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ABSTRACT 

Melissa A. Furlong: Prenatal Exposure to Organophosphorus Pesticides and Childhood 
Neurodevelopmental Phenotypes  

(Under the direction of Stephanie M. Engel) 

Background: Neurodevelopmental traits are often treated as independent in etiological 

studies, although neurological functions exhibit complex correlational structures. Allowing traits 

to cluster into phenotypes may produce outcomes that are more clinically and biologically 

relevant. Additionally, environmental exposures often occur in a mixture. Accounting for such a 

possibility may reduce bias that results from assuming exposures are independent. We sought 

to estimate associations between organophosphorus pesticides and neurodevelopment after 

accounting for these possibilities.    

Methods: A prospective birth cohort of 404 mother/infant pairs were followed from 

pregnancy until the children were 6 and 7-9 years of age. Factor analysis was performed on 

parent-report measures of child executive functioning and behavior, and performance-based 

measures of IQ. We estimated associations between demographic characteristics, maternal 

characteristics and environmental exposures during pregnancy and early childhood, and the 

neurodevelopmental factor scores after accounting for correlations among the factors.  

Results: We determined the existence of a seven factor solution. Smoking during 

pregnancy, canned fish consumption, maternal education, and HOME environment were 

associated with various factors. Prenatal exposure to ∑DMPs was associated with worse 

Internalizing factor scores but better Executive Functioning factor scores, while ∑DEPs were 

associated with worse Working Memory Index scores. Estimates were generally stronger for 

factor scores than for individual instrument-specific items. 
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Conclusions: Associations between prenatal exposure to OPs and worse internalizing 

behaviors and working memory scores are supported by prior findings in both human and 

animal studies. Associations with improved executive functioning are not supported by prior 

literature and may be a result of residual confounding by maternal executive functioning and 

dietary sources of OPs. 

A phenotypic outcome modeling approach may provide advantages over more traditional 

outcome modeling approaches. 
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CHAPTER I. INTRODUCTION AND SPECIFIC AIMS 

Introduction 

Prenatal exposure to organophosphorus pesticides has been associated with a wide 

range of neurodevelopmental outcomes at different stages of childhood, including deficits in 

childhood cognition (Bouchard et al., 2011a; S. M. Engel et al., 2015; S. Engel et al., 2011; V. 

Rauh et al., 2011), social responsiveness (Furlong et al. 2014), and behavior (Marks et al., 

2010). The affected domains are either hallmarks of, or are highly associated with, Attention-

Deficit Hyperactivity Disorder (ADHD) (Willoughby 2003), a syndrome characterized by 

inattention, hyperactivity, and impulsive behaviors, suggesting a plausible association between 

OPs and this overarching disorder. However, epidemiological studies that have considered 

prenatal exposures and childhood neurodevelopment or ADHD behaviors generally model 

exposures and outcomes in a 1:1 analytic framework (i.e., one chemical metabolite and one 

neurodevelopmental scale). There are several limitations to this approach. 

Using exposure mixture models can account for confounding by correlated 

contaminants. Women are actually exposed to complex mixtures of pollutants, and modeling 

exposures as though they are independent may result in biased estimates. Chemicals may be 

correlated with each other due to similar sources, such as plasticizers in products or insecticides 

for pest control (Engel and Wolff 2013). Interestingly, toxicology studies have begun to show 

that chemicals that initially act via different biological pathways may still result in similar 

downstream neuronal outcomes (such as increased neurotoxicity or altered neuronal 

differentiation) and may thus be important components in considering biological interactions or 

confounding with other chemicals.  
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Examining neurological scales and subscales singly is an overly simplistic 

representation of a complex system. Neurological development and functioning is a complex, 

interdependent system. Scientists have compartmentalized neurological functioning into bins 

(i.e., working memory, inhibitory control, perceptual reasoning, aggression), although the human 

brain evolved as an interdependent system. There are two major advantages in consolidating 

outcome data and considering phenotypes of neurodevelopment rather than using models that 

assume independence of each neurodevelopmental outcome. First, examining 

neurodevelopmental outcomes in the context of other impairments is clinically relevant. Several 

neurological functions rely on each other (for instance, the “higher-level” inhibitory control relies 

on more “basic” processing speed capability (Ridderinkhof and van der Molen 1997)), and 

deficits in one area are oftentimes compensated for by other areas. For instance, a deficit in 

working memory alone was only associated with poor social skills when accompanied by deficits 

in attention, hyperactivity, and impulsivity (Kofler et al. 2011), and working memory may only be 

associated with poorer academic achievement when accompanied by symptoms of inattention 

(Rogers et al. 2011). Second, patterns of correlations across scales may also point to different 

clinical phenotypes – when aggression problems are accompanied by high impulsivity, 

researchers note a different profile of aggressive behavior (reactive-impulsive) than when 

aggression is accompanied by higher levels of self-control (controlled-instrumental) (Vitiello and 

Stoff 1997), and these differences are associated with different patterns of behaviors and 

criminality (Nelson and Trainor 2007). Therefore, examining performance on scales within the 

context of other instruments can provide clinically relevant profiles of neurodevelopment that are 

also differentially associated with later life outcomes. 

Clustering behavioral and cognitive performance across scales can create factors that 

reflect common etiological mechanisms and allow a more biologically relevant consideration of 

the OP-neurodevelopment relationship. Behavioral and cognitive deficits that are clinically and 

statistically correlated may reflect a common etiological insult. For instance, OPs influence 
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serotonergic processing (Aldridge et al. 2005b; Aldridge et al. 2004; Slotkin et al. 2008b; Slotkin 

and Seidler 2005). Serotonin, in turn, can influence aggression, social behaviors, depression, 

and ADHD (Cadoret et al. 2003; Eley et al. 2004; Zoroğlu et al. 2002), and these symptoms may 

cluster in response to a global disruption in upstream processing like serotonergic functioning. 

Animal and human studies do support that OPs may be associated with those behavioral 

outcomes (Bouchard  et al. 2010; Eskenazi et al. 2007; Furlong  et al. 2014; Middlemore-Risher 

et al. 2010; Ricceri et al. 2003; Ricceri et al. 2006), which are perhaps mediated by serotonergic 

functioning (Slotkin and Seidler 2008; Venerosi et al. 2010). However, aggression is also 

influenced by non-serotonergic mechanisms, including disruptions to the frontal and prefrontal 

cortex, GABA, oxytocin, dopamine, and MAO-A systems (reviewed in (Nelson and Trainor 

2007)). OPs do not necessarily influence all of these systems, and patterns of behaviors that 

are influenced by serotonin are not associated with all of these systems either. However, when 

outcomes such as aggression are analyzed individually outside of the context of other 

symptoms, aggression from any neurological source is lumped, including aggression that is the 

result of non-OP-influenced mechanisms. By instead considering behavioral and cognitive 

clusters, we may characterize patterns of development (such as ADHD (Castellanos et al. 2006; 

Mattison and Mayes 2010; Semrud-Clikeman et al. 2010; Sinzig et al. 2008)) that theoretically 

represent common etiologies.  

Using data from the prospective Mount Sinai Children’s Environmental Health Center 

cohort, we take advantage of multi-pollutant exposure and multidimensional and longitudinal 

neurodevelopmental outcome data to create a model that: 1) is a more accurate depiction of 

real-life exposure mixtures, and 2) takes into consideration the interdependency of 

neurodevelopment to create behavioral and cognitive profiles. This model will account for 

confounding by co-contaminants and take advantage of clustering across scales to create 

neurodevelopmental profiles that may be more representative of biological pathways affected by 

OPs than the 1:1 analytic approach.  
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Specific Aim 1 

 To create phenotypes of neurodevelopment, using measures of cognition (Wechsler 

Preschool and Primary Scale for Infants and Toddlers [WPPSI], Wechsler Intelligence Scale for 

Children-IV [WISC-IV]), behavior (Behavioral Assessment System for Children [BASC]), and 

executive functioning (Behavioral Rating Inventory of Executive Functioning [BRIEF]), in the 

Mount Sinai Children’s Environmental Health Center Cohort.  

 Aim 1.1: To create phenotypes using a principal components analysis with orthogonal 

varimax rotation. 

 Aim 1.2: To estimate associations between prenatal and early life characteristics and 

neurodevelopmental factors created in Aim 1.1.  

 Aim 1.3: To compare estimates of associations between prenatal smoking and 

neurodevelopment using 1) factors derived from an orthogonal rotation, 2) factors derived from 

an oblique rotation, and 3) instrument-specific composite scores. 

Specific Aim 2 

 To estimate associations of OPs with phenotypes of neurodevelopment in a mixture 

model, and assess modification by potentially important characteristics.  

 Aim 2.1: Estimate associations between OPs and neurodevelopmental phenotypes in a 

mixture model that accounts for possible confounding by other classes of xenobiotic chemicals 

(phthalates, phenols, and pyrethroids) in a Bayesian framework.  

 Aim 2.2: Assess modification of the OP-neurodevelopment relationship by race, sex, and 

paraoxonase 1 (PON1) genotype, a gene integral to the metabolism of organophosphorus 

pesticides.
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CHAPTER II. BACKGROUND 

Source, Route, and Estimation of Organophosphorus Pesticide Exposure 

Organophosphorus Pesticide Use in the United States 

Organophosphorus pesticides (OPs) refer to a group of pesticides that contain an 

organic phosphorus(V)-containing compound, which in most cases is O,O-dialkyl substituted, 

where the alkyl groups are either dimethyl or diethyl (Mileson et al. 1998). Forty OPs are 

currently registered for use in the United States. In 2001, the EPA banned OPs for most 

residential uses, although stocks were allowed to run out and container-bait traps were allowed 

to remain on the market. OPs also remain in use for agricultural purposes and nonresidential 

uses such as for golf courses, greenhouses, and for mosquito and fire ant control. The EPA 

recently proposed revoking food tolerances for chlorpyrifos, one commonly used OP insecticide, 

and will issue a final ruling in December 2016 (EPA, 2016). In 2000, 88 million pounds of OPs 

were applied in the United States, and by 2007, this number had dropped to 33 million pounds 

(EPA 2011). Biomarker levels of OPs also dropped after 2001, although over 25% of the 

population still had detectable levels of OP metabolites in 2003-2004, as did over 50% in 

selected subgroups (mainly Mexican-Americans and non-Hispanic Blacks) (CDC 2009).  

Environmental Fate, Breakdown, and Metabolism of Ops 

Use of OPs grew after environmentally persistent organochlorine pesticides were 

banned in the 1970’s, in part because OPs are less persistent in the environment and break 

down fairly rapidly (within weeks to months) in the presence of sun, water, wind, and microbes. 

However, when used indoors, OPs may remain stable for months to years (Fenske et al. 2000), 

with house dust potentially acting as a long-term source of exposure. 
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 Breakdown and metabolism of OPs is a complex process. Several OPs do not exhibit 

primary toxicity in the parent pesticide form, but rather confer toxicity after undergoing 

enzymatic conversion to the oxon form; an oxon is a chemical in which the phosphorus-sulfur 

bond has been replaced by a phosphorous-oxygen bond. This oxon form is toxic and 

biologically active due to the electrophilicity conferred on the phosphorous ion. The oxon is then 

hydrolyzed, and in most cases forms a general dialkyl phosphate (DAP) metabolite (usually 

either dimethyl or diethyl phosphorous derivatives, including diethylphosphate, 

diethylthiophosphates, diethyldithiophosphates, dimethylphosphate, dimethylthiophosphate, and 

dimethyldithiophosphate), along with a specific metabolite moiety (such as t-CPY for 

chlorpyrifos and methyl chlorpyrifos, or 4-nitrophenol for methyl parathion and parathion). 

Seventy five percent of OPs break down into 1 to 3 of the general metabolites (Wessels et al. 

2003). Figure 1 shows an example of these processes in the metabolism and breakdown of 

chlorpyrifos (reprinted from (Wessels  et al. 2003)). However, any given pesticide-specific 

metabolite moiety in the urine tends to have a low frequency of detection in the US population 

relative to the common metabolites (Barr et al. 2004), which derive from several different OPs 

(see Table 1).  

As a result, a common approach to the estimation of OP exposure is through summary 

urinary biomarker measures of the non-specific diethylphosphate (ΣDEPs) and 

dimethylphosphate (ΣDMPs) metabolites, despite the limitations of these biomarkers as internal 

dosimeters (Wessels  et al. 2003)). In brief, these limitations include that 1) a number of 

different OP pesticides can be metabolized into the same DEP or DMP metabolites, preventing 

investigators from making any definitive link to the parent compound of exposure, 2) the 

different parent compounds have varying levels of toxicities, so summary DAPs may not reflect 

similar toxicities across populations, and 3) metabolism of the DAPs can occur either in the 

human body or in the environment. Exposure to a preformed DAP metabolite is non-toxic, while 

exposure to the parent oxons appears to confer toxicity (Mileson  et al. 1998; Wessels  et al. 
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2003; Zhang et al. 2008). Nonetheless, use of ΣDEP and ΣDMP metabolites remain the most 

common method of exposure ascertainment in the general population, since the pesticide-

specific moieties have detection frequencies that are too low to warrant widespread 

measurement.  

Individual susceptibility to toxic effects of OPs may also vary by genotype. The 

conversion of the pesticide to the oxon is in part governed by cytochrome p450 metabolism, and 

the conversion of the oxon to the metabolites is in part governed by paraoxonase 1 (PON1) 

(Costa et al. 1999). A number of polymorphisms have been described in PON1 that affect either 

gene expression or substrate-specific catalytic efficiency. These include the coding 

polymorphisms Q192R and L55M, as well as the promoter polymorphism -108C>T. Roughly, 

Q192R determines catalytic efficiency, while L55M and -108C>T are associated with levels of 

the enzyme, although the latter two are in strong linkage disequilibrium and enzyme levels may 

only be determined by one of the two SNPs. Those with an M allele in the L55M SNP have 

lower PON1 levels on average (Brophy et al. 2001).The Q192R SNP is associated with faster 

catalytic efficiency in a substrate-specific manner. Some pesticides are more efficiently 

detoxified by the Q allele (diazoxon, sarin, soman), while others are more efficiently detoxified 

by the R allele (paraoxon) (Costa  et al. 1999). Further, OPs that break down into dimethyl 

moieties may have limited potential for detoxification by PON1 (Geldmacher‐von Mallinckrodt & 

Diepgen, 1988; Li et al., 2000).There is also significant overlap of enzymatic levels and activities 

across genotypes, and thus some researchers recommend assessing the overall “PON1 status” 

of an individual, and considering genotype and phenotype of PON1. Unfortunately, since PON1 

levels are inducible, in some cases it is unclear whether the levels or activity reflect 

responsiveness to OP exposure (and thus also higher overall OP exposure) or simply baseline 

levels (thus reflecting higher detoxifying potential and lower OP exposure).  Further complicating 

matters, PON1 is also important in protecting low density lipoproteins (LDL) from being oxidized, 

and thus may impart some protection to oxidative stress (Bhattacharyya et al. 2008; Durrington 
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et al. 2001; Li et al. 2003), although the protective alleles often vary by cohort and population (Li  

et al. 2003). 

Source of Exposure 

 In the general population, levels of DAPs are likely to predominantly arise from dietary 

exposure (Lu et al. 2006). Both parent pesticide residues and the dialkylphosphate metabolites 

are found on fruits and vegetables, with one study suggesting that a slight majority of the molar 

ratio of OP residues were preformed DAPs rather than the parent oxon or pesticide, from 

strawberries collected in 2003 (Zhang  et al. 2008). Additionally, in a study of OP exposure 

using the specific metabolites for chlorpyrifos and malathion, median metabolite levels were 

reduced to non-detectable levels after changing children’s fruit and vegetable consumption to 

completely organic sources for two weeks (Lu  et al. 2006). Thus, metabolites measured from 

dietary exposure likely reflect a combination of exposure to the preformed, non-toxic DAP 

metabolites, and to the parent pesticide. However, in populations exposed to OPs either through 

agricultural or residential use (particularly in some highly-exposed residential populations prior 

to 2001), DAP levels may mainly reflect exposure to the parent pesticide. 

Associations between Prenatal Exposure to Organophosphorus Pesticides and 
Neurodevelopmental Outcomes 

Overview 

OPs may work as developmental neurotoxins through a few different mechanisms 

(reviewed in (Eskenazi et al. 1999). OPs are primarily cited as acetylcholinesterase inhibitors, 

which results in a buildup of acetylcholine at the synaptic cleft. In acute OP poisoning, this can 

also cause overstimulation of nicotinic receptors. Symptoms include muscle weakness, fatigue, 

muscle cramps, paralysis, anxiety, headaches, and possibly coma or death. OPs also appear to 

be chronically neurotoxic at much lower doses, through the inhibition of acetylcholinesterase 

and the generation of oxidative radicals (Qiao et al. 2005), alteration of nuclear transcription 
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factors (Crumpton et al. 2000), and/or alterations in serotonergic and dopaminergic synaptic 

activity (Aldridge et al. 2005a; Aldridge  et al. 2005b).  

Low level prenatal exposure to OPs has been associated with a wide range of 

neurological outcomes in both animal and human studies. These include a cross-sectional study 

that reports associations with ADHD (Bouchard  et al. 2010), and prospective biomarker-based 

studies that report associations with decrements in attention (Barr et al. 2010; Marks  et al. 

2010; Rauh et al. 2006), IQ (Bouchard  et al. 2011; Engel  et al. 2011; Rauh  et al. 2011), social 

responsiveness (Furlong  et al. 2014), and Pervasive Developmental Disorder (Eskenazi  et al. 

2007), although Eskenazi et al. also reported no association with measures of attention at 24 

months of age. Other studies that relied on occupational histories or self-reported residential 

exposure have associated OP exposure with decrements in attention, short-term memory, and 

design copying on the Stanford Binet IQ test (Grandjean et al. 2006; Ruckart et al. 2004).  In 

animals, prenatal OP exposure has been associated with deficits in neurocognitive functioning 

(Levin et al. 2002; Timofeeva et al. 2008), impulsivity and attention problems (Cardona et al. 

2011; Chanda and Pope 1996; Middlemore-Risher  et al. 2010), animal models of depression 

(Aldridge  et al. 2005a), and other behaviors (Gupta et al. 1985). Further, many of these 

associations have been shown to be sex-specific in animals (Levin  et al. 2002; Levin et al. 

2010; Slotkin  et al. 2008b), and race- and sex-specific in humans (Engel  et al. 2011; Furlong  

et al. 2014). Many of these behaviors (inattention, impulsivity, social problems) are 

characteristic of ADHD, but no prospective epidemiological studies have evaluated this 

association with a clinically validated case group, or taken advantage of clustered outcome data 

to examine associations with ADHD-like phenotypes of behavior, cognition, and executive 

functioning. In fact, no birth cohorts have previously reported on the associations between OPs 

and executive functioning, which is a hallmark of ADHD. Thus, prenatal exposure to OPs 

appears to have a wide-ranging influence on several aspects of neurodevelopment, but may 

actually be associated with ADHD (discussed in further detail in Chapter 2: Spotlight on ADHD).  
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OPs and Neurodevelopment: Birth Cohorts 

A few children’s environmental health centers were formed in the late 1990’s and early 

2000’s to address questions of associations between prenatal exposure to neurotoxicants and 

reproductive outcomes and/or childhood development. These included the CHAMACOS cohort 

in Berkeley, with participants composed predominantly of Hispanic agricultural workers; the 

Mount Sinai cohort in New York City, a multiethnic cohort with participants recruited both from 

the Bronx and the Upper East Side of Manhattan; the Columbia cohort, a cohort of Dominican 

and African American women in New York City; and the Cincinnati Health Outcomes and 

Measures of the Environment Study (HOME) cohort, with participants recruited from the 

Cincinnati metropolitan area. Mount Sinai enrolled participants from 1998 to 2001, Berkeley’s 

CHAMACOS enrolled from 1999-2000, Columbia enrolled from 1999-2006, and the Cincinnati 

cohort enrolled from 2003-2006. These cohorts thus vary by geography, socioeconomic status, 

and enrollment time period before/after the OP ban.  

Reported associations between prenatal OP exposure and child neurodevelopmental 

outcomes have not been entirely consistent across cohorts (Table 2), which in part may be due 

to the fact that sources of exposure, prevalence of different parent compounds, and the ratio of 

of preformed DAP to parent compound exposure may vary across study cohorts. As discussed 

in section 1.1, cohorts typically use ΣDEPs and ΣDMPs as a summary measure of OP exposure 

(with the exception of the Columbia cohort, which has mostly relied on a blood biomarker of 

chlorpyrifos), but since various parent pesticides may break down into the same metabolites 

(Table 1), and not all of these parent pesticides have similar toxicities, the toxicity of ΣDEPs and 

ΣDMPs may not be highly comparable across populations with different exposure sources. 

Participants in the Mount Sinai cohort were primarily exposed to pesticides used for urban pest 

control measures or through pesticide residues from their diet, while in CHAMACOS, 

participants were primarily exposed to pesticides in an agricultural setting. CHAMACOS 

participants had much higher levels of ΣDMPs than any other cohort. In the Cincinnati HOME 
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study, the cohort is primarily semi-urban or suburban, and participants were generally exposed 

to pesticide residues in their diet, since the cohort began enrollment two years after the ban on 

most residential uses of chlorpyrifos and diazinon. HOME is the only cohort to have reported a 

positive association between OP pesticide metabolites and neurodevelopment, which is likely 

confounded by consumption of fruits and vegetables, the primary vector for OP metabolites in 

this population. Additionally, fruit and vegetable consumption may result in a high consumption 

of preformed metabolites, which are non-toxic and reduce the accuracy of the ΣDAP 

metabolites as a measure of exposure to the toxic OP oxon. Findings from this cohort on 

associations between prenatal OP exposure and later neurodevelopmental outcomes have not 

yet been published at the time of the present study, thus, it is unknown whether these positive 

associations are maintained throughout childhood. Differences in source, type, and dose may 

explain why some studies report different associations with different metabolites (see Table 2 

for summary of associations). Indeed, a recent pooled study that incorporated DAPs across the 

four cohorts reported substantial heterogeneity by cohort, with DMPs from CHAMACOS 

resulting in the strongest adverse associations with the Bayley’s MDI at age 2 (S. M. Engel et 

al., 2015).  

PON1 and Other Modifying Factors 

PON1 

 Associations of the PON1 polymorphisms (PON1 Q192R, L55M and -108C>T) and 

PON1 enzyme levels have been assessed as potential modifiers (and as main effects) in the 

associations between prenatal exposure to OPs and childhood neurodevelopment. However, 

results have not been consistent with regards to the important polymorphism or the oxons that 

appear to be modified. For instance, Engel et al (2011) report that Q192R modifies the 

association between ΣDEPs and ΣDMPs and the BSID-II 12-month Bayley MDI in the Mount 

Sinai Cohort with stronger adverse associations among those with the QR/RR genotype. 
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However, this effect is absent in the 24-month MDI and in the 6-to-7-year WISC IQs. In 

CHAMACOS, Eskenazi et al (2010) reported that the -108T allele itself resulted in lower MDI 

scores, although there was no interaction between genes and OPs on Bayley MDIs or PDIs 

among 2-year-olds. They also measured maternal arylesterase and paraoxonase activity levels, 

and reported that children of mothers with higher activity levels were slightly less likely to display 

PDD (pervasive developmental disorders). Regardless of inconsistent evidence, PON1 

genotype and phenotype may play important roles in modifying the associations between OPs 

and neurodevelopment in the Mount Sinai cohort. 

OPs not only impart toxicity through the mechanisms discussed earlier, but they also 

generate oxidative radicals (Qiao  et al. 2005). Thus, while much of the research on PON1 as a 

modifier of organophosphorus pesticides has been driven by its potential to detoxify 

organophosphorus pesticides, PON1 may also be important in reducing oxidative stress 

responses to these pesticides.  

Race and Sex 

In animal models, OPs and other prenatal exposures appear to have sex specific effects 

(Aldridge  et al. 2004; Levin  et al. 2010; Slotkin et al. 2008a), and this has been partially borne 

out in the epidemiological literature on OPs (Furlong  et al. 2014). Additionally, a small-scale 

fMRI study of children who were highly exposed to chlorpyrifos reported suggestive neurological 

differences by sex (Rauh et al. 2012). In general, the developing male brain may be more 

susceptible to environmental insults (Barrett 2009), although behavioral issues may be under-

diagnosed in females (Begeer et al. 2013; Bruchmüller et al. 2012), possibly leading to 

substantial outcome misclassification which may obscure associations. 

Race may be an important modifier due to differences in culture, genotype frequency, or 

insofar as it reflects imperfectly measured socioeconomic vulnerabilities. The strength of these 

differences vary by cohort; in CHAMACOS, almost all mothers were Hispanic; in Columbia, 
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cohort members were restricted to blacks and Hispanics (predominantly Dominicans); in 

Cincinnati, mothers were predominantly upper-middle-class whites; while in Mount Sinai, 

participants were a mix of both whites from Manhattan and blacks and Hispanics from the Bronx 

and East Harlem. Notably, Mount Sinai is the only cohort to have reported any modifications by 

race, probably because this is the only cohort which has sufficient racial/ethnic variability, and 

also because the racial differences reflect drastic differences in socioeconomic status. In Mount 

Sinai, studies generally report stronger adverse associations between OPs and 

neurodevelopment among blacks, and little or no effect of OPs among whites. Cincinnati is the 

only cohort to have reported positive associations between OPs and any childhood outcome. 

These differences by race may be due to differences in exposure source, or access to 

resources. For instance, higher SES mothers may be more likely than lower SES mothers to 

access early intervention services for their children, which might obscure possible effects of 

pesticide exposure in these children. Race in this cohort will thus be assessed as a modifier.  

Other Xenobiotics and Neurodevelopmental Outcomes 

 Other chemicals with different mechanisms of action also have been associated with 

various aspects of neurodevelopment. Phthalates have been consistently associated with 

alterations in behavior, executive functioning, and possibly sex development in prospective 

cohort studies (Engel et al. 2010; Kobrosly et al. 2014; Miodovnik et al. 2011; Swan et al. 2010; 

Whyatt et al. 2012; Yolton et al. 2011). Associations with IQ have been reported in cross-

sectional studies (Cho et al. 2010), but results from the prospective cohort studies that report 

prenatal phthalate associations with IQ in children over 1 year are mixed (Factor-Litvak et al. 

2014; Polanska et al. 2014; Téllez-Rojo et al. 2013; Werder 2012). Phthalates may act as 

endocrine and thyroid disruptors (Colborn 2004), and some studies do report sex-specific 

effects (Cho  et al. 2010; Engel et al. 2009; Kim et al. 2009; Téllez-Rojo  et al. 2013). Phthalates 
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may be associated with outcomes that are also associated with OP exposures, although 

potentially through different biological mechanisms.  

Phenols (BPA in particular) have been associated with measures of behavior, typically in 

a sex-selective manner (Braun et al. 2009; Evans et al. 2014; Harley et al. 2013; Perera et al. 

2012). Spot urine of BPA measures, however, may be an unreliable measurement of BPA 

throughout pregnancy, since intra-class correlation coefficients are typically <0.20 (Braun et al. 

2010; Mahalingaiah et al. 2008). 

The literature on prenatal pyrethroid insecticides and neurodevelopment is small, 

perhaps due to the relatively recent rise in pyrethroid use. Nevertheless, two recent studies 

have reported associations between prenatal exposure to pyrethroids and adverse 

neurodevelopment (Qi et al., 2011; Watkins et al., 2016), while another reports associations 

between exposure during childhood and adverse verbal and working memory scores (Viel et al., 

2015). Another study found no association between prenatal permethrin exposure and 

neurodevelopment, but did report an association between piperonyl butoxide, a permethrin 

synergist, and adverse scores on the BSID-II (Bayley II) Mental Development Index in 3-year-

olds (Horton et al. 2011). Finally, another study examined associations between a permethrin 

metabolite, PBA, and birth outcomes and head circumference, and reported no association 

(Berkowitz et al. 2004). In animal models, prenatal exposure to pyrethroids have been 

associated with altered cholinergic functioning and decreases in learning and memory 

performance (Sinha et al. 2006), and studies commonly report changes in motor activity and 

acetylcholinergic receptor density (reviewed in (Shafer et al. 2005)).  

Phthalates, phenols, and pyrethroid pesticides are all relatively common environmental 

exposures with a wide range of suspected impacts on neurodevelopment. These exposures 

may confound the OP – neurodevelopment associations through correlated sources of 

exposure. 
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Confounding and the Mixture Problem 

Toxicology 

Few epidemiologic studies have taken mixtures into account in the modeling process. As 

described above, prenatal exposure to several ubiquitous chemicals have been implicated in 

neurodevelopmental outcomes during childhood. These chemicals may impact 

neurodevelopment either by disrupting the endocrine system (Colborn 2004), through 

interference with neurotransmitters (Kwong 2002; Picciotto et al. 1998; Slotkin and Seidler 

2008), or by interfering with DNA repair and inducing general neurotoxicity (Jamal et al. 2002). 

Since exposure is ubiquitous (Castorina et al. 2005; Neta et al. 2010), people are generally 

exposed to these and other chemicals as a mixture. However, previous studies have modeled 

associations as if chemical exposures occur independently. This is despite the fact that several 

of these chemicals have similar mechanisms of action (phthalates and some phenols are 

endocrine disrupting chemicals), while others have correlated reasons for use (pesticides). 

Additionally, exposures may be correlated due to demographic features. For example, chemical 

exposure overall is higher in individuals of lower socioeconomic status (Evans and Kantrowitz 

2002), although this might not be true for all chemical classes. In a select few epidemiologic 

studies, researchers have found that accounting for mixtures produces different results from 

analyzing them individually (Rull et al. 2006; Wickerham et al. 2012). 

In sum, accounting for mixtures may yield different results than considering compounds 

as if they were independent.  

Statistical Approaches 

 In the face of substantial collinearity between predictors, standard estimates may have 

extremely wide variances. Additionally, power to detect an effect will be constrained as the 

number of covariates increases, and the model may become unwieldy and less informative as 

more covariates are added. Some statisticians have recommended using penalized maximum 
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likelihood, which maximizes the log-likelihood but also implements a penalty favoring 

coefficients close to zero, in order to address these problems of high dimensionality and 

collinearity (Genkin et al. 2007; Tibshirani 1996).  

 Lasso and ridge regression are two methods that rely on penalized maximum likelihood. 

Lasso penalizes the sum of the absolute values of the regression coefficients, while ridge 

regression penalizes the sum of the squared coefficients (Genkin  et al. 2007; Tibshirani 1996). 

Both methods stabilize the estimation and result in lower mean squared error than standard 

maximum likelihood estimation (MLE) by shrinking coefficient estimates toward zero. These 

methods work well compared to standard MLE when sample size is relatively small and the 

number of parameters to estimate is relatively large.  

 In Bayesian models, a prior distribution is assigned and estimates are shrunk towards 

the prior to an extent determined by the likelihood of the observed data. Estimates from the 

lasso produce estimates that are equivalent to the posterior estimates in a Bayesian regression 

that implements a double-exponential prior distribution on the coefficients (Park and Casella 

2008; Tibshirani 1996). Use of independent normal priors on coefficients in a Bayesian model 

results in posterior estimates that are equivalent to those from a ridge regression (Griffin and 

Brown 2010). Ridge and lasso, however, do not account for uncertainty in the “priors” or 

penalties, and may result in over-shrinkage of important exposures. In Bayesian modeling, we 

are free to adopt alternate priors which may avoid this problem and account for uncertainty in 

prior assignment (Dunson et al. 2008; Herring 2010).  

