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ABSTRACT

XIAOYU ZHENG: On the Effective Properties of Nematic Polymer Nano-Composites

(Under the direction of Professor M. Gregory Forest)

Many nano-composites consist of rod-like or platelet macromolecules in a solvent matrix,

which are observed to yield large property enhancements at very low volume fraction. These

particle suspensions are called liquid crystal polymers because they order at a critical vol-

ume fraction. In this dissertation, we study the role of the orientational distribution function

of liquid crystal polymers and high aspect ratio particle dispersions in composite properties.

Chapter I provides a review of the kinetic theory of flowing rod dispersions. In Chapters II and

III, we use homogenization theory to predict volume-averaged effective properties (specifically

thermal conductivity and mechanical properties) versus particle volume fraction, aspect ratio

and shear rate. The formulas we derive are in terms of second and fourth moments of the ori-

entational distribution function of the inclusions. We close with recent progress on percolation

in rod dispersions.
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Chapter 1

Kinetic Theory and Mesoscopic Models for
Nematic Fluids Monodomain

1.1 Introduction

The rheological properties of solutions of a rodlike or platelet polymer change dramatically

with concentration. At very low concentration, the solution is nearly a Newtonian fluid with

weak elastic properies. As the concentration increases, the viscosity increases rapidly, and

there appears marked nonlinear viscoelasticity. With further increase in concentration, the

solution transitions to a liquid-crystalline phase, and its rheological properties become even

more complicated.

The macromolecules or particles we consider are rigid spheroids with length L and diameter

d, with L/d� 1 for rods and L/d� 1 for platelets. As Onsager and Flory showed, a solution of

such molecule forms liquid crystals of nematic structure above a certain critical concentration

c∗ ≈ 1/dL2, where c∗ denotes the number of rods per unit volume.

Through out this dissertation, we only consider the orientational space of the molecule,

without physical spatial distortions, on micron scales which correspond to homogeneous phases,

so-called monodomains.

1.2 Kinetic equation for the orientational distribution function

Let m denote a unit vector parallel to the symmetry axis of such a molecule, and f(m, t)

its distribution function.



1.2.1 Dilute suspensions

First, consider dilute concentrations, c � 1/L3, the rotational motion of the rods is inde-

pendent and is described by the theory of Kirkwood and Auer (1951), neglecting translational

diffusion:
∂f

∂t
= D0

r

∂2f

∂m2
− ∂

∂m
· ṁf, (1.1)

where
∂

∂m
is the gradient operator on the sphere m ∈ S2. Here ṁ is the rate of change of m

due to the macroscopic flow, known as a Jeffery orbit:

ṁ = Ω ·m + a(m ·D−mmm : D), (1.2)

D and Ω are the rate of strain and vorticity tensors, defined by

D =
1
2

(∇v +∇vT ), Ω =
1
2

(∇v −∇vT ), (1.3)

and −1 ≤ a ≤ 1 is the molecular shape parameter related to the molecular aspect ratio r = L/d

by

a =
r2 − 1
r2 + 1

. (1.4)

Note that a ≈ 1 corresponds to a thin rod limit; a = 0 corresponds to spherical molecules; and

a ≈ −1 corresponds to the thin disk limit.

D0
r is the dilute-solution rotational diffusivity, that is, the rate at which a particle reorients

by Brownian motion.

For a particle of nearly spherical shape and diameter d, we have

D0
r =

kT

πηsd3
, (1.5)

where k is the Boltzmann constant and T is the absolute temperature.

For a circular disk-like particle of diameter d, we get

D0
r =

3kT
4ηsd3

, (1.6)
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For rods of length L, diameter d, D0
r becomes

D0
r =

3kT (ln(L/d)− 0.8
πηsL3

, (1.7)

(ηs being the solvent viscosity).

The crossover from Brownian to non-Brownian behavior in a flowing suspension is controlled

by a rotatory Peclect number

Pe ≡ γ̇

D0
r

. (1.8)

Since typical shear rate are in the range 10−3 ≤ γ̇ ≤ 103sec−1, and D0
r ∼ 1/L3 for rod, thus if

the aspect ratio of the particle exceeds 10, and the largest dimension is greater than a micron,

the particle is usually non-Brownian.

1.2.2 Semi-dilute solutions

With increasing concentration c >> 1/L3, the rod begin to collide, the rotational motion

of an individual rod becomes severely restricted by the surrounding rods. Consequently, the

rational diffusion constant becomes very small. Each rod is confined within a tubelike region

of radius a, which depends on the distance between the test rod and its neighbors:

a(m, f(m, t)) ≈ (cL2

∫
d2m′f(m′; t) sin(m,m′))−1, (1.9)

where (m,m′) denotes the angle between m and m′, and d2m means the integral over the

surface of the sphere |m| = 1. And its rotational diffusivity becomes

Dr(m) = ν1D
0
r(cL

3)−2

(
4
π

∫
d2m′f(m′; t) sin(m,m′)

)−1

. (1.10)

Hence the kinetic theory now becomes

∂f

∂t
= ∇m ·Dr(m)∇mf +

∂

∂m
· ṁf. (1.11)
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However, this equation is only valid for the low concentration region for 1/L3 � c� 1/dL2. It

can’t describe the nematic phase since the only solution in equilibrium is the isotropic solution,

f = 1/4π.

To generalize the above equation, we need to consider the free energy per unit volume of

the solution (Doi (1975) and Doi and Edwards (1978)):

A = ckT

(∫
d2mf(m) ln f(m) + cdL2

∫
d2md2m′f(m)f(m′) sin(m,m′)

)
. (1.12)

The equilibrium distribution function f(m) is determined by the condition that A should be

a minimum for all variations of f , i.e.,
δA
δf

= 0, the distribution function f(m) is related to

the potential by Boltzmann’s equation:

f(m) = C exp(−V (m)/kT ), (1.13)

where

V (m) = 2cdL2kT

∫
d2m′f(m′) sin(m,m′) (1.14)

is the mean-field potential by Onsager, which is supposed to act on the test rod by the surround-

ing rods, where C is a normalized constant, C−1 =
∫

exp(−V (m)/kT ). The self-consistent

equations (1.13)-(1.14) describe the isotropic-nematic phase transition.

To simplify the analysis, a more convenient form for the mean field potential is considered,

which may more appropriate for thermotropic nematics, known as Maier-Saupe potential:

VMS(m) = −3
2
NkTmm : 〈mm〉. (1.15)

Maier-Saupe potential is got by expanding sin(m,m′) in terms of irreducible tensors equivalent

to spherical harmonics, as

sin(m,m′) =
π

4


1− 15

16

(
mimj − δij

3

)(
m′im

′
j −

δij
3

)
+




products of fourth-rank

irreducible tensors


+ · · ·


 ,

(1.16)

(Through the dissertation, summation is implied over the repeated indices) substitute (1.16) in
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equation (1.14) and ignore the higher order tensors and drop the first term, which is irrelevant

for the orientational ordering.

In (1.15), N = 2cdL2 is a dimensionless parameter proportional to concentration for prolate.

It relates the volume fraction θ by θ =
Nπd

8L
. While for oblate particles or disks of high aspect

ratio, N is redefined as 4πcd3, where d is the disk diameter.

Now in the process of Brownian motion, the test rod will feel the same potential V (m).

Therefore, the generalized Smoluchowski equation of Doi-Hess kinetic equation which can

describe the dynamics of rodlike polymers in the region c ≥ 1/L3 is:

∂f

∂t
= ∇m ·Dr(m)

(
∇mf +

f

kT
∇mV (m)

)
+

∂

∂m
· ṁf. (1.17)

In the dilute concentration 1/L3 � c� 1/dL2, it reduces to (1.1).

If an external magnetic field presents, an extra potential VH has to be added to the equation

(1.17).

1.3 Stress tensor

For monitoring the first and second normal stress differences and shear stress, we record

the homogeneous stress tensor (apart from an isotropic pressure) (Forest and Wang (2003)):

The stress tensor contains an elastic term from Brownian motion and excluded volume:Doi

(1981)

τ e = 3ackT [Q−N(Q + I/3)Q +NQ : 〈mmmm〉]. (1.18)

The viscous stress has been given by Hinch and Leal (1973):

τv = 3ckT [ζ1(a)(DM + MD) + ζ2(a)D : 〈mmmm〉+ ζ3(a))D]. (1.19)

The viscous stress arises from drag produced by the solvent as it flows past the ellipsoid. It goes

to zero immediately when flow ceases, while the elastic, or Brownian, term relaxes gradually,

as flow-induced orientation disappears by Brownian motion. The total stress is the sum of the
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elastic and viscous contributions, as well as that from the Newtonian solvent, τ s = 2ηD.

τ = τ e + τv + τ s, (1.20)

where η is the solvent viscosity, ζ1,2,3 are three shape-dependent friction coefficients:

ζ3 =
ζ(0)

I1
, ζ1 = ζ(0)(

1
I3
− 1
I1

), ζ2 = ζ(0)[
J1

I1J3
+

1
I1
− 2
I3

], (1.21)

I1 = 2r
∫ ∞

0

dx√
(r2 + x)(1 + x)3

, I3 = r(r2 + 1)
∫ ∞

0

dx√
(r2 + x)3(1 + x)2

,

J1 = r

∫ ∞
0

xdx√
(r2 + x)(1 + x)3

, J3 = r

∫ ∞
0

xdx√
(r2 + x)3(1 + x)2

We remark that although the dynamics and stability properties of Q are trivially related by a

rotation of axes for rods (a > 0) vs. platelets (a < 0), the stresses are strongly dependent on

the sign of a and the differences in friction coefficients.

1.4 Mesoscopic theory of orientational distribution function

Equations (1.17) and (1.20) can be regarded as a rheological constitutive equation. However

numerical analysis for such an equations are complicated. In order to advance the discussion

in feasible form, some mathematics approximations is needed. Our goal is to derive a closed

equation for the order parameter tensor Q = M−I/3. A dynamics equation for the orientation

tensor Q is derived by taking the second moment of m with respect to the pdf f , then using

the kinetic equation (1.17) and Jeffery molecule dynamics (1.2):

DQ

Dt
=Ω ·Q−Q · Ω + a[D ·Q + Q ·D] +

2a
3

D− 2aD : 〈mmmm〉

− 6D̃0
r [Q−N(Q +

I
3

) ·Q +NQ : 〈mmmm〉],
(1.22)

where D̃0
r is a constant averaged rotary diffusivity that results from the averaging process.

M = 〈mm〉 =
∫

m×mf(m)dm (1.23)
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is the second moment of PDF, which is symmetric second order tensor, with trace 1. Q is the

traceless part of M. M and Q share an orthonormal frame of eigenvectors, called the directors

or optical axes, with corresponding eigenvalues di, i = 1, 2, 3 of M or di − 1/3 of Q, called the

order parameters ordered by 0 ≤ d3 ≤ d2 ≤ d1 ≤ 1 where

d1 + d2 + d3 = 1,

Q =
∑

(di − 1/3)nini.
(1.24)

Each di conveys the degree to which the mesoscale ensemble of molecules m is aligned with

respect to the primary direction ni. Geometrically M or Q uniquely defines an orientational

ellipsoid whose semi-axes are prescribed by the directors ni and whose axis lengths are the

respective degrees of orientation di. The maximum normalized birefringence is the maximum

of |di − dj |, occurring in the plane of ni, nj .

The nematic is: biaxial if di are distinct; uniaxial if d1 > d2 = d3, in which case the

director n1 is “the” director; the major director is defined as nk for which dk is the unique

maximum. Otherwise, if d1 = d2, such Q tensors are labelled as defects, corresponding to

orientation states for which the peak orientation direction is degenerate. If d1 = d2 6= d3, then

the eigenspace of the major director is the unit circle in the plane orthogonal to n3, isotropic

if all di =
1
3

, i.e. Q = 0. By comparison, the Leslie-Eriksen continuum theory

0 = n× [γ(
dn
dt

+ Ω · n) + γ2D · n] (1.25)

corresponds to two restrictions on the tensor Q; unaxiality and the molecule axis is identical

with the director. These translate to fixing the dj at values 1, 0, 0 which removes two degrees

of freedom, and losing one director degree of freedom in the isotropic plane transverse to the

director.

The presence of fourth-order tensor and the extra stress couples the second-moment evo-

lution equation to fourth moments, requiring one either continue to generate higher moment

equations and truncate at some finite order. Many authors have introduced closure approx-

imations, and a general conclusion on the choice of closure would be there is no clear best
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closure for all flows and flow rates. For example, the quadratic Doi closure

(·) : 〈mmmm〉 = (·) : MM (1.26)

gives reasonable predictions in strong flows.

1.5 Flow-phase diagrams of monodomain attractors

We recall and extend results of Forest and Wang (2003) for the particular mesoscopic

tensor model that derives from the Doi kinetic theory with quadratic closure. We begin with

the solution space of this model, i.e., the flow-phase diagrams of monodomain attractors versus

2 dimensionless parameters: a concentration parameter N , which controls the strength of the

excluded volume potential; the Peclet number Pe =
γ̇

6D0
r

, where γ̇ is the imposed shear rate and

6D0
r is the average rotational relaxation rate. The remaining model parameter is a molecule

aspect ratio parameter a. We choose a 3 : 1 or 1 : 3 aspect ratio (r = 3,
1
3

) of spheroidal

molecules, for which a = ±0.8, since the resulting dynamical system qualitatively captures

representative features of the kinetic phase diagram (Faraoni et al. (1999), Forest et al. (2003),

Forest et al. (2004a) Forest et al. (2004b), and Grosso et al. (2001)). Mesoscopic models of

Beris and Edwards (1994) and Rienacker and Hess (1999) share a similar phase diagram.

The kinetic and mesoscopic equations have a symmetry which implies monodomain re-

sponses of rods and platelets are equivalent up to a pure rotation of the pdf or the Q tensor

(Forest et al. (2002b), Forest and Wang (2003)). Therefore, results presented here for mon-

odomain responses to pure shear may be applied to rod-like or discotic nematic polymers.

Although the second-moment tensors of rod-like and discotic liquids are simply related, their

stresses are not; we illustrate the difference below.

These tensor models are equivalent to a 5-dimensional ordinary differential equation (ODE)

for the components

~Q = (Qxx, Qxy, Qyy, Qxz, Qyz) (1.27)

of the symmetric, trace zero, second-moment tensor Q. All closures of the Doi kinetic theory
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for monodomain response to imposed linear flow take the form (Forest and Wang (2003)):

Q̇ = F(Q;N, a) + PeG(Q;∇v; a), (1.28)

where time is normalized by the nematic timescale (6D0
r)
−1, and Pe and N are defined earlier,

and for pure shear flow in dimensional coordinates,

vshear = γ̇(y, 0, 0), ∇v = Ω +D = γ̇




0 1 0

0 0 0

0 0 0



. (1.29)

V=V0 ,  Q=Q0

V=−V0 ,  Q=Q0

Directors

Y

X

Figure 1.1: The parallel-plate shear cell with homogeneous plate anchoring conditions

flow

flow-gradient

vorticity

                                 

n

Figure 1.2: The diagram of flow, flow-gradient, and vorticity direction in cartesian coordinates.
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The precise form of F,G for the Doi closure model are (Forest and Wang (2003)):

F =Q−N(Q +
I
3

) ·Q +NQ : (Q +
I
3

)(Q +
I
3

),

G =Ω ·Q−Q ·Ω + a(D ·Q + Q ·D) + (
2a
3

D− 2aD : (Q +
I
3

)(Q +
I
3

)).
(1.30)

Physically, F captures the mesoscopic approximation of the Maier-Saupe intermolecular po-

tential, while G represents the flow-induced orientational response for linear velocity fields.

By a combination of theory and experiment, many steady and transient shear-induced,

monodomain modes have been catalogued and named primarily on the basis of director re-

sponse: steady alignment with primary director either in the shear plane (flow aligning (FA))

or along the vorticity axis (logrolling (LR)); in-plane transient oscillatory (wagging (W)) or

rotating (tumbling (T)) director modes; and out-of-plane transient director modes (kayaking

(K)). Complicated dynamics is also possible.

In-plane and logrolling states fall into a special subspace of orientation tensors in planar

shear flow, called in-plane tensors by a slight abuse of terminology, for which one direction is

fixed parallel to the vorticity axis. Since Q is symmetric, the remaining orthogonal eigenvectors

lie in the flow deformation plane (x, y), which we call the shear plane.

The space of in-plane (i-p) symmetric, traceless tensors, Qi−p, is 3-dimensional, obeying

two constraints,

Qxz = Qyz = 0.

All mesoscopic tensor models in simple shear preserve Qi−p as a 3-dimensional invariant sub-

space, so the orientation dynamics can be studied distilled from the two out-of-plane degrees of

freedom. By extension of the analysis and computations in Forest and Wang (2003) and Forest

et al. (2003), from the fixed nematic concentration N = 6 to all N , we construct the flow-phase

diagram of all attractors and phase-transition boundaries of the Doi model (1.28)-(1.30) with

bifurcation software AUTO Doedel et al. (1997). Figure 1.3 gives the phase diagram for dy-

namics of the in-plane space Qi−p, then Figure 1.4 gives the phase diagram for the full tensor

space. The three bifurcation curves emanating from the Pe = 0 axis are explained below. We

shall employ this in-plane system for several purposes:
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• As a model for monolayers in which molecular orientations are confined to the shear plane,

see Fuller (1995), Marrucci and Maffettone (1989), Maffettone et al. (1996), Maruyama

et al. (1998).

• As a model for dynamics of defect sets, and their role in the transient approach to

attractors. This study will appear elsewhere (Yao et al. (2006)).

• As a simpler dynamical system in which we can develop statistical diagnostics for attrac-

tor properties.

• When compared with the full tensor model (Figure 2), the results of Figure 1 and the di-

agnostics developed in this chapter provide a means to determine: (i) which monodomain

solutions are stable in Qi−p, yet unstable to out-of-plane perturbations, and how strong

the out-of-plane instabilities are; and (ii) for in-plane solutions (FA, T or W, LR) stable

in the full tensor space, whether the slowest modes of decay to the attractor are in-plane

or out-of-plane.

For the purpose of comparison, we also give the full kinetic flow phase diagram, Figure 1.5

from (Forest et al. (2004b)). The entire monodomain phase diagram of a finite-aspect-ratio

nematic fluid in a linear flow field is equivalent to the phase diagram of an infinite-aspect-ratio

fluid (thin rods or disc) in a related linear velocity field.
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for confined in-plane orientation tensors and molecule aspect ratio r = 3 or 1
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all stable monodomain states versus nematic concentration (N) and normalized shear rate (Pe). The
bifurcation curves bound regions of fixed number and type of attracting states, corresponding to flow
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Region Attractor type Attractor multiplicity

I Flow-aligning (FA) 1

II Out-of-plane (OS) 2

III Kayaking 1/Chaos (K1/CH) 2

IV Chaos (CH) 1

V Tumbling 1/Log-rolling (T/LR) 2

VI Kayaking 2 (K2) 2

VII Kayaking 1/Kayaking 2 (K1/K2) 3

VIII Kayaking 1/Wagging (K1/W) 2

IX Kayaking 1 (K1) 1

X Wagging (W) 1

XI Wagging/Log-rolling (W/LR) 2

XII Log-rolling (LR) 1

XIII Kayaking 1-Tumbling (K1/T) 2

Table 1.1: The set of stable bulk monodomain responses in the regions depicted in Figure 1.5.
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1.6 Likelihood and expected time statistics of monodomain at-

tractors

1.6.1 Motivation

In confined flows of initially homogenous nematic polymers, a key factor in the evolution

of mesostructure is the likely timescale, denoted by 〈t〉A, on which monodomain mesophase

attracting states, denoted by A, are resonated by the imposed flow. These monodomain modes

(flow-aligning (FA), logrolling (LR), tumbling (T), wagging (W), kayaking (K), chaotic (CH))

are important precursors to onset and generation of structure if they have time to set up in the

interior of the flow sample. Flow-induced monodomain attractors are expected in experiments if

the following all hold: (1) the experiment is longer than 〈t〉A for the relevant attractor(s) A; (2)

the initial sample is not riddled with defects; (3) 〈t〉A < t∂ , where t∂ is the timescale on which

boundary layers induced by anchoring conditions (at plates, solid boundaries, or even pinned

defects) propagate to the interior and alter the pure shear response of local monodomains.

