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ABSTRACT  

Alison Sara Wise: Making Robust Use of Parental Genotype Data for Finding Effects of 

Variants of the X Chromosome 

(Under the direction of Clarice R. Weinberg) 

 

The X chromosome is generally understudied in association studies, in part because 

the analyst has limited methodological options. We are developing statistical methods for 

causal association for single nucleotide polymorphisms (SNP markers) on the X. The focus 

of our work is on case-parent triad association studies. Most current family-based methods 

extend the transmission disequilibrium test (TDT) to the X chromosome. We propose a new 

method to study association in case-parent triads: the parent-informed likelihood ratio test for 

the X chromosome (PIX-LRT). Our method provides estimation of relative risks and takes 

advantage of parental genotype information and the sex of the affected offspring. Under a 

parental allelic exchangeability assumption for the X, if for a given locus case-parent triads 

are complete, the parents of affected offspring provide an independent replication sample for 

the estimates based on transmission distortion to the affected offspring. For each offspring 

sex we can combine the parent-level and the offspring-level information to form a likelihood 

ratio test statistic; we then combine the two to form a single composite test statistic, which 

we show offers better power than existing methods.  

Maternal SNP effects can influence the development and later health of the offspring 

through prenatal effects, regardless of which alleles are transmitted by the mother to her 

offspring. Previously, using triads alone, no method had been developed without an 
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assumption of Hardy-Weinberg Equilibrium (HWE) to test maternal effects on the X 

chromosome. For the second project we extended PIX-LRT to discover maternal X-

chromosome SNP effects. 

Our third project concerns the identification and estimation of effects of X 

haplotypes. For case-parent triads, the X-chromosome haplotype phases can be inferred.  

With phase information, as is available when triad genotypes are nonmissing, the problem 

can be managed via an extension of the PIX-LRT from a two-allele problem to a k-allele 

problem, where the “alleles” are now the existing haplotypes at the locus under study. The 

extended approach relies on a permutation-based p-value based on the most significant 

individual haplotype effect. Our methods are applied to a dataset consisting of over 2000 

triads in which the affected offspring have an oral cleft. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 
1.1 Introduction 

 
The X chromosome is unique in that males have only one, maternally-derived copy, 

while females are diploid. Regions on the X chromosome have been identified in association 

with several diseases, including Duchenne muscular dystrophy (Abbadi, Philippe et al. 

1994), Parkinson’s disease (Nemeth, Nolte et al. 1999, Scott, Nance et al. 2001, Pankratz, 

Nichols et al. 2003) and autism (Shao, Wolpert et al. 2002, Vincent, Melmer et al. 2005, 

Piton, Gauthier et al. 2011). However, the X lags behind its autosomal counterparts in 

association and linkage findings. In a review of every genome-wide association (GWAS) 

paper published from January 2010 to December 2011 and included in the NHGRI GWAS 

Catalog, Wise (Wise, Gyi et al. 2013) found only 33% of the reported studies had included 

the X chromosome. This inattention is in part due to the need to use statistical methods 

specific for X-linked markers.  

Two popular study designs used in genetic association studies are the family-based 

and case-control study designs. In a family-based study, investigators collect genotype 

information from related individuals. A common family-based dataset, particularly in young-

onset diseases, consists of genotype information from a case and his/her mother and father (a 

case-parent triad). In a case-control study, investigators collect genotypes from unrelated 

cases and controls.  

Family-based studies provide some benefits over traditional case-control studies. 
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Family-based tests of linkage and association have the advantage of being robust to 

population structure, also known as stratification and admixture. Bias due to population 

stratification occurs when subpopulations exist with different minor allele frequencies and 

different baseline risks of disease. When studying a genetic marker in case-control studies, if 

population structure is present, an association between a disease and a marker can be 

spuriously detected in the absence of any causal association between the disease and the 

marker. As an example, consider a population with two subpopulations in which the first 

subpopulation has a higher prevalence of disease and a higher prevalence of the variant allele 

than the second population. Because cases are more likely to come from the first population 

and have the variant allele, it will appear that the variant allele is associated with the disease. 

However, if we instead have family data, then methods can use the non-transmitted alleles 

from parents to offspring as genetically-matched controls to the transmitted alleles, so that 

bias due to population is totally avoided.  

Another benefit to family-based studies over traditional case-control studies is the 

ability to study maternal effects. The maternal genotype can influence the intra-uterine 

environment both directly and through its role in modulating the metabolism and effects of 

toxic exposures. Therefore, in genetic studies it may be of interest to investigate maternal 

effects, especially effects on early-onset disease, such as the birth defect oral cleft. In case-

control studies, maternal effects are not directly study-able, and they confound results 

because the case’s genome and the mother’s are causally correlated. A researcher cannot 

distinguish if an observed association is due to the maternal genotype, the fetal genotype, or 

some combination of the two.  

In this document, we will discuss statistical methods for assessing association in the 
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possible presence of linkage for markers on the X chromosome. We will introduce methods 

that are applicable to case-parent triads. Under an assumption of “parental allelic 

exchangeability”, we will show that there is information in the parents of affected offspring 

that has not been used by previous methods. To detect the effect of fetal SNPs, we combine 

this parental information with transmission information in a new powerful method, the 

Parent-Informed likelihood ratio test for the X chromosome (PIX-LRT). In a second project 

and again under the assumption of “parental allelic exchangeability”, we demonstrate how 

one can test for maternal SNP effects on the X chromosome in case-parent triad data. 

Previously, using triads alone, no method has been developed without an assumption of 

Hardy-Weinberg equilibrium (HWE) to test maternal effects on the X chromosome. Lastly, 

we use the information in the parents to improve upon methods that test for X haplotypes. 

Our methods will be applied to a dataset consisting of over 2000 triads in which the affected 

offspring have an oral cleft.  

1.2 Literature Review 

 
 This chapter presents a review of the literature pertaining to analyzing the X 

chromosome in family data. Some background is given on methods for analyzing autosomal 

SNP markers in family-based studies, as they are basis for many of the X-chromosome 

extensions. We include a review of X-chromosome inactivation, a phenomenon that can 

influence how markers on the X chromosome are thought about and statistically modeled in 

an analysis. Additionally, we give background on the family-based study of oral cleft to 

which our methods will be applied.  

1.2.1 Genetic Background 

Each X chromosome, as with other chromosomes, consists of double-stranded DNA. 
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At each base pair position along each strand of the DNA, resides one of four nucleic acids: 

Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). These base pairs code for genetic 

information. A genetic marker is a single nucleotide or DNA sequence at a particular 

location. The different forms of the markers are referred to as alleles.  

A single nucleotide polymorphism is a form of genetic marker in which the single 

nucleotide at a base pair varies across individuals within the population. For instance, there 

may be a SNP where 20% of chromosomes in a population have Adenine at a given base 

pair, while the other 80% have Guanine. Adenine would then be considered the minor allele 

(or variant allele) in this population, with a minor allele frequency of 0.20. A particular 

ordered sequence of alleles that are located near each other on a chromosome and are 

inherited together as a linked string is referred to as a haplotype. 

If at a marker there are two possible variants, as mentioned in the SNP scenario 

above, the marker is di-allelic. For a di-allelic marker, denote the minor and major allele a 

and A, respectively. For autosomal (in the nuclear DNA but not on either sex chromosome) 

di-allelic markers, each individual carries two copies on their two chromosomes, one from 

their mother and one from their father, and individuals can be either homozygous (carrying 

two of the same alleles, AA or aa) or heterozygous (carrying the two different alleles, Aa). 

For the X chromosome, females are either homozygous or heterozygous; however, males 

carry only one allele (A or a) and are therefore hemizygous.  

One assumption in most family-based methods, such as the transmission 

disequilibrium test (the TDT, to be described), is that there is Mendelian (random) 

transmission of one of the two copies of the allele. That is, the two alleles a parent carries (or 

the mother carries in the case of the X chromosome) are equally likely to be transmitted to 
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the offspring. For the X chromosome, this means that if the mother is Aa and the father is A, 

their daughter is equally likely to be Aa or AA.  

Most family-based methods do not assume that a marker under study is in HWE, 

which would likely be violated in the presence of population admixture (incomplete mixing). 

HWE states that if p is the prevalence of allele A then the probabilities of genotypes aa, aA 

and AA are (1-p)2, 2p(1-p) and p2, respectively. Allelic frequencies in such a population will 

remain the same from generation to generation if there is random mating and no disturbing 

influences. By contrast, if there are distinct genetic subpopulations and members of a 

subpopulation do not mate at random but mate selectively favoring their own subpopulation 

then that marker will not be in HWE.     

Within a pair of chromosomes, during meiosis markers on one chromosome may be 

split up and recombined with markers on the other chromosome in a process called 

crossover; this is a recombination event. Markers that are proximally close on a chromosome 

are less likely to be split up (and more likely to be inherited together) than markers that are 

farther apart, which are less likely to be inherited together. Markers that are correlated 

because historically they have been inherited together more than at random are said to be in 

linkage. Most genome-wide association studies (GWAS) are based on markers that do not 

include any actual causative SNPs but may include nearby SNPs that are in linkage 

disequilibrium with an actual susceptibility SNP and consequently associated with the 

disease outcome. Many family-based studies test for association between a variant marker 

and a disease in the presence of possible linkage between the variant and the disease marker.  

Nevertheless linkage without association is hard to construct and more typical scenarios in 

nature would involve both linkage and association. 
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1.2.2 X-Chromosome Inactivation 

To equalize the effective gene dosage in XX females compared to XY males, a 

process called X-chromosome inactivation (XCI) takes place early in female embryonic 

development. In each somatic cell one X chromosome becomes transcriptionally inactive at 

random, forming what is called a Barr body (Barr and Bertram 1949, Lyon 2002). For the 

most part, the same X remains inactive through all future cell divisions of that lineage. Lyon 

(Lyon 2002) pointed out that when considering diseases influenced by X-linked genes, 

heterozygous females are mosaics, with two types of cells, having gene expression governed 

by only one or the other X chromosome. Some structures, such as intestinal crypts and 

thyroid nodules arise from a single cell (i.e. they are monoclonal), so that an individual crypt 

or nodule has all its cells with the same X active. Conversely, muscle fibers arise from 

multiple cells (i.e. they are polyclonal), so both kinds of cells are present in a single fiber. 

Because the fraction expressing a particular X can vary randomly across fibers, in 

heterozygotes with Duchenne muscular dystrophy (an X-linked disease) one sees gradations 

of effect among muscle fibers (Lyon 2002). 

Because X inactivation occurs early in embryologic development, when there are few 

cells available to undergo that binomial selection, some females may have skewed XCI, with 

more of one X expressed than the other X. This can make a heterozygous carrier of an X 

disease gene have gene expression (hence disease phenotype) that is similar to a homozygote.  

This phenomena has been studied with monozygotic twins in X-linked diseases such as 

Duchenne muscular dystrophy (Abbadi, Philippe et al. 1994) and red-green color vision 

deficiency (Jorgensen, Philip et al. 1992). Additionally, there are regions of the X that 

“escape” inactivation and are expressed on both the active and the (mostly) inactive X. Carrel 
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found that in a study of 94 genes spanning the X chromosome in 40 human samples, only 

about 65 percent of genes were subject to inactivation in all heterozygous samples, and 20 

percent were inactivated in some, but not all samples. Carrel also found that the majority of 

X-linked genes with Y homology (including pseudoautosomal genes) escape XCI, but that 

these regions did not explain all of the escaped genes (Carrel and Willard 2005).  

If exactly half of each of the two kinds of X are expressed, then the relative risk of the 

variant allele in males may be similar to the relative risk of homozygotes with two variant 

alleles in females. However, if a marker escapes X-inactivation and both of the two kinds of 

X are expressed, then the relative risk of the variant alleles in males may be similar to the 

relative risk of one variant allele in females. Because the specific inactivation profile is often 

unknown for a marker under study on the X chromosome, it may unwise for an analyst to 

impose a parametric relationship between the effects an allele has in males and the effects it 

has in females. Additionally, methods appropriate for the X chromosome may not be 

appropriate for markers on the X chromosome with Y homology, as males are able to have a 

double dose if an analog locus exists on the Y. 

1.2.3 Family Based X-Chromosome Extensions 

Most family-based methods available for X-chromosome analysis are extensions of 

autosomal methods. In this section we introduce these autosomal methods and their 

extensions. The TDT was introduced by Spielman, McGinnis and Ewen to detect autosomal 

SNPs associated with disease in case-parent family triads (Spielman, McGinnis et al. 1993). 

The TDT validly tests for association between a marker and a disease in the presence of 

possible linkage (that is, tests a null that there is either no linkage or no association with the 

disease) or can be considered a valid test of both linkage and association (that is, tests a null 
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that there is neither linkage nor association with the disease). The method is robust to 

population structure (Spielman and Ewens 1996). The TDT works by measuring the apparent 

transmission distortion between the two alleles from heterozygous parents to affected 

offspring. For a di-allelic locus with possible alleles A and a, let b be the number of times the 

a allele was transmitted (A was not transmitted) from a heterozygous parent and c be the 

number of times the a was not transmitted (A was transmitted).  Then the TDT test statistic 

is: 

𝜒𝑇𝐷𝑇
2 =

(𝑏 − 𝑐)2

𝑏 + 𝑐
 

This is “McNemar’s test” based on transmission-discordant pairs and under a null hypothesis 

of no linkage and no within-family association this statistic has a central chi-squared 

distribution with one degree of freedom.  

The TDT requires genotypic data from both parents; this is a particular drawback for 

diseases that occur later in life, when parental data may not be obtainable. Therefore, 

Spielman and Ewens developed the sibling TDT (S-TDT), which is appropriate when 

genotype data is available for affected and unaffected siblings. The S-TDT compares the 

observed number of a variant allele in affected siblings with the expected number under no 

linkage/association, conditional on the distribution of the allele in the sibships. The S-TDT 

and TDT can be combined into a single test statistic, “combined TDT” or C-TDT, when 

some families have genotyped parents and others have genotyped siblings but without 

parents (Spielman and Ewens 1998). Knapp introduced the reconstruction-combination TDT 

(RC-TDT) (Knapp 1999), which uses genotyped offspring to reconstruct missing parental 

genotypes and corrects for biases resulting from the reconstruction.   
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The APL method (association in the presence of linkage) was developed (Martin, 

Bass et al. 2003) for nuclear families that may have multiple affected offspring. APL 

estimates missing parent pairs by conditioning on offspring genotypes and an identity by 

descent (IBD) statistic (IBD refers to a segment of DNA that has the same ancestral origin in 

two individuals). To account for the difficulty in calculating the variance when different 

family structures are present, APL uses a bootstrap method. To handle general pedigrees, 

where nuclear families may be genetically related, and therefore cannot be considered 

independent, the pedigree disequilibrium test (PDT) was developed (Martin, Monks et al. 

2000). The PDT compares the number of variant alleles transmitted within a pedigree to the 

number not transmitted.   

FBAT (Family-Based Tests of Association) (Laird, Horvath et al. 2000) is a broad 

class of family based association tests that can use either dichotomous or measured 

phenotypes, nuclear families or sibships, and allows for additive, dominant or recessive 

models. FBAT defines a general class of test statistics as a function of offspring genotypes 

and phenotypes. The distribution of the test statistic is calculated by treating offspring 

genotypes as random and conditioning on the minimal sufficient statistics (Rabinowitz and 

Laird 2000). When parental genotypes are available, the traits and parental genotypes 

constitute the minimal sufficient statistic. 

The TDT, S-TDT and RC-TDT were extended to X-linked markers with the XTDT, 

XS-TDT and XRC-TDT (Horvath, Laird et al. 2000). These extensions account for the fact 

that only the mother can be heterozygous, as fathers have only one X chromosome. 

Additionally, for sons, genotype data from fathers is not useful (uninformative), as the father 

does not transmit an X to his son. For the XS-TDT, to account for the different number of 
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alleles in males and females and the difference in disease prevalence between the sexes, sib 

pairs are partitioned by sex.  

The APL method was extended to X-linked markers (X-APL) for nuclear families 

where more than one offspring may be affected (Chung, Morris et al. 2007). When parents 

are missing, to estimate parental genotypes, in addition to offspring genotypes and IBD, the 

sexes of the affected offspring are also conditioned on. X-APL also suggests running a sex 

stratified analysis to account for different SNP effects in males and females. PDT X-

chromosome extensions are the XPDT and the Monte Carlo PDT (XMCPDT) (Ding, Lin et 

al. 2006). Like the XS-TDT, the XPTD excludes sib pairs of different sexes, losing 

information. To account for missing parental genotypes XMCPDT uses allele frequency 

estimates to impute missing parental genotypes. A version of FBAT (Laird, Horvath et al. 

2000) can also be used for X chromosome analysis and generalizes the XTDT. One 

drawback to these methods is that while they provide tests for linkage/association, they do 

not provide relative risk estimates for the genotypes.  

For autosomal markers, Weinberg et al. proposed a likelihood-based log-linear 

multinomial modeling approach for nuclear families (Weinberg, Wilcox et al. 1998). The 

approach does not require Hardy-Weinberg equilibrium and offers robustness against bias 

due to population stratification. This Poisson regression model also allows for the estimation 

of disease relative risks under a co-dominant (two-degrees of freedom), a dominant, a 

recessive or a log additive effect (one-degree of freedom). For a di-allelic marker, let M, F, 

and C be the number of variant alleles carried by the mother, father, and child, respectively. 

Then 𝑀, 𝐹, and 𝐶 ∈ {0,1,2}. Under an assumption of mating symmetry (e.g. 𝑝(𝑀 = 0, 𝐹 =

1) = 𝑝(𝑀 = 1, 𝐹 = 0)), there are six potential mating types (unordered pairs of parental 
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genotypes). The log of the expected triad counts (E[nM,F,C]), based on a multinomial, can be 

modeled as 

ln{𝐸[𝑛𝑀,𝐹,𝐶]} = 𝜇𝑖 + 𝛽1𝐼𝐶=1 + 𝛽2𝐼𝐶=2 + ln(2) 𝐼𝑀=𝐹=𝐶=1 

Where 𝜇𝑖 serves to stratify families by mating type and ln(2) is an offset term needed because 

the frequency of  C=1 is doubled when M=F=1. 𝐼𝐾 is a dummy variable which equals 1 when 

expression K is true. Exponentiating the maximum likelihood estimates of the betas (𝑒𝛽̂) 

provides estimates of the relative risks. One appeal of this method is that the analysis can be 

run in standard statistical software with Poisson regression. Likelihood ratio tests (LRT) can 

be carried out to test the null of no linkage/association (𝛽1 = 𝛽2 = 0). The expectation-

maximization (EM) algorithm can be used to handle missing SNP genotypes (or individuals) 

(Weinberg 1999, Rampersaud, Morris et al. 2007). Another benefit of the log-linear model 

approach is that is allows for other types of effect estimates to be incorporated, such as 

maternal effects (discussed below). 

Zhang and colleagues recently developed the X-LRT, a log-linear likelihood ratio test 

of linkage/association for X-linked markers (Zhang, Martin et al. 2008). As in the model 

originally proposed (Weinberg, Wilcox et al. 1998), the X-LRT conditions on parental 

mating type (the ordered pair of parental genotypes) of which there are six. However, X-LRT 

allows the two sexes to have different genotype risks. Zhang et al. identify four relative risks, 

which are assumed to be the same across mating type category. Compared to males with the 

minor allele, the four relative risks are: 𝑅𝐴𝑌 for males with the major allele, 𝑅𝑎𝑎for females 

with two minor alleles, 𝑅𝐴𝑎for females with one minor allele and 𝑅𝐴𝐴for females with two 

major alleles. 

The X-LRT can test as a global null 𝐻0: 𝑅𝐴𝐴 = 𝑅𝐴𝑎 = 𝑅𝑎𝑎, 𝑅𝐴𝑌 = 1.  However, it can 
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also test for sex-specific effects, a female-specific null (𝐻0: 𝑅𝐴𝐴 = 𝑅𝐴𝑎 = 𝑅𝑎𝑎) and a male-

specific null (𝐻0: 𝑅𝐴𝑌 = 1). The LRT statistics based on these three tests are asymptotic chi-

squared with three, two and one degrees of freedom, respectively. While Zhang developed a 

package for the X-LRT, as with the log-linear model for autosomal markers, for complete 

triads this method can be run with widely available software.  

The X-LRT allows for genotyped unaffected siblings and the EM algorithm can be 

used to enable the likelihood to be maximized despite some missing parental genotypes. This 

method performs well compared to the X-chromosome transmission-based methods 

mentioned above, and allows for male and female offspring to have separate relative risks. 

We will show that despite stratifying on parental mating types, this method is subject to bias 

unless the data are further stratified by the sex of the offspring.  

The PIX-LRT method we develop in chapter 2 will provide robustness and also 

improve statistical power by making full use of parental genotype data. We do this by 

imposing a parental genetic exchangeability assumption for the X. We assume that in the 

source population, conditional on the three X chromosomes carried by the two parents, the 

one that happens to be carried by the father is a random choice among the 3. 

1.2.4 X-Chromosome Maternal Effects  

Maternal effects on the autosome have been identified in a number of childhood 

diseases, including childhood medulloblastoma (Lupo, Nousome et al. 2012), clubfoot 

(Weymouth, Blanton et al. 2011) and oral cleft (Jugessur, Shi et al. 2010). To date there are 

no methods available to test for maternal effects in case-parent triads on the X-chromosome 

without assuming HWE. In this section I will review robust methods that have been 

developed for family data for the autosomal chromosomes that do not assume HWE, and the 
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existing methods for the X-chromosome, which do assume HWE. 