Clustering Outcomes Data 

 Prospective epidemiological cohort studies that examine the associations between 

environmental contaminants and childhood behavior/neurodevelopment have collected a range 

of neurodevelopmental instruments at various ages, motivated by a desire to obtain a broad 

view of that child’s neurodevelopmental functioning. To date, most studies have assessed 
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associations within one instrument at a time, possibly presenting the results of multiple 

instruments in a single manuscript, but rarely considering results across instruments with 

phenotypic groupings. For instance, for the Wechsler Intelligence Scale for Children- IV (WISC-

IV), researchers may report associations with scores on individual scales such as memory, 

processing speed, verbal comprehension, perceptual reasoning, and also on Full Scale IQ 

scores, which reflects performance on several scales. Or, if studying behavior and considering 

the Behavioral Assessment System for Children (BASC), researchers may report individual 

associations with aggression, hyperactivity, anxiety, depression, somatization, and attention. If a 

researcher finds associations between OPs and both behavioral measures and IQ subscales, 

researchers may interpret that OPs have separate impacts on both behavior and cognition. This 

interpretation might be faulty for several reasons reviewed below. 

Advantages of Clustering Outcomes Data: Clinically Relevant Outcomes  

 Phenotyping of individuals using data from multiple instruments is not a unique 

approach. Indeed, qualitatively, this is the approach clinicians use when evaluating children for 

a neurodevelopmental disability. Since neurological functioning evolved as an interdependent 

system, functions that govern behavior are highly reliant on each other and may compensate for 

each other in the event of weaknesses or deficits in specific areas. For instance, “higher-level” 

inhibitory control relies on more “basic” processing speed capability (Ridderinkhof and van der 

Molen 1997). Accurate working-memory for conjunctions (or relations), which is typically 

considered a function of the prefrontal cortex, relies on proper functioning of the hippocampus 

(Olson et al. 2006). And, higher-level executive functions (EFs) are dependent on less complex 

EF processes, including attention, memory, perception, and categorization (Eslinger 1996). 

Deficits may also be compensated for by strengths in other regions; working memory alone is 

only associated with poor social skills when accompanied by deficits in attention, hyperactivity, 

and impulsivity (Kofler  et al. 2011), and problems with working memory may only be associated 
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with poorer academic achievement when accompanied by symptoms of inattention (Rogers  et 

al. 2011).  

 Patterns of correlations across scales may also point to different clinical phenotypes – 

when aggression problems are accompanied by high impulsivity, researchers see a different 

profile of aggressive behavior (reactive-impulsive) than when aggression is accompanied by 

higher levels of self-control (controlled-instrumental) (Vitiello and Stoff 1997), and these 

differences are associated with different patterns of behaviors and criminality (Nelson and 

Trainor 2007). Similarly, children with ADHD who display both inattention and hyperactivity, but 

not hyperactivity alone, have significantly lower cognitive scores than their non-ADHD 

counterparts (Ramos et al. 2013). Different subtypes of ADHD may have different executive 

function profiles, although this is a debated topic  [reviewed in (Geurts et al. 2005), and 

discussed in further detail in section 1.5.3]. Therefore, examining performance on subscales 

within the context of other instruments may provide clinically relevant profiles of 

neurodevelopment that are also differentially associated with later life outcomes.     

Advantages of Clustering Outcomes Data: Relevance to Biological Interpretations of OP 
Mechanisms  

 Clustering outcome data may help reveal mechanisms of OP toxicity. Behavioral and 

cognitive deficits that are clinically and statistically correlated may reflect a common etiological 

insult. For instance, OPs influence serotoninergic processing (Aldridge  et al. 2005b; Aldridge  et 

al. 2004; Slotkin  et al. 2008b; Slotkin and Seidler 2005). Serotonin, in turn, can influence 

aggression, social behaviors, depression, and ADHD (Cadoret  et al. 2003; Eley  et al. 2004; 

Zoroğlu  et al. 2002), and these symptoms may cluster in response to a global disruption in 

upstream processing like serotonergic functioning. Animal and human studies do support that 

OPs may be associated with those behavioral outcomes (Bouchard  et al. 2010; Eskenazi  et al. 

2007; Furlong  et al. 2014; Middlemore-Risher  et al. 2010; Ricceri  et al. 2003; Ricceri  et al. 

2006), which are perhaps mediated by serotonergic functioning (Slotkin and Seidler 2008; 
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Venerosi  et al. 2010). However, aggression is also influenced by non-serotonergic 

mechanisms, including disruptions to the frontal and prefrontal cortex, GABA, oxytocin, 

dopamine, and MAO-A systems (reviewed in (Nelson and Trainor 2007)). OPs do not 

necessarily influence all of these systems, and patterns of behaviors that are influenced by 

serotonin are not associated with all of these systems either. When outcomes such as 

aggression, are analyzed individually outside of the context of other symptoms, all aggression is 

lumped, including aggression that is the result of non-OP-influenced mechanisms. By instead 

considering behavioral and cognitive clusters, we can characterize patterns of development 

(such as ADHD (Castellanos  et al. 2006; Mattison and Mayes 2010; Semrud-Clikeman  et al. 

2010; Sinzig  et al. 2008)) that theoretically represent common etiologies.  

While correlated deficits may reflect a common etiological insult, behavioral deficits in one 

area may also interfere with appropriate development of other behaviors or cognitive functions. 

For instance, aggression may interfere with the development of intellectual functioning 

(Huesmann et al. 1987), and the development of successful social skills and emotional self-

regulation are potentially reliant on some levels of inhibitory control at earlier ages (Carlson and 

Wang 2007). Inattention and impulsivity are correlated with lower IQs later (Ramos  et al. 2013). 

The correlation in these deficits may be in part because proper functioning in one area relies on 

appropriate development of earlier behaviors. Thus treating outcomes that are clinically and 

statistically correlated as independent may obscure the underlying mechanism of OP toxicity. 

Advantages of Clustering Outcomes Data: Spotlight on ADHD 

Attention Deficit Hyperactivity Disorder (ADHD) is a complex, heterogeneous disorder 

characterized by inattention, impulsivity, and hyperactivity. ADHD is one of the most common 

childhood neurobehavioral disorders, and in 2011, approximately 11% of children between 4 

and 17 had ever received a clinical diagnosis of ADHD, an increase of 43% from 2003 (Visser et 

al. 2014). The disorder appears to be more prevalent in males than females by a factor of 2-3 to 
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1, which may reflect diagnostic bias, with notable under-ascertainment among females 

(Bruchmüller  et al. 2012). Risk factors for ADHD include having a relative with the disorder 

(Biederman et al. 1992), alcohol use or smoking during pregnancy  (Milberger et al. 1996) 

(although there is controversy on whether the smoking/ADHD relationship is confounded by 

genetics), preterm birth, and possibly prenatal exposure to high levels of PCBs, lead, and 

pesticides (Polańska  et al. 2013; Sioen et al. 2013).  

A gold-standard ADHD diagnosis is based on observations from a clinical exam, home, 

and school reports. The DSM-V criteria states that children must meet at least six of the criteria 

established for hyperactivity and impulsivity, or six of the criteria established for inattention 

(criteria included in Appendix 1). Symptoms must be present in at least two different settings, 

and behavioral or clinical assessments are often given to provide further evidence of behavioral 

abnormalities.  

However, this categorical construct of ADHD has been recently challenged in the 

literature, with psychologists proposing that a dimensional view of ADHD is a more relevant 

model than the categorical view (Coghill and Sonuga‐Barke 2012). Children with high levels of 

ADHD symptomatology may not qualify for an ADHD diagnosis, but these children still often 

experience similar difficulties in social adjustment and academic achievement (Loe and 

Feldman 2007). Further, deficits that are typically considered specific to ADHD, such as deficits 

in basic information processing and inhibitory-based executive functioning, are linearly 

associated with ADHD symptoms across categories of children with no ADHD behaviors, 

subclinical-ADHD, and ADHD (Salum et al. 2014). In fact, most childhood behavioral disorders 

exist on a spectrum in the population. Oppositional defiant disorder (ODD), autism spectrum 

disorder (ASD), and obsessive compulsive disorder (OCD) display varying levels of trait severity 

among children with the disorder, and symptoms are also present at subclinical levels in the 

population (Coghill and Sonuga‐Barke 2012; Constantino and Todd 2003; Fergusson and 
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Horwood 1995). From an etiological perspective, using continuous measures of behaviors 

associated with ADHD may be more appropriate for assessing degree of symptomatology. 

Increasing symptomatology likely reflects increasing deficits in neurological functioning, which 

may itself have a dose-response relationship with an environmental factor, such as OPs. Using 

continuous measures of trait severity will also lend increased power in statistical analyses. 

Recently, psychologists have shifted away from the hypothesis that attention deficits are 

the primary construct underlying ADHD and have moved towards the theory that ADHD may be 

a disorder characterized by deficits in EF, with a primary deficit in inhibitory control (Barkley 

1997). This general theory has undergone much refinement in the last 15 years. Executive 

functioning refers to the ability to plan and execute actions with a future goal in mind. Five 

domains are typically considered in EF: response inhibition, planning, cognitive flexibility/set 

shifting, working memory, and verbal fluency. However, while deficits in EF are certainly 

implicated in ADHD (Marije Boonstra et al. 2005; Woods et al. 2002), these deficits also occur in 

people with Oppositional Defiant Disorder(ODD) and Conduct Disorder (CD), though there is 

substantial comorbidity among the three disorders (Biederman et al. 1991; Maughan et al. 

2004). People with ADHD display deficits in non-EF cognitive areas as well (Marije Boonstra  et 

al. 2005; Woods  et al. 2002). While the specificity of EF deficits as a diagnostic tool for ADHD 

has been debated because of these issues (Willcutt et al. 2005), recent research in psychology 

has focused on examining how patterns across different domains of executive functioning are 

associated with ADHD, rather than EF as a whole.  

Although deficits in executive functioning may be the primary underlying neurological 

dysfunction in ADHD, EFs are still only one non-specific characteristic behavioral domain of 

ADHD, and may differ among different ADHD subtypes. ADHD is also associated with a number 

of other behaviors and cognitive characteristics, and considering all of these alongside EF may 

enhance specificity of clusters or factors. For instance, higher-level EF functions are dependent 

on less complex processes, including attention, memory, perception, and categorization 
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(Eslinger 1996), and ADHD is associated with other behavioral problems, such as internalizing 

and externalizing behaviors, aggression, and other behaviors that are assessed by the 

Behavioral Assessment System for Children (BASC). Social problems have also consistently 

been associated with ADHD. Deficits in all of these areas are likely not independent in ADHD, 

however, and considering them together may present a more comprehensive picture of the 

clinical phenotype. This approach may also help distinguish associations between OPs and 

specific behavioral patterns, if OPs act on one overarching pathway that affects all of these 

domains. 

 Finally, performing dimension reduction results in a small number of discrete phenotypes 

that can be used as outcomes. This provides an advantage in reducing type I error rates – 

traditional models warrant the testing of associations between an exposure and each composite 

scale and subscale. This can lead to a high number of tests and results may be subject to 

multiple testing bias. However, the use of factors as outcomes limits the number of tests with a 

single exposure to the number of factors – typically this is under 10 tests, compared with the 

potential for over 50 or even 100 tests if we used the individual instrument-specific scales. 

Dimension reduction not only improves statistical performance by reducing type I error, but also 

increases the digestibility of results by only requiring the interpretation of a few results by the 

reader.  

Innovation 

Previous epidemiologic research on prenatal exposures to xenobiotics and childhood 

neurodevelopment has typically used the 1:1 exposure-outcome approach to describe 

associations. While some researchers may control for one or two other xenobiotics, such as 

PCBs and/or lead, most cohorts have limited power to address issues of possible interaction 

and confounding by more than one or two other co-exposures with the use of traditional 

statistical methods. Additionally, most previous research on this topic has reported associations 
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with individual neurological outcomes, although many of the outcomes are correlated and 

interpreting associations with single subscales may be less clinically relevant and biologically 

meaningful. This dissertation is innovative because it a) addresses the issue of potential 

uncontrolled confounding between OPs and other co-exposures using methods that can 

account for small sample size, b) considers neurodevelopmental outcomes in a clinically 

meaningful manner that addresses problems of correlated outcomes and c) creates a potential 

model for other cohorts to use in assessing associations with neurodevelopment.    

Bayesian hierarchical models allow the incorporation of prior knowledge into regression 

analyses, which may result in more precise “confidence intervals” (actually termed posterior or 

credible intervals) with less data. These models also provide flexibility in model building when 

there is little prior knowledge, and allows shrinkage towards chemical class means. This 

shrinkage process is responsible for the increase in precision and provides some advantages 

when using a small cohort (<400 mother-child pairs). Thus, this dissertation is innovative in that 

it addresses problems of small sample size and uncontrolled mixture effects of co-exposures by 

using novel analytical methods. 

Factor analysis tackles problems associated with correlated outcomes and multiple 

testing. This technique groups variables that are highly correlated and is one method of 

dimension reduction. Aside from the Faroese birth cohort that examined associations between 

prenatal mercury exposure and neurodevelopment (Budtz-Jørgensen et al. 2002), such 

techniques have been relatively under-used in neurodevelopmental epidemiology, despite their 

potential for collapsing neurobehavioral scores into more meaningful clinical outcomes. Current 

common practice is to report associations between chemical exposures and each subscale on 

single instruments, although associations with single subscales have little interpretability and 

offer no support to hypotheses about biological mechanisms of action. Using factor analysis can 

theoretically reveal common factors that a) may represent an underlying, meaningful biological 

mechanism, b) correlate with clinically meaningful neurobehaviors across instruments, and c) 
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reduce the number of statistical tests performed. This approach to modeling the outcomes may 

provide a model for other birth cohort studies to follow, so that epidemiological research into 

psychological outcomes can take advantage of methods developed by psychologists and 

psychometricians that are designed to deal with these particular aspects of measuring 

neurodevelopment.  
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1
Chemicals enclosed in boxes are excreted in the urine. 

Figure 1 Chlorpyrifos Breakdown and Resulting Metabolites1 
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Table 1 Common Metabolites of Selected Organophosphorus Pesticides 

 OP Dialkylphosphate 

Dimethylphosphate    

 Dichlorvos DMP   

 Dicrotophos DMP   

 Mevinphos DMP   

 Naled DMP   

 Tetrachlorvinphos DMP   

 Trichlorfon DMP   

 Acephate DMP DMTP  

 Chlorpyrifos methyl DMP DMTP  

 Fenitrothion DMP DMTP  

 Fenthion DMP DMTP  

 Methamidophos DMP DMTP  

 Methyl Parathion DMP DMTP  

 Oxydemeton methyl DMP DMTP  

 Primiphos methyl DMP DMTP  

 Temephos DMP DMTP  

 Azinphos methyl DMP DMTP DMDTP 

 Dimethoate DMP DMTP DMDTP 

 Malathion DMP DMTP DMDTP 

 Methidathion DMP DMTP DMDTP 

 Phosmet DMP DMTP DMDTP 

Diethylphosphate    

 Chlorethoxyfos DEP DETP  
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 Chlorpyrifos DEP DETP  

 Coumaphos DEP DETP  

 Diazinon DEP DETP  

 Ethyl parathion DEP DETP  

 Sulfotepp DEP DETP  

 Disulfoton DEP DETP DEDTP 

 Ethion DEP DETP DEDTP 

 Phorate DEP DETP DEDTP 

 Phosalone DEP DETP DEDTP 

 Terbufos DEP DETP DEDTP 

 Reprinted from Duggan et al 2003
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Table 2 Summary of Prenatal Exposure to OPs and Associations with Neurodevelopment 
in Children's Environmental Health Center Cohorts 

  Birth Characteristics and Measures of 
Behavior 

Measures of Cognition 

OP  Age 
at 
Test 

Mount 
Sinai 

Colu
mbia 

CHAMAC
OS 

Cincinna
ti 

Mount 
Sinai 

Colu
mbia 

CHAMAC
OS 

Cincinn
ati 

DEPs  ≤1 
yr 

Abnormal 
primitive 
reflexes, 
head 
circumfer
ence

1
, 

birth 
weight

1
 

Birth 
length, 
birth 
weight, 

Abnormal 
primitive 
reflexes 

Birth 
weight

2
, 

Improved 
attn 

 
Null 
MDI, 
null 
PDI 

Null PDI, 
MDI 

  

DMPs  ≤ 1 
yr 

Abnormal 
primitive 
reflexes

1
, 

birth 
length

1
 

Gestati
onal 
age 

Abnormal 
primitive 
reflexes, 
gestational 
age 

Gestational 
age and 
birth 
weight

2
 

MDI
1,2 

 Null PDI, 
MDI,  

 

DEPs 2 yr   Null PDD  Null 
PDI, 
MDI 

Null 
MDI, 
PDI 

Null PDI, 
MDI 

 

DMPs 2 yr    PDD  Null 
PDI, 
MDI 

 Adverse 
MDI

1
, no 

PDI 

 

DEPs  3 yr  Attn/A
DHD 
PDD 

Null 
attn/ADHD 

  MDI, 
PDI  

  

DMPs 3 yr   Null 
attn/ADHD 

     

DEPs >3 – 
6 yr 

  Attn & 
ADHD 
indicators 

     

DMPs >3 – 
6 yr 

  Attn & 
ADHD 
indicators 

     

DEPs >6 
yr 

SRS, 7-9 
years

2 
   Null IQ Workin

g 
Memor
y, 
FSIQ 

Processing 
Speed 

 

DMPs >6 
yr 

Null 
SRS, 7-9 
years 

   Percept
ual 
Reasoni
ng

1
 

 Working 
Memory, 
Verbal 
Comprehen
sion, FSIQ 

 

PDI – Psychomotor Development Index of the BSID-II; MDI- Mental Development Index of the BSID-II; 
PDD – Pervasive Developmental Disorder as measured by the Child Behavior Checklist (CBCL); SRS - 
Social Responsiveness Scale; FSIQ – Full Scale IQ from WISC-IV 
1
Modification by PON1 genotype or PON1 levels 

2
Modification by race and/or sex 

*Many of the “null” associations reported here show a trend, but confidence intervals include the null. The 
Columbia cohort only reports results for chlorpyrifos, so associations with DMPs are not reported in that 

cohort. 
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CHAPTER III. METHODS 

Study Design/Research Strategy Overview 

 We used Bayesian hierarchical mixture models to assess the associations between 

organophosphorus pesticides (OPs) on neurodevelopment in a multiethnic cohort in New York 

City (n=404 mother/infant pairs at birth, see Table 3 for demographic characteristics). 

Specifically, we shrunk estimates for individual xenobiotic biomarkers towards a common class 

mean, and also estimated these associations by assigning a more commonly used prior with a 

mean of 0 and variance of 1 to the individual biomarkers. The model included the OPs and 

controlled for phthalates, pyrethroids, and phenols. Other important modifiers, including race, 

sex, and PON1 genotype, were assessed for interaction with OPs in individual models. 

Covariates of interest are described below and were included in a DAG to determine inclusion in 

final models. Outcomes are continuous factor scores derived from scales of instruments 

collected at 6 and 7-9 years of age (instruments described in further detail in Chapter 3 Section: 

Outcomes, and factor analysis described in further detail in Chapter 3 Section: Factor Analysis).  

Study Population 

The Mount Sinai Children’s Environmental Health Study is a prospective multiethnic 

cohort of primiparous women with singleton pregnancies who delivered at the Mount Sinai 

Hospital between May 1998 and July 2001 (Berkowitz et al. 2003; Berkowitz  et al. 2004). 

Women were recruited at either the Mount Sinai Diagnostic and Treatment Center, which serves 

a predominantly minority East Harlem population, or at one of two private practices on the 

Upper East Side of Manhattan. 404 mother-infant pairs were successfully recruited during 

pregnancy and met inclusion criteria (i.e., free of medical complications, gestation ≥ 32 weeks of 

pregnancy, infant free of genetic abnormalities, continued residence in New York City). At 
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enrollment, mothers were predominantly young (67.9% < 25 years), non-white (68.7%), 

unmarried (71.0%), with high school educations or less (71.8%). An additional group of women 

did not have prenatal data available but did have neurodevelopmental assessments performed 

for their children (n= 48). These women were not included in any analyses that required 

prenatal data but were included in the factor analysis. 

Although the population is highly mobile due to their socioeconomic status and the 

cohort experienced a relatively high degree of drop out over follow up (188 out of 404 pairs were 

ultimately re-contacted in follow-up at either the 6 or 7-9 year visit), the missingness of the data 

has not substantially altered findings and women at follow-up were only slightly different than 

the cohort at enrollment. Women who returned for follow-up were more likely to be single at 

enrollment (Table 3).   

Exposure, Outcome, and Covariate Assessment 

Exposures, outcomes, and covariates were measured with a variety of instruments, 

including biomarkers, parent/caregiver surveys, and validated child assessments. 

Chemical Exposures  

Exposure to chemicals was assessed with biomarkers in urine or blood. Maternal blood 

and urine was collected at a mean gestational age of 31.2 (sd 3.7) weeks. Maternal urine 

samples were analyzed by the Centers for Disease Control and Prevention (Atlanta, Georgia) 

using gold standard techniques for measuring metabolites of organophosphorus pesticides 

(Engel et al. 2007), phthalates and phenols (Wolff et al. 2008), and pyrethroids (Barr et al., 

2010). In the actual data analysis, values below the LOD were handled with a truncated normal 

distribution, and concentrations of log values above the LOD were modeled with a normal 

distribution.  
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Outcomes 

Participants were followed up when children were 4.5-5 years, 6-6.5 years, and 7-9 

years of age. At follow-up, children were assessed for IQ, behavior, and executive function 

using validated and age-appropriate scales described below and in further detail in Table 4.  

Wechsler Preschool and Primary Scale of Intelligence, 3rd edition (WPPSI-III), and 

Wechsler Intelligence Scale for Children, 4th edition (WISC-IV) (n=210 children had scores from 

either the WPPSI or the WISC at 6-9 years; correlations between the WISC-IV and the WPPSI-

III historically are 0.89) (Engel  et al. 2011). Administered to children under the age of 7, the 

WPPSI-III provides measures of Verbal, Performance, Processing Speed, and Full-Scale IQ. 

The WISC-IV provides measures of Composite Verbal, Perceptual Reasoning, Working 

Memory, Processing Speed, and Full-Scale IQ. These composite scales are also composed of 

subscales (see Table 4 for full lists).  

Behavior Rating Inventory of Executive Functioning (BRIEF) (n=210 with a measurement 

at any time point). The BRIEF is an 86-item parent report questionnaire designed to assess 

executive cognitive function in children 5-18 years of age. Executive functions are used to 

achieve goals that require planning and holding in memory a multi-step sequence of thoughts or 

actions, to monitor and control attention and emotion, to inhibit inappropriate behaviors, and to 

formulate mental models based on life experiences. The BRIEF is composed of 8 clinical 

scales, including  

1) Inhibit- ability to control impulses, 

2) Shift- ability to transition between situations,  

3) Emotional control- ability to modulate emotional responses,  

4) Initiate- the ability to begin a task,  

5) Working memory – the ability to retain information for task completion,  

6) Plan/organize – the ability to anticipate future events, set goals, and develop a 

systematic plan of action,  
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7) Organization of materials – the ability to keep workspace orderly, and  

8) Monitor – the ability to assess personal performance and to register the effect of one’s 

own behavior on others.  

These eight scales generate two broad indices: the Behavioral Regulation Index (BRI) 

and the Metacognition Index (MI). An overall score, the Global Executive Composite (GEC), is 

obtained from the raw scores for the MI and BRI.   

Behavioral Assessment Scale for Children (BASC) (n=210 with a measurement at any 

point). The BASC is designed to evaluate problematic behaviors in children and adolescents 2.5 

to 18 years of age. The BASC includes nine clinical scales to assess a child’s adaptive and 

problem behaviors in home and community settings. Parents respond to 130 items on a 4 point 

scale that ranges from never to almost always. Externalizing problems is a composite scale 

derived from the hyperactivity (including both hyperactivity and impulsivity items), aggression, 

and conduct problems scale items. Internalizing problems is a composite of the anxiety, 

depression, and somatization scale items. Three additional scales are attention problems, 

atypicality, and withdrawal. The adaptive behavior skills composite combines information from 

the adaptability, social skills, and leadership scale items. The Behavioral Symptoms Index (BSI) 

is the apical summary score that assesses the overall level of behavioral functioning. 

Taken together, these instruments provide details on several aspects of 

neurodevelopment, including IQ, behavior, and executive functioning. Table 4 describes the 

instruments used and when they were administered. All outcomes were analyzed as continuous 

variables. 

Covariates 

Covariates of interest for the OP-neurodevelopment relationships included maternal 

education, maternal race/ethnicity, maternal marital status, alcohol use during pregnancy, drug 

use during pregnancy, maternal age, child sex, maternal IQ, HOME environment scores, and 
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maternal smoking during pregnancy. All prenatal covariates were obtained through a 

questionnaire administered at the time of biomarker collection (mean gestational age 31.2 

weeks). Child sex and other features of the delivery were determined through the perinatal 

database at the hospitals where they were delivered.  

Data Analysis 

 The proposed aims seek to 1) comprehensively account for correlations among the 

outcomes and to reduce the dimensionality of these outcomes in a factor analysis, 2) to 

estimate associations between prenatal and early life characteristics and the 

neurodevelopmental factors and to 3) consider OPs as part of a mixture, and to account for 

possible correlations and confounding by other xenobiotics in Bayesian hierarchical models.   

Outcomes: Factor Analysis  

 Factor analysis (FA) allows items that are highly correlated with each other to cluster. 

The degree to which any given variable contributes to that overall factor is known as a factor 

loading. Squared factor loadings represent the amount of variance explained by any given 

variable for that factor. In deciding what factor loading values indicate an important variable, 

generally analysts use a rule of thumb of loadings > 0.3 to indicate important variables (Field, 

Miles, & Field, 2012). Loadings are also related to the eigenvalues, which indicate the 

substantive importance of a factor. Relatively high eigenvalues indicate that a factor should be 

retained, while relatively low eigenvalues indicate that a factor should be discarded. A general 

rule of thumb that is commonly used dictates that eigenvalues above 1 should be retained, 

although more sophisticated methods are also available for choosing number of factors. A scree 

plot plots each eigenvalue against the factor with which it is associated, and generally is 

characterized by a steep decline followed by a leveling off. In parallel analysis, a random 

dataset with the same number of observations and variables is drawn, eigenvalues are 

estimated, and the scree plots are compared. When the eigenvalues from the observed dataset 
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dip below those from the randomly drawn data, this indicates that the later factors are mostly 

noise. We considered both the eigenvalue cutoff method and the factor solution that is one 

above and below the number indicated by parallel analysis.   

 Factor rotation methods impose either a correlated or uncorrelated structure on the 

factors. In etiological analyses, we primarily adopted an orthogonal varimax rotation, in order to 

assess associations with factors that are linearly independent of other neurodevelopmental 

domains. However, in Aim 1 we compared models using orthogonal rotation, oblique rotation, 

and instrument-specific composite scores, to evaluate the utility of adopting the varimax 

rotation.  

 Factor scores are assigned to each participant to measure how highly they rate on any 

given factor. For instance, if a participant scores highly on a factor that measures problems with 

attention, then that participant likely displays more problems with attention than the rest of the 

cohort. Similarly, if a participant has a low score on that factor, then she has fewer attention 

problems than the rest of the participants in that cohort. These scores can be extracted and 

used as outcomes in the Bayesian methods described in Chapter 3. To determine factor scores, 

we used the standardized factor score regression coefficients.  

In sum, we used analysis with orthogonal varimax rotation, eigenvalue cutoffs, and 

parallel analysis to decide on the correct number of factors, factor loadings above 0.30 to 

determine variable retention, and standardized factor score regression coefficients to determine 

factor scores. Scores from the neurodevelopmental instruments were scaled using z-scores for 

comparability in the factor analysis. Due to sample size restrictions, we used the averages of 

the subscale scores across visits, and included behavioral subscale scores and IQ composite 

scores into a FA. Since the WPPSI and the WISC do not have exactly overlapping composite 

scores and subtest scores, we used the composite scores that overlap (Full Scale IQ, Verbal IQ, 

and Processing Speed), and the overlapping subtest scores for the finer-level dimension 

reduction (See Table 4 for included scales).  
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Association Models  

 For Aim 1, we used a series of multivariable linear regressions to estimate associations 

between prenatal exposure to smoking and other early life characteristics and 

neurodevelopmental factors. Aim 2, however, involves correlated exposures with a potentially 

high number of variables relative to sample size. Linear regressions of models with such 

characteristics can produce effect estimates that are notoriously unstable and inflated. 

Therefore, in Aim 2 we used a hierarchical Bayesian mixture model (BMM) to account for both 

correlated variables and to stabilize models with high numbers of parameters relative to the 

sample size (de Vocht et al. 2012; Herring 2010; Wakefield et al. 2010). Bayesian statistics 

allows for the incorporation of prior knowledge into analyses, typically with the result of shrinking 

effect estimates towards the specified prior and creating more precise posterior 95% intervals. 

In this dissertation, we shrunk estimates towards a mean of 0 with a variance of 1, and 

performed sensitivity analyses where estimates were shrunk towards chemical class means. 

Exposure values below the LOD were modeled as truncated normal, with values above the 

LOD modeled using log normal distributions (Herring 2010). Missing covariate values were 

imputed using full information maximum likelihood methods under the missing-at-random 

assumption (MAR). Modeled outcomes were factor scores derived from structural equation 

models/factor analysis described further in Chapter 3.  