When 〈t〉A > t∂ , nonhomogeneities generate a more complex evolution, and the monodomain

restriction is not valid due to strong spatial mode coupling. For small molecule nematic

polymers in plane Couette cells, this condition (〈t〉A < t∂) is typically satisfied and MD modes

are well documented on experimental timescales. Several authors (Larson (1999), Larson and

Ottinger (1991), Van Horn et al. (2003), Rey and Tsuji (1998)) have studied the transients

from initial quiescent nematic liquids to monodomain attractors. The purpose of this study

is to provide statistical diagnostics for the expected time, 〈t〉A, to resonate MD attractor A

in sheared nematic polymers, for all attractor types FA, LR, T, W, K, CH. We perform

statistical averaging over typical experimental initial conditions: the set of quiescent nematic

equilibria when the experiment begins at rest.

We develop these diagnostics using a standard mesoscopic tensor model. In particular,

we overlay the expected time, 〈t〉A, with flow phase diagram of MD attractors to converge

to attractors from the orientationally degenerate nematic rest state. We study dynamics of

confined in-plane versus full orientation tensors, which allows us to easily flag the slowest

decaying tensor modes for in-plane attractors (FA, T, W, LR) across the phase diagram, and
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to flag which in-plane solutions are unstable to out-of-plane perturbations. Finally, for bi-stable

and tri-stable parameter regimes, we determine which pre-aligned quiescent equilibria go to

which attractor, i.e., their respective domains of attraction, and monitor rheological properties

of the transient orbits during their evolution, following Van Horn et al. (2003).

Our primary goal here is to determine the “strength” and “likelihood” of attractors. A

secondary goal is to clarify the timescale on which in-plane stable response will build up

out-of-plane instabilities and depart from the shearing plane. There are several ways we might

quantify “strength”, where strong versus weak is based on the rapid versus slow rate of approach

to an attractor. We first consider the in-plane attractors from Figure 1, with Qxz = Qyz = 0,

to develop the statistical tools.

1.6.2 Parametrization of the experimental initial data set

We study experimental systems beginning from rest. Thus the set of admissible data is

given by the stable quiescent equilibria of the Doi model (1.27)-(1.30), which consist of the

isotropic phase Q ≡ 0 for N < 3, a bi-stable region for
8
3
< N < 3, and the nematic region

N > 3, where the nematic phase is given by:

Q(0) = Qeq = s(N)(ntn− I/3),

n = (cosφ0 sin θ0, sinφ0 sin θ0, cos θ0)T , φ0 ∈ [0, 2π], θ0 ∈ [0,
π

2
),

s(N) =
1 + 3

√
1− 8

3N

4
∈ [1/4, 1], if N >

8
3

; s(N) = 0, if N < 3.

(1.31)

The bifurcations at N =
8
3

and N = 3 persist for Pe > 0, and have been explained in

detail by several authors (Doi (1981), Larson (1990), Forest and Wang (2003), Forest et al.

(2003)). The third bifurcation curve in Figure 1.3 and 1.4 which emanates from Pe = 0

at N ≈ 4.5 is more subtle, in that it is created by the flow perturbation. As detailed in

Forest and Wang (2003), Forest et al. (2003), this bifurcation corresponds to a steady-unsteady

transition. Tumbling (T) emerges as the shear response for confined in-plane tensors (Figure

1.3) called the FA-T transition; as seen from Figure 1.4, however, out-of-plane kayaking K1

states also arise simultaneously with T states, and the T states are unstable to director tipping
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hysteresis. The bistable region is between N = 8/3 and N = 3.

until much higher shear rates. To characterize the steady-unsteady transition curve of both

phase diagrams, one considers the weak flow limit, from which a Leslie tumbling parameter

λLeslie is derived, and the unsteady transition occurs when λLeslie = ±1. For the Doi closure

one finds λDoi
Leslie =

a(2 + s)
3s

. For a = ±0.8, and the equilibrium order parameter value

s = s(N) =
1 + 3

√
1− 8

3N

4
, one finds N ≈ 4.5, as the numerical diagrams of Figure 1.3,1.4

confirm.

Note that all nematic equilibria are orientationally degenerate, parametrized by n ∈ S2,

with n and −n identified. The degree of nematic ordering, s(N), is uniquely prescribed by the

nematic concentration N . As explained in Van Horn et al. (2003), Tan and Berry (2003), for

example, various techniques are utilized to control plate anchoring of n, which then sets the

monodomain equilibrium value for Q(0), at least nearby the plates. In typical samples there

are many monodomains, corresponding to a distribution of n(0), which is why this statistical

study is relevant.

We also investigate the dynamics for special experimental major director data (θ0, φ0) from

Van Horn and Winter (2000), to compare the behavior of their data set and predictions of the

Leslie-Ericksen continuum model with our mesoscopic model statistics. Note in our choice of

spherical coordinates, θ0 = 0 corresponds to vorticity-alignment and θ0 =
π

2
corresponds to

in-plane alignment with in-plane angle φ0. Only when θ0 =
π

2
is the range of φ0 restricted

from [0, 2π) to [0, π).
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1.6.3 Local and global measures of attractor “strength”

Local measure of strength for steady attractors

The traditional measure of stability of a steady solution is its linearized eigenvalues, which

give all local decay rates for initial data that are sufficiently nearby the attractor. For this

section we employ the vector form, (1.27), of the dynamical system, and by slight abuse of

notation, continue to use F and G for the corresponding vector fields.

Let Q̄ be a steady solution from Figure 1, either FA or LR. If we expand Q in a neigh-

borhood of Q̄, Q = Q̄ + Q̃, insert the expansion into (1.30), and retain terms linear in the

perturbation Q̃, then

˙̃Q = LQ̃,

L = L(Q̄;N, a, Pe) = DF (Q̄;N, a) + PeDG(Q̄,∇v; a),
(1.32)

where DF and DG are the first variations of F and G, evaluated at the equilibrium Q̄.

For any steady state Q̄, the linearized operator L is a constant, and all linearized solutions

Q̃ are constructed from the eigenvalues and eigenvectors of L. We let {Q̃(1), · · · , Q̃(5)} denote

a basis of eigenvectors of L, and let {λ1, · · · , λ5} denote the corresponding eigenvalues, ordered

by

Re(λ5) ≤ Re(λ4) ≤ Re(λ3) ≤ Re(λ2) ≤ Re(λ1). (1.33)

The steady state Q̄ will be stable if Re(λi) 6 0 for all i; and asymptotically stable if Re(λi) < 0

for all i. Except possibly at the bifurcation curves of Figures 1.3,1.4 all steady attractors have

Re(λ1) < 0, and λ1 is simple.

Consider any data Q(0) in a small neighborhood of Q̄ of size δ,

‖Q(0)− Q̄‖ = ‖Q̃(0)‖ = δ, 0 < δ � 1.

Then the slowest decaying mode is either 1-dimensional (if λ1 < 0) or 2-dimensional (if λ1 =

λ∗2). In either case the dominant term in the linearized solution Q̃(t) for t� 1 is proportional to

eRe(λ1)tQ̃(1). This allows one to infer a local linearized timescale, tlocal = − 1
Re(λ1)

, on which
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the initial data Q0 contracts from a δ-radius ball around Q̄ to a δ/e–radius ball. This picture

of linearized flow nearby an attractor leads us to define a local expected time of convergence to

a steady stable state A,

〈tlocal〉A = − 1
Re(λ1)

. (1.34)

The local strength of A is then measured by how rapidly data converge to the attractor,

so that

′local strength of attractorA′ ∝ 〈tlocal〉−1
A ∝ |Re(λ1)|.

For example if Re(λ1) ∼ −10−3, then Q̄ is a very weak attractor, requiring 〈tlocal〉A ∼ 103

dimensionless time units for nearby initial data to decay by a factor of e−1. Recall we have

normalized time by the average molecular relaxation time, which is on the order of 10−1− 102

seconds for nematic polymers.

Local measure of strength for periodic attractors

We now consider the linearized stability of periodic solutions, which we denote Q̄(t), with

Q̄(t+ T ) = Q̄(t), T = period.

If we expand Q in a neighborhood of Q̄(t), Q(t) = Q̄(t)+Q̃(t), then the linearized equation

for Q̃(t) has periodic coefficients given by Q̄:

˙̃Q(t) = L(Q̄(t);N, a, Pe)Q̃. (1.35)

We summarize the basic elements of linear systems of the form (1.35), so-called Floquet

theory. If Q̃(t) = [Q̃(1), · · · , Q̃(5)] is a fundamental matrix solution of (1.35), then Q̃(t+ T ) is

also a fundamental matrix solution since L(Q̄(t)) is periodic of period T . Therefore there is a

nonsingular matrix C = Q̃(T )Q̃−1(0) such that

Q̃(t+ T ) = Q̃(t)C, Q̃(t+ nT ) = Q̃(t)Cn.

The matrix C, called the transfer matrix, therefore characterizes asymptotic behavior of all
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solutions of (1.35); the eigenvalues ρ of C are the characteristic multipliers of (1.35) and any

λ such that ρ = eλT is a characteristic exponent of (1.35). The system (1.35) will be stable if

all multipliers satisfy |ρi| 6 1 (the characteristic exponents satisfy Re(λi) 6 0). In our system,

we always have a simple multiplier 1 corresponding to an arbitrary phase shift of the periodic

solution, so we use the second largest multiplier ρ2 to measure the slowest decay timescale,

which gives the estimate, 〈tlocal〉A ∼ O(−T/ log(|ρ2|)) = O(−1/Re(λ2)).

These local diagnostics do not apply to the experimental initial data set (1.31), which is

generally far away from the steady or periodic attractors. The linearized diagnostics are how-

ever, predictors of expected-time to converge to attractors, and are accessible from numerical

dynamical systems software AUTO (Doedel et al. (1997)).

‘Global’ measure of strength of a steady attractor

From arbitrary initial data, the relevant questions are: which attractor does the data

converge to?; and, how long does it take to reach a prescribed neighborhood of that attractor?

For nonlinear systems, except in rare exactly solvable systems, these questions can only be

answered by statistics of numerical solutions for arbitrary initial data. We now develop the

statistics.

At selected locations (N,Pe) inside the regions of Figure 1.3, i.e., the in-plane subspace

Qi−p, we monitor the eigenvalues λj(tn) of the local Jacobian, L(Q(tn)), which we then average

over the attracting set for each steady attractor to construct 〈Re(λj)(tn)〉, j = 1, 2, 3. We

restrict to attractors away from the phase transition curves, since these bifurcations are often

infinite-period, which will distort the statistics.

Statistics for low concentration, N = 3.5

To illustrate these ideas, we begin with the vertical slice, N = 3.5, of Figure 1.3, whose

attractors versus Pe are given in Table 1.2 below. Let Q̄A denote the steady attractor, where

A = FA or LR for the in-plane subspace, whereas A ≡ FA for the full tensor space. Note

this information from Figure 1.3, 1.4 already conveys that the LR states of this model are

all unstable to out-of-plane (i.e. director tipping) perturbations (Forest and Wang (2003)).
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Indeed, LR stability is very sensitive to closure rule (Forest et al. (2003)). Appealing to the

Doi kinetic theory to resolve this issue, one finds a significant parameter regime of stable

logrolling states for large N , and low Pe, see (Forest et al. (2004a), Forest et al. (2004b)),

including bi-stable T and W states. Thus, Figures 1.3 and 1.4 show the Qi−p model is more

faithful to kinetic theory than the full tensor model in regard to preservation of LR attractors!

We return to this topic in section 1.6.4.

Table 1.2: Stable solutions of the Doi model versus Peclet number, for a fixed nematic concentration
N = 3.5, and for a 1:3 discotic or 3:1 rod-like nematic polymer aspect ratio. On the left are in-plane
confined dynamics, on the right is the full tensor result.

In-plane Attractors FA+LR FA
Range of Pe (0, 0.77) (0.77, 10)

Full tensor Attractors FA
Range of Pe (0, 10)

We numerically solve both ODE systems (Qi−p and full Q) and monitor two measures of

“Distance between the orbit at time t and the attractor”,

D1 =
∥∥∥∥
Q(t)−QA

QA

∥∥∥∥ , D2 =
∥∥∥∥
Re(λ1(tn))−Re(λ1)

Re(λ1)

∥∥∥∥ .

The first distance function D1(t) keeps track of the closeness of the tensors along the orbit Q(t)

to the respective attractor QA, while the second distance function D2(t) monitors closeness

of the maximum eigenvalues (i.e. slowest decay rate) of the linearized vector field along the

orbit and at the steady state. We compute a family of orbits through the initial data set

(1.31), by taking 100 choices for φ(0) ∈ [0, π) for the Qi−p system, and 500 random choices,

(φ(0), θ(0)) ∈ [0, 2π)× [0,
π

2
] for the full tensor system. In regions with multiple attractors, we

first compute which subsets of each data set (φ(0) ∈ S1 or (φ(0), θ(0)) ∈ S2) converge to each

attractor, and then sample from these attracting sets. We stop each orbit at tstop(φ(0)), or,

tstop(φ(0), θ(0)), respectively, when D1(t) or D2(t) lies within a prescribed neighborhood.

Figure 1.7 compares the confined in-plane attractors and properties with the full tensor

results. From Figure 1.4 and Table 1.2, we fix N = 3.5 and r =
1
3

(a = −0.8) to compare with

the in-plane results. The only full tensor attractor is FA, the LR states are therefore unstable

to out-of-plane (director tipping) instabilities. For this reason, we don’t give statistics of the

LR state. The key issue now is whether the slowest decaying mode to the FA state is in-plane,
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Figure 1.7: In-plane statistics versus that of the full tensor space for the expected time to converge to

FA, with nematic concentration N = 3.5, aspect ratio r =
1
3

and distance function D2 < 10−3. Left:
Local measure; right: Global measure.

or out-of-plane.

Conclusions from Figure 1.7:

• Figure 1.7a: At low Pe < 4.8, the slowest decaying modes are out-of-plane, whereas for

Pe > 4.8 the out-of-plane linearized components decay on the same timescale (or even

faster for higher Pe).

• Figure 1.7b: A similar qualitative behavior as Figure 1.7a emerges for the global statistic,

〈t〉FA, though less significant differences are seen at low Pe. Taken together, these statis-

tics imply that the transient dynamics dominates Figure 1.7b at low Pe. Approximately

80% of the global statistic 〈t〉A is spent getting to a neighborhood of the attractor.

To illustrate the statistics of Figure 1.7, we give details of selected sample orbits. For
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Figure 1.8: Sample orbits to FA attractors for Pe = 1 (top row) and Pe = 10 (bottom row). Column
1: the components of Q vs time. Column 2: path of the major director for discotic nematic polymers
from initial condition φ0 = 93.6◦, θ0 = 45◦. Column 3: path of the major director for rod-like nematic
polymers from initial condition φ0 = 3.6◦, θ0 = 45◦. The concentration N = 3.5, which is in the
quiescent nematic range, but below the tumbling transition at onset of shear.

Pe = 1, from Figure 1.8a (top left), clearly the out-of-plane components (solid lines) converge

to equilibrium values slower than the in-plane components (dashed lines); Figure 1.8b (top

middle) illustrates this behavior in terms of the path of the major director n on the sphere

for discotic nematic polymers with a = −0.8. We choose n(0) with θ0 = 45◦ and φ0 = 93.6◦

as initial condition. The major director converges in-plane, close to the flow-gradient (y) axis,

with φdisc
L = 97.91◦. For platelets, this means the plane of the molecule is nearly aligned in

the x−z, or flow-vorticity plane. Figure 1.8c (top right) conveys the path of the major director

for rod-like nematic polymers with a = 0.8.

Comments: Out-of-plane behavior is observed by the major director wandering across

latitudes, while the in-plane behavior corresponds to the major director wandering across
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longitudes.

We use this opportunity to illustrate the symmetry between rods and platelets in shear

(Forest et al. (2002b)), (a,n) → (−a,R · n), where R is a pure clockwise rotation by π/2

radians, in the shearing plane that fixes the vorticity axis,

R =




0 1 0

−1 0 0

0 0 1



. (1.36)

Instead of n(0) above for platelets, we choose R ·n(0), i.e. θ0 = 45◦, φ0 ≈ 3.6◦ as initial data for

rods. Both theoretically and by numerical confirmation, the path of the major director remains

identical up to an in-plane rotation of 90◦, converges in-plane, nearby the flow direction, with

the in-plane Leslie alignment angle φrod
L ≈ 7.91◦, i.e., φrod

L = (φdisc
L + 90◦) mod π.

For Pe = 10, Figure 1.8d (bottom left) shows the out-of-plane components converge at

approximately the same rate as in-plane components. Figure 1.8e (bottom middle) shows the

path of the major director for discotic polymers with a = −0.8, from initial condition n(0),

the orbits converge to φdisc
L ≈ 92.38◦. Figure 1.8f shows the major director orbit for rod-like

polymers with R · n(0), and the in-plane Leslie alignment angles are φrod
L ≈ 2.38◦. For higher

shear rates, the Leslie angle for rod-like polymers approaches the flow axis, whereas the Leslie

angle for platelets approaches the flow gradient axis.

Figures 1.9a,b indicate the rheological properties during the transient approach to the FA

attractors depicted in Figure 1.8. Recall that the first and second normal stress differences

are N1 = τxx − τyy, N2 = τyy − τzz, and the apparent shear viscosity is η = τxy/Pe. The

transient rheology is surprisingly different at low and high shear rates: the high shear rate,

strong attractor with short convergence time, has stress oscillations in N1 and η that do not

show up in the low shear rate case. Furthermore, the shear stress (apparent viscosity) drops

approximately 40%, while the first normal stress differences increase by similar amounts, as Pe

increases from 1 to 10. For the discotic aspect ratio r =
1
3

, the steady state values and transient

features of N1 and η are similar for typical FA parameter regimes, while N2 experiences a factor

of 4 reduction in magnitude. In general, independent of the attracting state, 〈N1〉 and 〈η〉 are
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Figure 1.9: First and second normal stress differences N1, N2 (left axis scale), and apparent viscosity
η (right axis scale) versus time, in transient approach to FA attractor of Table 1.2, with N = 3.5,
a = 0.8. Top row is for Pe = 1, bottom row is for Pe = 10. In each case, the initial director is tilted
out-of-plane with polar coordinates φ0 = 3.6◦, θ0 = 45◦.

insensitive to rod versus platelet aspect ratio, whereas 〈N2〉 can either be larger or smaller in

magnitude, as shown in Figures to follow.

We now make comparisons of the Doi model with recent experiments and Leslie-Ericksen

model predictions of Van Horn et al. (2003) for FA nematic liquids. Figure 1.10 depicts the

normalized Leslie alignment angle Φ =
φ− φ0

φL − φ0
as in Van Horn et al. (2003). To compare with

their experimental data, we choose N = 3.5, Pe = 1 for rod-like nematic polymers with a = 0.8,

which yields φL close to the equilibrium Leslie angle φL = 8.5◦ of the Leslie-Ericksen model.

