 

combinations were antagonistic (Figure 4.1C and D). However, this antagonism may result 

from the high sensitivity to paclitaxel already observed in the SUM102 line. Carboplatin 

followed by cetuximab and the 144h concurrent treatments were synergistic even at low 

doses of both drugs. 5-fluorouracil followed a similar trend to that of carboplatin, while in 

the doxorubicin combinations synergy was only evident at doses higher than the IC50 dose 

for doxorubicin first or the 144h concurrent (Figure 4.1F and H).  Similar results were 

observed for combinations with gefitinib and LY294002 (a PI3K inhibitor) where 

chemotherapy followed by each inhibitor treatment and the 144h concurrent treatments were 

more effective than the inhibitor first. U0126 (a MEK inhibitor) combinations were different 

with chemotherapy first followed by U0126 being slightly less synergistic than the U0126 

 99



 

first or concurrent treatment; however, for U0126, all combinations except doxorubicin first, 

or paclitaxel first, were synergistic. 

 

EGFR-Pathway Gene Expression Patterns 

To identify EGFR-dependent transcriptional patterns, we analyzed the gene 

expression data of the SUM102 cell line treated with EGFR inhibitors and then released from 

this inhibition. Using an unsupervised analysis, we hierarchically clustered all time points 

from the cetuximab and gefitinib treatment experiments and identified over 500 genes that 

changed in expression at least 4-fold (Figure 4.2).  Even though the two EGFR inhibitors 

have different mechanisms of inhibition, SUM102 cells treated for 48h with gefitinib or 

cetuximab showed very similar gene expression changes. Intraclass correlation (ICC) values 

between the gefitinib and cetuximab treated samples ranged from 0.627 to 0.934, and this 

level of similarity was also evident in the short dendrogram branches from the cluster 

analysis (Figure 4.2B).  The post treatment samples that represent the reactivation of the 

EGFR-pathway were even more similar (intraclass correlations within each time point ranged 

from 0.862 to 0.962). A two-class SAM analysis to look for differences between gefitinib-

post treatment samples versus cetuximab-post treatment samples identified only 58 

significantly different genes with a false discovery rate (FDR) of 5%; thus, from a 

transcription standpoint, gefitinib and cetuximab elicited very similar results. 

In response to gefitinib and cetuximab, the SUM102 cell line exhibited decreased 

expression of many proliferation genes (Figure 4.2G).  There was also a large cluster of 

transcripts that were induced by the inhibitors, consisting predominately of hypothetical 

genes with unknown functions.  We were more interested in the genes induced by removal of 
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Figure 4.2. Gene expression patterns for SUM102 cells treated with gefitinib or 
cetuximab.  Unsupervised hierarchical cluster analysis was performed on 48h inhibitor 
treated and 4h, 8h, and 24h post inhibitor treated samples.  A) The complete cluster overview 
with the colored bars indicating the location of the clusters shown in C-G.  B) Close up of the 
experimental sample associated dendrogram. C+D) 4h and 8h post treatment induced genes 
including the EGFR ligands Amphiregulin and Epiregulin. E) Genes involved with the G1/S 
phase transition induced beginning in the 4h post inhibitor and continuing though 24h. F) 
Genes involved in DNA synthesis induced at 8h post inhibitor and continuing through 24h. 
G) Proliferation genes typically observed in tumor derived profiles including STK6 and 
Cyclin B1. H) Negative regulators of growth. 
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the inhibitor as this reflects the gene expression associated with de novo activation of the 

EGFR-pathway.  As early as 4h and 8h after inhibitor removal there was a substantial 

increase in expression for two ligands in the EGFR pathway, amphiregulin and epiregulin.  

Cyclin A1 was also substantially increased (Figure 4.2C and D).  Starting at 4h and 

continuing through 8h and 24h, genes with known roles in G1/S phase such as CDC6, CDC7, 

TIMELESS, and ORCL6 were increased (Figure 4.2E).  By 8h and 24h, DNA synthesis and 

DNA damage checkpoint genes were induced (Figure 4.2F).  Classical gene expression-

defined proliferation genes including STK6 and Cyclin B1 were highly induced by 24h 

(Figure 4.2G).  There was also a repression of negative regulators of growth such as Growth 

arrest-specific 1 and Cyclin G2 (Figure 4.2H).   

To objectively identify an EGFR-activation signature from the SUM102 cells, a one-

class SAM analysis was used to identify genes that were statistically induced in the post 

treatment samples. Adjusting the SAM delta value to obtain the largest gene list with less 

than 5% FDR resulted in a gene list that was extremely large (10,017 genes, 4.97% FDR), 

therefore, the top 500 induced genes were selected for further analysis (0.02% FDR). This 

gene list was used to cluster 248 UNC breast tumor samples representing all five breast 

tumor subtypes (Figure 4.3).  The list of induced genes from the in vitro experiments were 

not homogenously expressed across the tumor samples, and therefore to study these multiple 

expression patterns in the tumors we defined “clusters” as any gene set that contained a 

minimum of 20 genes and a Pearson node correlation greater than 0.55. Using this criteria, 

we identified three clusters: Cluster #1 was high in a mix of breast tumor samples that 

contained all five breast cancer subtypes: luminal B, luminal A, basal-like, HER2+/ER- and 

normal-like samples (Figure 4.3C, far right dendrogram branch, 35 genes); Cluster #2 
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Figure 4.3. In Vivo EGFR-activation profiles and additional genes implicated in the 
EGFR-RAS-MEK pathway clustered on the UNC tumor data set.  A) The top 500 
induced genes from the SUM102 post treatment experiments were hierarchical clustered 
using the 248 UNC tumors. Colored bars indicate the location of the three clusters in D-E.  
B) Tumor associated dendrogram color coded according to tumor subtype: luminal A – dark 
blue, luminal B – light blue, true normals and normal-like – green, HER2+/ER- - pink, and 
basal-like – red. C) Cluster #1 that identified a mixed group of tumors.  D) Selected genes 
from the center of Cluster #2 that is high in most basal-like tumors.  E) Selected genes from 
the center of Cluster #3 that is high in the luminal tumors. F) Data for genes with suggested 
roles in HER pathway ordered according to hierarchical clustering with the 500 induced 
genes. G) Data for the KRAS-amplicon signature identified in Herschkowitz et al. 
(Herschkowitz et al.).  
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identified a set of tumors that was highly enriched for basal-like tumors and contained 58% 

of all basal-like tumors, 48% of all HER2+/ER- tumors and 3 Luminal B tumors (Figure 

4.3D, center dendrogram branch, 27 genes); Cluster #3 was highly enriched for Luminal A 

and B tumors , as well as the HER2+/ER- and basal-like tumors that were also high for 

Cluster #2 (Figure 4.3E, left dendrogram branch– luminal A and B tumors, and center 

dendrogram branch – HER2+/ER- and basal tumors, 139 genes).  Thus each gene cluster 

represents a stereotyped EGFR-activation signature that is enriched in a different subset of 

tumors.  Full gene lists for each cluster are in Appendix IVA. Gene Ontology (GO) analysis 

using EASE was performed on each gene cluster but only Cluster #3 had any significant GO 

terms, which were RNA processing, metabolism, binding, splicing, and modification (EASE 

scores < 0.05). However, Cyclin E1 was present within Cluster #2 and is a known prognostic 

marker for breast cancer patients (Schraml et al., 2003); Cyclin E1 is also associated with 

basal-like breast cancers (Foulkes et al., 2004; Sieuwerts et al., 2006), which was 

recapitulated here, and known to be regulated by EGFR-signaling (Lu et al., 2003).  

To examine the biological importance of these three gene sets, we individually 

applied them to a true test set of breast tumors (i.e. the NKI295 sample set described in (van 

de Vijver et al., 2002; Chang et al., 2005)) to determine whether they predicted patient 

outcomes. We first determined a mean expression value of all genes within a cluster for each 

patient. The patients were next rank-ordered based upon the mean expression values and 

divided into either two groups or three groups based upon their rank-order mean expression 

values. Kaplan-Meier survival analyses for Relapse-Free Survival (RFS) and Overall 

Survival (OS) were performed and all three clusters were statistically significant predictors of 

outcomes where the high expression always predicted a poor outcome (Figure 4.4 – OS; 
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Figure 4.4. Kaplan-Meier survival plots for the 295 NKI tumors/patients using 
expression from the three different in vivo defined EGFR-activation profiles. The 
average expression value for each cluster in each patient was determined and the patients 
then put into rank-order and divided into two equal groups or three equal groups. Overall 
survival analysis was performed for each cluster.  X indicates censored data due loss to 
follow-up or to information at last checkup. Note that Clusters #2 and #3 were also similarly 
prognostic for the UNC training data set presented in Figure 4.3.
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similar data observed for RFS). Using a Cox multivariate analysis, we tested each group with 
the standard clinical parameters and determined that the high expression (top third) of Cluster 
#2 compared to the lowest expression (bottom third) significantly predicted a worse outcome 
for both RFS and OS (HR 2.63, 95% CI 1.44-4.79, p=0.0016 and HR 3.46, 95% CI 1.58-
7.59, p=0.0019, respectively) after controlling for age, ER status, size, grade, and node status. 
Chi-squared analyses were performed to identify relations between tumor subtypes and 
Clusters #1-3. Consistent with observations from Figure 4.3, the basal-like, luminal B, and 
HER2+/ER- tumors were associated with the high expression of all three clusters while the 
luminal A and normal-like samples rarely showed high expression (Table 4.3, p=<0.0001); in 
particular, the basal-like tumors were almost all high for Cluster #2 (89% in top 1/3).  
 