Comparative Analyses 

For comparison purposes, we also presented results from a traditional linear regression 

that considers associations between OPs and the composite scores of the instruments, along 

with the other instrument-specific items that comprise the factors. These models used 

covariates in a minimally sufficient set derived from a DAG.   
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Table 3 Characteristics of Study Population at Enrollment and Follow Up, Mount Sinai 
Children's Environmental Health Cohort 

 Enrolled at 
Birth 

N=404 

Followed-up 
ages 6-9 

years 
N=162

1 

Not Followed-
Up ages 6-9 

years 
N=242 

Maternal Age at delivery (years)    
 <20 142 (35.2) 50 (30.9) 92 (38.0) 

 20-24 132 (32.7) 55 (34.0) 77 (31.8) 
 ≥25 130 (32.2) 57 (35.2) 73 (30.2) 
     
Maternal Race/ethnicity    
 White 86 (21.3) 30 (18.5) 56 (23.1) 
 Black/other 118 (29.2) 50 (31.9) 68 (28.1) 
 Hispanic 200 (49.5) 82 (50.6) 118 (48.8) 
     
Maternal Education during pregnancy    
 High School or Less 288 (71.8) 118 (73.3) 170 (70.8) 
 Some College or higher 113 (28.2) 43 (26.7) 70 (29.2) 

     
Marital Status during pregnancy

2 
   

 Married 117 (29.0) 37 (22.8) 80 (33.1) 
 Living with Partner 98 (24.3) 37 (22.8) 61 (25.2) 
 Single/Divorced/Widowed 189 (46.8) 88 (54.3) 101 (41.7) 

     
Alcohol use during pregnancy     

 None 337 (85.1) 132 (83.0) 205 (86.5) 
 Any 59 (14.9) 27 (17.0) 32 (13.5) 
    
Smoking during pregnancy     
 No smoking during pregnancy 337 (83.4) 134 (82.7) 203 (83.9) 
 Any smoking during pregnancy 67 (16.6) 28 (17.3) 39(16.1) 
  Smoking only during 1

st
 

trimester 
46 (11.4) 17 (10.5) 29 (12.0) 

  Any smoking during 2
nd

 or 3
rd

 
trimester 

21 (5.2) 11 (6.8) 10 (4.1) 

1
 Population included in the multivariate adjusted regression models of associations between early life 

characteristics and the factor scores.  
2
Marital status at baseline of mothers from the original birth cohort (n=404) who returned for follow up 

differed from mothers who did not return (p= 0.03). No other characteristics were significantly different at 
the alpha=0.05 level for these two groups.  
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Table 4 Instruments Included in Factor Analysis of Behavior, Executive Functioning, and 
IQ 

Instrument  Scales Age 
Assessed,  
N children 

Wechsler Preschool and 

Primary Scales of 

Intelligence (WPPSI-III) 

Verbal IQ (subtest: Vocabulary), 

Performance IQ (subtests: Block Design, Matrix 

Reasoning, Picture Concepts) 

Processing Speed Index (subtests: Symbol 

Search, Coding) 

Full Scale IQ 

6 years  

(n=162) 

Wechsler Intelligence Scale 

for Children (WISC-IV) 

Verbal IQ (subtests: Vocabulary), 

Perceptual Reasoning (subtests: Block Design, 

Matrix Reasoning, Picture Concepts) 

Processing Speed Index (subtests: Symbol 

Search, Coding) 

Full Scale IQ 

7-9 years 

(n=161) 

Behavior Rating Inventory of 

Executive Functioning 

(BRIEF) 

Behavioral Regulation Index (subtests: Inhibit, 

Shift, Emotional Control) 

Metacognition Index (Initiate, Working Memory, 

Plan/Organize, Organization of Materials, 

Monitor)  

Global Executive Composite 

4-9 years 

(N=242)  

Behavioral Assessment 

Scale for Children (BASC) 

Externalizing Problems (Aggression, 

Hyperactivity, Conduct Problems) 

Internalizing Problems (Anxiety, Depression, 

Somatization,) 

Adaptive Skills composite (Adaptability, 

Leadership, Social Skills) 

Other Problems (Atypicality, Withdrawal) 

Behavioral Symptoms Index (Aggression, 

Hyperactivity, Anxiety, Depression, Attention, 

Conduct Problems, Atypicality) 

4-9 years 

(N=238) 

210 participants had the BASC, the BRIEF, and either the WPPSI-III or the WISC-IV 
BRIEF items and descriptions: 
The Behavioral Regulation Index includes these clinical scales:  

 Inhibit (the ability to control impulses),  

 Shift (the ability to switch between activities and tolerate change), 

  Emotional Control (the ability to regulate emotional responses appropriately).  
The Metacognition Index includes these clinical scales:  

 Initiate (the ability to begin activities and generate problem-solving strategies),  

 Working Memory (the ability to hold information when completing a task),  

 Plan/Organize (the ability to set goals, develop steps, and anticipate events),  

 Organization of Materials (the ability to put work, play, and storage spaces in order), and  

 Monitor (the ability to check one’s own work and performance). 
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CHAPTER IV. EARLY LIFE CHARACTERISTICS AND NEURODEVELOPMENTAL 
PHENOTYPES IN THE MOUNT SINAI CHILDREN’S ENVIRONMENTAL HEALTH CENTER 

Introduction 

Neurodevelopment is a complex interdependent system, and yet epidemiological studies 

of neurodevelopment generally consider performance across dimensions of neurodevelopment 

in isolation. For example, studies may report on the relationship between a sociodemographic 

variable and childhood intelligence, executive functioning, or behavior, but not on all three 

dimensions simultaneously. Modern approaches have emphasized the need for “deep 

phenotyping” (Robinson, 2012). This approach uses statistical models that reflect the known 

complexity and interrelatedness of neurodevelopmental processes, and considers sources of 

variability within and across developmental or psychopathological domains (Baynam et al., 

2015; Calkins et al., 2015; Robinson, 2012).  

One statistical approach to deep phenotyping involves dimension reduction techniques, 

which take advantage of information in patterns of covariance across instruments. There are 

major conceptual advantages in jointly modeling domains of neurodevelopment. Accounting for 

interrelatedness between developmental domains may be more clinically relevant, since 

behavioral traits rarely present in isolation. This may be particularly true for children with a 

pathological diagnosis. For instance, the hallmarks of an ADHD diagnosis include problems with 

attention, hyperactivity, executive functioning, and impulsivity (Barkley, 1997). Patients with 

ADHD often also present with anxiety, conduct disorder, depression, and difficulties in forming 

social relationships (Jensen, Martin, & Cantwell, 1997). Even in a general population sample, 

traits such as anxiety and depression are often highly comorbid (Sartorius, Ustun, Lecrubier, & 

Wittchen, 1996), implying potentially common neurological underpinnings for these traits. 
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Despite these co-occurring patterns, there is a trend in etiological studies to either focus on a 

holistic outcome such as ADHD, or to adopt a trait-driven approach and to assume 

characteristics that such as anxiety or depression are independent. However, in a general 

population sample, a more nuanced approach that accounts for correlational patterns across 

traits may be more neurologically and clinically relevant.  

 Many perinatal, social, behavioral, environmental, and demographic characteristics 

have been associated with individual dimensions of neurodevelopment (Bradley, Caldwell, 

Rock, & Ramey, 1989; Gale et al., 2008; Indredavik, Brubakk, Romundstad, & Vik, 2007; Piper 

& Corbett, 2012; Willford, Leech, & Day, 2006). However, few etiological studies have attempted 

to jointly model domains of neurodevelopment while accounting for their interrelationships. As 

neurological capabilities scaffold into phenotypes during childhood, examining the associations 

between prenatal and early life characteristics and neurodevelopmental phenotypes may 

provide more insights into underlying etiological pathways. Our goal was to estimate 

associations between perinatal, social, demographic and behavioral characteristics and 

neurodevelopmental phenotypes while accounting for outcome interdependencies using a 

phenotyping approach. 

Methods 

Study Population 

The Mount Sinai Children’s Environmental Health Study is a prospective cohort study of 

primiparous women with singleton pregnancies who delivered at the Mount Sinai Hospital in 

New York City between May 1998 and July 2001 (Berkowitz et al., 2003, 2004). Mother/infant 

pairs were followed from pregnancy until the child was 7-9 years of age. Women were recruited 

during prenatal visits at either the Mount Sinai Diagnostic and Treatment Center, which serves a 

predominantly East Harlem population, or at one of two private practices on the Upper East 

Side of Manhattan. Exclusions have been detailed elsewhere (S. M. Engel et al., 2007). After 
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exclusions, there were 404 women with available birth data. Additionally, a small number of 

women who enrolled after birth and participated in follow-up visits are included in the 

neurodevelopmental factor analysis (n = 48). Participants were invited to return for 

neurodevelopmental follow-up visits with their child at ages 1, 2, 4, 6, and 7-9 years (Figure 1).   

Child Behavior and Executive Functioning 

We measured children’s executive functioning with the Behavior Rating Inventory of 

Executive Functioning (BRIEF). The BRIEF is a parent-report assessment of the child’s 

executive functioning (Gioia, Isquith, Guy, & Kenworthy, 2000), which consists of 86 items that 

are rated on a 3-level scale from “never” to “almost always”. Validity studies report good 

reliability with high test-retest reliability (mean rs=0.81 for parents across scales) and internal 

consistency (Cronbach’s alphas range from 0.80-0.98 across scales)(Gioia et al., 2000). 

Individual items are summarized into eight clinical scales and their age-normed T-scores. 

Clinical scales are then collapsed into two indices, which also include age-normed T-scores. 

The Behavioral Regulation Index includes the following three clinical scales: Inhibit (the ability to 

control impulses), Shift (the ability to switch between activities and tolerate change), and 

Emotional Control (the ability to regulate emotional responses appropriately). The Metacognition 

Index includes five clinical scales: Initiate (the ability to begin activities and generate problem-

solving strategies), Working Memory (the ability to hold information when completing a task), 

Plan/Organize (the ability to set goals, develop steps, and anticipate events), Organization of 

Materials (the ability to put work, play, and storage spaces in order), and Monitor (the ability to 

check one’s own work and performance). The Behavioral Regulation and Metacognition indices 

are then combined into one overarching Global Executive Composite score. Mothers completed 

the BRIEF at the 4, 6, and 7-9 year follow-up visits. We used the average T-scores across visits. 

We assessed children’s problem and adaptive behaviors in the home and community 

setting with the parent report version of the Behavioral Assessment System for Children (BASC) 
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(Reynolds & Kamphaus, 1998; Sandoval & Echandia, 1994). Internal consistency reliability of 

this instrument is good (Cronbach’s alphas average 0.80 across scales and ages), and test-

retest reliabilities are also high (mean rs = 0.85 for preschool, mean rs = 0.87 for children ages 

6-11)(Sandoval & Echandia, 1994). Parents completed a survey consisting of over 200 items 

that describe the frequency of a specific behavior on a four point scale from “Never” to “Almost 

Always”. Items are then collapsed into clinical and adaptive scales, which are normed to the 

general population by child age to produce T-scores. Clinical and adaptive scales are then 

consolidated into composites, which are also age normed. These composites included 

Externalizing Problems (Aggression, Hyperactivity, Conduct Problems), Internalizing Problems 

(Anxiety, Depression, Somatization), Adaptive Skills (Adaptability, Leadership, Social Skills), 

and the Behavioral Symptoms Index (Aggression, Hyperactivity, Anxiety, Depression, Attention 

Problems, Atypicality). Withdrawal is the only scale that is not included in a composite. The 

BASC was completed at the 4, 6, and 7-9 year visits, and we used the average T-scores across 

visits.  

Psychometric Intelligence Testing 

Children were administered the Wechsler Preschool and Primary Scales of Intelligence-

III (WPPSI-III) at age 6 (mean age = 6.2, SD = 0.2), and the Wechsler Intelligence Scales-IV 

(WISC-IV) between the ages of 7-9 years (mean age = 7.8, SD= 0.8). The WPPSI-III subtests 

included in this analysis were Block Design, Matrix Reasoning, and Picture Concepts (for the 

Performance IQ), Symbol Search and Coding (for Processing Speed), and Vocabulary (for the 

Verbal IQ). A Full Scale IQ (FSIQ) is generated from the age-normed composites. The 

assessed WISC-IV subtests were Block Design, Matrix Reasoning, and Picture Concepts (for 

Perceptual Reasoning), Vocabulary (for Verbal Comprehension), and Coding and Symbol 

Search (for Processing Speed). Because the FSIQ from the WPPSI-III and WISC-IV are highly 

correlated (rs =0.84 in our population), if a child returned for both visits, we preferentially used 
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the WISC-IV scores for all subtests. In our analyses, we were only able to include subscales 

that were administered in both the WPPSI-III and the WISC-IV. Thus, from the WPPSI-III, we 

excluded Word Reasoning and Information. From the WISC-IV we excluded Digit-Span, Letter-

Number Sequencing, the Working Memory Index, Similarities, and Comprehension (see Table 5 

for full list of included scales).  

Covariates 

During their third trimester and at follow-up visits, mothers completed questionnaires that 

assessed a variety of sociodemographic, occupational, environmental, medical history and 

behavioral characteristics. We classified maternal characteristics as follows: maternal education 

at follow-up (high school or less vs some college or higher), maternal age (<20, 20-25, >25), 

maternal race/ethnicity (white/non-white), smoking during pregnancy (we examined both a 

binary form of this variable that included any smoking during pregnancy vs no smoking, and a 

three-level categorical variable that included no smoking, smoking in first trimester only, and 

smoking in either second or third trimesters), alcohol use during pregnancy (ever/never), and 

canned fish consumption during pregnancy (≥1 time per week or < 1 time a week). 

A perinatal database at the Mount Sinai Department of Obstetrics, Gynecology, and 

Reproductive Science was used to abstract delivery characteristics and birth outcomes, 

including head circumference, birth weight, birth length, and gestational age. We categorized 

gestational age into preterm (<37 weeks) or term (37 weeks or more) and used a continuous 

measure of head circumference (centimeters). Birth weight and length were dichotomized at the 

median (<51 cm vs ≥51 cm for birth length; < 3270 vs ≥3270 grams for birth weight). 

An in-office interview version of the Home Observation for Measurement of the 

Environment (HOME scale) (Caldwell & Bradley, 1984) was administered at 12 and 24 months. 

The HOME subscales include 1) Involvement, which measures how an adult interacts physically 

with the child (sample items include: parent keeps child within visual range, talks to child while 
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doing work); 2) Learning Materials, which measures whether a child has appropriate play 

materials at home and elsewhere (sample items include: child has one or more large muscle 

activity toys); 3) Organization, which measures how a child’s time is organized outside the 

house and what the child’s personal space looks like (sample items include: safe play 

environment, regular caregivers); 4) Acceptance, which measures how the adult disciplines the 

child (sample items include: parent does not shout at child during the visit, parent not overly 

restrictive of the child’s movements), 5) Responsivity, which measures the emotional and verbal 

sensitivity and responsivity of parent to the child (sample items include: mother caresses or 

kisses child at least once during visit), and 6) Variety, which measures opportunities for variety 

in daily stimulation (sample items include: father provides some caregiving every day, family 

visits or receives visits from relatives approximately once a month).  

We used mean overall HOME scores and HOME subscale scores across the 1-2 year 

visits. The HOME overall score exhibited a wide range with sufficient variability across scores 

and was included as a continuous variable. However, the HOME subscale scores exhibited a 

limited range with most observations clustered at the higher, more positive end of the 

distributions. We thus categorized the HOME subscale scores into tertiles and included them as 

ordinal categorical variables. The HOME subscale scores met assumptions for linearity when 

categorized in this fashion.  

Maternal intelligence was assessed during pregnancy using the Peabody Picture 

Vocabulary Test-III (Dunn & Dunn, 1997) and the covariate was defined as a continuous 

variable. 
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Statistical Methods  

 Characteristics by Follow-Up Status 

We examined demographic characteristics of mothers by follow-up and covariate status. 

We used chi-square goodness-of-fit tests with an alpha cutoff of 0.05 to assess if mothers from 

the original birth cohort (n=404) who returned for follow-up and completed the BASC, the 

BRIEF, the WPPSI-III/WISC-IV differed from mothers who did not return for a complete follow-

up visit. Maternal education and marital status at baseline were used to assess differences by 

follow-up status, since maternal education and marital status at follow-up are unavailable for 

those who did not return for a follow-up visit.  

Factor Analysis 

We performed dimension reduction on the BASC, BRIEF, WPPSI-III, and WISC-IV by 

using a principal components analysis with an orthogonal varimax rotation and present loadings 

above the cutoff of 0.3. We included standardized versions of both the composite scores and 

the subscales of the instruments. The neurodevelopmental scales included in this analysis are 

listed in Table 1. We examined criteria for factorability, including Kaiser’s measure of sampling 

adequacy and Bartlett’s test of sphericity, both of which assess the suitability of the data for 

factor analysis based on correlations among the variables (Dziuban & Shirkey, 1974). We also 

examined communalities to assess suitability of items, and average communality size to assess 

adequacy of sample size (MacCallum, Widaman, Zhang, & Hong, 1999). To determine the 

number of factors, we examined factors with eigenvalues greater than one, and also considered 

parallel analysis to optimize the number of factors selected (Hayton, Allen, & Scarpello, 2004). 

Parallel analysis computes eigenvalues from a correlation matrix that is derived from a random 

dataset with the same numbers of observations and variables as the original data, and 

compares them against the eigenvalues from the observed data. We then examined the factor 

solution that was one higher and one lower than that which was indicated by parallel analysis. In 

order to aid interpretation, we scaled factors so that positive/negative attributes go in the same 
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direction across all factors in the regression analyses. Thus, positive scores on all of the factors 

indicate better outcomes and negative scores indicate more adverse outcomes in all regression 

analyses. For regression analyses, we standardized all factors to have a mean of 0 and a 

standard deviation of 1. Thus, a beta coefficient of one can then be interpreted as an increase of 

one standard deviation of the factor. In sensitivity analyses, we assessed whether the factor 

structure differed for whites and non-whites and also assessed the factor structure with a 

promax rotation. 

Association Analyses of Early Life Characteristics with Neurodevelopmental Factors 

We estimated associations between characteristics hypothesized to be associated with 

neurodevelopment, and orthogonal varimax-rotated factors, in mutually adjusted analyses. We 

considered covariates that have previously been hypothesized to be associated with 

neurodevelopment. These covariates include maternal age at enrollment, maternal education at 

follow-up, maternal marital status at follow-up, maternal IQ, maternal race, smoking during 

pregnancy, alcohol consumption during pregnancy, canned fish consumption during pregnancy, 

birth head circumference, preterm birth, birth weight, birth length, child sex, and HOME 

environment scores. To address potential issues with collinearity, we eliminated some 

covariates that were highly correlated (variance inflation factor >2). When covariates were 

strongly correlated, we retained the variable that was the strongest predictor in bivariate tests. 

The birth characteristics of birth length, birth weight, and preterm birth were correlated; of this 

set, preterm birth was retained. Maternal age, maternal marital status, and maternal IQ were 

dropped due to their high correlation with maternal race in this dataset, which was the strongest 

predictor for a number of factors. We did, however, perform sensitivity analyses including these 

three dropped covariates (maternal age, maternal marital status, and maternal IQ). The final 

covariate set for the primary analyses included maternal education, maternal race, smoking 

during pregnancy, alcohol consumption during pregnancy, canned fish consumption during 

pregnancy, birth head circumference, preterm birth, child sex, and the HOME subscale scores 
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of Organization, Learning Materials, Involvement, and Variety. We multiplied imputed missing 

covariate data and estimated associations between early life characteristics and factor scores in 

multivariable linear regression models (PROC GLM with PROC MI and MIANALYZE in SAS, 10 

imputations). No adjustment for multiple comparisons was performed. In sensitivity analyses, we 

evaluated whether associations were different by white race. 

In order to evaluate whether using the phenotypes resulted in different effect estimates 

compared to a more traditional approach of using instrument-specific composite scores, we 

performed a case study of a single exposure with well-characterized associations with 

neurodevelopment, smoking. We estimated associations between smoking and 

neurodevelopment as measured by the phenotypes, and also estimated associations between 

smoking and neurodevelopment as measured by the highest loading composite item from each 

factor (i.e., the BASC’s Externalizing Composite, the BRIEF’s Metacognition Index, the BASC’S 

Internalizing Composite, the WISC-IV/WPPSI-III’s Perceptual Reasoning IQ score, the BASC’s 

Adaptive Skills Index, the WISC-IV/WPPSI-III’s Processing Speed IQ score, and the WISC-

IV/WPPSI-III’s Verbal IQ score). In these analyses, we did not adjust for birth characteristics as 

they may be intermediate on the causal pathway between smoking and neurodevelopment. The 

final adjustment set was otherwise the same as in the primary analyses.  

All analyses were performed in SAS V9.4. 

Results 

Study Population Characteristics and Follow-up 

 Of the 404 eligible women who enrolled during pregnancy, 162 returned for at least one 

visit between 6-9 years and completed the BASC, the BRIEF, and the WPPSI-III/WISC-IV. An 

additional 48 women who enrolled after birth had at least one complete visit between 6-9 years, 

although these women had no prenatal data available (Figure 2 and Table 6). 210 participants 

in total returned for at least one complete visit between ages 6-9 years, and these participants 
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were all included in the factor analysis. The majority of the 162 participants with prenatal data 

were young (64.9% under 25 at delivery) and non-white (82.5%). Most participants reported not 

drinking alcohol (83.0%), not smoking during pregnancy (82.7%), and most had an education of 

high school or less at enrollment (73.3%; Table 6). The distributions of education at enrollment, 

maternal age at delivery, race, alcohol consumption during pregnancy, and smoking during 

pregnancy were generally similar among those who did and did not return for follow-up, 

although mothers who were single, divorced, or widowed were more likely to return for follow-up 

than mothers who were married (p=0.03). 

Principal Components Analysis  

We examined several criteria for factorability of the neurodevelopmental outcome data. 

Kaiser’s measure of sampling adequacy was 0.71, above the standard of 0.60 (Field et al., 

2012), and Bartlett’s test of sphericity was significant (χ2 (666) =13,875, p < 0.01). Parallel 

analysis indicated six factors had eigenvalues greater than those generated from random data, 

while seven factors had eigenvalues greater than one. After examining the two solutions, we 

determined that the seven factor solution was almost equivalent to the six factor solution, with 

the seven factor solution including a separate factor for verbal intelligence. In the six factor 

solution, the items for verbal intelligence loaded with perceptual reasoning items. We selected 

the seven factor solution because perceptual reasoning and verbal intelligence capture different 

aspects of intelligence (W. Johnson & Bouchard, 2005), and it had both good statistical fit based 

on the eigenvalues and was in line with previous literature on neurodevelopment. All 

neurodevelopmental scales loaded on at least one factor at >0.30, and all had sufficiently high 

communalities (all scales had communalities > 0.50, and the average communality was 0.79), 

thus all scales were retained. Factor structures were similar for varimax and promax rotation. In 

order, the seven unrotated factors explained 37.92%, 13.71%, 7.86%, 6.33%, 5.10%, 4.25%, 

and 3.05% of the variance in the data, for a total of 78.22%.  
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In order of variance explained, these seven factors are herein described as: 1) 

Impulsivity/Externalizing, 2) Executive Functioning, 3) Internalizing, 4) Perceptual Reasoning, 5) 

Adaptability, 6) Processing Speed, and 7) Verbal Intelligence (Table 7). The 

Impulsivity/Externalizing factor was composed primarily of the BASC’s Externalizing Problems 

composite and associated subscales, and the BRIEF’s Behavioral Regulation Index (BRI) and 

BRI subscales. The Executive Functioning factor was primarily characterized by the 

Metacognition items from the BRIEF, although items from the BASC Behavioral Symptoms 

Index (BSI) also loaded weakly on to this factor. Items with high loadings for the third factor, 

Internalizing, included the BASC’s Internalizing Problems composite and the associated 

subscales of Anxiety, Somatization, and Depression. Withdrawal also loaded highly on this 

factor, although it is not part of the BASC’s Internalizing Problems composite. Items that loaded 

at lower levels on this factor include the BRIEF’s BRI and the BRI subscales of Shift and 

Emotional Control, and the BASC’s BSI and Atypicality scale. The Perceptual Reasoning factor 

was composed entirely of items from the IQ instruments, including the Perceptual/Performance 

IQ composite score along with the associated subscales of Matrix Reasoning, Block Design, 

and Picture Concepts. The Adaptability factor was characterized by items from the BASC’s 

Adaptive Skills composite, including Social Skills and Adaptability, and also by improved 

Attention scores from the BASC. The Processing Speed factor was characterized by the 

Processing Speed IQ Composite score and associated subscales of the WISC-IV/WPPSI-III, 

and the Verbal Intelligence factor was characterized by the Verbal IQ Composite score and the 

Verbal IQ Composite subscale of Vocabulary. In addition, Organization problems from the 

BRIEF also loaded onto the Verbal Intelligence factor; this seventh factor of Verbal Intelligence 

then is characterized not just by verbal intelligence but also by somewhat increased problems 

with organizational skills, although the loading for this item was low. 

In sensitivity analyses we examined consistency of the factor structure by race (data not 

shown). The factor analysis was similar when conducted separately for whites and non-whites, 
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with the exception of the seventh factor for verbal intelligence. This is likely because this factor 

only includes two items to characterize verbal intelligence – verbal IQ and vocabulary -- and 

thus has less capacity to explain variance. When we included items from the WISC-IV Verbal IQ 

composite that had been previously excluded (i.e., comprehension and similarities from the 

WISC-IV), then the seven factor solution in whites contained the same factors in both whites 

and non-whites, even though the total sample size dropped substantially because these 

analyses were limited to only white children who were administered the WISC-IV (n=21). Finally, 

the factor structure was similar when using an oblique promax rotation (Appendix 2). 

Associations between smoking and neurodevelopment were similar when using promax rotated 

scores and the instrument-specific composite scores, but slightly different when using the 

varimax rotated scores (Appendix 3). This suggests the difference in results between the 

varimax rotated scores and the composite scores is due to the orthogonal rotation of the factors 

rather than the use of factor scores themselves. 

Early Life and Neurodevelopment Factors 

After accounting for the interrelationships among neurodevelopmental outcomes there 

were several notable associations (Table 6). The strongest associations for modifiable 

characteristics were for canned fish consumption, education, and preterm birth. Mothers who 

consumed canned fish at least once a week had children who scored half a standard deviation 

higher on the Perceptual Reasoning factor (
^
 0.50, 95% CI 0.03, 0.97). In contrast, children of 

mothers with a high school education or less had Verbal Intelligence factor scores 

approximately half a standard deviation lower than children of mothers with a higher education 

level (
^
 -0.47, 95% CI -0.78, -0.17). Preterm birth was also associated with more adverse 

Processing Speed (
^
 -0.72, 95% CI -1.31, -0.13), and Internalizing (

^
 -0.62, 95% CI -1.23, -0.02) 

factor scores. Of the HOME scores, only Organization displayed any associations with 

neurodevelopment, with a one tertile increase (corresponding approximately to slightly more 
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than a one-point increase in the Organization score) resulting in a quarter of a standard 

deviation improvement in Executive Functioning (
^
 0.26, 95% CI 0.04, 0.49), and a small tenth 

of a standard deviation improvement in Adaptability factor scores (
^
 0.10, 95% CI 0.00, 0.19). 

Of the non-modifiable characteristics, white race was associated with stronger 

Perceptual Reasoning and Verbal Intelligence scores (Perceptual Reasoning 
^
 0.68, 95% CI 

0.25, 1.10; Verbal Intelligence 
^
 0.81, 95% CI 0.42, 1.20), but was not associated with any other 

neurodevelopmental outcome. Girls averaged much higher Adaptability scores (
^
 0.54, 95% CI 

0.24, 0.84) and higher Processing Speed scores (
^
 0.31, 95% CI 0.00, 0.62). Finally, larger 

head circumference at birth was associated with worse Executive Functioning factor scores (
^
 -

0.12, 95% CI -0.22, -0.01), but better Perceptual Reasoning (
^
 0.10, 95% CI 0.00, 0.19). 

These associations were generally similar in the crude analyses, although some 

additional characteristics were found to have significant bivariate associations that were 

attenuated in multivariable adjusted models (Appendix 4). These multivariate regression 

associations also generally held in strata-specific analyses for whites and for non-whites, and 

were similar when additionally adjusting for maternal IQ, maternal marital status, and maternal 

age (data not shown).  

As a case study, to compare associations across analysis methods, we examined the 

relationship of maternal prenatal smoking with neurodevelopment as measured by factor scores 

and the instrument-specific composite scores (Table 7). Of the 162 participants included in the 

analyses, 28 mothers reported any smoking during pregnancy, 17 of whom reported quitting 

before the second trimester.  

Any smoking during pregnancy was associated with worse Impulsivity & Externalizing 

factor scores in both methods assessed (Impulsivity & Externalizing factor 
^
  -0.51, 95% CI -
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0.92, -0.10; Externalizing composite (
^
 -0.60, 95% CI -1.00, -0.21). However, while smoking 

during pregnancy was not associated with worse Executive Functioning factor scores, it was 

associated with approximately ½ a standard deviation worse Metacognition Index scores 

(Executive Functioning factor 
^
 -0.32, 95% CI -0.72, 0.10; Metacognition Index 

^
 -0.47, 95% CI -

0.86, -0.09). This trend was more pronounced when examining associations between smoking 

in later pregnancy and associations with executive functioning (EF Factor 
^
  -0.32, 95% CI -0.94, 

0.30; Metacognition Index 
^
  -0.55, 95% CI -1.12, 0.03). The smoking-neurodevelopment 

associations were generally stronger for participants who smoked during late pregnancy. While 

smoking in later pregnancy was negatively associated with the Adaptive Skills composite 

(Adaptive Skills composite 
^
  -0.66, 95% CI -1.23, -0.10), the association was closer to the null 

for the corresponding factor (Adaptability factor 
^
  -0.27, 95% CI -0.83, 0.31). Smoking was not 

associated with the Internalizing composite or Internalizing factor scores, or with any of the IQ 

composites or factor scores. Overall, accounting for the correlations among outcome measures 

by rotating factors to be linearly independent of one another resulted in attenuation of estimates 

for all but the Impulsivity and Externalizing factor, though all estimates were on the same side of 

the null. 

Discussion  

Summary   

We identified seven factors that together captured 78% of the variation in a principal 

components analysis of the BASC, BRIEF, and WPPSI-III/WISC-IV in children between 6 and 9 

years old. These factors were: 1) Impulsivity/Externalizing, 2) Executive Functioning, 3) 

Internalizing, 4) Perceptual Reasoning, 5) Adaptability, 6) Processing Speed, and 7) Verbal 

Intelligence. Although these factors roughly align with the composite indices of the included 

instruments, items from both the BASC and the BRIEF loaded onto all of the first three factors. 
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This implies the existence of a meaningful correlational structure that is perhaps as strong 

across the BASC and the BRIEF as it is within-instrument: the Behavioral Regulation Index of 

the BRIEF and the Externalizing Index of the BASC appear to measure a similar underlying 

domain and load together, while the Metacognition Index of the BRIEF and the attention 

subscale from the BASC appear to measure another unique domain and load together.  

Additionally, etiological interpretations were different for factor scores and composite 

scores. Although smoking in later pregnancy was associated with externalizing, executive 

functioning, and adaptive skills when using the composite scores, it was associated with only 

the Impulsivity & Externalizing factor when using the orthogonal varimax rotated factor scores, 

which rotates factors to be linearly independent of one another. This implies that at least part of 

the association between smoking during pregnancy and the Metacognition Index and the 

Adaptive Skills Composite may be due to the correlation between those constructs and the 

Externalizing Composite. Accounting for such correlations by using factor scores may portray 

associations that are more accurate than using instrument-specific composites alone.  Finally, 

the modifiable characteristics of education, canned fish consumption during pregnancy, preterm 

birth, and HOME Organization were associated with different neurodevelopmental factors.   