As the out-of-plane tilt angle θ0 ranges from θ0 = 9◦ (near the vorticity axis) to θ0 = 81◦ (near

the shearing plane), Figure 1.10a shows the transient director goes from a strong overshoot

to monotone convergence to the equilibrium φL. The out-of-plane polar angle θ, however,
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Figure 1.10: Mesocsopic predictions for the start-up of shear flow of the relative Leslie alignment
angle Φ with φ0 = 3.6◦, φL = 7.91, and initial out-of-plane tilt angles θ0 = 9◦, 45◦, 81◦, respectively.
Pe = 1, N = 3.5, a = 0.8.

increases monotonically to 90◦ for all θ0, Figure 1.10b. These data show the mesoscopic tensor

model reproduces Leslie-Ericksen behavior of the director only when the initial director is close

to the shearing plane. The overshoot behavior for out-of-plane initial directors does not occur

in the Leslie-Ericksen model (Van Horn et al. (2003)). The stress signature of the director

overshoot of Figure 1.10a is seen from the θ0 = 45◦ plots of N2 and η Figure 1.9 (top row).

Statistics for high concentration, N=6

We next increase the concentration to N = 6 in Figures 1.3, 1.4, which accesses complex

out-of-plane dynamics. For this subsection, we will focus on the FA states to distinguish high

concentration from low concentration FA states analyzed above.

Consider the FA states in Table 1.3. Figure 1.11 gives the expected time for convergence,
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Table 1.3: Stable solutions of the Doi tensor model versus Peclet number, for a fixed nematic concen-
tration N=6, and for 1 : 3 discotic or 3 : 1 rod-like nematic polymer aspect ratio. The top row is for
in-plane confined dynamics, Figure 1.3; the bottom two rows are the full tensor result, Figure 1.4.

In-plane Attractors LR+T/W FA+LR FA
Range of Pe (0, 2.819) (2.819, 3.979) (3.979,10)

Full-tensor Attractors K1 K1+W K+,−
2 + K1

Range of Pe (0, 2.162) (2.162, 2.405) (2.405,2.536)
Full-tensor Attractors K1+CH CH K+,−

2 FA
Range of Pe (2.536, 2.923) (2.923, 3.245) (3.245, 3.717) (3.717,10)

which is very similar to the low concentration statistics of Figure 1.7. When 3.717 < Pe < 5.1,

out-of-plane modes dominate the expected time, whereas for Pe > 5.1, the out-of-plane modes

do not slow the convergence of purely in-plane dynamics.

Figure 1.12 illustrates the statistical averages of Figure 1.11 with sample orbits. From

Figure 1.12a, the out-of-plane components (solid lines) converge to 0 slower than in-plane

components (dashed lines) when Pe = 4; and Figure 1.12b illustrates this behavior through

the major director for discotic nematic polymers with aspect ratio a = −0.8 from initial

condition φ0 = 93.6◦, θ0 = 45◦. Figure 1.12c shows the path of the major director for rod-like

nematic polymers with symmetric initial condition, φ0 = 3.6◦, θ0 = 45◦. By contrast, Figure

1.12d shows the out-of-plane components damp prior to convergence of in-plane components

when Pe = 10; Figures 1.12e,f show the corresponding path of the major director for discotic

and rod-like polymers, respectively.

‘Global’ measure of strength of a periodic attractor

Now we proceed to discuss expected-time statistics for convergence to periodic solutions for

N=6, Table 1.3. The components of Q trace out closed trajectories, and a different measure

of distance from the attractor is required. We use the classic distance (D3) from a point ~Q of

the form of (1.27) to a bounded set of points { ~Q(j)}Mj=1 for 5-dimensional vectors

D3 = min{
5∑

i=1

| ~Qi − ~Qi(j)|}. (1.37)

First we compute the limit cycle numerically, and then represent the orbit in terms of a set

of M points, { ~Q(j)}Mj=1, uniformly distributed in Q-component space as opposed to distributed
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Figure 1.11: In-plane statistics versus that of the full tensor space for the expected time to converge
to FA, fixed nematic concentration N = 6, aspect ratio a = −0.8 and distance function D2 < 10−3.
Left: local measure; Right: global measure.

in time along the periodic orbit. The distance ‖ ~Q(j+1)− ~Q(j)‖ between two neighboring points

on the orbit is set at 10−3, which has been chosen such that robust statistics are achieved.

Next, we compute a family of orbits for random data chosen from the initial data set (1.31),

and keep track of the distance between the trajectories and the attractor. We stop each orbit

at tstop when the distance lies within a prescribed neighborhood (10−3) of the numerically

resolved exact solution. We then confirm in selected cases that the trajectory stays in the

small tubelike neighborhood of the periodic solution after tstop.

To make things simpler, we consider the in-plane case first: Table 1.3 shows that T/W

occurs for Pe < 2.819 for confined in-plane dynamics when N = 6. (Note these orbits are

stable for 2.162 < Pe < 2.405, but unstable in the 0 < Pe < 2.162 full-tensor space to director

tipping, but we suppress these degrees of freedom for Figures 2.9,1.14.)
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Figure 1.12: Sample paths for FA attractors in the high concentration (N = 6), strong shear (Pe =
4, 10) regime. Column 1: the components of Q vs time. Column 2: path of the major director for
discotic nematic polymers from initial condition φ0 = 93.6◦, θ0 = 45◦. Column 3: path of the major
director for rod-like nematic polymers from initial condition φ0 = 3.6◦, θ0 = 45◦. Top row Pe = 4;
bottom row Pe = 10.

Figure 2.9a calculates−T/(log(|ρ2|))(T = period), which is the definition of 〈tlocal〉. Figure

2.9b shows the global statistics, indicating that from a random initial condition, the trajectory

rapidly converges to the tumbling or wagging attractor. Figure 1.14 depicts N1 and η for the

quick transient and then several periods of the tumbling orbits in this instance.

We now recognize that for 0 < Pe < 2.162 the T&W attractors for N = 6 are unstable

to out-of-plane (director tipping) instabilities. Nonetheless, if the initial director is aligned

in-plane, there is a competition between strong in-plane convergence to T&W limit cycles,

and relatively weak out-of-plane instability. We are thus led to ask: if the T or W attractor

is resonated, how many periods of the in-plane limit cycle are traversed before the orbit is

expected to escape out-of-plane? This question is answered by the Floquet multipliers of
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Figure 1.13: In-plane statistics for the expected time to converge to T/W attractors of Table 1.3, for
confined in-plane dynamics, with nematic concentration N = 6.

Figures 1.3,1.4, discussed in Section 2.2. For N = 6, |a| = 0.8, P e = 0.5, the in-plane limit

cycle is tumbling. We compute that the unstable Floquet multiplier is ρ = 1.08, the period

PT of the T orbit is PT = 33, from which we deduce the linearized timescale of instability,

tinst = P/ log(ρ) ≈ 13PT , which means it takes 13 director rotations or 430 relaxation units

to escape the tumbling attractor! For N = 6, |a| = 0.8, P e = 2.02, the in-plane attractor is

wagging, with period PW = 8.7, the unstable multiplier is ρ = 1.29, which implies tinst ≈ 4PW,

which means it takes 4 wagging cycles (35 relaxation time units) to escape out-of-plane. These

properties suggest an experiment of limited duration may very likely observe T or W transient

behavior, even though longer experiments will escape into out-of-plane response.

Next, we explore the expected convergence times for out-of-plane limit cycles. The above

results, showing long times just to build up the out-of-plane components Qxz, Qyz, foreshadow
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Figure 1.14: First normal stress difference N1 (left), apparent viscosity η (right) versus time, for a
randomly chosen orbit converging to a T attractor of Table 1.3, with Peclet number Pe = 1, N = 6. The
averages over one period are 〈N1〉 ≈ 1.5 × 10−2, 〈N2〉 ≈ −10−3, 〈η〉 ≈ 7 × 10−2, with large deviations
by factors of 10 for N1 and 2 for η.

long convergence times to the out-of-plane attractors.

For Figure 1.4 and Table 1.3, the full tensor model for N = 6 has a complex shear response

vs Pe. There are two types of kayaking attractors, the standard K1 whose major director

rotates around the vorticity axis, and mirror-symmetric states K+,−
2 which occur in bi-stable

pairs whose major director rotates between the vorticity axis and shearing plane (Forest and

Wang (2003), Faraoni et al. (1999), Rienacker and Hess (2002), Hess (2003)), Figure 1.4, Table

1.3.

When 0 < Pe < 2.162, the unique attractor is K1. Near Pe = 0 (Figure 2.10), the

extremely long convergence time reflects the infinite-period bifurcation from the orientationally

degenerate nematic equilibrium to the K1 limit cycle (Forest and Wang (2003), Forest et
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Figure 1.15: Full tensor model statistics for the expected time to converge to the K1 attractor of Table
1.3, with N = 6.

al. (2003)). The period of K1 vs Pe is decreasing, and the expected time 〈t〉K1 likewise

decreases vs Pe (Figure 2.10). At Pe = 1, PK1 = 33.43, and the expected convergence time

is 〈t〉K1 ≈ 641 relaxation time units. For Pe ∈ (1.25, 2.1), 〈t〉K1 ranges between 450&150

relaxation time units. As Pe approaches 2.923, the K1 attractors disappear through a turning

point bifurcation (Forest et al. (2003)). We conclude K1 attractors in weak shear are rarely

(if ever) observed in the laboratory; rather, the transient behavior from the initial data is

relevant. The statistical results support private communications by G. Berry, W. Burghardt,

and P. Moldenaers, Pittsburgh 2003 Society of Rheology Meeting, who report they have never

knowingly observed kayaking monodomains in their laboratories!

For 2.162 < Pe < 2.405, W orbits coexist with K1 attractors; the W attractors come and

go through an instability transition. Figure 2.10a shows the slowest linearized convergence
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Figure 1.16: Comparison of the limit cycle periods for W & K1.

rates of K1 and W stable limit cycles, whereas Figure 1.16 compares their periods. Note

PW ≈ 1
2
PK1 in this bi-stable region, so their “motion” is comparable. In the center of the

stable W regime, 〈t〉local
W � 〈t〉local

K1
. Because the W attractor occurs over such a short Pe

range, this “stiff” behavior is predicted where a W limit cycle is weakly then strongly then

weakly attractive as Pe slowly rises. Note from Figure 1.4 that the small shear rate window of

T/W limit cycles for N = 6 grows rapidly at higher N , while the complex dynamics region

disappear.

Figure 1.17 shows the transient stress signature of a typical W limit cycle. The difference

from the T attractor, Figure 1.14, is that the stress spikes and not as strong, N1 only changes

sign once per period, and the time-average of N1 is negative. The apparent viscosity η changes

sign once per period, dipping slightly below zero. The order parameter fluctuations are almost

100% during the wagging cycle, indicating dominant molecular elasticity. The order parameter

and director dynamics are in phase, and do not reflect the secondary spikes in N1 and η.

Figure 1.18 repeats Figure 1.17 for the co-stable kayaking attractor. The signature of N1 is

remarkably similar for tumbling and kayaking; however, the apparent viscosity eventually lose

the secondary oscillation or ”double dip” per period once the limit cycle is reached. The order

parameter oscillates in phase with the major director, though with smaller amplitude variations

than the W attractor. The in-plane angle of the major director continues to rotate, while the

out-of-plane angle oscillates over a finite range typical of the kayaking image of Larson and

Ottinger (1991).

These sample orbits also illustrate the relatively large expected time for convergence to K1
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vs W orbits: 〈t〉K1 ≈ 10〈t〉W, or about 100 relaxation time units. The period average of N1

also has opposite sign: 〈N1〉W < 0, whereas 〈N1〉K1 > 0. We return to this bi-stable parameter

region in the next section.
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Figure 1.17: First normal stress difference N1 (top left), apparent viscosity η (top right)
versus time, for a randomly chosen orbit that converges to the W attractor of Table 1.3, with
Peclet number Pe = 2.3, nematic concentration N = 6, rodlike aspect ratio r = 3 (a = 0.8).
〈N1〉 ≈ −1.1×10−1, 〈N2〉 ≈ 3.5×10−2(not shown), 〈η〉 ≈ 4×10−2 over the period of W, with
strong fluctuations by factors of 3 for N1 and 3 for η. The corresponding order parameter and

in-plane director dynamics are shown bottom left and right. For discotic aspect ratio r =
1
3

(a = −0.8) with all other parameters held constant, 〈N1〉 and 〈η〉 are nearly identical, while
〈N2〉 increases by a factor of about 2.
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Figure 1.18: First normal stress difference N1 (top left), apparent viscosity η (top right)
versus time, for a randomly chosen orbit that converges to the K1 attractor of Table 1.3, with
Peclet number Pe = 2.3, nematic concentration N = 6, rodlike aspect ratio r = 3 (a = 0.8).
〈N1〉 ≈ 4 × 10−2, 〈N2〉 ≈ −3 × 10−2(not shown), 〈η〉 ≈ 5 × 10−2 over the period of K1,

with strong fluctuations by factors of 5 for N1 and 2 for η. For discotic aspect ratio r =
1
3

(a = −0.8), 〈N1〉 and 〈η〉 are nearly the same, while 〈N2〉 decreases by a factor of 10.
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1.6.4 Domains of attraction in bi-stable and tri-stable regions

Figures 1.3, 1.4 and Tables 1.2, 1.3 indicate that sheared nematic polymers have significant

(shear rate, concentration) regimes with multiple attracting states. Furthermore, since typical

experimental samples consist of many monodomains, the measured rheology will be a statistical

average over the distribution of attractors. In this section, we compute this distribution for

selected parameter regimes with bi-stable and tri-stable monodomain modes.

In-plane bi-stable statistics

The first example is the bi-stable LR+T or LR+W regime of Figure 1.3, Table 1.3 and

Table 1.4, which is consistent with the kinetic phase diagram of Forest et al. (2003). By

contrast, the full tensor diagram (Figure 1.4) has spurious, closure-induced, out-of-plane LR

instabilities. Thus, the in-plane model is actually a more faithful approximation of kinetic

theory for this bi-stable regime. Grosso et al. (2003) recently used kinetic simulations in the

LR+W bi-stable regime to compare with experimental data for a distribution of LR and W

attractors. They posited a (90%W, 10%LR) distribution, presumably from statistics. Here

we compute the statistical distribution as follows. Because the model is confined in-plane, the

nematic equilibrium initial data (1.31) is restricted to in-plane with major director in the plane

or along the vorticity axis. The dynamics of the in-plane model for this initial data is trivial:

all in-plane data converge to the T or W attractor. Therefore, we completely randomize the

initial data set to any Qi−p of the form:

Q = s(nn− I
3

) + β(n⊥n⊥ − I
3

) (1.38)

where s = d1 − d3, and β = d2 − d3, di, i = 1, 2, 3 are the eigenvalues of Q, with n =

(cosφ0, sinφ0, 0). Then we choose 1000 random data, parametrized by (s, β, φ0), and count

the percentage of data that converge to each attractor. This calculation literally gives the

relative measure of the domains of attraction of LR and T/W attractors over the entire 3

dimensional phase space, which we call the likelihood of resonating each attractor. The same

method is used for the FA-LR bi-stable steady parameter regime of Table 1.3.
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Case 1. For fixed concentration N = 4, we vary Pe in the FA and LR bi-stable region.

Table 1.4 shows the distribution of arbitrary initial data (1.38) that converges to each attractor.

Note that as Pe decreases, the likelihood of LR states grows.

Table 1.4: Statistical distribution of attractors in the FA and LR bi-stable regime for N = 4 and
three different Pe.

Pe 1 0.5 0.1
% LR 27 39 50
%FA 73 61 50

Case 2. To compare with kinetic results of Grosso et al. (2003), we choose N = 6.66 in

Figure 1.3, which is characterized by the co-existence of a stable T/W limit cycle with a stable

LR solution. Table 1.5 shows the distribution of attractors. In the bi-stable W-LR regime,

the likelihood of LR varies between 15% and 32%, but then jumps to 41% likelihood when

bi-stable with T.

Table 1.5: Statistical distribution of attractors in the T/W and LR bi-stable regime, for N = 6.66
and five different Pe.

Pe 5 3 2.66 2.3 1
%LR 15 27 30 32 41
%T 0 0 0 0 59
%W 85 73 70 68 0

Out-of-plane bi-stable and tri-stable statistics

From Figure 1.4 and Table 1.3, we have a bi-stable K1 and W regime. Whenever the

tilted kayaking limit cycle K2 is stable, it always has its bi-stable twin, on the other side of

the shearing plane. We also have a tri-stable region of K1 and K+,−
2 . We now measure the

statistical likelihood of converging to each attractor from nematic equilibrium data.

Case 1. When Pe = 2.3 and N = 6, the K1 and W bi-stable regime, Figure 1.19 shows

the statistical likelihood of convergence to K1 and W as the initial nematic director at rest is

sampled across the sphere.

• If the initial directors n have polar angles θ0 ≥ 85.5◦, then all the data converge to the
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Figure 1.19: Statistics of the likelihood of convergence to attractors from the nematic rest state at
a fixed concentration N = 6, for the K1 and W bi-stable region with Pe = 2.3. The lighter points
represent initial director configuration that will converge to K1, whereas the black points converge to
W.

in-plane W attractor. Thus, initial director orientations that are sufficiently close to the

shearing plane are attracted to the W attractor. This has important consequences since

plate preparations in Couette cells can strongly prejudice the director orientation of the

rest state.

• For initial directors n which have polar angles θ0 < 63◦, i.e., tilted sufficiently far from the

shearing plane, all converge to the out-of-plane K1 attractor. Again, this has important

experimental implications.

• Between these two “latitudes”, there is no clear boundary for each attracting set. When

θ0 ranges between 81◦ and 68.4◦, we find initial data with different in-plane tilt angles

φ0 converge to different attractors, shown in Table 1.6.

Table 1.6: Likelihood statistics for N = 6, P e = 2.3, in the W and LR bi-stable regime, with different
initial polar angles. The degree of out-of-plane tilt is seen to control the likelihood of W vs LR
attractors.

θ0 81◦ 76◦ 72◦ 68.4◦

% K1 20 36 56 80
%W 80 64 44 20
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• As Pe varies over the range (2.162, 2.405), which is the region of coexistence of K1 and

W for N = 6, the likelihood of convergence to K1 vs W varies, shown in Table 1.7.

Table 1.7: Statistical distribution of bi-stable attractors for N = 6, with different Pe in the W and
K1 bi-stable regime.

Pe 2.2 2.3 2.4
%K1 92.5 83.2 77
%W 7.5 16.8 23

Combining these results with Section 2.4, we find that while the expected time to converge

to W attractors 〈t〉W is much shorter than 〈t〉K1 , the attracting set of K1 is larger than

that of W, if the initial data consists of randomly oriented nematic rest states. However,

initial pre-alignment of monodomains can strongly bias the distribution in favor of in-

plane W attractors!

Figure 1.20 shows the time series of averaged N1, N2 and η over 1000 random sample orbits,

and the average values of N1, N2 and η are exactly the weighted average (83% of K1, 17% of

W) of K1 and W. 〈N1〉 ≈ 7× 10−3 is almost negligible (Grosso et al. (2003)).

Case 2. Figure 1.21 shows the statistics when we increase Pe to 2.5, the K1, K+,−
2 tri-stable

regime.

• If the initial directors n have polar angles θ0 ≥ 81◦, all data converge to the K2 attractor.

Initial directors that are sufficiently close to the shearing plane are attracted to one of

the K2 orbits!

• Initial directors with polar angles θ0 < 49.5◦, i.e. tilted toward the vorticity axis, all

converge to the K1 limit cycle.

• Table 1.8 and Figure 1.21 show that the likelihood of K1 vs K+,−
2 varies dramatically

when the initial polar angle θ0 ranges between 81◦ and 49.5◦.

