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ABSTRACT

Jinghan Meng: Skewness and Dispersion of Opinion and the Cross Section of Stock Returns.
(Under the direction of Riccardo Colacito.)

We show that the degree of dispersion and asymmetry of analysts’ earnings forecasts is related

to future stock returns. When skewness is negative, future returns are decreasing in the degree of

dispersion of analysts’ earnings forecasts; when skewness is positive, future returns are increasing

in the degree of dispersion of analysts earnings forecasts. We develop a model that incorporates

dispersion and asymmetry in agents’ beliefs that can account for these empirical facts.
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Introduction

Empirical researchers have not yet reached an agreement on the role of analysts’ di↵erence of

opinions on future stocks’ returns. Diether, Malloy, and Scherbina (2002) and Chen, Hong, and

Stein (2002) find a negative relation between dispersion and stock returns, while Anderson, Ghysels,

and Juergens (2005) document the opposite result.

In this dissertation, we document that double sorting on the degree of asymmetry (skewness) of

analysts’ forecasts and on the extent of dispersion o↵ers the possibility of reconciling the existing

views in the literature. We use analysts’ short-term earnings forecasts as proxies for agents’ beliefs,

and measure the asymmetry of beliefs as the skewness of the distribution of these forecasts for each

individual stock. We document several novel empirical findings.

First, the relationship between dispersion of beliefs and subsequent returns is opposite for

the stocks with positive skewness in beliefs and otherwise similar stocks with negative skewness.

Specifically, when skewness is negative, future returns are decreasing in the degree of dispersion

of analysts’ earnings forecasts. A dispersion strategy (buying the portfolio of stocks in the lowest

dispersion quintile and shorting the portfolio of stocks in highest dispersion quintile) for the most-

negative-skewness quintile generates a 0.65% monthly return on average. When skewness is positive,

future returns are increasing in the degree of dispersion, but the return di↵erential is moderate.

These findings provide a potential explanation for the contradicting dispersion e↵ect documented

in the literature.

Second, we find that within the highest-dispersion quintile, the most positively skewed stocks

outperform those in the most negatively skewed stocks by 0.59% per month. This return di↵erential

is insignificant for stocks with low dispersion in analysts’ earnings forecasts. The predictive power of

the degree of dispersion and asymmetry of earnings forecasts remains even after controlling for the

average of the forecasts and for the standard explanatory variables, such as size, book-to-market,

momentum and liquidity.
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We also provide a theoretical explanation for our findings. Many theoretical models have studied

the relationship between dispersion of beliefs and subsequent returns. Miller (1977), Jarrow (1980),

Mayshar (1983), Diamond and Verrecchia (1987), and Chen, Hong, and Stein (2002) argue that in

the presence of short-sales constraints, stock prices only reflect the valuation of optimistic investors

and are higher than the true value. Therefore, higher dispersion of opinions should predict lower

stock returns. Harrison and Kreps (1978), and Morris (1996) link heterogeneous beliefs to investor

speculative behavior and show that with short-sales constraints, smaller di↵erences in opinion

generate larger speculative premium. On the other hand, Williams (1977), Abel (1989), Detemple

and Murthy (1994), Basak (2000), and Anderson, Ghysels, and Juergens (2005) view heterogeneity

of beliefs as a fundamental risk of the stock and argue that higher dispersion of beliefs should

predict higher stock returns.

We develop a static model that incorporates both the degree of dispersion and asymmetry of

agents’ beliefs about stock fundamentals. We show that it can account for these stylized empirical

facts described above. In our model, a continuum of risk-neutral agents have identical preference

and endowment, but di↵erent beliefs about conditional expectation of stock dividend stream. We

explicitly model the agents’ beliefs about conditional mean as following a skew-normal distribution

(Azzalini 1985 ). The skew-normal distribution provides a convenient way of characterizing asym-

metry in opinions. Agents make decisions based on the their perceived profitability of buying or

selling a stock after paying transaction costs. In equilibrium, prices clear the markets and reflect

the heterogenous beliefs of all agents who actually trade the stock.

Our model implies that the relationship betwen dispersion of beliefs and returns essentially

depends on the sign of the skewness. When transaction costs associated with buying and selling a

stock are similar, the stock is underpriced when skewness is positive and higher dispersion of beliefs

predicts higher stock returns; Conversely, when skewness is negative, the stock is overpriced and

higher dispersion of beliefs predicts lower returns. When skewness is zero, the dispersion of beliefs

has no e↵ect on stock returns. Note that our model does not impose the assumption of short-

sales constraints, which makes the last argument consistent with the findings in Miller’s (1997)

model (also see, e.g., Chen, Hong, and Stein (2002), etc.). Miller’s (1977) model with short-sales

constraints can be viewed as a special case of our model with asymmetric transaction costs.

The remainder of the dissertation is organized as follows. Section 2 presents the theoretical
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model and proposes three testable hypothese. Section 3 discusses the data and our empirical

measures of heterogeneity. Section 4 examines the relation between dispersion and skewness of

analysts’ earnings forecasts and subsequent returns. Section 5 and 6 provides various robustness

analysis and some additional discussions. Section 7 concludes.

1.1 The Model

In this section, we present a static model that incorporates both the degree of dispersion and

asymmetry in agents’ beliefs about conditional expectation of future dividend, and demonstrate

how heterogenous beliefs a↵ect stock prices through their trading decisions. In this dissertation, we

solely focus on the heterogeneity of beliefs among agents, and exclude the other possible sources of

heterogeneity, such as preferences and endowments. For simplicity, we also disregard risk-sharing

among di↵erent asset classes.

The model has one period with two dates 0, 1. There is a single stock which will be liquidated at

date 1. A continuum of agents, indexed by i, are risk-neutral and can borrow or lend at a risk-free

interest rate of zero. With no loss of generality, we assume that agents have one unit of endowment

at time t = 0 (an agent with N units of endowments is equivalent to N agents who have one unit

of endowment and hold identical belief). They can buy or sell at most one share of the stock. The

liquidation value of the stock is V1 = V̄1 + "1, where V̄1 is the true conditional expectation of stock

price at time t = 1. Agents disagree about conditional mean V̄1, but agree on the higher moments

of V1.1 At time 0, agent i has a stock valuation Vi = Ei,0(V1) and observes the market price P .

Transaction cost of buying or shorting the stock is c � 0 (later we will relax this assumption and

allow for asymmetry in the costs). Agents make trading decisions based on their perceived profit:

buy if Vi > P + c, sell if Vi < P � c, and take no action if P � c < Vi < P + c. Since they are

risk-neutral, the amount of trade is 1 or 0 share of the stock.

We assume that agents’ conditional expecation of the stock valuation Vi follows a skew-normal

distribution SKN(µ,�, ⌫) as defined by Azzalini (1985). Parameters µ, � and ⌫ govern average,

1Anderson, Ghysels, and Juergens (2005) have a formal discussion about this assumption. Specifically, we do not have
information about individual agent’s perceived distribution of V1. Therefore, we assume that it is entirely specified
by the individual agent’s perception of conditional mean of V1.
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Figure 1.1: Skew-Normal Distribution with Di↵erent � and ⌫

The parameter � governs the volatility, ⌫ governs the skewness of the distribution.

dispersion and asymmetry of the distribution, respectively.2 The skew-normal distribution provides

a convenient way of characterizing departures from normality which may consist in negatively or

positively skewed beliefs (see Figure 1.1). The computational attractiveness of this distribution

is that the first four centered moments are available in closed form.3 Moreover, the skewness of

a skew-normal distribution always sits between -1 and 1. This property enables us to focus on a

general case that agents’ beliefs are clustered about the mean with reasonable degree of time-varying

asymmetry, rather than exceptional cases in which there are a number of extremely pessimistic or

optimistic agents and the degree of asymmetry is dramatic.4 In Appendix A1, we introduce the

properties of skew-normal distribution that will be used in later discussions.

To exclude the e↵ect of average opinion, we assume that the skew-normal distribution SKN(µ,�, ⌫)

has a fixed mean of V̄1, then µ = V̄1 � ��

q
2
⇡ . Thus on average the agents have the right valua-

tion, but there is heterogeneity among them, with the degree of dispersion parameterized by � and

asymmetry parameterized by ⌫. Note that agents’ average beliefs does not necessarily equal to the

true conditional mean, but since our primary interest is the di↵erence of their valuations, including

2See also Colacito, Ghysels, and Meng (2013) who use the skew-normal distribution in expected macro fundamentals.

3Specifically: mean = µ+ ��
q

2
⇡

, variance = �2
⇣
1� 2�2

⇡

⌘
, skewness = 4�⇡

2

(�
p

2/⇡)3

(1�2�2/⇡)3/2
, where � = ⌫p

1+⌫

2
.

4Some other widely used distribution functions, e.g., log-normal distribution, chi-squared distribution, and gamma
distribution may generate substantial skewness and kurtosis, and therefore are more approporate for the extreme
cases.
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a bias in the average beliefs does not change our results about the e↵ect of heterogeneous beliefs.

We denote the pdf of the skew-normal distribution as f(x;�, ⌫), and denote cdf as F (x;�, ⌫). Then

the aggregate demand of the stock is

Q

D(P ;�, ⌫) =

Z 1

P+c
f(Vi;�, ⌫)dVi = 1� F (P + c;�, ⌫) (1.1)

and the aggregate supply of the stock is

Q

S(P ;�, ⌫) =

Z P�c

�1
f(Vi;�, ⌫)dVi = F (P � c;�, ⌫) (1.2)

The market clearing condition is eF (P ;�, ⌫) = Q

D(P ;�, ⌫) � Q

S(P ;�, ⌫) = 0. The equilibrium

price, denoted by P

⇤(�, ⌫), clears the market.5 Assuming that agents’ heterogeneous beliefs have

an impact on current stock price, but not its liquidation value, then the expected future return is

V̄1 � P

⇤(�, ⌫).

Next, we discuss the properties of the equilibrium price as a function of dispersion and skewness

of agents’ beliefs and the transaction cost c. Proofs of all the following propostions are in Appendix

A2.

1.1.1 Propositions

Proposition 1. For any transaction cost c � 0, there exists a unique equilibrium price P

⇤(�, ⌫)

that clears the market, i.e., the function

e
F (P ;�, ⌫) = Q

D(P ;�, ⌫)�Q

S(P ;�, ⌫) (1.3)

has a unique solution P

⇤(�, ⌫).

In general, P ⇤(�, ⌫) does not have a closed-form expression due to the complication of skew-

normal distribution function. Fortunately, however, we still manage to show the circumstances

when equilibrium price P ⇤(�, ⌫) deviate from the true value V̄1, and how the deviation change with

5One may argue that in reality, agents’ valuation cannot be arbitrarily extreme, therefore the distribution of agents’
beliefs should be bounded. It is not a big concern in our model. The skew-normal distribution does not display
heavy tails (the excess kurtosis is always less than 0.89), therefore truncating extreme beliefs on both tails does not
virtually change our results.
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the degree of dispersion of opinion �, the asymmetry of opinion ⌫, as well as the transaction cost

c. They are discussed in Proposion 2 and 3.

Proposition 2. Fix the transaction cost c > 0.

(i) For any given ⌫ > 0, there exists a unique positive �

⇤(⌫, c) such that when � > �

⇤(⌫, c), the

equilibrium price P

⇤(�, ⌫) < V̄1;

(ii) For any given ⌫ < 0, there exists a unique positive �

⇤(⌫, c) such that when � > �

⇤(⌫, c), the

equilibrium price P

⇤(�, ⌫) > V̄1.

(iii) When ⌫ = 0, the equilibrium price P

⇤(�, ⌫) = V̄1;

(iv) For any given ⌫ and costs c1, c2 > 0, we have

�⇤(⌫,c1)
c1

= �⇤(⌫,c2)
c2

. When c = 0, �⇤(⌫, c) = 0.

Prior studies (e.g., Miller (1977), Jarrow (1980), and Chen, Hong, and Stein (2002) argue that

without short-sales constraints, di↵erences of opinion have no e↵ect on prices. Proposition 2 tells

us that this is the case only when there is no asymmetry in the beliefs. When the agents’ beliefs are

skewed, heterogeneity of agents’ beliefs will a↵ect the level of stock prices, and hence has ability to

forecast subsequent returns. Moreover, the relation between dispersion of beliefs and subsequent

returns are opposite for the stocks with positive skewness in beliefs and otherwise similar stocks

with negative skewness in beliefs, as long as the magnitude of the dispersion exceeds a minimum

threshold �

⇤(⌫, c). Intuitively, in an extreme case of no dispersion in opinion but high transaction

cost, there is no profit from buying or shorting the stock. All agents will then sit on the fence. Hence,

a minimum amount of dispersion is necessary in our model to allow the agents with optimistic or

pessimistic opinion to have positive perceived profit from the trades. Again, �⇤(⌫, c) typically does

not have a closed-form expression. Proposition 2 shows that �⇤(⌫, c) is proportional to transaction

cost c. Figure 1.4 in Appendix A2 plots �

⇤(⌫, c) as a function of asymmetry parameter ⌫ when

transaction cost c. The range of �⇤(⌫, c) is between 0 and 1.72.

Proposition 3. Fix the transaction cost c � 0.

(i) For any given ⌫ > 0, the equilibrium price P

⇤(�, ⌫) decreases with � when � > �

⇤(⌫, c);

(ii) For any given ⌫ < 0, the equilibrium price P

⇤(�, ⌫) increases with � when � > �

⇤(⌫, c);
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Proposition 3 shows that when skewness is positive, greater divergence in opinion leads to a

lower stock price and therefore a higher subsequent return. On the contrary, when skewness is

negative, greater divergence in opinion leads to a lower subsequent return.