Factor Structure 

The factors to some extent aligned with measurement method. Specifically, scales from 

the BASC and the BRIEF loaded together without IQ items on four of the seven factors, while IQ 

items in the Processing Speed and Perceptual Reasoning factors loaded independently of the 

BASC and the BRIEF. The only exception was that organizational deficits from the BRIEF 

loaded positively on the Verbal Intelligence factor. Importantly, these clustering patterns also 

aligned with the measurement constructs of the instruments: the BRIEF and the BASC are both 

based on parent-report, while the WPPSI-III/WISC-IV are performance-based and assessed by 

research personnel. A limitation of the analysis is that we were unable to include multi-method 



 

 53 

measurements of the same neurodevelopmental outcome; for instance, our analysis included 

parent-report measures of executive functioning but lacked performance-based assessments of 

executive functioning. Previous factor analyses on performance-based and parent-report 

measures of executive functioning have shown that measurement method may explain more 

variance than the underlying domain (Bodnar, Prahme, Cutting, Denckla, & Mahone, 2007; 

McAuley, Chen, Goos, Schachar, & Crosbie, 2010). In those studies, parent-reported executive 

functioning and performance-based executive functioning loaded on separate factors, and the 

correlation between them was low, suggesting they measured different underlying features of 

executive functioning (Bodnar et al., 2007; McAuley et al., 2010). It is possible that this 

difference in measurement method drove the differential loadings of performance-based 

intelligence and parent-reported behavior and executive functioning in this analysis. Since factor 

structures of neurodevelopment vary according to the included instruments, specific phenotypes 

may vary across studies as different studies adopt different measurement tools. However, 

generalizable phenotypes may emerge from factor analyses of various instruments, such as the 

Impulsivity and Externalizing phenotype, which may help in interpreting etiologic associations 

across different studies. 

Early Life Characteristics and Neurodevelopmental Factors 

Several maternal and behavioral characteristics, as well as features of the home 

environment, were associated with factor scores after accounting for their interdependence. 

These associations were generally consistent with prior literature. Of the modifiable 

characteristics, there were particularly strong associations for consuming canned fish at least 

once a week during pregnancy and Perceptual Reasoning factor scores in childhood, higher 

maternal education and Verbal Intelligence factor scores, and preterm birth and Internalizing 

and Processing Speed factor scores, all of which are consistent with prior literature (Bhutta, 

Cleves, Casey, Cradock, & Anand, 2002; Daniels, Longnecker, Rowland, Golding, & ALSPAC, 
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2004; S. Johnson & Marlow, 2011; Oken et al., 2005; Sameroff, Seifer, Barocas, Zax, & 

Greenspan, 1987). Although canned fish is often a source of other contaminants which have 

been associated with adverse neurodevelopment, such as PCBs and mercury (Gilbert & Grant-

Webster, 1995), fish is also a source of other beneficial nutrients such as polyunsaturated fatty 

acids. Several studies of prenatal fish consumption support our findings that the benefits of fish 

consumption may outweigh the negative effects of environmental contamination (Cohen et al., 

2005; Daniels et al., 2004; Hibbeln et al., 2007; Oken et al., 2005).   

The only association that appeared inconsistent with prior findings was the relationship 

between head circumference at birth and Executive Functioning. Interestingly, while larger birth 

head circumference was associated with more deficits in Executive Functioning factor scores, it 

was also associated with better Perceptual Reasoning factor scores, in both unadjusted and 

adjusted analyses. While children with autism have larger head circumferences during 

childhood than average (Courchesne, Carper, & Akshoomoff, 2003; Woodhouse et al., 1996), 

and have more problems with executive functioning (Christ, Holt, White, & Green, 2007; Geurts, 

Verté, Oosterlaan, Roeyers, & Sergeant, 2004), these children also have normal or smaller 

head circumferences at birth (Courchesne et al., 2001, 2003; Lainhart et al., 1997). In the 

animal literature, larger brain size across species has been associated with higher levels of 

inhibitory control (MacLean et al., 2014), although this ecological data does not necessarily 

apply within-species or at birth. This area of research is therefore relatively unexplored, and 

further research is necessary before drawing more definitive conclusions.   

Maternal Prenatal Smoking and Neurodevelopment 

Consistent with the prior literature, children of participants who reported smoking during 

later pregnancy had worse behavioral scores for the BASC’s Externalizing composite, the 

BRIEF’s Metacognition Index, and the BASC’s Adaptive Skills composite, after adjustment for 

maternal education and race. However, after applying a rotational method to the factors that 
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implemented statistical independence of the factors, only the association between smoking and 

the Impulsivity & Externalizing factor remained in our study. The relationship between prenatal 

exposure to cigarettes and externalizing behaviors, ADHD, and executive functioning deficits in 

childhood has been frequently reported (Daseking, Petermann, Tischler, & Waldmann, 2015; 

Langley, Rice, van den Bree, & Thapar, 2005; Linnet et al., 2003; Piper & Corbett, 2012). 

However, observed relationships between prenatal cigarette smoking and deficits in executive 

functioning may partially reflect associations between smoking and impulsivity and externalizing 

behaviors, due to the high correlation between these two constructs (rs for the Externalizing 

composite and Metacognition Index in our population = 0.62). While alternative methods may 

also be available to account for high correlation among outcomes (e.g., controlling for the 

correlated outcomes), applying orthogonal rotation techniques requires fewer degrees of 

freedom and is easily implemented while performing a factor analysis.  

It should be noted that the reported association between smoking and Impulsivity and 

Externalizing may also be confounded by postnatal exposure to smoking and unmeasured 

maternal traits that increase both the propensity for smoking and risk of externalizing or 

executive functioning disorders (e.g., parental ADHD), which we were unable to control for 

(Thakur, Sengupta, Grizenko, Choudhry, & Joober, 2012; Thapar et al., 2009). Although we 

report the strongest associations for maternal smoking in the second and third trimesters with 

Impulsivity and Externalizing factor scores, there are a number of potential caveats for these 

findings. Women who fail to quit smoking during pregnancy may smoke more per day and over 

a longer period. Children of women who smoked in later pregnancy may thus have a higher 

cumulative dose as well as a longer duration of exposure.  Although the estimates for maternal 

first trimester smoking are not significant, they are in the same direction as the later pregnancy 

estimates. However, women who quit smoking before the second trimester may also have fewer 

problems with impulse control and addictive behaviors. Such characteristics may be either 

genetically or environmentally related to their children’s propensity for such behaviors, and 
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could confound associations between maternal smoking and childhood behavior. Additionally, 

the numbers of participants in each smoking category was relatively small; only 11 women 

reported any smoking in later pregnancy. However, the patterns of associations were similar 

when including all 28 women who reported any smoking during pregnancy, so the small 

numbers might not pose a significant threat.   

Strengths and Weaknesses 

A major strength of this analysis is the ability to examine multiple important 

characteristics and multiple neurodevelopmental outcomes while accounting for 

interdependencies among the covariates and the outcomes. The longitudinal, prospective 

nature of the original study allowed us to examine whether characteristics from the prenatal 

stage were associated with outcomes in later childhood. Dimension reduction enabled the 

simultaneous examination of a wide range of behaviors and cognitive outcomes, while taking 

advantage of correlational structures underlying different instruments. Accounting for the 

correlational structure among the factors may help clarify associations of specific characteristics 

with specific neurodevelopmental phenotypes, as we demonstrated in the case study of 

maternal smoking. Another advantage is the reduction in number of tests performed; examining 

associations with each subscale of each instrument would pose a larger threat from multiple 

testing. Finally, the principal components approach we employed presents conceptual 

advantages: factors that consolidate information across scales may provide a richer source of 

information than any single scale or composite. In etiological analyses, such factors may more 

closely mirror biological pathways that may be affected by prenatal and early life characteristics.  

 The most notable weakness is loss to follow-up; approximately 60% of the sample 

recruited at birth did not return for any follow-up assessment between the ages of 4-9 years. 

However, the distribution of the characteristics was mostly equivalent across these groups, so 

loss to follow-up was not influenced by any known covariates, with the possible exception of 



 

 57 

marital status. The loss to follow up did result in a reduced sample size, which may influence the 

quality of the factor analysis. Earlier recommendations for the necessary sample size for factor 

analysis range from at least 100 to at least 300, although later studies have suggested that the 

sample size is less important as long as communalities are high and there are enough items 

with strong loadings on each factor (MacCallum et al., 1999). Our factor analysis had strong 

communalities and several items loaded highly on each factor, so the sample size of 210 for 

deriving the factor structure is likely adequate.  

Another weakness is that although we were able to include important covariates in all 

models, only the models for smoking were built etiologically to examine associations with 

neurodevelopment. Depending on the “exposure” of interest, the associations in the general 

predictive models may include mediators or adjust for colliders, which may result in biased 

associations (Greenland, 2003; Kaufman, Maclehose, & Kaufman, 2004).  

A feature of the study that is both a strength and a limitation is that the study population 

was quite diverse and included both wealthy, mostly white mothers from the Upper East Side of 

Manhattan, and low-income, mostly minority mothers from East Harlem. Although these 

neighborhoods are adjacent, their socioeconomic features are widely divergent. In our analysis, 

these groups display little overlap with regards to socioeconomic characteristics. Regardless, 

the multivariate regression analyses remained similar for whites and non-whites, and the factor 

structure was similar for both whites and non-whites, suggesting such racial stratification may 

not be a significant threat. 

In summary, we identified several maternal, birth, and home environment characteristics 

that were associated with neurodevelopmental phenotypes in linear regression analyses in a 

racially and socioeconomically diverse, urban cohort of mother-child pairs enrolled during 

pregnancy. We demonstrated that associations between smoking and correlated outcome 

domains may be substantially attenuated after accounting for their correlational structure. This 

“deep phenotyping” approach, that takes advantage of orthogonal rotation techniques, may 



 

 58 

more accurately represent associations with correlated neurodevelopmental domains than more 

traditional approaches that use instrument-specific composite scores. Phenotyping approaches 

may thus be useful in future etiological analyses of neurodevelopment in rich datasets with 

sufficient participants and measurements of multiple neurodevelopmental outcomes.  
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Figure 2 Origination and Follow-up of Participants Included in Factor Analysis and 
Regression Analyses

Enrolled during 
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Enrolled after 
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Association Models 
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and completed BASC, BRIEF, 

and WPPSI/WISC (n=162)

Provided complete 

covariate data (n=0) 

  

Provided covariate data 

(n=162)
 

Returned for 6-9 year follow-up 

and completed BASC, BRIEF, and 

WPPSI/WISC (n=48) 
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Table 5 Varimax Rotated Factor Pattern Structure and Item Loadings of Childhood 
Neurodevelopmental Scales (n=210) 

Factor 1 
 Impulsivity & 
Externalizing 

Factor 2 
 Executive Functioning 

Factor 3  
Internalizing 

Factor 4 
 Perceptual Reasoning 

Scale 
Loadin

g Scale 
Loadi

ng Scale 
Loadi

ng Scale 
Loadin

g 
Externalizing 
Problems

1
 0.90 

Metacognition 
Index

2
 0.89 Internalizing

1
 0.88 

Perceptual 
Reasoning IQ

3
 0.97 

Aggression
1
 0.78 Planning

2
 0.83 Anxiety

1
 0.77 

Matrix 
Reasoning

3
 0.76 

Conduct
1
 0.76 

Global Exec 
Composite

2
 0.79 Somatization

1
 0.67 Block Design

3
 0.72 

Hyperactivity
1
 0.74 

Working 
Memory

2
 0.78 Withdrawal

1
 0.67 

Picture 
Concepts

3
 0.71 

Behavioral Reg 
Index

2
 0.69 Monitor

2
 0.77 Depression

1
 0.64 Full Scale IQ

3
 0.70 

Behavioral 
Symp Index

1
 0.68 Initiate

2
 0.77 Atypicality

1
 0.58 Verbal IQ

3
 0.39 

Inhibit
2
 0.66 Organization

2
 0.62 

Behavioral 
Symp Index

1
 0.53 Vocabulary

3
 0.31 

Emotional 
Control

2
 0.63 Attention

1
 0.57 Shift

2
 0.50 

  
Adaptability

1
 -0.59 Inhibit

2
 0.56 

Emotional 
Control

2
 0.44 

  
Shift

2
 0.51 

Behavioral 
Reg Index

2
 0.50 

Behavioral 
Reg Index

2
 0.38 

  Global Exec 
Composite

2
 0.49 

Behavioral 
Symp Index

1
 0.42 

Global Exec 
Composite

2
 0.31 

  Depression
1
 0.46 Shift

2
 0.42 

    Attention
1
 0.45 Hyperactivity

1
 0.37 

    
Monitor

2
 0.41 

Emotional 
Control

2
 0.35 

    Organization
2
 0.35 Atypicality

1
 0.30 

    Adaptive Skills
1
  -0.33 

      Atypicality
1
 0.30 

      Internalizing
1
 0.30 

      Working 
Memory 0.3       
        
Factor 
Structure        
% Variance 
accounted for  37.92  13.71  7.86  6.33 

Eigenvalue 14.03  5.07  2.91  2.34 
1BASC scales, 2BRIEF scales, 3WISC-IV or the WPPSI-III scales. Only items with loadings with absolute 
values >0.30 are shown here. Loadings are from a PCA with orthogonal varimax rotation (factors are 
uncorrelated). Positive loadings for items from the BRIEF and BASC all indicate more problems with 
those items, except for the BASC’s Adaptive Skills, Social Skills, Leadership, and Adaptability.  
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Table 5 (continued) Varimax Rotated Factor Pattern Structure and Item Loadings of 
Childhood Neurodevelopmental Scales (n=210) 

Factor 5  
Adaptability  

Factor 6  
Processing Speed 

Factor 7  
Verbal Intelligence 

Scale 
Loadin

g Scale Loading Scale Loading 
Adaptive 
Skills Index

1
 0.89 

Processing 
Speed Index

3
 0.96 Vocabulary

3
 0.85 

Social Skills
1
 0.85 Coding

3
 0.88 Verbal IQ

3
 0.83 

Leadership
1
 0.85 

Symbol 
Search

3
 0.71 Full Scale IQ

3
 0.57 

Adaptability
1
 0.56 Full Scale IQ

3
 0.36 Organization

2
 0.38 

Attention
1
 -0.36 

  
Symbol Search

3
 0.31 

Initiate
1
 -0.30 

    
      

      
      

      
      
      
      
      
      
                        
      
      

 5.10  4.25  3.05 

 1.89  1.57  1.13 
1
BASC scales, 

2
BRIEF scales, 

3
WISC-IV or the WPPSI-III scales. Only items with loadings with absolute 

values >0.30 are shown here. Loadings are from a PCA with orthogonal varimax rotation (factors are 
uncorrelated). Positive loadings for items from the BRIEF and BASC all indicate more problems with 
those items, except for the BASC’s Adaptive Skills, Social Skills, Leadership, and Adaptability. 
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Table 6 Covariate-Adjusted Linear Regression Associations Between Prenatal and Early 
Life Characteristics and Neurodevelopmental Factors In The Mount Sinai Children’s 
Environmental Health Cohort (n=162) 

 

 

Factor 1 
 Impulsivity 

& 
Externalizi

ng 
β (95% CI) 

Factor 2  
Executive 
Functioni

ng  
β (95% 

CI) 

Factor 3  
Internali

zing 
β (95% 

CI) 

Factor 4 
Perceptual 
Reasoning 
β (95% CI) 

Factor 5 
Adaptabili

ty 
β (95% 

CI) 

Factor 6  
Processin
g Speed 
β (95% 

CI) 

Factor 7  
Verbal 

Intelligen
ce 

β (95% 
CI) 

Maternal Characteristics       

 
High School 
or less 

-0.11  
(-0.46, 
0.24) 

0.24  
(-0.12, 
0.60) 

-0.13  
(-0.49, 
0.22) 

0.00  
(-0.33, 
0.34) 

-0.15  
(-0.50, 
0.19) 

0.25  
(-0.10, 
0.60) 

-0.47  
(-0.78, -
0.17) 

 Any college 
or higher referent referent referent referent referent referent referent 

 Non-
Hispanic 
White 

-0.11  
(-0.55, 
0.34) 

-0.16  
(-0.62, 
0.30) 

-0.11  
(-0.57, 
0.35) 

0.68  
(0.25, 
1.10) 

0.11  
(-0.33, 
0.55) 

-0.09  
(-0.54, 
0.36) 

0.81  
(0.42, 
1.20) 

 Hispanic, 
Black, Other referent referent referent referent referent referent referent 

 
Any alcohol 
pregnancy 

0.02  
(-0.41, 
0.45) 

0.16  
(-0.28, 
0.60) 

0.16 
(-0.29, 
0.60) 

0.29  
(-0.12, 
0.71) 

0.00  
(-0.43, 
0.43) 

0.13  
(-0.31, 
0.57) 

0.34  
(-0.03, 
0.71) 

 No alcohol 
pregnancy referent referent referent referent referent referent referent 

 
Canned fish  
≥ 1x/week 

 

0.04  
(-0.45, 
0.53) 

-0.18  
(-0.69, 
0.33) 

0.11  
(-0.39, 
0.61) 

0.50  
(0.03, 
0.97) 

0.28  
(-0.20, 
0.77) 

-0.17  
(-0.66, 
0.33) 

-0.09  
(-0.51, 
0.34) 

 Canned fish 
< 1x/week referent referent referent referent referent referent referent 

Child and Birth 
Characteristics       

 

Female 

0.23  
(-0.08, 
0.53) 

-0.15  
(-0.46, 
0.17) 

-0.14  
(-0.46, 
0.17) 

-0.04  
(-0.34, 
0.25) 

0.54  
(0.24, 
0.84) 

0.31  
(0.00, 
0.62) 

-0.13  
(-0.39, 
0.14) 

 Male referent referent referent referent referent referent referent 
 

Preterm 
birth 

0.41  
(-0.18, 
1.00) 

-0.22  
(-0.82, 
0.39) 

-0.62  
(-1.23, -
0.02) 

0.24  
(-0.32, 
0.80) 

0.32  
(-0.26, 
0.90) 

-0.72  
(-1.31, -
0.13) 

0.32  
(-0.19, 
0.83) 

 Term birth referent referent referent referent referent referent referent 
 Birth Head 

Circumferen
ce (cm) 

-0.03  
(-0.13, 
0.08) 

-0.12  
(-0.22, -
0.01) 

0.01  
(-0.10, 
0.11) 

0.10 
(0.00, 
0.19) 

0.03  
(-0.07, 
0.14) 

0.06  
(-0.05, 
0.16) 

-0.01  
(-0.10, 
0.08) 

HOME scores       

 

Organizatio
n 

-0.11  
(-0.32, 
0.11) 

0.26  
(0.04, 
0.49) 

0.20  
(-0.02, 
0.43) 

-0.05  
(-0.26, 
0.15) 

0.10  
(0.00, 
0.19) 

-0.13  
(-0.35, 
0.09) 

-0.01  
(-0.20, 
0.17) 

 
Learning 
Materials 

0.02  
(-0.21, 
0.25) 

0.02  
(-0.21, 
0.26) 

0.01  
(-0.22, 
0.25) 

0.06  
(-0.16, 
0.27) 

-0.05  
(-0.26, 
0.15) 

0.16  
(-0.07, 
0.40) 

0.12 
 (-0.08, 
0.32) 

 

Involvement 

0.06  
(-0.16, 
0.27) 

-0.17  
(-0.40, 
0.06) 

-0.07  
(-0.29, 
0.15) 

0.09  
(-0.12, 
0.29) 

0.06  
(-0.16, 
0.27) 

0.09  
(-0.13, 
0.31) 

-0.03  
(-0.22, 
0.16) 
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Factor 1 
 Impulsivity 

& 
Externalizi

ng 
β (95% CI) 

Factor 2  
Executive 
Functioni

ng  
β (95% 

CI) 

Factor 3  
Internali

zing 
β (95% 

CI) 

Factor 4 
Perceptual 
Reasoning 
β (95% CI) 

Factor 5 
Adaptabili

ty 
β (95% 

CI) 

Factor 6  
Processin
g Speed 
β (95% 

CI) 

Factor 7  
Verbal 

Intelligen
ce 

β (95% 
CI) 

 

Variety 

-0.02  
(-0.25, 
0.21) 

0.13  
(-0.11, 
0.38) 

0.11  
(-0.13, 
0.34) 

0.01  
(-0.22, 
0.23) 

0.09  
(-0.12, 
0.29) 

0.05  
(-0.19, 
0.29) 

-0.07  
(-0.28, 
0.13) 
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Table 7 Comparison of Prenatal Smoking and Neurodevelopment Associations by 
Analysis Method (n=162) 

 

Any smoking during 
pregnancy 

Smoking in First 
Trimester Only 

Smoking in 
Second or Third 
Trimesters 

 N=28 N=17 N=11 
Impulsivity & Externalizing 
factor1 -0.51 (-0.92, -0.10) -0.29 (-0.80, 0.22) -0.82 (-1.42, -0.23) 

Externalizing Composite2 -0.60 (-1.00, -0.21) -0.36 (-0.84, 0.13) -0.97 (-1.55, -0.39) 

    
Executive Functioning 
factor1 -0.32 (-0.75, 0.10) -0.32 (-0.85, 0.21) -0.32 (-0.94, 0.30) 

Metacognition Index2 -0.47 (-0.86, -0.09) -0.23 (-0.71, 0.25) -0.55 (-1.12, 0.03) 

    

Internalizing factor1 0.26 (-0.16, 0.68) 0.32 (-0.21, 0.84) 0.18 (-0.43, 0.80) 

Internalizing Composite2 0.07 (-0.33, 0.47) 0.18 (-0.32, 0.68) -0.09 (-0.68, 0.50) 

    
Perceptual Reasoning 
factor1 0.06 (-0.33, 0.45) 0.28 (-0.21, 0.77) -0.26 (-0.83, 0.31) 

Perceptual Reasoning IQ2 0.14 (-0.25, 0.53) 0.37 (-0.11, 0.85) -0.19 (-0.76, 0.38) 

    

Adaptability factor1 -0.08 (-0.48, 0.33) 0.06 (-0.45, 0.56) -0.27 (-0.85, 0.32) 

Adaptive Skills Composite2 -0.33 (-0.71, 0.06) -0.10 (-0.58, 0.37) -0.66 (-1.23, -0.10) 

    

Processing Speed factor1 -0.16 (-0.57, 0.26) -0.09 (-0.61, 0.43) -0.26 (-0.87, 0.36) 

Processing Speed IQ2 -0.22 (-0.66, 0.23) -0.11 (-0.69, 0.48) -0.46 (-1.07, 0.15) 

    

Verbal Intelligence1 0.04 (-0.31, 0.40) -0.12 (-0.56, 0.32) 0.28 (-0.23, 0.79) 

Verbal IQ2 0.15 (-0.16, 0.46) 0.10 (-0.29, 0.49) 0.22 (-0.24, 0.68) 
All models adjusted for maternal race, maternal education at follow-up, fish consumption, child sex, 
alcohol consumption during pregnancy, and HOME scores. Referent category for all three models is no 
reported smoking during pregnancy.  
1 
Factors are rotated using Varimax (orthogonal) rotation (factors are statistically uncorrelated with each 

other).  
2 
The composite/index items are the highest loading composite item for each factor.     
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CHAPTER V. ASSOCIATIONS BETWEEN PRENATAL EXPOSURE TO 
ORGANOPHOSPHORUS PESTICIDES AND CHILDHOOD NEURODEVELOPMENTAL 

PHENOTYPES 

Introduction 

 Prenatal exposure to organophosphorus pesticides (OPs), phthalates, and phenols have 

been associated with several aspects of risk to neurodevelopment in different populations 

(reviewed in (Bellinger, 2013)). However, epidemiological studies of OPs and 

neurodevelopment have typically considered only a single component of neurodevelopment at a 

time—for example, IQ or behavior. There are major conceptual advantages in jointly modeling 

domains of neurobehavioral development (Robinson, 2012). Accounting for interrelatedness 

between developmental domains is more clinically relevant, in part because several 

neurological functions rely on each other. For example, higher-level inhibitory control – typically 

considered to be a component of executive functioning -- relies on more basic processing speed 

capability, which is typically measured in intelligence tests (Ridderinkhof & Van Der Molen, 

1997). Additionally, deficits in one aspect of neural functioning may be compensated for by 

performance in other areas – for instance, declarative memory can compensate for multiple 

impairments across a range of disorders (Ullman & Pullman, 2015). Finally, considering multiple 

aspects of neurodevelopment simultaneously allows the investigator to employ dimension 

reduction techniques, such as factor analysis, which enables the user to rotate factors to be 

linearly independent. This may account for any remaining interrelatedness among unique 

aspects of neurodevelopment in etiological studies. 

By jointly considering behavior, cognition, and executive functioning, we may also better 

characterize patterns of deficits in neurodevelopment (Castellanos, Sonuga-Barke, Milham, & 

Tannock, 2006; Mattison & Mayes, 2012; Semrud-Clikeman, Walkowiak, Wilkinson, & Butcher, 
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2010; Sinzig, Morsch, Bruning, Schmidt, & Lehmkuhl, 2008) that may provide insights into 

common etiological pathways. For instance, OPs can negatively influence serotoninergic 

processing (Aldridge, Meyer, Seidler, & Slotkin, 2005; Aldridge, Seidler, & Slotkin, 2004; Slotkin 

& Seidler, 2005, 2008). Serotonin, in turn, can influence aggression, other problematic social 

behaviors, depression, and ADHD (Cadoret et al., 2003; Eley et al., 2004; Zoroğlu et al., 2002), 

the latter of which is characterized by impairments in executive functioning (Barkley, 1997). 

Animal and human studies do support that OPs may be associated with these outcomes 

(Bouchard, Bellinger, Wright, & Weisskopf, 2010; Children et al., 2007; Furlong, Engel, Barr, & 

Wolff, 2014; Middlemore-Risher, Buccafusco, & Terry, 2010; Ricceri et al., 2003, 2006).  

In addition, previous approaches to modeling associations between OPs and 

neurodevelopment have generally assumed that exposure to OPs and other chemicals is 

independent, and that such chemicals do not confound or alter the OP-neurodevelopment 

relationship. However, this modeling approach may bias estimates due to confounding by 

correlated xenobiotics. Chemicals may be correlated with each other due to similar sources, 

such as plasticizers in consumer products, insecticides for pest control, or multiple compounds 

found in food due to production or delivery practices or common dietary patterns (S. M. Engel & 

Wolff, 2013). Epidemiological investigations of exposure mixtures are still in their infancy, and 

have typically focused on confounding by co-exposures within a class of compounds (e.g. within 

phthalates), rather than across classes of compounds. Bayesian hierarchical mixture models 

allow the stable estimation of effects in the presence of collinearity and a high number of 

covariates relative to sample size, through the use of prior assignment (Dunson, Herring, & 

Engel, 2008; Herring, 2010)  

 In this study, we evaluate associations between OPs and behavior, executive 

functioning, and IQ after accounting for possible mixture effects with other co-exposures 

(specifically, phthalates, phenols, and pyrethroid pesticides), and implement a phenotypic 

approach to modeling neurodevelopment with a factor analysis. We also consider possible 
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sources of heterogeneity in associations due to race, sex and genetic variants in PON1, a gene 

which is involved in the detoxification of OPs. 

Methods 

Study Recruitment and Population 

The Mount Sinai Children’s Environmental Health Center is a prospective cohort study of 

404 mother infant-pairs from New York City. We recruited women during prenatal visits at either 

the Mount Sinai Diagnostic and Treatment Center, which serves a predominantly East Harlem 

population, or one of two private practices on the Upper East Side of Manhattan. Eligible 

mothers were primiparous with singleton pregnancies, and delivered at the Mount Sinai Hospital 

between May 1998 and July 2001 (Berkowitz et al., 2003, 2004). Exclusions have been detailed 

elsewhere (Berkowitz et al., 2003; S. M. Engel et al., 2007). Mothers completed questionnaires 

during their third trimester that assessed a variety of sociodemographic, behavioral, and medical 

history characteristics. We also obtained maternal spot urine samples between 25 and 40 

weeks of gestation (mean= 31.2 weeks).  

We invited participants to return for follow-up visits with their child at ages 1, 2, 4, 6, and 

7-9 years. At follow-up visits, mothers completed questionnaires describing sociodemographic 

features and developmental milestones. The Home Observation for Measurement of the 

Environment (HOME scale) (Bradley et al., 1989) was administered in home visits at the 1 and 2 

year follow-up visits. The HOME subscales include Involvement, Learning Materials, 

Organization, Acceptance, Responsivity, and Variety (descriptions provided in Chapter 4). 

Exposure Biomarker Measurements 

The Centers for Disease Control (CDC) analyzed all maternal urine samples. Six 

dialkylphosphate metabolites, including three dimethylphosphate (DMP) and three 

diethylphosphate (DEP) metabolites, were analyzed in two batches between 2002-2003. Quality 

control and laboratory methods have been published previously (Barr et al., 2005; Bravo et al., 
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2004). We excluded participants with very dilute urines (creatinine <10 mg/dL) due to the 

potential for inaccurate biomarker measurements (Wolff et al., 2008). After exclusion, 375 

participants had at least one non-missing metabolite and 158 of these participants returned for a 

complete neurodevelopmental follow-up visit, had factor scores, and are included in this 

analysis. 

Samples were also analyzed for 9 phthalate, 3 pyrethroid, and 5 phenol metabolites, 

using laboratory and quality control methods that have been described previously (Barr et al., 

2010; Kato, Silva, Needham, & Calafat, 2005; Ye, Kuklenyik, Needham, & Calafat, 2005). 

Briefly, phthalates in urine were measured using automated sample preparation and an on-line 

solid-phase extraction method in conjunction with isotope dilution high-performance liquid 

chromatography/tandem mass spectrometry (SPE-HPLC-MS) (Kato et al., 2005). Urinary 

phenols were also measured using SPE-HPLC-MS (Ye et al., 2005). For the pyrethroids, an 

internal standard mixture of isotopically labeled 3PBA and trans-DCCA was used to spike 2 ml 

of urine, which was then incubated with Beta-glucuronidase/sulfarase to liberate the conjugated 

metabolites. Hydrolysates were extracted with OASIS HLB mixed-mode solid-phase extraction 

cartridges, which were then washed with 5% methanol in a 0.1% acetic acid solution. 

Metabolites were eluted with methanol. HPLC/MS was used to analyze the extracts. Isotope 

dilution calibration was used to quantify 3PBA and trans-DCCA, while cis-DCCA was quantified 

using labeled trans-DCCA as an internal standard (Barr et al., 2010).  

Child Behavior, Executive Functioning, Psychometric Intelligence Testing 

We measured children’s executive functioning and behavior at the 4, 6, and 7-9 year 

visits using parent report measures, and IQ at the 6 and 7-9 year visits using performance-

based measures. 

The Behavior Rating Inventory of Executive Functioning (BRIEF) is a parent-report 

assessment of children’s problems with executive functioning over the past 6 months (Bodnar et 
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al., 2007). Parents reported whether each behavior had been a problem on a 3 point scale, 

ranging from never, sometimes, or often. Validity studies report good reliability with high test-

retest reliability (mean rs=0.81 for parents across scales) and internal consistency (Cronbach’s 

alphas range from 0.80-0.98 across scales)(Gioia et al., 2000). Indices include the Behavioral 

Regulation Index and the Metacognition Index, both of which are age normed and combined to 

form the overall Global Executive Composite. Detailed descriptions of the indices and subscales 

are included in Table 4.  