Remark: Through explicit solution of the model equations, we compare properties of K1

vs K+,−
2 attractors. We find the out-of-plane components Qxz and Qyz of K2 attractors are

always less than that of K1 limit cycles. Thus, it is reasonable to believe that if the initial
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Table 1.8: Attractor likelihood distribution for N = 6, P e = 2.5, which is in the K1 and K+,−
2 tri-stable

regime, with different initial polar angles.

θ0 76.5◦ 72◦ 63◦ 68.4◦

% K1 16 26 48 92
%K+,−

2 84 74 52 8

director n is near the shearing plane, it is more likely to converge to either of the K2 states,

while if the initial director is near the vorticity axis, then the data are attracted to the K1

state.

Table 1.9 shows that as Pe increases in the interval (2.405, 2.546), the likelihood of K1

decreases to about 70%. Overall however, the domain of attraction K1 is greater than the

K+,−
2 pair.

Table 1.9: Likelihood statistics for N = 6 and different Pe in the K1 and K+,−
2 tri-stable regime

Pe 2.45 2.5 2.53
%K1 74.1 71.4 70

%K+,−
2 25.9 29.6 30

Case 3. We increase Pe to 3.5, where the K1 orbits have disappeared, Table 1.4, with only

bi-stable K+,−
2 . Figure 1.22 shows that K+

2 and K−2 have the same strength at each latitude,

the data will converge to each attractor with probability 1/2. They have the same strength

and size. The expected time for a random initial condition to converge to K+,−
2 is about 200

relaxation time units.

1.6.5 Conclusion

We have provided a summary of the statistical properties of nematic polymers mon-

odomains in simple shear. These data inform the expected time for steady states and limit

cycles to appear when shear experiments begin from rest, as well as the likelihood of conver-

gence to each attracting state when there are two or three stable monodomains. The transient

rheology of each attractor is also shown.
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Figure 1.20: First normal stress difference N1 (top), apparent viscosity η (bottom) versus
time, averaged over 1000 sample orbits in the bi-stable region of Table 1.3, with Peclet number
Pe = 2.3, nematic concentration N = 6, rodlike aspect ratio r = 3 (a = 0.8). 〈N1〉 ≈
−7× 10−3, 〈N2〉 ≈ 1.5× 10−2(not shown), 〈η〉 ≈ 5× 10−2, with strong fluctuations by factors
of 6 for N1 and 1.3 for η. The results for platelets (a = −0.8) are nearly identical for 〈N1〉 and
〈η〉, whereas 〈N2〉 is nearly zero, but negative.
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Figure 1.21: Statistics in tri-stable (K1,K
+,−
2 ) region with Pe=2.5. The lighter gray points on the

sphere are the initial director orientations that converge to K1, the black points converge to K+,−
2 .

Figure 1.22: Statistics in K+,−
2 bi-stable region with Pe=3.5. The light gray points are the initial

director orientations that converge to K+
2 , the black points converge to K−2 . Note this view is looking

down from the vorticity axis at the center.
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Chapter 2

Effective Conductivity Properties of
Nematic Polymer Nano-Composites

2.1 Introduction

Nano-elements with high-contrast properties are combined at low (0.1%-5%) volume frac-

tions with traditional polymeric materials to enhance a diverse set of targeted properties (Vaia

(2002)). Notable examples are high electrical conductivity & strength of carbon nanotubes

(CNTs) and barrier properties of nano-clay platelets. Current numerical algorithms for com-

posite properties (Lusti et al. (2002)) impose either a random distribution or perfect alignment

of the nano-rods or nano-platelets. These opposite extremes of orientational probability dis-

tribution functions (PDF’s) are assumed not because of the inability to handle real molecular

distributions, rather because of lack of data from experiments or model simulations. Indeed

it is a monumental challenge to infer molecular orientational distributions from experimental

methods, although important features of the second moment of the PDF are routinely mea-

sured with light scattering methods (Burghardt (1998)). Our goal here is to use kinetic and

mesoscopic models to generate the PDF or its moments, which then can be linked to compos-

ite property theory and numerical algorithms. This strategy becomes more compelling when

the kinetic theory of Doi and Hess (Doi (1981)-Kroger (2004)) or mesoscopic models have

been separately benchmarked with experimental data on the flow-induced liquid phase of the

composite. For this chapter we assume a rapid quench from the liquid to solid phase which

maintains the orientational distribution of the nano-inclusions. We also suppress the effects

of the inclusion-matrix interphase. The current predictions, when compared with laboratory

measurements, provide an estimate of interphase contributions to effective conductivity based



on volume-averaged effects. The separate, though related, effects due to percolation of the

nano-elements is not captured by volume averaging. Strong disparities between the present

predictions and experiments would suggest a dominant influence of percolation relative to

volume-averaging.

The composite properties, no matter whether they are electrical conductivity (the example

chosen here), thermal conductivity, gas or liquid permeabilities, or elastic moduli, require an

appropriate average, e.g. over the nano-element electrical conductivity σnano with volume frac-

tion θ2 and the polymer conductivity σpoly with volume fraction (1− θ2). The typically strong

contrast σnano/σpoly � 1 (or σnano/σpoly � 1 which arise for thermal insulating composites)

by itself is not sufficient to achieve the enhancements; the high degree of anisotropy of the

nano-inclusion is equally critical. This enabling geometric effect comes at a price, however,

introducing complexity into the orientational molecular distribution at rest and in processing

flows.

High aspect ratio molecular inclusions naturally are isotropic (randomly oriented) below a

critical volume fraction, θ∗2, but then spontaneously order above θ∗2, the isotropic-nematic phase

transition. Only as θ2 → 1 is perfect alignment achieved, a limit which is never approached in

nano-composites. The equilibrium orientational distribution function versus θ2 is numerically

available from the Doi-Hess kinetic theory with an excluded-volume intermolecular potential,

e.g., of Onsager Eq.(1.14) or Maier-Saupe type Eq. (1.15) (Faraoni et al. (1999), Forest et al.

(2004), Larson and Ottinger (1991)). For this chapter, our goal is to derive exact formulas

for the effective electrical conductivity tensor, at rest and in weak shear flows. This choice is

made for two purposes: 1) to illustrate the approach for exactly solvable conditions where the

methodology and results become transparent; and 2) to determine exact scaling properties of

the effective conductivity tensor versus molecular and flow parameters, albeit in special limits

or with mesoscopic closure approximations.

First, we implement tensor formulas for the kinetic probability density function (1.17)(PDF)

at dilute concentrations, or the second moment of the PDF derived from mesoscopic models

(1.22) at ordered (nematic) concentrations, and substitute these into the low volume fraction

expansion of the effective electrical conductivity tensor. We calculate the effective electrical
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conductivity tensor, Σe, versus volume fraction θ2, allowing a property comparison of the

quiescent isotropic & nematic phases.

Second, nano-composites are flow-processed, which deforms the distribution at all concen-

trations θ2. We use our recent analytical formulas for monodomain, shear-induced PDFs, at

dilute concentrations (Forest et al. (2004)), and for second moments of the PDF at nematic

concentrations (Forest et al. (2003)), in the weak shear limit. From these explicit formulas,

we quantify the anisotropy and principal values of Σe, and thereby predict nano-composite

conductivity enhancement versus concentration at rest and in weak shear flow, Section 2.5.

For steady monodomains, the conductivity tensor is constant, for which we exhibit paramet-

ric variations in Emax versus shear rates and concentrations. For oscillatory monodomains, we

consider representative tumbling, kayaking and chaotic attractors and show the corresponding

dynamic ranges of Emax and E1 − E2, Section 2.6.

2.2 Formulation of the nano-composite effective conductivity

problem

Consider conduction in a three-dimensional media, governed by the constitutive equations

~J(x) = Σ(x) ~E(x), ∇ · ~J = 0, ∇× ~E = 0 (2.1)

where ~J(x) is the current field, ~E(x) = ∇φ is the electric field, φ is the electric potential, and

Σ(x) is the conductivity tensor of the medium. The effective conductivity Σe provides the

constitutive relation between the average current 〈 ~J〉 and average electric field 〈 ~E〉, i.e.

〈 ~J 〉 = Σe〈 ~E〉. (2.2)

Here 〈 ~J〉 and 〈 ~E〉 are the volume average of the current and electric field over the polymer

suspension. Since the system is ergordic, volume average is equivalent to orientational average.

There are two inherent difficulties in Σe: anisotropy due to orientational molecular ordering,

and spatial heterogeneity due to length scale distortions in the orientational distribution. For
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this chapter, we characterize the anisotropy of Σe for monodomains of nematic polymer nano-

composites (PNCs), but our framework applies to heterogeneous composites.

2.2.1 Nano-composite microstructure

We consider uniform suspensions of ellipsoidal molecular inclusions with electrical conduc-

tivity σ2 and volume fraction θ2 in a matrix of electrical conductivity σ1. Later we restrict to

spheroids, the axi-symmetric case, which is the only class of molecules for which Doi-Hess-type

hydrodynamic theory is available.

Figure 2.1: The illustration of spheroidal rods with semi-axes lengths a > b = c, with respect
to axes m, n, k, respectively.

All ellipsoids are assumed to have the same geometry: a, b, c are the three semi-axes,

with a > b = c for spheroidal rods and a = b > c for spheroidal platelets. They orient

due to excluded-volume interactions and flow according to a probability distribution that is

the central object of the Doi-Hess kinetic theory. The theory incorporates the aspect ratio

r = a/b� 1 (rods); r = c/a� 1 (platelets) in the combination
r2 − 1
r2 + 1

.

2.2.2 The effective conductivity tensor Σe
θ2

for isotropic ellipsoids

The effective conductivity tensor Σe
θ2

, where we attach the nano-inclusion volume fraction

θ2 as a subscript, can be computed by a Taylor expansion in the low volume fraction limit,

θ2 � 1 (cf. Milton (2002)):

Σe
θ2 = σ1I + θ2(σ2 − σ1)P +O(θ2

2), (2.3)
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where

P =
∫

S2

E(m)f(m)dm (2.4)

is called the orientation-averaged polarization tensor, E(m) is the polarization tensor, defined

below, and f(m) is the orientational probability distribution function of the inclusions. I is the

3 by 3 identity matrix. From (2.3), the key object to quantify is P, which requires knowledge of

two ingredients: E(m) is a geometric tensor specified by the nano-inclusion geometry, whereas

f(m) is the fundamental object of the Smoluchowski equation of Doi-Hess kinetic theory for

quiescent or flowing nematic polymers.

The polarization tensor E(m) can be computed explicitly from three scalar depolarization

factors: La, Lb, Lc ≥ 0 (cf. Stratton (1941)):

La =
abc

2

∫ ∞
0

ds

(s+ a2)
√

(s+ a2)(s+ b2)(s+ c2)

Lb =
abc

2

∫ ∞
0

ds

(s+ b2)
√

(s+ a2)(s+ b2)(s+ c2)

Lc =
abc

2

∫ ∞
0

ds

(s+ c2)
√

(s+ a2)(s+ b2)(s+ c2)

La + Lb + Lc = 1,

(2.5)

E(m) =
[(

1 +
(
σ2 − σ1

σ1

)
La

)
mm +

(
1 +

(
σ2 − σ1

σ1

)
Lb

)
nn +

(
1 +

(
σ2 − σ1

σ1

)
Lc

)
kk
]−1

,

(2.6)

where m is the unit vector along the long axis of length a, n is the unit vector along the axis

of length b, k is the unit vector along the axis of length c; refer to Figure 2.1. All that remains

is an explicit characterization of f(m) (which we now develop in several limiting cases, where

analytical formulas are possible), and then finally an analysis of the integral (2.4). In more

generality, numerical data for f(m) can be implemented in this framework, which we defer to

a sequel.

2.2.3 The effective conductivity tensor Σe
θ2

for anisotropic ellipsoids

For future reference, we give the general effective conductivity tensor for isotropic matrix

and anisotropic nano-inclusion. If the principal axes of the ellipsoid coincide with the principal
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the the conductivity tensor, then

Σ2 =




σ2, a 0 0

0 σ2, b 0

0 0 σ2, c



, (2.7)

the second subscript represent along the principal axes a, b, c, then the effective conductivity

of the composite average over the orientations in the ensemble is:

Σe
θ2 = Σ1 + θ2(Σ2 − Σ1)

∫

S2

(I + (Σ2 − Σ1)Σ−1
1 L)−1f(m)dm +O(θ2

2), (2.8)

where Σ1 = σ1I and

L =




La 0 0

0 Lb 0

0 0 Lc



. (2.9)

In the case of spheroids, i.e. Lb = Lc = (1 − La)/2, and σ2, a > σ2, b = σ2, c, so that a is

the long axis, the conductivity is largest along the axial direction, and the conductivity in the

transverse direction σ2,b, σ2,c is less.

2.2.4 The effective conductivity tensors Σe
θ2

for isotropic coated ellipsoids

Generally, in a nano-composite, the contact between the nano-inclusion and viscous solvent

is not perfect, an interphase always exists. To resolve the reality, we can make an assumption

about the inclusion, which consists of coated ellipsoid, whose inner core has the property

of nano-inclusion, the outer layer is usually unknown. Under this circumstance, an inverse

problem is needed to be study to get the property of the interphase.

Consider the cell problem, one coated particle embedded in a infinite medium. To solve the

Laplace equations, we need to consider the imposition continuities of the potential and normal

fluxes across the inner and outer bounding surface. The effective conductivity tensor is given

by the series expansion of the volume of the coated ellipsoid:

Σe = σ1I + θcσ1〈E1〉+O(θ2
c ) (2.10)
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E1,ii =
(σsh − σ1)(σsh + (σ2 − σsh)(L2

i − fLshi )) + fσsh(σ2 − σsh)
(σsh + (σ2 − σsh)(L2

i − fLshi ))(σ1 + (σsh − σ1)Lshi ) + fLshi (σ2 − σsh)σsh
(2.11)

where f = abc/(ABC), and

Lshi =
ABC

2

∫ ∞
0

ds

(s+ i2)
√

(s+A2)(s+B2)(s+ C2)
, i = A,B,C

L2
i =

abc

2

∫ ∞
0

ds

(s+ i2)
√

(s+ a2)(s+ b2)(s+ C2)
, i = a, b, c

A2 = a2 + t, B2 = b2 + t, C2 = c2 + t, t is related to the thickness of the shell.

(2.12)

2.3 Nano-composite properties of nematic polymer monodomains

We proceed to compute the effective conductivity tensor Σe
θ2

for low volume fraction

spheroidal suspensions in several limiting regimes:

• the quiescent isotropic phase of dilute random suspensions vs. concentration (N) and

molecular aspect ratio (r);

• the nematic equilibrium phase vs. N and r using second-moment approximate descrip-

tions of the PDF;

• the flow-induced PDF in simple shear at low (isotropic) quiescent concentrations; and

• mesoscopic approximations of the PDF for weak shear-induced nematic phases.

Our first result is to derive an explicit formula for the polarization tensor P, equation (2.4),

and thereby the effective conductivity tensor Σe
θ2

, equation (2.3). This formula is special for

spheroidal rod-like (or platelet) nano-inclusions, yet general for any orientational PDF f(m)

of the inclusions.

For rod-like spheroidal nano-inclusions, the depolarization factors become Lb = Lc = (1−
La)/2 and mm + nn + kk = I, from which we can explicitly express the polarization tensor E

as a linear combination of the isotropic tensor I and the quadratic (dyadic) product mm:

E(m) =
[(

1 +
(
σ2 − σ1

σ1

)
La

)
mm +

(
1 +

(
σ2 − σ1

σ1

)
1− La

2

)
(I−mm)

]−1

. (2.13)
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We now observe that the inverse of a linear combination of I and mm is itself a linear com-

bination of I and mm. Thus, for spheroids, equation (2.13) is explicitly invertible, and we

deduce

E(m) =
1

1 +
σ2 − σ1

2σ1
(1− La)


I +



σ2 − σ1

2σ1
− 3

2
σ2 − σ1

σ1
La

1 +
σ2 − σ1

σ1
La


mm


 , (2.14)

where the spheroidal depolarization factor La is explicitly integrable (graphed in Figure 2.2)

La =
1− ε2
ε2

{
1
2ε

ln
(

1 + ε

1− ε
)
− 1
}
, ε =

√
1− (b/a)2. (2.15)

10
0

10
5

10
−10

10
−5

10
0

r=a/b

L a

Figure 2.2: Depolarization factor La versus aspect ratio r.

The explicit form (2.14) of E(m) has strong consequences. First, even though f(m) gener-

ically has an infinite spherical harmonic expansion, by orthogonality relations of spherical

harmonics and the linear form (2.13), only the second moments of f(m) contribute to P,

equation (2.4). This result is valid for any distribution f(m) of monodisperse spheroids, no

matter how f(m) is generated, and furthermore, for both homogeneous monodomains as well

as heterogeneous dispersions where f(m,x) varies in space.
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Performing the integral (2.4) by virtue of (2.14), we deduce an explicit formula for P

directly in terms of the second-moment M(f) of the orientational probability density f :

P =
∫

‖m‖=1
E(m)f(m)dm =

1

1 +
σ2 − σ1

2σ1
(1− La)


I +

σ2 − σ1

2σ1
− 3

2
σ2 − σ1

σ1
La

1 +
σ2 − σ1

σ1
La

M


 .

(2.16)

Combining (2.15) and (2.16) gives the explicit connection between the second moment of

the orientational distribution and the overall electrical properties of the nano-composite, and

the central result of this chapter:

The effective electrical conductivity tensor Σe
θ2

of the composite is given by:

Σe
θ2 =Σ0 + σ1 θ2(σ2 − σ1)

(
2

σ2 + σ1 − (σ2 − σ1)La
I

+
(σ2 − σ1)(1− 3La)

((σ1 + σ2)− (σ2 − σ1)La)(σ1 + (σ2 − σ1)La)
M(f)

)
+O(θ2

2).
(2.17)

In general, we define the nano-composite electrical conductivity enhancement in terms of

the difference between Σe
θ2

at volume fraction θ2 > 0 and Σ0 = σ1I, the isotropic conductivity

of the pure matrix with zero volume fraction θ2 = 0. We shall focus on the principal value(s)

of Σe
θ2

and in the generic case of anisotropy, the principal axes of Σe
θ2

. The primary formula

(2.17) already provides intuitively natural results:

The principal axes of the effective conductivity tensor Σe
θ2

are identical to those of M(f(m)),

which are the so-called ”directors” nj of the nematic liquid measured in light scattering ex-

periments. The corresponding order parameter (eigenvalues) dj of M(f), Mnj = djnj , which

satisfy 0 ≤ dj ≤ 1,
3∑

j=1

dj = 1, measure the degrees of optical anisotropy of the composite.

Whenever dj 6= 1/3 or M 6= I/3, from (2.17), dj enter explicitly into the degrees of conductiv-

ity anisotropy, which are measured by the eigenvalues σej of Σe. In a variety of special cases, we

will explicitly calculate the distinct principal values (eigenvalues) σej and corresponding princi-
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pal axes nj of Σe
θ2

, which then generically lead to three relative principal value enhancements:

Ej =
σej − σ1

σ1
=

(Σe
θ2
−Σe

0)
σ1

: njnj , j = 1, 2, 3. (2.18)

Equivalently, the effective anisotropy tensor Σe
θ2

admits a representation explicitly in terms of

its principal axes nj and relative enhancements Ej :

Σe
θ2 = Σ0 + σ1

3∑

j=1

Ejntjnj . (2.19)

The formula (2.17) therefore immediately yields a series of general conclusions, which then

form the basis for simplified scaling properties in additional asymptotic limits, either on the

molecule geometry or on the contrast between conductivities of the nano-inclusion and matrix.