Role of MEK and PI3K in the EGFR-Profile 

Activation of EGFR leads to the downstream activation of numerous signaling 

pathways including the MEK/ERK and PIK3/AKT pathways (Yarden and Sliwkowski, 

2001). To examine the role of these effectors, we treated the SUM102 cell line with the 

MEK1/2 inhibitor U0126 and the PI3K inhibitor LY294002 alone and in combination. 

Microarray time course experiments using inhibitor treated cells followed by inhibitor 

removal were conducted for U0126 and LY294002 using the experimental protocol as were 

done for cetuximab and gefitinib.  The observed gene expression profiles for the MEK and 

the PI3K experiments were similar in both gene identity and direction when compared to the 

EGFR-profile, but gene expression changes were reduced in magnitude. The MEK and PI3K 

signatures were very similar to each other at the 4h and 8h time points (average ICC = 0.83), 

but gave diverged at 24h (average ICC = 0.59).  Gene expression signatures of LY294002 

and U0126 samples were also correlated with gefitinib and cetuximab gene expression 

signatures at 4h and 8h post treatment (LY294002 compared to gefitinib/cetuximab ICC = 

0.83, U0126 compared to gefitinib/cetuximab ICC = 0.77). The LY294002 and U0126 24h 

post treatment samples were less correlated with gefitinib and cetuximab 24h post samples 

(LY294002 compared to gefitinib/cetuximab ICC = 0.51, U0126 Compared to 
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gefitinib/cetuximab ICC = 0.41). We also treated cells with LY294002 and U0126 together 

to determine if the combined treatment would more completely recapitulate the EGFR 

activation profile; the 24h post combined treatment samples showed a higher correlation 

value to the gefitinib and cetuximab samples (average ICC = 0.73), but still did not account 

for the entire gene expression pattern of the 24h post cetuximab and gefitinib treatments. 

These results suggest that the EGFR-profile could not be simply attributed to either the MEK 

or PIK3 pathway, but the combination of these two pathways or other downstream signaling 

pathways such as STATs (Sartor et al., 1997) are more representative of the EGFR-signature 

than either pathway alone. 

 

Potential Mechanisms for Activation of EGFR Signaling In Vivo   

Activation of the EGFR-RAS-MEK pathway is known to occur via both ligand 

dependent and independent mechanisms. The empirically derived signatures in Clusters #1-3 

(above) are likely to include both.  Thus, to distinguish between ligand dependent and 

independent mechanisms, we tested the gene expression patterns of the HER family of 

receptors (EGFR, HER2, HER4), some of their ligands (TGFA, EGF, AREG), as well as 

other pathway components including MEK1, MEK2, PIK3CA, PIK3R1, CRYAB, AKT1-3, the 

Ras proteins (H, K and N), ERK1, ERK2, and the KRAS-amplicon signature (identified and 

defined by gene expression in Herschkowitz et al. (Herschkowitz et al.)) for their ability to 

predict patient outcomes, for correlations with tumor subtype (Table 4.3), and for 

correlations with Clusters #1-3 (Table 4.4).  In this case, the ‘ligand independent’ gene list 

was not empirically defined, but based on existing literature for the activation of the EGFR 

signaling pathway.  Gene expression for individual genes was rank-ordered and divided into 
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thirds as was done for Clusters #1-3 above.   Each gene was tested for its ability to affect 

survival outcome in our tumor data.  No genes significantly predicted RFS and OS in both 

the UNC and NKI data sets.  Associations between genes, or Clusters #1-3, with subtype 

were determined by Chi-square analysis and identified many significant associations (Table 

4.3). For example, high HER2 expression, as expected, was significantly correlated with the 

HER2+/ER- subtype and ER expression was associated with both luminal subtypes (data not 

shown). EGFR expression was correlated with the basal-like subtype while high HER4 and 

PIK3R1 expression was associated with the luminal A subtype. Many other associations with 

the basal-like subtype were also evident that included the high expression of Clusters #1-3, 

TGFA, AKT3, CRYAB, MEK1, NRAS and the KRAS-amplicon signature and gene (Table 4.3). 

Other potentially biologically relevant associations included the high expression of Clusters 

#2 and #3, HRAS, MEK1, and AKT1 in the HER2+/ER- subtype, and high expression of 

Clusters #1-3 and HRAS with the luminal B subtype. 

We also tested for associations between the high expression of Clusters #1-3 with the 

high expression (i.e. top 1/3 group) of each of the above-mentioned genes in both the UNC 

and NKI datasets (Table 4.4). In both datasets, the high expression of MEK2 and HRAS was 

associated with Cluster 1, while the high expression of many other genes correlated with 

Clusters 2 and 3; of note was the high expression of the KRAS-amplicon, HRAS, NRAS, and 
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Table 4.3.  Chi-square analysis for association of gene expression with subtypes.  Samples 
were rank ordered into three equal groups and the percentage of each subtype in the highest 
expression group is reported for the NKI patient data set.  
 Basal-like HER2+/ER- Luminal A Luminal B Normal-like p-value 
# tumors 53 35 123 55 29  
Cluster 1a 68% 37% 12% 56% 14% <0.0001 
Cluster 2a 89% 49% 5% 49% 7% <0.0001 
Cluster 3a 77% 51% 11% 47% 0% <0.0001 
       
EGFRa 68% 20% 27% 18% 41% <0.0001 
HER2a 15% 100% 28% 26% 24% <0.0001 
HER4* 9% 3% 50% 38% 31% <0.0001 
       
TGFAb 74% 37% 17% 25% 38% <0.0001 
AREGa 3% 34% 43% 35% 41% <0.0001 
EGF 17% 40% 37% 36% 31% 0.23 
       
CRYABa 70% 11% 33% 4% 48% <0.0001 
       
KRAS 
amplicona 68% 40% 24% 35% 0% <0.0001 

KRAS 
genec 32% 37% 33% 38% 21% 0.3555 

HRASd 32% 66% 17% 64% 7% <0.0001 
NRASa 70% 28% 17% 44% 21% <0.0001 
       
PIK3CA 30% 17% 36% 36% 41% 0.28 
PIK3R1a 21% 14% 42% 25% 55% 0.0012 
AKT1a 26% 63% 27% 40% 24% <0.0001 
AKT2* 26% 40% 27% 47% 38% 0.26 
AKT3a 51% 14% 39% 9% 45% <0.0001 
       
MEK1 53% 46% 25% 29% 24% 0.0232  
MEK2e 42% 43% 25% 42% 24% 0.0683 
ERK1f 30% 26% 31% 42% 41% 0.4924 
ERK2g 40% 31% 26% 45% 31% 0.0482 
*Note: HER4 could not be assessed in UNC data due to too many missing values; HER3 was not present in the 
NKI data set; AKT2 was not present in the UNC data set 
a associations were also similarly significant in the UNC sample set  
b nominally significant in UNC data (p-value=0.0046) 
c nominally significant association in the UNC data (p-value= 0.0051)  
d nominally significant in the UNC data (p-value = 0.003) 
e nominally significant in the UNC data (p-value = 0.0023) 
f significant in the UNC data (p-value = 0.0003) 
g significant in the UNC data (p-value = <0.0001) 
Bonferroni corrected level of significance α=0.0022 
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Table 4.4. Associations between Clusters #1-3 and individual genes using the NKI295 
sample set. Chi-squared analyses were used to identify associations between the high 
expression of the individual EGFR-activation profiles for each cluster (top 1/3) and the 
expression of individual genes categorized as high (top 1/3). The % of tumors with the high 
expression of each cluster and that show the high expression of the individual gene is shown. 
 Cluster 1  Cluster 2  Cluster 3 
 % p-val  % p-val  % p-val 
EGFR 39% 0.1783  43% 0.0091b  38% 0.1484 
HER2 26% 0.0017  25% <0.0001c  24% <0.0001a 
HER4* 21% <0.0001  12% <0.0001  18% <0.0001 
         
TGFA 40% 0.0665  48% 0.0002  47% 0.0021 
AREG 22% 0.0007c  23% <0.0001a  28% 0.0644f 
EGF 35% 0.1380  25% 0.0691  27% 0.0332d 
         
CRYAB 35% 0.3214f  38% 0.0524  38% 0.0013 
         
KRAS amplicon 38% 0.1973e  52% <0.0001c  63% <0.0001a 
KRAS gene 27% 0.0022a  31% 0.8795  36% 0.1377e 

HRAS 48% <0.0001c  51% <0.0001  47% 0.0018 
NRAS 45% 0.0362  56% <0.0001c  59% <0.0001a 
         
PIK3ca 22% 0.0032b  27% 0.1415e  30% 0.3304e 
PIK3R1 24% 0.0009a  20% <0.0001a  19% <0.0001 
AKT1 41% 0.0112  39% 0.0899  34% 0.3615 
AKT2* 40% 0.0519  37% 0.3524  33% 0.9378 
AKT3 26% 0.0004  33% 0.1569  35% 0.6377f 
         
MEK1 39% 0.0335  47% 0.0032d  48% <0.0001 
MEK2 58% <0.0001a  44% 0.0113d  36% 0.5519f 
ERK1 37% 0.0718e  23% 0.0009c  19% <0.0001a 

ERK2 39% 0.0238  37% 0.3457e  36% 0.4601e 

*Note: HER4 could not be assessed in UNC data due to too many missing values; HER3 was not present in the 
NKI data set; AKT2 was not present in the UNC dataset. 
a the statistically significant association was also significant in the UNC data set (p<0.0025). 
b the association was nominally significant in the NKI dataset (p<0.05), but significant in the UNC dataset 
(p<0.0025). 
c the association was significant in the NKI dataset (p<0.0025), but nominally significant in the UNC dataset 
(p<0.05). 
d the association was nominally significant in both datasets (p<0.05). 
e the association was significant in UNC dataset (p<0.0025). 
f the association was nominally significant in the UNC dataset (p<0.05). 
Bonferroni corrected level of significance α=0.0025
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MEK1 with both Clusters #2 and #3, and the high expression of EGFR with only Cluster #2.   