In family-based studies, researchers are able to study potential maternal effects 

associated with a maternal genotype marker for families where the offspring has developed a 

disease condition. Mitchell (Mitchell 1997) noted that an advantage of the TDT over case-

control studies is that the TDT can potentially be used to differentiate between maternal and 

genotypic effects. She suggested applying the TDT in two stages to a triad family with 

maternal grandparents also genotyped. The TDT applied to the case-parent triad would 

measure the fetal genotypic effects. Then the TDT applied to the mother and her parents 

(now treating the mother as the case) would measure the maternally-mediated genotypic 

effect. Because the transmission of alleles from grandparents to parents and thence to 

offspring are independent events, the two TDT statistics are independent. One major 

drawback to this approach is that the grandparents must be genotyped. While conceptually 

appealing, this multi-generational family design may be very hard to implement, particularly 

for late-onset diseases. 

For autosomal markers, the log-linear approach developed by Weinberg et al. (above) 

can also assess the effects of disease markers that act through maternal effects while 

adjusting for fetal effects (Wilcox, Weinberg et al. 1998). The test for maternal effects is not 

as robust as that for fetal effects because one must assume genetic mating symmetry for the 

parents, which in effect permits the paternal genotype to serve as control for the maternal 

genotype. Using the notation above, and if α1is the ln relative risk for a maternal effect 

associated with the mother carrying a single copy of the variant allele, and α2 is the ln 

relative risk for a maternal effect associated with two copies of the variant allele (relative to 

no copies), then:   
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ln 𝐸[𝑛𝑀,𝐹,𝐶] = 𝜇𝑖 + 𝛽1𝐼𝐶=1 + 𝛽2𝐼𝐶=2 + α1𝐼𝑀=1 + α2𝐼𝑀=2 + ln(2) 𝐼𝑀=𝐹=𝐶=1 

Maximum likelihood estimates can be calculated for α1and α2, and exponentiating the 

estimates provide the estimated relative risks. The EM algorithm can be used to handle 

missing autosomal SNP genotypes (or individuals) (Weinberg 1999, Rampersaud, Morris et 

al. 2007). Unlike the method proposed by Mitchell, this method only requires case-parent 

triads and can account for missing data through use of the EM.  

 Sinsheimer, Palmer and Woodward introduced the maternal-fetal genotype test 

(MFG) to evaluate maternal-fetal incompatibility (Sinsheimer, Palmer et al. 2003). With 

certain diseases it may be of interest to study if the maternal genotype and the fetal genotype 

interact. For example, if the maternal-fetal genotype combination adversely affects the 

developing fetus (as can be the case with an Rh-negative mother pregnant with an Rh-

positive fetus). Sinsheimer et al. extended the log-linear model with maternal and fetal effect 

parameters, mentioned above, to include parameters for incompatibility, and found an 

apparent interactive effect for schizophrenia. 

 HAPLIN (Gjessing and Lie 2006) is a likelihood-based method for analyzing 

maternal and fetal haplotypes in case-parent triads. HAPLIN is not robust to population 

stratification because it assumes HWE and does not condition on parental mating type. 

“Single-dose” effects (effects of one copy of the haplotype) of maternal haplotypes are 

measured in the model (as described in section 1.2.5). HAPLIN was expanded to measure 

effects of X haplotypes, if inherited by the offspring (Jugessur, Skare et al. 2012) (as 

described in section 1.2.5). This extension allows HAPLIN be used in analyzing maternal 

effects on the X chromosome (Myking, Boyd et al. 2013).  
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1.2.5 X-Chromosome Haplotype Effects  

In autosomes, when studying haplotypes only the unphased genotypes (the genotype 

made up of the sum of the two haplotypes) are measured. For certain unphased genotypes it 

can be possible to reconstruct the haplotypes (for example if a person is homozygous at each 

SNP in the set then the two haplotypes are identical). However, this is typically not the case, 

so methods have been developed to handle phase ambiguity. Likelihood methods are 

commonly used for haplotype analysis. For example, Lin et al. provide a likelihood method 

(available in software HAPSTAT) to study haplotype-disease association in non-family 

based studies (cross-sectional, longitudinal, case-control and cohort) (Lin and Zeng 2005, Lin 

and Zeng 2006). For family-based studies, many methods have been developed to handle 

phase ambiguity. We introduce some of these methods here, and highlight those methods that 

have inspired X-chromosome extensions. 

Dudbridge developed a likelihood-based association analysis for nuclear families and 

unrelated controls which is implemented in the software UNPHASED (Dudbridge 2008). 

UNPHASED can be run on either binary or continuous traits. Here we focus on case-parent 

triad families with binary traits. For complete data (with phase known) the likelihood has two 

factors; (1) the probability of the case genotype conditional on parental genotypes and 

offspring trait and (2) probability of the parental genotypes conditional on having a child 

with the trait. For known phases, these probabilities can be solved directly. However, for 

phases unknown (or other missing data), UNPHASED identifies all possible completions 

(sets of phased haplotypes) that are compatible with the observed data. If F, M and C denote 

the possible phased haplotype pairs and F’, M’, C’ are either unphased or phased genotypes 

for fathers, mothers and cases, respectively, the possible completions are {f,m,c : Pr(F=f, 
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M=m, C=c | observed F’, M’, C’)>0}. The conditional probabilities are then calculated for 

the possible completions and included in the pseudo-complete-data likelihood. Individual 

haplotype effects, or an omnibus test of no haplotype effect can be tested. Dudbridge 

mentions possible coding schemes to reduce the number of parameters, such as assuming 

individual haplotypes are in HWE. 

Additional likelihood approaches include TRANSMIT and PCPH. TRANSMIT was 

introduced by Clayton and measures transmission/disequilibrium of haplotypes to cases by 

conditioning cases on their parents (Clayton 1999).  Clayton uses the likelihood to develop a 

score test of no haplotype effect. For incomplete data (phases unknown), the score vector is 

averaged over all possible parental haplotype configurations consistent with the observed 

data. PCPH, the projection conditional on parental haplotypes method is another likelihood 

method that was introduced by Allen and Satten (Allen and Satten 2007), which uses an 

estimating equation approach.  

To avoid the hypothetically very large number of parameters that need estimating, 

many methods assume HWE for the haplotypes under study. In family-based designs, for 

haplotype analysis, the number of potential parental mating pairs becomes increasingly large 

with the number of haplotypes. The APL method described in section1.2.3 was extended to 

haplotypes in (Chung, Hauser et al. 2006).  For haplotypes, APL assumes that there is no 

recombination between the markers within a family. Additionally, the EM is used to deal 

with phase ambiguity and account for missing genotypes. APL assumes HWE for haplotypes 

(though not for individual SNPs). For each of the n haplotypes, a test statistic Th is calculated 

(a measure of the transmission of a haplotype compared to the expected transmission). A 

global test statistic G (a function of the Th) is then calculated to measure an overall haplotype 
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effect. No relative risk estimates are calculated. 

Sinsheimer and colleagues introduced the gamete competition model as a likelihood 

extension of the TDT that uses full pedigree data and can be applied to multiple alleles 

(Sinsheimer, Blangero et al. 2000).  The model gives an estimate of the strength of 

transmission distortion to affected offspring for each for allele, which allows the alleles to be 

ranked. The method was extended to analyze haplotype data (Sinsheimer, McKenzie et al. 

2001). To account for missing phase information, HWE is assumed and a quasi-Newton 

optimization algorithm is used for maximum likelihood estimation. 

HAPLIN is a likelihood-based method that allows estimation of haplotype relative 

risks (Gjessing and Lie 2006). HAPLIN applies to case-parent triad data, but can also 

incorporate independent controls. HAPLIN assumes that haplotypes are in HWE. To restrict 

the number of parameters needed for all haplotype interactions, HAPLIN assumes a 

multiplicative model (the relative risk associated with any two haplotypes is the product of 

their individual risks). However, for each haplotype, there is a parameter to distinguish a 

double dose effect (the effect if a person has two copies of the same haplotype). The EM 

algorithm is used to maximize the likelihood when there are missing haplotypes. 

Methods also exist for the autosome that do not require phase estimation. An example 

is the TRIad Multi-Marker method (TRIMM), introduced by Shi and colleagues (Shi, 

Umbach et al. 2007). For each case, i, the complement with the non-transmitted haplotypes is 

created as Mi+Fi-Ci . That complement vector corresponds to the set of genotypes that case 

should have been just as likely to inherit (under the null) for that set of loci from the same 

parents. A difference vector, with length equal to the number of SNPs in the set, is then 

constructed as the case minus the complement, which is 2Ci -Mi-Fi. A vector of Z statistics is 
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calculated for each linked set of SNPs for all the families, based for each locus only on 

nonmissing and nonzero differences. The sign of each Z can be taken as nominating the allele 

that is showing evidence for an association with risk. An overall test statistic is the maximum 

Z score, max_Z2. A permutation-based p-value for max_Z2 is calculated by randomly 

assigning, within each family, case status to either the true case or their complement. To take 

advantage of the correlation that results from linkage between the haplotype SNPs, a 

Hotelling’s T2 statistic can also be calculated. Using permutations (again based on randomly 

assigned case/complement status), TRIMM combines the max_Z2 and Hotelling’s T2 into a 

combined statistic. 

For X-chromosome analysis, UNPHASED, X-APL, X-LRT and HAPLIN are the 

only haplotype methods that can specifically be applied to the X-chromosome. For X-

chromosome analysis, UNPHASED (Dudbridge 2008), to avoid the issue of how to model a 

genetic effect if male and female affected offspring are combined in an analysis, conducts a 

separate analysis on each sex. As for haplotypes, Chung (Chung, Morris et al. 2007) also 

suggests running X-APL on affected males and females separately. X-LRT, as mentioned in 

section 1.2.3 also has a haplotype extension. However, this extension is limited to two-

marker haplotypes. X-LRT tests all haplotypes simultaneously and assumes parental mating 

is random with respect to a haplotype, no recombination, and that haplotype penetrance is 

multiplicative for females. X-LRT for haplotypes also runs a separate analysis on males and 

females. For the X-chromosome, HAPLIN allows a range of X-chromosome models to be 

estimated depending on assumptions made about the allele effects in males compared to 

females (Jugessur, Skare et al. 2012). For example, under an X-inactivation assumption, one 

model constrains the relative risk in males with one copy of a haplotype to be the same as 
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that for females with two copies of the haplotype. In all but UNPHASED, the authors noted 

that on the X-chromosome, the phase of males is known, as they have only one X. They also 

noted that if both parental genotypes are available, the phase of a daughter’s haplotypes can 

also be identified, because one of her haplotypes must be the same as her father’s. None of 

these methods made use of the separate parental data based on how the haplotypes distribute 

across the parents of affected offspring. 

1.2.6 Oral Cleft Data 

 Oral cleft is a common birth defect. Multiple genetic and environmental risk factors 

are thought to underlie oral cleft (Dixon, Marazita et al. 2011). For example, maternal 

smoking is a recognized risk factor (Wyszynski, Duffy et al. 1997). The fact that the 

recurrence risk for children born after a sibling with cleft is more than 30 suggests that 

genetics plays an important role in susceptibility to this birth defect (Sivertsen, Wilcox et al. 

2008). The clefting phenotype is divided into two etiologically separate categories: cleft 

palate only (denoted CPO) and cleft lip with or without cleft palate (denoted CL/P). This 

phenotype split is based on genetic and embryological findings (Murray 2002). Oral cleft can 

occur with other abnormalities or as an isolated abnormality (“non-syndromic”). Within our 

research, we focus on non-syndromic oral cleft, however it is of interest to note that there are 

X-linked syndromes that feature cleft palate or cleft lip with or without palate. For example, 

mutations on the X-chromosome in the gene EFNB1 are responsible for the majority of cases 

of craniofrontonasal syndrome (CFNS) (Twigg, Kan et al. 2004, Wieland, Jakubiczka et al. 

2004), whose features can include cleft lip and palate, and mutations in the X chromosome 

gene TBX22 specifically cause cleft palate and ankyloglossia (tongue-tie) (Marcano, 

Doudney et al. 2004). 
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  We obtained access to data from the International Consortium to Identify Genes and 

Interactions Controlling Oral Clefts (see Appendix E for the dbGaP acknowledgement). The 

data were downloaded from the database of Genotypes and Phenotypes (dbGaP) (Mailman, 

Feolo et al. 2007) (Accession number: phs000094.v1.p1 (Beaty, Murray et al. 2010)). The 

data consists of 7089 study subjects, the majority of whom are members of a case-parent 

triad of either Caucasian or Asian ancestry. Cases had either non-syndromic cleft palate only, 

cleft lip only, or cleft lip with cleft palate. Subjects were genotyped for 592,532 SNPs 

(including SNPs on the X-chromosome), although not all of these SNPs passed quality 

inspection. Patel et al. (Patel, Beaty et al. 2013) analyzed 14,486 SNPs individually on the X-

chromosome with FBAT using complete triads. Haplotype analysis was run on regions of 

interest using UNPHASED. Their findings suggested four X-linked markers in the DMD 

gene were associated with CL/P. 

 We are using these data both to simulate case-parent triads in a genetically realistic 

way and to reanalyze the X chromosome data for SNPs related to clefting. We begin by 

looking for effects of fetal inherited variants, then consider maternal variants, and finally 

consider haplotypes in the fetus. 

1.3 Proposed Research 

 In Chapter 2, we develop a method for case-parent triads that incorporates parental 

information into X-chromosome analysis. We present a new method, the sex-stratified X-

chromosome likelihood ratio test (SSX-LRT), which is similar to the X-LRT but provides 

robustness by allowing distinct mating type parameters for male versus female affected 

offspring. For studies using case-parent triads, we show that additional improvement in 

detecting markers associated with a trait is possible by exploiting genotype information in the 
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parents not used in previous methods. We exploit the fact that mothers and fathers of affected 

offspring are differentially enriched for susceptibility markers in a way that depends on the 

sex of the affected offspring. We demonstrate that an assumption of parental allelic 

“exchangeability” enables the added information to be captured in a way that resists bias due 

to population stratification. Consequently, regardless of what alleles parents transmit to their 

affected offspring, additional information can be robustly gleaned from the parental X 

genotypes to supplement the transmission-based SSX-LRT, creating the more powerful 

“parent-informed X-chromosome likelihood ratio test” (PIX-LRT).   

 The method has the additional advantage that a kind of replication is provided that is 

internal to the study. This replication is achieved by comparing the results from the 

transmission-based analysis to results from the parent-based analysis. If triad data are 

complete, the two sets of findings are statistically independent; hence concordance between 

those results strengthens confidence in the inference. 

We initially describe the SSX-LRT and PIX-LRT for single X-linked SNP markers with 

complete genotype data. An extension of the approach then enables inclusion of families with 

missing individuals or sporadically missing SNP genotype data. We assess Type I error rates 

for SSX-LRT, PIX-LRT and X-LRT and compare power for the SSX-LRT, PIX-LRT and 

XTDT by calculating chi-squared noncentrality parameters based on expected counts 

(Agresti 2012). As an example, after using the data to test our parental exchangeability 

assumption, we apply the PIX-LRT to the oral cleft dataset (section 1.2.5) to analyze SNP 

markers on the X-chromosome. We conclude with a discussion of the advantages and 

limitations of PIX-LRT, and our SNP findings related to oral cleft. This work was published 

in Frontiers in Genetics and titled “Learning about the X from our parents” (Wise, Shi et al. 
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2015). 

 In Chapter 3, we extend PIX-LRT to assess possible maternal effects while 

controlling for fetal effects. Because PIX-LRT conditions on the sum of a mating pair (the 

number of variant alleles they carry collectively), the risk in offspring of mothers with no 

copies can be compared to offspring of mothers with one copy, and the risk in offspring of 

mothers with two copies can be compared to that in offspring of mothers with one copy. 

Therefore, under an assumption of parental allelic exchangeability, we are able to test for 

both fetal and maternal effects in the same model. The EM algorithm enables maximization 

of the likelihood despite the inclusion of some triads with missing genotypes. We will test for 

maternal effects using the oral cleft dataset.   

 In Chapter 4, we will incorporate parental information into haplotype analysis on the 

X chromosome. The X is unique in that, if complete case-parents triad genotype data is 

present, all haplotype phases can be determined. Therefore, for complete data the k-

haplotype problem can be considered an extension of the two-allele problem addressed in 

Chapter 2 to a k-allele problem. Our approach considers each haplotype in turn, testing it 

against the aggregate of all others, which produces k p-values, each based on PIX-LRT run 

on the dichotomized haplotypes. We evaluate that set of p-values by means of an efficient 

permutation procedure, which works as follows. For each family we reform the parents 

(imposing exchangeability) and generate at random an offspring genotype of the same sex. 

PIX-LRT could then be run on the dichotomized haplotypes reducing the problem to a two-

allele problem.
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CHAPTER 2: PIX-LRT: A PARENT-INFORMED TEST FOR SNPs ON THE X 

CHROMOSOME USING CASE-PARENT TRIADS 

 
 

We present a new method to study association in case-parent triads: the parent-

informed likelihood ratio test for the X chromosome (PIX-LRT). Our method provides 

estimation of relative risks and takes advantage of parental genotype information and the sex 

of the affected offspring to increase statistical power to detect an effect. We apply PIX-LRT 

to publically available data from an international consortium of genotyped families affected 

by the birth defect oral cleft and find a strong, internally-replicated signal for a SNP marker 

related to cleft lip with or without cleft palate. The following chapter was published in 

Frontiers in Genetics in the article titled “Learning about the X from our parents” (Wise, Shi 

et al. 2015). 

2.1 Introduction  

The X chromosome is unique in that males have only one, maternally-derived copy, 

while females are diploid. As a form of dosage compensation, a random X is inactivated in 

each cell early in female embryonic development (Lyon 2002). Regions on the X 

chromosome have been identified in association with several diseases, including Parkinson’s 

disease (Nemeth, Nolte et al. 1999, Scott, Nance et al. 2001, Pankratz, Nichols et al. 2003) 

and autism (Shao, Wolpert et al. 2002, Vincent, Melmer et al. 2005, Piton, Gauthier et al. 

2011). However, the X lags behind its autosomal counterparts in association and linkage 

findings, in part due to the need to use methods specific for X-linked markers (Wise, Gyi et 
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al. 2013). 

 Most family-based methods available for X chromosome analysis are extensions of 

autosomal methods. The original transmission/disequilibrium test (TDT) was proposed to 

detect autosomal SNPs associated with disease in case-parent triads (Spielman, McGinnis et 

al. 1993). For studies that also include unaffected siblings and may or may not include 

parental genotyping, we have the sibling TDT (S-TDT) (Spielman and Ewens 1998) and the 

reconstruction-combination TDT (RC-TDT) (Knapp 1999). These family-based methods 

were extended to X-linked markers with the XTDT, XS-TDT and XRC-TDT (Horvath, Laird 

et al. 2000). A number of extensions have been developed to accommodate larger families 

(Ding, Lin et al. 2006, Chung, Morris et al. 2007). A version of FBAT (Laird, Horvath et al. 

2000) can also be used for the X chromosome and generalizes the XTDT. These methods 

provide p-values to test for association, but they do not enable estimation of disease-related 

marker relative risks. The method we will propose is for case-parent triads, but 

accommodates triads with a missing individual. 

 Likelihood-based log-linear multinomial modeling approaches for nuclear families 

can use the EM algorithm to handle missing autosomal SNP genotypes (or individuals), and 

provide both robustness against bias due to population stratification and the opportunity to 

estimate disease-related marker relative risks (Weinberg, Wilcox et al. 1998, Rampersaud, 

Morris et al. 2007). HAPLIN is a likelihood-based method that is able to estimate relative 

risks for single SNPs and haplotypes on the autosomes and X chromosome (Gjessing and Lie 

2006, Jugessur, Skare et al. 2012).  However, as we are interested in methods that do not 

assume Hardy-Weinberg equilibrium (HWE), which HAPLIN requires, we will not discuss 

the method further.  
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 The X-LRT, a log-linear likelihood ratio test of association for X-linked markers that 

does not assume HWE, was recently developed (Zhang, Martin et al. 2008). This method 

performs well compared to transmission-based methods, and allows male and female 

offspring to have separate relative risks. The X-LRT conditions on parental mating type (the 

pair of parental genotypes), which we will show can cause bias because families with female 

and male affected offspring are forced to share the same mating type parameters. We present 

a new method, the sex-stratified X chromosome likelihood ratio test (SSX-LRT), which 

prevents that bias by allowing distinct mating type parameters for male versus female 

affected offspring. 

We show that additional improvement is possible by exploiting genotype information 

in the parents not used in previous methods. Mothers and fathers of affected offspring are 

differentially enriched for susceptibility markers depending on the sex of the affected 

offspring. We demonstrate that an assumption of parental allelic “exchangeability” enables 

the added information to be captured in a way that resists bias due to population 

stratification. Consequently, regardless of what alleles parents transmit to their affected 

offspring, additional information can be robustly gleaned from the parental X genotypes to 

supplement the transmission-based SSX-LRT, creating the “parent-informed X chromosome 

likelihood ratio test” (PIX-LRT).     