Last, we briefly discuss the relation between our model and Miller’s model with short-sales

constraints. We relax the assumption of symmetric costs associated with buying and selling a

stock. Instead, we assume that the cost of short-selling a stock (denoted by c

�) is much higher

than the cost of buying a stock (denoted by c

+). Then the di↵erence between total demand and

supply of the stock defined in equation 1.6 is

e
F (P ;�, ⌫) = Q

D(P ;�, ⌫)�Q

S(P ;�, ⌫) = 1� F (P + c

+;�, ⌫)� F (P � c

�;�, ⌫). (1.4)

When c

� � c

+, F (P � c

�;�, ⌫) is close to 0 no matter of the sign of ⌫. To solve eF (P ;�, ⌫) ⇡

1 � F (P + c

+;�, ⌫) = 0, we need a very positive equilibrium price P

⇤ � 0 to clear the market.

In other words, with short-sales constraints, the stock is always overpriced. Even if the cost of

short selling a stock is less extreme, this asymmetry in the costs will enhance the dispersion e↵ect

when skewness is negative, and weaken the dispersion e↵ect when skewness is positive. Figure 1.2

visually illustrates the equilibrium price P

⇤ in di↵erent skew-normal distributions, as well as in

the case with short-sales constraints. All these distributions are centered at zero. Top four panels

illustrate the models when transaction cost is symmetric. When skewness is positive (left panels),

the equilibrium prices P

⇤ depicted in solid line are less than zero and decrease with dispersion.

When skewness is positive (right panels), the equilibrium prices P ⇤ are positive and increase with

dispersion. Two plots in the bottom panels demonstrate the models with high short-sales costs.

P

⇤ is positive no matter of the sign of skewness. Table 1.15 in Appendix A2 reports numerical

solutions of P ⇤(�, ⌫) with a variety choices of dispersion parameter �, asymmetry parameter ⌫ and

transaction cost c. The mean of these skew-normal distributions V̄1 are set to be zero, so the sign

of P ⇤(�, ⌫) indicates whether the stock is under or overpriced.

1.1.2 Testable Hypotheses

In the following empirical analysis, we test three hypotheses that are implied by Proposition 1 - 3.

Hypothesis 1. When the distribution of agents’ beliefs about the stock fundamentals is negatively

7
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skewed, future returns are decreasing in the degree of dispersion of agents’ beliefs.

Hypothesis 2. When the distribution of agents’ beliefs about the stock fundamentals is positively

skewed, future returns are increasing in the degree of dispersion of agents’ beliefs. This dispersion

e↵ect will be weakened when short selling the stock is more costly than buying the stock.

Hypothesis 3. When the dispersion of agents’ beliefs is relatively large, a positive skewness in

opinion forecasts higher stock returns than a negative skewness does.
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1.2 Measuring Heterogeneity of Beliefs

Our data on analysts’ earnings forecasts come from the Institutional Brokers Estimate System

(I/B/E/S). Monthly stock returns, prices, and trading volume are drawn from the Center for

Research in Securities Prices (CRSP) monthly tape. Data used to compute book value of the stock

are obtained from COMPUSTAT. We follow literature convention and limit the sample to U.S.

common stocks listed on the NYSE, AMEX and Nasdaq. Stocks with monthly share prices less

than $5 are excluded. Our sample period runs from January 1983 through December 2012.

The standard I/B/E/S data adjusted historically for stock splits are subject to reporting inac-

curacy arised from the rounding issue, as discussed in details by Diether, Malloy, and Scherbina

(2002). So we conduct the analysis using the raw forecast data from I/B/E/S Unadjusted De-

tail History file. Stocks historical split adjustment factor are obtained from CRSP. Each month,

it tracks all the individual analysts’ forecasts of earnings per share (EPS) for current fiscal year

(FY1), two fiscal years ahead (FY2), and up to ten fiscal years ahead (FY10), starting in January

1983.

1.2.1 Measures of Heterogeneity

It has been widely discussed that the disagreement among analysts about expected earnings is a

good proxy for investors’ heterogeneous beliefs. However, there is no consensus on the choice of

forecast period. Diether, Malloy, and Scherbina (2002) use the short-term forecasts (FY1) forecasts,

while Anderson, Ghysels, and Juergens (2005) consider both short-term and long-term forecasts

(FY5). During our sample period, I/B/E/S contains the FY1 earnings estimates of 19,524 analysts

covering 12,787 firms, and FY5 earnings estimates of 3,004 analysts covering 4,867 firms. Concerned

with the accuracy of dispersion and skewness estimates, we need a reasonably large cross-analyst

size for each individual stocks. On average, about 17% of the firms with FY1 earnings forecasts

and only 2% of the firms with FY5 earnings forecasts are covered by eight or more analysts. So in

this dissertation, we measure agents’ beliefs using analysts’ FY1 earnings forecasts and limit our

sample to the stocks that are covered by eight or more analysts.6

6We repeat all the analysis using di↵erent analyst coverage cuto↵s, from at least 5 analysts to at least 10 analysts.
See details in the robustness check section.
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In each month, we compute the cross-analyst average, standard deviation and skewness of the

analysts’ FY1 earnings forecasts for each individual stock. The dispersion of analysts’ earnings

forecasts is defined as the standard deviation of FY1 earnings forecasts scaled by the absolute

value of the average of forecasts. We define the analyst coverage of a stock in any given month

as the number of analysts who report at least one FY1 earnings estimate during that month.

Higher moments are sensitive to the extreme observations and we detect that some stocks have

apparent outliers which appear to be errors when analysts report their estimates. So in each

month, we remove observations in the top 0.5% and bottom 0.5% of the cross-sectional distribution

of dispersion and skewness in analysts’ earnings forecasts.

Several issues with our measure of heterogeneous beliefs have been discussed in an extensive

finance and accounting literature. First, many papers document that analysts are biased because

of their incentives and strategic concerns. Analysts’ forecasts are generally optimistic at 12-month

and longer time horizons (e.g., Capsta↵, Paudyal Rees, et al. (1998), and Brown (2001)) and tend

to be pessimistic at 3-month and shorter time horizons (e.g., Brown (2001), Matsumoto (2002), and

Richardson, Teoh, and Wysocki (2004)). Das, Levine, and Sivaramakrishnan (1998), Lim (2001),

and Ljungqvist, Marston, Starks, Wei, and Yan (2007) link the optimism in earnings forecasts

and stock recommendations with the investment banking relationships and brokerage pressure.

Ljungqvist, Marston, Starks, Wei, and Yan (2007) find that earnings forecasts are much less a↵ected

than stock recommendations. Since we measure the dispersion and skewness in analysts’ forecasts

by subtracting the consensus forecasts rather than realized earnings, it will partially correct the

bias issue.

The second issue with analysts’ earnings forecasts is financial herding. Herding behavior has

been documented both in earnings forecasts (e.g., Hong, Kubik, and Solomon (2000)) and in stock

recommendations (e.g., Welch (2000)). Trueman (1994), Stickel (1990) and Cooper, Day, and Lewis

(2001) argue that high quality analysts are less likely to rely on consensus forecasts.7

The third issue is the timing and staleness of analysts’ forecasts. Analysts are more likely to be

terminated for poor performance or bold forecasts (Hong, Kubik, and Solomon (2000)), and usually

do not update their estimates regularly every month. The staleness in the forecast updates may

7Inspired by these results, we reestimate the distribution of analysts’ earnings forecast by assigning more weights on
analysts who have more accurate forecasting history as a robustness check. The results still remain.
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result from the lack of new information about the stock, or from the possibility that the analyst

receives negative information but is unwilling to submit this unfavorable forecast (McNichols and

O’Brien (1997), and Scherbina (2008)).8 The herding behavior and staleness in the forecasts may

result in an underestimate of dispersion and skewness. Note that our primary interest is the

di↵erences in dispersion and skewness across stocks. If the bias issue, herding behavior and timing

issue display a similar pattern for all the stocks, we may be less concerned about them.

1.2.2 Summary Statistics

Table 1.1 provides a comparison of characteristics of all the stocks listed on CRSP (shown in Panel

A), the firms that have a current-fiscal-year I/B/E/S earnings forecast and are covered by at least

two analysts (shown in Panel B), and firms covered by at least eight analysts (shown in Panel

C) in di↵erent years. Book-to-market ratio is defined following Fama and French (1993). We

exclude stocks with negative book values, and with book-to-market ratio outside 0.5th and 99.5th

percentile. Momentum is defined as the past raw return over t� 12 to t� 2 months. Illiquidity is

defined as the average ratio of the daily absolute return (in percent) to the (dollar) trading volume

on that day during the month t, the same as in Amihud (2002).

A large portion of the firms with I/B/E/S earnings forecasts are covered by a small number of

analysts each month. As shown in Panel B, about 40% of the stocks are included in the sample

when analyst coverage is at least two, and the percentage decreases to 15% - 19% when we limit

our sample to stocks with at least eight analysts’ forecasts (see Panel C). While the mean book-to-

market ratio and momentum are statistically indi↵erent for the three samples, the mean size of the

stocks in Panel B is more than twice as large as the mean size of all stocks in CRSP and increases

with analyst coverage. The mean illiquidity of stocks in Panel B is only about 1/3 of the mean

illiquidity of all CRSP stocks, and decreases even further with the increase of analyst coverage.

These results are consistent with the findings in the literature (e.g., Hong, Lim, and Stein (2000),

Diether, Malloy, and Scherbina (2002), and Anderson, Ghysels, and Juergens (2005)) that I/B/E/S

dataset is severely tilted towards large and liquid stocks.

8To overcome the first possibility, we also measure the heterogeneity of beliefs among analysts using the average of
dispersion and skewness over the past 3 or 6 months and redo all the analysis. Results do not change significantly.
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1.3 Using Dispersion and Skewness in Beliefs to Forecast Returns

In this section, we examine whether the dispersion and skewness of analysts’ earnings forecasts

have forecasting power for the subsequent returns of the underlying stock.

1.3.1 Portfolio Sorts Based on Dispersion

Before investigating the role of asymmetry of analysts’ earnings forecasts, we first reexamine the

dispersion e↵ect documented in Diether, Malloy, and Scherbina (2002) using an extended sample

period and a variety of analyst coverge cuto↵s. In each month t, stocks are sorted into quintile

portfolios based on the dispersion in analysts’ earnings forecasts for the previous month. Stocks

with a zero mean forecast are allocated to the highest dispersion quintile (D5). Stocks are held for

one month. The monthly portfolio return is calculated as the equally-weighted returns of all the

stocks in that portfolio.

The last column of Panel A in Table 1.2 shows the average of monthly returns of all the stocks

in each dispersion quintile. During the extended sample period (1983 - 2012), the dispersion e↵ect

is still significant. The monthly return on the D1�D5 strategy is 0.58%.9

Then we examine the mean returns of double-sorted portfolios formed on size and dispersion

of analysts’ earnings forecasts. In each month t, stocks are sorted into quintile portfolios based on

the market capitalization at the end of the previous month. Then stocks are sorted into quintiles

relative to other stocks in their size quintile on the basis of dispersion in analysts’ earnings forecasts

for the previous month. Table 1.2 reports the average of monthly portfolio returns for the 25 size-

dispersion portfolios for two samples. The dispersion e↵ect is most pronounced for the smallest

stocks. This results are consistent with the findings in Diether, Malloy, and Scherbina (2002).

Considering that the stocks with high analyst coverage are mostly large stocks, stocks in small-cap

quintiles are not actually small. So it is not surprising to find that for the stocks covered by eight or

more analysts, the return di↵erential between low- and high-dispersion quintile decreases to 0.27%

per month and is not statistically significant (see Panel B).

To assess how the dispersion e↵ect changes with the increase of anlayst coverage cuto↵, we

compute average monthly returns on each dispersion quintile portfolios, as well as on the D1�D5

9Diether, Malloy, and Scherbina (2002) document a monthly return of 0.79% on the D1�D5 strategy for the sample
period 1983-2000.
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strategy for all the stocks with two or more analysts, three or more analysts, and up to ten or more

analysts. Table 1.3 shows that D1�D5 spread declines with the increase of analyst coverage cuto↵,

and becomes insignificant for the sample of stocks that are covered by four or more analysts.

The measure issue is not negligible when one uses the sample of stocks that are covered by two

or more analysts. As we discussed earlier, the cross-analyst estimate of dispersion is vulnerable to

extreme observations. With merely two or three observations, this estimate could be inaccurate.

Unfortunately, however, more than half of the stocks usually have low analyst coverage.10

Based on the implication of our model, the dispersion of opinion has opposite e↵ect on the stocks

with negative skewness in beliefs, and on the stocks with positive skewness in beliefs. Without

controlling for the skewness of agents’ beliefs, the dispersion e↵ect may be cancelled out. In next

subsection, we will verify this argument and test three hypotheses postulated in Section 2.2.

1.3.2 Double Sorts Based on Dispersion and Skewness

First, we examine the relation between dispersion and skewness of analysts’ earnings forecasts

and subsequent returns using double sorting method. In each month t, stocks are independently

assigned into quintile portfolios on the basis of the dispersion and skewness of analysts’ earnings

forecasts for the previous month. We then form portfolios based on the intersection of rankings of

dispersion and skewness. Stocks are held for one month. The monthly portfolio return is computed

as the equally-weighted returns of all the stocks in the portfolio at the end of month t + 1. The

monthly mean returns of the 25 dispersion-skewness portfolios are reported in Panel A of Table 1.4.