The association of different genes with the three EGFR-activation signatures represents the 

heterogeneity of this signaling pathway in breast cancer. 

Lastly, an obvious mechanism for activation of the EGFR-RAS-MEK pathway is the 

somatic mutation of a RAS gene, BRAF, or EGFR itself, which are relatively frequent events 

in non-small cell lung carcinomas. We performed resequencing analyses on a subset of the 

breast tumors analyzed here by microarray for EGFR Exons 19 and 20, which contain the 

ATP binding domain of EGFR, and for the common sites of mutation in HRAS, KRAS and 

BRAF. No somatic sequence variants were detected in 96 tumors including 54 tumors that 

were oversampled for basal-like and HER2+/ER- respectively, thus suggesting that the 

somatic mutation of these genes in not likely to be responsible for the activation of the 

EGFR-RAS-MEK pathway in breast tumors. 

 

DISCUSSION 

The epidermal growth factor receptor family is of tremendous biological and clinical 

importance for many solid epithelial tumors. Numerous drugs have been developed that 

target this pathway including trastuzumab that targets HER2 (Slamon et al., 2001), 

cetuximab that targets EGFR (Adams and Weiner, 2005), and various small molecular 

inhibitors like gefitinib and erlotinib that have high specificity for EGFR1 and may also 

inhibit HER2 with varying efficiencies (Akita and Sliwkowski, 2003; Anido et al., 2003) as 

well as small molecular inhibitors such as lapatinib that specifically target both EGFR and 

HER2 (Johnston and Leary, 2006). In non-small cell lung cancers, the somatic mutation of 

EGFR/HER1 leads to a receptor that is hypersensitive to the small molecule EGFR inhibitors 
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gefitinib and erlotinib (Lynch et al., 2004; Paez et al., 2004), thus providing a biological 

target that is present in some lung cancer patients. In breast cancer patients, the response rate 

to single agent EGFR inhibitors has been low, however, these trials were performed on 

unselected patient populations (Agrawal et al., 2005; Normanno et al., 2005). 

The EGFR-pathway has recently become a potential target in the basal-like subtype 

because it was shown that at least 50% of basal-like tumors express EGFR as assessed by 

IHC (Nielsen et al., 2004). These results, in part, lead to the initiation of a clinical trial for 

ER-negative, PR-negative, and HER2-nonamplified (i.e. basal-like) breast cancers where 

these patients will receive cetuximab alone versus cetuximab plus carboplatin. Our in vitro 

analyses show that all four basal-like cell lines were more sensitive to EGFR inhibitors 

compared to luminal cell lines. In addition, only a single cell line (SUM102) was sensitive to 

cetuximab when EGF was present within the media, which is the condition that best mimics 

the in vivo environment (Singh and Harris, 2005). This finding led us to evaluate the 

combination of cetuximab and various chemotherapeutics in SUM102 cells, where we 

observed that the combination of cetuximab and carboplatin was highly synergistic at low 

doses of each drug. Even though the short-term co-treatment of cetuximab and carboplatin 

was antagonistic, the increased synergism observed in the long-term co-treatment justifies the 

choice of cetuximab plus carboplatin in the “triple-negative” patient trial (NCT00232505).   

Carboplatin, as well as other platinum derivatives, may be good chemotherapeutic 

agents for basal-like breast cancers due to the implicated important function of the BRCA1-

pathway in this subtype.  Namely, BRCA1 mutation carriers are predisposed to develop 

tumors of the basal-like subtype (Foulkes et al., 2003; Sørlie et al., 2003; Arnes et al., 2005).  

Indeed, in our basal-like cell lines, it has been reported that the SUM149 line has a BRCA1 
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mutation and SUM102 line has barely detectable transcript levels of BRCA1 (Elstrodt et al., 

2006). From a mechanistic standpoint, BRCA1 is required for repair of cisplatin induced 

DNA damage by recruiting RAD51 to the site of damage (Bhattacharyya et al., 2000; Zhou et 

al., 2005) and BRCA1-deficient cells exhibit increased sensitivity to cisplatin compared to 

wild type cells (Husain et al., 1998; Quinn et al., 2003; Tassone et al., 2003; Kennedy et al., 

2004). The combination of an EGFR inhibitor and a platinum drug has also been found to be 

synergistic in several other cell types (Ciardiello et al., 2000; Hambek et al., 2005; Morelli et 

al., 2005).  In our experiments, we showed that not only are the basal-like tumor derived cell 

lines the most sensitive to platinum drugs and the EGFR inhibitors when applied 

individually, but also that the combination was synergistic.   

Given the biological importance of the EGFR pathway, we wished to identify an 

EGFR-activation profile and examine its interplay with other biological features. We first 

evaluated EGFR signaling using the SUM102 cell line, which was the only cell line tested 

that was sensitive to both cetuximab and gefitinib and has previously been shown to be 

EGFR-dependent (Sartor et al., 1997). The SUM102 analysis identified a very large signature 

that contained known “immediate early” target genes (Figure 4.2C) and a stereotypical 

proliferation response (Whitfield et al., 2002; Whitfield et al., 2006). To further investigate 

the biological relevance of EGFR-activation response in vivo, we took the top 500 induced 

genes from the SUM102 post inhibitor time point experiments and used them to analyze a 

large set of primary breast tumors. As was seen when performing a similar analysis that used 

in vitro defined estrogen-regulated genes (Oh et al., 2006), the homogenous expression 

pattern obtained from the cell line experiment corresponded to a heterogeneous patterns of 

expression in the primary tumors, which split into three distinct expression patterns (Figure 
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4.3), of which two predicted patient outcomes in both the training and test data sets (i.e. 

Cluster #2 and #3) and each cluster high in different subtype/subsets of tumors.  While 

clusters  #2 and #3 may be of prognostic value, their greatest value may be as an assay to 

identify tumors/patients that may benefit from therapeutic intervention of the EGFR-RAS-

MEK pathway.  These signatures represent a more dynamic descriptor of pathway activity 

compared to EGFR protein status alone, which is already known to not predict 

responsiveness to EGFR inhibitors (Fountzilas et al., 2005; Gasparini et al., 2005; von 

Minckwitz et al., 2005).  Microarray studies of breast cancer patients treated with EGFR 

inhibitors will be needed to address this hypothesis. 

One of the most critical questions is what are the molecular events that cause 

activation of the EGFR-RAS-MEK pathway, and do these activation events vary with 

subtype? To address these questions, we queried our data and found that known critical 

signaling components of this pathway correlated with tumor subtype or with the EGFR in 

vivo defined profiles. These data are summarized in Figure 4.5 where the average expression 

value for each gene, within each of the four major subtypes, is shown relative to the average 

expression value of that gene across all samples within the context of a diagram of the 

HER1-RAS-MEK pathway. Many relationships were identified including previously known 

associations as well as new associations.  

The luminal A versus luminal B distinction showed numerous EGFR-pathway 

specific differences that included the low expression of all three EGFR-activation signatures 

within the luminal A subtype and the high expression of the growth inhibitory HER4 protein, 

with the average expression of two of its ligands (HB-EGF and NRG1, Figure 4.5A); this 

subtype also shows the low expression of EGFR and CRYAB. Conversely, the luminal B  
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Figure 4.5. EGFR pathway diagram displayed for each breast tumor subtype. The 
average gene expression value for each gene within each subtype is displayed for the EGFR-
pathway and for the three EGFR-activation profiles using the UNC tumor dataset. Eight 
genes from the middle of each of the three EGFR-activation clusters were used to view 
expression of the clusters in each of the subtypes. A pink node border identifies the genes 
that showed statistically significant associations with subtype. *Note: the NKI HER4 data 
spot was used since HER4 was not present in the UNC data set. A) Luminal A, B) Luminal 
B, C) HER2+/ER- and D) Basal-like. 
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subtype is characterized by the moderate to high expression of the EGFR-activation 

signatures, high HRAS expression and potentially high MEK2 (Figure 5.4B). The 

EGFR/HER2 pathway has been often implicated as at least partially responsible for 

tamoxifen resistance in ER+ patients (Arpino et al., 2004; Gutierrez et al., 2005; Normanno 

et al., 2005; Britton et al., 2006; Dowsett et al., 2006; Ellis et al., 2006), and Clusters #2 and 

#3 were able to predict outcome differences in ER+ and tamoxifen-treated patients in both 

the UNC and NKI data sets (data not shown); however, the expression of Clusters #2 and #3 

in ER+ patients closely parallels the genomic distinction of luminal A versus luminal B. 