 In the following sections, we initially describe the SSX-LRT and PIX-LRT for single 

X-linked SNP markers with complete genotype data. An extension of the approach then 

enables inclusion of families with missing genotype data. We assess Type I error rates for 

SSX-LRT, PIX-LRT and X-LRT and compare power for the SSX-LRT, PIX-LRT and 

XTDT by calculating chi-squared noncentrality parameters based on expected counts 
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(Agresti 2012). As an example, we apply the PIX-LRT to family data from an oral cleft 

dataset to analyze SNP markers on the X chromosome. We conclude with a discussion of the 

advantages and limitations of PIX-LRT, and our SNP findings for cleft lip.  

2.2 Subjects and Methods 

2.2.1 Case-Parent Design and Assumptions 

 Consider a sample of case-parent triads who have all been genotyped at a di-allelic X 

locus. Let M, F, and C denote the number of copies of the variant (minor) allele in the 

mother, father and affected offspring (proband), respectively. We exclude regions on the X 

that correspond to a homologous region on Y, including the pseudo-autosomal regions and 

the X-transposed region  (PARs, XTR). Then, 𝑀 ∈ {0,1,2}, 𝐹 ∈ {0,1}, 𝐶 ∈ {0,1} for male 

offspring, and 𝐶 ∈ {0,1,2} for female offspring. Consider tests of the null hypothesis that 

there is no association or no linkage against the alternative of association in the presence of 

linkage. Assume there is Mendelian transmission at that locus in the source population. 

Further assume parental allelic exchangeability in the source population, as in (Shi, Umbach 

et al. 2008); that is, within a mating pair, the variant alleles are randomly located across the 

three X chromosomes (see Table 2.1). This assumption, which is met under nonassortative 

mating within subpopulations at that locus, can be tested within the source population using 

the following model for the parental genotype count:  

ln(𝐸[𝑁𝑀,𝐹|𝑀 + 𝐹]) 

          = log(𝜇𝑀+𝐹) + 𝛼1𝐼(𝑀=1,𝐹=0) + 𝛼2𝐼(𝑀=1,𝐹=1) + log(2) 𝐼(𝑀=1)            (2.1)                                     

Here E denotes expected value and 𝑁𝑀,𝐹 is the random multinomial count variable denoting 

the number of triads where the mother and father carry M and F copies of the variant allele, 

respectively. 𝜇𝑀+𝐹 are nuisance parameters that stratify families by conditioning on the sum 

of parental genotypes and log(2) is an offset term required because there are two ways for M 
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to equal 1 (the variant allele can be on either chromosome). The parameters α1 and α2 are the 

log of half the odds that the mother carries 1 copy of the variant when the parents together 

have 1 and 2 copies, respectively. See Table 1. We can calculate a likelihood ratio test 

statistic for 𝛼1 = 𝛼2 = 0, which under exchangeability is distributed as a central chi-squared 

with two degrees-of-freedom (see Appendix A for closed-form solutions). Note that parental 

allelic exchangeability is much less restrictive than assuming Hardy-Weinberg equilibrium 

(HWE) because it must hold only within unknown genetic subpopulations. Lastly, as is 

generally required for family studies we assume that variants are not determinants of fetal 

survival or parental ability to reproduce. 

Table 2.1: Probabilities of mating pairs conditional on mating sum when parental allelic 

exchangeability is present (exch), and when it is not (no exch). 

 

 

2.2.2 Modification of the X-LRT to Achieve Robustness 

The X-LRT (Zhang, Martin et al. 2008) provides a powerful likelihood ratio test for 

triad data with affected sons and daughters and also allows one to estimate disease-related 

marker relative risks. A multinomial likelihood is expressed in terms of offspring genotype 

relative risks. X-LRT conditions on the parental mating type by including mating type 

parameters, but forces those parameters to be the same for families with affected male and 

female offspring. That approach can consequently be biased (shown in results) when 

M+F M F Pr(M,F|M+F, exch) Pr(M,F|M+F, no exch) 

0 0 0 1 1 

     

1 1 0 2/3 2exp(𝛼1)/(1 + 2exp(𝛼1))  

 0 1 1/3 1/(1 + 2exp(𝛼1))  

     

2  2 0 1/3 1/(1 + 2exp(𝛼2))  

 1 1 2/3 2exp(𝛼2)/(1 + 2exp(𝛼2))  

     

3 2 1 1 1 
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subpopulations have different minor allele frequencies and disease risks in males versus 

females (noncarriers) differ among subpopulations. This bias can also occur when 

recruitment rates for families with male versus female affected offspring differ across 

subpopulations with different minor allele frequencies. To remove this bias we stratify by 

both the parental mating type and the sex of the affected offspring (see Table 2.2). Let aff 

denote the event that the offspring is affected and define the relative risks, within parental 

mating type, as follows: 

𝑒𝛽1 = 𝑅𝐺1 = Pr(aff|girl, 𝐶 = 1)/ Pr(aff|girl, 𝐶 = 0)                                      

𝑒𝛽2 = 𝑅𝐺2 = 𝑅𝐺1 Pr(aff|girl, 𝐶 = 2)/ Pr(aff|girl, 𝐶 = 1)                             

𝑒𝛽3 = 𝑅𝐵 = Pr(aff|boy, 𝐶 = 1)/ Pr(aff|boy, 𝐶 = 0)                                       

The analysis follows a multinomial for the counts based on both triad genotypes and sex (g 

for girl and b for boy) of the affected offspring (𝑁𝑀,𝐹,𝐶,𝑠𝑒𝑥), modeled in a log-linear form, 

multiplying the sex-specific expected counts for each parental genotype pair by the 

probabilities shown in Table 2.2, as follows:: 

ln(𝐸[𝑁𝑀,𝐹,𝐶,𝑠𝑒𝑥]) 

          = log(𝛾𝑀,𝐹,𝑠𝑒𝑥) + 𝛽1𝐼(𝐶=1,𝑠𝑒𝑥=𝑔) + 𝛽2𝐼(𝐶=2,𝑠𝑒𝑥=𝑔) + 𝛽3𝐼(𝐶=1,𝑠𝑒𝑥=𝑏)      (2.2)                                     

Here 𝛾𝑀,𝐹,𝑠𝑒𝑥 are 12 nuisance parameters that serve to confer robustness against population 

stratification by stratifying families by both mating type and sex of affected offspring. 

Exponentiating the 𝛽’s produces the relative risk estimates (e.g. 𝑒𝛽̂1 = 𝑅̂𝐺1). Inclusion of 

three unconstrained relative risk parameters allows one to avoid imposing an arbitrary 

relationship between the relative risks in boys and girls. We therefore refer to this method as 

the sex-stratified X-LRT (SSX-LRT). The corresponding log-likelihood for each sex (using 

the lower case “n” to denote observed counts of the variable N) is proportional to: 
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          ∑ 𝑛𝑀,𝐹,𝐶,sex log(Pr(𝑀, 𝐹, 𝐶|aff, sex))𝑀,𝐹,𝐶                                           (2.3) 

Expression 2.3 can be rewritten as: 

           ∑ 𝑛𝑀,𝐹,𝐶,𝑠𝑒𝑥 log(Pr(𝐶|𝑀, 𝐹, aff, sex) ∗ Pr(𝑀, 𝐹|aff, sex))𝑀,𝐹,𝐶                (2.4)  

Table 2.2: For affected sons and daughters, case-parent genotype probabilities using 

transmission information. 

   Affected Son  Affected Daughter 

M F  C Pr(C|M,F,b) 𝐸(𝑁𝑀,𝐹,𝑏)  C Pr(C|M,F,g) 𝐸(𝑁𝑀,𝐹,𝑔) 

0 0  0 1 𝛾00𝑏  0 1 𝛾00𝑔 

          

0 1  0 1 𝛾01𝑏  0 1 𝛾01𝑔 

          

1 0  0 1/(1+𝑅𝐵) 𝛾10𝑏  0 1/(1+𝑅𝐺1) 𝛾10𝑔 

   1 𝑅𝐵/(1+𝑅𝐵)   1 𝑅𝐺1/(1+𝑅𝐺1)  

          

1 1  0 1/(1+𝑅𝐵) 𝛾11𝑏  1 𝑅𝐺1/(𝑅𝐺1+𝑅𝐺2) 𝛾11𝑔 

   1 𝑅𝐵/(1+𝑅𝐵)   2 𝑅𝐺2/(𝑅𝐺1+𝑅𝐺2)  

          

2 0  1 1 𝛾20𝑏  1 1 𝛾20𝑔 

          

2 1  1 1 𝛾21𝑏  2 1 𝛾21𝑔 

 

With complete data, the nuisance parameters do not need to be explicitly estimated 

when calculating the maximum likelihood estimates for the relative risks and the likelihood 

ratio test statistic. Closed form solutions to the maximum likelihood equations for the relative 

risks and the corresponding likelihood ratio test statistic under specified genetic models of 

inheritance are given in Appendix B. Note that triads with affected sons do not need 

genotyped fathers for the SSX-LRT. 

When some genotype information is missing, we use the Expectation-Maximization 

(EM) algorithm as described in (Weinberg 1999). For the EM, the mating type parameters 

are needed to calculate the maximum likelihood estimators of the relative risks and the 

likelihood ratio test statistic. If two subpopulations have different minor allele frequencies 

and also different degrees of missingness, the missingness can be informative and use of the 
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EM can induce bias in the estimate. To avoid this bias, if the subpopulations are identifiable 

(e.g. the analyst can stratify on ancestry) the EM can be run on a likelihood that allows 

different mating type parameters for each.  

To form a test based on both families of affected sons and families of affected 

daughters, we recommend forming a combined test statistic. Let XB and XG be the one degree-

of-freedom LRT chi-squared statistics based on families with affected sons and daughters, 

respectively, where XG is based on the coding: 𝑅𝐺1
2 = 𝑅𝐺2. Under the null the sum of the two 

(independent) test statistics has a chi-squared distribution with two degrees-of-freedom. 

However, rather than just computing the sum we note that the most plausible 

departures from the null would involve scenarios where the boys and girls experience the 

same direction of effect, that is, the variant either increases risk for both or decreases risk for 

both. (In fact, because the two test statistics are statistically independent, one could regard 

families with affected daughters as a replication sample for findings based on families with 

affected sons.) Accordingly, the following construction exploits that directional agreement to 

enhance power (see (Zaykin 2011)) for a combined test. Take the square root of each chi-

squared statistic and attach to that square root the sign corresponding to the direction of the 

estimated effect, SB and SG (“+1” for relative risk >1 and “-1” for relative risk <1). Under the 

combined null hypothesis the results will be two independent standard Gaussian statistics. 

Let NB and NG be the number of triads with a heterozygous mother and an affected son or 

daughter, respectively. The weighted combined Z statistic is constructed as follows: 

                                       𝑍𝐶 =  
𝑆𝐵√𝑁𝐵𝑋𝐵 + 𝑆𝐺√𝑁𝐺𝑋𝐺

√𝑁𝐵 + 𝑁𝐺

 ~ 𝑁(0,1)                                        (2.5) 

𝑍𝐶
2 follows a central chi-squared distribution with one degree of freedom under the null and a 

noncentral chi-squared under alternatives, where the noncentrality parameter is: 
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[𝐸 {
𝑆𝐵√𝑁𝐵𝑋𝐵 + 𝑆𝐺√𝑁𝐺𝑋𝐺

√𝑁𝐵 + 𝑁𝐺

}]

2

 

Intuitively, if the number of informative families with an affected son is markedly different 

from the number with an affected daughter, this weighting scheme will favor the larger test 

statistic and sample size. 

 We focus on a sex-stratified analysis, but one could alternatively impose a 

relationship between 𝑅𝐵 and 𝑅𝐺1, 𝑅𝐺2. Such a model can be fitted by use of widely available 

software (e.g. glm in (R Development Core Team 2013)) to maximize the multinomial 

likelihood and to estimate parameters. For example, under a simple model based on X-

inactivation, one could argue for a two degree-of-freedom test with: 

𝐻0: 𝑅𝐺1 = 𝑅𝐺2 = 𝑅𝐵 = 1    (𝛽1 = 𝛽2 = 𝛽3 = 0 ) 

𝐻𝑎: 𝑅𝐺2 = 𝑅𝐵 ≠ 1 or 𝑅𝐺1 ≠ 1   (𝛽2 = 𝛽3 ≠ 0 or 𝛽1 ≠ 0)  

If we additionally assume a log-additive model in girls, we would have a one degree-of-

freedom test with:  

𝐻𝑎: 𝑅𝐺1
2 = 𝑅𝐺2 = 𝑅𝐵 ≠ 1   (2𝛽1 = 𝛽2 = 𝛽3 ≠ 0)  

The log-linear form of the model would be: 

   ln(𝐸[𝑛𝑀,𝐹,𝐶,𝑠𝑒𝑥]) = log (𝛾𝑀,𝐹,𝑠𝑒𝑥) + 𝛽1𝐶[𝐼(𝑠𝑒𝑥=𝑔) + 2𝐼(𝑠𝑒𝑥=𝑏)] 

Similar analyses that either simplify the parameterizations or are aimed at testing X-

inactivation relationships (where 𝑅𝐺2 = 𝑅𝐵  is the null hypothesis to be tested) can also 

be carried out in the context of the PIX-LRT method to be described. 

2.2.3 PIX-LRT Statistic  

The likelihood we will maximize is based on two separate factors, one that models 

transmissions conditional jointly on both the sex of the affected offspring and the parental 
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genotypes (cf. the stratum parameters in Table 2.2), i.e. M, F (as described above for SSX-

LRT), and another that models M, F conditional on M+F and the sex of the affected 

offspring (cf. Table 2.1). The second, parental-information component is statistically 

independent of the transmission-based component, allowing parental data to provide a kind 

of internal replication. That parental piece has not been explicitly exploited by other 

methods.  

The transmission-based part of the information is very much like that captured by the 

SSX-LRT just described in Section 2.2.2, through maximizing expression (2.4) above. But 

PIX-LRT will augment that by capturing information from the parents, rather than 

conditioning away that information (cf. the 12 stratification parameters included in Table 

2.2), by instead conditioning more coarsely on the total number of copies of the variant 

carried by the two parents. 

We begin with some intuition to clarify why there is information in how a fixed 

number of variant alleles (M+F) is distributed across the two parents. Under the null 

hypothesis, for a SNP on the X chromosome, one would expect neither the mother’s two 

chromosomes nor the father’s single chromosome to be enriched for either allele. However, 

suppose the variant is linked to risk of the disease. Because the mother of an affected son was 

the source of his only X, the mothers of affected sons should be enriched for that variant as 

compared to the fathers. Because a father of an affected daughter transmitted his only X to 

his daughter, whereas the mother could transmit either one of her two X’s to her daughter, 

the fathers of affected daughters should be enriched compared to the mothers. These resulting 

opposing patterns of enrichment within the parents can be exploited by conditioning on the 

sex of the affected offspring and the number of variant alleles the parents carry (M+F), 
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taking advantage of our parental exchangeability assumption.   

Specifically, one can augment the earlier analysis by incorporating the following log 

likelihood to capture the parent-only information: 

    ∑ 𝑛𝑀,𝐹,𝑠𝑒𝑥 log(Pr(𝑀, 𝐹|𝑀 + 𝐹, aff, sex) ∗ Pr(𝑀 + 𝐹|aff, sex))                 (2.6)

𝑀,𝐹

  

The probabilities used in expression 2.6 are given in Table 2.3. For complete data, closed 

form maximum likelihood estimates of the relative risk and a likelihood ratio test statistic 

could be obtained from this method using only parents (see Appendix C). The EM can be 

used when genotype data is missing. 

Table 2.3: Relative risks and mating type probabilities associated with parental sum 

given affected offspring. 

 Affected Sons Affected Daughters 

M+F M F Null Prob Pr(M,F| M+F) Pr(M,F|M+F) 

0 0 0 1 1 1 

      

1 1 0 2/3 (1+𝑅𝐵)/(2+𝑅𝐵) (1+𝑅𝐺1)/(1+2𝑅𝐺1) 

 0 1 1/3 1/(2+ 𝑅𝐵) 𝑅𝐺1/(1+2𝑅𝐺1) 

      

2  2 0 1/3 𝑅𝐵/(1+2𝑅𝐵) 𝑅𝐺1/(2𝑅𝐺1+ 𝑅𝐺1) 

 1 1 2/3 (1+ 𝑅𝐵)/(1+2𝑅𝐵) (𝑅𝐺1+𝑅𝐺2)/(2𝑅𝐺1+ 𝑅𝐺2) 

      

3 2 1 1 1 1 

 

The combined likelihood that now includes both the parental data and the 

transmission data can be written as a multinomial (see Table 2.4) and modeled in a log-linear 

form as follows: 

ln(𝐸[𝑁𝑀,𝐹,𝐶,𝑠𝑒𝑥|𝑀 + 𝐹]) 

          = log(𝜇𝑀+𝐹,𝑠𝑒𝑥) + 𝛽1𝐼(𝐶=1,𝑠𝑒𝑥=𝑔) + 𝛽2𝐼(𝐶=2,𝑠𝑒𝑥=𝑔) + 𝛽3𝐼(𝐶=1,𝑠𝑒𝑥=𝑏)      (2.7)                                     
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As before, inclusion of three unconstrained relative risk parameters allows one to avoid 

imposing an arbitrary relationship on the relative risks in boys and in girls. The 

corresponding likelihood for each sex is then proportional to: 

∑ 𝑛𝑀,𝐹,𝐶,𝑠𝑒𝑥 log(Pr(𝑀, 𝐹, 𝐶|𝑀 + 𝐹, aff, sex) ∗ Pr(𝑀 + 𝐹|aff, sex))

𝑀,𝐹,𝐶

                (2.8) 

 

Table 2.4: For affected sons and daughters, case-parents genotype probabilities using 

parental sum information. 

    Affected Sons  Affected Daughters 

M+

F 
M F 

 
C Pr(M,F,C|M+F) 𝐸(𝑁𝑀+𝐹) 

 
C Pr(M,F,C|M+F) 𝐸(𝑁𝑀+𝐹) 

0 0 0  0 1 𝜇0𝑏  0 1 𝜇0𝑔 

           

1 0 1  0 1/(2+𝑅𝐵) 𝜇1𝑏  1 𝑅𝐺1/(1+2𝑅𝐺1) 𝜇1𝑔 

 1 0  0 1/(2+𝑅𝐵)   1 𝑅𝐺1/(1+2𝑅𝐺1)  

 1 0  1 𝑅𝐵/(2+𝑅𝐵)   0 1/(1+2𝑅𝐺1)  

           

2 1 1  0 1/(1+2𝑅𝐵) 𝜇2𝑏  2 𝑅𝐺2/(2𝑅𝐺1+𝑅𝐺2) 𝜇2𝑔 

 1 1  1 𝑅𝐵/(1+2𝑅𝐵)   1 𝑅𝐺1/(2𝑅𝐺1+𝑅𝐺2)  

 2 0  1 𝑅𝐵/(1+2𝑅𝐵)   1 𝑅𝐺1/(2𝑅𝐺1+𝑅𝐺2)  

           

3 2 1  1 1 𝜇3𝑏  2 1 𝜇3𝑔 

 

For complete data, closed-form solutions to the maximum likelihood equations for the 

relative risks and the corresponding likelihood ratio test statistic are given in Appendix D. 

The number of informative families is greater for PIX-LRT than SSX-LRT; families where 

M=0, F=1 and M=2, F=0 are informative for PIX-LRT but not for SSX-LRT. The partial 

information can be used for all triads where at least one member has genotype data. A 

combined score can be calculated for PIX-LRT as was described for SSX-LRT. However NB 

and NG are now the number of informative families, that is, families for which M+F cannot 

be inferred to be 0 or 3 with an affected son or daughter. This method is available as an R 
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package at 

http://www.niehs.nih.gov/research/resources/software/biostatistics/pixlrt/index.cfm.  

2.2.4 Type I Error Rate and Power Calculations 

The Type I error rate and the power are assessed by calculating the non-centrality 

parameter (NCP) for the distribution of a chi-squared likelihood ratio test statistic. Under the 

null hypothesis, the LRT statistic follows a central chi-squared distribution, which has an 

NCP of 0. The NCP is calculated by treating expected triad counts under the specified 

population structure as data used to fit the relevant models (O’Brien 1986, Agresti 2012). 

Values of noncentrality parameters can be translated to power values using the noncentral 

chi-squared distribution with the appropriate degrees of freedom.  

To assess performance when there is admixture present in the population, we 

calculated the NCP for PIX-LRT, SSX-LRT, XTDT and X-LRT. Consider two scenarios, 

each with two subpopulations of equal size, with no effect of the variant allele in either sex. 

In the first scenario, one subpopulation has a minor allele frequency of 0.3, a disease risk of 

0.02 in males, and 0.02 in females. The second subpopulation has a minor allele frequency of 

0.2, a risk of 0.01 in males, and of 0.02 in females. A second scenario is similar except in the 

first subpopulation the disease risk is 0.03 in females and the second subpopulation has a 

disease risk of 0.02 in males. For computational convenience we assume HWE within each 

subpopulation. The expected counts were calculated for 1000 families with affected 

offspring. Non-centrality parameters were estimated for tests of (1) H0: no effect in males or 

females; (2) H0m: no effect in males; (3) H0f: no effect in females. 