“All stocks” row in Panel A reports the average monthly returns of dispersion quintile portfolios.

The lowest-dispersion portfolio (D1) outperforms the highest-dispersion portfolio (D5) by 0.19% on

average, positive but statistically insignificant. Now we read across the monthly returns of double-

sorted portfolios. With respect to our first hypothesis, we find that within the portfolio with most

negative skewness (Q1), the dispersion of analysts’ earnings forecasts has a strong negative relation

with subsequent returns, and the D1�D5 strategy earns as much as 0.65% per month on average.

With respect to our second hypothis, the return di↵erential between the lowest and highest quintiles

of dispersion is virtually zero (0.04%) for the stocks within the most positive quintile of skewness

10Hong, Lim, and Stein (2000) provide a comprehensive analysis of the analyst coverage in I/B/E/S dataset.
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(Q5).

In Panel B of Table 1.4, the top and bottom dispersion quintiles D1 and D5 are further sub-

divided into halves on the same measure. Within the most-negative-skewness portfolio (Q1), the

monthly return on D1L � D5H strategy is further amplifed to 0.97%. Within the most-positive-

skewness portfolio (Q5), on the contrary, the relation between dispersion of analysts’ forecasts and

portfolio returns is reversed. The monthly return onD1L�D5H strategy is �0.57% and statistically

significant at ten percent level. Note that after subdividing the dispersion quintiles into halves,

four portfolios with extreme dispersion and skewness (D1LQ1, D1HQ1, D1LQ5 and D1HQ5) only

contain 14-15 stocks on average and the results in Panel B are likely to be unreliable and not

robust. This finding seems to be consistent with our Hypothesis 2. In the presence of short-sales

constraints for some of the stocks will diminish the overall e↵ect of dispersion in analysts’ forecasts

for the stocks with positively skewed beliefs.

With respect to Hypothsis 3, we look at the return di↵erential between the most-positive- (Q5)

and most-negative-skewness (Q1) portfolios. As shown in the “All stocks” column of Panel A,

the skewness of analysts’ earnings forecasts is positively related to the subsequent returns. The

return di↵erential between top and bottom skewness portfolios is is 0.59% per month, statistically

significant only within the highest dispersion quintile (D1).

1.3.3 Firm Characteristics of Dispersion-Skewness Portfolios

In our theoretical model, we assume that the source of heterogeneous beliefs is exogeneous, and in-

dependent of the e↵ects of dispersion and skewness of agents’ beliefs. In reality, however, the degree

of dispersion and asymmetry of heterogeneous beliefs may generically vary with stock character-

isitcs. For example, many papers address private information as a possible source of heterogeneous

beliefs, and information uncertainty is correlated with stock characteristics, such as size, book-to-

market, momentum (Easley, Hvidkjaer, and Ohara (2002), and Zhang (2006)), illiquidity (Sadka

and Scherbina (2007)), and analyst coverage (Hong, Lim, and Stein (2000)).

In addition, the average beliefs about stock’s fundamentals may also a↵ect subsequent returns.

The “turnover rate” of a portfolio, defined as the percentage of stocks that are remained in the same

portfolio after the monthly updates, a↵ects the profitability of a trading strategy. If the turnover

rate is too high, return spread generated from the trading strategy may be o↵set by the transaction
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costs associated with the portfolio rebalancing.

In each month t, we calculate cross-sectional mean of size, book-to-market ratio, momentum,

illiquidity, earings-to-price ratio and anlayst coverage of all the stocks in each dispersion-skewness

portfolio. Table 1.5 reports the equally-weighted average of these variables and turnover rate

for each of the 25 dispersion-skewness portfolios over the sample period. There are large cross-

sectional variations in all the variables across the dispersion-skewness portfolios, except the number

of estimates. The heterogeneity of the stock characteristics is more substantial among dispersion

portfolios than the heterogeneity among skewness portfolios.

Turnover rates are high for most dispersion-skewness portfolios and exhibit seasonal patterns.

Turnover rates are usually over 90% in January, and much lower during the other months of the

year. It is not surpricing, since the fiscal year end for most stocks is December, and analysts start

to forecast new fiscal-year earnings in January. Therefore, the distribution of analysts’ earnings

forecasts of an individual stock in January could be substantially di↵erent from the distribution in

last December. When we compute time-series means of turnover rates, January is excluded. Four

portfolios of extreme dispersion and skewness (Q1D1, Q1D5, Q5D1, Q5D5) – ones that we are

most interested in – have the lowest turnover rates. It seems that analysts with overly optimistic or

pessimistic forecasts tend to revise their opinions less frequently. One plausible explanation is that

as we have mentioned in section 2.2, high quality analysts have more confidence in their estimates

and are less likely to herd.

Next, we test whether the di↵erences of these stock characteristics are significant between

the lowest- and highest-dispersion portfolios, and between the most-negative- and most-positive-

skewness portfolios. Table 1.6 reports equally-weighted average of stock characteristics11 of five

dispersion portfolios in the top and bottom skewness quintiles.

The stocks with low consensus forecasts, small size, high book-to-market ratio, low returns

over past 12 months, less liquidity, and less past year earnings tend to have more dispersion in

analysts’ beliefs. And the stocks with low consensus forecasts, small size, high book-to-market

ratio tend to have more positive skewness in analysts’ beliefs. The magnitude of t-statistics shows

that the divergence in the stock characteristics is more substantial across dispersion quintiles than

11We take logarithm of size and book-to-market ratio to deal with the non-normality issue in these variables. We
draw the same conclusion when we use original Size and BE/ME variables.
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the divergence across skewness quintiles. Moreover, the relations between the dispersion of ana-

lysts’ earnings forecasts and these variables are very similar within the top and bottom skewness

portfolios.

1.3.4 Triple Sorts

To verify that the documented dispersion and skewness e↵ects are not simply capturing a size,

value, momentum, illiquidity or average forecasts e↵ect, now we examine the relation between

dispersion and skewness of analysts’ earnings forecasts and subsequent returns while controlling for

the variation in these variable, using triple sorts.

Average of analysts’ earnings forecasts. In each month t, stocks are independently sorted

into terciles on the basis of mean, dispersion and skewness of analysts’ earnings forecasts for the

previous month. Then we assign stocks into portfolios based on the intersection of rankings of

mean, dispersion and skewness. Terciles are based on 30th and 70th percentiles. The average

monthly returns of the resulting 27 portfolios are reported in Table 1.7.

Within each average tercile, we continue to find negative relation between dispersion of analyts’

earnings forecasts and subsequent returns in the most negative skewness tercile. In low- and

mid-average terciles, this relation is statistically significant. The skewness e↵ect is significant in

mid-average tercile.12 The result rules out the possibility that the average of forecasts is driving

our results.

Size. In each month t, stocks are independently sorted into tercile portfolios based on the level mar-

ket capitalization at the end of the previous month, dispersion and skewness of analysts’ earnings

forecasts for the previous month. We then assign stocks into portfolios based on the intersection of

rankings of size, dispersion and skewness. Panel A in Table 1.8 reports the average monthly returns

on the 27 portfolios. In three size terciles, D1�D3 stragegy remains to generate the highest and

positive returns within the most-negative-skewness tercile, and the returns are most significant for

the smallest tercile.

Book-to-market. Stocks are triple sorted based on book-to-market ratio, dispersion and skewness

12After triple sorts, the number of stocks in each resulting portfolio decreases. Moreover, the return di↵erential
between top and bottom terciles of dispersion (skewness) may be less substantial than the return di↵erential between
two extreme quintiles of the variable. Both of these issues may decrease the statistical significance of the t tests in
these triple-sorting analysis.
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in analysts’ forecasts. Panel B in Table 1.8 reports the average monthly returns on the resulting

27 portfolios. Within each book-to-market tercile, dispersion of analysts’ earnings forecasts and

subsequent returns in the most-negative-skewness tercile still have negative relation. For stocks in

growth tercile, D1�D3 stragegy has as much as 0.73% monthly returns on average. This is consis-

tent with our intuition that with higher market-to-book ratio (growth stocks), more disagreement

in earnings should result in more disagreemnt in market values.

Momentum. Stocks are triple sorted based on momentum, dispersion and skewness in analysts’

forecasts. Panel A in Table 1.9 reports the average monthly returns on the resulting 27 portfolios.

Again the return di↵erential between low- and high-dispersion teciles is still the highest within the

negative-skewness stocks for each of the momentum portfolio, and is significant in stocks that have

performed poorly in the past 12 months (“Loser” and “Mid Mom”). So the dispersion and skewness

e↵ects are not simply capturing a momentum e↵ect documented in Jegadeesh and Titman (1993).

Illiquidity. Stocks are triple sorted based on illiquidity, dispersion and skewness in analysts’

forecasts. Panel B in Table 1.9 reports the average monthly returns on the resulting 27 portfolios.

The return di↵erential between low- and high-dispersion teciles within the negative-skewness tecile

is significantly positive in most illiquid stocks (0.54% per month). Therefore, the dispersion and

skewness e↵ects cannot be explained by illliquidity e↵ect. This result is also consistent with the

argument in Sadka and Scherbina (2007) that illiquid stocks have higher transaction costs and

hence the dispersion e↵ect is amplified.

1.3.5 Four-Factor Model Time-Series Tests

In this subsection, we examine whether the e↵ects of dispersion and skewness in analysts’ earnings

forecasts can be explained using a rational approach. Fama and French (1996) show that many of the

commonly documented CAPM anomalies can be explained by their three-factor model. We follow

Fama and French (1996) method to construct three factors. Rm�Rf is the monthly excess return on

the market, defined as the value-weighted return on all NYSE, AMEX, and NASDAQ stocks listed

on CRSP minus the one-month Treasury bill rate. SMB is the average return di↵erential between

small-cap tercile portfolio and large-cap tercile portfolio, and represents the size premium. HML is

the average return di↵erential between high book-to-market tercile portfolio and low book-to-market
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tercile portfolio, and represents the value premium.13 Carhart (1997) constructs a momentum factor

that cannot be explained by Fama-French three-factor model. It captures the one-year momentum

e↵ect documented in Jegadeesh and Titman (1993). Momentum factor UMD is the average return

di↵erential between the tercile portfolio of stocks with high returns from month t� 12 to t� 2 and

the portfolio of stocks with low returns from month t� 12 to t� 2, and represents the momentum

premium.

For each of the 25 dispersion-skewness portfolios, we regress monthly equally-weighted average

returns of the portfolio on Fama-French three factors and momentum factor,

Ri,t �Rf,t = ↵i + �i,m(Rm,t �Rf,t) + �i,sSMBt + �i,hHMLt + �i,uUMDt + "i,t.

If the portfolio excess returns can be explained by the four factors, intercepts from above time-series

regressions should be jointly equal to zero. Then our main testable hypothesis is that ↵i = 0 for all

25 dispersion-skewness portfolios. The Hotelling t

2 test, introduced by Gibbons, Ross, and Shanken

(1989), is used to test the hypothesis. A test statistic of 15.8 strongly rejects the null hypothesis

and suggests that the dispersion and skewness of analysts’ forecasts have predictive power for future

returns that is not captured by the standard predictors.

Table 1.10 reports the estimates of the four-factor time-series regressions for 25 dispersion-

skewness portfolios. First, we look at the estimated coe�cients of the four-factor regressions for

5 dispersion portfolios within each skewness quintile. The magnitude of the intercepts from the

four-factor model are negatively related to the degree of dispersion in analysts’ earnings forecasts,

which implies that low-dispersion portfolios earn more higher abnormal returns. In particular, the

intercepts of all the highest-dispersion quintiles (D1), expect the one in the most-positive-skewness

quintile, are significantly negative. Therefore, a large negative return for the portolio cannot be

explained by the four factors. The loadings of the four factors are very di↵erent pattern across

dispersion quintiles. Specifically, the loadings of SMB, HML and UMD factors in the lowest-

dispersion quintiles (D1) have opposite signs compared with the loadings of three factors in high

dispersion quintiles (D4 and D5). The lowest-dispersion portfolio behaves like a big, value and

good past performance stock, and highest-dispersion portfolio behaves like a small, growth and bad

13Refer to Fama and French (1996) for details.
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past performance stock. Results are consistent with the findings in Table 1.6.

Second, we compare the intercepts from the four-factor model for the most-negative- and most-

positive-skewness quintiles. Intercepts of the 5 dispersion portfolios within the most-negative-

skewness quintile are uniformly smaller than the intercepts within the most-positive-skewness quin-

tile, which indicates that positive-skewness portfolios earn more higher abnormal returns.

Adjusted R

2s are lowest for the lowest-dispersion portfolios (D1), suggesting that four factors

have less explanatory power in stocks with low dispersion in analysts’ earnings forecasts. Overall,

both GRS test and the magnitude of intercepts from four-factor time-series regressions confirm

that the dispersion and skewness e↵ects documented in Section 4.2 cannot be captured by other

traditional pricing factors.

1.4 Robustness Checks

We conduct a range of additional tests to ascertain the robustness of our basic results.

1.4.1 Subperiod Analysis

First, we redo the analysis using sample subperiod from January 1983 to December 2000 to compare

our results with Diether, Malloy, and Scherbina (2002). Moreover, the subperiod analysis excludes

the recent financial crisis of 2007-2009. During this period, many stocks have extremely negative

earnings forecasts which tangle with other abnormally behaving factors. Panel A in Table 1.11

confirms that our main results are not time-specific.