Taken together, these results suggest that part of the luminal A versus luminal B distinction is 

due to the activation of the EGFR/HER2 pathway in luminal B tumors. Dowsett et al. 

(Dowsett et al., 2006) tested gefitinib in combination with anastrozole, an aromatase 

inhibitor, in ER+/PgR+ tumors and found that the combination gave no additional benefit 

over anastrozole alone in ability to suppress Ki67 expression.  While our data are consistent 

with the non-genomic ER signaling, they suggest other downstream activations may be 

occurring such as HRAS, which may explain the lack of effect of gefitinib in this trial. 

The HER2+/ER- tumors, as expected by definition, showed high expression of HER2 

and were also associated with high HRAS and MEK1/MEK2 (Figure 4.5C). High AKT1 levels 

were also associated with this tumor subtype, which is an association that has been identified 

before (Zhou et al., 2004; Tokunaga et al., 2006). Perhaps the most informative associations 

were from the basal-like subtype where numerous correlations were identified that included 

an association of basal-like tumors with high EGFR, TGFA, MEK1, MEK2, AKT3, CRYAB, 

NRAS and the KRAS-amplicon signature (Figure 4.5D). The basal-like tumors also had the 

highest expression of the three EGFR activation clusters suggesting a ubiquitous dependence 
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on this pathway; however, the mechanism of activation may vary across the basal-like 

tumors. As an example of an in vitro defined EGFR-RAS-MEK ligand independent 

activation mechanism, Moyano et al. showed that the ectopic expression of CRYAB in breast 

epithelial cells caused them to become transformed and EGF-independent (Moyano et al., 

2006). This transformed phenotype resulted in the activation of the MEK-ERK pathway and 

was reverted by the addition of the MEK inhibitors PD98059 and U0126, while the PIK3CA 

inhibitor LY294002 had little effect.  CRYAB may also confer resistance to EGFR inhibitors 

as well as chemotherapy by its anti-apoptotic mechanism, the inhibition of caspase-3 

activation (Kamradt et al., 2001; Kamradt et al., 2005). A second example of a ligand 

independent activation event in this pathway is the high expression of a mutant RAS protein, 

where activating mutations have been shown to correlate with activated MEK/ERK 

(Martinez-Lacaci et al., 2000; Han et al., 2006). Interestingly, the expression of the KRAS-

amplicon gene expression signature showed many more associations versus the KRAS gene 

alone, suggesting that either the amplicon signature is a better assay for detecting KRAS 

activity than the simple expression of KRAS alone, or more likely, that additional co-

amplified and highly expressed genes synergize with KRAS to activate the RAS-MEK 

pathway.  Only a small subset of basal-like tumors show the high expression of EGFR and 

one of its ligands (typically TGFA) and the low expression of CRYAB and KRAS; it is only 

this subset of basal-like tumors that might be responsive to EGFR inhibitors of any kind (i.e. 

cetuximab, erlotinib, or gefitinib) because it is only these tumors that activate this pathway 

using a ligand dependent activation of the EGFR-pathway. Examples of individual basal-like 

tumors that show each of these activation profiles as well as a tumor with high activation of 

all three are presented in Figure 4.6.   
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Figure 4.6. EGFR pathway diagram displayed for each type of mechanism that could 
cause activation of the EGFR-RAS-MEK pathway in basal-like tumors. A) EGFR-ligand 
dependent activation profile, B) CRYAB activation profile, C) KRAS-amplicon activation 
profile, D) multiple simultaneous activation profiles. 
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These results paint a different portrait of the EGFR-pathway for each subtype that has 

important therapeutic implications. For the luminal A subtype, these data suggest that EGFR-

RAS-MEK signaling is not a relevant therapeutic target and that if anything, HER4 may be 

the critical HER family member for this subtype.  

Conversely, for the Luminal B tumors, these data recapitulate the finding that the 

EGFR-RAS-MEK pathway appears to be an important target that may be activated by means 

other than EGFR ligand dependent activation. Our results in Luminal B tumors are also 

consistent with the hypothesis of the “non-genomic” effects of ER-pathway activation that 

occurs via HER2 predominantly, where membrane bound ER complexes with HER2 to cause 

activation of the RAS-MEK and p38 pathways (Arpino et al., 2004; Shou et al., 2004; 

Gutierrez et al., 2005).  Ways to effectively target this pathway in luminal B tumors are not 

clear, but our data suggests that agents that target HER2, RAS or MEK might be worth 

investigating. 

Targeting of the HER pathway in the HER2+/ER- tumors involves the administration 

of trastuzumab; however, given that the response rate to trastuzumab-containing therapies is 

approximately 50%, additional agents are needed. Candidates from this and other studies 

could include the direct or indirect targeting of AKT1 and/or MEK1.  

For basal-like patients, these data suggest that EGFR-RAS-MEK pathway activation 

is a requisite as almost every single basal-like tumor analyzed showed the high expression of 

one of the EGFR-activation signatures, and in fact, most showed the high expression of all 

three. The effective targeting of the EGFR-RAS-MEK pathway in basal-like tumors may 

require additional patient stratification based upon the mechanism of activation of the 

pathway. For example, those basal-like patients who show high EGFR and ligand and low 
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CRYAB and KRAS-amplicon could be candidates for EGFR inhibitors, while those who show 

high CRYAB and/or KRAS-amplicon would be candidates for MEK inhibitors, of which many 

are in clinical development. Alternatively, if MEK inhibitors show good efficacy and low 

side effects, all patients who show activation of the EGFR-RAS-MEK pathway as assessed 

by Clusters #2 and #3 (both of which were associated with high MEK expression-Table 4.4), 

then these may prove to be good drugs to administer to all basal-like patients, as well as some 

HER2+/ER- and some Luminal B patients.  
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CHAPTER V 

CONCLUSION 

 
Many breast cancer gene expression studies have shown that regardless of tumor 

tissue collection method, RNA extraction method, or microarray platform, the identification 

of the intrinsic subtypes is robust (Perou et al., 2000; Sørlie et al., 2001; Sørlie et al., 2003; 

Sotiriou et al., 2003; Rouzier et al., 2005; Hu et al., 2006).  The classification based on the 

inherent molecular gene expression differences is also predictive of outcome (Sørlie et al., 

2001; Sørlie et al., 2003; Fan et al., 2006).  Two of these subtypes are characterized by 

expression of markers, ER+ (luminal tumors) and HER2+, which have been used to guide 

treatment. In addition, there are at least two types of epithelial cells that can be identified by 

cytokeratin staining and can distinguish the luminal and basal-like tumor subtypes (Perou et 

al., 2000).  This heterogeneity implies that treatments should vary according to subtype, and 

that responses to the same drug may also vary according to subtype.   

My research focused on the basal-like subtype, its comparison with the more 

prevalent luminal subtype in response to chemotherapy, and on the identification of genes or 

pathways that could be targeted for therapeutic intervention. Since the basal-like subtype 

lacks ER expression and HER2 amplification, it cannot be treated with the widely used 

targeted biologics of tamoxifen (or aromatase inhibitors) and trastuzumab, and hence, 

cytotoxic chemotherapy regimens are the only options. At the beginning of my research most 

preclinical and clinical data had not specifically evaluated whether any differences in 



response to chemotherapy occurred among the tumor subtypes.  Therefore, we addressed this 

issue by using cell line models of basal-like and luminal tumors to examine their 

transcriptional responses to commonly prescribed chemotherapeutics.  When any cell line 

was treated with a chemotherapeutic agent, the predominant response in both luminal and 

basal-like lines was a general stress response (Troester et al., 2004).  However, the general 

stress response varied quite dramatically between the two subtypes.  The luminal subtype 

induced a greater number of genes and more dynamic response to chemotherapy with down-

regulation of proliferation genes and the strong induction of DNA damage-response genes, 

including p21waf1 and GADD45.  The basal-like subtype had a much reduced response 

without the observed reduction in proliferation genes, which suggests that the basal-like cell 

type might have a blunted G1-S checkpoint response.  The basal-like cell lines also had a 

much smaller induction of DNA damage-response genes, which showed fold-changes much 

less than those observed in the luminal cell lines. This observation was also visible in the in 

vivo tumor data obtained by studying the expression response in tumors assayed by 

microarray before and after neoadjuvant treatment with either 5FU or DOX.   