 We compare PIX-LRT to X-LRT for a scenario where both are valid. We consider a 

setting in which there are 1000 triads, 𝑅𝐵is 1.5, and 𝑅𝐺1
2 = 𝑅𝐺2 = 2. In the non-carriers, the 
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disease risk in boys is twice that in girls. We calculate power (based on noncentrality 

parameters) as a function of minor allele frequencies. We choose an alpha level of 5x10-6 as 

this approximates the alpha 0.05 Bonferroni-corrected value needed for the X chromosome. 

We modify X-LRT to account for a log-additive dose effect in girls. Therefore, the X-LRT 

test for a fetal effect involves two degrees-of-freedom. 

 We also compare power of the PIX-LRT to the SSX-LRT and the XTDT, under a 

homogeneous population, for computational simplicity. To calculate the NCP for the XTDT 

we use the method proposed by Deng (Deng and Chen 2001). We do not include the other X 

chromosome extensions, as only complete triads are considered with no additional siblings or 

extended pedigrees.  

 For our power analysis we consider settings in which sex-specific tests are of interest 

to highlight similarities and differences between the two sexes. We consider the following 

500-triad scenarios: affected male offspring and a minor allele frequency of either 0.3 or 0.1; 

affected female offspring, 𝑅𝐺1
2 = 𝑅𝐺2, and a minor allele frequency of either 0.3 or 0.1. We 

plot the noncentrality parameters as a function of the relative risk (RG1 for girls), and include 

the corresponding power for a one-degree-of-freedom LRT at alpha level 5x10-6.   

 To study the EM algorithm in PIX-LRT and SSX-LRT, we use the same scenarios 

and set RB to 2, and RG1 to 2. We plot the noncentrality parameter (and the power at alpha 

level 5x10-6) as a function of the proportion of missing fathers, missing mothers, or a 

combination. For the combination scenarios, only one parent is missing, and twice as many 

fathers as mothers are assumed missing.  

2.2.5 Oral Cleft Data 

 We applied PIX-LRT with the EM to the X chromosome data from the International 
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Consortium to Identify Genes and Interactions Controlling Oral Clefts. The data were 

downloaded from dbGaP (Mailman, Feolo et al. 2007) (Accession number: phs000094.v1.p1 

(Beaty, Murray et al. 2010)). The data were previously analyzed by Patel et al. (Patel, Beaty 

et al. 2013) using FBAT (Laird, Horvath et al. 2000). Patel et al. (Patel, Beaty et al. 2013) 

used only complete triads and included all ethnicities in their joint analysis, whereas we 

included partial triads but only Asian (including Pacific Islanders) and Caucasian ethnicities. 

We analyzed 13283 SNPs on the X chromosome that had a minor allele frequency in the 

parents greater than 0.02, and had a unique mapping from the Illumina Human610-Quad v1.0 

Build 36 to Build 37. For a family-wise alpha of 0.05 with a Bonferroni correction, the cutoff 

for the p-value is 3.74x10-6.  

We included all triads for which we have genotype data from the case, and the parents 

are not of differing ethnicity. 13% of the Asian triads and 21% of the Caucasian triads were 

incomplete. If multiple affected siblings were present, we randomly chose one sibling (27 

siblings removed). We analyzed 1105 European families and 1286 Asian families. The 

clefting phenotype is divided into two categories: one is cleft palate only (denoted CPO) and 

the other is cleft lip with or without cleft palate (denoted CL/P). This phenotype split is based 

on genetic and embryological findings suggesting they are distinct (Murray 2002). The 

gender and cleft subtype breakdown is shown in Table 2.5. Note that CL/P predominantly 

affects boys while CPO is slightly more common in girls. 

Table 2.5: Case-parent families by cleft type, gender and ancestry  
 European Asian Total 

 Male Female Male Female Male Female 

Cleft Type       

  CL/P 539 296 675 353 1214 649 

  CPO 132 138 103 155 235 293 

Total by gender 671 434 778 508 1449 942 

Total 1105  1286  2391  

   CL/P is cleft lip with or without palate, CPO is cleft palate only 
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We first test to see if any SNPs violate parental allelic exchangeability with Equation 

2.1, using all pairs of parents. We use a QQ plot of –log10(p-value) to look for violations in 

exchangeability. This allows an overall assessment of exchangeability, but we recognize that 

SNPs that are truly associated with oral cleft may tend to violate exchangeability.  

We run PIX-LRT with the EM on Asian and Caucasian families together and 

separately, allowing for different mating type parameters for each ethnic category. When the 

analysis is on the individual populations, only SNPs with a MAF greater than 0.02 in each 

population are studied (11368 in Asians, 13156 in Caucasian). We test markers separately for 

cleft palate only (CPO) and cleft lip with or without palate (CL/P). The combined test 

statistic (1df) is used to combine information from families with affected sons and daughters. 

For female triads, we applied a log-additive risk model (1df). Plots of -log10(p-value) against 

the marker position along the X chromosome (as determined by Build 37) can identify 

regions of interest.  

For CL/P, we compared our top five SNPs using PIX-LRT with EM to the top five 

identified in Patel et al. (Patel, Beaty et al. 2013). For these SNPs, we apply SSX-LRT and 

the parent-only analysis (Equation 2.5) to complete triads stratifying on sex of the affected 

offspring to better understand similarities and differences between our two results. SSX-LRT 

and the parent-only analysis are independent when complete triads are used, which enables 

estimates of relative risks to be compared in terms of agreement for parental versus 

offspring-based findings, and affected-boy families versus affected-girl families.  

2.3 Results 

2.3.1 Noncentrality Parameters 

 Under a null scenario where the relative risks are 1, the NCPs calculated for PIX-LRT 

and SSX-LRT (Equations 2.4 and 2.7) and XTDT are all zero, which ensures the nominal 
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Type I error rate. Table 2.6 displays the NCP and Type I errors calculated for the X-LRT for 

an admixed population. The NCPs are all greater than 0, implying inflated Type I error rates. 

Table 2.6: Noncentrality parameter and corresponding Type I error rates for X-LRT. 

For 1000 triads for a null variant in an admixed population as calculated by X-LRT. Type I 

error rates for α = 0.05 are shown in parenthesis. Scenario 1: First subpopulation has a MAF 

of 0.3 and a disease risk of 0.02 in males and females. Second subpopulation has a MAF of 

0.2 and a disease risk of 0.01 in males and 0.02 in females. Scenario 2: First subpopulation 

has a MAF of 0.3 and a disease risk of 0.02 in males and 0.03 females.  Second population 

has a MAF of 0.2 and a disease risk of 0.03 in males and 0.02 in females. H0: no disease-

locus effect in male or female, H0m: no effect in males and test done in boy-affected families, 

H0f: no effect in females and test done in girl-affected families. 
 Scenario 1 Scenario 2 

 X-LRT X-LRT 

H0:   RG1 = RG2 = RB =1 0.64 (0.09) 0.98 (0.11) 

H0m: RB =1 0.10 (0.06) 0.13 (0.07) 

H0f:  RG1 = RG2=1 0.38 (0.08) 0.62 (0.10) 

 

 Figure 2.1 shows a plot of the power for 1000 triads at a Type I error rate of 5x10-6 

with a range of minor allele frequencies. The one degree-of-freedom combined PIX-LRT 

analysis outperforms the two degree-of-freedom X-LRT analysis. Figure 2.2 shows plots of 

the estimated NCP and the corresponding power for 500 triads at a Type I error rate of 5x10-6 

with varying disease relative risks. For complete triads, PIX-LRT has higher NCPs (and 

corresponding power) than both the SSX-LRT and the XTDT. The SSX-LRT and XTDT 

perform similarly (see Discussion). For instance, for 500 triads with affected sons and a SNP 

with a minor allele frequency of 0.3 and relative risk of 2, the PIX-LRT has an estimated 

NCP of 37.22 (power = 0.94), the SSX-LRT has an estimated NCP of 27.45 (power = 0.75) 

and the X-TDT has an estimated NCP of 26.92 (power = 0.73). For this scenario, the 

expected number of informative triads used in PIX-LRT is 347.31 compared to 242.31 in 

SSX-LRT and XTDT. These estimates decrease if the minor allele frequency is 0.1.  

 The NCP plots for 500 triads with affected daughters are similar to those of affected 

sons (Figure 2.2, right compared to left). Under a log-additive model for girls, if the disease 
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relative risk in sons equals the disease relative risk in heterozygous daughters (𝑅𝐵 = 𝑅𝐺1 =

√𝑅𝐺2) then the estimated XTDT NCPs will be the same between the two sexes, and the 

estimated SSX-LRT NCPs will be the same (results not shown). The estimated PIX-LRT 

NCPs are close, but not identical. For 𝑅𝐺1=2 and a MAF of 0.3, the estimated NCP is 36.57 

(power = 0.93). If instead, the disease relative risk in sons equals the disease relative risk in 

daughters with two copies of the variant allele, (𝑅𝐵1 = 𝑅𝐺2 = 𝑅𝐺1
2 ), then for 𝑅𝐺1=√2, the 

estimated PIX-LRT NCP is 8.86 (power = 0.06). Under this scenario, triads with affected 

sons offer greater power than those with affected daughters.  

Figure 2.1: Power estimates as a function of minor allele frequency of X-LRT and PIX-

LRT. Each analysis is based on 1000 triads with affected sons and daughters. 𝑅𝐵 = 1.5, 

𝑅𝐺1
2 = 𝑅𝐺2 = 2 and among non-carriers boys are twice as likely to have the disease as girls. 

Solid line represents PIX-LRT. Dashed line represents XLRT. PIX-LRT uses a 1 degree-of-

freedom combined test, while X-LRT uses a 2 degree-of-freedom test. 
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Figure 2.2: Noncentrality parameter estimates as a function of relative risk. (A, C) 500 

triads with affected sons and (B, D) 500 triads with affected daughters. Minor allele 

frequencies of 0.3 (A, B) and 0.1 (C, D) are used. Solid lines represents PIX-LRT results. 

Dashed lines represents SSX-LRT and XTDT (plotted results were indistinguishable). PIX-

LRT and SSX-LRT assume the relative risk in affected daughters is log additive in the 

number of copies of the minor allele.  

           
 

Plots of the effect of missing genotype data on the estimated NCP and the 

corresponding power at a Type I error rate of 5x10-6 are shown in Figure 2.3. Regardless of 

minor allele frequency, for triads with sons, PIX-LRT with the EM algorithm works equally 

well when some mothers are missing as when some fathers are missing (proof not shown). 

The SSX-LRT does not lose any power when fathers of sons are missing, as the fathers are 

non-informative. When mothers of sons are missing, we see the greatest power loss. In triads 
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with daughters, regardless of minor allele frequency, more power can be recaptured from the 

EM when fathers are missing compared to mothers.  This trend is seen in both PIX-LRT and 

SSX-LRT.  

Figure 2.3: Noncentrality parameter estimates as a function of missing parental 

genotypes using the Expectation-Maximization (EM) algorithm. PIX-LRT and SSX-LRT 

were run on (A, C) 500 triads with affected sons and 𝑅𝐵 = 2 and (B,D) 500 triads with 

affected daughters 𝑅𝐺1 = 2 and 𝑅𝐺2 = 4. Minor allele frequencies of 0.3 (A, B) and 0.1 (C, 

D) were used. Black lines represent PIX-LRT results. Gray lines represent SSX-LRT results.  

Solid lines represent results based on excluding incomplete triads (SSX-LRT can use triads 

with missing fathers). Dashed lines represent results based on triads with the fathers missing 

(for PIX-LRT this single line represents either parent missing). Dashed/dotted lines represent 

triads with either mother or father missing, with twice as many fathers missing than mothers. 

Dotted lines represent results based on triads with mothers missing.  
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2.3.2 Oral Cleft  

 The QQ plot to assess parental exchangeability in the SNPs is shown in Figure 2.4. 

Four SNPs (rs17269319, rs3747355, rs5906541, and rs12558269) are not shown because 

their p-values (as calculated from Equation 2.1) are extreme outliers, less than 1x10-16. No 

father was found to carry any of these SNPs, despite some missing fathers having evidently 

transmitted the allele to their daughter. We consequently had reason to doubt the quality of 

the genotyping for those SNPs and omitted them from further analysis. (Patel et al. (Patel, 

Beaty et al. 2013) also noted that rs17269319 and rs12558269 had poor intensity plots.) The 

remaining points fell nicely on the QQ plot, except for 5 SNPs (rs2710404, rs5921330, 

rs1573667, rs7060927, and rs2266806) that raised concern about the parental exchangeability 

assumption. If these SNPs had appeared as top SNPs in the PIX-LRT analysis, those findings 

would need a closer look. 

Figure 2.4: QQ plot of – 𝐥𝐨𝐠𝟏𝟎(𝒑) as calculated from the test of parental allelic 

exchangeability. 95% confidence intervals are shown. Four SNPs (rs17269319, rs3747355, 

rs5906541, and rs12558269) are not shown because of extremely low p-values. No fathers 

carried the minor alleles for these four SNPs and the quality of genotyping consequently 

appears to be inadequate.   
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Figure 2.5 shows results of the PIX-LRT with EM analysis of the SNPs along the X 

chromosome for CL/P and CPO in Caucasians and Asians separately and combined. The 

CPO analysis did not produce results suggestive of a marker related to CPO and no SNPs had 

p-values below the Bonferroni-corrected 3.76x10-6.  

Figure 2.5: Individual single nucleotide polymorphism significance of the cleft example. 

The p-values (shown as – log10(𝑝)) are calculated from PIX-LRT with the EM using dbGaP 

data from families with oral cleft.  A log-additive model is assumed for the risk in affected 

daughters and a combined score is used to combine the sex-specific statistics. Models were 

run on cleft lip with or without cleft palate families amongst (A) Asians and Caucasians, (C) 

Asians only, (E) Caucasians only, as well as cleft palate only families amongst (B) Asian and 

Caucasians, (D) Asians only, (F) Caucasians only. 
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In CL/P analyses, we identified one SNP with a strong signal, rs5981162, the minor 

allele being associated with a decreased risk of cleft lip with or without palate (uncorrected 

p-value = 5.88x10-09). The PIX-LRT estimated disease relative risk within the combined 

Asian and Caucasian populations was 0.48 for male offspring carrying the variant allele, and 

0.56 for female offspring carrying one copy of the variant allele (0.32 for two copies), 

showing good concordance. Similar relative risks are estimated in separate analyses of the 

Asian and Caucasian populations (see Table 2.7). The evidence for an effect is particularly 

strong in the Asian population, which has a higher variant allele frequency, and hence more 

informative families than the Caucasian population. The effect estimates based on parents of 

girls and parents of boys were also in good agreement with the offspring-based estimates (see 

Table 2.8). By contrast the PIX-LRT analysis of rs5981162 with CPO shows no effect (see 

Table 2.7), suggesting phenotypic specificity. Additionally, the test for parental allelic 

exchangeability produced a p-value of 0.18 for rs5981162, suggesting no violation in the 

assumption.  

Table 2.7: PIX-LRT analysis results of SNP rs5981162, located in the intergenic region 

between ENFB1 and PJA1 at basepair 68318753. PIX-LRT with the EM was run on Asian 

and Caucasians separately and together. A log-additive model was used for triads with 

affected daughters and the combined score was calculated with the results from the sex-

stratified analysis.  

Cleft Population MAFB 

Inf.  

boy 

famsA 

Inf. 

girl 

famsA P-value RB RG1  

CL/P All 0.076 415 146 5.88x10-09 0.48 0.56 

 Asian 0.126 284 121 3.94x10-08 0.49 0.54 

 Caucasian 0.016 131 25 4.24x10-02 0.38 0.72 

        

CPO All 0.076 78 65 0.544 0.85 0.91 

 Asian 0.126 43 51 0.469 0.87 0.83 

 Caucasian 0.016 35 14 0.895 0.77 2.35 
A The number of informative triads at the marker.  
BThe minor allele frequency calculated from the parents in the population, not 

stratified by cleft type. 
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Table 2.8: Top 5 CL/P SNPs from our PIX-LRT analysis and from Patel et al. The top 5 

from Patel et al. after excluding SNPs that raised genotyping concern. Parent informed X-

LRT (PIX-LRT) with the EM, Sex stratified X-LRT (SSX-LRT) on complete data, and a 

parent only analysis on complete data are used to calculate relative risk for CL/P in the 

combined Asian and Caucasian families. Combined Z statistics are used as opposed to LRT 

statistics to show direction of effect and are calculated from the sex-stratified analysis, as 

mentioned in the methods section. 

Our 

Top 5 

Patel 

Top 5 Marker Position Gene MAFB Method 

Comb. 

Z stat RB RG1 

1 1 rs5981162 68318753 EFNB1, 0.076 PIX  EM -5.82 0.48 0.56 

    PJA1A  SSX -4.79 0.48 0.58 

      Parent only -3.09 0.45 0.51 

          

2 - rs5980788 68315938 EFNB1,  0.039 PIX  EM -4.26 0.49 0.54 

    PJA1A  SSX -4.01 0.45 0.53 

      Parent only -1.38 0.84 0.45 

          

3 2 rs5928207 33244129 DMD 0.357 PIX  EM -3.90 0.73 0.87 

      SSX -4.72 0.67 0.74 

      Parent only -0.02 0.90 1.22 

          

4 - rs5930900 135296409 MAP7D3 0.370 PIX  EM 3.69 1.22 1.30 

      SSX 2.24 1.13 1.28 

      Parent only 1.71 1.40 1 

          

5 - rs5905410 44584855 FUNDC1,  0.356 PIX  EM -3.69 0.81 0.72 

    DUSP21A  SSX -3.39 0.81 0.67 

      Parent only -1.99 0.77 0.72 

          

- 3 rs5928208 33253904 DMD 0.390 PIX  EM -3.09 0.76 0.92 

      SSX -4.60 0.65 0.75 

      Parent only 1.34 1.07 1.57 

          

- 4 rs6631759 33239353 DMD 0.289 PIX  EM -3.17 0.75 0.90 

      SSX -4.45 0.66 0.73 

      Parent only 0.55 0.99 1.33 

          

- 5 rs5971698 33245234 DMD 0.366 PIX  EM -3.08 0.76 0.93 

      SSX -4.33 0.65 0.83 

      Parent only 1.02 1.09 1.32 
A This marker lies in the intergenic region between the genes shown. 
BThe minor allele frequency calculated from the parents in the population, not stratified by 

cleft type. 

 

Table 2.8 compares the top 5 SNPs (based on the combined p-value) for CL/P within 

our analysis using PIX-LRT with EM and the top 5 SNPs based on the Patel et al. [28] 

analysis. The top 5 SNPs from our analysis all showed no violation in the test of parental 

allelic exchangeability (the smallest p-value was 0.18). The SNPs rs17269319, rs5906541 
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and rs12558269 were excluded for quality control reasons, as discussed above (see Table 2.8 

and Discussion).  Two SNPs were in the top 5 under both analyses: rs5928207 and 

rs5981162 (our top hit).  All triads for the 8 SNPs were analyzed with PIX-LRT with EM, 

and separate analyses using SSX-LRT and the parent only method, carried out to assess 

agreement, were based only on complete triads, to guarantee statistical independence. The 

combined Z-score (Equation 2.5) is shown in the table. Figure 2.6 plots the offspring-based 

SSX versus the parent-only Z-score. SNPs that ranked high in the Patel analysis also have 

large SSX Z-scores. Evidence for a true hit is strengthened if the signs of the two 

independent statistics are in agreement, i.e. the points should ideally fall in the southwest or 

northeast quadrants of the figure. PIX-LRT identifies SNPs that have high offspring-based 

SSX and parent-only Z-scores in the same directions (i.e. concordance), the white-

background quadrants in the plot. The PIX-LRT top hit, rs5981162, is in the southwest 

quadrant, showing strong evidence of a protective effect in both the offspring-based SSX and 

the parent-based analysis.   

 

2.4 Discussion  

 We have introduced new methods to analyze SNPs on the X chromosome: the SSX-

LRT and the PIX-LRT. The SSX-LRT allows for stratification by sex of the affected 

offspring, which is based on the X-LRT but confers robustness against population 

stratification. The PIX-LRT then builds on the SSX-LRT by incorporating additional 

information in the parental genotypes that previous methods have not exploited. This 

information allows PIX-LRT to gain substantial power in identifying SNPs on the X 

chromosome associated with disease risk.  
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Figure 2.6: Assessment of concordance through comparison of the parent-only Z scores 

and transmission (SSX) Z scores. The figure shows the top five single nucleotide 

polymorphism (SNP) hits from the PIX-LRT analysis and Patel el al. in Asian and Caucasian 

families with cleft lip with or without palate. We excluded SNPs in the Patel et al. analysis 

that raised quality control concerns. The parent-only and SSX analyses assume the relative 

risk in affected daughters is log additive in the number of copies of the variant allele. A 

combined score is used to combine the sex-specific statistics. “B” represents SNPs in the top 

5 under both analyses, “P” represents SNPs that were in the top 5 for Patel et al. but not for 

us, “W” represents SNPs that were in the top 5 for our analysis but not Patel et al. 

          
 

For situations in which both PIX-LRT and X-LRT are appropriate, under an assumed 

log-additive model for girls, the combined PIX-LRT outperforms X-LRT. The combined 

PIX-LRT enables a one degree-of-freedom test to be run. No assumption about the 

relationship between the male and female relative risks is made. Under this scenario, the X-

LRT loses some power because it is a two degree-of-freedom test. For the X-LRT to be a one 
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degree-of-freedom test, a relationship between the boy and girl relative risk must be asserted, 

and such a model may be mis-specified. It should be noted, however, that if the directions of 

the relative risks in boys and girls are opposite, then PIX-LRT loses power, while X-LRT 

does not.  