2.4 Finer estimates for high contrast conductivity and extreme

aspect ratio

For typical nematic polymer nano-composites, two asymptotic limits are routinely observed:

• high aspect ratio (r � 1), spheroidal nano-inclusions, where the molecules depicted in

Figure 2.1 satisfy a � b = c; then La, equation (2.15) and Figure 2.2, admits the

asymptotic evaluation

La = (log(r)/r2) +O(r−2) for r � 1; (2.20)

• high contrast conductivities, where the nano-inclusion has extreme conductivity σ2 rela-

tive to the matrix value σ1,

σ1/σ2 � 1. (2.21)

Table 2.1 indicates typical scaling properties for r, La and σ1/σ2 in nematic polymer com-

posites. The fundamental formula (2.17) requires a careful analysis of the relative order among

these two asymptotic parameters, σ1/σ2 and La, with the outcome dependent on three possi-
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ble ranges for the ratio
La

σ1/σ2
, which we now analyze. These scaling results are valid for any

molecular distribution function f(m); in the next section, we will assert knowledge of f(m)

versus nano-element volume fraction and shear rate.

Table 2.1: Data for the range of typical aspect ratios r and electrical conductivity contrasts
σ1/σ2 of rod-like nematic polymer nano-composites.

r La σ1/σ2

102 ∼ 105 10−9 ∼ 10−3 10−12 ∼ 10−5

Case 1: Suppose
La

σ1/σ2
� 1, e.g. La ∼ 10−3 and σ1/σ2 ∼ 10−8.

Then the effective conductivity tensor Σe
θ2

(2.17), and corresponding relative enhance-

ment Ej (2.18), have the following scaling behavior:





Σe
θ2

= Σ0 +
σ1θ2

La
M +O(θ2σ1)I +O(θ2σ1)M +O(θ2

2),

Ej =
σej − σ1

σ1
=
θ2

La
dj +O(θ2), j = 1, 2, 3.

(2.22)

Case 2: Suppose
La

σ1/σ2
∼ O(1), e.g. La ∼ 10−6 and σ1/σ2 ∼ 10−6.

Then the scaling properties become:





Σe
θ2

= Σ0 +
θ2σ2

1 +
La

σ1/σ2

M +O(θ2σ1)I +O(θ2σ1)M +O(θ2
2),

Ej =
θ2(σ2/σ1)

1 +
La

σ1/σ2

dj +O(θ2), j = 1, 2, 3.
(2.23)

Case 3: Suppose
La

σ1/σ2
� 1, e.g. La ∼ 10−7 and σ1/σ2 ∼ 10−5.

Then the scaling properties become:





Σe
θ2

= Σ0 + θ2σ2M +O(θ2σ1)I +O(θ2σ1)M +O(θ2
2),

Ej = θ2(σ2/σ1) dj +O(θ2), j = 1, 2, 3.
(2.24)
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Comments: The property impact (relative gain) due to the nano-inclusions becomes apparent

and significant. In each case, the relative enhancement of the effective conductivity is captured

by a product of the volume fraction θ2 ∼ O(10−2) and either L−1
a or σ2/σ1, which are both

expected to be comparable to θ−1
2 and potentially much greater.

Recall the principal values dj of M(f(m)) satisfy 0 ≤ dj ≤ 1,
3∑

j=1

dj = 1. When the

distribution is random, all dj = 1/3, and otherwise 1/3 < d1 < 1.

So far, these results are quite general; we now inject explicit knowledge about f(m) and

M(f(m)). In the dilute concentration regime, we (Forest et al. (2004)) have recently derived

explicit formulas for f in weak shear, and thereby have a precise characterization of M(f), and

consequently P and Σe
θ2

. There are only preliminary analytical characterizations of f at very

high nematic concentrations (Constantin et al. (2004)). Nonetheless, decades of mesoscopic

theory are based on closing the equations at the second-moment tensor level of resolution of

f (Beris and Edwards (1994), de Gennes and Prost (1993), Larson (1999)). In particular we

(Forest and Wang (2003), Forest et al. (2003)) have introduced moment-closure benchmarks

based on faithful reproduction of the PDF attractors & phase transitions versus concentration

(volume fraction) and shear rate. Using special properties of the Doi theory (Forest et al.

(2003), Forest et al. (2004 c)), we can easily extend these formulas to any linear planar flow in

the weak flow rate limit. In all these cases we can now give explicit formulas for P and Σe
θ2

;

we proceed to several illustrative examples.

2.5 Applications I: Effective conductivity tensors for quiescent

and shear-induced mesophases

2.5.1 Dilute isotropic concentrations f0(m) =
1

4π

If the molecular inclusions are randomly oriented, i.e. f(m) ≡ 1/(4π), then M = I/3 with all

dj = 1/3, and the effective conductivity tensor Σe
θ2

remains isotropic (i.e. proportional to I),

with an explicit characterization of the inclusions:

Σe
θ2 = Σ0 +

σ1 θ2 (σ2 − σ1)(σ2 + 5σ1 + 3(σ2 − σ1)La)
3(σ2 + σ1 − (σ2 − σ1)La)(σ1 + (σ2 − σ1)La)

I +O(θ2
2). (2.25)
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Equivalently, we have the decomposition

Σe
θ2 = Σ0 + σ1E isoI, (2.26)

where the scalar, isotropic, relative effective conductivity enhancement E iso is

E iso = (Σe
θ2 −Σe

0) : nn =
θ2(σ2 − σ1)(σ2 + 5σ1 + 3(σ2 − σ1)La)

3(σ2 + σ1 − (σ2 − σ1)La)(σ1 + (σ2 − σ1)La)
+O(θ2

2). (2.27)

Here n is any unit vector, since for isotropic tensors, any unit vector is a principal axis.

For high contrast and high aspect ratio molecular elements at dilute concentrations in the

isotropic phase, we simply insert M = I/3 into the formulas in Section 2.4 or analyze (2.25),

(2.26) directly, with the following results.

• When
La

σ1/σ2
� 1,





Σe
θ2
≈ σ1(1 +

θ2

3La
)I,

E iso ≈ θ2

3La
.

(2.28)

• When
La

σ1/σ2
∼ O(1),





Σe
θ2
≈ σ1


1 +

θ2(σ2/σ1)

3(1 +
3La
σ1/σ2

)


 I,

E iso ≈ θ2(σ2/σ1)

3(1 +
La

σ1/σ2
)
.

(2.29)

• When
La

σ1/σ2
� 1,





Σe
θ2
≈ σ1(1 +

θ2σ2

3σ1
)I,

E iso ≈ θ2(σ2/σ1)
3

.
(2.30)

These formulas explicitly clarify that, even at quiescent dilute concentrations, when e.g. θ2 ≈
5 × 10−3, a high conductivity contrast (σ1/σ2 � 1) or an extreme molecular aspect ratio

(La � 1) will overwhelm the low volume fraction and conservatively lead to gains in effective
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conductivity on the order of 100-1000%.

2.5.2 Shear-induced monodomains at dilute concentrations

Our goal here is to extract the flow-induced scaling corrections to the above results, (2.25)-

(2.30), as well as the weak anisotropy induced by weak shear flow. We analyze the PDF f(m)

arising from weak steady shear of dilute spheroidal nematic polymers (Forest et al. (2004)),

where the asymptotic parameter is the Peclet number Pe, the ratio of shear rate to average

molecular relaxation rate. The normalized flow field is v ≡ Pe(y, 0, 0), where 0 < Pe � 1.

The result is:

f =
1√
4π

(f0 + Pef1 +O(Pe2)), with

f0 =
1√
4π
, f1 =

i

2

√
5
6

a

N − 5
(Y 2

2 − Y −2
2 ),

(2.31)

where a =
r2 − 1
r2 + 1

is the molecule geometry parameter, N is a dimensionless concentration

related to θ2 by
N

θ2
=

8r
π
, (2.32)

and Y 2
2 , Y −2

2 are spherical harmonics which capture anisotropy of the orientational distribution

of the nano-inclusions generated by the shear flow. The representation (2.31) is valid for

0 < N < 5 − 1.869a1/2Pe1/2, equivalently for 0 < θ2 <
1
r

(1.9635 − 0.734

√
r2 − 1
r2 + 1

Pe1/2), the

range of volume fractions for which the sheared isotropic phase persists and is stable. The upper

bound on N was first derived by See, Doi and Larson (See et al. (1990)) and corresponds to a

turning point bifurcation of the shear-perturbed Smoluchowski equation (Forest et al. (2004)).

These scaling properties are necessary to control the PDF expansion (2.31) and see that it is

bounded at the upper limit on θ2 (respectively, N) as the shear-perturbed, nearly isotropic

steady states become unstable.

We now simply insert (2.31) into (1.23) and compute the integral. At first order in Pe, we
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have

M(f(m)) =




1
3

− Pe

6(N − 5)

− Pe

6(N − 5)
1
3

0

0 0
1
3



, (2.33)

whose principal values are

d1 =
1
3

+
Pe

6(N − 5)
, d2 =

1
3
, d3 =

1
3
− Pe

6(N − 5)
, (2.34)

with principal axes nj listed below.

The anisotropic effective conductivity tensor Σe follows in explicit form from M(f) by the

formula (2.17), and more precisely from (2.22)-(2.24) given more refined information. The

principal directions nj of Σe
θ2

(inherited from M) at leading order are aligned midway between

the flow (x) and flow-gradient (y) direction and along the vorticity (z) axis,

n1 = (1, 1, 0),n2 = (0, 0, 1),n3 = (1,−1, 0), (2.35)

where the corresponding principal values σej of Σe
θ2

are distinct and ordered, σe1 = σemax > σe2 =

σevorticity > σe3 = σemin, with explicit formulas given below.

• For
La

σ1/σ2
� 1, the 3 distinct principal values of Σ2

θ2
are

σemax ≈σ1(1 +
θ2

3 La
) +

Pe θ2 σ1

6 (5−N)La
≈ σ1 + σ1(E iso + E isoPe ),

σevorticity ≈σ1(1 +
θ2

3 La
) ≈ σ1 + σ1E iso,

σemin ≈σ1(1 +
θ2

3 La
)− Pe θ2 σ1

6 (5−N)La
≈ σ1 + σ1(E iso − E isoPe ).

(2.36)
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The maximum relative conductivity enhancement is given by:

Emax =
(Σe

θ2,P e
−Σe

0,0)
σ1

: n1n1 =
σemax − σ1

σ1

=
(Σe

θ2,P e
−Σe

θ2,0
+ Σe

θ2,0
−Σe

0,0)
σ1

: n1n1

≈ θ2

3La
+

Pe θ2

6(5−N)La

≈E iso + E isoPe .

(2.37)

• For
La

σ1/σ2
∼ O(1), the 3 distinct principal values of Σe

θ2
and maximum relative conduc-

tivity enhancement are

σemax ≈σ1 +
θ2 σ2

3 (1 +
La

σ1/σ2
)

+
Pe θ2 σ2

6 (5−N) (1 +
La

σ1/σ2
)
≈ σ1 + σ1(E iso + E isoPe ),

σevorticity ≈σ1 +
θ2 σ2

3 (1 +
La

σ1/σ2
)

≈ σ1 + σ1E iso,

σemin ≈σ1 +
θ2 σ2

3 (1 +
La

σ1/σ2
)
− Pe θ2 σ2

6 (5−N) (1 +
La

σ1/σ2
)
≈ σ1 + σ1(E iso − E isoPe ),

Emax ≈ θ2 (σ2/σ1)

3 (1 +
La

σ1/σ2
)

+
Pe θ2 (σ2/σ1)

6(5−N) (1 +
La

σ1/σ2
)
≈ E iso + E isoPe .

(2.38)

• For
La

σ1/σ2
� 1, the formulas are

σemax ≈σ1(1 +
θ2σ2

3σ1
) +

Pe θ2 σ2

6 (5−N)
≈ σ1 + σ1(E iso + E isoPe ),

σevorticity ≈σ1(1 +
θ2σ2

3σ1
) ≈ σ1 + σ1E iso,

σemin ≈σ1(1 +
θ2σ2

3σ1
)− Pe θ2 σ2

6 (5−N)
≈ σ1 + σ1(E iso − E isoPe ),

Emax ≈θ2 (σ2/σ1)
3

+
Pe θ2 (σ2/σ1)

6 (5−N)
≈ E iso + E isoPe .

(2.39)

Notice: In all three limits, the overall conductivity enhancement is a sum of the quiescent

isotropic enhancement E iso and a flow-induced enhancement E isoPe .
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The relative size of E iso and E isoPe defers to 1/3 vs. Pe/(6(5−N)). The latter term increases

with both Pe and N and is bounded from above by O(Pe1/2). The contributions appear to be

comparable even at weak shear rates, so formula (2.17) predicts a definite benefit from weak

flow processing.

We can also define the conductivity analog of optical birefringence Bi, which is

Bi = dmax − dmin = d1 − d3, (2.40)

where di are the principal values of M(f(m)). The analog is the maximum conductivity contrast

along the major and minor principal axes, σecontrast, given by

σecontrast = σ1(Emax − Emin). (2.41)

Naturally, the maximum anisotropy in conductivity comes purely from the shear flow for these

three dilute concentration cases:

Emax − Emin ≈





Pe θ2

3 (5−N)La
,

La
σ1/σ2

� 1;

Pe θ2 (σ2/σ1)

3 (1 +
La

σ1/σ2
) (5−N)

,
La

σ1/σ2
∼ O(1);

Pe θ2 (σ2/σ1)
3 (5−N)

,
La

σ1/σ2
� 1.

(2.42)

Note: Indeed, the above expressions can be directly cast in terms of the optical birefringence

parameter, Bi, by using the formulas for dj in (2.34). Doing so, we find

σecontrast = σ1(Emax − Emin) ≈





σ1θ2

La
Bi,

La
σ1/σ2

� 1;

θ2 σ2

(1 +
La

σ1/σ2
)
Bi,

La
σ1/σ2

∼ O(1);

θ2 σ2Bi,
La

σ1/σ2
� 1.

(2.43)
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2.5.3 Quiescent nematic phases and mesoscopic approximations

Exact formulas for the PDF f(m) at nematic concentrations do not exist, except in the

limit as N → ∞ (Constantin et al. (2004)). Alternatively, we employ second-moment closure

models, where scaling properties can be derived and subsequently compared with numerical

computations or with other closures. We consider the Doi closure model for illustrative pur-

poses, given in terms of the orientation tensor Q, Q = M−1/3 I, capturing the deviatoric part

of M(f) which measures the departure from isotropy. Nematic states exist for sufficiently high

concentration N > 8/3, equivalently for θ2 > π/(3r), in the Doi closure model. (We remark

that N has been effectively scaled by the closure; N = 8/3 here is only proportional to the

critical value for kinetic theory, which for r → ∞ is approximately N=4.) For the uniaxial

nano-inclusion distribution at rest, Q = s(nn− I/3), where s is the uniaxial order parameter

(s = d1 − d2, d2 = d3), which measures anisotropy of the distribution; the isotropic phase has

s = 0, whereas the stable nematic phase has

s =
1
4

(
1 + 3

√
1− 8

3N

)
∈
(

1
4
, 1
)
. (2.44)

The uniaxial director n = (cosφ sin θ, sinφ sin θ, cos θ) is the principal axis of Q or M corre-

sponding to the distinct, maximum eigenvalue (d1 of M, d1 − 1/3 of Q).

Consider the orientation tensor Q at rest, corresponding to major director

n0 = (cosφ0 sin θ0, sinφ0 sin θ0, cos θ0). The nematic phase is O(3) degenerate, meaning any

similarity transformation of Q, OtQO, is also an equilibrium, where O ∈ O(3), the orthogonal

group. From the primary formula (2.17) and remarks below, the principal axes of the effective

conductivity tensor Σe
θ2

are also O(3) invariant, whereas, the anisotropic principal values σei

for Σe
θ2

have scaling behavior that depends on three limit cases of La vs.σ1/σ2.
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• For
La

σ1/σ2
� 1,

σe1 = σemax ≈σ1 +
θ2 σ1

3La
(1 + 2s),

σe2 = σe3 = σemin ≈σ1 +
θ2 σ1

3La
(1− s),

Emax ≈ θ2

3La
+

2 s θ2

3La
≈ E iso + Enema.

(2.45)

• For
La

σ1/σ2
∼ O(1),

σe1 = σemax ≈σ1 +
θ2 σ2

3 (1 +
La

σ1/σ2
)
(1 + 2s),

σe2 = σe3 = σemin ≈σ1 +
θ2 σ2

3 (1 +
La

σ1/σ2
)
(1− s),

Emax ≈ θ2 (σ2/σ1)

3 (1 +
La

σ1/σ2
)

+
2 s θ2 (σ2/σ1)

3 (1 +
La

σ1/σ2
)
≈ E iso + Enema.

(2.46)

• For
La

σ1/σ2
� 1,

σe1 = σemax ≈σ1 +
1
3
θ2σ2(1 + 2s),

σe2 = σe3 = σemin ≈σ1 +
1
3
θ2σ2(1− s),

Emax ≈θ2 (σ2/σ1)
3

+
2 θ2 (σ2/σ1) s

3
≈ E iso + Enema.

(2.47)

The maximum anisotropy in conductivity of the quiescent nematic phase for these three cases

is now explicit:

Emax − Emin ≈





θ2s

La
,

La
σ1/σ2

� 1;

θ2(σ2/σ1)s

1 +
La

σ1/σ2

,
La

σ1/σ2
∼ O(1);

θ2σ2s

σ1
,

La
σ1/σ2

� 1.

(2.48)

Comparison of these scaling properties (2.48) of the pure nematic phase with both the pure
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isotropic phase (Section 2.5.1) and the shear-induced isotropic phase (Section 2.5.2) reveals the

same isotropic enhancement E iso plus a magnification of the anisotropic enhancement (2.42)

with the asymptotic pre-factor Pe replaced by the O(1) scalar order parameter s ∈ (1/4, 1). As

we illustrate later, these scaling properties clearly expose the dominant effect of nematic order

on the conductivity enhancement, with a discontinuous gain in Emax as the order parameter S

jumps at the disorder-order phase transition (N = 8/3 in this model).

2.5.4 Shear perturbed, flow-aligned monodomains at nematic concentra-

tions

Until this point, we have characterized effects of shear on the isotropic phase and of the

order transition to the nematic phase, to which we now couple the effects due to weak shear.

This will only perturbatively alter the principal values of the anisotropic conductivity tensor,

but has the important effect of selecting the principal axes of anisotropy, i.e. breaking the O(3)

degeneracy of the nematic phase. The perturbed solution Q corresponding to a shear-induced

monodomain at low shear rate (Pe� 1) is explicitly constructed (Forest et al. (2003)),

Q = s(nn− 1
3
I) +Pe



c1

2




0 1 0

1 0 0

0 0 0




+ c2




1 0 0

0 1 0

0 0 −2




+ c3




1 0 0

0 −1 0

0 0 0







+O(Pe2),

(2.49)

where s depends only on θ2 from (2.44), the O(1) estimate of the shear-selected major director

of Q is n = (cosφL, sinφL, 0), where the so-called Leslie alignment angle φL =
1
2

cos−1

(
3 s

a (2 + s)

)

depends on θ2 (through s) and aspect ratio (through a); and the constants ci depend on θ2

and r,

c1 =
(1− s)2(1 + 2s)

9s(4s− 1)

[
a (11s+ 4)− 9s2(19s+ 8)

a (2 + s)2

]
,

c2 =
(1− s)2(1 + 2s) tan 2φL

6 (4s− 1)
,

c3 =
3s(1− s)2(1 + 2s)(19s+ 8) tan 2φL

6 a (2 + s)2(4s− 1)
.