The dominant transcriptional response to chemotherapeutics was a general stress 

response because it was similarly induced when these two distinct chemotherapeutics were 

used (5FU and DOX); however, a much smaller drug-specific response was identified that 

correlated with DOX or 5FU treatment and which showed many more similarities between 

the two subtypes (Troester et al., 2004).  Some of the genes that made up the drug-specific 

patterns correlated with data observed from other researchers and some were new with no 

current correlation with the known mechanism of action.  We evaluated whether these drug-

specific signatures could be used for the classification of a new drug that showed a similar 
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mechanism of action.  Using several prediction classifiers we could accurately predict 

etoposide, a topoisomerase II inhibitor, as being highly similar to doxorubicin, which is also 

a topoisomerase II inhibitor.  We were also able to classify and predict four classes (subtype 

and treatment) in our training and test sets.  This hints at mechanistic differences between 

subtypes and within individual cell lines, which again suggests that the basal-like and luminal 

cell types respond differently and have different chemosensitivities. 

While our gene expression analysis was not set up to dictate treatment, the expanded 

chemosensitivity data with additional cell lines and chemotherapeutics gave some 

suggestions for subtype specific therapies.  There were many individual variations across the 

cell lines concerning chemosensitivity; however, the tumor-derived basal-like cell lines were 

more sensitive to carboplatin than the normal HMECs and the luminal cell lines. As 

discussed in Chapter 4, platinum derivatives may represent a good chemotherapeutic based 

on the biology of the basal-like subtype and their link with germline BRCA1 mutations. The 

BRCA1 protein is responsible for platinum-based DNA damage repair (Bhattacharyya et al., 

2000; Zhou et al., 2005) and there is increasing evidence that breast tumors with BRCA1 

mutations or reduced expression are almost always of basal-like subtype (Foulkes et al., 

2003; Sørlie et al., 2003; Arnes et al., 2005; Turner et al., 2006).  Therefore, treatment with a 

platinum-based therapy could be targeted to basal-like breast tumors. This is precisely the 

chemotherapeutic that is being used in the UNC initiated “triple-negative” patient trial where 

metastatic basal-like patients will be treated with cetuximab alone, or cetuximab plus 

carboplatin [http://www.clinicaltrials.gov/ct/show/NCT00232505].   

Since the basal-like and luminal cell types varied in their chemosensitivities, both in 

cell lines and tumors, and had different general stress responses, it is important to analyze 
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multiple clinical endpoints when assessing whether a given regimen has been “successful”. 

For example, recently several papers have examined clinical response in relation to subtype.  

Rouzier et al. (Rouzier et al., 2005) used fine needle aspirates of 82 stage I-III breast tumors 

before treatment with neoadjuvant paclitaxel followed by 5FU, DOX, and cyclophosphamide 

and determined subtype by hierarchical clustering with a breast tumor intrinsic gene list.  

Pathological clinical response (pCR) strongly correlated with subtype with 45% of both 

HER2+/ER- and basal-like tumors showing a complete pCR, while only 6% of the luminal 

and none of the normal-like exhibited pCR.  If the basal-like and HER2+/ER- subtypes have 

previously been shown to have the poorest outcomes, as seen in both treated and untreated 

datasets (Sørlie et al., 2001; Sørlie et al., 2003; Fan et al., 2006; Hu et al., 2006), why then 

would they have the best response to chemotherapy?  Carey et al. (Carey et al., Submitted) 

further confirmed that the higher clinical responses and pCR to neoadjuvant DOX and 

cyclophosphamide were in the HER2+/ER- and basal-like subtype; however, they went on to 

record relapse free and overall survival in these patients and found that the basal-like and 

HER2+/ER- patients that did not have a pCR still had higher rates of relapse (while relapse 

of patients with pCR was rare).  Therefore, they showed that while the basal-like and 

HER2+/ER- have higher pCR rates, those that do not achieve a complete response have a 

much higher chance of recurring relative to the luminal tumors, and therefore still have a 

poor outcome.  These analyses suggest that while pCR is an important endpoint, relapse and 

overall survival information is still extremely valuable data. 

Currently, cytotoxic therapy is the only treatment option for basal-like patients, and 

those that do not achieve a complete response to chemotherapy have few treatment options.  

Therefore, the next step is to determine if any biologically targetable proteins exist within the 
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basal-like tumors that could be used to improve therapeutic options.  EGFR, a receptor 

tyrosine kinase, is highly expressed in about 50% of basal-like tumors and represents a good 

candidate for targeted therapy because many drugs already exist within the oncology clinic 

that target this protein (Baselga, 2002; Nielsen et al., 2004). Observations of our cell line and 

tumor data also indicate high EGFR mRNA and protein expression in most of the basal-like 

lines, whereas no expression was observed in the luminal lines.  We determined that the 

basal-like cell lines were more sensitive to several EGFR inhibitors relative to the luminal 

lines, ranging from 2- to 100-fold less sensitive. These analyses further suggest the EGFR 

pathway may represent a biologically target therapy for basal-like patients. 

To further evaluate the EGFR pathway in breast cancers, we used a cell line model of 

the basal-like subtype that was sensitive to EGFR, MEK, and PI3K inhibitors and developed 

a gene expression signature for EGFR pathway activation.  We analyzed this homogenous 

cell line pattern across a large panel of primary breast tumors and noted that the activation 

signature was not a single and homogeneous pattern across the tumor samples.  Three 

different signatures were identified that were highest in three different subsets of tumors, all 

of which showed that the high expression of each gene set significantly predicted a poor 

outcome.  While only 50% of the basal-like tumors had high protein expression of EGFR, 

greater than 95% of this subtype had high expression for at least one of the three EGFR-

activation signatures.  This is evidence that the EGFR signaling pathway may represent a 

major and consistent signaling pathway for growth in the basal-like subtype akin to ER for 

luminal tumors and HER2 for HER2+/ER- tumors.  

These EGFR pathway analyses also identified genes whose high expression has been 

implicated in ligand independent activation of the EGFR-RAS-MEK pathway and that were 

 142



correlated with the basal-like subtype and the EGFR-activation signatures.  These genes 

included high expression of an amplicon on chromosome 12p that contains KRAS and at 

least eleven other genes, MEK, ERK, and CRYAB as identified by (Herschkowitz et al.).  

Overexpression of CRYAB has been found to constitutively activate the MEK/ERK pathway 

and confer EGF-independent growth on an EGF-dependent cell line (Moyano et al., 2006). 

Only a few basal-like tumors expressed EGFR and one of its ligands without downstream 

activation of the MEK/ERK pathway via high CRYAB or high KRAS-amplicon expression 

signature.  Most likely these are the only basal-like tumors that would respond to direct 

EGFR inhibition, which must be tested using EGFR inhibitor-treated breast cancer patients. 

In addition to the basal-like tumors showing high expression of the EGFR-activation 

signatures, half of the luminal B and HER2+/ER- tumors also showed high expression of 

these signatures.  Since HER2 is an EGFR family member, and HER2 and EGFR often 

heterodimerize to send the activation signal, it is logical that there are shared EGFR-

activation signatures across subtypes.  Luminal B tumors, which by gene expression have 

higher levels of proliferation genes, may be using “nongenomic” mechanisms of ER for 

enhanced growth through the HER pathway (Schiff et al., 2005).  The observations of poor 

outcomes in luminal B patients when given endocrine therapy could be the result of 

activation of the EGFR-HER2 pathway.  

The EGFR-activation signatures identify tumors with a presumed activation of the 

EGFR-RAS-MEK pathway and predict a poor outcome. We hypothesize that these signatures 

might also be important in predicting response to EGFR inhibitors since EGFR expression 

itself does not predict response (Fountzilas et al., 2005; Gasparini et al., 2005; von 

Minckwitz et al., 2005).  We have been limited in our ability to correlate our EGFR 
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activation signatures with inhibitor-treated in vivo datasets because of the lack of such data 

sets.  Currently, there is only one publicly available microarray data set of breast tumors 

treated with an EGFR inhibitor.  However, that study used an unselected population that 

contained only 10 tumors of which only one was EGFR positive by IHC, and no clinical 

responses were observed (Yang et al., 2005). As mentioned in Chapter 4, there is a phase II 

metastatic study of breast cancer patients who are being randomized to cetuximab alone 

versus cetuximab plus carboplatin [http://www.clinicaltrials.gov/ct/show/NCT00232505].  

This study is selecting for basal-like tumors; and therefore, we will be able to assess our 

EGFR activation signature and its ability to predict response on the subset (approximately 

20-30%) of patients from whom we are able to obtain a tumor biopsy.  Our lab will be 

receiving tumor samples at several stages through the treatment process and will be 

performing gene expression analysis and comparing these data with the clinical response 

data. We would also like to assess the expression of the genes we identified as potential 

EGFR-independent activators of the EGFR pathway (i.e. CRYAB and KRAS-amplicon) and 

determine if they correlate with a lack of response.  We predict that only 10% of all basal-

like tumors will actually respond to direct inhibition of EGFR.  Indeed, if any show a 

response to cetuximab, we can evaluate our EGFR signature; however, the lack of response 

in the presence of the EGFR-activation signatures will demonstrate that this pathway is 

activated downstream of EGFR.   

If basal-like patients fail to respond to direct EGFR inhibition as we predict, then 

therapeutic intervention downstream of EGFR may be a better option.  While gene 

expression activation signatures of the MEK/ERK pathway and the PI3K/AKT pathway did 

not appear to be that dissimilar, high expression of many genes known to activate the 
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MEK/ERK pathway were more significantly correlated with the activation signatures. 