In the most-negative-skewness portfolio (Q1), future returns are decreasing with the degree of

dispersion and the monthly return on D1 � D5 strategy is 1.06% on average, about 0.4% larger

than the returns using the entire sample period. In the most-positive-skewness portfolio, monthly

return on D1�D5 strategy declines to 0.34%, not statistically significant. For the skewness e↵ect,

Q5�Q1 spread is 0.78% in high-dispersion portfolio, also larger than the returns using the entire

sample period.

1.4.2 Di↵erent Analyst Coverage Cuto↵

We have shown in Table 1.1 that characteristics of the stocks in our sample vary with analyst

coverage cuto↵s. We duplicate all the analysis using di↵erent choices of analyst coverage cuto↵,
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ranging from at least five analysts to at least ten analysts. Panel B in Table 1.11 reports the

monthly mean returns of portfolios formed on dispersion and skewness of analysts’ forecasts for all

the stocks that are covered by at least ten analysts. All the results remain virtually unchanged.

1.4.3 Portfolio Updating Frequency and Holding Period

As discussed earlier, analysts sometimes do not update their earnings forecasts regularly every

month. To adjust for the staleness issue in analysts’ forecasts data, rather than forming portfolios

based on the dispersion and skewness in the previous month, we form portfolios based on the

average of dispersion and skewness in the past 3 or 6 months, and update portfolios every quarter

or every six months. To consider the persistence of the dispersion and skewness e↵ects, we also try

longer holding periods, from 3 to 6 months.

In the dissertation, we report two of these robustness analysis.14 Panel A of Table 1.12 reports

the results when we update portfolios at the end of the second month of each quarter (February, May,

August and November) and hold portfolios for three months.15 D1�D5 stragegy has a significantly

positive return (0.67% per month on average) only in the portfolio with most negatively skewed

analysts’ earnings forecasts. Q5 � Q1 stragety earns as large as 0.52% returns per month in the

highest-dispersion quintile.

Panel B reports the results when we update portfolios semiannually (at the end of May and

November) and hold them for 6 months.16 D1�D5 spread in the most-negative-skewness quintile

is slightly lower (0.59% per month) but still statistically significant . However, Q5�Q1 spread is

no longer significant within any of the dispersion portfolio. It seems that the e↵ect of dispersion in

analysts’ earnings forecasts is more persistent than the skewness e↵ect.

1.5 Additional Discussions

In this section, we discuss several additional topics with respect to our measure of heterogeneous

beliefs.

14Results of other analysis are available upon request.

15We also try to update the portfolio at the end of the first or third month of each quarter, and results are similar.

16Again, we also try to update the portfolio at the end of the other months, and results are similar.
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1.5.1 Comparison with Stock Recommendations

Analysts provide both earnings forecasts and buy/sell recommendations of a stock. A natural ques-

tion then arises: For any given stock, is there any relation between the dispersion and asymmetry

of analysts’ earnings forecasts and the dispersion and asymmetry of their recommendations?

In I/B/E/S dataset, a stock with earnings forecasts also has data on analysts’ buy/sell recom-

mendations, though it is not necessarily the case that two sets of analysts are the same. Intuitively,

if the same set of analysts provide both earnings forecasts and recommendations of a stock at each

point in time, and if analysts’ recommendations are “rationally” based on their perceived stock

valuations – whenever an analyst has an optimistic valuation, she gives a “buy” recommendation

decision, and vice versa – then the distribution of earnings forecasts should be comparable to the

frequency distribution of stock recommendations. However, an extensive literature (e.g., Womack

(1996), Ljungqvist, Marston, Starks, Wei, and Yan (2007)) have found that analysts are biased in

stock recommendation. Unless analysts have extremely negative earnings forecasts in a stock, they

are reluctant to provide a “sell” recommendation. Accordingly, we expect to detect a dispersion

e↵ect using the stock recommdation data, which probably does not depend on the asymmetry of

analysts’ recommendations – stocks with high dispersion in analysts’ earnings forecasts should also

have more “sell” recommendations than the stocks with low dispersion have.

Financial analysts’ recommendations are classified into five categories: strong buy, buy, hold,

underperform and sell. We assign a score of -2 to sell, -1 to underperform, 0 to hold, 1 to buy, and

2 to strong buy. The score quantifies how favorable an analyst’s recommendation is. Panel A of

Table 1.13 reports the mean recommendation scores for the 25 dispersion-skewness portfolios. We

also pool strong buy and buy categories into ”Buy” category, underperform and sell into ”Sell”

category. Panel B of Table 1.13 reports the mean percentage of analysts’ recommendations in the

pooled ”Buy” and ”Sell” categories, for the 25 dispersion-skewness portfolios. Consistent with our

conjecture, in all of the five skewness portolios, the low dispersion portfolio (D1) has significantly

higher recommendation scores than high dispersion portfolio (D5) has. Panel B confirms the finding

in Womack (1996) that stock recommendations are predominantly optimistic, with the ratio of the

percentage of buy recommendations to percentage of sell recommendations as large as 7. Moreover,

in all of the five skewness portolios, stocks in the high dispersion portfolio (D5) on average have a

larger percentage of sell recommendations compared to the stocks in the low dispersion portfolio
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(D1).

1.5.2 Comparison with Ex Ante Variance and Skewness

We examine the relation between our dispersion and skewness of conditional expectation of future

dividend and other measures of volatility and skewness. Bakshi, Kapadia, and Madan (2003)

propose a method to calculate ex ante variance and skewness under risk-neutral probability. Conrad,

Dittmar, and Ghysels (2013) find a negative relation between an individual securities risk neutral

volatility and subsequent returns; more negative (positive) ex ante skewness predicts subsequent

higher (lower) returns.

Panel A of Table 1.14 reports the mean ex ante variance of the 25 portfolios formed on the

basis of dispersion and skewness of analysts’ earnings forecasts. Panel B reports the mean ex ante

skewness of each portfolio. There is significantly positive relation between dispersion in analysts’

earnings forecasts and ex ante variance. Ex ante skewness is negative on average, and low dispersion

in beliefs is associated with more negative ex ante skewness on average. Positive skewness in

earnings forecasts is associated with less negative ex ante skewness on average, but the relation is

not statistically significant.

However, our measure of dispersion and skewness of agents’ beliefs and ex ante volatility and

skewness of stock returns predict subsequent returns in an opposite direction. This result confirms

that the dispersion and skewness in analysts’ forecasts cannot be interpreted as a measure of risk.

1.6 Concluding Remarks

This dissertation studies the role of the degree of dispersion and asymmetry of agents’ beliefs in

predicting the cross section of stock returns. We present a theoretical model that incorporates both

the dispersion and skewness of beliefs about stock fundamental value. Our model sheds light on

the importance of including asymmetry of beliefs when we investigate the e↵ect of heterogenous

beliefs for at least two reasons. First, the relations between dispersion of beliefs and subsequent

returns are opposite for the stocks with positive skewness in beliefs and otherwise similar stocks

with negative skewness in beliefs. This finding helps us explain the mixed empirical evidence of

dispersion e↵ect documented in prior literature. Second, we also find an asymmetry e↵ect for
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the stocks with high dispersion in agents’ beliefs. Empirical evidence is consistent with model

implications. Both dispersion and skewness of analysts’ earnings forecasts have predictive power

for subsequent returns, and the e↵ects remain even after controlling for the average of forecasts

and standard pricing factors.

A natual direction for future research is to investigate the role of asymmetry of beliefs in the

context of a more realistic setup. For example, in a dynamic model with the asymmetry of agents’

beliefs, we can discuss more about how heterogeneous beliefs a↵ect investors’ speculative behavior,

and consequently predict trading volume, return volatilities, and option prices.
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Table 1.1: Summary Statistics

The sample includes stocks from the NYSE, AMEX, and Nasdaq stocks between January 1983
and December 2012. Panel A reports descriptive statistics for all stocks listed on CRSP that have
prices greater than five dollars. Panel B includes stocks in Panel A that have a current-fiscal-year
I/B/E/S earnings forecast, are covered by at least two analysts. Panel C limits the sample to stocks
in Panel B and are covered by at least eight analysts. Size is the market capitalization measured
at the end of month t. BE/ME is the book-to-market ratio at the end of month t. MOM12 is the
momentum of the stock, measured as the past raw return over t � 12 to t � 2 months. ILLIQ is
the illiquidity of the stock, defined as the average ratio of the daily absolute return (in percent) to
the (dollar) trading volume on that day during month t. Number of estimates is the number of
analysts (denoted by N) who provide current-fiscal-year I/B/E/S earnings forecasts during month
t. Column “Firm Eligible” reports the ratio of total number of stocks in Panel A (B) to the number
of stocks listed on CRSP in a given year.

Panel A: All CRSP Stocks
Year No. of Size BE/ME MOM12 ILLIQ No. of Firms

Firms (Mil. $) Estimates Eligible
1985 4956 419.1 1.81 0.20 1.313 � �
1990 4696 662.4 8.51 0.05 4.906 � �
1995 7381 847.0 4.24 0.17 1.179 � �
2000 7697 2361.5 3.51 0.44 0.743 � �
2005 6214 2779.8 3.12 0.18 0.198 � �
2010 5894 2908.7 2.21 0.45 0.836 � �

Panel B: I/B/E/S Stocks (Analyst Coverage N � 2)
Year No. of Size BE/ME MOM12 ILLIQ No. of Firms

Firms (Mil. $) Estimates Eligible
1985 2114 904.7 0.73 0.20 0.494 7.6 42.6%
1990 2241 1206.3 0.82 0.06 1.267 7.0 41.9%
1995 3224 1828.6 0.51 0.22 0.497 6.3 45.9%
2000 3283 4229.5 0.59 0.42 0.197 6.4 43.8%
2005 2792 4916.7 0.47 0.18 0.043 6.4 46.1%
2010 2446 5512.1 0.58 0.42 0.118 7.8 42.7%

Panel C: I/B/E/S Stocks (Analyst Coverage N � 8)
Year No. of Size BE/ME MOM12 ILLIQ No. of Firms

Firms (Mil. $) Estimates Eligible
1985 937 1624.5 0.79 0.20 0.255 15.6 18.9%
1990 925 2611.0 0.70 0.04 0.030 14.6 17.7%
1995 1125 4043.7 0.50 0.21 0.008 14.1 18.6%
2000 1195 11080.1 0.48 0.42 0.007 13.6 15.4%
2005 1188 9830.9 0.44 0.15 0.003 12.9 14.6%
2010 1268 8653.2 0.59 0.34 0.003 13.8 15.5%
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Table 1.2: Returns of Portfolios Formed on Size and Dispersion

The sample in Panel A includes stocks from the NYSE, AMEX, and Nasdaq, that have current-
fiscal-year I/B/E/S earnings forecast between January 1983 and December 2012, and are covered
by at least two analysts. Panel B limits the sample to stocks in Panel A that are covered by at
least eight analysts. In each month t, stocks are sorted into quintile portfolios based on the market
capitalization at the end of the previous month. Then stocks are sorted into quintiles relative to
other stocks in their size quintile on the basis of dispersion of analysts’ earnings forecasts for the
previous month. We then assign stocks into portfolios based on the intersection of rankings of
size and skewness. Dispersion is defined as the standard deviation of analysts’ current-fiscal-year
earnings per share forecasts scaled by the absolute value of the average of forecasts. Stocks with
a zero mean forecast are allocated to the highest dispersion quintile (D5). Stocks are held for
one month. The table presents the average monthly equally-weighted returns of 25 size-dispersion
portfolios, along with return di↵erential of portfolios in dispersion quintile 1 and 5, D1 � D5. t-
statistics in parentheses are adjusted for serial-correlation using a Newey-West estimator with lags
of up to 6 months.

Panel A: Monthly Mean Returns (1983 - 2012, Analyst Coverage � 2)

Size Quintiles
Dispersion S1 S2 S3 S4 S5

All Stocks
Quintiles (Small) (Large)
D1 (Low) 1.35 1.25 1.16 1.00 1.01 1.15
D2 1.35 1.11 1.11 0.95 0.99 1.10
D3 0.85 1.09 1.13 0.88 1.02 0.99
D4 0.63 0.99 0.81 1.06 1.03 0.90
D5 (High) 0.14 0.55 0.68 0.77 0.74 0.58

D1�D5 1.22a 0.70a 0.47 0.23 0.27 0.58a

t-statitics (4.94) (2.24) (1.47) (0.70) (0.83) (2.63)

Panel B: Monthly Mean Returns (1983 - 2012, Analyst Coverage � 8)

Size Quintiles
Dispersion S1 S2 S3 S4 S5

All Stocks
Quintiles (Small) (Large)
D1 (Low) 1.25 1.12 1.05 0.99 1.04 1.09
D2 0.97 0.87 1.13 1.05 0.98 1.00
D3 0.88 0.76 1.14 1.08 0.86 0.94
D4 1.13 0.83 1.03 1.10 0.83 0.98
D5 (High) 0.54 0.98 0.89 0.77 0.91 0.82

D1�D5 0.71b 0.15 0.16 0.22 0.13 0.27
t-statitics (1.81) (0.36) (0.46) (0.63) (0.31) (1.09)

Note: a,b Statistically significant at the five and ten percent levels, respectively.
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Table 1.3: Returns to Dispersion Strategies with Di↵erent Analyst Coverage

The sample includes stocks from the NYSE, AMEX, and Nasdaq, that have one (fiscal) year
I/B/E/S earnings forecast between January 1983 and December 2012. In each column, the sample
is limited to stocks that are covered by from at least two analysts, up to at least ten analysts. Stocks
with a price less than five dollars are excluded. In each month t, stocks are sorted into quintile
portfolios on the basis of dispersion of analysts’ earnings forecasts for the previous month. Stocks
with a zero mean forecast are allocated to the highest dispersion quintile (D5). Stocks are held
for one month. The table presents the average monthly equally-weighted returns of 5 dispersion
portfolios along with return di↵erential of portfolios in dispersion quintile 1 and 5, D1 � D5, in
samples with various thresholds of analyst coverage (N). t-statistics in parentheses are adjusted
for serial-correlation using a Newey-West estimator with lags of up to 6 months.