As we showed in the results section, the parent-only portion of the PIX-LRT can also 

be used independently of the offspring-based transmission portion as a form of replication. 

This assessment of replication can only use complete triads however if the offspring-based 

and parent-based tests are to remain independent. The SNP that we identified as strongly 

protective based on PIX-LRT showed replication both across ethnic groups, across boys 

versus girls and across parent-based results versus offspring-based results, strengthening 

evidence for effect.  

 In general, with use of the EM algorithm more power is recaptured with missing 

fathers than with missing mothers (cf. Figure 2.3). This difference is driven by the daughter 

cases. For daughters, we can infer the father’s genotype as long as the mother and daughter 

are not both heterozygous. However, with only the father’s and the daughter’s genotypes, we 

cannot know the mother’s genotype. For boys, in a transmission-based test (e.g. SSX-LRT), 

only the mothers are informative, so missing fathers do not affect the power of the test. 

However, in PIX-LRT, fathers are informative, and so when fathers of sons are missing, 

power is lost. For sons, when either parent is missing, the genotype of the complete triad 

cannot be known. For families with one parent and an affected son, the parents turn out to be 

equally informative (proof not shown). 

While we demonstrated use of the EM algorithm for triads with a missing parent, 

there are circumstances where the genotype for the affected offspring might be missing. For 
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example, in studying a defect such as anencephaly, following prenatal diagnosis a medically-

indicated abortion might have been conducted. For families where only the parental genotype 

data is available, if the sex is known, the parent-only portion of the PIX-LRT can still be 

used in analyses of potential effects of variants on the X chromosome.  

When, as in the oral cleft data used, families have missing parents, the EM enables 

use of their information.  However, use of the EM can induce bias if a population has 

multiple subpopulations with both the minor allele frequencies and the extent of missingness 

varying across subpopulations. This bias is not specific to our method, and can be avoided 

via stratification if the subpopulations are identifiable.  

For X-chromosome-wide association studies using case-parent triads, the power to 

detect an effect is influenced by the sex of the affected offspring. If the disease relative risk 

for a heterozygous female is less than that for a male carrier, as may be the case due to X-

inactivation, the estimated power derived from the PIX-LRT, SSX-LRT and X-TDT would 

typically be less for triads with daughters than for those with sons (Figure 2.2). Furthermore, 

for both SSX-LRT and PIX-LRT, missing mothers are at least as costly as missing fathers in 

their effects on power (Figure 2.3).  

 Some limitations deserve mention. The PIX-LRT estimates can be biased if an allele 

violates the parental exchangeability assumption, in which case the SSX-LRT may be a more 

appropriate method. In analyzing the oral cleft data we excluded the small fraction of 

differing-ethnicity parents, but including them did not noticeably affect the exchangeability 

QQ plot (data not shown). Transmission-based tests may also be biased if the violation is due 

to genotyping error or because the SNP is associated with fetal survival. If a SNP affects risk 

through a maternal effect (Wilcox, Weinberg et al. 1998), the parental contribution to the 
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PIX-LRT results may be biased. Current research is extending the PIX-LRT to accommodate 

maternal effects. 

Furthermore, the PIX-LRT and other X-chromosome methods are not suitable for the 

pseudo-autosomal regions (PAR) and the X-chromosome-transposed region (XTR). These 

regions have homologous regions on the Y chromosome, so that a male can have two copies 

of a SNP.   

The NCP estimates obtained from SSX-LRT and the XTDT are similar because these 

two tests are, respectively, the likelihood and score test for the same model. Schaid et al. 

(Schaid and Sommer 1994) showed that the TDT is the score test for a logistic regression 

allele dosage model (log additive). One can similarly show this for the XTDT.  

We applied PIX-LRT to an international consortium of genotyped families affected 

by the birth defect oral cleft. In a previous analysis of the data, some of the most significant 

SNPs identified by Patel et al. [28] were not as significant when analyzed with PIX-LRT. An 

example is SNP rs5928208, which showed weaker results with PIX-LRT because the effect 

seen from the transmission analysis was not evident in the parent-only analysis. The top two 

SNPs in Patel, rs5906541 and rs17269319, and also rs3747355 and rs12558269, violated the 

mating exchangeability assumption. A harder look at the family genotypes was revealing in 

that their apparent absence in the fathers and the sons who were genotyped (as opposed to 

their inferred presence in fathers who were missing) raised concerns over the quality of 

genotyping for those SNPs.  

With PIX-LRT, we identified rs5981162 as having a strong and protective effect on 

cleft lip with or with palate. This SNP was ranked fairly high in the previous analysis of the 

data by Patel et al. [28], but PIX-LRT estimated sex-specific relative risks and found 
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estimation concordance and a stronger p-value signal. The rs5981162 SNP is located 

between genes EFNB1 and PJA1, and is downstream of these two genes. EFNB1 is known to 

play a role in facial development: mutations on EFNB1 are responsible for the majority of 

cases of craniofrontonasal syndrome (CFNS) (Twigg, Kan et al. 2004, Wieland, Jakubiczka 

et al. 2004), whose features can include cleft lip and palate. The SNP rs5981162 may 

potentially be located in a regulatory region of the EFNB1 gene and functional studies could 

be illuminating. 

 



 

 

53 

CHAPTER 3: PIX-LRT EXTENSIONS FOR MATERNAL EFFECTS OF GENETIC 

VARIANTS ON THE X CHROMOSOME 

 

In this chapter we extend the method developed in Chapter 2, PIX-LRT, to enable 

identification of effects of variants on the maternal X chromosome that can influence the 

later health of the offspring by modifying the prenatal environment. By taking advantage of 

an assumption of allelic exchangeability, the proposed method is able to distinguish such 

maternal effects from effects due to fetal inherited variants, and can provide estimates of 

relative risks. We apply PIX-LRT to publically available data from an international 

consortium of genotyped families affected by the birth defect oral cleft to test for potential 

maternal effects. 

3.1 Introduction 

The maternal genotype is of obvious relevance for pregnancy complications like 

preterm birth and pre-eclampsia. It can also influence the intra-uterine environment both 

directly and through its role in modulating the metabolism and effects of feto-toxic 

exposures. It is consequently of interest to investigate effects of variants carried by the 

mother (regardless of their transmission to the affected offspring), especially in relation to 

effects on early-onset disease, such as on mental illnesses, childhood cancers, and birth 

defects. Using family-based studies, maternal effects of variants on the autosome have been 

shown to be associated with a number of childhood diseases, including childhood 

medulloblastoma (Lupo, Nousome et al. 2012), clubfoot (Weymouth, Blanton et al. 2011) 

and oral cleft (Jugessur, Shi et al. 2010). 
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Mitchell (Mitchell 1997) first noted that an advantage of the family-based study 

design over the case-control study design, was that it could potentially be used to 

differentiate between maternal and fetal effects. In case-control studies that do not genotype 

the mothers, such distinctions cannot be made and maternal effects cannot be directly 

studied. Such effects can confound results, because the genome of the affected offspring and 

that of the mother are causally correlated. By contrast, with a family-based design, 

researchers can probe potential maternal effects. Mitchell suggested applying the TDT to a 3-

generation study in which cases, parents, and maternal grandparents are genotyped. If a 

maternal effect is involved in the etiology, a causative variant allele will have been 

preferentially transmitted from heterozygous maternal grandparents to the affected child’s 

mother. While conceptually appealing, this multi-generational family design may be 

logistically very hard to implement, because the maternal grandparents may be hard to locate 

or unwilling to be studied. 

For case-parent triads and autosomal markers, Weinberg, Wilcox et al. noted that if 

one can assume mating symmetry in parental genotypes, grandparents are not needed. One 

can extend the log-linear model to detect the effects that act through maternal mechanisms, 

while adjusting for fetal genotype effects (Weinberg, Wilcox et al. 1998, Wilcox, Weinberg 

et al. 1998). For the log-linear model as applied to the autosome, the assumption of genetic 

mating symmetry for the parents in effect permits the paternal genotype to serve as control 

for the maternal genotype. This model enables maternal-effect relative risks to be estimated 

under an assumption that the effect is recessive, dominant, log-additive or fully 

unconstrained, i.e. co-dominant. The EM (expectation-maximization) algorithm can be used 

to handle missing autosomal SNP genotypes (or individuals) (Weinberg 1999, Rampersaud, 
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Morris et al. 2007). Unlike the method proposed by Mitchell, this method only requires case-

parent triads and can account for missing data through use of the EM. This model allows for 

population structure, as HWE is not assumed, though mating must be non-assortative within 

genetic subpopulations with respect to the variants under study. 

Although those methods have been widely applied to studies of the autosome, there is 

a dearth of methods to study maternal X chromosome genetic effects. The X chromosome is 

unique in that females are diploid while males have only one, maternally-derived copy. There 

is random inactivation of an X in each cell early in female embryonic development as a form 

of dosage compensation (Lyon 2002). To date the only method available to test for maternal 

effects in case-parent triads is HAPLIN (Gjessing and Lie 2006), which requires the 

assumption of Hardy-Weinberg Equilibrium (HWE) and consequently is not robust against 

population stratification. HAPLIN is a likelihood-based method for analyzing maternal and 

fetal haplotypes in case-parent triads. Single-dose effects (effects of one copy of the 

haplotype) and double-dose effects of maternal haplotypes (or single SNPs) can be estimated 

as relative risks using the model (as described in section 1.2.5). A version of HAPLIN that 

has been developed for the X chromosome allows the user to analyze maternal effects of X 

chromosome variants (Myking, Boyd et al. 2013). 

We developed PIX-LRT (the parent-informed X chromosome likelihood ratio 

test)(Chapter 2) as a method to measure fetal SNP effects of X chromosome variants using 

information from both the transmission of a variant X allele from parents to affected 

offspring, and information related to the distribution across parents’ genotypes specific to the 

sex of the affected offspring. An assumption of “parental allelic exchangeability” enables the 

added parental information to be captured in a way that resists bias due to genetic population 
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stratification. Here we show that the same assumption also allows an extension of PIX-LRT 

to distinguish maternal from fetal effects and enables estimation of relative risks for 

maternally-mediated effects.  

In the following sections, we initially describe the PIX-LRT extension for testing 

maternal effects of single X-linked SNP markers when case-parent genotype data are 

complete. We show that without the assumption of parental allelic exchangeability the 

maternal effects could not be statistically identified. The EM algorithm can be used to 

maximize the likelihood when some families have missing SNP genotype data. We assess 

Type I error rates and power for testing maternal effects with PIX-LRT by calculating chi-

squared noncentrality parameters based on expected counts (Agresti 2012). We consider 

scenarios in which population structure is present, and in which there may also be varying 

degrees of a concomitant direct effect of the inherited allele on the offspring. As an example 

application, we apply the PIX-LRT to family data from a large family-based oral cleft dataset 

to analyze maternal effects of SNP markers on the X chromosome. We conclude with a 

discussion of the advantages and limitations of using PIX-LRT to study maternal effects, and 

also discuss our SNP findings. 

3.2 Subjects and Methods 

3.2.1 Case-Parent Design and Assumptions 

We consider a sample of genotyped case-parent triads, where all sampled offspring 

have been diagnosed with the condition of interest. For a di-allelic locus, let M, F, and C 

denote the number of copies of the variant (minor) allele in the mother, father and affected 

offspring (proband), respectively. We exclude the pseudo-autosomal regions and the X-

transposed region (PARs, XTR), as these regions on the X correspond to a homologous 
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region on the Y. Then 𝑀 ∈ {0,1,2}, 𝐹 ∈ {0,1}, 𝐶 ∈ {0,1} for male offspring, and 𝐶 ∈ {0,1,2} 

for female offspring. 

We make similar assumption as in Chapter 2. We assume there is Mendelian 

transmission at the locus in the source population and that, although the condition under 

study may reduce the likelihood of survival to birth, neither the maternal nor the fetal 

genotype influences that survival likelihood, conditional on the occurrence of the condition. 

Further assume parental allelic exchangeability in the source population. This assumption 

was assumed for the autosome in Min et. al (Shi, Umbach et al. 2008) and states that, within 

a mating pair, the total copies the father and mother carry of the variant allele are randomly 

located across their three X chromosomes. Note that parental allelic exchangeability is much 

less restrictive than HWE because it must hold only within mating pairs and allows allele 

frequencies to differ across genetic subpopulations. We will also initially assume that a 

maternal effect has the same multiplicative effect on risk for male and female offspring. 

3.2.2 PIX-LRT Extension to Maternal Effects 

The method we will describe extends PIX-LRT to enable study of maternal effects. 

Briefly, for case-parent triads, PIX-LRT takes advantage of information in parents to 

improve the power to detect an effect of an X variant in the offspring inherited genotype (see 

Chapter 2). Under the null hypothesis that a SNP on the X chromosome is unrelated to risk, 

one would expect neither the mothers nor the fathers to be enriched for either allele. 

However, if there is a fetal genetic effect at that locus, we showed that selection based on 

affected offspring induces a distortion in the distribution of the marker in the parents. The 

direction of this distortion depends on the sex of the affected offspring, and can be exploited 

under parental allelic exchangeability. We showed that if we condition on the total number of 
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alleles carried by the parents, M+F, the information from asymmetries in the parental X 

genotypes can be combined with transmission information from parents to affected offspring 

via a log-linear model.  

If there is a maternal effect, then even if there is no effect of the fetal genotype that 

effect will produce a distortion of the allelic distribution across the parents. For example, 

consider a variant allele that if carried by the mother, increases the fetus’ risk of disease. 

Then the mothers of affected offspring will be enriched for this variant compared to their 

mates. Unlike the fetal effect, this distortion will be in the same direction in parents of 

affected sons and affected daughters. If an assumption of parental allelic exchangeability is 

made, and we condition on (M+F), we can measure this distortion. However, if instead we 

condition on the mating type, (M, F), we cannot identify a maternal effect, but only the fetal 

genotype effect, for which only heterozygous mothers are informative. Because a maternal 

effect and a fetal effect will both cause distortion, when testing for a maternal effect, (unless 

it is known that there is no fetal effect) it can be important to allow for a fetal genotype effect 

in the model. 

Let “aff” denote the event that the offspring (or pregnancy) is affected and define the 

relative risks for fetal and maternal genotypes as follows: 

𝑒𝛽1 = 𝑅𝐺1 = Pr(aff|girl, 𝐶 = 1, 𝑀, 𝐹)/ Pr (aff|girl, 𝐶 = 0, 𝑀, 𝐹) 

      𝑒𝛽2 = 𝑅𝐺2 = RG1Pr(aff|girl, 𝐶 = 2, 𝑀, 𝐹)/ Pr (aff|girl, 𝐶 = 1, 𝑀, 𝐹) 

𝑒𝛽3 = 𝑅𝐵 = Pr(aff|boy, 𝐶 = 1, 𝑀, 𝐹)/ Pr (aff|boy, 𝐶 = 0, 𝑀, 𝐹) 

𝑒𝛼1 = 𝑅𝑀1 = Pr(aff|𝑀 = 1, 𝐶, 𝐹)/ Pr(aff|𝑀 = 0, 𝐶, 𝐹)                 

𝑒𝛼2 = 𝑅𝑀2 = Pr(aff|𝑀 = 2, 𝐶, 𝐹)/ Pr (aff|𝑀 = 0, 𝐶, 𝐹) 
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A likelihood that includes both fetal and maternal effects can be written as a 

multinomial and modeled in a log-linear form as follows: 

ln(𝐸[𝑁𝑀,𝐹,𝐶,𝑠𝑒𝑥|𝑀 + 𝐹]) 

          = log(𝜇𝑀+𝐹,𝑠𝑒𝑥) + 𝛽1𝐼(𝐶=1,𝑠𝑒𝑥=𝑔) + 𝛽2𝐼(𝐶=2,𝑠𝑒𝑥=𝑔) + 𝛽3𝐼(𝐶=1,𝑠𝑒𝑥=𝑏) +

                  𝛼1𝐼(𝑀=1) + 𝛼2 𝐼(𝑀=2)                                                                 (3.1)   

Here, 𝜇(𝑀+𝐹,𝑠𝑒𝑥) are nuisance parameters that serve to stratify families by conditioning on the 

sum of parental genotypes. (This model is equivalent to a polytomous logistic regression 

model that conditions on the total number of families with the given M+F.) The expected 

counts are shown in Table 3.1. In the above models 𝐼(𝐾) is an indicator variable equal to 1 if 

K is true, and 0 otherwise.  The corresponding log likelihood would be: 

ℓ ∼ ∑ 𝑛𝑀,𝐹,𝐶,𝑠𝑒𝑥 log (

𝑀,𝐹,𝐶,𝑠𝑒𝑥

Pr(𝑀, 𝐹, 𝐶|𝑀 + 𝐹, aff, sex) ∗ Pr(𝑀 + 𝐹|aff, sex))     (3.2) 

If no assumption is made about the relative sizes of the maternal relative risks for a mother 

with 1 versus 2 copies of a variant allele, then a test for co-dominant maternal effects will be: 

𝐻0: 𝑅𝑀1 = 𝑅𝑀2 = 1    (𝛼1 = 𝛼2 ) 

𝐻𝑎: 𝑅𝑀1 ≠ 1 or 𝑅𝑀2 ≠ 1   (𝛼1 ≠ 0 or 𝛼2 ≠ 0)  

Under this fully general genomic model the likelihood ratio test statistic given by -2(ℓ(𝐻0) −

ℓ(𝐻𝑎)) is distributed chi-square with two degrees of freedom, where ℓ(𝐻0) is the maximized 

likelihood under the null and ℓ(𝐻𝑎) is the maximized likelihood under the co-dominant 

alternative. This statistic and the relative risk estimates can be calculated with standard 

generalized linear model (GLM) software. The maternal effect can also be tested under a log-

additive, dominant or recessive model. 
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Table 3.1: For affected sons and daughters, case-parents triad frequencies under an 

assumption of parental allelic exchangeability. 
    Affected Sons Affected Daughters 

M+F M F  C Triad Frequency  C Triad Frequency 

0 0 0  0 𝜇0𝑏  0 𝜇0𝑔 

         

1 0 1  0 𝜇1𝑏  1 𝜇1𝑔 

 1 0  0 𝜇1𝑏𝑅𝑀1  1 𝜇1𝑔𝑅𝑀1 

 1 0  1 𝜇1𝑏𝑅𝐵𝑅𝑀1  0 𝜇1𝑔𝑅𝐺1𝑅𝑀1 

         

2 1 1  0 𝜇2𝑏𝑅𝑀1  2 𝜇2𝑔𝑅𝐺2𝑅𝑀1 

 1 1  1 𝜇2𝑏𝑅𝐵𝑅𝑀1  1 𝜇2𝑔𝑅𝐺1𝑅𝑀1 

 2 0  1 𝜇2𝑏𝑅𝐵𝑅𝑀2  1 𝜇2𝑔𝑅𝐺1𝑅𝑀2 

         

3 2 1  1 𝜇3𝑏𝑅𝐵𝑅𝑀2  2 𝜇3𝑔𝑅𝐺2𝑅𝑀2 

 

3.2.3 Type I Error and Power Calculations 

As in Chapter 2, we calculate the power and the Type I error rate by calculating the 

noncentrality parameter (NCP) for the distribution of a chi-squared likelihood ratio test 

statistic. Under the null hypothesis of no maternal effect, the LRT statistic follows a central 

chi-squared distribution, which has an NCP of 0. The NCP is calculated by treating expected 

triad counts under the specified population structure as data used to fit the relevant models 

(O’Brien 1986, Agresti 2012).Values of noncentrality parameters can be translated to power 

values using the noncentral chi-squared distribution with the appropriate degrees of freedom 

and multiplying any given NCP by the ratio of the sample size contemplated to the sample 

size used in the calculation.  

Under the null hypothesis of no maternal effect, we will show that the LRT statistic 

follows a central chi-squared distribution, which has an NCP of 0, even when genetic 

subpopulations are present in the population. As would be expected, because it relies on 

HWE, HAPLIN is biased under such a situation. Consider two scenarios where 
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subpopulations are present within a population: (1) there are no effects of the fetal 

genotype (𝑅𝐺1 = 𝑅𝐺2 = 𝑅𝐵 = 1) nor are there maternal effects (𝑅𝑀1 = 𝑅𝑀2 = 1); or (2) 

there are fetal (𝑅𝐺1
2 = 𝑅𝐺2 = 2, 𝑅𝐵 = 1.5) effects but no maternal effects. In both scenarios 

there are 1000 families with affected offspring, one subpopulation has a minor allele 

frequency of 0.1, a disease risk of 0.02 in males, and 0.02 in females. The second 

subpopulation (of the same size as the first) has a minor allele frequency of 0.2, a risk of 0.01 

in males, and of 0.02 in females.   