Studies with CRYAB showed that only MEK inhibitors, and not PIK3CA inhibitors, could 

overcome the reversal of the transforming effects of high CRYAB expression (Moyano et al., 

2006). Many second-generation MEK inhibitors are currently in phase I and II clinical trials 

for a variety of tumors types, including breast (NCT00147550 and NCT00174369) (Sebolt-

Leopold and Herrera, 2004).  Studies with mTOR inhibitors, a downstream target in the 

PI3K/AKT, are also actively recruiting patients (NCT00360542).  These studies are currently 

set up as single agent, non-randomized, and unselected patient based studies.  It will be 

interesting to see how patients respond in these clinical trials, and how these responses might 

correlate with the EGFR-activation signatures. However, since the EGFR signaling pathway 

is intricate with much cross talk, it will most likely require inhibition at several steps, in 

combination with chemotherapy, to adequately treat basal-like breast cancers. 

In summary, my work has shown that basal-like and luminal breast epithelial cells, 

both in vitro and in vivo, respond differently to the same chemotherapeutics, and thus these 

two distinct type of breast cancer should be considered separately and unique therapies 

developed for each. To address the need of developing therapies specific for basal-like 

tumors, a subtype realized only six years ago, we showed that they have a unique 

chemosensitivity profile (i.e. sensitive to carboplatin and more resistant to 5FU). In addition, 

the basal-like tumors all showed an EGFR-RAS-MEK pathway activation signature, and thus 

agents targeting this pathway may represent an effective biologically-based therapy. These 

studies have provided important pre-clinical data that has lead to the initiation of the first 

clinical trial focused on basal-like patients (LCCC0403) 

[http://www.clinicaltrials.gov/ct/show/NCT00232505] and a second trial in the late planning 
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stage where basal-like patients will receive paclitaxel or paclitaxel plus carboplatin (CALGB 

40603). We hope to obtain improved response rates and prolonged survival times in these 

trials, but at least we have begun the characterization of the biology of the basal-like subtype 

and have initiated clinical trials aimed at this aggressive tumor subtype. 
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APPENDIX IIA 

 

Genes significantly altered by treatment across all tumor subtypes as determined by 
Significance Analysis of Microarraysa 

Gene  Accession 
Number 

Average 
Ratio Before 

Average 
Ratio 
After 

activating transcription factor 3 H21041  0.10 0.93 
carboxypeptidase X AA598945  0.13 0.87 
connective tissue growth factor AA598794 -0.78 0.39 
connective tissue growth factor AA044993 -0.93 0.35 
core promoter element binding protein AA013481  0.44 1.06 
core promoter element binding protein AA055584  0.35 0.71 
corticotropin releasing hormone binding 
protein AA286752  0.16 0.91 

cyclin-dependent kinase 5, regulatory 
subunit 1 (p35) AA442853  0.73 1.45 

cyclin-dependent kinase inhibitor 1A, 
p21waf1 N23941 -0.02 0.96 

dihydropyrimidinase-like 3 AI831083  0.20 1.13 
**dopachrome tautomerase AA478553 -0.51 0.75 
early growth response 1 AA486533 -0.30 1.27 
early growth response 2 AA446027  0.63 1.15 
early response protein NAK1 N94487  0.26 1.14 
elastin AA459308  1.19 1.99 
elongin A AA128607 -0.82 0.38 
fibulin 1 AA134757  1.28 2.07 
FOS N36944  0.07 0.87 
FOS AA485377 -0.20 0.69 
FOS R12840 -0.30 1.22 
Homo sapiens mRNA AA135912  0.88 1.47 
JUN W96134  0.91 1.62 
JUN AA293362  0.82 1.37 
GTP-binding protein overexpressed in 
skeletal muscle AA418077  0.76 1.38 

matrix metalloproteinase 9 T64837  2.28 3.14 
RAB21 AA076645 -0.69 0.36 
regulator of G-protein signaling 1 AA017417  2.53 3.72 
regulator of G-protein signaling 16 AA453774  0.97 1.56 
aData has not been median centered. 
**A potentially chimeric cDNA clone that maps to two different Unigene entries. 
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APPENDIX IIB 

 

Genes significantly altered by therapy in luminal tumors as determined by Significance 
Analysis of Microarraysa 

Gene Name Accession 
Number 

Average 
Ratio Before 

Average 
Ratio After 

connective tissue growth factor AA598794 -0.92  0.20 
connective tissue growth factor AA044993 -1.08  0.12 
corticotropin releasing hormone binding 
protein AA286752  0.09  0.75 
cyclin-dependent kinase 5, regulatory 
subunit 1 (p35) AA442853  0.57  1.36 
cyclin-dependent kinase inhibitor 1A, 
p21waf1 N23941  0.05  1.13 
dihydropyrimidinase-like 3 AI831083 0.006  0.96 
**dopachrome tautomerase AA478553 -0.72  0.44 
early growth response 1 AA486533 -0.38  1.10 
early response protein NAK1 N94487  0.21  1.09 
elongin A AA128607 -0.99  0.17 
FOS N36944  0.08  0.82 
Kinase-inducible Ras-like protein AA418077  0.57  1.31 
**prostate differentiation factor N26311 -1.63 -0.46 
spondin 1 H09099 -2.54 -1.55 
thrombospondin 1 AA464532  0.09  0.79 
aData has not been median-centered. 
**A potentially chimeric cDNA clone that maps to two different Unigene entries. 
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APPENDIX IIC 

 

Genes altered by therapy in basal tumors as determined by Significance Analysis of 
Microarraysa 

Gene Name Accession 
Number 

Average 
Ratio Before 

Average 
Ratio After 

connective tissue growth factor AA598794 -0.79 0.57 
connective tissue growth factor AA044993 -0.97 0.81 
core promoter element binding protein AA013481  0.97 1.81 
dermatan sulfate proteoglycan 3 AA131238  0.03 1.11 
early growth response 1 AA486533 -0.69 1.01 
early response protein NAK1 N94487  0.14 1.41 
elongin A AA128607 -0.77 0.88 
FOS R12840 -0.63 1.65 
Homo sapiens mRNA AA135912  1.19 2.16 
RAB21 AA076645 -1.20 0.79 
aData has not been median-centered.  
**A potentially chimeric cDNA clone that maps to two different Unigene entries. 
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APPENDIX IIIA 

 

Results of Cross-Validation (CV) Analyses using Two-Class PAM Method 
Delta Value Average No. of Genes Average CV Accuracy (%) 
4 1123.1 64 
3.5 1928.3 76 
3 2323.6 78 
2.75 2460.4 80 
2.5 2584.6 76 
2.25 2706.8 76 
2 2829.4 76 
1.75 2948 76 
1.5 3075 76 
1.25 3213.9 76 
1 3371.1 74 
0.75 3543 70 
0.5 3716.2 70 
0.25 3902.5 70 
0 4077 70 
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APPENDIX IIIB 

 

Cross-Validation (CV) Accuracy (%) Using Two-Class KNN Method 
No. of Genes k= 1 3 5 7 9 11 
10  58 72 72 66 66 64 
30  84 92 90 92 94 94 
50  74 80 90 96 94 92 
70  80 86 92 92 90 92 
100  80 82 94 94 96 98 
200  74 76 86 88 88 90 
4077  66 64 70 68 68 76 
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APPENDIX IIIC 

 

Results of Cross-Validation (CV) Analyses Using Four-Class PAM Method 
Delta Value Average No. of Genes Average CV Accuracy (%) 
6 17.4 66 
5 45.6 68 
4 136.9 76 
3.5 652 76 
3 1830.7 50 
2.75 2211.2 46 
2.5 2510.9 42 
2.25 2763.2 48 
2 2975.5 48 
1.75 3183.5 48 
1.5 3379.4 48 
1.25 3549.1 46 
1 3693.8 46 
0.75 3826.3 46 
0.5 3944.6 46 
0.25 4037.7 42 
0 4077 38 
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APPENDIX IIID 

 

Cross-Validation (CV) Accuracy (%) Using Four-Class KNN Method 
No. of Genes k= 1 3 5 7 9 11 
10  40 50 48 54 56 56 
30  60 62 76 76 72 76 
50  66 78 74 70 70 74 
70  62 74 76 76 78 68 
100  58 66 70 70 80 78 
200  54 58 64 62 76 74 
4077  48 48 48 46 48 52 
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APPENDIX IVA 
 

Genes from clusters #1-3 identified from the 500 SUM102 genes clustered on the UNC 
tumor data set. 
Cluster #1 
Gene Symbol Gene Name Accession # ClusterID 
MGC11256 Hypothetical protein MGC11256  NM_024324 Hs.211282 
FLJ20397 Hypothetical protein FLJ20397  NM_017802 Hs.521328 
GAL Galanin  BC030241 Hs.278959 
  AC010889  
ALDH1B1 Aldehyde dehydrogenase 1 family, member B1  NM_000692 Hs.436219 
NKX2-5 NK2 transcription factor related, locus 5 (Drosophila)  BC025711 Hs.54473 