Monthly Mean Returns (1983 - 2012)

Dispersion Number of Analysts’ Earning Forecasts

Quintiles N � 2 N � 3 N � 4 N � 5 N � 6 N � 7 N � 8 N � 9 N � 10
D1 (Low) 1.15 1.16 1.13 1.10 1.10 1.06 1.01 1.06 1.06
D2 1.10 1.06 1.01 0.98 0.97 0.99 0.98 1.02 1.05
D3 0.99 0.99 0.99 0.99 0.98 0.92 1.07 1.00 1.00
D4 0.90 0.88 0.90 0.88 0.90 0.99 0.85 0.92 0.91
D5 (High) 0.58 0.66 0.73 0.78 0.81 0.80 0.82 0.86 0.90

D1�D5 0.58a 0.50a 0.40b 0.33 0.29 0.19 0.27 0.20 0.16
t-statitics (2.63) (2.08) (1.74) (1.38) (1.22) (0.68) (1.09) (0.77) (0.64)

Notes: a,b Statistically significant at the five and ten percent levels, respectively.
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Table 1.4: Returns of Portfolios Formed on Dispersion and Skewness

The sample includes the NYSE, AMEX, and Nasdaq stocks that have a current-fiscal-year I/B/E/S
earnings forecast, are covered by at least eight analysts, and have prices greater than five dollars.
The sample period is from January 1983 to December 2012. The portfolio sorts in Panel A is
as follows: in each month t, stocks are independently sorted into quintile portfolios based on the
dispersion and skewness of analysts’ earnings forecasts for the previous month. We then assign
stocks into portfolios based on the intersection of rankings of dispersion and skewness. In Panel B,
dispersion quintiles 1 (D1) and 5 (D5) are further subdivided into halves on the same measure. We
then assign stocks into portfolios based on the intersection of rankings of dispersion and skewness.
Stocks are held for one month. Dispersion and skewness is defined as in Table 1.2. This table
reports the average of monthly equally-weighted returns of each 25 dispersion-skewness portfolios,
5 dispersion portfolios (in “All stocks” row) and 5 skewness portfolios (in “All stocks” column).
Panel A also reports return di↵erential of portfolios in dispersion quintile 1 and 5, and return
di↵erential of portfolios in skewness quintile 5 and 1. Panel B reports return di↵erential of portfolios
in two extreme dispersion deciles 1 (D1L) and 10 (D5H). t-statistics in parentheses are adjusted
for serial-correlation using a Newey-West estimator with lags of up to 6 months.

PANEL A: Monthly Mean Returns (1983 - 2000, Analyst Coverage N � 8)

Dispersion Quintiles
Skewness D1 D2 D3 D4 D5 All D1�D5 t-stat
Quintiles (Low) (High) stocks
Q1 (Neg.) 1.05 0.80 0.99 0.91 0.40 0.85 0.65a (2.01)
Q2 0.91 1.10 0.94 0.90 0.86 0.93 0.06 (0.18)
Q3 0.93 0.85 1.14 0.78 1.10 0.95 �0.17 (�0.49)
Q4 1.12 0.92 1.15 0.65 0.84 0.93 0.29 (0.93)
Q5 (Pos.) 1.03 1.14 1.04 0.98 0.99 1.05 0.04 (0.13)
All Stocks 1.01 0.98 1.07 0.85 0.82 0.19 (0.68)
Q5�Q1 �0.02 0.35b 0.06 0.08 0.59a 0.20a

t-statitics (�0.14) (1.76) (0.32) (0.42) (2.41) (1.96)

PANEL B: Monthly Mean Returns (Dispersion Deciles

Dispersion Quintiles
Skewness D1 (Low) D3 D5 (High) All

D1L �D5H t-stat
Quintiles D1L D1H D5L D5H Stocks
Q1 (Neg.) 1.26 0.88 0.99 0.50 0.30 0.85 0.97a (3.43)
Q2 0.91 0.92 0.94 0.95 0.76 0.93 0.15 (0.56)
Q3 1.02 0.84 1.14 1.15 1.04 0.95 �0.01 (�0.04)
Q4 1.12 1.05 1.15 0.78 0.87 0.93 0.25 (0.94)
Q5 (Pos.) 0.71 1.36 1.04 0.72 1.24 1.05 �0.53a (�1.75)

Q5�Q1 �0.56a 0.48b 0.06 0.23 0.94a 0.20a

t-statitics (�2.09) (1.72) (0.32) (0.54) (2.10) (1.96)

Note: a,b Statistically significant at the five and ten percent levels, respectively.
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Table 1.5: Characteristics of The Dispersion-Skewness Portfolios

The sample includes stocks from the NYSE, AMEX, and Nasdaq, that have one (fiscal) year
I/B/E/S earnings forecast between January 1983 and December 2012, and are covered by at
least eight analysts. The table reports equally-weighted average of stock characteristics for each
dispersion-skewness portfolio over the sample period. In each month t, size, book-to-market ratio,
momentum, illiquidity, earnings-to-price ratio, and number of estimates of a portfolio are computed
as the equally-weighted mean of these variables for all stocks in a dispersion-skewness portfolio.
Size, B/M, MOM12, ILLIQ and number of estimates are defined as in Table 1.1. E/P is the past
year’s earnings per share divided by the price at the end of month t. Turnover rate of a portfolio
in month t is the percentage of stocks remained in the same portfolio after the monthly updates.
January is excluded when we compute mean turnover rate. t-statistics in parentheses are adjusted
for serial-correlation using a Newey-West estimator with lags of up to 6 months.

Portfolio Avg
Size

B/M MOM12 ILLIQ E/P
No. of Turnover

(Mil. $) Est. (%)
Q1D1 1.80 15808.5 0.41 0.20 0.94 10.10 14.1 47.0
Q1D2 1.95 11651.8 0.48 0.23 0.86 8.58 14.4 52.7
Q1D3 1.85 10778.8 0.51 0.26 0.87 6.91 14.5 52.5
Q1D4 1.64 7296.7 0.55 0.25 1.17 5.96 14.2 49.3
Q1D5 0.97 4037.5 0.67 0.14 1.37 0.68 13.7 44.5
Q2D1 1.87 13042.2 0.43 0.20 0.95 9.61 13.7 60.9
Q2D2 1.85 8279.1 0.52 0.21 1.01 7.39 13.6 65.9
Q2D3 1.88 8809.4 0.55 0.23 1.04 6.35 13.6 67.7
Q2D4 1.71 6921 0.60 0.25 1.04 5.15 13.7 66.8
Q2D5 0.78 3209 0.74 0.10 1.52 0.25 13.1 61.1
Q3D1 1.87 13098 0.44 0.20 0.96 10.03 13.7 63.6
Q3D2 1.88 8302.4 0.52 0.21 0.91 7.47 13.4 69.1
Q3D3 1.77 7880.7 0.56 0.18 1.04 6.29 13.5 70.5
Q3D4 1.66 6668.7 0.64 0.15 1.15 4.82 13.5 70.0
Q3D5 0.58 3208.1 0.79 0.07 1.61 1.00 13.2 66.0
Q4D1 1.97 14093.6 0.42 0.19 0.83 10.42 13.8 62.5
Q4D2 1.98 9447.1 0.50 0.19 0.85 8.21 13.5 66.7
Q4D3 1.74 8769.9 0.56 0.17 0.97 6.78 13.7 68.0
Q4D4 1.57 7547.9 0.64 0.12 1.34 5.30 13.4 67.4
Q4D5 0.54 3381.4 0.79 0.05 1.62 0.91 13.4 60.3
Q5D1 1.68 15436.3 0.40 0.19 0.90 9.82 14.2 47.9
Q5D2 1.82 11155 0.47 0.17 0.83 7.70 14.1 54.8
Q5D3 1.70 8843.4 0.52 0.15 0.88 6.95 14.1 54.7
Q5D4 1.34 7301.5 0.60 0.11 0.93 5.81 13.9 49.5
Q5D5 0.58 3540.5 0.76 0.01 1.50 1.13 13.7 43.2
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Table 1.6: Characteristics of The Dispersion-Skewness Portfolios (Cont

0
d)

The sample includes stocks from the NYSE, AMEX, and Nasdaq, that have one (fiscal) year
I/B/E/S earnings forecast between January 1983 and December 2012, and are covered by at least
eight analysts. The table reports equally-weighted average of stock characteristics of each dispersion
portfolio in skewness quintile 1 and 5. In each panel, column “t(D1�D5)” reports the t-statistics
of the di↵erences of mean variable between dispersion quintile 1 and 5; rows “t(Q5�Q1)” reports
the t-statistics of the di↵erences of mean variable between skewness quintiles 5 and 1. ln(Size) is
the logarithm of market capitalization at the end of month t. ln(BE/ME) is the logarithm of the
book-to-market ratio at the end of month t. Momentum, illiquidity and earnings-to-price ratio
are defined as in Table 1.5. In each month t, ln(Size), ln(BE/ME), momentum, illiquidity and
earnings-to-price ratio of a portfolio are computed as the equally-weighted mean of these variables
for all stocks in a dispersion-skewness portfolio. MOM12 is defined as the past raw return over
t � 12 to t � 2 months. ILLIQ is defined as the average ratio of the daily absolute return to the
(dollar) trading volume on that day during the month t. t-statistics in parentheses are adjusted for
serial-correlation using a Newey-West estimator with lags of up to 6 months.

Skewness Dispersion Quintiles
Quintiles D1 D2 D3 D4 D5 t(D1�D5)

Mean Average of Analysts’ Forecasts
Q1 (Neg.) 1.95 2.01 1.85 1.62 0.95 (19.8)
Q5 (Pos.) 1.84 1.83 1.70 1.41 0.67 (24.3)
t(Q5�Q1) (�4.96) (�6.89) (�5.98) (�7.82) (�8.85)

Mean ln(Size)
Q1 (Neg.) 8.42 8.16 7.98 7.70 7.28 (19.7)
Q5 (Pos.) 8.37 8.06 7.88 7.60 7.18 (19.7)
t(Q5�Q1) (�1.73) (�3.49) (�3.85) (�1.95) (�1.95)

Mean ln(BE/ME)
Q1 (Neg.) �1.17 �1.01 �0.96 �0.87 �0.72 (�22.3)
Q5 (Pos.) �1.15 �1.01 �0.90 �0.77 �0.61 (�32.3)
t(Q5�Q1) (1.21) (0.10) (4.05) (7.46) (6.32)

Mean Momentum
Q1 (Neg.) 0.20 0.23 0.26 0.25 0.14 (4.2)
Q5 (Pos.) 0.19 0.17 0.15 0.11 0.01 (12.6)
t(Q5�Q1) (�3.75) (�5.79) (�9.55) (�11.7) (�9.58)

Mean Illiquidity
Q1 (Neg.) 0.94 0.86 0.87 1.17 1.37 (�2.9)
Q5 (Pos.) 0.90 0.83 0.88 0.93 1.50 (�5.0)
t(Q5�Q1) (�1.30) (�0.14) (1.74) (�1.26) (1.32)

Mean Earnings/Price
Q1 (Neg.) 14.6 13.4 12.9 8.26 �4.50 (12.3)
Q5 (Pos.) 15.8 12.1 9.83 3.24 �6.91 (9.4)
t(Q5�Q1) (1.41) (�1.84) (�4.26) (�1.75) (�0.95)
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Table 1.7: Returns of Portfolios Formed on Average, Dispersion and Skewness

The sample includes the NYSE, AMEX, and Nasdaq stocks that have a one (fiscal) year I/B/E/S
earnings forecast, are covered by at least eight analysts, and have prices greater than five dollars.
The sample period is from January 1983 to December 2012. In each month t, stocks are inde-
pendently sorted into terciles on the basis of mean, dispersion and skewness of analysts’ earnings
forecasts for the previous month. Then we assign stocks into portfolios based on the intersection
of rankings of mean, dispersion and skewness. Stocks with a zero mean forecast are allocated to
the highest dispersion tercile (D3). Stocks are held for one month. This table reports the average
of monthly equally-weighted returns of each of the 27 average-dispersion-skewness portfolios, along
with return di↵erential of portfolios in dispersion tercile 1 and 3, D1 � D3, and return di↵eren-
tial of portfolios in quintile tercile 3 and 1, Q3 � Q1. t-statistics in parentheses are adjusted for
serial-correlation using a Newey-West estimator with lags of up to 6 months.