(2.50)

63



The O(Pe) shear-dependent angle φ̃L of the major director ñ of Q, ñ = (cos φ̃L, sin φ̃L, 0), is

given by

cos 2φ̃ = cos 2φL + Pe
4(1− s)2(1 + 2s)2 sin 2φL

3s(2 + s)(4s− 1)
+O(Pe2). (2.51)

The principal values of Σe
θ2,P e

in the three different limit cases follow, where σemax is associated

with the principal axis ñ, σevorticity with (0, 0, 1), and σemin with the normal ñ⊥ to ñ in the

shear plane. This implies, for example, that the maximum conductivity anisotropy lies in the

plane of flow deformation for these flow-aligned monodomains. (As the shear rate and volume

fraction vary, a remarkable array of transient orientational distributions emerge ( Faraoni et al.

(1999), Forest et al. (2004a), Forest et al. (2004b), Grosso et al. (2001), Larson and Ottinger

(1991)), whose conductivity will likewise oscillate until the system is quenched. These dynamic

properties will be reported in a subsequent study.)

• For
La

σ1/σ2
� 1,

σemax ≈ σ1 +
θ2σ1

3La
(1 + 2s+ χ(a, θ2)Pe) ,

σevorticity ≈ σ1 +
θ2σ1

3La

(
1− s− χ(a, θ2)Pe

s+ 2
3(1 + 2s)

)
,

σemin ≈ σ1 +
θ2σ1

3La

(
1− s− χ(a, θ2)Pe

5s+ 1
3(1 + 2s)

)
.

(2.52)

where χ is a recurring factor that depends only on the aspect ratio parameter a and the

volume fraction θ2, depicted in Figure 2.3 for aspect ratio r = 100,

χ(a, θ2) =
a (1− s)2 (1 + 2s)2 sin 2φL

s (4s− 1)
. (2.53)

So the maximum enhancement is given by

Emax ≈ θ2

3La
(1 + 2s+ χ(a, θ2)Pe) ≈ E iso + Enema + EnemaPe ,

EnemaPe ≈Pe · θ2

3La
· χ(a, θ2),

(2.54)

where the first two terms are precisely the result (2.45) without flow, and the new term
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Figure 2.3: The scaling factor χ(a, θ2) vs. θ2, for r = 100.

is the flow-induced enhancement EnemaPe of the nematic phase. We note that even though

Pe is small, e.g. Pe ∼ 0.1, the product χ · Pe is comparable to the other two factors 1

and 2s, when θ2 is close to 1%.

The decomposition formula (2.54a) will be reproduced in the two remaining regimes,

where the precise forms of the isotropic (dilute) enhancement E iso, the boost Enema

from the nematic phase, and the flow-induced enhancement of the nematic phase EnemaPe ,

depend on the ratio of La and σ1/σ2. In all cases, the property enhancement decomposes

into the sum of these three contributions, illustrated in Section 2.5.5.

• For
La

σ1/σ2
∼ O(1),

σemax ≈ σ1 +
θ2σ2

3 (1 +
La

σ1/σ2
)

(1 + 2s+ χ(a, θ2)Pe) ,

σevorticity ≈ σ1 +
θ2σ2

3 (1 +
La

σ1/σ2
)

(
1− s− χ(a, θ2)Pe

s+ 2
3(1 + 2s)

)
)
,

σemin ≈ σ1 +
θ2σ2

3 (1 +
La

σ1/σ2
)

(
1− s− χ(a, θ2)Pe

5s+ 1
3(1 + 2s)

)
,

Emax ≈ θ2 (σ2/σ1)

3 (1 +
La

σ1/σ2
)

(1 + 2s+ χ(a, θ2)Pe) ≈ E iso + Enema + EnemaPe ,

(2.55)
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where

EnemaPe ≈ Pe · θ2(σ2/σ1)

3(1 +
La

σ2/σ1
)
· χ(a, θ2). (2.56)

• For
La

σ2/σ1
� 1,

σemax ≈ σ1 +
θ2σ2

3
(1 + 2s+ χ(a, θ2)Pe) ,

σevorticity ≈ σ1 +
θ2σ2

3

(
1− s− χ(a, θ2)Pe

s+ 2
3(1 + 2s)

)
,

σemin ≈ σ1 +
θ2σ2

3

(
1− s− χ(a, θ2)Pe

5s+ 1
3(1 + 2s)

)
,

Emax ≈ θ2σ2

3σ1
(1 + 2s+ χ(a, θ2)Pe) ≈ E iso + Enema + EnemaPe ,

(2.57)

where

EnemaPe ≈ Pe · θ2(σ2/σ1)
3

· χ(a, θ2). (2.58)

Finally, the maximum anisotropy in effective conductivity for these three cases is given by

Emax − Emin ≈





θ2

La

(
s+ χ(a, θ2)Pe

11s+ 4
9(1 + 2s)

)
,

La
σ1/σ2

� 1;

θ2 (σ2/σ1)

(1 +
La

σ1/σ2
)

(
s+ χ(a, θ2)Pe

11s+ 4
9(1 + 2s)

)
,

La
σ1/σ2

∼ O(1);

θ2 (σ2/σ1)
(
s+ χ(a, θ2)Pe

11s+ 4
9(1 + 2s)

)
,

La
σ1/σ2

� 1.

(2.59)
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Figure 2.4: Quiescent orientation-conductivity enhancement correlations versus volume frac-
tion for two model nano-composites. Hysteresis associated with the quiescent I-N phase tran-
sition is duplicated in the effective conductivity property enhancement for two model systems.
Left column: Order parameter S versus volume fraction θ2. Right column: Corresponding rel-
ative conductivity enhancement Emax. Model system aspect ratio and conductivity contrasts
are given for each row. The two vertical lines mark the critical concentration, θ∗2 and θ∗∗2 , of
each model system; θ∗2 is the onset of the nematic phase, while θ∗∗2 is the instability transition
of the isotropic phase.
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Figure 2.5: Comparison between shear-induced and quiescent orientation order parameter
versus volume fraction, and the corresponding effective conductivity enhancements for the two
model systems of Figure 2.4. Left column: Order parameter S versus volume fraction θ2 (dark
color is for Pe=0, light color is for weak shear rate Pe = 0.1). Right column: Corresponding
relative conductivity enhancements.
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2.5.5 Illustrations

The scaling properties derived above will now be illustrated through graphs of the maxi-

mum relative conductivity enhancement (Emax) versus volume fraction of the nano-composite,

Figures 2.4, 2.5. The graphs are based on the general formula (2.17), and the scaling properties

are validated against them. We present the properties of the composite in a hierarchy suggested

by the decomposition scaling formulas (2.54), (2.55), (2.57), first (Figure 2.4) amplifying the

transference of the classical I-N phase transition into electrical conductivity principal values,

and then (Figures 2.5, 2.6) comparing the additional enhancement due to weak shear flow.

We will use polymer-CNT (carbon nanotube) composites as a model example, system II

below, where the polymer matrix is typically non-conductive (σ1 ∼ O(10−8)(Ω · cm)−1), and

the CNTs are extremely conductive (σ2 ∼ O(104)(Ω ·cm)−1). In these model systems, σ1/σ2 ∼
O(10−12), whereas the typical aspect ratio of CNTs is r =

104 ∼ 105 nm
1 ∼ 50 nm

∼ O(2× 102 ∼ 105).

From the formula (2.20), the geometry parameter La is then estimated as La ∼ O(10−4 ∼
10−9). These estimates imply polymer-CNT composites always lie in the regime

La
σ1/σ2

� 1,

i.e. Case I, in all estimates of the previous section 2.5. We will illustrate the results of the

formula (2.17) for two model systems: (I) r = 100, σ1/σ2 = 10−5; (II) r = 1000, σ1/σ2 = 10−10.

The first system I is posited to compare enhancements when the aspect ratio and contrast are

less extreme, yet still significant.

Figure 2.4 conveys that for quiescent phases, Emax inherits hysteresis, bi-stability, and

discontinuous jumps between the volume fractions θ∗2 where the nematic phase begins and θ∗∗2

where the isotropic phase becomes unstable. The predictions then fall into 3 intervals of volume

fraction: θ2 < θ∗2; θ∗2 < θ2 < θ∗∗2 ; and θ2 > θ∗∗2 . For model system I, θ∗2 = 1.05%, θ∗∗2 = 1.18%,

while for model system II, θ∗2 = 0.105%, θ∗∗2 = 0.118%.

For model system I, the maximum enhancement Emax grows over interval 1 to 792% at

θ∗2, likewise grows over interval 3 from 1788% at θ∗∗2 to 3700% at 2% volume fraction. In the

bi-stable isotropic and nematic interval θ∗2 < θ2 < θ∗∗2 , the isotropic phase enhancement grows

from 792% to 895%, whereas the nematic phase enhancement begins at 1189% and increases

to 1788%. Note the difference in Emax between the bi-stable phases is significant: Enemamax −E isomax
is 397% at θ∗2 and grows to 893% at θ∗∗2 .

70



For model system II, the maximum enhancement Emax grows over interval 1 to 5274% at

θ∗2, likewise grows over interval 3 from 11900% at θ∗∗2 to 25000% at 0.2% volume fraction. In

the bi-stable isotropic and nematic interval θ∗2 < θ2 < θ∗∗2 , the isotropic phase enhancement

grows from 5274% to 5953%, whereas the nematic phase enhancement begins at 7924% and

increases to 11900%. Note the difference Enemamax − E isomax between the bi-stable phases is 2650%

at θ∗2 and grows to 6000% at θ∗∗2 .

Figure 2.5 shows that at the weak normalized shear rate Pe = 0.1, the hysteresis cycle has

been pulled out, leaving a unique stable equilibrium phase for each volume fraction θ2. (The

volume fraction interval 2 above of bi-stable phases is gone.) The corresponding Emax for each

equilibrium phase mirrors the monotonicity of the scalar order parameter S.

Figure 2.6 isolates the flow-induced contribution to Emax for system I (top row) and II

(bottom row). Both left figures show the flow-induced contribution E isoPe on the isotropic branch

grows rapidly, whereas EnemaPe , the nematic flow-induced contribution, is greatest at onset of the

nematic phase, θ2 = θ∗2, and then rapidly falls off to negligible gain. The right figures provide

the fraction E isoPe /Emax and EnemaPe /Emax of the conductivity enhancement due specifically to the

flow contribution. The figures are almost identical for system I and II, after accounting for the

volume fraction scaling due to r. On the isotropic branch, the flow contribution ranges from

10% to 53%, whereas on the nematic branch, the range is 23% down to almost zero. These

figures underscore that the gain due to flow has a peak, which suggests flow-induced gain can

be optimized if these scaling features persist into more general processing regimes.

2.5.6 Conclusion

We have derived Σe
θ2

, the effective electrical conductivity tensor, in explicit form for nano-

composites with volume fraction θ2 of nematic polymers with matrix conductivity σ1 and

nano-inclusion conductivity σ2. This result is based on volume averaging over an arbitrary

orientational probability distribution of monodisperse, spheroidal molecular inclusions. The

formula encodes both quiescent and weak shear bulk phases through the second moment tensor

of the orientational PDF; all higher moments of the PDF are rigorously shown to not enter

Σe
θ2

at leading order in θ2.
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We then infer an explicit decomposition of the conductivity enhancement E (associated with

the maximum principal value of Σe
θ2

) into contributions E iso of the isotropic phase, Enema of

the nematic phase, and EPe of the shear-induced isotropic or nematic phase:

E = E iso + Enema + EPe. (2.60)

The directions and degrees of anisotropy are also characterized. Refined scaling laws are then

determined depending on the relative size of two independent large parameters in nematic

polymer nano-composites, the molecular aspect ratio r and the conductivity contrast σ2/σ1.

Key features of the analysis are :

• The conductivity enhancement inherits the hysteresis of the isotropic-nematic phase di-

agram. That is, Enema is a dominant contribution that emerges spontaneously at the

critical volume fraction θ2 = θ∗2 of the I-N transition. The analogy with a percolation

threshold is compelling, and will be addressed elsewhere.

• The high conductivity contrast σ2/σ1 � 1 and high molecule aspect ratio r � 1 are

sufficient to overwhelm the low volume fraction θ2 � 1. For typical CNT composites, we

predict conductivity enhancements on the order of 1000-10,000 %. These extreme gains

are greater than those reported in experimental systems, compelling the incorporation

of additional effects as noted below.

• The principal axes of Σe
θ2

follow those of the second moment M of the nano-inclusion

orientational distribution function f(m), a rigorous consequence of our main formula

(2.17), which is intuitively natural.

• These results for bulk homogenous mesophases of nematic polymer nano-composites lay

the groundwork for extensions to heterogeneity, (i.e. ensembles of local mesophases

with confinement and flow-induced spatial structures), more general flow rates and flow

type, and the incorporation of effects of the “interphase” between the matrix and nano-

inclusions.
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2.6 Applications II: Anisotropy and dynamic ranges in effec-

tive properties of sheared nematic polymer nano-composites

In this section, we consider typical model NPNCs with the nematogen aspect ratio is

r = 200 (and one figure with r = 50 for comparison). For r = 200, the perfactor La in

(2.15), is O(10−4); for r = 50, La is 10−3. We specify the conductivity contrast between the

nano phase and the matrix solvent as σ2/σ1 = 106. These specifications obey the inequality

La � (σ1/σ2), in which case the scaling law in Zheng et al. (2005) yields a simplified estimate

for the effective conductivity tensor, (2.22):

Σe ≈ σ1(I +
θ2

La
M), Ej ≈ θ2

La
dj , j = 1, 2, 3. (2.61)

Recall dj are the three eigenvalues of M, 0 ≤ dj ≤ 1. We now appeal to the “monodomain

phase diagram” of Doi-Hess kinetic theory, as developed in 1.5 (Forest et al., 2004a,b).

We proceed now to sample from within Regions in (θ2, P e) where each of these attracting

sheared responses occur, and extract the important effective conductivity features from the

analytical framework described in Section 2.3.

2.6.1 Conductivity enhancement of NPNCs at steady state

For flow-aligned (FA) states, Figure 2.7 shows the peak axis (Leslie alignment angle) of the

steady PDF and maximum scalar conductivity enhancement (Emax), versus Peclet number Pe

for three different volume fractions θ2. These correspond to slices of the Region I in (Forest et

al., 2004b) at N = 4.7, 5.5, 6 (θ2 = 0.92%, 1.08%, 1.26% with r = 200, θ2 = 3.69%, 4.32%, 5.03%

with r = 50). (At rest, each nematic liquid is isotropic at lowest volume fraction, and nematic

at the other two.) Note that as the volume fraction increases, so does the shear rate required

to induce steady alignment. The primary result from Figure 1b is the prediction that the

maximum scalar conductivity σemax of the NPNC monodomain is on the order of 50−75 times

the isotropic matrix conductivity σ1. Thus, for these sheared composites, one captures 2 orders

of magnitude gain at these extremely low volume fractions, from the upper limit of 6 orders of

magnitude in property contrast: σ2/σ1 = 106.
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The second result for these FA steady states from Fig. 2.7 is that ∂Emax/∂Pe ≈ 0.2 for

r = 200, so that there is a considerable benefit to Emax in shearing near the highest shear rate

of stability of these FA states. If we lower the aspect ratio to r = 50, then ∂Emax/∂Pe ≈ 0.06,

so the enhancement due to increased shear rate is quite weak. At higher θ2 or N , which require

higher Pe to stabilize the FA phase, one finds an additional 20 − 50% rise in Emax for both

aspect ratios. Comparing the two figures 2.7(b) and 2.7(c) with different aspect ratios and

the same normalized concentration N , the lower aspect ratio corresponds to higher volume

fraction, and consistent with the scaling law (2.61), the relative enhancement drops by 2/3.

We can conclude that aspect ratio is a dominant factor in controlling the effective electrical

conductivity. For the remaining simulations and Figures, we restrict to r = 200.

Figure 2.8 shows the major enhancement for steady logrolling (LR) states, for which the

principal axis n1 lies along the flow vorticity direction, and n2 lies in the flow-flow gradient

plane. As volume fraction increases, the Pe window of stable LR states widens, by contrast

with Fig. 2.7 and FA states. We again give results for three concentrations versus shear

rate. The maximum scalar conductivity σemax of logrolling NPNC monodomain distribution

functions is on the order of 68 − 78 times the matrix conductivity σ1. These enhancements

are slightly greater (∼ 10%) than FA steady distributions at comparable volume fractions, and

these PDFs are achievable at significantly lower shear rates. We note further from Figure 2.8

that ∂Emax/∂Pe ≈ −0.5, so that it is advantageous to operate near the lowest stable shear

rates for LR states at a given volume fraction.
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2.6.2 Dynamic and anisotropy of property enhancement for periodic attrac-

tors

Figure 2.9 shows the dynamic property fluctuations of tumbling (T) and wagging (W) stable

sheared responses at volume fraction θ2 = 1.08% (N = 5.5). The maximum scalar conductivity

σemax is on the order of 35−75 times the matrix conductivity σ1; recall the conductivity contrast

is σ2/σ1 = 106. The horizontal axis shows the large dynamic range of the maximum effective

conductivity,

max E1(t)
min E1(t)

≈





1.5 for W orbits

2 for T orbits;
(2.62)

the vertical axis, E1(t)− E2(t), shows the high degree and large dynamic range of anisotropy.

max(E1(t)− E2(t))
min(E1(t)− E2(t))

≈





4 for W orbits

8 for T orbits.
(2.63)

The tumbling attractor transitions to wagging as the shear rate increases at these volume

fractions.

Figure 2.10 shows the corresponding results for the oscillatory kayaking state (K1) whose

peak orientation rotates about the vorticity axis with volume fraction θ2 = 1.02% (N = 5.2)

and shear rate Pe = 3. The maximum scalar conductivity σemax is on the order 59− 62 times

the matrix conductivity σ1. The horizontal axis shows a smaller dynamic range of E1 than

tumbling or wagging phases, with:

max E1(t)
min E1(t)

≈ 1.05. (2.64)

The vertical axis, E1−E2, shows large anisotropy of the effective conductivity Σe with relatively

small dynamic range:
max(E1(t)− E2(t))
min(E1(t)− E2(t))

≈ 1.1. (2.65)

Figure 2.11 shows corresponding results for the tilted kayaking limit cycle (K2), at slightly

higher volume fraction θ2 = 1.08% and Pe = 6. In this case the maximum scalar conductivity
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Figure 2.9: Dynamic ranges at low volume fraction θ2 = 1.08% (N = 5.5, r = 200) of the
peak alignment direction for tumbling (top left, Pe = 3.4) and wagging (top right, Pe =
4) sheared monodomains; and (bottom) corresponding maximum scalar effective conductivity
enhancement E , and effective conductivity anisotropy measure E1 − E2, where tumbling values
are solid and wagging values are dotted.
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Figure 2.10: (Left) Dynamics of the peak orientation of the PDF around the vorticity axis (the
dot in the middle), and (right) the dynamic ranges of E1 and E1 − E2, for a typical kayaking
limit cycle (K1) at normalized shear rate Pe = 3, and normalized rod concentration N = 5.2,
achieved for volume fraction θ2 = 1.02% with r = 200.