The Behavior Assessment System for Children (BASC) is a parent-report assessment of 

children’s problem and adaptive behaviors in the home and community setting (Sandoval & 

Echandia, 1994). Internal consistency reliability of this instrument is good (Cronbach’s alphas 

average 0.80 across scales and ages), and test-retest reliabilities are also high (mean rs = 0.85 

for preschool, mean rs = 0.87 for children ages 6-11) (Sandoval & Echandia, 1994). Composite 

indices include Externalizing Behaviors, Internalizing Behaviors, Adaptive Skills, and the 

Behavioral Symptoms Index. Parents score individual items as happening or relevant Never, 

Sometimes, Often, Almost always, which are converted into scores of 0, 1, 2, or 3, and reflect 

increasing frequency. Scores are age-normed and reported as T-scores. Detailed descriptions 

of the composites and subscales are included in Table 4. The BASC and BRIEF were both 

completed at the 4, 6, and 7-9 year visits. We used the mean T-scores across all visits.  

 We administered the Wechsler Preschool and Primary Scales of Intelligence-III (WPPSI-

III) at age 6 (mean age = 6.2, SD=0.2), and the Wechsler Intelligence Scales-IV (WISC-IV) 

between the ages of 7-9 years (mean age =7.8, SD=0.8). WISC-IV composite scores include 

the Verbal Comprehension score, the Perceptual Reasoning score, the Working Memory Index, 

and Processing Speed. Similarly, the WPPSI-III composites are corollaries of the WISC-IV 

composites and include Verbal Intelligence, Performance IQ (similar to Perceptual Reasoning), 

and Processing Speed, but not Working Memory. The WISC-IV and WPPSI-III are highly 
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correlated (rs= 0.84 in our population); thus, if a child returned for both visits we used the WISC-

IV scores for all subtests.  

Statistical Methods 

We examined demographic characteristics of participants at enrollment by follow-up 

status. We used frequentist chi-square goodness-of-fit tests and alpha of 0.05 to assess if 

participants from the original birth cohort with OP biomarker data who did not return for follow-

up differed from participants who had OP biomarker data and returned for a complete 

neurodevelopmental evaluation. Although we used follow-up characteristics in our association 

models, only characteristics at enrollment were available for participants who did not return for 

follow-up. Thus, we used characteristics at enrollment for these comparisons. 

Neurodevelopmental Factor Analysis and Outcomes 

We assessed neurodevelopmental factors by performing dimension reduction on the 

BRIEF, BASC, and WPPSI-III/WISC-IV instruments with a principal components analysis. 

Details have been described elsewhere (Furlong et al., n.d.). Briefly, we included composites 

and subscales in the factor analysis if they were available at both the 6 and 7-9 year visits. By 

using average scores across visits we were able to include participants who returned for 

different visits in a single factor analysis. For this analysis, we used a varimax rotation to ensure 

neurodevelopmental outcome factors were linearly independent. We standardized all factor 

scores to have a mean of 0 and a standard deviation of 1. A beta coefficient of one can then be 

interpreted as an increase in one standard deviation of the factor score. Additionally, we scaled 

factors so that positive/adverse characteristics go in the same direction across factors in 

regression analyses, with positive scores indicating better outcomes and negative scores 

indicating more adverse outcomes. Additionally, since the WISC-IV Working Memory Index 

provides unique information on a performance-based metric of executive functioning, and could 
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not be included in the factor analysis because it is only a component of the WISC-IV, we also 

included this index as an outcome in models. 

In order to assess the utility of the factor analysis approach over a more traditional 

approach, we also conducted analyses of associations between the OPs and the individual 

items from the factors that displayed associations with the OPs.  

Coexposures 

Coexposures included phthalates, phenols, and pyrethroid pesticides. Four phthalate 

metabolites are metabolites of the same parent compound, Di(2-ethylhexyl) phthalate (DEHP) 

and were thus included as a micromolar sum of those metabolites (MEHP, MEHHP, MEOHP, 

and MECPP). MBzP, MCPP, MiBP and MBP were individually included. The pyrethroid 

metabolites 3PBA, c-DCCA, and t-DCCA displayed a low frequency of detection and were 

dichotomized to indicate concentrations above or below the LOD. The DCCA isomers and 3PBA 

were highly collinear; only five participants with detectable levels of c-DCCA or t-DCCA did not 

have detectable levels of 3PBA, so the DCCA metabolites were excluded from the analysis. 

Phenols included metabolites for BPA, BP3, triclosan, and 2,5 -DCP, and these individual 

metabolites were included as co-exposures. We excluded the phenol 2,4-DCP because it is a 

marker of the same parent compound as 2,5-DCP, but had a lower detection frequency. We 

standardized the natural log form of all continuous co-exposures to a mean of 0 and a standard 

deviation of 1. 

Bayesian Exposure Mixture Analyses 

In order to address potential issues of collinearity among metabolites and to stabilize 

models with large numbers of co-exposures and interactions, we used a Bayesian exposure 

mixture modeling framework. We employed hierarchical shrinkage techniques and specified 

priors for means and variances of beta coefficients for all variables. We assigned independent 

normal prior distributions with a mean of zero and a variance of 1/τ2 (MacLehose, Dunson, 
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Herring, & Hoppin, 2007), where τ equals 1 for all exposures and covariates (priors with mean of 

0 and standard deviation of 1). In sensitivity analyses, prior distributions on beta coefficients for 

the OPs and co-exposures were specified such that individual metabolites within classes were 

shrunk towards a class mean; e.g., phthalate metabolites were shrunk towards a phthalate 

mean and each OP sum was shrunk towards the OP mean. The τ for all metabolites within a 

class thus originated from the same class-specific distribution; in this analysis we used a 

uniform distribution from 0.001 to 5 for τ (Gelman et al., 2013). The outcomes were specified 

with means originating from a normal distribution with a mean of 0, and variances originating 

from a uniform distribution from 0 to 2. 10,000 burn-in samples were discarded and we used 

50,000 iterations to arrive at the posterior estimates. 

We imputed values below the limit of detection (<LOD) at each iteration of the Markov 

chain Monte Carlo algorithm from a truncated normal distribution with parameters defined as the 

mean and standard deviation of the underlying distribution, a lower bound of 0, and an upper 

bound equal to the LOD (WinBUGS package djl.trunc.norm). If an OP metabolite was missing 

due to analytic interference, the missing value within a class was imputed based on the other 

non-missing values within that class, as has been described previously (S. M. Engel et al., 

2007). Diethyl- and dimethyl-phosphate metabolites were then summed on a molar basis at 

each iteration of the MCMC algorithm to obtain total diethylphosphate (DEPs) and total 

dimethylphosphate (DMPs) biomarker concentrations.  

Phthalate and phenol metabolite concentrations that were below the LOD were imputed 

as described above. The pyrethroid metabolite was dichotomized at the LOD in all models due 

to the low detection frequency in our population. All continuous co-exposures and outcomes 

were standardized to have a mean of 0 and a standard deviation of 1. All continuous covariates 

were standardized to a mean of 0 and a standard deviation of 1 in order to facilitate the 

assignment of priors and comparisons of estimated effect sizes with dichotomous covariates, 
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and to improve MCMC convergence (Gelman et al., 2013). Missing covariate data were imputed 

at each iteration of the MCMC algorithm under the assumption that covariates were missing at 

random. We assigned covariate estimates priors with a mean of 0 and standard deviation of 1. 

Covariates with missing data included HOME scores, alcohol consumption during pregnancy, 

and maternal IQ. The HOME subscale scores were modeled as normally distributed random 

variables conditional on race, education, child sex, maternal IQ, smoking during pregnancy, 

canned fish consumption during pregnancy, the factor scores, marital status, and maternal age 

at enrollment. We modeled alcohol consumption during pregnancy using a logistic model 

conditional on race, education, canned fish consumption, smoking, the factor scores, marital 

status, maternal age at enrollment, maternal IQ, and HOME scores. Maternal IQ was modeled 

as a normally distributed random variable conditional on race, education, smoking during 

pregnancy, canned fish consumption, marital status, age at enrollment, HOME scores, and the 

factor scores. Models were run using WinBUGS14.  

Covariate Selection 

 We constructed directed acyclic graphs (DAGs) for each factor, and considered the 

following variables for inclusion in the DAGs: maternal education at follow-up (high school or 

less, some college, or bachelor’s degree), race/ethnicity (non-Hispanic white, Hispanic, black), 

maternal marital status at follow-up (single, living with a partner, married), maternal age, HOME 

environment (overall scores included as continuous, subscales included as ordinal categorical 

tertile variables due to their limited range), smoking during pregnancy (ever/never), alcohol use 

during pregnancy (none, light drinking <3 drinks on average per week during any trimester, 

moderate to heavy drinking of ≥ 3 drinks on average per week during any trimester, child sex, 

canned fish consumption during pregnancy (<1 time per week vs ≥ 1 time per week during 

pregnancy), Spanish language spoken in home, OP analysis batch, and an indicator variable for 
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examiner for the WISC-IV/WPPSI-III. We used the DAGs to identify and adjust for the minimally 

sufficient set for each factor. We adjusted for creatinine and OP analysis batch in all models 

Interaction Analyses 

We also assessed modification by race/ethnicity, sex, and maternal PON1 genotype 

status (PON1 Q192R and PON1 -108 C>T polymorphisms). The PON1 polymorphisms of -108 

C>T and Q192R were dichotomized (-108: CC vs CT or TT; Q192R: QQ vs QR or RR). We 

considered interactions to be present if the 95% credible interval for the interaction term did not 

cross the null. Interactions between OPs and possible modifiers were assessed one at a time; 

i.e., we assessed interactions between ∑DMPs and race separately from interactions between 

∑DEPs and race.  

Sensitivity Analyses 

 In sensitivity analyses we employed a frequentist linear regression approach to assess 

overall associations between DEPs and DMPs and neurodevelopmental factors, with and 

without adjustment for co-exposures to phthalates, phenols and pyrethroids. If individual 

metabolite concentrations were below the limit of detection (LOD), a single random value <LOD 

was imputed from a log-normal distribution truncated at the LOD. Metabolites missing due to 

analytic interference were handled as above. Due to collinearity, inclusion of co-exposures was 

treated slightly differently in frequentist models. The phthalate metabolites of MiBP, MBP, and 

MEP are all members of a class of low molecular weight phthalates and thus were included as a 

molar sum, alongside DEHP and the individual metabolites MCPP and MBZP. The log forms of 

the variables were standardized to a mean of 0 and a standard deviation of 1 for comparability 

in frequentist models. We used multiple imputation to fill in missing covariate data (PROC GLM 

with PROC MI and PROC MIANALYZE) (10 imputations), and examined studentized residuals 

and leverages to identify potential outliers. We used SASV9.4 for frequentist analyses. All 

relevant code is included in Appendix 6. 
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Results 

Of the 404 mother/child pairs that participated in the original birth cohort, 162 returned 

for at least one complete neurodevelopmental follow-up visit when their child was between 6-9 

years old. 158 of these women had prenatal OP biomarker data. Of the 158 women with 

complete neurodevelopmental data and OP biomarker data, 141 had complete co-exposure 

data and were included in the analysis. Participants included in this analysis were generally 

young (64% under 25 at enrollment) and non-white (82%). Most participants reported no alcohol 

consumption (83%) and no smoking during pregnancy (84%), and most had an educational 

attainment of high school or less at enrollment (73%) (Table 8). Single marital status at 

enrollment was the only predictor of returning for follow-up (p=0.03), and the distributions of 

education at enrollment, maternal age at delivery, race, alcohol, and smoking were generally 

similar for those included in this analysis compared to those who were not.  

Individual OP metabolites varied in their frequency of detection, with 

dimethylthiophosphate (DMTP) displaying the highest frequency at 93.6% detects and 

diethyldithiophosphate (DEDP) displaying the lowest frequency at 16.7% detects (Table 9). 

Results were similar when including all 158 participants with OP biomarker data. Of the 158 

participants with OP biomarker data, all had phthalate biomarkers, 153 had phenols, and 148 

had pyrethroid data. 141 participants had a complete panel of biomarker data. Detection 

frequencies for the phthalates were high, ranging from 97.5% to 99.4% for the individual 

metabolites. Among the phenols, BP3 and 2,5-DCP were detected in every sample, while BPA 

was detected in 86.3% of samples and triclosan was detected in 79.7% of samples. The 

pyrethroid metabolite PBA had a much lower detection frequency and was only detected in 

24.3% of samples.  
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Bayesian Exposure Mixture Modeling of Neurodevelopmental Factors 

After examining eigenvalues and parallel analysis results, we determined there was an 

optimal seven factor solution (Furlong et al., n.d.). The factors are 1) Impulsivity and 

Externalizing, 2) Executive Functioning, 3) Internalizing, 4) Perceptual Reasoning, 5) 

Adaptability, 6) Processing Speed, and 7) Verbal Intelligence (Table 5).  

We examined studentized residuals and leverages and identified and excluded one 

outlier from both frequentist and Bayesian models with the highest residuals in several factor 

models. This participant had extremely low behavioral factor scores and exclusion of this 

observation changed effect estimates by more than 20%.  

Convergence diagnostics of the Bayesian models were excellent. 

After adjustment for covariates and co-exposures, ∑DMPs were unexpectedly 

associated with better scores on the Executive Functioning factor (
^
 0.18, 95% CI 0.04, 0.31), 

which was also supported by nonsignificant results for the Working Memory Index (
^
 0.12, 95% 

CI -0.02, 0.25) (Table 10). ∑DMPs were at the same time associated with more adverse 

Internalizing factor scores (
^
  -0.13, 95% CI -0.25, 0.00). In contrast, ∑DEPs were associated 

with more adverse scores on the WISC-IV’s Working Memory Index (
^
  -0.17, 95% CI -0.33, -

0.03), with no other notable associations among the individual factor scores. The magnitude of 

each of these associations is fairly small, representing less than a quarter of a standard-

deviation change in the outcome per one standard deviation increase in exposure. 

Associations of ∑DMPs with individual item scores within the Executive Functioning 

factor were generally similar, although there were no item-specific associations for the BRIEF’s 

Organization, Shift, Behavioral Regulation Index, or Emotional Control scales, nor the BASC 

Behavioral Symptom Index, Hyperactivity or Atypicality scales. In contrast, the association 

between ∑DMPs and items within the Internalizing factor was mostly restricted to the BASC’S 
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Anxiety scale (
^
 -0.14, 95% CI -0.28, 0.00), with no other associations among items in that 

factor (Table 11).  

Heterogeneity in Associations by Race  

There were no interactions between sex, race, or PON1 and the ∑DMPs or ∑DEPs, for 

any factor. However, there was an interaction between race and ∑DMPs for the WISCIV’s 

Working Memory Index. The positive association between ∑DMPs and the Working Memory 

Index was only present for blacks (
^
  0.34, 95% CI 0.15, 0.53), but not for Hispanics (

^
  -0.09, 

95% CI -0.27, 0.08) nor whites (
^
  0.16, 95% CI -0.16, 0.49), 95% credible interval did not cross 

the null). 

Sensitivity Analyses 

 In sensitivity analyses we shrunk exposure estimates toward class means. Estimates 

were generally similar although all estimates were slightly closer to the null, as expected. We 

also examined associations using a frequentist, single exposure linear regression framework 

and overall found little difference in associations as compared to the Bayesian method, however 

effects were slightly more inflated and tended to be less precise, as expected. Directionality in 

associations, however, was generally conserved (Appendix 5).  

Discussion 

Using a Bayesian hierarchical approach, we report associations between ∑DMPs and 

worse Internalizing factor scores. Among the items that comprise the Internalizing Factor, the 

inverse associations with ∑DMPs appeared to be largely restricted to anxiety. Supporting 

associations between DMP parent pesticides and depression and anxiety, have been previously 

reported in murine models and one human study. Malathion induces anxiety and/or depressive 

behaviors in adult rats when administered in adulthood or in utero (Assini et al., 2005; Brocardo 

et al., 2007; Hashjin, Dizaj, Attaran, & Koohi, 2013; N’Go et al., 2013). In humans, occupational 
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exposure to malathion has also been associated with depression in adult farmers (Beard et al., 

2014). Although there are no previously published findings of exposure to OPs in utero and 

internalizing, anxiety, or depressive symptoms in childhood, one study has reported an 

association between prenatal exposure to ∑DMPs and Pervasive Developmental Disorder 

(PDD) at 24 months as measured by the Child Behavior Checklist (CBCL) (Children et al., 

2007). The PDD designation in the CBCL includes some behaviors that are indicative of general 

internalizing psychopathology, such as avoiding eye contact and being unresponsive to 

affection, which is consistent with our findings. 

We also found a relationship between ∑DEPs and the Working Memory Index, which is 

consistent with other analyses within this cohort (S. Engel et al., 2011). however, our analytic 

approach enabled estimation with more precision. Several previous studies report associations 

between OPs and deficits in different domains of IQ, including the Working Memory Index, 

(Bouchard et al., 2011b; S. Engel et al., 2011; V. A. Rauh et al., 2006; V. Rauh et al., 2011), 

although we found inverse associations only for ∑DEPs and the Working Memory Index.  

Finally, we report an unexpected positive association between ∑DMPs and the 

Executive Functioning factor, and supported by an elevated, but non-significant, association 

with the Working Memory Index. However, the association between ∑DMPs and the Working 

Memory Index differed by race, with a positive association among blacks and no associations 

among whites or Hispanics. 

In contrast to our findings, several previous studies have reported adverse associations 

between OPs and various measures of executive functioning, including attention, ADHD, and 

working memory (Bouchard et al., 2011a, 2010; Eskenazi et al., 2014; Marks et al., 2010; V. A. 

Rauh et al., 2006; V. Rauh et al., 2011; Yu et al., 2016), although studies examining prenatal 

exposure originate from only two other cohorts (Bouchard et al., 2011a; Marks et al., 2010; V. A. 

Rauh et al., 2006; V. Rauh et al., 2011). In the CHAMACOS cohort, Marks et al (Marks et al., 

2010) reported associations between ∑DMPs and ∑DEPs and parent-report measures of 
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attention problems at 3.5 but not 5 years, and also associations with a performance-based 

measure of attention, the Kiddie Connors Performance Test (K-CPT). ∑DEPs, but not ∑DMPs, 

were additionally associated with a psychometrician rating of ADHD symptoms in the same 

cohort of 5 year olds (Marks et al., 2010). Also in CHAMACOS, Bouchard et al (Bouchard et al., 

2011b) reported strong associations between increasing prenatal levels of DMPs (but not DEPs) 

and worse performance on the Working Memory Index at seven years of age, along with other 

dimensions of IQ (Bouchard et al., 2011a). In the Columbia Center for Children’s Environmental 

Health, Rauh et al report associations between prenatal chlorpyrifos exposure, which devolves 

into DEPs, and parent-report measures of ADHD problems and attention problems, at 3 years 

(V. A. Rauh et al., 2006). In the same cohort, Rauh et al reported associations between prenatal 

exposure to chlorpyrifos and more adverse performance on the Working Memory Index (V. 

Rauh et al., 2011). Therefore, the existing literature is limited and somewhat mixed. Our findings 

of an adverse association between prenatal DEP exposure and the Working Memory Index is 

supported by the studies from the Columbia Center for Children’s Environmental Health, which 

are based on a population of women residing in New York City that were enrolled at the same 

time as our cohort. However, we also found a positive association between ∑DMPs and the 

Executive Functioning factor, which seemingly contradicts the associations reported in the 

CHAMACOS cohort. These inconsistencies may be attributed in part to the limitations of the 

DAP (dialkylphosphate; includes DMPs and DEPs) biomarkers as estimates of exposure to 

organophosphorus pesticides.  

DAP biomarkers are non-specific, as the same metabolite is produced by multiple parent 

compounds, which may vary in their toxicities. The CHAMACOS cohort was recruited in an 

agricultural region of CA and over 80% of households had a farmworker that lived in the 

household during pregnancy. The participants in this cohort were likely exposed to a different 

constellation of pesticides than the urban Mount Sinai or Columbia populations. In a recent 

pooled analysis of these cohorts, significant heterogeneity was found in associations between 
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∑DMPs and the Bayley Mental Development Index (MDI) by cohort. Associations between 

∑DMPs and the MDI in CHAMACOS were substantially more deleterious than the three other 

included cohorts, and the authors argued that a specific agricultural pesticide used in the 

Salinas Valley that devolves into DMPs and was not experienced by the other urban cohorts, 

may partly explain this pattern (S. M. Engel et al., 2015). The exposure profile of our cohort is 

likely much more similar to the Columbia cohort, and thus their findings of an adverse 

association between chlorpyrifos and Working Memory are highly relevant. We are unable to 

compare our findings of improved executive functioning with increasing DMP exposure with the 

other cohorts, as the Columbia cohort measured only a chlorpyrifos-specific biomarker. 

We did not find inverse associations between ∑DEPs and the Executive Functioning 

factor, which was somewhat surprising since working memory is a component of executive 

functioning. Interestingly, the parent-report measure of the BRIEF (from which the majority of 

the Executive Functioning factor is derived) displays almost no correlation with the performance-

based measures of executive functioning (the Working Memory Index) in our data (rs = 0.09). 

This lack of correlation is consistently reported in the executive functioning measurement 

literature (reviewed in (Toplak, West, & Stanovich, 2013)). In previous studies, parent-report and 

performance-based measures of executive functioning load on different factors, suggesting they 

measure different underlying features of executive functioning (Bodnar et al., 2007; McAuley et 

al., 2010). Our Executive Functioning factor, which is comprised entirely of parent-report 

features, may reflect a broad capacity to self-regulate and execute goal-directed behaviors in a 

home or community environment while coping with typical environmental distractions. In 

contrast, the Working Memory Index is measured by an external examiner whose goal it is to 

direct and keep a child on task in an environment that is relatively controlled and free of external 

distractions, and thus may reflect a child’s working memory capacity only in this very specific 

context (Toplak et al., 2013). While the inconsistency between the two measures may caution 

interpretation of the factor’s validity, in this same cohort, we previously reported an association 
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between prenatal smoking and worse Executive Functioning factor scores in the expected 

direction (Furlong et al., n.d.). Since the smoking-executive functioning association is consistent 

with the literature, (Fried, Watkinson, & Gray, 2003; Julvez et al., 2007; Piper & Corbett, 2012) 

this serves as one positive control for the overall validity of this factor.  

The heterogeneity in associations of DMPs with Working Memory by race suggests the 

presence of race-specific residual confounding in the association of DMPs. For instance, OP 

biomarkers (DAPs) measure metabolites of the toxic parent compounds, rather than exposure 

to the parent compounds themselves. The use of a urinary DAP biomarker when diet is a 

primary source of exposure has some limitations (Lu, Barr, Pearson, & Waller, 2008; Wessels, 

Barr, & Mendola, 2003). Participants may be exposed either to preformed metabolites on fruits 

and vegetables, or to the parent insecticide, which they subsequently metabolize. Preformed 

metabolites do not inhibit cholinesterase and are less toxic than parent compounds in this case 

(Duggan et al., 2003). In one study of OP exposure from fruits and vegetables, over half of 

samples obtained from fruits and vegetables were composed of more preformed metabolites 

than parent oxons or pesticides (Zhang, Driver, Li, Ross, & Krieger, 2008). Thus, measured 

urinary DAP biomarker levels may not always accurately reflect extent of exposure to the parent 

compound. If fruit and vegetable consumption is either directly associated with improved 

executive functioning or is a marker of generally healthier behaviors, exposure source could be 

an important confounder. Little has been published on direct associations between prenatal fruit 

and vegetable consumption and cognitive development, although one recent study showed 

improved cognitive outcomes at 1 year for children of mothers who consumed high amounts of 

fruit and fruit juice during pregnancy (Bolduc et al., 2016), despite also being a likely vector for 

pesticide exposure.  

Additionally, executive functioning is highly heritable (Friedman et al., 2008). Mothers 

with robust executive functioning may be more successful at planning and consuming a well-

balanced diet that is rich in fruits and vegetables, and the use of the DAP biomarkers may be 



 

 82 

less accurate at measuring toxicity in these women. Women with higher executive functioning 

may also be more likely to return for follow-up. Thus, for these women, DAP biomarkers might 

be a surrogate for higher executive functioning. Although we did have maternal IQ, the 

correlation between Full Scale IQ and executive functioning as measured by the BRIEF in our 

data and in the literature is close to zero; thus this residual confounder was truly unmeasured. 

Finally, women with high biomarker levels of OPs in New York City may live in close proximity to 

outdoor areas such as parks, which may be sprayed for mosquito control. Their children may 

experience more aerobic exercise and engage in more play experiences with other children, 

which have been associated with improvements in executive functioning (reviewed in (Diamond 

& Lee, 2011)). In these instances, OP biomarkers would be confounded by early life 

experiences that enhance executive functioning.   

The literature on OP-PON1 interactions is sparse. While some studies have also 

reported no interactions with PON1 and OPs on mental development at 24 months (Eskenazi et 

al., 2010), recently a pooled study of four different birth cohorts showed stronger associations 

between ∑DEPs and worse mental development at 24 months among carriers of the PON1 Q 

allele (S. M. Engel et al., 2015). A previous study in our population reported adverse 

associations between ∑DMPs and perceptual reasoning among those with the PON192 QQ 

genotype (S. Engel et al., 2011). While the strata-specific estimates for PON1 interactions in this 

current study were all highly imprecise and all interaction p-values were greater than 0.05, the 

estimate for ∑DMPs and the Perceptual Reasoning factor remained negative among those with 

the QQ genotype. Although PON1 is an important component in the detoxification pathway for 

OP and other pesticides, this enzyme may have limited capacity to hydrolyze OP pesticides with 

dimethyl parent oxons (Geldmacher‐von Mallinckrodt & Diepgen, 1988; Li et al., 2000; Wolff et 

al., 2007), which may in part explain the general lack of interactions between DMPs and PON1 

genotype.  
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Strengths and Limitations of Study 

Primary strengths of this study include the incorporation of mixture modeling techniques 

for the exposures, and the use of dimension reduction across multiple scales and subscales of 

behavior, executive functioning, and intelligence. The use of factor scores resulted in reduced 

dimensionality of the outcomes and enabled comparison of risk estimates across a wide range 

of outcomes in an easily interpretable format. Factor scores may capture information over and 

above individual item scores. Although some items in different factors were correlated with each 

other (e.g., the Metacognition Index from the Executive Functioning factor and the Internalizing 

Composite score from the Internalizing factor are correlated at ~0.5), the rotated factor scores 

are forced to be orthogonal. Thus, associations with the factor scores are independent of any 

relationship between OPs and the other outcomes. The same is not true when interpreting 

associations with the individual items that make up these factors. An attempt to assess 

associations with all scales and subscales of several instruments in the absence of dimension 

reduction would present challenges to interpretation, and raise concerns about multiple testing 

bias.  

 Primary limitations include loss to follow-up and the lack of corroborating data on parent 

pesticide exposure. Approximately 60% of the original cohort did not return for follow-up. 

However, the only characteristic that differed between those who did and did not return was 

marital status, which was included as a covariate in several models. Still, if other unknown 

covariates predicted follow-up, these could bias associations. For instance, if more health 

conscious mothers consume more fresh fruits and vegetables and are more likely to return for a 

follow-up visit, they would be expected to have higher urinary OP metabolite levels and might 

also have children with better behavior and intelligence scores. We lacked data on such 

attitudes among study participants. Finally, urinary metabolites are an imperfect surrogate of 

insecticide exposure. Individuals who consume high levels of fresh fruits and vegetables may 

show higher urinary levels of ingested preformed OP metabolites, but experience less adverse 
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effects, than individuals whose primary exposure is to the more toxic parent compound, which 

they subsequently metabolize.  

Conclusions 

 In this prospective study of in utero exposure to organophosphorus pesticides, we report 

adverse associations between ∑DMPs and Internalizing Factor scores, which was somewhat 

restricted to an item-specific association with anxiety, and between ∑DEPs and the Working 

Memory Index. We also report an unexpected positive association between ∑DMPs and the 

Executive Functioning factor. Dimension reduction across multiple scales of neurodevelopment 

reflects broad phenotypes of development, eases presentation of associations, and incorporates 

information across multiple scales to enhance precision of estimates. 
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Table 8 Characteristics of Mount Sinai Children's Environmental Health Center Study 
Population by Follow Up Status, For Those with Complete Panel of Biomarkers 

  Original 

Birth cohort 

N=404 

Did not 

return for 

Follow-up 

n=263  

Follow-up 

Population N (%) 

N = 141 

Maternal Marital Status at 

Enrollment 

   

 Married  117 (29) 83 (32) 34 (24) 

 Living with partner 98 (24) 68 (26) 30 (21) 

 Single/Divorced/ Widowed 189 (47) 112 (43) 77 (55) 

Maternal Education at Enrollment    

 High school or less 288 (72) 186 (71) 102 (73) 

 Some college or higher 113 (28) 75 (29) 38 (27) 

Maternal Age at enrollment    

 <20 142 (35) 101 (38) 41 (29) 

 20-25 132 (33) 83 (32) 49 (35) 

 >25 130 (32) 79 (30) 51 (36) 

Maternal Race    

 Black or other race 118 (29) 76 (29) 42 (30) 

 White 86 (21) 60 (23) 26 (18) 

 Hispanic 200 (50) 127 (48) 73 (52) 

Any smoking during pregnancy    

 None 337 (83) 218 (83) 119 (84) 

 Any 67 (17) 45 (17) 22 (16) 

Alcohol use during pregnancy    

 None 337 (85) 222 (86) 115 (83) 

 Light 49 (12) 30 (12) 19 (14) 

 Moderate 10 (3) 6 (2) 4 (3) 

Canned fish consumption during 

pregnancy 

   

 < 1 times per week 341 (84) 218 (83) 123 (87) 

 1 or more times per week 63 (16) 45 (17) 18 (13) 

Child Sex    

 Male 220 (54) 148 (56) 72 (51) 

 Female 184 (46) 115 (44) 69 (49) 

†Maternal marital status at enrollment differed for those with biomarker data who returned for follow-up vs 

those who didn't (p = 0.03). No other enrollment characteristics differed by follow-up status. 