Monthly Mean Returns (1983 - 2012, Analyst Coverage � 8)

Dispersion Terciles
Skewness D1 D2 D3

D1-D3 t-stat
Terciles (Low) (Mid) (High)

Low Average
Q1 (Neg.) 1.85 1.59 1.00 0.86a (2.47)
Q2 1.29 1.56 1.11 0.18 (0.55)
Q3 (Pos.) 1.87 1.57 1.10 0.77a (2.38)
Q3�Q1 0.02 �0.02 0.10

Mid Average
Q1 (Neg.) 1.04 0.93 0.29 0.76a (2.86)
Q2 1.00 0.97 1.02 �0.01 (�0.05)
Q3 (Pos.) 1.19 0.87 0.80 0.39 (1.54)
Q3�Q1 0.15 �0.06 0.51a

High Average
Q1 (Neg.) 0.50 0.62 0.38 0.12 (0.40)
Q2 0.60 0.83 0.55 0.05 (0.17)
Q3 (Pos.) 0.82 0.88 0.56 0.26 (0.86)
Q3�Q1 0.32a 0.26 0.18

Note: a,b Statistically significant at the five and ten percent levels, respectively.
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Table 1.8: Returns of Triple-Sorted Portfolios: Size, Book-To-Market

The sample includes the NYSE, AMEX, and Nasdaq stocks that have a current-fiscal-year I/B/E/S
earnings forecast, are covered by at least eight analysts, and have prices greater than five dollars.
The sample period is from January 1983 to December 2012. Panel A reports the monthly mean
returns of portfolios formed using size-dispersion-skewness triple sorts. In each month t, stocks are
independently sorted into tercile portfolios based on the market capitalization at the end of the
previous month, dispersion and skewness of analysts’ earnings forecasts for the previous month.
We then assign stocks into portfolios based on the intersection of rankings of size, dispersion and
skewness. Panel B reports the monthly mean returns of portfolios formed using B/M-dispersion-
skewness triple sorts. In each month t, stocks are independently sorted into tercile portfolios based
on book-to-market ratio at the end of the previous month, dispersion and skewness of analysts’
earnings forecasts for the previous month. We then assign stocks into portfolios based on the
intersection of rankings of book-to-market ratio, dispersion and skewness. Stocks are held for
one month. Portfolio return is calculated as the equally-weighted returns of all the stocks in
that portfolio. t-statistics in parentheses are adjusted for serial-correlation using a Newey-West
estimator with lags of up to 6 months.

Panel A: Triple Sorts on Size, Dispersion and Skewness
Dispersion Terciles

Skewness D1 D2 D3
D1-D3 t-stat

Terciles (Low) (Mid) (High)
Small Cap Q1 (Neg.) 1.08 0.95 0.49 0.60a (2.19)

Q2 0.98 0.94 1.07 �0.09 (�0.32)
Q3 (Pos.) 1.21 1.03 0.81 0.40 (1.20)
Q3�Q1 0.12 0.08 0.32

Mid Cap Q1 (Neg.) 0.90 0.98 0.74 0.16 (0.54)
Q2 0.90 1.14 0.89 0.01 (0.04)
Q3 (Pos.) 1.12 1.04 1.02 0.10 (0.39)
Q3�Q1 0.23 0.06 0.28

Large Cap Q1 (Neg.) 0.96 0.95 0.58 0.38 (1.29)
Q2 0.89 1.03 0.77 0.11 (0.37)
Q3 (Pos.) 1.11 0.92 0.94 0.17 (0.63)
Q3�Q1 0.16 �0.02 0.36b

Panel B: Triple Sorts on Book-to-Market, Dispersion and Skewness
Dispersion Terciles

Skewness D1 D2 D3
D1-D3 t-stat

Terciles (Low) (Mid) (High)
Growth Q1 (Neg.) 0.97 0.96 0.24 0.73a (2.33)

Q2 0.87 1.18 1.11 �0.24 (�0.84)
Q3 (Pos.) 0.92 1.06 1.09 �0.17 (�0.59)
Q3�Q1 �0.05 0.10 0.85a

Mid B/M Q1 (Neg.) 0.86 1.04 0.67 0.19 (1.00)
Q2 0.83 1.09 1.19 �0.36 (�1.74)
Q3 (Pos.) 1.17 0.91 1.14 0.03 (0.13)
Q3�Q1 0.32 �0.12 0.47

Value Q1 (Neg.) 1.12 0.99 1.00 0.12 (0.54)
Q2 1.25 1.21 1.13 0.13 (0.58)
Q3 (Pos.) 1.59 1.33 1.24 0.35 (1.59)
Q3�Q1 0.47b 0.34 0.24

Note: a,b Statistically significant at the five and ten percent levels, respectively.
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Table 1.9: Returns of Triple-Sorted Portfolios: Momentum, Illiquidity

The sample includes the NYSE, AMEX, and Nasdaq stocks that have a current-fiscal-year I/B/E/S
earnings forecast, are covered by at least eight analysts, and have prices greater than five dollars.
The sample period is from January 1983 to December 2012. Panel A reports the monthly mean
returns of portfolios formed using momentum-dispersion-skewness triple sorts. In each month t,
stocks are independently sorted into tercile portfolios based on the momentum at the end of the
previous month, dispersion and skewness of analysts’ earnings forecasts for the previous month. We
then assign stocks into portfolios based on the intersection of rankings of momentum, dispersion
and skewness. Panel B reports the monthly mean returns of portfolios formed using illiquidity-
dispersion-skewness triple sorts. In each month t, stocks are independently sorted into tercile
portfolios based on illiquidity at the end of the previous month, dispersion and skewness of analysts’
earnings forecasts for the previous month. We then assign stocks into portfolios based on the
intersection of rankings of illiquidity, dispersion and skewness. Momentum and illiquidity are
defined in Table 1.1. Stocks are held for one month. Portfolio return is calculated as the equally-
weighted returns of all the stocks in that portfolio. t-statistics in parentheses are adjusted for
serial-correlation using a Newey-West estimator with lags of up to 6 months.

Panel A: Triple Sorts on Momentum, Dispersion and Skewness
Dispersion Terciles

Skewness D1 D2 D3
D1-D3 t-stat

Terciles (Low) (Mid) (High)
Loser Q1 (Neg.) 0.74 0.34 0.25 0.49a (2.16)

Q2 0.88 0.65 0.52 0.36 (1.57)
Q3 (Pos.) 1.11 0.94 0.72 0.39b (1.70)
Q3�Q1 0.36 060a 0.47a

Mid Mom Q1 (Neg.) 0.89 0.96 0.39 0.51a (2.23)
Q2 0.89 0.96 1.12 �0.23 (�1.01)
Q3 (Pos.) 1.15 0.92 0.84 0.32 (1.39)
Q3�Q1 0.26 �0.04 0.45a

Winner Q1 (Neg.) 1.15 1.31 1.00 0.15 (0.66)
Q2 0.90 1.54 1.43 �0.52a (�2.29)
Q3 (Pos.) 1.24 1.19 1.45 �0.21 (�0.93)
Q3�Q1 0.08 �0.13 0.44a

Panel B: Triple Sorts on Illiquidity, Dispersion and Skewness
Dispersion Terciles

Skewness D1 D2 D3
D1-D3 t-stat

Terciles (Low) (Mid) (High)
Most Liquid Q1 (Neg.) 0.92 1.01 0.90 0.02 (0.05)

Q2 0.83 1.18 0.93 �0.09 (�0.31)
Q3 (Pos.) 1.08 1.01 1.01 0.07 (0.21)
Q3�Q1 0.16 0.00 0.11

Mid Liquid Q1 (Neg.) 0.92 0.95 0.57 0.36 (1.18)
Q2 0.94 1.11 0.99 �0.05 (�0.17)
Q3 (Pos.) 0.94 1.11 0.99 �0.05 (�0.17)
Q3�Q1 0.01 0.16 0.42b

Least Liquid Q1 (Neg.) 1.04 0.94 0.50 0.54a (2.05)
Q2 0.99 0.82 0.90 0.09 (0.29)
Q3 (Pos.) 1.27 0.89 0.75 0.52b (1.92)
Q3�Q1 0.26 �0.05 0.25

Note: a,b Statistically significant at the five and ten percent levels, respectively.
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Table 1.10: Four-Factor Model Time-Series Tests

The sample includes stocks from the NYSE, AMEX, and Nasdaq, that have one (fiscal) year I/B/E/S earnings forecast between January
1983 and December 2012, and are covered by at least eight analysts. The table reports estimates of the four-factor model

Ri,t �Rf,t = ↵i + �i,m(Rm,t �Rf,t) + �i,sSMBt + �i,hHMLt + �i,uUMDt + "i,t,

for average monthly equally-weighted returns of 25 size-dispersion portfolios. The market premium Rm � Rf uses the CRSP
NYSE/AMEX/Nasdaq value-weighted index. The variables SMB, HML are generated using the same method as Fama and French
(1996). The momentum factor UMD is the di↵erence between the monthly return on a portfolio with high returns from month t � 12
to t � 2, and the return on a portfolio with low returns from month t � 12 to t � 2. The dispersion-skewness portfolios are formed as in
Table 1.4. t-statistics in parentheses and adjusted R

2s are reported for each model.
Portfolio Alpha (%) R

m

�R
f

SMB HML UMD Adj. R2

Q1 D1 0.16 (1.04) 0.91 (22.1) �0.10 (�1.61) 0.07 (1.08) 0.10 (1.62) 75.0%
(Neg.) D2 �0.18 (�1.13) 1.05 (20.5) 0.09 (1.41) 0.01 (0.13) �0.14 (�1.62) 79.4%

D3 �0.07 (�0.51) 1.13 (26.1) 0.33 (5.74) 0.04 (0.55) �0.17 (�2.83) 85.1%
D4 �0.22 (�1.33) 1.22 (26.8) 0.51 (7.88) �0.02 (�0.32) �0.19 (�3.35) 84.3%
D5 �0.83 (�3.98) 1.33 (25.3) 0.88 (11.35) �0.01 (�0.17) �0.20 (�3.04) 82.0%

Q2 D1 0.03 (0.20) 0.89 (20.9) �0.10 (�1.64) 0.11 (1.45) 0.10 (1.88) 75.0%
D2 0.10 (0.71) 1.02 (24.4) 0.19 (3.01) 0.10 (1.48) �0.08 (�1.53) 80.1%
D3 �0.16 (�1.25) 1.18 (25.3) 0.29 (5.24) 0.09 (2.24) �0.22 (�3.82) 86.8%
D4 �0.30 (�1.81) 1.32 (22.7) 0.51 (8.11) 0.08 (1.23) �0.22 (�3.14) 84.3%
D5 �0.45 (�2.34) 1.40 (23.1) 0.73 (7.94) 0.17 (3.05) �0.34 (�4.16) 82.7%

Q3 D1 0.05 (0.31) 0.90 (19.5) �0.07 (�0.91) 0.10 (1.21) 0.05 (0.94) 72.2%
D2 �0.15 (�1.25) 1.04 (29.8) 0.14 (1.93) 0.11 (1.74) �0.03 (�0.67) 81.3%
D3 0.04 (0.30) 1.13 (25.0) 0.45 (6.72) 0.10 (1.46) �0.12 (�2.38) 82.7%
D4 �0.41 (�2.27) 1.27 (25.7) 0.53 (6.54) 0.12 (1.99) �0.18 (�2.94) 82.1%
D5 �0.17 (�0.90) 1.28 (25.9) 1.01 (11.22) 0.20 (2.14) �0.26 (�3.72) 80.5%

Q4 D1 0.27 (1.81) 0.86 (19.4) �0.07 (�1.03) 0.04 (0.54) 0.13 (2.14) 75.3%
D2 �0.09 (�0.72) 1.03 (35.3) 0.27 (7.08) 0.12 (3.34) �0.07 (�1.66) 84.3%
D3 0.06 (0.50) 1.12 (36.2) 0.41 (8.31) 0.15 (3.89) �0.07 (�1.54) 85.6%
D4 �0.51 (�2.91) 1.23 (27.7) 0.45 (6.19) 0.15 (2.20) �0.07 (�1.18) 81.0%
D5 �0.45 (�2.18) 1.35 (20.6) 0.73 (6.88) 0.22 (2.47) �0.30 (�3.74) 80.4%

Q5 D1 0.17 (1.17) 0.87 (22.4) �0.09 (�1.10) 0.05 (0.76) 0.06 (1.16) 71.1%
(Pos.) D2 0.25 (1.82) 1.01 (29.5) 0.14 (2.67) 0.14 (2.04) �0.05 (�1.11) 79.5%

D3 �0.01 (�0.09) 1.12 (33.6) 0.30 (4.20) 0.06 (1.31) �0.11 (�1.82) 83.6%
D4 �0.16 (�0.79) 1.18 (26.1) 0.54 (7.06) 0.14 (1.57) �0.19 (�3.04) 80.5%
D5 �0.29 (�1.57) 1.32 (23.6) 0.67 (7.61) 0.33 (6.44) �0.32 (�5.01) 82.4%
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Table 1.11: Subperiod and Di↵erent Analyst Coverage

The sample includes the NYSE, AMEX, and Nasdaq stocks that have a current-fiscal-year I/B/E/S
earnings forecast, are covered by at least eight analysts, and have prices greater than five dollars.
The sample period is from January 1983 to December 2012. Panel A reports the monthly re-
turn of dispersion-skewness portfolios during sample subperiod 1983 - 2000. Panel B reports the
monthly return of dispersion-skewness portfolios formed using stocks with a higher analyst cover-
age threshold - covered by at least ten analysts. In each month t, stocks are independently sorted
into quintile portfolios based on the dispersion and skewness of analysts’ earnings forecasts for the
previous month. We then assign stocks into portfolios based on the intersection of rankings of
dispersion and skewness. Stocks are held for one month. This table reports the average of monthly
equally-weighted returns of each 25 dispersion-skewness portfolios, 5 dispersion portfolios (in “All
stocks” row) and 5 skewness portfolios (in “All stocks” column). Table also reports return di↵er-
ential of portfolios in dispersion quintile 1 and 5, D1�D5, and return di↵erential of portfolios in
skewness quintile 5 and 1, Q5 � Q1. t-statistics in parentheses are adjusted for serial-correlation
using a Newey-West estimator with lags of up to 6 months.