σemax is on the order 55 − 64 times the matrix conductivity σ1. The horizontal axis shows a

larger dynamic range of E1 compared to the K1 state of Figure 2.10,

max E1(t)
min E1(t)

≈ 1.16, (2.66)

and the vertical axis of E1 − E2 shows less but still significant anisotropy of the effective

conductivity Σe and large dynamic range,

max(E1(t)− E2(t))
min(E1(t)− E2(t))

≈ 1.5. (2.67)

The analogous results for chaotic orientational sheared responses is shown in Figure 2.12,

with volume fraction θ2 = 1.02% (N = 5.2) and Peclet number Pe = 4.044. The maximum

scalar conductivity σemax is on the order 35 − 65 times the matrix conductivity σ1. The

horizontal axis shows the largest dynamic range of E1 for all states,

max E1(t)
min E1(t)

≈ 1.85, (2.68)

and the vertical axis of E1 − E2 shows large anisotropy of the effective conductivity Σe with
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Figure 2.11: (Left) Dynamics of the peak orientation axis of the PDF around the vorticity axis
(the dot in the middle), and (right) the dynamic ranges of E1 and E1 − E2 for a typical tilted
kayaking state (K2) at higher shear rate Pe = 6, normalized concentration N = 5.5, achieved
by volume fraction θ2 = 1.08% with nano-rod aspect ratio r = 200.

huge dynamic fluctuations,
max(E1(t)− E2(t))
min(E1(t)− E2(t))

≈ 26.0. (2.69)

Finally, we give the effective property analog of a bifurcation diagram in time-averaged,

maximum enhancement Emax of the effective conductivity tensor Σe versus normalized shear

rate Pe for fixed normalized concentration N = 5.2, corresponding to volume fraction θ2 =

1.02%. These bifurcation diagrams are now standard in the rheology literature on sheared ne-

matic polymer monodomains, where typically the vertical axis is the amplitude of projection

of the PDF onto one spherical harmonic. The diagrams show the effective property transi-

tions versus shear rate (Pe) between the various stable (solid curves) and unstable (dashed

curves) sheared response modes of the NPNC. For this specific volume fraction, this ”property

bifurcation diagram” shows the kayaking state (K1) attains the maximum enhancement. The

diagram also shows the maximum effective conductivity is increasing with shear rate for stable

K1 and FA states, yet decreasing for LR, T, W, and K2 states. Furthermore, when the K1

branch is lost at the indicated Pe, the new stable state (K2) acquires a discontinuous drop

in Emax! This result, in nonlinear physics parlance on sheared nematic polymer liquids, is a

first-order phase transition, a shear-induced analog of the isotropic-nematic phase transition.
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Figure 2.12: (Left) Chaotic orbit of the peak orientation axis of PDF at moderate shear rate
Pe = 4.044 and normalized concentration N = 5.2 (θ2 = 1.02% for r = 200). (Right) The
dynamics ranges of E1 and E1 − E2 for the chaotic monodomain PDF attractor on the left.

The message here is that property tensors inherit these phase transitions!
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Figure 2.13: “Property bifurcation diagram” of maximum conductivity enhancement Emax
versus normalized shear rate Pe at fixed normalized concentration N = 5.5, achieved by
θ2 = 1.02% for r = 200. The vertical axis is the time-averaged, maximum principal value, Emax,
of the effective conductivity tensor Σe, for each stable (solid curves) and unstable (dashed)
sheared monodomain response over this entire range of shear rates (Pe).
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2.6.3 Conclusion

Sheared monodomains of high aspect ratio nematic polymers in viscous solvents are mod-

eled by the Doi-Hess kinetic theory, which yields the orientational probability distribution

function versus volume fraction and shear rate. Numerical databases for these distribution

functions (Forest et al., 2004a,b) are implemented in homogenization formulas (Zheng et al.,

2005) for the effective conductivity tensor Σe, given the volume fractions θ1, θ2 and scalar

conductivities σ1, σ2 of the matrix solvent and nematic polymer nano phase, respectively. We

have illustrated typical gains and dynamic fluctuations in both maximum conductivity and

anisotropy for steady and unsteady sheared monodomain distribution functions. From these

predictions, we also give relative comparisons. These results suggest that there is a clear poten-

tial in using tools such as these to optimize or control property gains in NPNCs. The next step

in this program is to allow for heterogeneity. Typical films are textured, i.e. a heterogeneous

mixture of monodomains mediated by defects, so results herein represent building blocks for

macroscopic film property characterization.
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Chapter 3

Anisotropic Elastic Moduli of Quiescent
and Sheared NPNCs

3.1 Introduction

In this chapter, we model and compute effective mechanical properties of nano-composite

monodomains, consisting of nematic polymer macromolecules (transversely isotropic spheroids)

in an isotropic matrix. Both phases are endowed with linear elasticity properties to make con-

tact with theoretical results on random and perfectly aligned spheroidal composites (Odegard

et al. (2003), Gusev et al. (2002), Torquato (2002), Milton (2002)) and with experimental

data (Odegard et al. (2003)). We predict the degree of enhancement and anisotropy in elastic

moduli, arising from extremely stiff spheroidal inclusions at low volume fractions, for quiescent

and sheared bulk monodomains. We allow the nano-particles to have transversely isotropic

mechanical properties, since many nano-rods and nano-platelets have high contrast modulus

along vs. transverse to their axis of symmetry. The key modeling contribution in this chapter

is that we inject symmetries and numerical databases for the orientational probability distribu-

tion function (PDF) of the nematic polymer ensemble into the classical Mori-Tanaka effective

elasticity tensor (EET) formalism. Intuitive symmetries of effective elasticity tensors are rig-

orously established from PDF symmetries (Forest et al. (2002b)), which then determine the

number of independent moduli versus volume fraction and imposed flow type and strength

(e.g. isotropic, transversely isotropic and monoclinic). Analogous to effective conductivity

properties (Zheng et al. (2005), Forest et al. (2005)), we show that bistable dispersions as

well as first- and second- order phase transitions in PDF phase diagrams translate to similar

mechanical property phenomena.



3.1.1 Stress-strain relations

Throughout the chapter, we use Greek letters (e.g. τ, ε) to denote a second order tensor,

capital letters (e.g. C, I, S) to denote a fourth order tensor, and lower case letters (e.g. n, t, x)

to denote a vector or scalar.

Let u(x) denote the displacement, τ(x) and ε(x) denote the symmetric local stress and

strain tensors at position x. In steady states without sources, τ(x) and ε(x) satisfy (cf.

Torquato (2002)):

∇ · τ(x) = 0, ∇× (∇× ε)T = 0, (3.1)

which means the strain can be written as a symmetrized gradient of displacements u(x),

ε(x) =
1
2

[∇u(x) +∇u(x)T ]. (3.2)

The linear elastic constitutive law is

τ(x) = C(x) : ε(x), ε(x) = M(x) : τ(x), (3.3)

where fourth order tensors C and M are the local stiffness and compliance tensor with

C : M = I, I =
1
2

[δikδjl + δilδjk], (3.4)

and I is the fourth order identity tensor.

We are concerned here with 2-phase composites, consisting of a nano-particle phase of rods

or platelets and a matrix phase. Each phase satisfies (3.1)-(3.3) with distinct, and often highly

contrasted, stiffness tensors. From classical homogenization theory, the composite satisfies a

form of (3.3), but with averaged stress, strain and effective stiffness tensor Ce:

〈τ(x)〉 = Ce : 〈ε(x)〉, (3.5)

under the assumption that the phases are perfectly bonded.
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3.1.2 Stiffness tensor and elastic moduli

Since the stress tensor and strain tensor are symmetric, we must have

Cijkl = Cjikl, Cijkl = Cijlk. (3.6)

This reduces the 81 independent components of Cijkl to 36 for three-dimensional elasticity.

It is traditional (Torquato (2002)) to retain the label C for the 6 by 6 matrix representation

of these 36 stiffness constants. Likewise, the stress and strain tensors are compressed into

6-dimensional vectors so that (3.3) reduces to:




τ1

τ2

τ3

τ4

τ5

τ6




=




C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C26 C46 C56 C66







ε1

ε2

ε3

ε4

ε5

ε6




, (3.7)

with the following identification:

τi = τii, for i = 1, 2, 3, τ4 = τ23, τ5 = τ13, τ6 = τ12,

εi = εii, for i = 1, 2, 3, ε4 = 2ε23, ε5 = 2ε13, ε6 = 2ε12;
(3.8)

while the identification Cijkl and Cpq is:

11↔ 1, 22↔ 2, 33↔ 3, 23(32)↔ 4, 13(31)↔ 5, 12(21)↔ 6. (3.9)

If the stress can be expressed as a derivative of the strain energy density function with

respect to strain, then the stiffness tensor must additionally have the symmetry

Cijkl = Cklij , (3.10)

which further reduces the independent elastic constants to 21. If certain symmetries exist in
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the material, this number will be reduced even further as follows.

Monoclinic symmetry

With symmetry with respect to one plane, say the x1-x2 plane, the elasticity tensor has 13

independent components:

C =




C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66




. (3.11)

As in the general anisotropic case, here pure strain can give rise to a normal stress.

Orthotropic symmetry

For symmetry with respect to three orthogonal planes, or alternately three orthogonal

symmetry axes, the elasticity tensor has 9 independent components. The elasticity tensor in

coordinates aligned with principal material directions is:

C =




C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66




. (3.12)

It is convenient to relate the elastic components to engineering moduli, respectively called

Young’s moduli E1, E2, E3 in the 1-, 2- and 3- directions; Poisson’s ratios ν12, ν13, ν23, which

are defined by the negative of the transverse strain in the j-direction over the strain in the

i-direction when stress is applied in the i-direction, and shear moduli G12, G13, G23 in the 1-
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2, 1-3 and 2-3 planes. The correspondences between the elastic components and engineering

moduli are:

C11 = E1(1− (E3/E2)ν2
23)D, C12 = (E2ν12 +E3ν13ν23)D,

C13 = E3(ν12ν23 + ν13)D, C22 = E2(1− (E3/E1)ν2
13)D,

C23 = (E3/E1)(E1ν23 + E2ν12ν13)D, C33 = E3(1− (E2/E1)ν2
12)D,

C44 = G23, C55 = G13, C66 = G12,

(3.13)

with

D−1 = 1− 2(E3/E1)ν12ν23ν13 − ν2
13(E3/E2)− ν2

23(E3/E2)− ν2
12(E2/E1). (3.14)

The compliance tensor M can be expressed in terms of the independent moduli:

M =




1
E1

−ν21

E2
−ν31

E3
0 0 0

−ν12

E1

1
E2

−ν
32

E3
0 0 0

−ν13

E1
−ν23

E2

1
E3

0 0 0

0 0 0
1

4G23
0 0

0 0 0 0
1

4G13
0

0 0 0 0 0
1

4G12




, (3.15)

with
νij
Ei

=
νji
Ej

.

Transversely isotropic symmetry

For symmetry with respect to one axis, the elasticity tensor has 5 independent constants.

For example, if the symmetry axis is the x1 = (1, 0, 0) axis, then the stiffness tensor can be
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expressed by:

C =




C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 1/2(C22 − C23) 0 0

0 0 0 0 C66 0

0 0 0 0 0 C66




. (3.16)

The 5 engineering moduli are longitudinal (EL) and transverse (ET ) Young’s moduli, transverse

bulk modulus (kT ), longitudinal (GL) and transverse(GT ) shear moduli. The components of

the stiffness tensor are traditionally labeled according to:

axial modulus under an axial strain n = C11

transverse bulk modulus kT = (C22 + C23)/2

cross modulus l = C12

longitudinal Young’s modulus EL = n− l2/kT
transverse shear modulus GT = (C22 − C23)/2

longitudinal shear modulus GL = C66

Poisson’s ratio ν12 = l/(2kT )

Isotropic symmetry

When the elastic moduli are invariant under coordinate transformations, there are only

two independent elastic moduli, and C has the representation

C =




C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 1/2(C11 − C12) 0 0

0 0 0 0 1/2(C11 − C12) 0

0 0 0 0 0 1/2(C11 − C12)




, (3.17)
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where C12 = λ is the Lamé constant, 1/2(C11−C12) = G is the shear modulus, and K = λ+
2
3
G

is the bulk modulus governing volumetric and dilatational changes. The isotropic elasticity

and compliance tensors can also be expressed using indicial notation:

Cijkl = (K − 2
3
G)δijδkl +G(δikδjl + δilδjk),

Mijkl = (
1

9K
− 1

6G
)δijδkl +

1
4G

(δikδjl + δilδjk).
(3.18)

The relationships between the shear modulus G, Young’s modulus E and bulk modulus K,

transversely bulk modulus kT are given by

G =
E

2(1 + µ)
, K =

E

3(1− 2µ)
, kT = K +G/3. (3.19)

3.2 Effective stiffness tensors

3.2.1 Low volume fraction expansion vs. Mori-Tanaka theory

Considering a perfect bond between the inclusions and matrix, the effective stiffness tensor

of a dilute (low volume fraction θ2) suspension is given by Hill (1964):

Ce = C1 + θ2〈N〉+O(θ2
2), (3.20)

N = (C2 − C1) : T, T = [I + S : C−1
1 : (C2 − C1)]−1, 〈·〉 =

∫

S2

· fdm, (3.21)

where C1 and C2 are stiffness tensors for the matrix and inclusion; S is the Eshelby tensor

for an ellipsoidal inclusion embedded in an isotropic matrix with Poisson ratio ν1; N is the

polarization tensor, T is the Wu strain tensor (c.f. Torquato (2002)), and f is the orientational

PDF of the inclusions.

The effective stiffness tensor for composites approximated by Mori-Tanaka theory is given

by

Ce = C1 + θ2〈N〉 : (θ1I + θ2〈T 〉)−1. (3.22)

This formula purports to account for interactions between the inclusions and matrix and
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is assumed to be valid for any volume fraction θ2. The low volume fraction limit of Hill (1964)

is based on a unit the cell problem with one inclusion.

The computation of the tensor Ce is straightforward yet tedious. Since S and C2 are

transversely isotropic, and C1 is isotropic, we can use standard rules for the inner products of

tensors given below in Section 3.2.3.

3.2.2 Eshelby tensor S

For a spheroidal inclusion embedded in a matrix with Poisson ratio ν1, and aspect ratio

α = a/b, the Eshelby tensor S is given by (Eshelby (1957)):

S2222 =S3333 =
3

8(1− ν1)
α2

α2 − 1
+

1
4(1− ν1)

[
1− 2ν1 − 9

4(α2 − 1)

]
q,

S1111 =
1

2(1− ν1)

{
1− 2ν1 +

3α2 − 1
α2 − 1

−
[
1− 2ν1 +

3α2

α2 − 1

]
q

}
,

S3322 =S2233 =
1

4(1− ν1)

{
α2

2(α2 − 1)
−
[
1− 2ν1 +

3
4(α2 − 1)

]
q

}
,

S3311 =S2211 =
1

2(1− ν1)

{ −α2

α2 − 1
+

1
2

[
3α2

α2 − 1
− (1− 2ν1)

]
q

}
,

S1133 =S1122 =
1

2(1− ν1)

{
2ν1 − 1− 1

α2 − 1
+
[
1− 2ν1 +

3
2(α2 − 1)

]
q

}
,

S2323 =
1

4(1− ν1)

{
α2

2(α2 − 1)
+
[
1− 2ν1 − 3

4(α2 − 1)

]
q

}
,

S1212 =S1313 =
1

4(1− ν1)

{
1− 2ν1 − α2 + 1

α2 − 1
− 1

2

[
1− 2ν1 − 3(α2 + 1)

(α2 − 1)

]
q

}
.

(3.23)

q =





α

(α2 − 1)3/2
[α(α2 − 1)1/2 − cosh−1 α], α ≥ 1,

α

(1− α2)3/2
[cos−1 α− α(α2 − 1)1/2], α ≤ 1.

(3.24)

Since S is not symmetric (except for a sphere in an isotropic matrix), S can be expressed

following the classical notation (Hill (1964), Walpole (1969)):

S = (S2222 + S2233, S1122, S2211, S1111, 2S2323, 2S1212), (3.25)

specialized to a spheroid.
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3.2.3 Tensor computations

We follow the notation in Hill (1964) for transverse isotropic tensors:

C2 = (2kT , l, l, n, 2GT , 2GL). (3.26)

With this notation, the tensor operations yield (cf. Qiu and Weng (1990)):

C = (c, g, h, d, e, f), C ′ = (c′, g′, h′, d′, e′, f ′),

C M = I, I = (1, 0, 0, 1, 1, 1),

M = (d/(cd− 2gh),−g/(cd− 2gh),−h/(cd− 2gh), c/(cd− 2gh), 1/e, 1/f),

CC ′ = (cc′ + 2hg′, gc′ + dg′, hd′ + ch′, dd′ + 2gh′, ee′, ff ′),

(3.27)

where again M is the compliance tensor.

For an isotropic stiffness tensor (which will be specified for the matrix, where we attach

the subscript 1), following the same notation and operations, we have

C1 =(2k1, l1, l1, n1, 2G1, 2G1) = (2(K + 1/3G),K − 2/3G,K − 2/3G,K + 4/3G, 2G, 2G),

M1 =(
1− ν1

E1
,− ν1

E1
,− ν1

E1
,

1
E1
,

1
2G

,
1

2G
).

(3.28)
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We now provide the result of computation of T and N from equation (3.21):

P =S : C−1
1 =

(
1
E1

[(1− ν1)(S2222 + S2233)− 2ν1S2211],
1
E1

[(1− ν1)S1122 − ν1S1111],

1
E1

(S2211 − ν1(S2222 + S2233)),
1
E1

(S1111 − 2ν1S1122),
1
G1

S2323,
1
G1

S1212

)
,

[I+P : (C2 − C1)] = (c′, g′, h′, d′, e′, f ′),

c′ =1 +
2(k2 − k1)

E1
[(1− ν1)(S2222 + S2233)− 2ν1S2211] +

2(l2 − l1)
E1

[S2211 − ν1(S2222 + S2233)],

d′ =1 +
n2 − n1

E1
[S1111 − 2ν1S1122] +

2(l2 − l1)
E1

[(1− ν1)S1122 − ν1S1111],

e′ =1 +
2(GT −G1)

G1
S2323,

f ′ =1 +
2(GL −G1)

G1
S1212,

g′ =
2(k2 − k1)

E1
[(1− ν1)S1122 − ν1S1111] +

l2 − l1
E1

[S1111 − 2ν1S1122],

h′ =
n2 − n1

E1
[S2211 − ν1(S2222 + S2233)] +

l2 − l1
E1

[(1− ν1)(S2222 + S2233)− 2ν1S2211].

(3.29)

T =[I + P : (C2 − C1)]−1 = (d′/p′,−g′/p′,−h′/p′, c′/p′, 1/e′, 1/f ′), p′ = c′d′ − 2g′h′,

N =(C2 − C1) : T = (c, g, h, d, e, f),

c =2(k2 − k1)d′/p′ − 2(l2 − l1)h′/p′,

g =(l2 − l1)d′/p′ − (n2 − n1)g′/p′,

h =(l2 − l1)c′/p′ − 2h′(k2 − k1)/p′,

d =(n2 − n1)c′/p′ − 2h′(l2 − l1)/p′,

e =2(GT −G1)/e′,

f =2(GL −G1)/f ′.

(3.30)

To complete the Mori-Tanaka formula, what remains is the orientational average of T and

N , equation (3.22).
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3.2.4 Orientational averages

To compute orientational averages of the 4th order tensors enclosed with angle brackets in

equation (3.22), we need to transform local coordinates (x, y, z) to global coordinates (x′, y′, z′).