SERPINB8 
Serine (or cysteine) proteinase inhibitor, clade B 
(ovalbumin), member 8  NM_198833 Hs.368077 

MTP18 Mitochondrial protein 18 kDa  NM_001003704 Hs.25199 
POLR3B Polymerase (RNA) III (DNA directed) polypeptide B  NM_018082 Hs.62696 
FLJ14800 Hypothetical protein FLJ14800  NM_032840 Hs.343334 
FARSLA Phenylalanine-tRNA synthetase-like, alpha subunit  NM_004461 Hs.23111 
NOL5A Nucleolar protein 5A (56kDa with KKE/D repeat)  NM_006392 Hs.376064 
NCLN Nicalin homolog (zebrefish)  NM_020170 Hs.501420 

SGTA 
Small glutamine-rich tetratricopeptide repeat (TPR)-
containing, alpha  NM_003021 Hs.203910 

PPM1G 
Protein phosphatase 1G (formerly 2C), magnesium-
dependent, gamma isoform  NM_002707 Hs.17883 

PPAN Peter pan homolog (Drosophila)  NM_020230 Hs.14468 
ZMYND11 Zinc finger, MYND domain containing 11  NM_212479 Hs.292265 
MTA2 Metastasis associated gene family, member 2  NM_004739 Hs.173043 
BRI3BP BRI3 binding protein  NM_080626 Hs.507227 
GRPEL1 GrpE-like 1, mitochondrial (E. coli)  NM_025196 Hs.443723 

STIP1 
Stress-induced-phosphoprotein 1 (Hsp70/Hsp90-
organizing protein)  NM_006819 Hs.337295 

LYAR Hypothetical protein FLJ20425  NM_017816 Hs.425427 
TRIM25 Tripartite motif-containing 25  NM_005082 Hs.528952 
RBM28 RNA binding motif protein 28  NM_018077 Hs.274263 

CAD 
Carbamoyl-phosphate synthetase 2, aspartate 
transcarbamylase, and dihydroorotase  NM_004341 Hs.377010 

PRO2949 Hypothetical protein PRO2949  AF119907 Hs.391480 
LRRC14 Leucine rich repeat containing 14  NM_014665 Hs.459391 

RQCD1 
RCD1 required for cell differentiation1 homolog (S. 
pombe) AC012510  

ARMC6 Armadillo repeat containing 6  NM_033415 Hs.77876 
ATAD3A ATPase family, AAA domain containing 3A  NM_018188 Hs.227067 
ATAD3B ATPase family, AAA domain containing 3B  NM_031921 Hs.23413 

B4GALT2 
UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, 
polypeptide 2  NM_003780 Hs.474083 

TOMM40 
Translocase of outer mitochondrial membrane 40 
homolog (yeast)  NM_006114 Hs.310542 

UPP1 Uridine phosphorylase 1  BC047030 Hs.488240 
FLJ12438 Hypothetical protein FLJ12438  AK095928 Hs.8595 
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Cluster #2    
Gene Symbol Gene Name Accession # ClusterID 
NLN Neurolysin (metallopeptidase M3 family)  NM_020726 Hs.247460 
WDR12 WD repeat domain 12  NM_018256 Hs.73291 
MRPS17 Mitochondrial ribosomal protein S17  NM_015969 Hs.44298 

SLC25A19 
Solute carrier family 25 (mitochondrial deoxynucleotide 
carrier), member 19  BC001075 Hs.514470 

C6orf66 Chromosome 6 open reading frame 66  NM_014165 Hs.512144 
WDR4 WD repeat domain 4  NM_033661 Hs.248815 
CDCA7 Cell division cycle associated 7  NM_031942 Hs.470654 
BYSL Bystin-like  NM_004053 Hs.106880 
ECE2 Endothelin converting enzyme 2  NM_032331 Hs.146161 

TIMM8A 
Translocase of inner mitochondrial membrane 8 homolog 
A (yeast)  NM_004085 Hs.447877 

CCNE1 Cyclin E1  NM_057182 Hs.244723 

LRP8 
Low density lipoprotein receptor-related protein 8, 
apolipoprotein e receptor  NM_017522 Hs.444637 

SNRPD1 Small nuclear ribonucleoprotein D1 polypeptide 16kDa  NM_006938 Hs.464734 
KLHL7 Kelch-like 7 (Drosophila)  BC009555 Hs.385861 
DC13 DC13 protein  NM_020188 Hs.388255 
NOC4 Neighbor of COX4  NM_006067 Hs.173162 
FREQ Frequenin homolog (Drosophila)  NM_014286 Hs.301760 
FTHFSDC1 Formyltetrahydrofolate synthetase domain containing 1  AL117452 Hs.268698 
PTDSS1 Phosphatidylserine synthase 1  NM_014754 Hs.292579 
MGC2574 Hypothetical protein MGC2574  NM_024098 Hs.4253 
MGC5352 Hypothetical protein MGC5352  AK097688 Hs.102558 
FLJ20989 Hypothetical protein FLJ20989  NM_023080 Hs.169615 
LOC51236 Brain protein 16  NM_016458 Hs.300224 
BOP1 Block of proliferation 1  NM_015201 Hs.535901 
GPR172A G protein-coupled receptor 172A  NM_024531 Hs.6459 
FBXL6 F-box and leucine-rich repeat protein 6  NM_024555 Hs.12271 
SIAHBP1 Fuse-binding protein-interacting repressor  NM_078480 Hs.521924 
    
Cluster #3    
Gene Symbol Gene Name Accession # ClusterID 
LCMT2 Leucine carboxyl methyltransferase 2  NM_014793 Hs.200596 
ANXA7 Annexin A7  NM_004034 Hs.386434 
CDR2 Cerebellar degeneration-related protein 2, 62kDa  NM_001802 Hs.513430 
SOCS6 Suppressor of cytokine signaling 6  NM_004232 Hs.44439 
BID BH3 interacting domain death agonist  NM_197966 Hs.474150 
XPOT Exportin, tRNA (nuclear export receptor for tRNAs)  NM_007235 Hs.85951 
DDX20 DEAD (Asp-Glu-Ala-Asp) box polypeptide 20  NM_007204 Hs.485810 
HRMT1L6 HMT1 hnRNP methyltransferase-like 6 (S. cerevisiae)  NM_018137 Hs.26006 
HMGN4 High mobility group nucleosomal binding domain 4  NM_006353 Hs.236774 
SLC30A7 Solute carrier family 30 (zinc transporter), member 7  AI740796 Hs.533903 
ACTL6A Actin-like 6A  NM_004301 Hs.435326 
SRPRB Signal recognition particle receptor, B subunit  NM_021203 Hs.12152 
YWHAH Chromosome 22 open reading frame 24  NM_003405 Hs.226755 
C7orf30 Chromosome 7 open reading frame 30  NM_138446 Hs.87385 
THUMPD3 THUMP domain containing 3  NM_015453 Hs.443081 
HSPC128 HSPC128 protein  NM_014167 Hs.90527 
SPATA5L1 Spermatogenesis associated 5-like 1  NM_024063 Hs.369657 
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Gene Symbol Gene Name Accession # ClusterID 

GNB4 
Guanine nucleotide binding protein (G protein), beta 
polypeptide 4  NM_021629 Hs.270543 

  NM_001018159  
DSCR2 Down syndrome critical region gene 2  NM_203433 Hs.473838 
CCT8 Chaperonin containing TCP1, subunit 8 (theta)  NM_006585 Hs.125113 
RBM8A RNA binding motif protein 8A  NM_005105 Hs.515755 
KIAA0179 KIAA0179  D80001 Hs.129621 
UCK2 Uridine-cytidine kinase 2  NM_012474 Hs.458360 
CTPS CTP synthase  NM_001905 Hs.473087 

GART 

Phosphoribosylglycinamide formyltransferase, 
phosphoribosylglycinamide synthetase, 
phosphoribosylaminoimidazole synthetase  NM_000819 Hs.473648 

HDAC2 Histone deacetylase 2  NM_001527 Hs.3352 
ILF2 Interleukin enhancer binding factor 2, 45kDa  NM_004515 Hs.75117 
TEX10 Testis expressed sequence 10  NM_017746 Hs.494648 
EXOSC3 Exosome component 3  NM_016042 Hs.493887 
SERF1A Small EDRK-rich factor 1A (telomeric)  NM_022978 Hs.32567 

POLR3F 
Polymerase (RNA) III (DNA directed) polypeptide F, 39 
kDa  NM_006466 Hs.472227 

CGI-09 CGI-09 protein  NM_015939 Hs.128791 
HSA9761 Putative dimethyladenosine transferase  NM_014473 Hs.533222 
  NM_001024227  
NKIRAS1 NFKB inhibitor interacting Ras-like 1  NM_020345 Hs.173202 
TSN Translin  NM_004622 Hs.75066 
DDX18 DEAD (Asp-Glu-Ala-Asp) box polypeptide 18  NM_006773 Hs.363492 
RNASEH1 Ribonuclease H1  NM_002936 Hs.502765 
SEC61B Sec61 beta subunit  NM_006808 Hs.191887 

UBE2J1 
Ubiquitin-conjugating enzyme E2, J1 (UBC6 homolog, 
yeast)  NM_016021 Hs.163776 