PANEL A: Monthly Mean Returns (1983 - 2000, Analyst Coverage � 8)
Dispersion Quintiles

Skewness D1 D2 D3 D4 D5 All D1�D5 t-stat
Quintiles (Low) (High) stocks
Q1 (Neg.) 1.47 1.19 1.27 1.19 0.41 1.12 1.06a (2.25)
Q2 1.18 1.39 1.23 1.43 1.09 1.25 0.09 (0.21)
Q3 1.37 1.08 1.56 1.12 1.25 1.27 0.12 (0.28)
Q4 1.39 1.34 1.43 1.18 1.23 1.28 0.16 (0.38)
Q5 (Pos.) 1.42 1.47 1.40 1.28 1.18 1.32 0.24 (0.67)
All Stocks 1.35 1.28 1.40 1.22 1.02 0.34 (1.04)
Q5�Q1 �0.05 0.29 0.14 0.09 0.78a 0.19
t-statitics (�0.25) (1.56) (0.56) (0.30) (2.11) (1.07)

PANEL B: Monthly Mean Returns (1983 - 2012, Analyst Coverage N � 10)
Dispersion Quintiles

Skewness D1 D2 D3 D4 D5 All D1�D5 t-stat
Quintiles (Low) (High) stocks
Q1 (Neg.) 1.04 0.77 1.07 0.93 0.41 0.85 0.63a (1.99)
Q2 0.98 0.96 0.98 0.93 0.92 0.96 0.06 (0.18)
Q3 0.97 0.84 1.19 0.71 1.13 0.97 �0.16 (�0.46)
Q4 1.06 1.02 1.01 0.74 0.88 0.93 0.18 (0.56)
Q5 (Pos.) 1.11 1.17 1.13 0.94 1.19 1.09 �0.09 (�0.26)
All Stocks 1.01 0.97 1.09 0.85 0.89 0.13 (0.44)
Q5�Q1 0.07 0.40a 0.06 0.01 0.78a 0.24
t-statitics (0.43) (2.11) (0.30) (0.07) (2.63) (1.61)

Note: a,b Statistically significant at the five and ten percent levels, respectively.
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Table 1.12: Di↵erent Holding Period and Updating Frequency

The sample includes the NYSE, AMEX, and Nasdaq stocks that have a current-fiscal-year I/B/E/S
earnings forecast, are covered by at least eight analysts, and have prices greater than five dollars.
The sample period is from January 1983 to December 2012. Panel A presents the trading strategy
of portfolios that are updated at the end of the second month of each quarter (February, May,
August and November), and are held for 3 months. Panel B presents the trading strategy that we
update portfolios semiannually (at the end of May and November), and hold them for 6 months.
Every quarter (6 months), stocks are independently sorted into quintile portfolios based on the
dispersion and skewness of analysts’ earnings forecasts for the month prior to the portfolio-formation
month. We then assign stocks into portfolios based on the intersection of rankings of dispersion and
skewness. Stocks are held for three (six) months. Dispersion and skewness are calculated as the
average of dispersion and skewness in the past three (six) months. This table reports the average
of quarterly (semiannually) equally-weighted returns of each 25 dispersion-skewness portfolios, 5
dispersion portfolios (in “All stocks” row) and 5 skewness portfolios (in “All stocks” column). Table
also reports return di↵erential of portfolios in dispersion quintile 1 and 5, D1 � D5, and return
di↵erential of portfolios in skewness quintile 5 and 1, Q5 � Q1. t-statistics in parentheses are
adjusted for serial-correlation using a Newey-West estimator with lags of up to 6 months.

PANEL A: Quarterly Updated Portfolio, 3 Months Holding Period
Dispersion Quintiles

Skewness D1 D2 D3 D4 D5 All D1�D5 t-stat
Quintiles (Low) (High) stocks
Q1 (Neg.) 3.11 2.76 3.11 1.83 1.10 2.46 2.01a (2.15)
Q2 2.58 2.84 2.81 2.44 1.93 2.51 0.64 (0.67)
Q3 2.97 2.87 3.15 2.15 1.93 2.63 1.04 (1.15)
Q4 3.54 3.21 3.46 2.94 2.33 3.04 1.20 (1.42)
Q5 (Pos.) 3.16 2.84 3.12 2.83 2.66 2.90 0.50 (0.61)
All Stocks 3.08 2.86 3.15 2.46 2.06 1.01 (1.38)
Q5�Q1 0.05 0.08 0.01 1.01b 1.57a 0.44
t-statitics (0.12) (0.13) (0.02) (1.68) (2.04) (1.31)

PANEL B: Semiannually Updated Portfolio, 6 Months Holding Period
Dispersion Quintiles

Skewness D1 D2 D3 D4 D5 All D1�D5 t-stat
Quintiles (Low) (High) stocks
Q1 (Neg.) 6.94 6.44 5.18 5.05 3.39 5.56 3.55a (1.97)
Q2 6.10 5.78 5.33 5.45 4.29 5.38 1.81 (1.25)
Q3 7.46 6.81 6.09 4.21 5.37 5.94 2.10 (1.20)
Q4 5.67 6.48 6.21 4.97 4.31 5.59 1.36 (0.74)
Q5 (Pos.) 6.33 6.38 6.89 5.11 4.70 5.80 1.64 (1.21)
All Stocks 6.59 6.36 5.98 5.10 4.36 2.23 (1.59)
Q5�Q1 �0.61 �0.06 1.71b 0.06 1.31 0.24
t-statitics (�0.84) (�0.07) (1.85) (0.06) (0.95) (0.40)

Note: a,b Statistically significant at the five and ten percent levels, respectively.
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Table 1.13: I/B/E/S Earnings Forecasts and Stock Recommendations

The sample includes the NYSE, AMEX, and Nasdaq stocks that have a one (fiscal) year I/B/E/S
earnings forecast, are covered by at least eight analysts, and have prices greater than five dollars.
The stocks also have at least one analysts’ buy/sell recommendation in the I/B/E/S recommen-
dation dataset. The sample period is from January 1992 to December 2012. In each month t,
stocks are independently sorted into quintile portfolios based on the dispersion and skewness of
analysts’ earnings forecasts for the previous month. In the I/B/E/S recommendation dataset, an-
alysts’ recommendations are classified into five categories: strong buy, buy, hold, underperform
and sell. Strong buy and buy categories are pooled into ”Buy” category, underperform and sell
are pooled into ”Sell” category. We assign a score of -2 to sell, -1 to underperform, 0 to hold, 1
to buy, and 2 to strong buy. Panel A reports the mean recommendation scores for each of the 25
dispersion-skewness portfolios. Panel B reports the mean percentage of analysts’ recommendations
in the pooled ”Buy” and ”Sell” categories, for each of the 25 dispersion-skewness portfolios.

Mean Recommendation Score (1992-2012)

Dispersion Quintiles
Skewness D1 D2 D3 D4 D5 D1�D5 t-stat
Quintiles (Low) (High)
Q1 (Neg.) 0.75 0.74 0.72 0.69 0.59 0.16 (8.2)
Q2 0.75 0.72 0.67 0.62 0.56 0.19 (10.4)
Q3 0.75 0.70 0.68 0.64 0.59 0.16 (8.7)
Q4 0.75 0.70 0.67 0.62 0.57 0.18 (9.9)
Q5 (Pos.) 0.76 0.70 0.66 0.62 0.55 0.20 (11.4)

Recommendation Percentages (1992-2012)

Dispersion Quintiles
Skewness Recommendation D1 D2 D3 D4 D5
Quintiles (Low) (High)

Q1 (Neg.)
Buy 55.8% 54.3% 53.9% 51.0% 46.8%
Sell 4.3% 4.4% 4.9% 4.7% 7.1%

Q2
Buy 55.4% 52.7% 51.2% 49.6% 45.2%
Sell 4.6% 4.7% 5.9% 6.1% 7.5%

Q3
Buy 54.8% 50.2% 51.0% 48.5% 48.5%
Sell 3.7% 4.4% 4.9% 5.9% 7.3%

Q4
Buy 54.2% 51.4% 49.6% 48.4% 45.0%
Sell 3.5% 4.7% 4.8% 6.1% 7.6%

Q5 (Pos.)
Buy 54.8% 50.8% 48.4% 47.8% 44.3%
Sell 4.0% 4.9% 4.7% 5.9% 7.4%
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Table 1.14: Ex Ante Variance And Skewness

The sample includes the NYSE, AMEX, and Nasdaq stocks that have a one (fiscal) year I/B/E/S
earnings forecast, are covered by at least eight analysts, and and have daily option data on Op-
tionmetrics. The sample period is from January 2001 to December 2012. We follow the Bakshi,
Kapadia and Madan (2003) method and use options closest to 3 months to maturity to calculate
risk neutral variance and skewness. In each month t, stocks are independently sorted into quintile
portfolios based on the dispersion and skewness in analysts’ earnings forecasts for the previous
month. We then assign stocks into portfolios based on the intersection of rankings of dispersion
and skewness. Stocks are held for one month. Panel A reports the mean ex ante variance of each
of 25 dispersion-skewness portfolios. Panel B reports the mean ex ante skewness of each portfolios.
t-statistics in parentheses are adjusted for serial-correlation using a Newey-West estimator with
lags of up to 6 months.

PANEL A: Ex Ante Variance (3-Month Maturity, 2005 - 2012)
Dispersion Quintiles

Skewness D1 D2 D3 D4 D5 D5�D1 t-stat
Quintiles (Low) (High)
Q1 (Neg.) 0.059 0.077 0.099 0.165 0.180 0.121 (11.8)
Q2 0.065 0.086 0.112 0.143 0.198 0.133 (11.0)
Q3 0.063 0.086 0.111 0.141 0.192 0.129 (11.5)
Q4 0.064 0.087 0.109 0.134 0.176 0.112 (11.4)
Q5 (Pos.) 0.064 0.082 0.100 0.139 0.179 0.115 (10.9)
Q5�Q1 0.005 0.005 0.001 �0.026 �0.001
t-statitics (1.10) (0.91) (0.13) (�0.98) (�0.07)

PANEL B: Ex Ante Skewness (3-Month Maturity, 2005 - 2012)
Dispersion Quintiles

Skewness D1 D2 D3 D4 D5 D5�D1 t-stat
Quintiles (Low) (High)
Q1 (Neg.) �0.498 �0.442 �0.402 �0.365 �0.357 0.141 (10.0)
Q2 �0.472 �0.412 �0.374 �0.360 �0.387 0.085 (5.8)
Q3 �0.474 �0.408 �0.396 �0.356 �0.356 0.118 (8.1)
Q4 �0.474 �0.412 �0.398 �0.348 �0.327 0.147 (10.4)
Q5 (Pos.) �0.493 �0.386 �0.364 �0.352 �0.342 0.151 (11.1)
Q5�Q1 0.005 0.056 0.038 0.013 0.015
t-statitics (0.32) (2.24) (2.81) (0.96) (1.25)

Note: a,b Statistically significant at the five and ten percent levels, respectively.
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APPENDIX

A1. Skew-normal distribution.

A skew-normal distribution SKN(µ,�, ⌫) with local parameter µ, scale parameter � and shape

parameter ⌫, has a probability density function:
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1

�⇡

exp

⇢
�(x� µ)2
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and closed form first three moments:
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. The cumulative probability function is
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x� µ
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◆
� 2T

✓
x� µ

�

; ⌫

◆
, (1.5)

where �(x) is cdf of standard normal distribution, and T (x; ⌫) is Owen’s T function defined by

Owen (1956) having the functional form:

T (x; ⌫) =
1

2⇡

Z ⌫

0

exp
�
�1

2x
2(1 + t

2)
 

1 + t

2
dt.

Figure 1.3 plots several Owen’s T function with di↵erent skewness parameter ⌫.

Properties of Owen’s T Function. Both �(x) and T (x; ⌫) have complicated functional

forms. Fortunately, however, we will only use the following properties of T (x; ⌫) in our proofs of

all propostions:

1. T (x; ⌫) is symmetric w.r.t. x, for all ⌫ 2 (�1,1). That is, T (x; ⌫) = T (�x; ⌫).

2. T (x;�⌫) = �T (x; ⌫), for all x 2 (�1,1).

3. When ⌫ > 0, T (x; ⌫) > 0, is maximized at x = 0 with value T (0; ⌫) = arctan(⌫), and

limx!±1 T (x; ⌫) ! 0.

4. When ⌫ < 0, T (x; ⌫) < 0, is minimized at x = 0 with value T (0; ⌫) = arctan(⌫), and
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Figure 1.3: Owen’s T Function with Di↵erent Skewness Parameter ⌫.

limx!±1 T (x; ⌫) ! 0.

5. When ⌫ > 0, @T (x;⌫)
@x > 0 if x < 0; and @T (x;⌫)

@x < 0 if x > 0.

6. When ⌫ < 0, @T (x;⌫)
@x < 0 if x < 0; and @T (x;⌫)

@x > 0 if x > 0.

A2. Proofs of the Propositions.

Proposition 1. For any transaction cost c � 0, there exists a unique equilibrium price P

⇤(�, ⌫)

that clears the market, i.e., the function

e
F (P ;�, ⌫) = Q

D(P ;�, ⌫)�Q

S(P ;�, ⌫) (1.6)

has a unique solution P

⇤(�, ⌫).

Proof. We start with the case that ⌫ > 0.