Follow-up population includes those with complete biomarker data and a complete neurodevelopmental 

follow-up visit. Comparison population includes those without biomarker data or those who did not return 

for a complete follow-up visit 
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Table 9 Distributions of Organophosphorus Pesticide Metabolites and Co-exposures, 
Among Participants with Complete Follow-Up Measurements 

  N  Values 

>LOD  

(% of 

total) 

Geometric 

Median 

(GSD) 

Geometric 

25, 75 

percentile 

Min, Max 

Organophosphorus Pesticides (nm/L)    

ƩDEP 
Diethylthiophosphate (DETP) 156 

127 

(81.4) 10.0 (3.5) 4.9, 17.0 0.8, 122.3 

Diethyldithiophosphate 

(DEDP) 
156 

26 

(16.7) 0.1 (4.5) 0.1, 0.1 0.0. 59.9 

Diethylphosphate (DEP) 156 
72 

(46.2) 0.2 (15.1) 0.2, 31.5 0.2, 371.8 

∑DEP 156 
138 

(88.5)
¥
 

17.5 (3.2) 
7.3, 47.1 2.7, 422.3 

ƩDMP Dimethylthiophosphate 

(DMTP) 
158 

146 

(93.6) 23.8 (6.2) 8.1, 71.9 0.2, 4754.3 

Dimethyldithiophosphate 

(DMDP) 
158 

47 

(30.1) 0.3 (6.2) 0.3, 5.1 0.3. 275.1 

Dimethylphosphate (DMP) 158 
102 

(64.6) 13.6 (8.7) 0.6, 45.0 0.6, 1173.1 

∑DMP 158 149 

(94.3)
¥
 

41.2 (5.2) 12.2, 

148.5 0.2, 4903.2 

Phthalates (ng/mL)    

 
ƩDEHP (µm/L)

 ¥
 158 

158 

(100.0)
¥
 0.3 (3.6) 0.1, 0.5 0.0, 19.9 

 
Low- MWP*(µm/L)

 ¥
 158 

158 

(100.0)
¥
 2.5 (4.4) 1.0, 6.5 0.0, 313.8 

 
Monoethyl phthalate (MEP)  158 

157 

(99.4) 

217.0 

(4.2) 

84.9, 

532.5 6.5, 29528.4 

 Mono-n-butyl phthalate 

(MBP) 
158 

154 

(97.5) 34.0 (3.6) 14.3, 83.3 0.8, 4042.5 

 Monoisobutyl phthalate 

(MIBP) 
158 

155 

(98.1) 6.5 (2.9) 3.1, 15.1 0.4, 65.1 

 Mono(3-carboxypropyl) 

phthalate (MCPP) 
158 

154 

(97.5) 3.1 (2.8) 1.7, 6.4 0.3, 129.3 

 Monobenzyl phthalate 

(MBZP) 

158 157 

(99.4) 

15.8 (3.9) 6.3, 34.1 0.6, 481.3 

Phenols (ng/mL)     

 Biphenyl-A (BPA) 153 132 

(86.3) 1.5 (2.4) 0.9, 2.5 0.4, 35.2 

 Benzophenone-3 (BP3) 153 153 

(100.0) 6.5 (7.4) 2.7, 23.7 0.2, 9290.0 

 2,5-Dichlorphenol (2,5-DCP) 153 153 

(100.0) 56.3 (5.5) 

22.4, 

174.0 2.8. 8510.0 

 Triclosan 153 122 

(79.7) 20.0 (5.2) 7.2, 82.8 2.3, 1790.0 

Pyrethroids (binary for above or below the LOD)    
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 3-PBA 148 36 

(24.3) 

   

¥
Values > LOD for sum values indicate number of observations where at least one metabolite in the sum 

is above the LOD 

Low molecular weight phthalates include MEP, MBP, MIBP 

Values presented are after imputing values below the LOD from a normal distribution truncated at the 

LOD 

141 participants had a complete panel of biomarker data
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Table 10 Overall Associations between OPs and Neurodevelopmental Factor Scores 
(n=141) 

 ∑DMPs  β̂ (95% 

CI) ¥ 

∑DEPs  β̂ (95% CI) 

¥ 

Impulsivity & Externalizing Factor -0.02 (-0.16, 0.11) 0.08 (-0.06, 0.22) 

Executive Functioning Factor 0.18 (0.04, 0.31) -0.05 (-0.21, 0.11) 

Internalizing Factor -0.13 (-0.25, 0.00) -0.01 (-0.15, 0.12) 

Perceptual Reasoning Factor 0.00 (-0.14, 0.13) -0.02 (-0.17, 0.14) 

Adaptability Factor -0.02 (-0.14, 0.12) -0.08 (-0.23, 0.07) 

Processing Speed Factor -0.01 (-0.14, 0.13) 0.03 (-0.12, 0.19) 

Verbal Intelligence Factor 0.07 (-0.04, 0.19) -0.03 (-0.17, 0.09) 

Working Memory Index 0.12 (-0.02, 0.25) -0.17 (-0.33, -0.03) 
¥
These Bayesian beta coefficients and 95% credible intervals are from models that include both ∑DAP 

measures (∑DEPs and ∑DMPs), the molar sum of DEHP and the individual phthalate congeners of MEP, 

MIBP, MBP, MCPP, MBZP, as well as the individual phenol metabolites BPA, BP3, DCP25, and triclosan, 

and the pyrethroid metabolite 3PBA  

In Tables 10 and 11, scores have been scaled so that positive scores indicate more positive outcomes 

and negative scores indicate more adverse outcomes 

HOME scores, maternal IQ, maternal education at follow-up, maternal marital status at follow-up, 

maternal age, maternal race/ethnicity, maternal smoking during pregnancy, maternal alcohol consumption 

during pregnancy, maternal canned fish consumption during pregnancy, and alcohol were included in a 

DAG used to derive minimally sufficient sets for each factor 
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Table 11 Associations between DMPs and Individual Factor Items from Executive 
Functioning and Internalizing Factors (n=141) 

Rank of 
Item 
Loading 

Items from Executive 
Functioning Factor 

Associations with 

∑DMPs β̂  (95% 
CI) 

Items from 
Internalizing factor 

Associations with 

∑DMPs β̂  (95% CI) 

1 BRIEF Metacognition 
Index 0.13 (-0.01, 0.28) 

BASC Internalizing 
Composite -0.08 (-0.21, 0.05) 

2 BRIEF Planning 0.16 (0.02, 0.30) BASC Anxiety -0.14 (-0.28, 0.00) 
3 BRIEF Global Executive 

Composite 0.10 (-0.04, 0.24) 
BASC Somatization 

0.00 (-0.12, 0.13) 
4 BRIEF Working Memory 0.14 (-0.01, 0.28) BASC Withdrawal -0.10 (-0.25, 0.05) 
5 BRIEF Monitor 0.14 (0.00, 0.28) BASC Depression -0.04 (-0.18, 0.10) 
6 BRIEF Initiate 0.10 (-0.05, 0.25) BASC Atypicality 0.06 (-0.06, 0.18) 
7 BRIEF Organization 

0.00 (-0.13, 0.14) 
BASC Behavioral 
Symptoms Index -0.01 (-0.14, 0.13) 

8 BASC Attention 0.13 (-0.01, 0.26) BRIEF Shift 0.00 (-0.13, 0.13) 
9 BRIEF Inhibit 

0.13 (-0.01, 0.28) 
BRIEF Emotional 
Control -0.04 (-0.19, 0.11) 

10 BRIEF Behavioral 
Regulation Index 0.04 (-0.10, 0.18) 

BRIEF Behavioral 
Regulation Index 0.04 (-0.10, 0.18) 

11 BASC Behavioral 
Symptom Index 

-0.01 (-0.14, 0.13) 

BRIEF Global 
Executive 
Composite 0.10 (-0.04, 0.24) 

12 BRIEF Shift 0.00 (-0.13, 0.13)   
13 BASC Hyperactivity 0.02 (-0.12, 0.15)   
14 BRIEF Emotional 

Control -0.04 (-0.19, 0.11) 
  

15 BASC Atypicality 0.06 (-0.06, 0.18)   
¥
These Bayesian beta coefficients and 95% credible intervals are from models that include both ∑DAP 

measures (∑DEPs and ∑DMPs), the molar sum of DEHP and the individual phthalate congeners of MEP, 

MIBP, MBP, MCPP, MBZP, as well as the individual phenol metabolites BPA, BP3, DCP25, and triclosan, 

and the pyrethroid metabolite 3PBA  

In Tables 10 and 11, scores have been scaled so that positive scores indicate more positive outcomes 

and negative scores indicate more adverse outcomes 

HOME scores, maternal IQ, maternal education at follow-up, maternal marital status at follow-up, 

maternal age, maternal race/ethnicity, maternal smoking during pregnancy, maternal alcohol consumption 

during pregnancy, maternal canned fish consumption during pregnancy, and alcohol were included in a 

DAG used to derive minimally sufficient sets for each factor 
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CHAPTER VI. CONCLUSIONS 

Summary of Findings 

Previous approaches to etiological studies of organophosphorus pesticides (OPs) and 

neurodevelopment have generally been performed under the assumptions that neurological 

traits are independent and that confounding by other xenobiotics is negligible. In this 

dissertation, we estimated associations between OPs and neurodevelopment while addressing 

both of these concerns. 

 Factor analysis is a dimension reduction method which uses underlying correlational 

structures to derive factors, and allows the user to rotate unique factors to be orthogonal. We 

applied this method to a set of composite scales and subscales originating from both parent-

report measures of behavior and executive functioning, and performance-based measures of 

intelligence. We determined there was a seven factor solution, including 1) Impulsivity & 

Externalizing, 2) Executive Functioning, 3) Internalizing, 4) Perceptual Reasoning, 5) 

Adaptability, 6) Processing Speed, and 7) Verbal Intelligence. Items from the parent-report 

measures of behavior and executive functioning tended to load together on factors, while items 

from the examiner-measured scales of intelligence loaded separately from the behavior and EF 

measures. The factors also generally aligned with the composite indices from the instruments. 

 To assess the utility of using factor scores over instrument-specific composite scores, 

we compared previously published well-characterized associations between smoking and 

neurodevelopment against estimates in our data using 1) instrument-specific composite scores, 

and 2) orthogonal varimax rotated factor scores. In prior literature, smoking has been 

consistently associated with impulsivity and externalizing behaviors, internalizing behaviors, and 

deficits in executive functioning, and less consistently associated with adaptive behaviors (Brion 
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et al., 2010; Daseking et al., 2015; Indredavik et al., 2007; Piper & Corbett, 2012; Stene-Larsen, 

Borge, & Vollrath, 2009; Williams et al., 1998). With the exception of internalizing behaviors, we 

replicated this data in our population with the instrument-specific composite scores. However, 

after adopting the orthogonal varimax rotation, which imposes orthogonality on the factors, only 

the association between smoking and Impulsivity/Externalizing remained. This suggests that the 

association between smoking and the other characteristics may, at least in part, be driven by 

associations between smoking and impulsivity/externalizing. We also reported associations 

between canned fish consumption, maternal education, preterm birth, and home environmental 

organization scores and neurodevelopment, all of which were consistent with the literature. 

 We also assessed associations between prenatal exposure to OPs and 

neurodevelopmental factor scores and the Working Memory Index, while controlling for the co-

exposures of phthalates, phenols, and pyrethroid pesticides in a Bayesian framework. We 

reported associations between ∑DMPs and worse Internalizing scores, but better Executive 

Functioning scores. We also reported associations between ∑DEPs and worse performance on 

the Working Memory Index. There is some prior support for the associations between OPs and 

internalizing behaviors and working memory (Beard et al., 2014; V. Rauh et al., 2011). However, 

prior research on associations between prenatal exposure to ∑DMPs and parent-reported 

executive functioning is limited to one other study that only used parent reports of attention or 

ADHD behaviors, and not other markers of executive functioning. In that study, ∑DMPs were 

associated with worse attention and parent-reported ADHD (Marks et al., 2010), which conflicts 

with our findings. However, the ∑DMP pesticide source in the Marks population, which was 

primarily agricultural workers, is likely different than the ∑DMP pesticide source in our 

population, which is composed of urban city-dwellers. Thus the exposures might not be 

comparable across the two studies. This possibility is one unfortunate drawback to working with 

the DAP biomarkers (discussed in more detail below).  



 

 92 

 Finally, we initially hypothesized that OPs might be associated with ADHD, and that 

factor analysis might reveal an ADHD phenotype. However, no single factor seemed to capture 

the range of behaviors observed in ADHD. Rather, in our general population sample, we derived 

several factors that are implicated in ADHD, including Impulsivity and Externalizing, and  

Executive Functioning. OPs did not appear associated with Impulsivity and Externalizing, and 

DMPs were actually positively associated with the Executive Functioning factor, two hallmark 

deficits of ADHD, while DEPs were associated with worse Working Memory Index scores. As 

discussed previously, residual confounding may explain some of the association with executive 

functioning. Regardless, we did not observe the hypothesized association between OPs and an 

ADHD phenotype.  

Strengths and Limitations 

Strengths 

There were several strengths to this dissertation. We used a longitudinal, multiethnic 

cohort that included both mostly white mothers from a wealthy neighborhood in Manhattan, as 

well as mostly minority mothers from the low-income neighborhood of East Harlem. Although 

the two groups display widely divergent socioeconomic features and may have different sources 

of parent pesticide exposure for their OP metabolite measurements, there was minimal 

interaction by race in both studies, and the factor structure was consistent by race. Thus, our 

findings generally apply across the scope of socioeconomic strata represented in an urban 

population of New York City.  

We were able to adopt a novel framework for analyzing etiological associations with 

neurodevelopmental phenotypes that accounted for the complex correlational structure of 

neurobehavior. Dimension reduction enabled simultaneous examination of a wide range of 

neurobehavioral outcomes in an easily comparable format that collapsed over thirty separate 

outcomes into seven distinct factors. This method also allowed the assessment of etiological 
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associations with individual neurodevelopmental phenotypes that were independent of 

associations with other neurodevelopmental phenotypes. Phenotyping may also capture 

information over and above information captured in instrument-specific composite scores alone. 

Estimates of associations between OPs and factor scores appeared to be stronger and slightly 

more precise than the estimates between OPs and most of the individual items that loaded 

highly on the relevant factor. Additionally, as the factor loadings of items decreased, the 

associations between OPs and the items attenuated to the null. This highlights another 

advantage of using factor analysis; if we were to examine the individual items from an 

instrument, OPs might appear associated with some items but not others in a somewhat 

haphazard fashion. Performing a factor analysis, however, allows the user to order items 

according to the strength of their factor loading, which implements an interpretable structure on 

the items.  

Finally, we incorporated a mixture modeling approach to assess associations between 

OPs and neurodevelopment in a Bayesian framework, which stabilizes estimates from models 

with high numbers of variables and high collinearity among the covariates.  

Limitations 

 Primary limitations include loss to follow-up, lack of corroborating data on parent 

pesticide exposure, use of a spot-urine sample in pregnancy to assess DAPs, unmeasured 

covariates, reporting bias, and lack of multi-method measurements of behavior and executive 

functioning. 

 Approximately 60% of the sample from the original cohort did not return for at least one 

complete neurodevelopmental follow-up visit between the ages of 6-9. This is worrisome for two 

primary reasons: 1) this resulted in smaller sample sizes, and 2) this loss-to-follow up presents 

a possibility for bias. Although the limited sample size did not prevent us from generating a 

reliable factor structure or from observing associations between smoking or OPs and 
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neurodevelopment, there may have been repercussions for estimating interaction effects. In 

Chapter V, we only reported one interaction, between race and DMPs on Working Memory. 

Other interactions, particularly with PON1 or child sex, may have become apparent with a larger 

sample size and more participants per strata. Finally, the loss to follow-up may have resulted in 

biased estimates, if women who returned for follow-up were different than those who did not. 

Although the only measured characteristic that differed between the two groups was marital 

status, other unmeasured characteristics may confound relationships. This may have played a 

role particularly in estimating the relationship between DMPs and executive functioning: mothers 

with stronger executive functioning capacity may be more likely to eat a diet rich in fruits and 

vegetables during pregnancy (and thus have higher OP biomarkers while experiencing less 

toxicity), have children with better executive functioning, and be more likely to return for follow-

up. Such a concern might be alleviated by controlling for maternal measures of executive 

functioning, or improved dietary exposure ascertainment methods; however these assessments 

were unfortunately not collected in this study.  

Other measures of maternal psychiatric functioning or personality might have been 

important for other estimates. Controlling for maternal anxiety might increase precision of the 

DMP-Internalizing association, since maternal anxiety during pregnancy is associated with 

childhood anxiety (Van den Bergh, Mulder, Mennes, & Glover, 2005). Additionally, controlling for 

personality, addictive tendencies, and general psychiatric functioning of the mother might 

address concerns about possible confounding of the smoking-impulsivity/externalizing 

relationship, since women who are unable to quit smoking during pregnancy might struggle with 

higher levels of impulsivity or addiction than women who are able to quit, and such traits might 

be heritable in nature. Again, these measures were not collected in this study. 

Another limitation of this study is the reliance on self-reported cigarette use to assess 

smoking during pregnancy. Alternate measures, such as cotinine levels throughout pregnancy, 

may have reduced exposure misclassification by identifying mothers who smoked but did not 
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report smoking during pregnancy. We also did not include information on environmental tobacco 

smoke exposure during pregnancy or childhood. While most studies report on smoking during 

the prenatal window of exposure, children of mothers who smoke during pregnancy are most 

likely also exposed to tobacco smoke throughout infancy and childhood. The brain grows rapidly 

and undergoes dramatic neural differentiation and pruning during the first two years of life, thus 

the idea that early-life programming may take place after pregnancy is highly plausible.  

OP measurements during early childhood might have similarly provided interesting 

results. One cohort has observed associations between OP exposure during early childhood 

and neurodevelopment (Marks et al., 2010), but there is little supporting evidence for this in 

other cohorts due to the lack of biomarkers collected during childhood. Additionally, OP 

measurements throughout pregnancy could have helped describe a possible window of 

susceptibility, and possibly an effect for duration of exposure. Since the half-lives of most OPs 

range from hours to days, these measurements only reflect very recent exposure. Correlation 

coefficients of repeat measures of OPs in pregnancy range from 0.23 to 0.56, while the 

intraclass correlation coefficient of OPs is approximately 0.40 (Egeghy et al., 2011; Whyatt et 

al., 2009). While there are competing hypotheses regarding the “most susceptible” window of 

exposure, it is perhaps equally plausible that exposures at different time periods have different 

effects, since the brain is continually developing throughout pregnancy. Alternatively, consistent 

exposure throughout pregnancy might be substantially worse than a single high exposure during 

any given trimester. Unfortunately, the results from using a single spot urine sample in the third 

trimester preclude assessing any of these possibilities. 

 Use of DAP biomarkers in general have other limitations. Up to 86% of samples on fruits 

and vegetables may be pre-formed metabolites rather than parent compounds (Zhang et al., 

2008). Thus, exposure to direct parent compounds and exposure to preformed metabolites 

confer different toxicity levels that are not represented by DAP biomarkers. Although these 

concerns might be somewhat alleviated by measurements of maternal dietary intake during 
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pregnancy, such information would still not shed light on the amount of toxic oxons a participant 

was exposed to via diet. This information would only come from sampling the actual produce 

that was consumed. Another limitation of DAP biomarkers is the non-specificity of the 

metabolites – six OP metabolites represent ~ 30 registered pesticides (Wessels et al., 2003). 

These parent pesticides vary in their toxicities, and DAP biomarkers may represent different 

pesticides for different populations. These biomarkers may thus be more useful for populations 

experiencing a consistent exposure to a single OP pesticide, or to multiple OP pesticides with 

similar toxicities. Single spot urines of DAP biomarkers also do not capture differences in 

individual excretion patterns or DAP metabolism, which may be important variables in 

estimating the individual toxicity of OP exposures. Despite these limitations, DAP biomarkers 

remain one of the preferred measurements of OP exposure due to their high detection 

frequencies relative to OP pesticide-specific biomarkers, which typically have low detection 

rates.  

 Finally, our study is somewhat limited by the lack of performance-based measurements 

of executive functioning in Aim 1. Although parent-report measures of executive functioning are 

not correlated with performance-based measures in either our population or in several previous 

studies, it is unclear what the disparity between the two measurements represents. Researchers 

have speculated that the two methods measure different dimensions of neurobehavior, or at 

least different dimensions of executive functioning. We did incorporate the performance-based 

measure of the Working Memory Index in our second aim, and found somewhat comparable 

associations between DMPs and the Executive Functioning factor and between DMPs and the 

Working Memory Index, although the latter was relatively imprecise. However, we also found 

associations between DEPs and worse scores on the Working Memory Index, but not on the 

Executive Functioning factor. These results are in seeming conflict in multiple ways; first, that 

DMPs and DEPs seem to have an opposite effect on executive functioning, and second, that 

DMPs were at least suggestively associated with two measures of executive functioning while 
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DEPs were associated with just one. This conflicting pattern of associations might be easier to 

interpret if the meaning of the two measurements were clearer, and if more precise information 

was available regarding parent pesticide source and fruit and vegetable intake. 

Public Health Significance  

Organophosphorus pesticides have been banned from most residential uses (excluding 

roach bait stations and fire ant mound treatments) since 2001, although they are still used 

widely in agriculture. Earlier this year (2016), the EPA proposed to revoke all food residue 

tolerances for the OP insecticide chlorpyrifos, with an anticipated release of the final rule in 

December of 2016. This would essentially result in the elimination of exposure to chlorpyrifos 

(which devolves into DEPs) for the vast majority of the American public. However, this ruling 

would not ban chlorpyrifos from all use; golf courses, turf, green houses, and non-structural 

wood treatments such as utility poles and fence posts, would not be affected by the proposed 

rule. The findings of this dissertation are timely, as we report an association between prenatal 

exposure to DEPs, of which chlorpyrifos is one parent pesticide, and Working Memory deficits. 

Although we cannot definitively identify the parent pesticide of DEPs in our cohort as 

chlorpyrifos, this result does support findings from a different birth cohort that reported 

associations between a specific chlorpyrifos metabolite and deficits on the Working Memory 

Index. However, we also report associations that show a relationship between DMPs and more 

adverse internalizing behaviors, particularly anxiety. Such research may contribute to policy 

decisions regarding OPs other than just chlorpyrifos.  

Our findings of other modifiable characteristics that contribute to neurodevelopment may 

also be useful for advocating for healthy pregnancies. If the reported associations are causal, 

promoting higher education, encouraging mothers to eat low-mercury fish multiple times a week, 

preventing preterm birth, teaching mothers how to increase the predictability and organization of 

a child’s environment, and offering assistance to quit smoking during pregnancy may have 



 

 98 

reverberating consequences on multiple dimensions of neurobehavior throughout childhood and 

possibly throughout life. The magnitude of the smoking and impulsivity and externalizing 

association was the highest of any of the modifiable risk factors and may result in the greatest 

gains, although this characteristic may simultaneously be the hardest to change due to the 

addictive nature of tobacco, and be the most subject to possible confounding by maternal traits. 

Of course, if the reported association between smoking and neurobehavior suffers from 

confounding by maternal traits, the magnitude of possible benefits will shrink. However, 

randomized trials of smoking cessation programs during pregnancy have resulted in both 

increasing the number of women who quit smoking relative to a control group, and reductions in 

preterm births and infants born with low birthweight (Chamberlain et al., 2013). These results 

already support the deployment of smoking cessation programs for pregnant women, and our 

results add another dimension to this argument. 

Nationwide, the economic costs of neurodevelopmental deficits have been quantified, 

particularly in regards to early childhood lead exposure. Even small deficits, such as the loss of 

0.67 IQ points on a population scale, translates to over $40 billion lost in economic productivity 

over the course of a generation (Landrigan, Schechter, Lipton, Fahs, & Schwartz, 2002). 0.67 

IQ points is roughly 0.05 standard deviations. Several of our estimated beta coefficients, which 

can be interpreted as changes in standard deviations, were substantially larger than this for the 

IQ factors. While the economic costs of behavioral problems have yet to be quantified in such a 

manner, anxiety disorders were estimated to cost the US more than $42 billion per year in the 

1990s (Greenberg et al., 1999). Even a small 10% reduction in anxiety disorders would translate 

to savings of $4 billion. Thus, preventing these costs by addressing modifiable environmental 

exposures, behaviors, and parenting techniques could have compound public health and 

economic benefits.     
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Directions for Future Research  

Future research of prenatal and early life determinants of childhood neurodevelopment 

would ideally incorporate parent/self, and teacher-reports of behavior and executive functioning, 

as well as performance-based measures of executive functioning. Such approaches may help to 

elucidate differences attributed to measurement method and reporter. 

Additionally, future research of OPs may be better served by incorporating non-

biomarker measurements of insecticide use, such as personal reports of fruit and vegetable 

consumption, personal pesticide use and pesticide exposure, or external reports such as state 

geographical records of pesticide applications. This information might enhance the accuracy of 

DAP biomarkers as a measurement of OP exposure.  

Some of the best support for findings in epidemiologic research involves the replication 

of findings in other populations. Only three U.S. birth cohorts have reported associations 

between prenatal exposure to OPs and adverse childhood outcomes. However, creating cohorts 

and measuring biomarkers is an expensive endeavor, particularly during an era of limited NIH 

funding. Alternative approaches to assessing prenatal exposure to pesticides and childhood 

neurodevelopment might be more fruitful; for example, linking pesticide use data with childhood 

academic achievement or medical records might be one inexpensive way of assessing at least 

some of these associations in other populations. 

Finally, findings of associations between prenatal exposure to OPs and neurological 

outcomes has thus far been limited to childhood neurodevelopment. Assessing associations 

with outcomes throughout the life-course might provide a better assessment of the true burden 

that OPs place on society.    
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Conclusions 

We reported several associations between prenatal and early life characteristics and 

neurodevelopment. Modifiable characteristics included maternal smoking during pregnancy, 

maternal canned fish consumption during pregnancy, organization of the home environment, 

and maternal education, while affected neurodevelopmental domains included measures of 

behavior, executive functioning, and IQ. We also reported associations between DMPs and 

worse Internalizing factor scores, between DMPs and better Executive Functioning factor 

scores, and between DEPs and more adverse Working Memory Index scores, after accounting 

for the complex correlational structure of several neurodevelopmental outcomes.
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APPENDIX 1 DSM V CRITERIA FOR ADHD 

Three types of ADHD may occur: If enough symptoms are present in both Inattention and Hyperactivity-
Impulsivity, this is Combined Presentation. If enough symptoms are present in Inattention but not 
Hyperactivity-Impulsivity, this is Predominantly Inattentive. If enough symptoms are present in 
Hyperactivity-Impulsivity, but not Inattention, this is Predominantly Hyperactive-Impulsive. 

Inattention  
Six or more symptoms of inattention for children up to age 16, five or more for adolescents 17 and 
older and adults, symptoms of inattention have been present for at least 6 months, and are 
inappropriate for developmental level 
  Often fails to give close attention to details or makes careless mistakes in schoolwork, at work, 

or with other activities. 
 Often has trouble holding attention on tasks or play activities. 
 Often does not seem to listen when spoken to directly. 
 Often does not follow through on instructions and fails to finish schoolwork, chores, or duties 

in the workplace (e.g., loses focus, side-tracked). 
 Often has trouble organizing tasks and activities. 
 Often avoids, dislikes, or is reluctant to do tasks that require mental effort over a long period of 

time (such as schoolwork or homework). 
 Often loses things necessary for tasks and activities (e.g. school materials, pencils, books, tools, 

wallets, keys, paperwork, eyeglasses, mobile telephones). 
 Is often easily distracted 
 Is often forgetful in daily activities. 

Hyperactivity and Impulsivity:  
Six or more symptoms of hyperactivity-impulsivity for children up to age 16, or five or more for 
adolescents 17 and older and adults; symptoms of hyperactivity-impulsivity have been present for at 
least 6 months to an extent that is disruptive and inappropriate for the person’s developmental level: 
  Often fidgets with or taps hands or feet, or squirms in seat. 

 Often leaves seat in situations when remaining seated is expected. 
 Often runs about or climbs in situations where it is not appropriate (adolescents or adults may 

be limited to feeling restless). 
 Often unable to play or take part in leisure activities quietly. 
 Is often "on the go" acting as if "driven by a motor". 
 Often talks excessively. 
 Often blurts out an answer before a question has been completed. 
 Often has trouble waiting his/her turn. 
 Often interrupts or intrudes on others (e.g., butts into conversations or games) 
 

In addition, the following conditions must be met 
  Several inattentive or hyperactive-impulsive symptoms were present before age 12 years. 

 Several symptoms are present in two or more setting, (e.g., at home, school or work; with 
friends or relatives; in other activities). 

 There is clear evidence that the symptoms interfere with, or reduce the quality of, social, 
school, or work functioning. 