In addition to calculating NCP (and the corresponding Type 1 error rate), we will also 

perform 10000 simulations to estimate power at a 0.05 alpha level under a range of 

alternative scenarios. We use a co-dominant model for maternal effects, so that a two degree-

of-freedom LRT chi-squared test statistic is calculated. The current version of the HAPLIN 

software in R (R Development Core Team 2013) allows for maternal effects to be tested on 

the X chromosome, but imposes some limitations to the flexibility of the model. For instance, 

in its current implementation, male and female triads can either be run in separate models, or 

a relationship between the relative risks can be assumed. We wanted to be able to include 

males and females in the same model without imposing a relationship between their relative 

risks (necessitating three parameters). We therefore recoded the HAPLIN procedure in R 

with the glm procedure to allow for this less restrictive scenario. To verify our coding, we 

compared results from our code with those from HAPLIN under the constraints HAPLIN 

currently assumes. Results were in agreement. 

We also compare the power of PIX-LRT to HAPLIN, under a homogeneous 

population. For comparability we assume HWE so that HAPLIN is unbiased, which should 

confer an advantage to HAPLIN. For the power simulations we consider 1000 triads 
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consisting of a mix of affected sons and daughters. We test for maternal effects in the 

presence of log-additive fetal effects (𝑅𝐺1
2 = 𝑅𝐺2 = 2, 𝑅𝐵 = 1.5) but (given that analysts 

lack omniscience) in the analysis we allow three parameters for the fetal effects. In our 

scenarios, for non-carriers of both sexes, the risk of disease is the same. We assume a log-

additive maternal effect (𝑅𝑀1
2 = 𝑅𝑀2). We plot the noncentrality parameters as a function of 

the relative risk (RM1) for two scenarios; one where the variant allele frequency is 0.05 and 

another where the allele frequency is 0.2. In the plot we include the corresponding power for 

a one-degree-of-freedom LRT at alpha level 5x10-6. We use an alpha level of 5x10-6 because 

this approximates the alpha 0.05 Bonferroni-corrected value that would be needed for the X 

chromosome based on the Illumina Human610-Quad v1.0 Build 36. 

To include families where some individuals are missing, we use the EM algorithm 

with PIX-LRT. We calculate and plot the power for an analysis that simply discards the 

incomplete families, to assess the loss of power, and we quantify the recapture of power that 

can be achieved by using the EM. Specifically, we plot the noncentrality parameter (and the 

power at alpha level 5x10-6) as a function of the proportion of missing fathers, missing 

mothers, or a combination. For the combination scenarios, only one parent is missing, and 

twice as many fathers as mothers are assumed missing. As above, we will assume fetal 

effects are present (𝑅𝐺1
2 = 𝑅𝐺2 = 2, 𝑅𝐵 = 1.5) and analyze the data using 3 risk parameters 

for the fetal effects. Furthermore, we set the minor allele frequency to 0.2, the relative risk 

associated with the mother carrying one copy of the variant allele to 1.7, and that for two 

variants to 2.89 = 1.72  (thereby imposing a log-additive effect). 

3.2.4 Oral Cleft Data 

Under a log-additive model (1 df) for maternal effects and a co-dominant model to 
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allow for possible fetal genetic effects, we use PIX-LRT with the EM to test for maternal 

effects in the oral cleft dataset. Details of this dataset are described in Chapter 2. Asian and 

Caucasian triads will be analyzed separately and together. When analyzed together, we allow 

for different mating type parameters for each ethnic category to ensure validity. Additionally, 

we test markers separately for cleft palate only (CPO) and cleft lip with or without palate 

(CL/P) as distinct phenotypes. Because we include more variables in the model than we did 

in Chapter 2 and sparseness of data may become a problem here, we increase the minor allele 

cutoff to 0.05. As a result, there are 10571 SNPs that pass this screen amongst Asians, 12417 

SNPs amongst Caucasians, and 12365 SNPs amongst the combined populations. The 

appropriate alpha for a Bonferroni-corrected family-wise error rate of 0.05 are 4.73x10-6, 

4.03x10-6 and 4.04 x10-6, respectively. As before, we exclude SNPs that raise quality control 

concerns. Plots of -log10(p-value) against the marker position along the X chromosome (as 

determined by Build 37) are constructed as an X-based Manhattan plot to display the results.  

3.3 Results 

3.3.1 Noncentrality Parameters 

 Table 3.2 displays noncentrality and power results. Under a null scenario where the 

maternal genotype relative risks are 1, the NCPs calculated for PIX-LRT are zero, which 

ensures the nominal Type I error rate. Within an admixed population, whether fetal effects 

are absent (scenario 1) or present (scenario 2), a test for maternal effects using PIX-LRT 

produces NCPs of 0. Based on 10000 simulations, for a nominal alpha of 0.05, the Type I 

error rates were 0.0512 and 0.0518 for scenarios 1 and 2, respectively, which are statistically 

compatible with a true rate of 0.05. By contrast, HAPLIN produces NCPs greater than 0, 

implying inflated Type I error rates. There is greater inflation in the presence of fetal effects; 

based on 10000 simulations, for a nominal alpha of 0.05, the Type I error rates were 0.088 
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and 0.099 for scenarios 1 and 2, respectively. 

 

Table 3.2: Noncentrality parameters and corresponding Type I error rates in 

parentheses for PIX-LRT and HAPLIN. Simulated Type I error rates for 1000 triads for a 

null maternal variant in an admixed populationA as calculated by PIX-LRT and HAPLINB.  
 PIX-LRT HAPLINB 

Scenario NCP Simulation NCP Simulation 

1. RG1 = RG2 = RB =1 0 (0.05) 0.048 0.504 (0.090) 0.088 

2. RG1
2 = RG2 = 2, RB =1.5 0 (0.05) 0.049 0.624 (0.100) 0.099 

A 2 degree-of-freedom test is performed for maternal effects. NCP corresponding Type I error rate for α = 0.05 

are show in parenthesis.  For simulations, Type I error rate for α = 0.05 calculated from 10000 runs. Scenario 1: 

no fetal effects present. Scenario 2: fetal effects present.  
AFirst subpopulation has a MAF of 0.1, a disease risk of 0.02 in males and females. Second subpopulation has a 

MAF of 0.2 and a disease risk of 0.01 in males and 0.02 in females.  
BHAPLIN recoded in R to allow 3 parameters for fetal effects. 

 

 Figure 3.1 shows plots of the estimated NCP and the corresponding power for studies 

with1000 triads and applying a Type I error rate of 5x10-6 with varying maternal effect 

relative risks. For detecting maternal effects, the trade-off between assumptions and power is 

evident; PIX-LRT (which is more generally valid) has NCPs (and corresponding power) that 

are less than that of HAPLIN. For instance, for 1000 triads with affected offspring and a SNP 

with a minor allele frequency of 0.2, if the relative risk associated with the mother carrying 

one copy of the variant allele is 1.7, then PIX-LRT has an estimated NCP of 27.97 (power = 

0.77) and the HAPLIN an estimated NCP of 32.11 (power = 0.86). These estimates are both 

smaller for smaller minor allele frequencies.  

 Figure 3.2 shows the effect of missing genotype data on the estimated NCP and the 

corresponding power at a Type I error rate of 5x10-6. The EM recaptures more power when 

mothers are missing compared to fathers, suggesting that fathers are slightly more 

informative than mothers for identifying maternally-mediated effects. For example, when 

20% of mothers are missing, the NCP when the EM is used is 26.63 (power = 0.72), whereas 

when 20% of fathers are missing the NCP is 25.79 (power = 0.69). However, in both of these 
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cases, the EM allows for an increase in power; if only complete families had been analyzed 

in these situations the NCP would be 22.38 (power = 0.57). 

 

Figure 3.1: Noncentrality parameters as a function of maternal relative risk. Shown for 

three relative risks, 0.2 (top), 0.1 (middle) and 0.05 (bottom). Each is calculated for 1000 

triads with sons and daughters. We test for maternal effects in the presence of log-additive 

fetal effects (𝑅𝐺1
2 = 𝑅𝐺2 = 2, 𝑅𝐵 = 1.5) but allow three parameters for the fetal effects. Non-

carrier risk in males and females is the same. Solid line is PIX-LRT, dashed line is modified 

HAPLIN. 
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Figure 3.2: Noncentrality parameter estimates as a function of fraction of families 

missing parental genotype using the Expectation-Maximization algorithm. PIX-LRT 

was run on 1000 triads to detect maternal effects in the presence of fetal effects (𝑅𝐺1
2 =

𝑅𝐺2 = 2, 𝑅𝐵 = 1.5). A log-additive model is used for maternal effects with 𝑅𝑀1 = 1.7 and 

𝑅𝑀2 = 1.72. Non-carrier risk in males and females is the same. Minor allele frequency of 0.2 

was used. Solid line represents results based on excluding incomplete triads. Dashed line 

represents results based on triads with the mother missing. Dashed/dotted line represents 

triads with either mother or father missing, with twice as many fathers missing as mothers. 

Dotted line represents results based on triads with only father missing.  
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3.3.2 Oral Cleft 

 Figure 3.3 shows results of the PIX-LRT with EM analysis of the oral cleft dataset for 

maternal genotype effects of SNPs on the X chromosome adjusting for possible fetal effects. 

Results are shown separately for CL/P and CPO in Caucasians and Asians separately and 

combined. No analysis produced results suggestive of an association between a marker and 

either CL/P or CPO.  No SNPs had p-values below the Bonferroni cut-off.  

 

Figure 3.3: Individual single nucleotide polymorphism significance of maternal 

genotype for the cleft example. The p-values (shown as – log10(𝑝)) are calculated from 

PIX-LRT with the EM using dbGaP data from families with oral cleft. A log additive model 

is assumed for the risk in affected daughters and a composite score is used to combine the 

sex-specific statistics. Models were run on cleft lip with or without cleft palate families 

amongst (A) Asians and Caucasians, (C) Asians only, (E) Caucasians only, as well as cleft 

palate only families amongst (B) Asian and Caucasians, (D) Asians only, (F) Caucasians 

only. Dashed line is the Bonferroni correction for an alpha of 0.05. 
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3.4 Discussion 

 We have previously (Chapter 2) introduced a method to analyze SNPs on the X 

chromosome for a possible association with risk of disease when inherited by the fetus: the 

PIX-LRT. PIX-LRT incorporates both transmission and parental genotype information to 

create a powerful test to identify SNPs on the X chromosome associated with disease risk. 

We have here extended PIX-LRT to distinguish maternal from fetal effects and provide 

estimates of relative risks for maternally-mediated effects. An assumption of parental allelic 

exchangeability allows PIX-LRT to resist bias due to genetic population stratification. 

Furthermore, when, as in the oral cleft dataset, families have missing parents, PIX-LRT takes 

advantage of the EM algorithm so that information from these families is captured. 

To our knowledge, PIX-LRT and HAPLIN are the only tools that can analyze 

maternal effects on the X chromosome in case-parent triads. When we compare the power to 

detect a maternal effect, HAPLIN performs better than PIX-LRT, however, the cost is loss of 

robustness against population stratification. HAPLIN relies on Hardy-Weinberg equilibrium, 

so, unlike PIX-LRT, is not robust. As shown in the results section, when sub-populations are 

present, PIX-LRT retains the nominal type 1 error rate, while HAPLIN is biased.  

Some limitations deserve mention. The PIX-LRT estimates can be biased if an allele 

violates the parental exchangeability assumption. While this assumption can be tested (see 

Chapter 2), if a particular allele confers risk specifically when carried by the mother, this 

allele will also appear to violate the exchangeability assumption, so distinguishing a true 

maternal effect from such a violation can be tricky. The current PIX-LRT model to identify 

maternal effects will also be biased if there is a parent-of-origin effect, i.e. if the penetrance 

of a fetally-inherited disease variant depends on whether the variant came from the mother or 
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father. It should be noted that under conditional where the parental exchangeability 

assumption is violated, the HWE assumption would also be violated. Therefore, HAPLIN 

will also be biased in these instances. 

We tested for maternal effects in genotyped families affected by the birth defect oral 

cleft. We found no evidence of a maternal genotype associated with CL/P nor CPO. These 

null results were consistent amongst Asians and Caucasians. 
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CHAPTER 4: FAMILY BASED X-CHROMOSOME HAPLOTYPE ANALYSIS 

USING PARENT INFORMATION  

 

 

Thus far we have discussed and introduced methods for single marker analysis for 

SNPs on the X chromosome. In this chapter we generalize PIX-LRT to account for 

haplotypes. We use the term “haplotypes” loosely, to mean a set of polymorphic loci with 

linkage tight enough that the probability of recombination in one mitosis is effectively 0.0. In 

contrast with the autosome, for complete triads there is no phase ambiguity and haplotypes 

are identifiable on the X chromosome. We take advantage of this property to develop a 

method for identifying X haplotypes that are associated with risk. As before, we demonstrate 

our method by applying it to publically available data from an international consortium of 

genotyped families affected by the birth defect oral cleft. 

4.1 Introduction 

 
Haplotype analysis can be more powerful than SNP analysis in the presence of 

multiple susceptibility alleles in the autosome because simultaneous marker information is 

captured (Akey, Jin et al. 2001, Morris and Kaplan 2002). Sets of SNPs that are in LD within 

a gene-coding region can also have a joint effect on the structure of the protein product so 

such analyses can potentially be highly informative with respect to mechanisms of effect. 

When studying autosomal haplotypes, only the unphased genotypes (the sum of the two 

haplotypes) can typically be measured. For certain genotypes there will be phase ambiguity 

as it can be impossible to reconstruct the haplotype (for example if a person is heterozygous 

at more than one SNP). Therefore, for both family-based studies and non-family based 
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studies of the autosome, methods have been developed to account for phase ambiguity 

(Clayton 1999, Lin and Zeng 2005, Chung, Hauser et al. 2006, Lin and Zeng 2006, Allen and 

Satten 2007). For family-based methods, the TRIad Multi-Marker method (TRIMM), 

introduced by Shi and colleagues (Shi, Umbach et al. 2007) allows for haplotype analysis 

without phase estimation and TRIMMest (Shi, Umbach et al. 2009) extends the method to 

enable estimation of the relative risk for a candidate haplotype.  

By contrast, the X chromosome is unique and wonderful in that, as we will show, if 

complete case-parents genotype data is present there is no phase ambiguity. There are four 

methods available to analyze haplotypes on the X chromosome in nuclear families: the X-

LRT (Zhang, Martin et al. 2008), the X-APL (Chung, Morris et al. 2007), UNPHASED 

(Dudbridge 2008) and HAPLIN (Gjessing and Lie 2006, Jugessur, Skare et al. 2012). 

UNPHASED and HAPLIN were originally developed to analyze variants on the autosomes. 

HAPLIN, X-LRT and UNPHASED are all likelihood-based methods that provide estimates 

of the haplotypes relative risks relative to a reference haplotype. X-APL cannot provide 

haplotype relative risk estimates. X-APL and UNPHASED are designed for nuclear families 

with one or more affected siblings. HAPLIN is designed for case-parent triads but can also be 

used for case-control data and case-parent control-parent triads. X-LRT analyzes case-parent 

triads, and can use sibling data to account for missing genotypes. However, the X-LRT 

method is limited to two-marker haplotypes, and we will not consider it further here. It 

should be noted that, by assuming HWE, all four of these methods can account for missing 

genotype data. Currently, the method we present only handles complete triads, but offers 

robustness because HWE is not required. 

PIX-LRT (the parent-informed X chromosome likelihood ratio test)(Chapter 2) is a 
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method to measure SNP effects of fetally-inherited X chromosome variants. PIX-LRT uses 

information from both the transmission of a variant X allele from parents to affected 

offspring, and information from the parental genotypes. An assumption of “parental allelic 

exchangeability” enables the added parental information to be captured in a way that resists 

bias due to genetic population stratification. Parental exchangeability is here generalized to 

apply to sets of SNPs in high LD as follows: we assume that the three haplotypes carried by 

each set of parents are randomly distributed, two to the mother and one to the father. Here we 

generalize PIX-LRT to allow association studies of haplotype effects for the X. The extended 

approach relies on a permutation-based p-value based on the most significant individual 

haplotype effect. 

 In the following sections, we describe the PIX-LRT extension for testing haplotype 

effects on the X chromosome in case-parent triads. We compare the performance of our 

method to HAPLIN, UNPHASED and X-APL using simulations to assess Type I error rates 

and power. As an illustrative example, we apply PIX-LRT to data from a family-based oral 

cleft dataset to analyze haplotypes on the X chromosome. We conclude with a discussion of 

the advantages and limitations of using PIX-LRT to study haplotypes. 

4.2 Subjects and Methods 

4.2.1 Case-Parent Design and Assumptions 

 We consider a sample of genotyped case-parent triads, where all sampled offspring 

have been diagnosed with the condition of interest. For fathers and sons, the haplotype is 

directly measured, as males only have one X chromosome. For mothers and daughters, the 

measurable genotype is the summed combination of the haplotypes from each of their two X 

chromosomes. We can identify the individual haplotypes in females if we assume there is no 

recombination within the variants considered. To see why, consider that each female 
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offspring has exactly inherited her father’s complete X. If we subtract the father’s genotype 

from the daughter’s (summed) genotype, we can infer her maternally-inherited haplotype at 

any linked set of loci. Hence we can also identify the two haplotypes carried by the mother, 

by subtracting that inferred haplotype from the summed maternal genotype. For triads with 

male offspring (who only have one haplotype) we also know exactly the two haplotypes 

carried by the mother, again by subtraction.  

The assumptions required are similar to those exploited in Chapters 2 and 3. We 

assume there is Mendelian transmission of the haplotype in the source population. We also 

assume parental allelic exchangeability in the source population, as described in Chapter 2. 

We also assume that the variants are not determinants of fetal survival or parental ability to 

reproduce. As before, we exclude the pseudo-autosomal regions and the X-transposed region 

(PARs, XTR), as these regions on the X can meiotically cross over with a homologous region 

on the Y.  

4.2.2 PIX-LRT Extension to Haplotype Analysis 

If we have identified a haplotype of interest prior to the analysis, and are interested in 

testing that specific haplotype against all other haplotypes, the analysis is straightforward. 

We can think of the nominated haplotype as the variant haplotype. Once the individual 

haplotypes are identified (as described above in section 4.2.1), the mothers and daughters 

have either 0,1 or 2 copies of the variant haplotype, while fathers and sons have either 0 or 1. 

This situation then becomes analogous to the di-allelic marker case described in Chapter 2 

and we can proceed with the PIX-LRT analysis, except that the haplotype of interest now 

serves as our variant “allele”. 



 

 

74 

The most common scenario will be an exploratory analysis. Suppose we are 

considering a particular set of SNPs and we have no prior basis for considering one set of 

them to be the candidate haplotype of interest. Then we would need to test for the global null 

that none of the haplotypes for that set of markers is associated with the disease. For 

example, for a set of 4 markers we would need to consider all 16 possible haplotypes in this 

analysis. Our method considers each in turn, takes the best, and then uses a permutation-

based procedure to develop a valid test that accounts for the fact that we are doing 16 

overlapping tests. The method follows three steps. In Step 1, we use subtraction to convert 

the genotypes to the corresponding haplotypes and pairs of haplotypes, as described in 

section 4.2.1 above.  

In Step 2, we identify a test-statistic based on the observed data. For each haplotype, 

we run PIX-LRT on that haplotype compared to all other haplotypes grouped together. Once 

we have dichotomized the haplotypes, as mentioned above, it is straightforward to run the 

PIX-LRT of Chapter 2. For the sake of simplicity, we perform the PIX-LRT analysis with a 

log-additive effect for girls and a one-degree-of-freedom combined test for boy and girls. For 

haplotypes with N di-allelic SNPs there would be 2N tests. However, we may want to apply a 

filter based on frequency, requiring, for example, that we only test the subset of haplotypes 

that have prevalence at least 1%. Suppose a total of G distinct haplotypes survive that filter.  

For those G haplotypes, there are G test statistics and corresponding p-values. We take the 

minimum p-value from those G analyses as our single test statistic. Denote this test statistic 

as T*, which selection also serves to designate the haplotype with the statistically strongest 

association with the disease. From the PIX-LRT analysis, we can also estimate the relative 

risk associated with carrying this haplotype compared to the other haplotypes. 
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In Step 3, we permute the data to compute a permutation-based p-value, using the 

following procedure. For each permutation of the data, we refer back to our parental allelic 

exchangeability assumption, which assumes that under the null hypothesis alleles (or 

haplotypes) are randomly distributed across the parents in a mating pair. Therefore, for each 

family, we randomly assign the three parental haplotypes (denote them M1, M2 and F, 

respectively), to form a permuted mother and father (M1’, M2’ and F’, respectively). Next, for 

triads with sons, we create a permuted son by randomly assigning to him either M1’ or M2’. 

For triads with daughters, we create a permuted daughter by assigning to her F’ and a 

random choice of either M1’ or M2’. Once we have permuted each of the original triads in our 

dataset, we run Step 2 on our permuted dataset and calculate a permutation-based test 

statistic Ti which is the minimum p-value from among the haplotypes being tested (where i is 

the ith permutation run). The Ti permutation-based test statistic values are independently and 

identically distributed from the null distribution, against which we can compare the 

observed-data test statistic, T*. That is, the permutation-based p-value is Pr[Ti < T*], 

estimated by the proportion of simulations that yield a smaller p-value than the observed-data 

result. For our simulations, which assess power at a single location, we run 1000 

permutations.  