Using the definition of the aggregated demand function Q

D in equation 1.1, and aggregated

supply function Q

S in equation 1.2,

e
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When P = µ, since for ⌫ > 0, T (x; ⌫) > 0 for all x, we have

e
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And the first-order derivative of eF (c;�, ⌫) w.r.t P is given by

@

e
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@P
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f(P ;�, ⌫)� 1

�

f(P ;�, ⌫) < 0,

where f(P ;�, ⌫) is pdf of the skew-normal distribution. Therefore, F (P ;�, ⌫) = 0 exists a unique

solution P

⇤(�, ⌫) > µ = V̄1 � ��

q
2
⇡ when skewness parameter ⌫ > 0.

Similarly, when ⌫ < 0, since

e
F (µ;�, ⌫) = 1� �

⇣
c

�

⌘
+ 2T

⇣
c

�

; ⌫
⌘
� �

⇣
� c

�

⌘
+ 2T

⇣
� c

�

; ⌫
⌘
< 0;

lim
P!�1

e
F (P ;�, ⌫) = 1� 0� 0� 0� 0 = 1 > 0;

@

e
F (P ;�, ⌫)

@P

= � 1

�

f(P ;�, ⌫)� 1

�

f(P ;�, ⌫) < 0.

Therefore, F (P ;�, ⌫) = 0 exists a unique solution P

⇤(�, ⌫) < µ = V̄1 � ��

q
2
⇡ when skewness

parameter ⌫ < 0.

Proposition 2. Fix the transaction cost c > 0.

(i) For any given ⌫ > 0, there exists a unique positive �

⇤(⌫, c) such that when � > �

⇤(⌫, c), the

equilibrium price P

⇤(�, ⌫) < V̄1;

(ii) For any given ⌫ < 0, there exists a unique positive �

⇤(⌫, c) such that when � > �

⇤(⌫, c), the

equilibrium price P

⇤(�, ⌫) > V̄1.

(iii) When ⌫ = 0, the equilibrium price P

⇤(�, ⌫) = V̄1;

(iv) For any given ⌫, and costs c1, c2 > 0, we have

�⇤(⌫,c1)
c1

= �⇤(⌫,c2)
c2

. When c = 0, �⇤(⌫, c) = 0.
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Proof. (i) We start with the case that ⌫ > 0.

e
F (V̄1;�, ⌫) = 1� �

✓
�µ

0 + c

�

◆
+ 2T

✓
�µ

0 + c

�

; ⌫

◆
� �

✓
�µ

0 � c

�

◆
+ 2T

✓
�µ

0 � c

�

; ⌫

◆
. (1.7)

where µ0 = µ� V̄1 = ���

q
2
⇡ . Now treat µ0 as the variable in the equation. Then using the similar

method as in the proof of Proposition 1,

e
F (V̄1;�, ⌫)|µ0=0 = 1� �

⇣
c

�

⌘
+ 2T

⇣
c

�

; ⌫
⌘
� �

⇣
� c

�

⌘
+ 2T

⇣
� c

�

; ⌫
⌘

= 2T
⇣
c

�

; ⌫
⌘
+ 2T

⇣
� c

�

; ⌫
⌘
> 0;

lim
µ!�1

e
F (V̄1;�, ⌫) = lim

µ0!�1


1� �

✓
�µ

0 + c

�

◆
+ 2T

✓
�µ

0 + c

�

; ⌫

◆
� �

✓
�µ

0 � c

�

◆
+ 2T

✓
�µ

0 � c

�

; ⌫

◆�

= 1� 1 + 0� 1 + 0 = �1 < 0;

@

e
F (P ;�, ⌫)

@P

= � 1

�

f(P ;�, ⌫)� 1

�

f(P ;�, ⌫) < 0.

Therefore, there exists a unique µ

0⇤(⌫, c) = ��

⇤
�

q
2
⇡ < 0 such that eF (V̄1;�, ⌫)|µ0=µ0⇤ = 0.

And when µ

0
< µ

0⇤, and equivalently when � > �

⇤(⌫, c) for the given ⌫ and cost c, eF (V̄1;�, ⌫) <

0. Combine with the results that we have proved in Proposition 1,

lim
P!�1

e
F (P ;�, ⌫) = 1;

@

e
F (P ;�, ⌫)

@P

= � 1

�

f(P ;�, ⌫)� 1

�

f(P ;�, ⌫) < 0.

We have proved that when � > �

⇤(⌫, c) for the given ⌫ > 0 and cost c, the equilibrium price

P

⇤(�, ⌫) < V̄1.

(ii) Using the same method, it is straightforward to prove that in the case of skewness parameter

⌫ < 0, when � > �

⇤(⌫, c) for the given ⌫ < 0 and cost c, the equilibrium price P

⇤(�, ⌫) > V̄1.

(iii) When ⌫ = 0, the skew-normal distribution SKN(V̄1 � ��

q
2
⇡ ,�, ⌫) is just a normal distri-

bution N(V̄1,�). Then equilibrium price P

⇤(�, 0) solves

e
F (P ;�, ⌫) = 1� F (P + c;�, ⌫)� F (P � c;�, ⌫) = �

✓
µ� P � c

�

◆
� �

✓
P � c� µ

�

◆
= 0

Obviously, P = µ = V̄1 is a solution to the equation, and therefore, P ⇤(�, 0) = V̄1.
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Figure 1.4: Dispersion Threshold �

⇤(⌫, c) When Cost c = 1.

(iv) In equilibrium, �

⇤(⌫, c) satisfies eF (V̄1;�⇤(⌫, c), ⌫) = 0, and µ

0⇤(⌫, c) = ��

⇤
�

q
2
⇡ , then

plugging �

⇤(⌫, c) into equation 1.7, we have

0 = e
F (V̄1;�

⇤(⌫, c), ⌫) = 1� �

 
c

�

⇤ + �

r
2

⇡

!
+ 2T

 
c

�

⇤ + �

r
2

⇡

; ⌫

!

��

 
� c

�

⇤ + �

r
2

⇡

!
+ 2T

 
� c

�

⇤ + �

r
2

⇡

; ⌫

!
.

Then because of the uniqueness of �⇤(⌫, c) we have proved in part (i) and (ii), for costs c1, c2 > 0,

we have �⇤(⌫,c1)
c1

= �⇤(⌫,c2)
c2

. When c = 0,

e
F (V̄1;�, ⌫)|µ0=0 = 1� �

⇣
c

�

⌘
+ 2T

⇣
c

�

; ⌫
⌘
� �

⇣
� c

�

⌘
+ 2T

⇣
� c

�

; ⌫
⌘
= 0

Therefore, µ0⇤(⌫, c) = ��

⇤
�

q
2
⇡ = 0, and �

⇤(⌫, c) = 0.

Figure 1.4 provides a numerical solution of �⇤(⌫, c) when cost is 1. The value of �⇤ for other

cost value can be easily calculated using the result in Proposition 2 (iv).
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Proposition 3. Fix the transaction cost c � 0.

(i) For any given ⌫ > 0, the equilibrium price P

⇤(�, ⌫) decreases with � when � > �

⇤(⌫, c);

(ii) For any given ⌫ < 0, the equilibrium price P

⇤(�, ⌫) increases with � when � > �

⇤(⌫, c);

Proof. We start with the case that ⌫ > 0.

For a given c > 0 and ⌫ > 0, we assume that �2 > �1 > �

⇤(⌫, c). Then from Proposition 2,

there exists a c1 > c, such that �

⇤(⌫, c1) = �1. Since, �2 > �1, applying Proposition 2 again, we

have

P

⇤(�2, c1) < P

⇤(�1, c1) = 0.

We define �P (c;�1,�2) := P

⇤(�1, c) � P

⇤(�2, c). Then �P (c1;�1,�2) < 0. Since P

⇤(�, c) is a

continuous function on R2
+, �P (c;�1,�2) is also a continuous function w.r.t. c, for any given

�1, �2. Because of the uniqueness of the equilibrium price P

⇤(·) from Proposition 1, we have

�P (c;�1,�2) 6= 0 if �1 6= �2. Based on the properties of a continuous function,

�P (c;�1,�2)  0, for all c > 0, and �2 > �1.

And on any closed interval of c, �P (c;�1,�2) < 0 when �2 > �1. So far, we have proved that for

any given trading costs c > 0, when ⌫ > 0, the equilibrium price P

⇤(�, c) is decreasing with �.

Using the same method, it is straightforward to prove that when ⌫ < 0, the equilibrium price

P

⇤(�, c) is increasing with �.

Table 1.15 provides numerical solutions of P ⇤(�, ⌫) with a variety choices of dispersion parameter

�, skewness parameter ⌫ and transaction cost c. For simplicity, the means of these skew-normal

distributions V̄1 are set to be zero.
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Table 1.15: Equilibrium Prices in The Model

The table reports the numerical solution of equilibrium price P

⇤(�, ⌫), given in Proposition 1, 2
and 3, with a variety of dispersion parameter �, skewness parameter ⌫, and cost c. The model in
Panel A - C have symmetric c. Panel D reports the results of the case that costs of short-selling a
stock is high, i.e., c� � c

+.

PANEL A: Equilibrium price P ⇤(�, ⌫), with cost c = 0
� ⌫ = �4 ⌫ = �3 ⌫ = �2 ⌫ = �1 ⌫ = 0 ⌫ = 1 ⌫ = 2 ⌫ = 3 ⌫ = 4

0.5 0.050 0.043 0.029 0.010 0.000 �0.010 �0.029 �0.043 �0.050
1.0 0.100 0.085 0.058 0.020 0.000 �0.020 �0.058 �0.085 �0.100
1.5 0.150 0.128 0.088 0.029 0.000 �0.029 �0.088 �0.128 �0.150
2.0 0.200 0.170 0.116 0.039 0.000 �0.039 �0.116 �0.170 �0.200
2.5 0.249 0.212 0.146 0.048 0.000 �0.048 �0.146 �0.212 �0.249
3.0 0.300 0.255 0.175 0.058 0.000 �0.058 �0.175 �0.255 �0.300
3.5 0.349 0.297 0.204 0.068 0.000 �0.068 �0.204 �0.297 �0.349
4.0 0.400 0.340 0.233 0.077 0.000 �0.077 �0.233 �0.340 �0.400

PANEL B: Equilibrium price P ⇤(�, ⌫), with cost c = 0.5
� ⌫ = �4 ⌫ = �3 ⌫ = �2 ⌫ = �1 ⌫ = 0 ⌫ = 1 ⌫ = 2 ⌫ = 3 ⌫ = 4

0.5 �0.079 �0.060 �0.032 �0.004 0.000 0.004 0.032 0.060 0.079
1.0 0.026 0.025 0.024 0.012 0.000 �0.012 �0.024 �0.025 �0.026
1.5 0.099 0.086 0.064 0.024 0.000 �0.024 �0.064 �0.086 �0.099
2.0 0.160 0.139 0.099 0.035 0.000 �0.035 �0.099 �0.139 �0.160
2.5 0.218 0.187 0.132 0.045 0.000 �0.045 �0.132 �0.187 �0.218
3.0 0.273 0.234 0.163 0.056 0.000 �0.056 �0.163 �0.234 �0.273
3.5 0.327 0.279 0.194 0.065 0.000 �0.065 �0.194 �0.279 �0.327
4.0 0.380 0.324 0.224 0.075 0.000 �0.075 �0.224 �0.324 �0.380

PANEL C: Equilibrium price P ⇤(�, ⌫), with cost c = 1.0
� ⌫ = �4 ⌫ = �3 ⌫ = �2 ⌫ = �1 ⌫ = 0 ⌫ = 1 ⌫ = 2 ⌫ = 3 ⌫ = 4

0.5 �0.327 �0.262 �0.167 �0.045 0.000 0.045 0.167 0.262 0.327
1.0 �0.157 �0.120 �0.065 �0.009 0.000 0.009 0.065 0.120 0.157
1.5 �0.040 �0.024 0.000 0.009 0.000 �0.009 0.000 0.024 0.040
2.0 0.052 0.051 0.048 0.024 0.000 �0.024 �0.048 �0.051 �0.052
2.5 0.128 0.115 0.091 0.036 0.000 �0.036 �0.091 �0.115 �0.128
3.0 0.197 0.172 0.128 0.048 0.000 �0.048 �0.128 �0.172 �0.197
3.5 0.261 0.226 0.164 0.059 0.000 �0.059 �0.164 �0.226 �0.261
4.0 0.321 0.277 0.198 0.070 0.000 �0.070 �0.198 �0.277 �0.321

PANEL D: Equilibrium price P ⇤(�, ⌫), with high short-sales costs c+ = 0.5, c� = 2
� ⌫ = �4 ⌫ = �3 ⌫ = �2 ⌫ = �1 ⌫ = 0 ⌫ = 1 ⌫ = 2 ⌫ = 3 ⌫ = 4

0.5 0.286 0.375 0.505 0.678 0.750 0.822 0.995 1.125 1.214
1.0 0.480 0.539 0.626 0.725 0.750 0.775 0.874 0.961 1.021
1.5 0.618 0.653 0.704 0.749 0.750 0.751 0.796 0.847 0.882
2.0 0.725 0.741 0.762 0.765 0.750 0.734 0.737 0.760 0.775
2.5 0.814 0.814 0.811 0.780 0.750 0.721 0.689 0.686 0.686
3.0 0.892 0.878 0.853 0.793 0.750 0.708 0.647 0.621 0.608
3.5 0.963 0.937 0.893 0.805 0.750 0.696 0.608 0.562 0.537
4.0 1.029 0.993 0.929 0.816 0.750 0.685 0.571 0.507 0.471
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