 The symptoms do not happen only during the course of schizophrenia or another psychotic 
disorder. The symptoms are not better explained by another mental disorder (e.g. Mood 
Disorder, Anxiety Disorder, Dissociative Disorder, or a Personality Disorder). 
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APPENDIX 2 PROMAX ROTATED FACTOR PATTERN STRUCTURE AND ITEM LOADINGS 
OF CHILDHOOD NEURODEVELOPMENTAL SCALES (N=210) 

Factor 1 
 Impulsivity & 
Externalizing 

Factor 2 
 Executive Functioning 

Factor 3  
Internalizing 

Factor 4 
 Perceptual Reasoning 

Scale Loading Scale Loading Scale Loading Scale Loading 

Externalizing 
Problems 0.97 

Metacognition 
Index 0.96 

Internalizing 
Problems 0.89 

Perceptual 
Reasoning 
IQ 0.98 

Conduct 0.89 Planning 0.94 Anxiety 0.81 
Picture 
Concepts 0.78 

Aggression 0.85 
Working 
Memory 0.81 Withdrawal 0.77 

Matrix 
Reasoning 0.74 

Hyperactivity 0.75 Initiate 0.81 Somatization 0.69 
Block 
Design 0.71 

Inhibit 0.62 Monitor 0.80 Depression 0.59 Full Scale IQ 0.50 
Behavioral 
Regulation 
Index 0.61 

Global 
Executive 
Composite 0.75 Atypicality 0.54 

  

Adaptability -0.59 Organization 0.66 

Behavioral 
Symptoms 
Index 0.40 

  Behavioral 
Symptoms 
Index 0.58 Attention 0.49 Shift 0.38 

  Emotional 
Control 0.57 Inhibit 0.46 

Emotional 
Control 0.31 

  

Shift 0.40 

Behavioral 
Regulation 
Index 0.32 

    Depression 0.34 
      Attention 0.32 
              

Factor 
Structure        
% Variance 
accounted for  37.92  13.71  7.86  6.33 

Eigenvalue 14.03  5.07  2.91  2.34 

        
1BASC scales, 2BRIEF scales, 3WISC-IV or the WPPSI-III scales. Only items with loadings with absolute 
values >0.30 are shown here. Loadings are from a PCA with oblique promax rotation (factors are allowed 
to correlate)  
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continued 
Factor 5  

Adaptability  
Factor 6  

Processing Speed 
Factor 7  

Verbal Intelligence 

Scale Loading Scale Loading Scale Loading 

Adaptive 
Skills Index 0.89 

Processing 
Speed 
Index

3
 0.96 Vocabulary

3
 0.85 

Leadership 0.85 Coding
3
 0.88 Verbal IQ

3
 0.83 

Social Skills 0.85 
Symbol 
Search

3
 0.71 

Full Scale 
IQ

3
 0.57 

Adaptability 0.56 
Full Scale 
IQ

3
 0.36 

Organization
2
 0.38 

    

Symbol 
Search

3
 0.31 

      
      

      
      
      
      
            
      
 5.10  4.25  3.05 

 1.89  1.57  1.13 
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APPENDIX 3 ASSOCIATIONS BETWEEN SMOKING AND NEURODEVELOPMENTAL 
OUTCOMES, BY OUTCOME MEASUREMENT METHOD 

Comparison of Prenatal Smoking and Neurodevelopment Associations by Analysis Method (n=162) 

 

Any smoking during 
pregnancy 

Smoking in First 
Trimester Only 

Smoking in Second or 
Third Trimesters 

    
Impulsivity & Externalizing factor, 
Varimax

2 
-0.51 (-0.92, -0.10) -0.29 (-0.80, 0.22) -0.82 (-1.42, -0.23) 

Impulsivity & Externalizing factor, 
Promax

1
 -0.51 (-0.92, -0.10) -0.27 (-0.79, 0.24) -0.84 (-1.45, -0.24) 

Externalizing Composite
3 

-0.60 (-1.00, -0.21) -0.36 (-0.84, 0.13) -0.97 (-1.55, -0.39) 

    

Executive Functioning factor, 
Varimax

2
 -0.32 (-0.75, 0.10) -0.32 (-0.85, 0.21) -0.32 (-0.94, 0.30) 

Executive Functioning factor, 
Promax

1
 -0.43 (-0.85, -0.02) -0.30 (-0.82, 0.22) -0.63 (-1.24, -0.02) 

Metacognition Index
3
 -0.47 (-0.86, -0.09) -0.23 (-0.71, 0.25) -0.55 (-1.12, 0.03) 

    

Internalizing factor, Varimax
2
 0.26 (-0.16, 0.68) 0.32 (-0.21, 0.84) 0.18 (-0.43, 0.80) 

Internalizing factor, Promax
1
 -0.03 (-0.45, 0.39) 0.11 (-0.41, 0.63) -0.24 (-0.85, 0.38) 

Internalizing Composite
3
 0.07 (-0.33, 0.47) 0.18 (-0.32, 0.68) -0.09 (-0.68, 0.50) 

    
Perceptual Reasoning factor, 
Varimax

2
 0.06 (-0.33, 0.45) 0.28 (-0.21, 0.77) -0.26 (-0.83, 0.31) 

Perceptual Reasoning factor, 
Promax

1
 0.06 (-0.31, 0.42) 0.25 (-0.21, 0.71) -0.22 (-0.76, 0.31) 

Perceptual Reasoning IQ
3
 0.14 (-0.25, 0.53) 0.37 (-0.11, 0.85) -0.19 (-0.76, 0.38) 

    

Adaptability factor, Varimax
2
 -0.08 (-0.48, 0.33) 0.06 (-0.45, 0.56) -0.27 (-0.85, 0.32) 

Adaptability factor, Promax
1
 -0.27 (-0.67, 0.14) -0.10 (-0.60, 0.41) -0.51 (-1.10, 0.08) 

Adaptive Skills Composite
3
 -0.33 (-0.71, 0.06) -0.10 (-0.58, 0.37) -0.66 (-1.23, -0.10) 

    

Processing Speed factor, Varimax
2
 -0.16 (-0.57, 0.26) -0.09 (-0.61, 0.43) -0.26 (-0.87, 0.36) 

Processing Speed factor, Promax
1
 -0.19 (-0.60, 0.23) -0.10 (-0.62, 0.42) -0.32 (-0.93, 0.29) 

Processing Speed IQ
3
 -0.22 (-0.66, 0.23) -0.11 (-0.69, 0.48) -0.46 (-1.07, 0.15) 

    

Verbal Intelligence, Varimax
2
 0.04 (-0.31, 0.40) -0.12 (-0.56, 0.32) 0.28 (-0.23, 0.79) 

Verbal Intelligence, Promax
1
 0.11 (-0.21, 0.42) 0.07 (-0.32, 0.46) 0.17 (-0.29, 0.63) 

Verbal IQ
3
 0.15 (-0.16, 0.46) 0.10 (-0.29, 0.49) 0.22 (-0.24, 0.68) 

All models adjusted for maternal race, maternal education at follow-up, alcohol consumption during pregnancy, 
and HOME scores  
1 

Promax (oblique) rotation allows factors to correlate 
2 

Varimax (orthogonal) rotation factors are statistically uncorrelated with each other.  
3 

The composite/index items are the highest loading composite item for each factor.    
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APPENDIX 4 BIVARIATE ASSOCIATIONS BETWEEN EARLY LIFE CHARACTERISTICS 
AND NEURODEVELOPMENTAL FACTORS1 IN THE MOUNT SINAI CHILDREN’S 

ENVIRONMENTAL HEALTH CENTER 

 
 
 

 
 
 

N Factor 1 
Impulsivity 

&Externalizing 

β (95% CI) 

Factor 2 
Executive 

Functioning 

β (95% CI) 

Factor 3 
Internalizing 

β (95% CI) 

Factor 4 
Perceptual 
Reasoning 

β (95% CI) 

Factor 5 
Adaptability 

β (95% CI) 

Factor 6 
Processing 

Speed 

β (95% CI) 

Factor 7 
Verbal 

Intelligence 

β (95% CI) 

Mothers Marital Status at Follow up       

 Married 61 referent referent referent referent referent referent referent 

 Living with 
Partner 

39 0.12 (-0.28, 
0.51) 

0.20 (-0.20, 
0.61) 

0.11 (-0.30, 
0.51) 

-0.29 (-0.69, 
0.10) 

-0.25 (-0.64, 
0.14) 

0.20 (-0.20, 
0.59) 

-0.48 (-0.87, -
0.08) 

 Single/Divorced/ 
Widowed 

99 -0.27 (-0.58, 
0.05) 

0.07 (-0.25, 
0.39) 

-0.02 (-0.34, 
0.30) 

-0.41 (-0.73, -
0.10) 

-0.46 (-0.76, -
0.15) 

0.09 (-0.23, 
0.40) 

-0.33 (-0.65, -
0.02) 

 Pr>chisq  0.07 0.61 0.80 0.04 0.02 0.62 0.04 

          

Maternal IQ        

 IQ < 100 91 referent referent referent referent referent referent referent 

 IQ ≥ 100 45 0.12 (-0.24, 
0.48) 

-0.49 (-0.85, -
0.13) 

-0.04 (-0.38, 
0.30) 

0.54 (0.19, 
0.89) 

0.18 (-0.18, 
0.53) 

0.06 (-0.28, 
0.39) 

0.80 (0.51, 
1.10) 

 Pr> chisq  0.50 0.01 0.82 <0.01 0.32 0.74 <0.01 
          

Maternal Education at Follow Up       

 High school or 
less 

84 referent referent referent referent referent referent referent 

 Some college 81 -0.06 (-0.36, 
0.24) 

-0.26 (-0.56, 
0.04) 

0.15 (-0.16, 
0.45) 

0.04 (-0.25, 
0.33) 

0.07 (-0.23, 
0.37) 

-0.15 (-0.46, 
0.15) 

0.55 (0.28, 
0.82) 

 Bachelor’s 
degree 

45 -0.16 (-0.52, 
0.21) 

-0.33 (-0.69, 
0.03) 

0.18 (-0.18, 
0.54) 

0.75 (0.40, 
1.09) 

0.46 (0.11, 
0.82) 

0.05 (-0.31, 
0.41) 

1.18 (0.85, 
1.50) 

 Pr> chisq  0.70 0.11 0.51 <0.01 0.03 0.47 <0.01 

          

Maternal Age at Delivery       

 <20 98 referent referent referent referent referent referent referent 

 20-25 55 -0.11 (-0.44, 
0.22) 

0.01 (-0.32, 
0.34) 

0.13 (-0.20, 
0.46) 

0.09 (-0.22, 
0.40) 

0.06 (-0.26, 
0.38) 

-0.22 (-054, 
0.11) 

0.28 (-0.04, 
0.59) 

 >25 57 -0.18 (-0.50, 
0.15) 

-0.31 (-0.63, 
0.02) 

-0.05 (-0.38, 
0.27) 

0.70 (0.39, 
1.01) 

0.50 (0.18, 
0.82) 

-0.16 (-0.48, 
0.17) 

0.74 (0.43, 
1.05) 

 Pr> chisq  0.54 0.13 0.61 <0.01 <0.01 0.38 <0.01 

          

Maternal Race       

 Black or other 
race 

57 referent referent referent referent referent referent referent 

 White 31 0.01 (-0.43, 
0.44) 

-0.33 (-0.76, 
0.10) 

0.07 (-0.37, 
0.50) 

1.14 (0.74, 
1.55) 

0.30 (-0.13, 
0.74) 

-0.01 (-0.45, 
0.43) 

1.05 (0.65, 
1.44) 

 Hispanic 122 0.22 (-0.09, 
0.53) 

-0.28 (-0.59, 
0.03) 

-0.04 (-0.35, 
0.28) 

0.14 (-0.15, 
0.43) 

-0.00 (-0.31, 
0.31) 

-0.00 (-0.31, 
0.31) 

-0.25 (-0.53, 
0.03) 

 Pr> chisq  0.29 0.16 0.87 <0.01 0.29 0.99 <0.01 

          

Maternal Smoking During Pregnancy       

 None 134 referent referent referent referent referent referent referent 

 Any 28 -0.53 (-0.91, -
0.15) 

-0.31 (-0.73, 
0.10) 

0.26 (-0.14, 
0.66) 

0.02 (-0.38, 
0.43) 

-0.18 (-0.59, 
0.23) 

-0.23 (-0.62, 
0.17) 

-0.06 (-0.44, 
0.33) 
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N Factor 1 
Impulsivity 

&Externalizing 

β (95% CI) 

Factor 2 
Executive 

Functioning 

β (95% CI) 

Factor 3 
Internalizing 

β (95% CI) 

Factor 4 
Perceptual 
Reasoning 

β (95% CI) 

Factor 5 
Adaptability 

β (95% CI) 

Factor 6 
Processing 

Speed 

β (95% CI) 

Factor 7 
Verbal 

Intelligence 

β (95% CI) 

 Pr> chisq  0.01 0.14 0.20 0.91 0.39 0.26 0.77 
          

Maternal Alcohol Use During 
Pregnancy 

      

 None 132 referent referent referent referent referent referent referent 

 Any 29 0.08 (-0.32, 
0.48) 

-0.07 (-0.50, 
0.35) 

0.11 (-0.30, 
0.52) 

0.68 (0.28, 
1.09) 

0.07 (-0.35, 
0.48) 

-0.01 (-0.41, 
0.39) 

0.74 (0.36, 
1.12) 

 Pr> chisq  
0.68 0.73 0.61 <0.01 0.74 0.96 <0.01 

          

Maternal Canned Fish Consumption During 
Pregnancy 

     

 < 1 times per 
week 

145 referent referent referent referent referent referent referent 

 1 or more times 
per week 

22 -0.16 (-0.59, 
0.27) 

-0.27 (-0.73, 
0.18) 

0.24 (-0.20, 
0.68) 

0.83 (0.40, 
1.26) 

0.36 (-0.09, 
0.80) 

-0.17 (-0.61, 
0.27) 

0.32 (-0.10, 
0.74) 

 Pr>Chisq  0.47 0.24 0.29 <0.01 0.12 0.45 0.14 
          

Child Sex        

 Male 100 referent referent referent referent referent referent referent 

 Female 105 0.35 (0.08, 
0.62) 

-0.11 (-0.39, 
0.16) 

-0.28 (-0.55, 
0.00) 

-0.27 (-0.54, 
0.00) 

0.42 (0.15, 
0.68) 

0.40 (0.13, 
0.67) 

-0.12 (-0.39, 
0.16) 

 Pr> chisq  0.01 0.41 0.05 0.05 <0.01 <0.01 0.40 
          

Gestational Age       
 Term Birth 150 referent referent referent referent referent referent referent 

 Preterm 60 0.28 (-0.02, 
0.57) 

-0.13 (-0.43, 
0.17) 

-0.34 (-0.64, -
0.05) 

-0.19 (-0.49, 
0.10) 

-0.13 (-0.43, 
0.17) 

-0.15 (-0.45, 
0.14) 

-0.46 (-0.75, -
0.16) 

 Pr> chisq  0.07 0.38 0.02 0.20 0.39 0.31 <0.01 
          
Head Circumference       

 Centimeters, 
continuous 

162 -0.04 (-0.14, 
0.06) 

-0.12 (-0.22, -
0.02) 

0.04 (-0.06, 
0.14) 

0.15 (0.05, 
0.24) 

0.00 (-0.10, 
0.10) 

0.07 (-0.03, 
0.17) 

0.06 (-0.03, 
0.16) 

 Pr> chisq  0.43 0.02 0.47 <0.01 0.99 0.17 0.19 
          

Birth weight       

 < median (< 
3270 g) 

76 referent referent referent referent referent referent referent 

 ≥Median (≥ 
3270 g) 

86 -0.25 (-0.55, 
0.04) 

-0.10 (-0.41, 
0.22) 

0.08 (-0.23, 
0.39) 

0.21 (-0.09, 
0.52) 

0.20 (-0.11, 
0.50) 

0.19 (-0.11, 
0.49) 

-0.12 (-0.41, 
0.17) 

 Pr> chisq  0.10 0.54 0.61 0.17 0.21 0.21 0.41 
          

Birth Length         

 <median (<51 
cm) 

75 referent referent referent referent referent referent referent 

 ≥median(≥51 
cm) 

85 -0.22 (-0.52, 
0.08) 

-0.17 (-0.49, 
0.14) 

0.33 (0.02, 
0.63) 

0.17 (-0.14, 
0.48) 

0.05 (-0.27, 
0.36) 

-0.02 (-0.32, 
0.29) 

-0.14 (-0.44, 
0.15) 

 Pr> chisq  0.15 0.29 0.03 0.29 0.77 0.90 0.34 
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N Factor 1 
Impulsivity 

&Externalizing 

β (95% CI) 

Factor 2 
Executive 

Functioning 

β (95% CI) 

Factor 3 
Internalizing 

β (95% CI) 

Factor 4 
Perceptual 
Reasoning 

β (95% CI) 

Factor 5 
Adaptability 

β (95% CI) 

Factor 6 
Processing 

Speed 

β (95% CI) 

Factor 7 
Verbal 

Intelligence 

β (95% CI) 

HOME Observation for Measurement of the Environment Scores     

 Overall Score 
Continuous  156 

0.00 (-0.02, 
0.03) 

0.01 (-0.01, 
0.04) 

0.01 (-0.02, 
0.04) 

0.01 (-0.02, 
0.04) 

0.04 (0.01, 
0.06) 

0.02 (0.00, 
0.05) 

0.01 (-0.01, 
0.04) 

 Pr> chisq  0.94 0.37 0.48 0.44 <0.01 0.07 0.33 
          
 Responsivity 
Ordinal 
categorical 156 

0.04 (-0.14, 
0.22) 

-0.01 (-0.20, 
0.18) 

0.12 (-0.07, 
0.30) 

0.05 (-0.14, 
0.23) 

0.13 (-0.05, 
0.31) 

0.01 (-0.17, 
0.19) 

0.15 (-0.03, 
0.32) 

 Pr> chisq  0.64 0.89 0.21 0.63 0.15 0.88 0.09 
          
 Involvement 
Ordinal 
categorical 156 

0.03 (-0.16, 
0.23) 

-0.04 (-0.25, 
0.16) 

0.04 (-0.16, 
0.24) 

0.22 (0.02, 
0.42) 

0.23 (0.04, 
0.42) 

0.09 (-0.10, 
0.29) 

0.13 (-0.06, 
0.32) 

 Pr> chisq  0.76 0.68 0.70 0.03 0.02 0.36 0.19 
  

        
 Organization 
Ordinal 
categorical 156 

-0.11 (-0.29, 
0.07) 

0.28 (0.09, 
0.47) 

0.21 (0.02, 
0.39) 

0.02 (-0.17, 
0.20) 

0.28 (0.10, 
0.46) 

-0.01 (-0.19, 
0.17) 

0.00 (-0.18, 
0.18) 

 Pr> chisq  0.24 <0.01 0.03 0.86 <0.01 0.94 0.99 
          
 Learning 
materials 
Ordinal 
categorical 156 

0.01 (-0.18, 
0.20) 

0.06 (-0.14, 
0.26) 

0.11 (-0.08, 
0.31) 

0.16 (-0.03, 
0.36) 

0.06 (-0.13, 
0.26) 

0.16 (-0.03, 
0.35) 

0.22 (0.04, 
0.41) 

 Pr> chisq  0.89 0.54 0.26 0.10 0.52 0.10 0.02 
          
 Acceptance 
Ordinal 
categorical 156 

0.07 (-0.13, 
0.26) 

-0.03 (-0.24, 
0.17) 

0.01 (-0.19, 
0.21) 

0.03 (-0.17, 
0.23) 

0.18 (-0.02, 
0.37) 

0.10 (-0.10, 
0.29) 

0.11 (-0.08, 
0.30) 

 Pr>chisq  0.51 0.77 0.95 0.79 0.08 0.32 0.25 
          
 Variety 
Ordinal 
categorical 156 

0.00 (-0.20, 
0.19) 

0.21 (0.00, 
0.42) 

0.16 (-0.04, 
0.36) 

0.13 (-0.08, 
0.33) 

0.22 (0.03, 
0.42) 

0.09 (-0.11, 
0.29) 

0.10 (-0.09, 
0.30) 

 Pr>chisq  0.97 0.05 0.12 0.22 0.03 0.37 0.31 
1
Higher factor scores indicate better outcomes (e.g., less impulsivity/internalizing, lower levels of anxiety/internalizing 

behaviors, higher verbal intelligence) 
Characteristics presented for all participants who were included in the factor analysis, where data is available
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APPENDIX 5 FREQUENTIST ASSOCIATIONS BETWEEN OPS AND 
NEURODEVELOPMENTAL FACTOR SCORES, WITH AND WITHOUT ADJUSTMENT FOR 

CO-EXPOSURES 

 ∑DMPs (, 95% CI) ∑DEPs (, 95% CI) 

 No co-exposure 

adjustment 

(n=157) 

Co-exposure 

adjustment
†
 

(n=141) 

No co-exposure 

adjustment (n=156) 

Co-exposure 

adjustment (n=141) 

Impulsivity & 

Externalizing 

0.03 (-0.11, 0.17) -0.02 (-0.18, 0.14) 0.07 (-0.10, 0.23) 0.11 (-0.08, 0.30) 

Executive Functioning 0.18 (0.03, 0.33) 0.18 (0.01, 0.36) -0.02 (-0.20, 0.15) -0.11 (-0.31, 0.10) 

Internalizing -0.16 (-0.30, -0.02) -0.16 (-0.31, 0.00) -0.08 (-0.23, 0.08) -0.02 (-0.20, 0.15) 

Perceptual Reasoning 0.05 (-0.09, 0.19) -0.01 (-0.17, 0.16) -0.01 (-0.17, 0.15) 0.00 (-0.19, 0.20) 

Adaptability -0.03 (-0.18, 0.12) -0.01 (-0.18, 0.15) -0.10 (-0.26, 0.07) -0.11 (-0.30, 0.08) 

Processing Speed -0.01 (-0.16, 0.13) 0.01 (-0.16, 0.18) 0.04 (-0.13, 0.21) -0.02 (-0.22, 0.18) 

Verbal Intelligence 0.06 (-0.06, 0.19) 0.07 (-0.07, 0.21) -0.04 (-0.18, 0.11) -0.04 (-0.21, 0.13) 

Working Memory Index 0.07 (-0.08, 0.23) 0.16 (0.00, 0.33) -0.16 (-0.33, 0.02) -0.23 (-0.42, -0.04) 

¥
The frequentist beta coefficients and 95% confidence intervals are from models that include one OP at a time (DEPs alone, 

DMPs alone – “no co-exposure adjustment”),  and also models that include both ∑DAP measures (∑DEPs and ∑DMPs), along 

with the molar sum of DEHP, the molar sum of low-molecular weight phthalates (MIBP, MEP, MBP) and the individual phthalate 

congeners of MCPP, MBZP, as well as the individual phenol metabolites BPA, BP3, DCP25, and triclosan, and the pyrethroid 

metabolite 3PBA (“co-exposure adjustment”). Factor scores have been scaled so that positive scores indicate more positive 

outcomes and negative scores indicate more adverse outcomes 

HOME scores, maternal IQ, maternal education at follow-up, maternal marital status at follow-up, maternal age, maternal 

race/ethnicity, maternal smoking during pregnancy, maternal alcohol consumption during pregnancy, maternal canned fish 

consumption during pregnancy, and alcohol were included in a DAG used to derive minimally sufficient sets for each facto
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APPENDIX 6 CODE USED IN DISSERTATION 

##SAS CODE FOR CREATING FACTORS 
**VARIMAX 
proc factor data=standardize nfactors=7 rotate=varimax  score outstat=pca_7 fuzz=0.3 simple msa ; 
var block_scale code_scale matreason_scale picconcep_scale vocab_scale symsearch_scale 
PIQ_PRI PSQ_PSI VIQ_VCI fsiq br_bri_mean br_emotional_mean br_inhibit_mean br_initiate_mean 
br_memory_mean br_mi_mean br_monitor_mean  
br_organization_mean br_plan_mean br_shift_mean br_gec_mean 
adp_t_mean0123 agg_t_mean0123 anx_t_mean0123 att_t_mean0123 hyp_t_mean0123 
wth_t_mean0123 intr_t_mean0123 ext_t_mean0123 bsi_t_mean0123 
dep_t_mean0123 som_t_mean0123 aty_t_mean0123 soc_t_mean0123 adpt_t_mean0123 
led_t_mean0123 con_t_mean0123; 
RUN; 
 
proc score data=standardize score=pca_7 out=pca_7scores; 
var block_scale code_scale matreason_scale picconcep_scale vocab_scale symsearch_scale 
PIQ_PRI PSQ_PSI VIQ_VCI fsiq br_bri_mean br_emotional_mean br_inhibit_mean br_initiate_mean 
br_memory_mean br_mi_mean br_monitor_mean  
br_organization_mean br_plan_mean br_shift_mean br_gec_mean 
adp_t_mean0123 agg_t_mean0123 anx_t_mean0123 att_t_mean0123 hyp_t_mean0123 
wth_t_mean0123 intr_t_mean0123 ext_t_mean0123 bsi_t_mean0123 
dep_t_mean0123 som_t_mean0123 aty_t_mean0123 soc_t_mean0123 adpt_t_mean0123 
led_t_mean0123 con_t_mean0123 ; 
run; 
************PROMAX ROTATED FACTORS; 
 
proc factor data=standardize nfactors=7 rotate=promax  score outstat=promax fuzz=0.3 simple msa ; 
var block_scale code_scale matreason_scale picconcep_scale vocab_scale symsearch_scale 
PIQ_PRI PSQ_PSI VIQ_VCI fsiq br_bri_mean br_emotional_mean br_inhibit_mean br_initiate_mean 
br_memory_mean br_mi_mean br_monitor_mean  
br_organization_mean br_plan_mean br_shift_mean br_gec_mean 
adp_t_mean0123 agg_t_mean0123 anx_t_mean0123 att_t_mean0123 hyp_t_mean0123 
wth_t_mean0123 intr_t_mean0123 ext_t_mean0123 bsi_t_mean0123 
dep_t_mean0123 som_t_mean0123 aty_t_mean0123 soc_t_mean0123 adpt_t_mean0123 
led_t_mean0123 con_t_mean0123; 
RUN; 
 
proc score data=standardize score=promax out=promax_scores type='pattern'; 
var block_scale code_scale matreason_scale picconcep_scale vocab_scale symsearch_scale 
PIQ_PRI PSQ_PSI VIQ_VCI fsiq br_bri_mean br_emotional_mean br_inhibit_mean br_initiate_mean 
br_memory_mean br_mi_mean br_monitor_mean  
br_organization_mean br_plan_mean br_shift_mean br_gec_mean 
adp_t_mean0123 agg_t_mean0123 anx_t_mean0123 att_t_mean0123 hyp_t_mean0123 
wth_t_mean0123 intr_t_mean0123 ext_t_mean0123 bsi_t_mean0123 
dep_t_mean0123 som_t_mean0123 aty_t_mean0123 soc_t_mean0123 adpt_t_mean0123 
led_t_mean0123 con_t_mean0123 ; 
run; 
 
##WINBUGS CODE, shrinking to mean of 0 and sd of 1 
 

dedp_nm_l_LN[i] ~ djl.dnorm.trunc(-2.5197724 , 0.37500623, -500, -0.79208) 

detp_nm_l_LN[i] ~ djl.dnorm.trunc(2.33299,  1.40313628, -500, -0.004885072) 
dep_nm_l_LN[i] ~ djl.dnorm.trunc(0.53881184,  0.1827317,-500, -0.085870945) 
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dmp_nm_l_LN[i] ~ djl.dnorm.trunc(2.61715, 0.42574248, -500, 0.115065123) 
dmtp_nm_l_LN[i]  ~ djl.dnorm.trunc(3.2244,  0.39832273,-500, -0.004885072) 
dmdp_nm_l_LN[i]  ~ djl.dnorm.trunc(0.71069863, 0.50155078, -500, -0.273969564) 
 
##calculating DAPS sum 
##ALL IN NANOMOLES 
 
dep_sum[i] <- log(exp(dedp_nm_l_LN[i])+exp(detp_nm_l_LN[i])+exp(dep_nm_l_LN[i])) 
dmp_sum[i] <- log(exp(dmdp_nm_l_LN[i])+exp(dmtp_nm_l_LN[i])+exp(dmp_nm_l_LN[i])) 
dap_sum[i] <- log(exp(dedp_nm_l_LN[i])+exp(detp_nm_l_LN[i])+exp(dep_nm_l_LN[i]) + 
exp(dmdp_nm_l_LN[i])+exp(dmtp_nm_l_LN[i])+exp(dmp_nm_l_LN[i])) 
 
dedp_out[i] <-dedp_nm_l_LN[i] 
detp_out[i] <-detp_nm_l_LN[i] 
dep_out[i] <-dep_nm_l_LN[i] 
dmdp_out[i] <-dmdp_nm_l_LN[i] 
dmtp_out[i] <-dmtp_nm_l_LN[i] 
dmp_out[i] <-dmp_nm_l_LN[i] 
 
dep_sum_out[i] <- dep_sum[i] 
dmp_sum_out[i] <-dmp_sum[i] 
 
 
#means,sds of daps -- exported the DAPS with the values below LOD imputed, incl metabolites 
# and summary measures, then merged with variables that had actual measured value, took means and 
got: 
#dep -5.0416379 , 1.7373222 
#detp -4.7876878, 1.0523500 
#dedp -7.0713732, 0.6675843 
#dmp -4.3240917, 1.4910056 
#dmdp -6.0450593, 1.2687206 
#dmtp -3.6438471, 1.5411503 
#depsum -3.8359428, 1.1403774 
#dmpsum -2.9558573, 1.3550287 
#dapsum -2.4316833, 1.1579961 
 
##calculate cratio 
# predict creatinine from variables 
 
lncreat[i] ~dnorm(mu.creat[i], tau.creat) 
mu.creat[i] <-  alpha.creat +  
     beta.creat[1]*MOMAGE[i] +  
     beta.creat[2]*mom_BMI[i] +  
     beta.creat[3]*baseline_hsorless[i] +  
     beta.creat[4]*white[i] +  
     beta.creat[5]*hispanic[i]  
 

 
#creatinine ratio 
cratio[i] <- (exp(lncreat[i])) / (exp(mu.creat[i])) 
 
#creatinine correct, log metabolites 
cratio_dep[i] <-  log(exp(dep_sum[i]) /cratio[i]) 
cratio_dmp[i] <- log(exp(dmp_sum[i]) /cratio[i]) 
cratio_dap[i] <-  log(exp(dap_sum[i]) /cratio[i]) 
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cratio_dep_out[i] <- cratio_dep[i] 
cratio_dmp_out[i] <-cratio_dmp[i] 
cratio_dap_out[i] <- cratio_dap[i] 
 
 
#standardize cratios 
#cratio_dapz[i] <-  
cratio_depz[i] <- (cratio_dep[i] - 3.042524)/ 1.15099 
cratio_dmpz[i] <- (cratio_dmp[i] - 3.837248)/1.6048 
 
#standardize dmpsum 
dmp_sumz[i] <- (dmp_sum[i] - 3.3096552) / 1.267953 
dep_sumz[i] <- (dep_sum[i] - 2.49507)/1.144497 
 
 
Standard_scorez[i] <- (Standard_score[i] - 93.8 )/14.3 
###OTHER VALUES 
 
 
##PTHALATES  

 mbp_log[i] ~ djl.dnorm.trunc(3.58629, 0.788910677,-500,-0.3566749) 
 mbzp_log[i] ~ djl.dnorm.trunc(2.73489,0.48863088,-500,-0.5516476) 
 mcpp_log[i] ~ djl.dnorm.trunc(1.16315, 0.94624838,-500,-1.6094379) 
 mecpp_log[i] ~ djl.dnorm.trunc(3.55535,0.47212255,-500,0.0953102) 
 mehhp_log[i] ~ djl.dnorm.trunc(2.97041,0.33366341,-500,-0.9162907) 
 mehp_log[i] ~ djl.dnorm.trunc(1.79176,0.36260978,-500,-0.1053605) 
 meohp_log[i] ~ djl.dnorm.trunc(2.85647,0.36732536,-500, 0.0953102) 
 mep_log[i] ~ djl.dnorm.trunc(5.52228,0.43680145,-500,0.1151128) 
 mibp_log[i] ~ djl.dnorm.trunc(1.82455,0.96914124,-500,-1.2039728) 
#other xenobiotics: 
#no non detects for dcp25 or bp3 

bpa_ln[i] ~ djl.dnorm.trunc(0.26236, 0.97112055, -500, -0.9162907) 
trcs_ln[i] ~ djl.dnorm.trunc(2.37955, 0.22015845, -500, 0.80) 
 
#phenols and pyrethroids list: 
#bpa_ln dcp24_ln dcp25_ln bp3_ln trcs_ln tcp245_ln pba_bin dcca_bin 

 # Calculate dehp sum 
 dehp_log[i] <- log((exp(mehp_log[i])/278.34348)+(exp(mehhp_log[i])/294.34288) 
    +(exp(meohp_log[i])/292.327)+(exp(mecpp_log[i])/308.3264)) 
     
 lophth_log[i] <- log((exp(mbp_log[i])/222.24) + (exp(mibp_log[i])/ 222.26) +  
      exp(mep_log[i])/94.184) 
 
 # Standardize metabolites to mean and SD of observed distributions 
 

mbpz[i] <-(mbp_log[i] - 3.58629)/1.12572449 
mbzpz[i] <-(mbzp_log[i]- 2.73489 )/1.430571429 
mcppz[i] <-(mcpp_log[i]- 1.16315)/1.028010204 
mecppz[i] <-(mecpp_log[i]- 3.55535)/1.455367347 
mehhpz[i] <-(mehhp_log[i]- 2.97041)/1.731193878 
mehpz[i] <-(mehp_log[i]-  1.79176)/1.660658163 
meohpz[i] <-(meohp_log[i] -2.85647)/1.649964286 
mepz[i] <-(mep_log[i] - 5.52228)/1.513066327 
mibpz[i] <-(mibp_log[i]- 1.82455)/1.015795918 
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bpaz[i]<- (bpa_ln[i]- 0.26236)/1.014760204 
trcsz[i]<-(trcs_ln[i] - 2.37955)/2.131239796 
bp3z[i] <- (bp3_ln[i] - 2.4019948)/2.0856463 
dcp25z[i] <- (dcp25_ln[i] - 4.1312213)/1.5600545 
dehpz[i] <- (dehp_log[i] - 0.0106402)/0.9915109 

 
 
 
 