In a GWAS of the X chromosome where we use a sliding window to find association 

hot spots, we are only interested in identifying and estimating the very lowest p-values. In 

that setting the following simplification will help to improve computational efficiency. For 

each given set of linked SNPs being tested, we run permutations until a total of 4 

permutation-based test statistics are less than T*. We can estimate our p-value to be 4 divided 

by the number of permutation runs required to reach 4 that fall below T*. For example, if the 
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fourth event where Ti < T* occurs at run number i = 2000, then the estimated p-value is 

4/2000 = 0.002. Since the number of “failures” to the fourth “success” follows a negative 

binomial distribution with parameter equal to the p-value, this ratio gives a maximum 

likelihood estimate of the p-value Pr[Ti < T*]. Under a global null the expected number of 

permutation runs required for each haplotype considered is 8, which will cut down on 

computation time dramatically. If a permutation p-value is estimated by that procedure to be 

less than 10-5, we then run 5,000,000 permutations on this haplotype to get a more accurate 

p-value. For a Bonferroni-corrected p-value of 4x10-6, based on 5,000,000 permutations, if 

the number of permuted test statistics less than the observed test statistics is 20 or less, the 

permutation p-value will be significant.  

4.2.3 Type I Error and Power Calculations 

 We use simulations to compare X-APL, UNPHASED, HAPLIN and PIX-LRT under 

null scenarios with and without HWE. We are interested in testing the global null that no 

haplotype is associated with the disease, compared to an alternative where at least one 

haplotype is associated with the disease. HAPLIN and UNPHASED have a suite of options 

to choose from for selected analyses to be run. For both of these methods, we use their global 

test for comparison. HAPLIN, X-APL and UNPHASED have global tests where the degrees 

of freedom for the chi-squared test statistic equal the number of haplotypes minus one. The 

default for HAPLIN is to remove families that carry haplotypes that have a frequency less 

than 1%. For X-APL and UNPHASED, which also have this parameter option, for 

comparability we set the programs to remove families with these rare haplotypes as well. 

This option has the potential to increase the power to detect an effect, as the number of tests, 

and hence the degrees of freedom, decreases. HAPLIN also allows the user to specify the 
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relationship between the effect of a male carrying one copy of the variant and a female 

carrying one or two copies. We set the “comb.sex” option to “double”, which sets the effect 

of males having one copy of the variant equal to that for females having two, adjustsing for X 

inactivation. 

 For the null simulation under HWE, four markers are simulated to generate 16 

haplotypes. The haplotype frequencies we use for the null simulations are shown in Table 

4.1, scenario 1. Each dataset contains 1000 families and we simulate 1000 datasets. Males 

and females have the same risk of disease. To simulate the scenario in which HWE is 

violated, we include two genetically different subpopulations. The first subpopulation has the 

haplotype frequencies as in scenario 1 of Table 4.1, while the second population has 

frequencies as in scenario 2, as shown. The risk of disease in the second population is three 

times that in the first population. Again, 1000 simulations are run on a population of 1000 

families. 

Table 4.1: Haplotype frequencies for the different scenarios used in the simulations. For 

the haplotype notation, “1” refers to the SNP in the haplotype carrying the minor allele.  For 

example, “1100”, is the haplotype where the first two SNPs carry the minor allele, and the 

second two SNPs do not. When a risk haplotype is involved, haplotype “1100”, shown in 

bold, is the risk haplotype. 
Haplotype Frequencies 

 Scenario 1 Scenario 2 Scenario 3 

0000 0.2401 0.4096 0.343 

0001 0.1029 0.1024 0 

0010 0.1029 0.1024 0.147 

0011 0.0441 0.0256 0 

0100 0.1029 0.1024 0.147 

0101 0.0441 0.0256 0 

0110 0.0441 0.0256 0.063 

0111 0.0189 0.0064 0 

1000 0.1029 0.1024 0.147 

1001 0.0441 0.0256 0 

1010 0.0441 0.0256 0.063 

1011 0.0189 0.0064 0 

1100 0.0441 0.0256 0.063 

1101 0.0189 0.0064 0 

1110 0.0189 0.0064 0.027 

1111 0.0081 0.0016 0 
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 We simulated 1000 data sets to estimate the power at a 0.05 alpha level under a range 

of alternative scenarios. We assume HWE and simulated 1000 families in each data set. We 

consider six risk scenarios (referred to as A-F).  In all risk scenarios, we designate haplotype 

“1100” to be the risk haplotype (with several vectors of haplotype frequencies, as shown in 

Table 4.1). In scenarios A and B, the relative risk associated with disease for a boy carrying 

the risk haplotype compared to the other haplotypes (𝑅𝐵) is 1.5.  For girls, we assume a log-

additive models, so that the relative risk associated with a disease for a girl carrying one copy 

of a risk haplotype compared to the nonrisk haplotypes (𝑅𝐺1
) is square root of 1.5 and for a 

girl carrying two copies (𝑅𝐺2
) is 1.5. In scenarios C and D, we consider a model where PIX-

LRT, HAPLIN and UNPHASED are misspecified. In simulating the data, we set the true 

𝑅𝐵 = 𝑅𝐺2
= 1.5 and 𝑅𝐺1

= 1. The three methods assume a log-additive effect in girls, 

whereas the true model is recessive. In scenarios E and F, the “risk” haplotype has a 

protective effect. We set 𝑅𝐺2
= 𝑅𝐺1

2 = 𝑅𝐵 = 1/1.5. 

In the scenarios A, C and E, all 16 haplotypes can occur in the population. We 

initially set our haplotype frequencies to be the same as the null situation under HWE above 

(scenario 1 in Table 4.1). In the scenarios B, D and F, only 8 haplotypes can occur in the 

population. To achieve this we give the 4th SNP a minor allele frequency of zero (scenario 3 

in Table 4.1). We evaluate the power under a range of risk haplotype frequencies, 0.05, 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. After modifying the risk haplotype frequency, we 

rescale the remaining haplotypes so the sum of all frequencies equals 1. Lastly, for the 

simulations PIX-LRT identifies as significant at 0.05, we calculate how often the designated 

risk haplotype (“1100”) is nominated as the risk haplotype, i.e. is the one with the minimum 
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individual p-value (T*). 

4.2.4 Oral Cleft Data 

We apply the haplotype-based PIX-LRT to the X chromosome data from the 

International Consortium to Identify Genes and Interactions Controlling Oral Clefts, as was 

described in Chapter 2.2.5. A complete haplotype analysis has not previously been performed 

on this dataset; however, Patel et al. (Patel, Beaty et al. 2013) previously analyzed a selection 

of the X haplotypes using those data. They used UNPHASED (Dudbridge 2008) to analyze 

combinations of the 25 SNPs in the Duchenne muscular dystrophy (DMD) gene, because 

individual SNPs in that gene showed strong associations for the phenotype cleft lip with or 

without cleft palate (CL/P).  

For our analysis, we here consider only complete triads of Asian (including Pacific 

Islanders) and Caucasian ethnicities. We analyze Asian and Caucasians family triads 

separately and combined. Additionally, we test haplotypes separately for cleft palate only 

(CPO) and cleft lip with or without palate (CL/P), based on evidence that those phenotypes 

have distinct genetic etiologies (Murray 2002). The gender and cleft subtype breakdown is 

shown in Table 4.2.  Notice that the two phenotypes differ in the sex ratio of affected 

offspring. 

 

Table 4.2: Complete case-parent families by cleft type, gender and ancestry.  
 European Asian Total 

 Male Female Male Female Male Female 

Cleft Type       

  CL/P 424 240 575 312 999 552 

  CPO 105 107 93 140 198 247 

Total by gender 529 347 668 452 1197 799 

Total 876  1120  1996  

CL/P is cleft lip with or without palate, CPO is cleft palate only 
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We use a sliding window approach to analyze haplotypes, by using in turn sets of 4 

neighboring (in the panel available) SNPs on the X chromosome. We first filter down the 

panel by considering only those SNPs with a minor allele frequency in parents greater than 

0.05, and also restricting to those with a unique mapping from the Illumina Human610-Quad 

v1.0 Build 36 to Build 37. We also exclude SNPs for which we had genotyping concerns 

(rs17269319, rs3747355, rs5906541, rs12558269) (see Chapter 2 for details). As a result, 

there are 10,571 SNPs that pass this screening among Asians, 12,417 SNPs amongst 

Caucasians, and 12,365 SNPs amongst the combined populations. For 4-SNP moving 

window haplotype analyses, the number of haplotype tests is then the total number of SNPs 

minus 3. The appropriate alpha for a Bonferroni-corrected family-wise error rate of 0.05 for 

Asians, Caucasians and the combined sample is consequently 4.73x10-6, 4.03x10-6 and 4.04 

x10-6, respectively. 

As discussed above, we are only interested in identifying haplotypes with strong 

evidence for association, and consequently we do not need to perform a large number of 

permutations for each set of 4 SNPs. For each haplotype we run permutations until 4 of the 

permutation test statistics are less than the observed test statistic. If a permutation p-value is 

less than 10-5, we then run additional permutations on this haplotype until the total is 

5,000,000 to get a more accurate p-value. If the number of permuted test statistics less than 

the observed test statistics is 23 or fewer for the Asian population or 20 or fewer for the 

Caucasian of combined population, the permutation p-value will be significant at the 

Bonferroni-corrected p-value. To display results, we construct plots of -log10(p-value) against 

the marker position of the first SNP in the haplotype along the X chromosome (as determined 

by Build 37).   
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4.3 Results 

4.3.1 Simulation Output 

Under a null scenario of no association between the haplotype and disease, we used 

computer simulations to compare PIX-LRT, HAPLIN, X-APL and UNPHASED. Based on 

2000 data sets with 1000 families each we ran simulations at a nominal alpha of 0.05 under a 

scenario where HWE was imposed, and then repeated that for a scenario where there was 

instead population stratification. The results are shown in Table 4.3. When HWE is imposed, 

the type I error rates of all four methods are close to the nominal level 0.05. When there is 

population stratification and HWE is violated, PIX-LRT, HAPLIN and X-APL again have 

type I errors close to the nominal levels. UNPHASED however appears to have inflated type 

I error, with an estimate of 0.062 (SE= 0.0064).   

 

Table 4.3: Simulated Type I error rates for X-haplotype methods. 2000 datasets 

simulated with1000 triads for a null variant when Hardy-Weinberg equilibrium is assumed 

(HWE) and when it is violated (no HWE). 
 PIX-LRT HAPLIN X-APL UNPHASED 

HWE 0.046 0.052 0.055 0.058 

NO HWE 0.055 0.045 0.053 0.065 

 

We next compared the power of the four methods under different risk scenarios, with 

results shown in Figure 4.1. In three risk scenarios (A,C and E), we consider four markers 

that produce 16 haplotypes in the simulated population. HWE was imposed for all. The 

frequency of the risk haplotype in the population ranges from 0.05 to 0.9. In all three of these 

scenarios, although the risk models differ, the relationship between the 4 methods is similar. 

PIX-LRT generally (except when frequency of the risk haplotype is very small or large) 

outperforms HAPLIN, X-APL and UNPHASED. Also, X-APL and UNPHASED perform 

similarly. 
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In scenarios B, D, and F, four markers produce only 8 haplotypes in the simulated 

population. PIX-LRT still outperforms X-APL and UNPHASED (Figure 4.1). However, we 

see that the difference in power between HAPLIN and PIX-LRT is very small. In this 

scenario, X-APL, UNPHASED and HAPLIN analyses are all based on a 7 degree-of-

freedom chi-squared test, compared to the 15 degree-of-freedom test above. As a result, 

UNPHASED and HAPLIN perform much better in this scenario. We do not see much 

improvement in X-APL. PIX-LRT also has greater power when there are fewer haplotypes 

present. 

Restricting attention to the subset of simulations where the PIX-LRT analysis was 

significant at an alpha of 0.05, we wanted to see how often the risk haplotype was correctly 

identified. PIX-LRT accurately identified the true risk haplotype with high accuracy, as 

shown in Figure 4.2, which shows the fraction of times the risk haplotype was identified as 

the most significant result. PIX-LRT generally has higher than 90% accuracy. Not 

surprisingly, the accuracy appears to decrease with the power.    

4.3.2 Oral Cleft 

 The results of the PIX-LRT haplotype analyses along the X chromosome for oral cleft 

are shown in Figure 4.3. In the Caucasian subsample alone, no significant associations were 

detected between any haplotypes and either CL/P or CPO; no p-values fell below the 

Bonferroni-corrected cut-off of 4.03x10-6. We also did not find significant results between 

the total population and CL/P and the Asian population and CPO.   

However, we did identify three haplotypes with significant association with oral cleft. 

Details of these three haplotypes are shown in Table 4.4. The three haplotypes all had p-

values beneath the 0.05 Bonferroni-adjusted significance level within each race by oral cleft 
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analysis. However, if we were to adjust for all six analyses (three race breakdowns and two 

forms of cleft), these results would not be significant. 

 

Figure 4.1: Power estimates as a function of risk haplotype frequency. The level of 

significance is set at alpha = 0.05. Each analysis is based on 1000 datasets consisting of 1000 

triads with affected sons and daughters and a designated risk haplotype “1100”. (A,B) 

𝑅𝐺1
2 = 𝑅𝐺2 = 𝑅𝐵 = 1.5. (C,D) 𝑅𝐺1

2 = 1, 𝑅𝐺2 = 𝑅𝐵 = 1.5 (E,F) 𝑅𝐺1
2 = 𝑅𝐺2 = 𝑅𝐵 = 1/1.5. For 

scenarios A,C,E, all 16 haplotypes from a 4 SNP window exist in the population. For 

scenarios B,D,F, 8 haplotypes from a 4 SNP window exist in the population. Solid line 

represents PIX-LRT. Dashed line represents HAPLIN. Dotted line represents X-APL.  

Dot/dash line represent UNPHASED. 
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Figure 4.2: Fraction of times PIX-LRT nominates the risk haplotype amongst 

significant simulations. Each analysis is based on 1000 datasets consisting of 1000 triads 

with affected sons and daughters and a designated risk haplotype “1100”. (A,B) 𝑅𝐺1
2 =

𝑅𝐺2 = 𝑅𝐵 = 1.5. (C,D) 𝑅𝐺1
2 = 1, 𝑅𝐺2 = 𝑅𝐵 = 1.5 (E,F) 𝑅𝐺1

2 = 𝑅𝐺2 = 𝑅𝐵 = 1/1.5. For 

scenarios A,C,E, all 16 haplotypes from a 4 SNP window exist in the population. For 

scenarios B,D,F, 8 haplotypes from a 4 SNP window exist in the population.  
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Figure 4.3: Individual haplotype significance of the cleft examples.  The p-values (shown 

as – log10(𝑝)) are calculated from PIX-LRT applied to haplotypes consisted of 4 SNPs using 

dbGaP data from families with oral cleft. Models were run on cleft lip with or without cleft 

palate families amongst (A) Asians and Caucasians, (C) Asians only, (E) Caucasians only, as 

well as cleft palate only families amongst (B) Asian and Caucasians, (D) Asians only, (F) 

Caucasians only. The dashed horizontal lines are the Bonferroni-corrected p-values at an 

alpha of 0.05, where the adjustment is specific to the panel of findings. 
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Table 4.4: Most significant haplotypes associated with oral cleft based on PIX-LRT.  

Haplotypes shown here had an initial permutation based p-value less than 10-5. Subsequently, 

a p-value based on 5 million permutations was calculated (P-Values). The 4 SNPs in the 

haplotype and the frequency of the risk haplotype (Freq) in the parents and the locationA are 

shown. The populations (Pop) the association was seen in, and whether the association was 

with cleft lip with or without palate (CL/P) or cleft palate only (CPO) are displayed. 
SNP1 SNP2 SNP3 SNP4  P-Value Location Freq Pop Cleft 

rs17002006 rs5976286 rs5931572 rs2886973 3.2x10-6 138232190- 
138236688B 

0.020 Total CPO 

rs12843815 rs6627483 rs5970136 rs5970137 2.4x10-6 151022400- 
151040060C 

0.026 Asian CL/P 

rs6627483 rs5970136 rs5970137 rs964180 2.6x10-6 151038722- 

151041999C 

0.027 Asian CL/P 

ALocation is based on the position of the first and last SNP in the haplotype based Illumina Human610-Quad 

v1.0 Build 37. 
BThese 4 SNPs are located in the FGF13 gene. 
CThese 4 SNPs are located between genes CNGA2 and MAGEA4. 

  

The first of these haplotypes consists of the SNPs rs17002006, rs5976286, rs5931572, 

and rs2886973. If we denote “1” to represent the minor allele of a SNP, then the haplotype 

“1101” is associated with CPO in the combined Asian and Caucasian populations (p-value = 

3.2x10-6) (see Figure 4.3B and Table 4.4).  This haplotype shows evidence of a strong 

protective effect in both males and females (relative risks are 0.01 and 0 for girls and boys 

respectively. The relative risk of 0 in boy is because no affected sons carried that haplotype, 

although fathers and mothers did). The haplotype spans 4498 base pairs on the Fibroblast 

Growth Factor 13 gene (FGF13). None of the 4 SNPs in this haplotype displays a marginal 

SNP association with CPO (all 4 p-values are greater than 0.05). The haplotype also shows a 

strong, though not significant, protective association in the Asian population alone (p-value 

=3.9x10-5). Additionally, the overlapping haplotype consisting of SNPs rs5976286, 

rs5931572, rs2886973, and rs2213408 has a strong protective association in the combined 

population, with a p-value of 1.4x10-5.  
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Table 4.5: Cross table of SNPs s6627483 and rs5970137. Number of fathers, mothers, sons 

and daughters who carry each combination of SNPs s6627483 and rs5970137 in complete 

families. NA refers to missing genotype.0,1,2 refer to the number of minor allele copies 

carried. 
                    rs6627483 rs5970137 

0 1 2 NA 

 0 1639 1 - 0 

Fathers 1 267 0 - 0 

 NA 0 89 - 0 

      

 0 983 0 - 0 

Sons 1 156 0 - 0 

 NA 1 57 - 7 

      

 0 1339 143 0 1 

Mothers 1 443 0 0 0 

 2 36 24 0 0 

 NA 0 0 10 0 

      

 0 525 56 0 0 

Daughters 1 184 0 0 0 

 2 13 16 0 0 

 NA 1 0 4 0 

 

In the Asian population we identified two overlapping 4-SNP haplotypes with a 

strong positive association with cleft lip with or without palate (see Figure 4.3C and Table 

4.4). These haplotypes consisted of the five SNPs rs12843815, rs6627483, rs5970136, 

rs5970137, and rs964180 (with rs6627483, rs5970136 and rs5970137 in both). These SNPs 

are in the intergenic regions of melanoma antigen family A, 4 (MAGEA4) and cyclic 

nucleotide gated channel alpha 2 (CNGA2).  Upon inspecting these haplotypes we noted that 

in complete families (when no genotypes were missing for any of the 4 SNPs), there were no 

males who carried the minor allele of rs5970137. However, when we looked at complete 

families for the single SNPs, males did carry the minor allele. A cross-table of the genotypes 

of rs5970137 and rs6627483 revealed that in all but one instance where a male carried the 

minor allele of rs5970137, the rs6627483 genotype was missing. In 147 males who had a 

missing rs6627483 genotype, but non-missing rs5970137 genotype, all but one carried the 

minor allele at rs5970137 (Table 4.5). The two loci are 1338 bases apart and it is unclear why 
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the genotype at one would affect the genotype assayability at the other. This pattern of 

missingness raises quality control concerns for haplotypes containing rs6627483 and 

rs5970137 as well as doubts over the significance of these two significant findings.  

4.4 Discussion 

 
 We have previously (Chapter 2) introduced PIX-LRT, a method to analyze SNPs on 

the X chromosome for a possible association with risk of disease when inherited by the fetus. 

In this chapter we have generalized PIX-LRT from a single-SNP analysis method to a 

haplotype method. The haplotype analysis constructs a permutation-based p-value based on 

the most significant individual haplotype effect.  

As shown in the results section, we used simulations to compare PIX-LRT to other 

family-based haplotype analysis methods for the X chromosome: HAPLIN, X-APL and 

UNPHASED. Under a null scenario in which no haplotype is associated with the disease, 

when the population is in the Hardy Weinberg equilibrium, all four methods displayed 

appropriate Type I error. When population stratification was present, PIX-LRT, X-APL and 

HAPLIN displayed appropriate Type I error under the null.  UNPHASED had slightly 

inflated Type I error.  

When we compared the power to detect a haplotype effect on the X chromosome for 

the four methods, PIX-LRT performed strongly. Using simulations, we found that when 16 

haplotypes (consisting of 4 SNPs) were present in the population, and one haplotype 

conferred risk, PIX-LRT outperformed the other methods. HAPLIN had the second highest 

power, followed by X-APL and lastly, UNPHASED.  When only 8 haplotypes were present, 

PIX-LRT and HAPLIN performed similarly, while X-APL and UNPHASED had lower 

power. HAPLIN, UNPHASED and X-APL analyses are based on chi-squared statistics with 
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the degrees of freedom equal to the number of haplotypes minus 1.  Therefore, it is not 

surprising to see that the power advantage of PIX-LRT is greater when the number of 

haplotypes is also greater.  

There are some areas in which our ongoing research will improve upon the current 

haplotype-based PIX-LRT. If a haplotype affects risk through a maternal effect, PIX-LRT 

results will be biased. In Chapter 3 we showed how for a single-SNP analysis PIX-LRT 

could be extended to accommodate maternal effects. We plan to similarly extend the 

haplotype PIX-LRT to identify and measure maternal effects. Furthermore, although in this 

chapter we have shown examples involving one single risk haplotype, our ongoing research 

is focused on improving the ability of PIX-LRT to detect an effect when there are multiple 

risk haplotypes. Lastly, the haplotype-based PIX-LRT only uses complete families.  In the 

single SNP analysis we used the EM algorithm to accommodate missing families, we could 

similarly incorporate the EM algorithm into the haplotype analysis. 