This change of coordinates is give by

N̄ijkl = ωipωjqωkrωlsNpqrs, (3.31)

where the components of ωij are the direction cosines for the transformation of Euler angles:

ω(φ, γ, ψ) =




cosφ sinφ 0

− sinφ cosφ 0

0 0 1







cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ







cosψ sinψ

− sinψ cosψ 0

0 0 1




(3.32)

Using the above coordinate transformation, the averaging operation 〈N〉 becomes:

〈N〉 =

∫ π
0

∫ π/2
0

∫ π
0 N̄(φ, θ, ψ)f(φ, θ, ψ) sin θdφdθdψ

∫ π
0

∫ π/2
0

∫ π
0 f(φ, θ, ψ) sin θdφdθdψ

. (3.33)

However, the above integral is difficult to compute, so we proceed as follows. If N is a

rank 4 transversely isotropic tensor, it has the 6-vector representation described earlier, N =

(c, g, h, d, e, f). Alternatively, N can be represented as a linear combination of the 6 dimen-

sional basis of transversely isotropic tensors, with m a unit vector corresponding to the axis

of symmetry of N ,

Nijkl(m) = b1mimjmkml + b2(δikmjml + δilmjmk + δjkmiml + δjlmimk)

+ b3δijmkml + b4δklmimj + b5δijδkl + b6(δikδjl + δilδjk),
(3.34)

and the relationship between these 2 “coordinates” of N is

b1 = d+ (c+ e)/2− g − h− 2f, b2 = (f − e)/2,

b3 = h− (c− e)/2, b4 = g − (c− e)/2,

b5 = (c− e)/2, b6 = e/2.

(3.35)
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(Note: The developments above assume (3.10), which force b3 = b4, and therefore has 5

independent elements of transversely isotropic N .)

We denote the second moment M2 and fourth moment M4 of the PDF f by:

M2 = 〈mimj〉, M4 = 〈mimjmkml〉. (3.36)

The orientational average of a transversely isotropic tensor N is therefore given by:

〈N〉 = b1M4 + b2(δikMjl + δilMjk + δjkMil + δjlMik)+

b3δijMkl + b4δklMij + b5δijδkl + b6(δikδjl + δilδjk),
(3.37)

where Mij denotes the corresponding components of M2. We note that kinetic theory of

nematic polymer provides the PDF f of the inclusions, from which fourth and second moments

are given by the first several terms in a spherical harmonic expansion. Traditional Landau-

deGennes or second moment tensor models only provide M2, and some additional ad hoc rule

has to be invoked to get the fourth moment M4.

3.2.5 A hierarchy of symmetries of the effective elasticity tensor of nano-

spheroid composites

The orientational distributions of nano-elements often possess certain symmetries. Armed

with the above developments, we now show how particle symmetries and mean-field PDF

symmetries can be combined to prove symmetries of the effective elasticity and compliance

tensors of the nano-composites. These symmetry results then provide a rigorous determination

of the number of independent elasticity constants.

Recall that C1 is an isotropic tensor and C2 is a transversely isotropic tensor.

1. Random distribution limit. In the dilute limit, the PDF f is isotropic at rest, which

implies

M2 =
1
3
δij , M4 =

1
15

(δijδkl + δikδjl + δilδjk). (3.38)
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From equation(3.37), we get 〈N〉 explicitly for random orientational distributions:

〈N〉ijkl =
(
b5 +

1
15
b1 +

1
3

(b3 + b4)
)
δijδkl +

(
b6 +

1
15
b1 +

2
3
b2

)
(δikδjl + δilδjk). (3.39)

which is, of course, isotropic. The same argument shows that 〈T 〉, equation (3.21) is also

isotropic. Further, the inversion, summation, and contraction preserve isotropy. Thus, the

composite elasticity tensor Ce, equation (3.22), is isotropic.

2. Perfect alignment limit. Although not physically realizable, the extreme limit of

perfect particle alignment across the entire ensemble is often considered. Mathematically, this

limit allows exact analysis, and it is widely believed to represent some form of extreme bound,

with the random alignment limit at the other extreme. (We will investigate these limits in

examples to follow; they sometimes bound properties, yet not always.) Suppose all particles

have the identical direction m = (m1,m2,m3), so the PDF f is a delta distribution:

f(m) = δ(m). (3.40)

Using equation (3.33), 〈N〉ijkl = Nijkl(m). From (3.20), the effective stiffness tensor Ce has

the form (3.34), which by construction is transversely isotropic, with principal axis m.

3. Biaxial PDFs. Under simple shear or other rotational flows, the PDFs are generically

biaxial, i.e., the second moment M2 has 5 independent components. Since Ce inherits the

symmetries of M4 and M2, we proceed to properties of M4.

Generally, without any known symmetries, the fourth moment M4 of the orientational

distribution is symmetric under all permutations of subscripts, i.e., Mijkl = Mjikl = Mklij =

Mlijk = Mkijl. These conditions reduce the number of independent components of M4 from

81 to 15. Furthermore, there are additional relations between M4 and M2, e.g.,

∑

k

Mijkk = Mij ,
∑

i

Mii = 1. (3.41)

These relations imply that if one knows M2, then 6 components of M4 can be constructed.

Thus, the number of independent elements of M4, given M2, is 9, which coincide with the space
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of orthotropic rank 4 tensors; however this is indeed a coincidence, in that M4 is not necessarily

orthotropic. Any orthotropic rank 4 tensor has the form of (3.12) in some orthogonal frame; if

M4 is orthotropic, the basis that yields the form (3.12) comes from M2.

Faraoni et al. (1999) showed numerically that M4 does not obey orthotropic symmetry. For

f which obey in-plane symmetry with respect to the shear flow plane, clearly, M4 is symmetric

with respect to the flow plane. Therefore, M4 has monoclinic symmetry. All simulations below

confirm this property. For out-of-plane monodomain attractors, e.g. kayaking limit cycles, out-

of-plane steady states, and chaotic orbits, M4 has no a “priori” special symmetry.

4. Uniaxial PDFs. Uniaxial orientational distributions occur at rest above a critical

volume fraction, the so-called nematic phase (de Gennes and Prost (1993), Doi and Edwards

(1986)), or in response to uniaxial extensional flow (Forest et al. (2000), Forest et al. (2004 c),

Forest et al. (1999)) and applied magnetic fields (Forest et al. (2006)), at all volume fractions.

For nematic phases at equilibrium, there is a distinguished principal axis n1 of M2, with

corresponding eigenvalue d1, and isotropy transverse to n1, i.e., the remaining two eigenvalues

of M2 are equal, d2 = d3, indicating isotropy in the plane transverse to n1. The fourth moment

M4 is transversely isotropic, by numerical computation, and the effective stiffness tensor Ce

is also transversely isotropic, and the symmetry axes of M4, C, M2 are orthogonal and the

same.

3.3 Mechanical property predictions of rod nano-composites

In this section, the moduli of NPNCs, as predicted using the Mori-Tanaka theory just

described, are presented in terms of volume fraction and shear rate. These processing con-

ditions, together with particle aspect ratio, parametrize the Doi-Hess kinetic equation for

the nano-particle PDF f . We consider typical model NPNCs with aspect ratio r = 100.

So that our predictions have contact with realistic materials, elastic constants of individual

transversely-isotropic nano-particles (PmPV) and isotropic matrix LaRC-SI, are provided in

Table 1, adopted from Odegard et al. (2003). The longitudinal and transverse Young’s moduli

of the nano-fibers are 120 and 3.2 times that of the matrix, respectively; the longitudinal and

transverse shear moduli are 20 and 3.2 times that of the matrix. The orientational distribution
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functions are obtained from numerical simulations of the Smoluchowski equation of Doi-Hess

(Doi (1981), Hess (1976), Forest et al. (2004a), Forest et al. (2004b)). The fundamental objects

of interest are:

1. NPNC enhancements in moduli relative to the nano-particle/matrix contrasts;

2. nonlinear (superlinear) gains which might be exploited in design strategies; and

3. anisotropy characterization.

Table 3.1: Properties of matrix and nano-rod inclusion (GPa)

inclusion matrix
k2 9.9 k1 6.79
l2 8.4 l1 5.43
n2 457.6 n1 8.14
GT 4.4 G1 1.36
GL 27.0 G1 1.36
EL 450.4 E1 3.80
ET 12.1 E1 3.80
ν2 0.42 ν1 0.4

3.3.1 Effective properties vs. volume fraction for quiescent mesophases

First, the relative enhancement of effective moduli (and the number of distinct moduli) are

presented as a function of inclusion volume fraction for quiescent phases. Recall the equilibrium

phase diagram of nematic polymers exhibits a first-order phase transition and hysteresis in

the PDF versus volume fraction (cf. Doi and Edwards (1986)); this feature is described in

terms of the Flory order parameter, s = d1 − d2, computed from the second moment M2(f),

Figure 3.1.a. All symmetries of Ce follow from those of M2(f), M4(f), and corresponding

independent moduli are computed from our numerical databases of f , M2, M4, according to

the above developments and presented in Figure 3.1.b, c, d.

We define the relative enhancement of Young’s moduli as

EE =
Ee − E1

E1
, (3.42)
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Figure 3.1: a. Order parameter s vs. volume fraction θ2; b. corresponding relative enhance-
ment of Young’s moduli Ee; c. corresponding relative enhancement of shear moduli Ge; d.
Corresponding relative enhancement of transverse bulk moduli keT . The solid lines are the
relative longitudinal moduli, the dashed lines are the relative transverse moduli.

where Ee and E1 are the effective (composite) and matrix Young’s modulus, respectively. For

other moduli, the relative enhancements are defined similarly.

At sufficiently low volume fractions, θ2 < 1.96% for this specific rod-solvent dispersion, the

equilibrium phase is isotropic, f(m) =
1

4π
, M = I/3, and s = 0. For θ2 > 1.76%, a stable,

ordered (nematic) equilibrium forms due to excluded volume potential interactions; the PDF is

uniaxial, with second moment orientation tensor Q = M2− 1
3
I of the form s(nn− I/3), where

n is the uniaxial director, and the Flory order parameter s measures the degree of anisotropy.

From the symmetries derived earlier, Ce is isotropic for isotropic PDFs, and transversely

isotropic for uniaxial PDFs, thus possessing 2 and 5 distinct moduli, respectively. These are

simply labeled Ee and Ge in the isotropic phase, while in the nematic phase, the labels are EeL

99



along the principal axis; EeT transverse to the principal axis; GeL on the planes containing the

principal axis, GeT on the plane transverse to the principal axis, and kT which is obtained by

applying a uniform strain to the symmetry axis, with no uniaxial extension along the principal

axis. Extremal bounds due to perfect and random alignment are shown.

Fig. 3.1 conveys that for quiescent phases, moduli inherit the hysteresis and bi-stability of

the PDF. There are discontinuous jumps in moduli at the critical volume fractions θ∗2 = 1.76%,

where the nematic phase begins, and θ∗∗2 = 1.96%, where the isotropic phase becomes unstable.

YOUNG’S MODULI. Fig. 3.1.b.

Isotropic phases. Ee increases linearly with volume fraction θ2, since f ≡ 1/(4π) for all

θ2. The line is extended for θ2 > 1.96% to show the contrast with distinct moduli EeL,T of the

nematic phase.

Nematic phases.

• The longitudinal modulus EeL, with respect to the principal coincide axis of f, M4, M2

and Ce, experiences nonlinear growth as a result of focusing of the rod ensemble along the

principal axis (Figure 3.1.a).

1. The perfect alignment limit, s = 1, yields an upper bound, EalignL , shown ranging between

180% to 360% for 1.76% < θ2 < 3.5%. By comparison, the composite EeL ranges from

62% to 290% over the same range of volume fractions.

2. In the bi-stable range, the nematic phase has 1.8 times greater EL at θ∗2, increasing to

2.8 times greater EeL at θ∗∗2 , again a reflection of nonlinear gain.

• The transverse Young’s modulus EeT , applies to any direction in the plane normal to the

principal symmetry axis n1, and has the following properties:

1. EeT lies between the random configuration and above the perfect alignment limit, by sym-

metry arguments, owing to the number of rods on average available to resist compression

or tension in that plane.

2. EeT decreases with increased θ2, since the PDF becomes more focused, converging onto

the lower bound of EeT set by the perfect alignment limit.
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• The Young’s moduli together indicate strong anisotropy, with average values

EeL ≈ 3.4EeT , EeT ≈ 1.1Em. (3.43)

SHEAR MODULI. Fig.3.1.c. (We use the following notation for effective longitudinal

and transverse shear moduli: GeL = Ge12 = Ge13, GeT = Ge23.)

Isotropic phases. Ge = GeL = GeT , which increase linearly with volume fraction θ2.

Nematic phases.

• The longitudinal shear modulus GeL.

1. GeL begins at θ∗2 at 40.7%, yet grows very slowly to 44.9% at θ2 = 3.5%.

2. GeL < GrandL since there are more rods in the shearing plane for the random configuration.

3. GalignL � GeL since the rods on average lie in the plane transverse to the symmetry axis.

• As the PDF focuses, less rods are aligned in transverse planes, thus the transverse shear

modulus GeT decreases rather quickly toward GalignT .

TRANSVERSE BULK MODULUS. Fig. 3.1.d.

Isotropic phases. keT increases with volume fraction θ2.

Nematic phases. krandT � keT > kalignT .

3.3.2 Effective moduli of sheared nano-rod composites

Next, we explore the effect of shear-induced orientational distributions on effective moduli,

which breaks isotropic and uniaxial symmetry of the PDF at rest. By arguments given ear-

lier, in general, Ce is monoclinic symmetric for in-plane PDF f , so there are 13 independent

components. We choose the same NPNC properties of Table 3.1.

First, we fix the inclusions at an isotropic volume fraction 1%, and retain the rod aspect

ratio at 100. The orientational distributions f are obtained from kinetic theory simulations

for a range of shear rates, which yield M2, M4 and thereby Ce. All sheared PDFs are steady

states.

The principal values of the second moment M2 vs. normalized shear rate (Peclet number

Pe) are shown in Fig.3.2.a; recall d1−d2 measures anisotropy, while d2−d3 measures biaxiality
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Figure 3.2: Sheared PDFs and effective moduli for 1% volume fraction nano-rods of aspect
ratio 100, with particle-matrix properties of Table 3.1 (Odegard et al. (2003)). a. Eigenvalues
(d1 > d2 > d3) of M2 vs. normalized shear rate (Peclet number Pe); b. corresponding relative
enhancement of Young’s moduli; c. corresponding relative enhancement of shear moduli.
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or anisotropy in the plane transverse to the principal axis. We emphasize that d1 = d2 = d3 =

1/3 at Pe = 0, so all anisotropy arises due to shear flow.

• Young’s moduli. Fig. 3.2.b. The enhancements in the distinct Young’s moduli Eei (i =

1, 2, 3) are shown with respect to the 3 orthogonal axes of M2.

1. The largest modulus, Ee1, associated with the principal axis n1 (M2), exhibits nonlinear

gain from the shear-induced order, departing from Erand at Pe = 0 and slowly approach-

ing the the upper bound given by EalignL .

2. The transverse Young’s moduli Ee2 and Ee3 fall from Erand for Pe > 0, and converge to

the lower bound provided by EalignT .

• Shear moduli. Fig. 3.2.c.

1. Ge12 > Ge13 > Ge23.

2. Ge12 > Grand � GalignL, T .

3. Grand > Ge13 > Ge23 � GalignL, T .

4. All shear moduli enhancement are between 10% and 25%, so the gain over the matrix is

not dramatic.

Second, we shift to a concentrated dispersions, θ2 = 2.3% (corresponding to N = 6). For

this volume fraction, shear once again induces steady PDFs (Forest et al. (2004a), Forest et

al. (2004b)), called logrolling states (Larson and Ottinger (1991)), where the peak axis of f

is along the vorticity-axis, orthogonal to the shear plane. These PDFs have symmetry with

respect to the shear plane, therefore yield monoclinic Ce. (We omit intermediate θ2 for this

work, since shear induces limit cycles, rather than steady states.)

Fig. 3.3 shows the enhancements of moduli for these logrolling PDFs. Fig. 3.3.a shows

d1 � d2 ≈ d3, so the PDF is weakly biaxial, and the Young’s moduli effect nearly uniaxial

properties: Ee1 � Ee2 ≈ Ee3, Fig. 3.3.b. The shear moduli obey Ge12 > Ge13 � Ge23, with strong

contrasts at higher Pe, Fig. 3.3.c.
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Figure 3.3: Sheared PDFs and effective moduli for 2.3% volume fraction nano-rods of aspect
ratio 100, arising from vorticity-aligned (logrolling) steady states. a. eigenvalues (d1 > d2 > d3)
of M2 vs. normalized shear rate (Peclet number Pe); b. relative enhancement of Young’s
moduli; c. relative enhancement of shear moduli.

3.4 Conclusions

In this chapter, the micro-mechanics based Mori-Tanaka method is used to predict the

effective elastic properties of NPNCs. Symmetries of the effective elasticity tensor are derived

from those of the PDF: Ce is isotropic if the PDF is random; transversely isotropic if the PDF

is uniaxial; monoclinic for in-plane PDFs; and maximally anisotropic if the PDF is fully biaxial

(typical of sheared ensembles). Ce is thereby determined to have 2, 5, 9 or 15 independent

moduli for isotropic, uniaxial, in-plane, and biaxial PDFs, respectively.

For fixed aspect ratio, we study the volume fraction dependence of the effective moduli for

quiescent equilibrium distributions. The key feature is that moduli inherit not only symmetry
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from the PDF, but bistability and hysteresis of the classical Onsager isotropic-nematic phase

diagram. The trends of the various moduli are calculated versus volume fraction, exhibiting

nonlinear gains of principal compressible (Young) moduli and corresponding drops in transverse

shear moduli. Bounds are given in terms of limiting configurations of random and perfect

alignment. Finally, the effects of shear rate on isotropic (low volume fraction) and nematic

(high volume fraction) composites are detailed.
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Chapter 4

Future Work

4.1 Percolation-dominated properties

We have developed a predictive theory for effective conductivity of nematic polymers com-

posed with a matrix, based on volume averaging at low volume fractions. Nematic polymer

nano-particles are high aspect ratio spheroids, either rods or platelets. A generically anisotropic

effective conductivity tensor σe is explicitly derived as a function of volume fraction θ2 of ne-

matic polymers for both quiescent and sheared molecular ensembles. The principle values

{σej}3j=1 of σe give scalar conductivities along the respective principal axes of σe, which clearly

predict enhancements of σemax ≡ max{σej} due to increases in θ2 and due to extension or

shear deformation of the quiescent molecular orientational distribution. On the other hand,

experimental data indicates an even more pronounced effect on conductivity and mechanical

properties due to percolation, i.e., connected paths of nano-inclusions, which extend across

boundaries of a bulk sample.

Whereas the literature has a variety of treatments and predictions of percolation in rod

dispersions, there is no effective procedure that we are aware of that is based explicitly on the

orientational probability distribution function (PDF) of the nano-particle ensemble.

The goal of this work is to compute percolation thresholds and more detailed cluster statis-

tics consistent with PDFs generated from the Smoluchowski equation of Doi-Hess theory for

quiescent or flowing nematic polymers. The key physics of Doi-Hess theory is rotational dif-

fusion coupled with an excluded-volume potential, with or without an extra hydrodynamic

coupling. These results can then be linked with the numerical framework of others, such as

Ounaies et al. (2003) and Lusti et al. (2002), to yield effective properties such as conductivity



or elasticity tensors due to volume averaging and percolation.

4.2 Elastic wave propagation through nano-composites

I have started to look at mechanical wave propagation in elastic (viscoelastic) nano-rod/platelet

materials, which are often used in situations involving dynamic application of loads. There are

no results which predict strain or stress localization in these composites, nor how macroscopic

loads are distributed by these “soft composite”. A state of stress may be generated that leads

to failure. It is necessary to understand the response characteristics of the material body to

account properly for all important effects.

If a wave length of the characteristic response of the material is very long compare with

the scale of the inhomogeneity, then the material is governed by the effective properties of the

equivalent homogeneous medium. In this case the methods of structure response and wave

propagation are identical to those of homogeneous materials.

Given the various forms of C by homogenization theory or percolation theory, with different

symmetries, what would we predict will be key features of the propagation of waves.
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