##actual model 
factor1reverse[i] ~dnorm (mu.f1[i], tau.f1) 
factor2reverse[i] ~ dnorm (mu.f2[i], tau.f2) 
factor3reverse[i] ~ dnorm (mu.f3[i], tau.f3) 
Factor4[i] ~ dnorm (mu.f4[i], tau.f4) 
Factor5[i] ~ dnorm (mu.f5[i], tau.f5) 
Factor6[i] ~dnorm (mu.f6[i], tau.f6) 
Factor7[i] ~dnorm(mu.f7[i], tau.f7) 
 
mu.f1[i] <- alpha.f1 + A.f1[i] + B.f1[i] + C.f1[i] 
mu.f2[i] <- alpha.f2 + A.f2[i] + B.f2[i] +  C.f2[i] 
mu.f3[i] <- alpha.f3 + A.f3[i] + B.f3[i] + C.f3[i] 
mu.f4[i] <- alpha.f4 + A.f4[i] + B.f4[i] +  C.f4[i]   
mu.f5[i] <- alpha.f5 + A.f5[i] + B.f5[i] +  C.f5[i]  
mu.f6[i] <- alpha.f6 + A.f6[i] + B.f6[i] +  C.f6[i] 
mu.f7[i] <- alpha.f7 + A.f7[i] + B.f7[i] + C.f7[i] 
 
#could shrink by classes to get more power  
#so beta phthalte is normal, alpha, sigma, put a prior on alpha, so you're shrinking towards a common 
mean 
# can drop the interactions too if theres nothing there 
# could try including DEP and just shrink everything 
 
#factor1 
#A for continous variables 
 A.f1[i]<-  
      beta.dm1*dmp_sumz[i] 
     + beta.de1*dep_sumz[i] 
     + beta.phth1[1]*dehpz[i] 
     + beta.phth1[2]*mbzpz[i]  
     + beta.phth1[3]*mcppz[i]  
     + beta.phth1[4]*mepz[i]  
     + beta.phth1[5]*mbpz[i]  
     + beta.phth1[6]*mibpz[i]  
   
 B.f1[i] <-    
      beta.phen1[1]*bpaz[i] 
     + beta.phen1[2]*bp3z[i] 
     + beta.phen1[3]*trcsz[i] 
     + beta.phen1[4]*dcp25z[i] 
     + beta.pyr1[1]*pba_bin[i] 
    # + beta.pyr1[2]*dcca_bin[i] 
 
 
 C.f1[i] <- 
        beta.f1[1]*lncreat[i] 
     +  beta.f1[2]*batch_ops[i] 
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     + beta.f1[3]*single_f[i] 
     +beta.f1[4]*SmokePreg[i] 
     +beta.f1[5]*Male[i] 
     +beta.f1[6]*home_yr1yr2[i] 
     +beta.f1[7]*spanish[i] 
     +beta.f1[8]*hispanic[i] 
     +beta.f1[9]*married_f[i] 

          
 
 
#factor2 
 
 A.f2[i]<-  
      beta.dm2*dmp_sumz[i]   
     +beta.de2*dep_sumz[i]   
     + beta.phth2[1]*dehpz[i] 
     + beta.phth2[2]*mbzpz[i]  
     + beta.phth2[3]*mcppz[i]  
     + beta.phth2[4]*mepz[i]  
     + beta.phth2[5]*mbpz[i]  
     + beta.phth2[6]*mibpz[i]  
   
 B.f2[i] <-    
      beta.phen2[1]*bpaz[i] 
     + beta.phen2[2]*bp3z[i] 
     + beta.phen2[3]*trcsz[i] 
     + beta.phen2[4]*dcp25z[i] 
     + beta.pyr2[1]*pba_bin[i] 
    # + beta.pyr2[2]*dcca_bin[i] 
 C.f2[i] <- 
        beta.f2[1]*lncreat[i] 
     +  beta.f2[2]*batch_ops[i] 
     + beta.f2[3]*organization_yr1yr2_3[i] 
     +beta.f2[4]*involvement_yr1yr2_3[i] 
     +beta.f2[5]*MOMAGE[i] 
     +beta.f2[6]*Standard_scorez[i] 
     +beta.f2[7]*carer_bach[i] 
     +beta.f2[8]*white[i] 
     +beta.f2[9]*hispanic[i] 
     +beta.f2[10]*SmokePreg[i] 
     +beta.f2[11]*Male[i] 
     +beta.f2[12]*carer_hs[i] 
 
 
 
#factor3 
 A.f3[i]<-  
      beta.dm3*dmp_sumz[i]   
      + beta.de3*dep_sumz[i] 
     + beta.phth3[1]*dehpz[i] 
     + beta.phth3[2]*mbzpz[i]  
     + beta.phth3[3]*mcppz[i]  
     + beta.phth3[4]*mepz[i]  
     + beta.phth3[5]*mbpz[i]  
     + beta.phth3[6]*mibpz[i]  
   



 

 114 

 B.f3[i] <-    
      beta.phen3[1]*bpaz[i] 
     + beta.phen3[2]*bp3z[i] 
     + beta.phen3[3]*trcsz[i] 
     + beta.phen3[4]*dcp25z[i] 
     + beta.pyr3[1]*pba_bin[i] 
     + beta.pyr3[2]*dcca_bin[i] 
 C.f3[i] <- 
        beta.f3[1]*lncreat[i] 
     +  beta.f3[2]*batch_ops[i] 
     + beta.f3[3]*organization_yr1yr2_3[i] 
     +beta.f3[4]*carer_hs[i] 
      
#factor4 
 A.f4[i]<-  
      beta.dm4*dmp_sumz[i]  
     + beta.de4*dep_sumz[i] 
     + beta.phth4[1]*dehpz[i] 
     + beta.phth4[2]*mbzpz[i]  
     + beta.phth4[3]*mcppz[i]  
     + beta.phth4[4]*mepz[i]  
     + beta.phth4[5]*mbpz[i]  
     + beta.phth4[6]*mibpz[i]  
   
 B.f4[i] <-    
      beta.phen4[1]*bpaz[i] 
     + beta.phen4[2]*bp3z[i] 
     + beta.phen4[3]*trcsz[i] 
     + beta.phen4[4]*dcp25z[i] 
     + beta.pyr4[1]*pba_bin[i] 
    # + beta.pyr4[2]*dcca_bin[i] 
 C.f4[i] <- 
        beta.f4[1]*lncreat[i] 
     + beta.f4[2]*batch_ops[i] 
     +beta.f4[3]*white[i] 
     +beta.f4[4]*single_f[i] 
     +beta.f4[5]*MOMAGE[i] 
     +beta.f4[6]*Standard_scorez[i] 
     +beta.f4[7]*organization_yr1yr2_3[i] 
     +beta.f4[8]*carer_bach[i] 
     +beta.f4[9]*involvement_yr1yr2_3[i] 
     +beta.f4[10]*alcohol_cat1 [i] 
     +beta.f4[11]*spanish[i] 
     +beta.f4[12]*examiner2[i] 
     +beta.f4[13]*examiner3[i] 
     +beta.f4[14]*examiner4[i] 
     +beta.f4[15]*examiner5[i]  
     +beta.f4[16]*canfish1xweek[i] 
         
 
#factor5 
 A.f5[i]<-  
      beta.dm5*dmp_sumz[i]  
     + beta.de5*dep_sumz[i] 
     + beta.phth5[1]*dehpz[i] 
     + beta.phth5[2]*mbzpz[i]  
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     + beta.phth5[3]*mcppz[i]  
     + beta.phth5[4]*mepz[i]  
     + beta.phth5[5]*mbpz[i]  
     + beta.phth5[6]*mibpz[i]  
   
 B.f5[i] <-    
      beta.phen5[1]*bpaz[i] 
     + beta.phen5[2]*bp3z[i] 
     + beta.phen5[3]*trcsz[i] 
     + beta.phen5[4]*dcp25z[i] 
     + beta.pyr5[1]*pba_bin[i] 
    # + beta.pyr5[2]*dcca_bin[i] 
 C.f5[i] <- 
        beta.f5[1]*lncreat[i] 
     +  beta.f5[2]*batch_ops[i] 
     +beta.f5[3]*MOMAGE[i] 
     + beta.f5[4]*Male[i] 
     +beta.f5[5]*organization_yr1yr2_3[i]  
     +beta.f5[6]*learning_mat_yr1yr2_3[i] 
     +beta.f5[7]*single_f [i] 
     +beta.f5[8]*married_f[i] 
     +beta.f5[9]*carer_bach[i] 
     +beta.f5[10]*canfish1xweek[i] 
      
     
     
#factor6 
 A.f6[i]<-  
      beta.dm6*dmp_sumz[i]  
      +beta.de6*dep_sumz[i] 
     + beta.phth6[1]*dehpz[i] 
     + beta.phth6[2]*mbzpz[i]  
     + beta.phth6[3]*mcppz[i]  
     + beta.phth6[4]*mepz[i]  
     + beta.phth6[5]*mbpz[i]  
     + beta.phth6[6]*mibpz[i]  
   
 B.f6[i] <-    
      beta.phen6[1]*bpaz[i] 
     + beta.phen6[2]*bp3z[i] 
     + beta.phen6[3]*trcsz[i] 
     + beta.phen6[4]*dcp25z[i] 
     + beta.pyr6[1]*pba_bin[i] 
    # + beta.pyr6[2]*dcca_bin[i] 
 C.f6[i] <- 
        beta.f6[1]*lncreat[i] 
     +  beta.f6[2]*batch_ops[i] 
     + beta.f6[3]*home_yr1yr2[i]  
     + beta.f6[4]*responsivity_yr1yr2_3[i] 
     +beta.f6[5]*Male[i] 
     +beta.f6[6]*spanish[i] 
     +beta.f6[7]*examiner2[i] 
     +beta.f6[8]*examiner3[i] 
     +beta.f6[9]*examiner4[i] 
     +beta.f6[10]*examiner5[i] 
     +beta.f7[11]*carer_bach[i] 
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 #factor7 
 A.f7[i]<-  
      beta.dm7*dmp_sumz[i]   
      + beta.de7*dep_sumz[i] 
     + beta.phth7[1]*dehpz[i] 
     + beta.phth7[2]*mbzpz[i]  
     + beta.phth7[3]*mcppz[i]  
     + beta.phth7[4]*mepz[i]  
     + beta.phth7[5]*mbpz[i]  
     + beta.phth7[6]*mibpz[i]  
   
 B.f7[i] <-    
      beta.phen7[1]*bpaz[i] 
     + beta.phen7[2]*bp3z[i] 
     + beta.phen7[3]*trcsz[i] 
     + beta.phen7[4]*dcp25z[i] 
     + beta.pyr7[1]*pba_bin[i] 
   #  + beta.pyr7[2]*dcca_bin[i] 
 C.f7[i] <- 
        beta.f7[1]*lncreat[i] 
     +  beta.f7[2]*batch_ops[i] 
     + beta.f7[3]*MOMAGE[i]  
     +beta.f7[4]*single_f[i] 
     +beta.f7[5]*learning_mat_yr1yr2_3[i] 
     +beta.f7[6]*carer_hs[i] 
     + beta.f7[7]*Standard_score[i] 
     +beta.f7[8]*married_f[i] 
     +beta.f7[9]*carer_bach[i] 
     +beta.f7[10]*spanish[i] 
     +beta.f7[11]*white[i] 
     +beta.f7[12]*examiner4[i] 
     + beta.f7[13]*alcohol_cat1[i] 
     +beta.f7[14]*canfish1xweek[i] 
     +beta.f7[15]*examiner5[i] 
     +beta.f7[16]*examiner2[i] 
     +beta.f7[17]*examiner3[i] 
  
     
# missing variables: home scores, alcohol_cat1, stnadard_score  
 
 
home_yr1yr2[i] ~ dnorm (homemu[i], tau.home) 
homemu[i] <- alpha.home + A.home[i] +B.home[i]  
  
A.home[i]<- beta.home[1]*canfish1xweek[i] + 
   beta.home[2]*white[i] + 
   beta.home[3]*carer_bach[i] + 
   beta.home[4]*factor1reverse[i]+ 
   beta.home[5]*factor2reverse[i]+ 
   beta.home[6]*factor3reverse[i]  
B.home[i] <-  
    beta.home[7]*Male[i] + 
    beta.home[8]*SmokePreg[i] + 
    beta.home[9]*Standard_scorez[i] + 
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    beta.home[10]*Factor4[i]+ 
    beta.home[11]*Factor5[i]+ 
    beta.home[12]*Factor6[i] + 
    beta.home[13]*Factor7[i] + 
    beta.home[14]*married_f[i] + 
    beta.home[15]*hispanic[i] + 
    beta.home[16]*MOMAGE[i] 
 
organization_yr1yr2_3[i] ~ dnorm (orgmu[i], tau.org) 
orgmu[i] <- alpha.org + A.org[i] +B.org[i]  
  
A.org[i]<- beta.org[1]*canfish1xweek[i] + 
   beta.org[2]*white[i] + 
   beta.org[3]*carer_bach[i] + 
   beta.org[4]*factor1reverse[i]+ 
   beta.org[5]*factor2reverse[i]+ 
   beta.org[6]*factor3reverse[i]  
B.org[i] <-  
    beta.org[7]*Male[i] + 
    beta.org[8]*SmokePreg[i] + 
    beta.org[9]*Standard_scorez[i] + 
    beta.org[10]*Factor4[i]+ 
    beta.org[11]*Factor5[i]+ 
    beta.org[12]*Factor6[i] + 
    beta.org[13]*Factor7[i] + 
    beta.org[14]*married_f[i] + 
    beta.org[15]*hispanic[i] + 
    beta.org[16]*MOMAGE[i] 
    
learning_mat_yr1yr2_3[i] ~ dnorm (lmmu[i], tau.lm) 
lmmu[i] <- alpha.lm + A.lm[i] +B.lm[i]  
A.lm[i]<- beta.lm[1]*canfish1xweek[i] + 
   beta.lm[2]*white[i] + 
   beta.lm[3]*carer_bach[i] + 
   beta.lm[4]*factor1reverse[i]+ 
   beta.lm[5]*factor2reverse[i]+ 
   beta.lm[6]*factor3reverse[i]  
B.lm[i] <-  
    beta.lm[7]*Male[i] + 
    beta.lm[8]*SmokePreg[i] + 
    beta.lm[9]*Standard_scorez[i] + 
    beta.lm[10]*Factor4[i]+ 
    beta.lm[11]*Factor5[i]+ 
    beta.lm[12]*Factor6[i] + 
    beta.lm[13]*Factor7[i] + 
    beta.lm[14]*married_f[i] + 
    beta.lm[15]*hispanic[i] + 
    beta.lm[16]*MOMAGE[i]   
    
variety_yr1yr2_3[i] ~ dnorm (vmu[i], tau.v) 
vmu[i] <- alpha.v + A.v[i] +B.v [i]  
A.v [i]<- beta.v [1]*canfish1xweek[i] + 
   beta.v [2]*white[i] + 
   beta.v [3]*carer_bach[i] + 
   beta.v [4]*factor1reverse[i]+ 
   beta.v [5]*factor2reverse[i]+ 
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   beta.v [6]*factor3reverse[i]  
B.v [i] <-  
    beta.v [7]*Male[i] + 
    beta.v [8]*SmokePreg[i] + 
    beta.v [9]*Standard_scorez[i] + 
    beta.v [10]*Factor4[i]+ 
    beta.v [11]*Factor5[i]+ 
    beta.v [12]*Factor6[i] + 
    beta.v [13]*Factor7[i] + 
    beta.v [14]*married_f[i] + 
    beta.v [15]*hispanic[i] + 
    beta.v [16]*MOMAGE[i]   
 
responsivity_yr1yr2_3[i] ~ dnorm (rmu[i], tau.r) 
rmu[i] <- alpha.r + A.r[i] +B.r [i]  
A.r [i]<- beta.r[1]*canfish1xweek[i] + 
   beta.r [2]*white[i] + 
   beta.r [3]*carer_bach[i] + 
   beta.r [4]*factor1reverse[i]+ 
   beta.r [5]*factor2reverse[i]+ 
   beta.r [6]*factor3reverse[i]  
B.r [i] <-  
    beta.r [7]*Male[i] + 
    beta.r [8]*SmokePreg[i] + 
    beta.r [9]*Standard_scorez[i] + 
    beta.r [10]*Factor4[i]+ 
    beta.r [11]*Factor5[i]+ 
    beta.r [12]*Factor6[i] + 
    beta.r [13]*Factor7[i] + 
    beta.r [14]*married_f[i] + 
    beta.r [15]*hispanic[i] + 
    beta.r [16]*MOMAGE[i]  
     
 involvement_yr1yr2_3[i] ~ dnorm (invmu[i], tau.inv) 
invmu[i] <- alpha.inv + A.inv[i] +B.inv [i]  
A.inv[i]<- beta.inv[1]*canfish1xweek[i] + 
   beta.inv [2]*white[i] + 
   beta.inv [3]*carer_bach[i] + 
   beta.inv [4]*factor1reverse[i]+ 
   beta.inv [5]*factor2reverse[i]+ 
   beta.inv[6]*factor3reverse[i]  
B.inv [i] <-  
    beta.inv [7]*Male[i] + 
    beta.inv [8]*SmokePreg[i] + 
    beta.inv [9]*Standard_scorez[i] + 
    beta.inv [10]*Factor4[i]+ 
    beta.inv [11]*Factor5[i]+ 
    beta.inv [12]*Factor6[i] + 
    beta.inv [13]*Factor7[i] + 
    beta.inv [14]*married_f[i] + 
    beta.inv [15]*hispanic[i] + 
    beta.inv [16]*MOMAGE[i]  
     
 
alcohol_cat1[i] ~ dbern(p.alc[i]) 
logit(p.alc[i] )<- alpha.alc + A.alc[i] + B.alc[i]  
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A.alc[i]<- beta.alc[1]*canfish1xweek[i] + 
   beta.alc[2]*white[i] + 
   beta.alc[3]*carer_bach[i] + 
   beta.alc[4]*factor1reverse[i]+ 
   beta.alc[5]*factor2reverse[i]+ 
   beta.alc[6]*factor3reverse[i]  
B.alc[i] <-  
    beta.alc[7]*Male[i] + 
    beta.alc[8]*SmokePreg[i] + 
    beta.alc[9]*home_yr1yr2[i] + 
    beta.alc[10]*Factor4[i]+ 
    beta.alc[11]*Factor5[i]+ 
    beta.alc[12]*Factor6[i] + 
    beta.alc[13]*Factor7[i] + 
    beta.alc[14]*married_f[i]+ 
    beta.alc[15]*organization_yr1yr2_3[i] 
       
Standard_score[i] ~ dnorm (iqmu[i], tau.iq) 
iqmu[i] <- alpha.iq + A.iq[i] +B.iq [i]  
A.iq [i]<- beta.iq[1]*canfish1xweek[i] + 
   beta.iq [2]*white[i] + 
   beta.iq [3]*carer_bach[i] + 
   beta.iq [4]*factor1reverse[i]+ 
   beta.iq [5]*factor2reverse[i]+ 
   beta.iq [6]*factor3reverse[i]  
B.iq [i] <-  
    beta.iq [7]*Male[i] + 
    beta.iq [8]*SmokePreg[i] + 
    beta.iq [9]*Factor4[i]+ 
    beta.iq [10]*Factor5[i]+ 
    beta.iq [11]*Factor6[i] + 
    beta.iq [12]*Factor7[i] + 
    beta.iq [13]*married_f[i] + 
    beta.iq [14]*hispanic[i] + 
    beta.iq [15]*MOMAGE[i] + 
    beta.iq[16]*home_yr1yr2[i]+ 
    beta.iq[17]*responsivity_yr1yr2_3[i]+ 
    beta.iq[18]*organization_yr1yr2_3[i]+ 
    beta.iq[19]*learning_mat_yr1yr2_3[i]+ 
    beta.iq[20]*variety_yr1yr2_3[i]      
  
 
  
mom_BMI[i] ~ dnorm (bmimu[i], tau.bmi) 
bmimu[i] <- alpha.bmi + A.bmi[i] +B.bmi [i]  
A.bmi [i]<- beta.bmi[1]*canfish1xweek[i] + 
   beta.bmi [2]*white[i] + 
   beta.bmi [3]*carer_bach[i] + 
   beta.bmi [4]*factor1reverse[i]+ 
   beta.bmi [5]*factor2reverse[i]+ 
   beta.bmi [6]*factor3reverse[i]  
B.bmi[i] <-  
    beta.bmi [7]*Male[i] + 
    beta.bmi [8]*SmokePreg[i] + 
    beta.bmi [9]*Factor4[i]+ 



 

 120 

    beta.bmi [10]*Factor5[i]+ 
    beta.bmi [11]*Factor6[i] + 
    beta.bmi [12]*Factor7[i] + 
    beta.bmi [13]*married_f[i] + 
    beta.bmi [14]*hispanic[i] + 
    beta.bmi [15]*MOMAGE[i] + 
    beta.bmi[16]*home_yr1yr2[i]+ 
    beta.bmi[17]*responsivity_yr1yr2_3[i]+ 
    beta.bmi[18]*organization_yr1yr2_3[i]+ 
    beta.bmi[19]*learning_mat_yr1yr2_3[i]+ 
    beta.bmi[20]*variety_yr1yr2_3[i]    
 
baseline_hsorless[i] ~dbern( p.bh[i]) 
logit(p.bh[i] )<- alpha.alc + carer_bach[i] + carer_hs[i] 
} 
 
        #Priors 
alpha.f1~ dnorm(0,1) 
alpha.f2~ dnorm(0,1) 
alpha.f3~ dnorm(0,1) 
alpha.f4~ dnorm(0,1)      
alpha.f5~ dnorm(0,1) 
alpha.f6~ dnorm(0,1) 
alpha.f7~dnorm(0,1) 
alpha.wmi~dnorm(0,1) 
alpha.creat~dnorm(0,1) 
 
alpha.alc~dnorm(0,1) 
alpha.org~dnorm(0,1) 
alpha.home~dnorm(0,1) 
alpha.iq~dnorm(0,1) 
alpha.r~dnorm(0,1) 
alpha.v~dnorm(0,1) 
alpha.lm~dnorm(0,1) 
alpha.inv~dnorm(0,1) 
alpha.bmi~dnorm(0,1) 
 
## trying a DPP  
 
#just give it initial values for imputing single 
# for imputing all variables, have to heirarchically specify the models, do y|x1, x2, then x2|x1, then x1 ~ 
bernoulli   
 
 
sigma.f1 ~dunif(0,2) 
tau.f1 <- 1/(sigma.f1*sigma.f1) 
 
sigma.f2 ~dunif(0,2) 
tau.f2 <- 1/(sigma.f2*sigma.f2) 
 
sigma.f3 ~dunif(0,2) 
tau.f3 <- 1/(sigma.f3*sigma.f3) 
 
sigma.f4 ~dunif(0,2) 
tau.f4 <- 1/(sigma.f4*sigma.f4) 
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sigma.f5 ~dunif(0,2) 
tau.f5 <- 1/(sigma.f5*sigma.f5) 
 
sigma.f6 ~dunif(0,2) 
tau.f6 <- 1/(sigma.f6*sigma.f6) 
 
sigma.f7~dunif(0,2) 
tau.f7<-1/(sigma.f7*sigma.f7) 
 
sigma.wmi~dunif(0,2) 
tau.wmi<-1/(sigma.wmi*sigma.wmi) 
 
sigma.home ~ dunif(0,2) 
tau.home <-1/(sigma.home*sigma.home) 
 
sigma.lm~dunif(0,2) 
tau.lm <- 1/(sigma.lm*sigma.lm) 
 
sigma.org~dunif(0,2) 
tau.org <- 1/(sigma.org*sigma.org) 
 
sigma.r~dunif(0,2) 
tau.r <- 1/(sigma.r*sigma.r) 
 
sigma.v~dunif(0,2) 
tau.v <- 1/(sigma.v*sigma.v) 
 
sigma.inv~dunif(0,2) 
tau.inv <- 1/(sigma.inv*sigma.inv) 
 
sigma.iq~dunif(0,2) 
tau.iq <- 1/(sigma.iq*sigma.iq) 
 
sigma.bmi~dunif(0,2) 
tau.bmi <- 1/(sigma.bmi*sigma.bmi) 
 
sigma.creat~dunif(0,2) 
tau.creat <- 1/(sigma.creat*sigma.creat) 
 
# need priors for beta.dm1 beta.phth1[1-4] beta.phen1[1-6] beta.pyr1[1-2]  beta. phthi1[1-4) 
beta.pheni1[1-6] # #beta.pyri1[1-2] beta.f1[1-10]  
 
for (a in 1:9) { beta.f1[a] ~ dnorm (0, 1)} 
for (b in 1:6) {beta.phth1[b] ~dnorm(0, 1)} 
for (c in 1:4){beta.phen1[c] ~dnorm(0, 1)} 
#phth1.tau)} 
#phen1.tau)} 
beta.dm1~dnorm(0, 1) 
beta.de1~dnorm(0, 1) 
dap1.sigma~dunif(0.001, 5) 
dap1.tau<-1/(pow(dap1.sigma, 2)) 
beta.pyr1[1]~dnorm(0, 1) 
beta.pyr1[2]~dnorm(0,1) 
 
 
phth1.sigma ~ dunif (0.001, 5) 
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phth1.tau<-1/(pow(phth1.sigma, 2)) 
phen1.sigma~dunif(0.001, 5) 
phen1.tau<-1/(pow(phen1.sigma,2)) 
 
 
for (f in 1:12) { beta.f2[f] ~ dnorm (0, 1)} 
for (g in 1:6) {beta.phth2[g] ~dnorm(0, 1)} 
#phth2.tau)} 
for (i in 1:4){beta.phen2[i] ~dnorm(0, 1)} 
#phen2.tau)} 
beta.dm2~dnorm(0, 1) 
beta.de2~dnorm(0, 1) 
dap2.sigma~dunif(0.001, 5) 
dap2.tau<-1/(pow(dap2.sigma, 2)) 
beta.pyr2[1]~dnorm(0,1) 
beta.pyr2[2]~dnorm(0,1) 
 
 
phth2.sigma ~ dunif (0.001, 5) 
phth2.tau<-1/(pow(phth2.sigma, 2)) 
phen2.sigma~dunif(0.001, 5) 
phen2.tau<-1/(pow(phen2.sigma,2)) 
 
 
 
for (k in 1:4) { beta.f3[k] ~ dnorm (0, 1)} 
for (l in 1:6) {beta.phth3[l] ~dnorm(0, 1)} 
for (n in 1:4){beta.phen3[n] ~dnorm(0, 1)} 
beta.dm3~dnorm(0, 1) 
beta.de3~dnorm(0,1) 
beta.pyr3[1]~dnorm(0,1) 
beta.pyr3[2]~dnorm(0,1) 
 
dap3.sigma ~dunif(0.001, 5) 
dap3.tau<-1/(pow(dap3.sigma,2)) 
phth3.sigma ~ dunif (0.001, 5) 
phth3.tau<-1/(pow(phth3.sigma, 2)) 
phen3.sigma~dunif(0.001, 5) 
phen3.tau<-1/(pow(phen3.sigma,2)) 
 
for (p in 1:16) { beta.f4[p] ~ dnorm (0, 1)} 
for (q in 1:6) {beta.phth4[q] ~dnorm(0, 1)} 
#phth4.tau)} 
for (s in 1:4){beta.phen4[s] ~dnorm(0,1)} 
# phen4.tau)} 
beta.dm4~dnorm(0, 1) 
beta.de4~dnorm(0, 1) 
beta.pyr4[1]~dnorm(0,1) 
beta.pyr4[2]~dnorm(0,1) 
dap4.sigma ~dunif(0.001, 5) 
dap4.tau<-1/(pow(dap4.sigma,2)) 
 
phth4.sigma ~ dunif (0.001, 5) 
phth4.tau<-1/(pow(phth4.sigma, 2)) 
phen4.sigma~dunif(0.001, 5) 
phen4.tau<-1/(pow(phen4.sigma,2)) 
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for (u in 1:10) { beta.f5[u] ~ dnorm (0, 1)} 
for (v in 1:6) {beta.phth5[v] ~dnorm(0, 1)} 
#phth5.tau)} 
for (x in 1:4){beta.phen5[x] ~dnorm(0, 1)} 
#phen5.tau)} 
beta.dm5~dnorm(0,1) 
beta.de5~dnorm(0, 1) 
beta.pyr5[1]~dnorm(0,1) 
beta.pyr5[2]~dnorm(0,1) 
 
dap5.sigma ~dunif(0.001, 5) 
dap5.tau<-1/(pow(dap5.sigma,2)) 
phth5.sigma ~ dunif (0.001, 5) 
phth5.tau<-1/(pow(phth5.sigma, 2)) 
phen5.sigma~dunif(0.001, 5) 
phen5.tau<-1/(pow(phen5.sigma,2)) 
 
for (aa in 1:11) { beta.f6[aa] ~ dnorm (0, 1)} 
for (bb in 1:6) {beta.phth6[bb] ~dnorm(0, 1)}  
#phth6.tau)} 
for (dd in 1:4){beta.phen6[dd] ~dnorm(0,  1)} 
#phen6.tau)} 
beta.dm6~dnorm(0,  1) 
beta.de6~dnorm(0,1) 
beta.pyr6[1]~dnorm(0, 1) 
beta.pyr6[2]~dnorm(0,1) 
dap6.sigma ~dunif(0.001, 5) 
dap6.tau<-1/(pow(dap6.sigma,2)) 
 
phth6.sigma ~ dunif (0.001, 5) 
phth6.tau<-1/(pow(phth6.sigma, 2)) 
phen6.sigma~dunif(0.001, 5) 
phen6.tau<-1/(pow(phen6.sigma,2)) 
 
 
for (ee in 1:17) { beta.f7[ee] ~ dnorm (0, 1)} 
for (ff in 1:6) {beta.phth7[ff] ~dnorm(0,  1)}  
# phth7.tau)} 
for (gg in 1:4){beta.phen7[gg] ~dnorm(0,  1)}  
#phen7.tau)} 
beta.dm7~dnorm(0, 1) 
beta.de7~dnorm(0,1) 
beta.pyr7[1]~dnorm(0,1) 
beta.pyr7[2]~dnorm(0,1) 
dap7.sigma ~dunif(0.001, 5) 
dap7.tau<-1/(pow(dap7.sigma,2)) 
phth7.sigma ~ dunif (0.001, 5) 
phth7.tau<-1/(pow(phth7.sigma, 2)) 
phen7.sigma~dunif(0.001, 5) 
phen7.tau<-1/(pow(phen7.sigma,2)) 
 
 
 
for (hh in 1:16) {beta.org[hh] ~ dnorm (0, 1)} 
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for (jj in 1:15) {beta.alc[jj] ~ dnorm (0, 1)} 
for (kk in 1:16) {beta.lm[kk] ~ dnorm (0, 1)} 
for (mm in 1:16) {beta.v[mm] ~ dnorm (0, 1)} 
for (nn in 1:16) {beta.r[nn] ~ dnorm (0, 1)} 
for (oo in 1:16) {beta.home[oo] ~ dnorm (0, 1)} 
for (pp in 1:16) {beta.inv[pp] ~ dnorm (0, 1)} 
for (ii in 1:20) {beta.iq[ii] ~ dnorm (0, 1)} 
 
 
for (uu in 1:5) {beta.creat[uu]~dnorm(0,1)} 
for (vv in 1:20) {beta.bmi[vv] ~ dnorm (0, 1)} 
} 
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