ZCSL2 Zinc finger, CSL domain containing 2  NM_206831 Hs.388087 
TPRT Trans-prenyltransferase  NM_014317 Hs.546357 
SUV39H2 Suppressor of variegation 3-9 homolog 2  NM_024670 Hs.85567 
RAN RAN, member RAS oncogene family  NM_006325 Hs.10842 
EIF4E Eukaryotic translation initiation factor 4E  NM_001968 Hs.249718 
  NM_001015891  

SFPQ 
Splicing factor proline/glutamine rich (polypyrimidine 
tract binding protein associated)  NM_005066 Hs.355934 

PNPT1 Polyribonucleotide nucleotidyltransferase 1  NM_033109 Hs.388733 
DNAJA1 DnaJ (Hsp40) homolog, subfamily A, member 1  NM_001539 Hs.445203 
FLJ10874 Hypothetical protein FLJ10874  NM_018252 Hs.445386 

EIF2S1 
Eukaryotic translation initiation factor 2, subunit 1 alpha, 
35kDa  NM_004094 Hs.151777 

BRIX BRIX  NM_018321 Hs.38114 
METTL2 Methyltransferase like 2  NM_018396 Hs.433213 

PSMD12 
Proteasome (prosome, macropain) 26S subunit, non-
ATPase, 12  NM_174871 Hs.4295 

DKFZP586L0724 DKFZP586L0724 protein  NM_015462 Hs.463936 
  NM_001009182  

UBE2D1 
Ubiquitin-conjugating enzyme E2D 1 (UBC4/5 homolog, 
yeast)  NM_003338 Hs.129683 

PAQR3 Progestin and adipoQ receptor family member III  NM_177453 Hs.368305 
RNF138 Ring finger protein 138  NM_198128 Hs.302408 
FLJ38973 Hypothetical protein FLJ38973  NM_153689 Hs.471040 
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Gene Symbol Gene Name Accession # ClusterID 
  NM_001011663  
KIF2 Kinesin heavy chain member 2  NM_004520 Hs.113319 
FLJ21908 Hypothetical protein FLJ21908  NM_024604 Hs.437855 
C13orf6 Chromosome 13 open reading frame 6  NM_032859 Hs.183528 
LOC134218 Hypothetical protein LOC134218  NM_194283 Hs.131887 
RG9MTD1 RNA (guanine-9-) methyltransferase domain containing 1 NM_017819 Hs.57898 
MRPL50 Mitochondrial ribosomal protein L50  NM_019051 Hs.288224 
GFM1 G elongation factor, mitochondrial 1  NM_024996 Hs.518355 
MASA E-1 enzyme  NM_021204 Hs.18442 

SYNCRIP 
Synaptotagmin binding, cytoplasmic RNA interacting 
protein  NM_006372 Hs.485877 

GTPBP4 GTP binding protein 4  NM_012341 Hs.215766 
CML66 Chronic myelogenous leukemia tumor antigen 66  NM_032869 Hs.195870 
DKFZP564O0463 DKFZP564O0463 protein  NM_015420 Hs.532265 
CGI-12 CGI-12 protein  NM_015942 Hs.308613 
MRPL15 Mitochondrial ribosomal protein L15  NM_014175 Hs.18349 
CGI-115 CGI-115 protein  NM_016052 Hs.408101 

TIMM17A 
Translocase of inner mitochondrial membrane 17 
homolog A (yeast)  NM_006335 Hs.20716 

DKFZp547B1713 Hypothetical protein DKFZp547B1713  NM_152379 Hs.434945 
FLJ20533 Hypothetical protein FLJ20533  NM_017866 Hs.106650 
SLBP Stem-loop (histone) binding protein  NM_006527 Hs.298345 
  XR_000199  
UBA2 SUMO-1 activating enzyme subunit 2  NM_005499 Hs.511739 
SFRS2 Splicing factor, arginine/serine-rich 2  NM_003016 Hs.73965 
HNRPDL Heterogeneous nuclear ribonucleoprotein D-like  NM_005463 Hs.527105 
  NM_001031684  

SFRS10 
Splicing factor, arginine/serine-rich 10 (transformer 2 
homolog, Drosophila)  NM_004593 Hs.533122 

TFAM Transcription factor A, mitochondrial  NM_003201 Hs.75133 
FLJ14753 Hypothetical protein FLJ14753  NM_032558 Hs.13453 
Rif1 Telomere-associated protein RIF1 homolog  NM_018151 Hs.536537 

ABCB10 
ATP-binding cassette, sub-family B (MDR/TAP), 
member 10  NM_012089 Hs.17614 

  XM_370704  
HSPD1 Heat shock 60kDa protein 1 (chaperonin)  NM_002156 Hs.113684 
UBQLN1 Ubiquilin 1  NM_013438 Hs.9589 
MSH6 MutS homolog 6 (E. coli)  NM_000179 Hs.445052 
FBXO28 F-box protein 28  NM_015176 Hs.64691 
PTS 6-pyruvoyltetrahydropterin synthase  NM_000317 Hs.503860 
C10orf119 Chromosome 10 open reading frame 119  NM_024834 Hs.124246 
IARS Isoleucine-tRNA synthetase  NM_013417 Hs.445403 
SEH1L SEH1-like (S. cerevisiae)  NM_031216 Hs.301048 

EIF2S2 
Eukaryotic translation initiation factor 2, subunit 2 beta, 
38kDa  NM_003908 Hs.429180 

FAM3C Family with sequence similarity 3, member C  NM_014888 Hs.434053 

HPRT1 
Hypoxanthine phosphoribosyltransferase 1 (Lesch-Nyhan 
syndrome)  NM_000194 Hs.412707 

DRG1 Developmentally regulated GTP binding protein 1  NM_004147 Hs.115242 

AHSA1 
AHA1, activator of heat shock 90kDa protein ATPase 
homolog 1 (yeast)  NM_012111 Hs.204041 

CBFB Core-binding factor, beta subunit  NM_022845 Hs.460988 
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Gene Symbol Gene Name Accession # ClusterID 

UMPS 

Uridine monophosphate synthetase (orotate 
phosphoribosyl transferase and orotidine-5'-
decarboxylase)  NM_000373 Hs.2057 

C12orf5 Chromosome 12 open reading frame 5  NM_020375 Hs.504545 
FLJ40432 Hypothetical protein FLJ40432  NM_152523 Hs.471234 

DEGS 
Degenerative spermatocyte homolog, lipid desaturase 
(Drosophila)  NM_003676 Hs.299878 

C6orf93 Chromosome 6 open reading frame 93  NM_032860 Hs.185675 
EEF1E1 Eukaryotic translation elongation factor 1 epsilon 1  NM_004280 Hs.88977 
ATR Ataxia telangiectasia and Rad3 related  NM_001184 Hs.271791 
DHX15 DEAH (Asp-Glu-Ala-His) box polypeptide 15  NM_001358 Hs.5683 
C14orf138 Chromosome 14 open reading frame 138  NM_024558 Hs.546431 
CGI-48 CGI-48 protein  NM_016001 Hs.463465 
SMYD2 SET and MYND domain containing 2  NM_020197 Hs.66170 
CCT2 Chaperonin containing TCP1, subunit 2 (beta)  NM_006431 Hs.189772 
FLJ12806 Hypothetical protein FLJ12806  NM_022831 Hs.534965 
MAPRE1 Microtubule-associated protein, RP/EB family, member 1 NM_012325 Hs.472437 
NOLC1 Nucleolar and coiled-body phosphoprotein 1  D21262 Hs.523238 
  AL500527  
C10orf117 Chromosome 10 open reading frame 117  NM_022451 Hs.74899 
PPP1R8 Protein phosphatase 1, regulatory (inhibitor) subunit 8  NM_138558 Hs.533474 
  AK223118  
HCCS Holocytochrome c synthase (cytochrome c heme-lyase)  NM_005333 Hs.211571 
MGC2714 Hypothetical protein MGC2714  NM_032299 Hs.503716 
DKFZP566E144 Small fragment nuclease  NM_015523 Hs.7527 

UCHL3 
Ubiquitin carboxyl-terminal esterase L3 (ubiquitin 
thiolesterase)  NM_006002 Hs.162241 

HCNGP Transcriptional regulator protein  NM_013260 Hs.546381 
  NM_001008892  
UAP1 UDP-N-acteylglucosamine pyrophosphorylase 1  NM_003115 Hs.492859 
C13orf7 Chromosome 13 open reading frame 7  NM_024546 Hs.93956 
STRAP Serine/threonine kinase receptor associated protein  NM_007178 Hs.504895 
NCBP1 Nuclear cap binding protein subunit 1, 80kDa  NM_002486 Hs.522309 

LSM6 
LSM6 homolog, U6 small nuclear RNA associated (S. 
cerevisiae)  NM_007080 Hs.190520 

KPNA1 Karyopherin alpha 1 (importin alpha 5)  AF035311 Hs.161008 
ABCE1 ATP-binding cassette, sub-family E (OABP), member 1  NM_002940 Hs.12013 

TIMM23 
Translocase of inner mitochondrial membrane 23 
homolog (yeast)  NM_006327 Hs.524308 
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