 We applied PIX-LRT to the X chromosome of a dataset from an international 

consortium of genotyped families affected by the birth defect oral cleft. We looked at all 

haplotypes containing 4 sequential SNPs in the available platform. We identified a novel 

haplotype on the FGF13 gene that has a significant association with cleft palate only in the 

combined Asian and Caucasian population. The haplotype showed a strongly protective 

effect in the population.  

Additionally, in the Asian population we found 2 overlapping haplotypes with a 

significant association with cleft lip with or without palate. However, upon further inspection 

of these haplotypes and their SNPs, we noticed an odd relationship between two of the SNPs, 

whenever males had the minor allele for one SNP, the genotype was missing the second 
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SNP. This finding raises quality control concerns for the dataset over this region of the 

chromosome, and highlights the importance of a careful QC critique of apparently significant 

findings. 
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CHAPTER 5: CONCLUSION 

 

In this dissertation, we have introduced a new method for studying the effects of 

genetic variants on the X chromosome in case-parent triads. The X chromosome is often 

overlooked in genome wide association studies and we aim to introduce a powerful and 

straightforward method to analyze it for causative variants. Most X-chromosome methods for 

family data use transmission-based information to test for association between a variant and 

disease. Our new method, the “parent-informed X-chromosome likelihood ratio test” (PIX-

LRT), takes advantage of information in the parental genotypes in addition to transmission-

based information. This parental information has not previously been exploited by other 

methods. Our method is able to use this information robustly under an assumption of parental 

allelic exchangeability. This assumption is weaker than an assumption of Hardy-Weinberg 

equilibrium, as it allows for population stratification.   

In Chapter 2 we introduced the “sex-stratified X-chromosome likelihood ratio test” 

(SSX-LRT), an analysis tool that can be used when the assumption of parental allelic 

exchangeability is violated and outlined the details of PIX-LRT for a di-allelic single 

nucleotide polymorphism (SNP). We demonstrated the increased power PIX-LRT has over 

the transmission-based methods, how relative risks are calculated and how the EM algorithm 

can be used to include triads with missing genotype data. 

In Chapter 3 we demonstrated how PIX-LRT can be extended to analyze maternal 

genetic effects. By taking advantage of an assumption of allelic exchangeability, the method 
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is able to distinguish such maternal effects from effects due to fetal inherited variants, and 

can provide estimates of relative risks. 

 In Chapter 4 we generalized the PIX-LRT method to study haplotype effects. We 

used a permutation-based method to calculate the p-value for haplotypes. For scenarios with 

a single risk haplotype, PIX-LRT often outperforms other X chromosome haplotype 

methods. We commented on future research in this area, which includes maternal haplotype 

effects and adjusting the method to account for scenarios with multiple risk haplotypes. 

Lastly, in each Chapter 2-4, we showed how the method could be applied to a dataset 

through use of a publically available oral cleft dataset. In Chapter 2, we found a SNP located 

between genes EFNB1 and PJA1 with a minor allele that showed a strong protective effect 

for the cleft lip with or without cleft palate phenotype.  In Chapter 3, we found that within the 

dataset there was no evidence of a maternal genetic effect. In Chapter 4, we identified a 

haplotype on the FGF13 gene with evidence of a protective effect for the cleft palate only 

phenotype. In addition, we demonstrated the importance of checking the underlying 

assumptions of the models and the quality of the data used before interpreting analytical 

results. We were able to identify SNPs and haplotypes that had been reported as risk-related 

but that raised QC concerns. 
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APPENDIX A: TEST FOR THE PARENTAL ALLELIC EXCHANGEABILITY 

ASSUMPTION  

 

For the following, as in the main paper, we define M and F as the number of variant 

alleles carried by the mother and father. To test for parental allelic exchangeability define:  

 
   𝑄1 = Pr(𝑀 = 1|M + F = 1) 
   𝑄2 = Pr(𝑀 = 1|M + F = 2) 

 

If we refer to Table 1 in the main paper, then 𝑄1 =
2 exp(𝛼1)

1+2 exp(𝛼1)
  and 𝑄2 =

2 exp(𝛼2)

1+2 exp(𝛼2)
. Under 

the null of parental allelic exchangeability, we expect: 

 

Pr(𝑀 = 1|M + F = 1) = 2 Pr(𝑀 = 0|M + F = 1) 
Pr(𝑀 = 1|M + F = 2) = 2 Pr(𝑀 = 2|M + F = 2) 

 

Therefore, we are interested in the following test: 

 

𝐻0: 𝑄1 = 𝑄2 = 2/3   
𝐻𝐴: 𝑄1 ≠ 2/3  or  𝑄2 ≠ 2/3   

 

Define: 

 n1 = the number of parents where M+F=1 

 x01 = the number of parents where M+F=1 and M = 0  

 x10 = the number of parents where M+F=1 and M = 1 

 n2 = the number of parents where M+F=2 

 x20 = the number of parents where M+F=2 and M=2 

 x11 = the number of parents where M+F=2 and M=1 

 

 

Then we have the following binomial model: 

 

𝑝(𝑥10, 𝑥11|𝑛1, 𝑛2, 𝑄1, 𝑄2) =  (
𝑛1

𝑥10
) (𝑄1)𝑥10(1 − 𝑄1)𝑛1−𝑥10  (

𝑛2

𝑥11
) (𝑄2)𝑥11(1 − 𝑄2)𝑛2−𝑥11 

=  (
𝑛1

𝑥10
) (𝑄1)𝑥10(1 − 𝑄1)𝑥01  (

𝑛2

𝑥11
) (𝑄2)𝑥11(1 − 𝑄2)𝑥20   

 

We differentiate the log likelihood: 

 

ℓ~𝑥10 log(𝑄1) + 𝑥01log(1 − 𝑄1) + 𝑥11 log(𝑄2) + 𝑥20log(1 − 𝑄2) 
 

The maximum likelihood estimates are 𝑄1and𝑄2are: 

𝑄̂1 =  
𝑥10

𝑥10 + 𝑥01
=

𝑥10

𝑛1
 

 

𝑄̂2 =  
𝑥11

𝑥11 + 𝑥20
=

𝑥11

𝑛2
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The likelihood ratio test statistic (LRTS) is then as follows: 

 

𝐿𝑅𝑇𝑆 = −2 (ℓ (𝑄1 = 𝑄2 =
2

3
) − ℓ(𝑄1 =  𝑄̂1, 𝑄2 =  𝑄̂2)) 

= −2 (𝑥10log (
2

3
) + 𝑥01log (

1

3
) + 𝑥11log (

2

3
) + 𝑥20log (

1

3
) −𝑥10log(𝑄̂1)

− 𝑥01log(1 − 𝑄̂1) −  𝑥11log(𝑄̂2) − 𝑥20log(1 − 𝑄̂2)) 

= −2 (𝑥10log (
2

3𝑄̂1

) + 𝑥01log (
1

3(1 − 𝑄̂1)
) +  𝑥11log (

2

3𝑄̂2

)

+ 𝑥20log (
1

3(1 − 𝑄̂2)
)) 

= −2 (𝑥10log (
2𝑛1

3𝑥10
) + 𝑥01log (

𝑛1

3𝑥01
) + 𝑥11log (

2𝑛2

3𝑥11
) + 𝑥20log (

𝑛2

3𝑥20
)) 

 

The 𝐿𝑅𝑇𝑆 is distributed chi-squared with 2 degree of freedom under parental allelic 

exchangeability. 



 

 

95 

APPENDIX B: CLOSED FORM SOLUTIONS FOR THE SSX-LRT 

 

As in the main paper, we define M, F, and C as the number of variant alleles carried 

by the mother, father and child and we define the relative risk of being affected (aff), 

conditional on mating type (M, F) to control for population stratification, as: 

  

  𝑅𝐵 = Pr(aff|boy, 𝐶 = 1) /Pr (aff|boy, 𝐶 = 0) 
 

𝑅𝐺1 = Pr(aff|girl, 𝐶 = 1) /Pr (aff|girl, 𝐶 = 0) 
 

            𝑅𝐺2 = 𝑅𝐺1 ∗ Pr(aff|girl, 𝐶 = 2) /Pr (aff|girl, 𝐶 = 1) 

 

 

B.1 Triads with affected sons 

 

We are interested in the following hypothesis test: 

 

𝐻0: 𝑅𝐵 = 1 
𝐻𝐴: 𝑅𝐵 ≠ 1 

 

Define: 

 n = the number of triads with a heterozygous mother (M=1) 

 x = the number of triads with a heterozygous mother and an affected son with the 

variant allele (M=1, C=1) 

 

Referring to Table 2 in the main paper, we have the following binomial model: 

 

               𝑝(𝑥|𝑛, 𝑅𝐵) =  (
𝑛

𝑥
) (

𝑅𝐵

1 + 𝑅𝐵
)

𝑥

(
1

1 + 𝑅𝐵
)

𝑛−𝑥

                                                      (B. 1)  

 

To find the maximum likelihood estimate of 𝑅𝐵 (𝑅̂𝐵), we differentiate the log likelihood 

function (ignoring the constant terms) that corresponds to equation B.1, set it to 0 and solve 

for 𝑅̂𝐵: 

 

ℓ~𝑥 log(𝑅𝐵) − 𝑛log(1 + 𝑅𝐵) 
  
𝑑ℓ

𝑑𝑅𝐵
=  

𝑥

𝑅𝐵
−

𝑛

1 + 𝑅𝐵
  

 

0 =  
𝑥

𝑅̂𝐵

−
𝑛

1 + 𝑅̂𝐵

  

 
= (1 + 𝑅̂𝐵)𝑥 − 𝑅̂𝐵𝑛 

 

𝑅̂𝐵 =  
𝑥

𝑛 − 𝑥
 



 

 

96 

The likelihood ratio test statistic (LRTS) is then as follows: 

 

𝐿𝑅𝑇𝑆 = −2 (ℓ(𝑅𝐵 = 1) − ℓ(𝑅𝐵 = 𝑅̂𝐵)) 

= −2 (𝑥log (
1

2
) + (𝑛 − 𝑥)log (

1

2
) − 𝑥log (

𝑅̂𝐵

1 + 𝑅̂𝐵

) – (𝑛 − 𝑥)log (
1

1 + 𝑅̂𝐵

)) 

= −2 (𝑛log (
1

2
) − 𝑥log(𝑅̂𝐵) + 𝑛log(1 + 𝑅̂𝐵)) 

= −2 (𝑛 log (
𝑛

2(𝑛 − 𝑥)
) – 𝑥log (

𝑥

𝑛 − 𝑥
) ) 

 

The 𝐿𝑅𝑇𝑆 is distributed chi-squared with 1 degree of freedom under the null. 

 

 

B.2 Triads with affected daughters 

 

We are interested in the following hypothesis:  

 

𝐻0: 𝑅𝐺1 = 𝑅𝐺2 = 1 
𝐻𝐴: 𝑅𝐺1 ≠ 1 or  𝑅𝐺2 ≠ 1 

 

Define: 

 n1 = the number of triads with M=1 and F=0 

 x1 = the number of triads with M=1, F=0 and C = 1 

 n2 = the number of triads with M=1 and F=1 

 x2 = the number of triads with M=1, F=1 and C = 2 

 

Referring to Table 2 in the main paper, we have the following binomial model: 

 

𝑝(𝑥1, 𝑥2|𝑛1, 𝑛2, 𝑅𝐺1, 𝑅𝐺2)

=  (
𝑛1

𝑥1
) (

𝑅𝐺1

1 + 𝑅𝐺1
)

𝑥1

(
1

1 + 𝑅𝐺1
)

𝑛1−𝑥1

(
𝑛2

𝑥2
) (

𝑅𝐺2

𝑅𝐺1 + 𝑅𝐺2
)

𝑥2

(
𝑅𝐺1

𝑅𝐺1 + 𝑅𝐺2
)

𝑛2−𝑥2

       (B. 2) 

 

To find the maximum likelihood estimate of 𝑅𝐺1and 𝑅𝐺2 (𝑅̂𝐺1 and 𝑅̂𝐺2), we differentiate the 

log likelihood function that corresponds to equation B.2, set it to 0 and solve for 𝑅̂𝐺1 and 

𝑅̂𝐺2: 

 

ℓ~(𝑥1 + 𝑛2 − 𝑥2) log(𝑅𝐺1) − 𝑛1log(1 + 𝑅𝐺1) + (𝑥2) log(𝑅𝐺2) − 𝑛2 log(𝑅𝐺1 + 𝑅𝐺2) 
 

To solve for 𝑅̂𝐺2: 
 

𝑑ℓ

𝑑𝑅𝐺2
=  

𝑥2

𝑅𝐺2
−

𝑛2

𝑅𝐺1 + 𝑅𝐺2
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0 =
𝑥2

𝑅𝐺2
−

𝑛2

𝑅𝐺1 + 𝑅𝐺2
 

 
= (𝑅𝐺1 + 𝑅𝐺2)(𝑥2) − 𝑅𝐺2(𝑛2) 

 

𝑅̂𝐺2 =  
𝑅𝐺1(𝑥2)

𝑛2 − 𝑥2
 

 

To solve for 𝑅̂𝐺1: 
 

𝑑ℓ

𝑑𝑅𝐺1
=  

𝑥1 + 𝑛2 − 𝑥2

𝑅𝐺1
−

𝑛1

1 + 𝑅𝐺1
−

𝑛2

𝑅1 + 𝑅̂𝐺2

 

 

=
𝑥1 + 𝑛2 − 𝑥2

𝑅𝐺1
−

𝑛1

1 + 𝑅𝐺1
−

𝑛2

𝑅𝐺1 (1 +
𝑥2

𝑛2 − 𝑥2
)

  

 

=
𝑥1 + 𝑛2 − 𝑥2

𝑅𝐺1
−

𝑛1

1 + 𝑅𝐺1
−

𝑛2 − 𝑥2

𝑅𝐺1
 

 

=
𝑥1

𝑅𝐺1
−

𝑛1

1 + 𝑅𝐺1
 

 
0 = (1 + 𝑅̂𝐺1)𝑥1 − 𝑅̂𝐺1𝑛1 

 

𝑅̂𝐺1 =
𝑥1

𝑛1 − 𝑥1
 

 

So, given 𝑅̂𝐺1: 
 

    𝑅̂𝐺2 =  
𝑥1𝑥2

(𝑛1 − 𝑥1)(𝑛2 − 𝑥2)
 

 
The likelihood ratio test statistic (to be compared to a 2 DF chi-squared) is then as follows: 

 

𝐿𝑅𝑇𝑆 = −2 (ℓ(𝑅𝐺1 = 𝑅𝐺2 = 1) − ℓ(𝑅𝐺1 = 𝑅̂𝐺1, 𝑅𝐺2 = 𝑅̂𝐺2)) 

= −2 (𝑥1log (
1

2
) + (𝑛1 − 𝑥1)log (

1

2
) + 𝑥2log (

1

2
) + (𝑛2 − 𝑥2)log (

1

2
)

− 𝑥1log (
𝑅̂𝐺1

1 + 𝑅̂𝐺1

) – (𝑛1 − 𝑥1)log (
1

1 + 𝑅̂𝐺1

) − 𝑥2log (
𝑅̂𝐺2

𝑅̂𝐺1 + 𝑅̂𝐺2

)

− (𝑛2 − 𝑥2)log (
𝑅̂𝐺1

𝑅̂𝐺1 + 𝑅̂𝐺2

) ) 

= −2 (𝑛1log (
1 + 𝑅̂𝐺1

2
) + 𝑛2log (

𝑅̂𝐺1 + 𝑅̂𝐺2

2𝑅̂𝐺1

) − 𝑥1 log(𝑅̂𝐺1) − 𝑥2 log (
𝑅̂𝐺2

𝑅̂𝐺1

)) 
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= −2 (𝑛1log (
𝑛1

2(𝑛1 − 𝑥1)
) + 𝑛2log (

𝑛2

2(𝑛2 − 𝑥2)
) − 𝑥1log (

𝑥1

𝑛1 − 𝑥1
)

− 𝑥2 log (
𝑥2

𝑛2 − 𝑥2
)) 

 

 

We can also consider a log-additive model such that: 

 

𝐻0: 𝑅𝐺1 = 𝑅𝐺2 = 1 
𝐻𝐴: 𝑅𝐺1

2 = 𝑅𝐺2 ≠ 1 

 
Then we have the following binomial model: 

 

𝑝(𝑥1, 𝑥2|𝑛1, 𝑛2, 𝑅1, 𝑅2)    

        =  (
𝑛1

𝑥1
) (

𝑅𝐺1

1 + 𝑅𝐺1
)

𝑥1

(
1

1 + 𝑅𝐺1
)

𝑛1−𝑥1

(
𝑛2

𝑥2
) (

𝑅𝐺2

𝑅𝐺1 + 𝑅𝐺2
)

𝑥2

(
𝑅𝐺1

𝑅𝐺1 + 𝑅𝐺2
)

𝑛2−𝑥2

  

= (
𝑛1

𝑥1
) (

𝑅𝐺1

1 + 𝑅𝐺1
)

𝑥1

(
1

1 + 𝑅𝐺1
)

𝑛1−𝑥1

(
𝑛2

𝑥2
) (

𝑅𝐺1
2

𝑅𝐺1 + 𝑅𝐺1
2 )

𝑥2

(
𝑅𝐺1

𝑅𝐺1 + 𝑅𝐺1
2 )

𝑛2−𝑥2

 

= (
𝑛1

𝑥1
) (

𝑅𝐺1

1 + 𝑅𝐺1
)

𝑥1

(
1

1 + 𝑅𝐺1
)

𝑛1−𝑥1

(
𝑛2

𝑥2
) (

𝑅𝐺1

1 + 𝑅𝐺1
)

𝑥2

(
1

1 + 𝑅𝐺1
)

𝑛2−𝑥2

 

= (
𝑛1

𝑥1
) (

𝑛2

𝑥2
) (

𝑅𝐺1

1 + 𝑅𝐺1
)

𝑥1+𝑥2

(
1

1 + 𝑅𝐺1
)

𝑛1+𝑛2−𝑥1−𝑥2 

                                               (B. 3) 

 

To find the maximum likelihood estimate of 𝑅𝐺1and 𝑅𝐺2 (𝑅̂𝐺1 and 𝑅̂𝐺2), we differentiate the 

log likelihood function that corresponds to equation B.3, set it to 0 and solve for 𝑅̂𝐺1 and 

𝑅̂𝐺2: 

 

ℓ~(𝑥1 + 𝑥2) log(𝑅𝐺1) − (𝑛1 + 𝑛2)log(1 + 𝑅𝐺1) 
 

𝑑ℓ

𝑑𝑅𝐺1
=  

𝑥1 + 𝑥2

𝑅𝐺1
−

𝑛1 + 𝑛2

1 + 𝑅𝐺1
 

 

0 =
𝑥1 + 𝑥2

𝑅̂𝐺1

−
𝑛1 + 𝑛2

1 + 𝑅̂𝐺1

 

 

𝑅̂𝐺1 =  
𝑥1 + 𝑥2

𝑛1 + 𝑛2 − 𝑥1 − 𝑥2
 

𝑅̂𝐺2 = 𝑅̂𝐺1
2  

 

The likelihood ratio test statistic (to be compared to a 1 DF chi-squared) is then as follows: 

 

𝐿𝑅𝑇 = −2 (ℓ(𝑅1 = 𝑅2 = 1) − ℓ(𝑅1 = 𝑅̂𝐺1, 𝑅2 = 𝑅̂𝐺1
2 )) 
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= −2 ((𝑥1 + x2)log (
1

2
) + (𝑛1 + 𝑛2 − 𝑥1 − 𝑥2)log (

1

2
)

− (𝑥1 + x2)log (
𝑅̂𝐺1

1 + 𝑅̂𝐺1

) – (𝑛1 + 𝑛2 − 𝑥1 − 𝑥2)log (
1

1 + 𝑅̂𝐺1

)) 

= −2 ((𝑛1 + n2)log (
1 + 𝑅̂𝐺1

2
) − (𝑥1 + 𝑥2) log(𝑅̂𝐺1)) 

= −2 ((𝑛1 + n2)log (
𝑛1 + 𝑛2

2(𝑛1 + 𝑛2 − 𝑥1 − 𝑥2)
) − (𝑥1 + 𝑥2)log (

𝑥1 + 𝑥2

𝑛1 + 𝑛2 − 𝑥1 − 𝑥2
)) 

 
 

Similarly, we can calculate the maximum likelihood estimates and likelihood ratio test 

statistic for a dominant model where: 

 

𝐻0: 𝑅𝐺1 = 𝑅𝐺2 = 1 
𝐻𝐴: 𝑅𝐺1 = 𝑅𝐺2 ≠ 1 

 

 

The MLEs of 𝑅𝐺1and 𝑅𝐺2are: 

𝑅̂𝐺2 = 𝑅̂𝐺1 =
𝑥1

𝑛1 − 𝑥1
 

 

The likelihood ratio test statistic (to be compared to a 1 DF chi-squared) is: 

 

𝐿𝑅𝑇 = −2 (𝑛1log (
𝑛1

2(𝑛1 − 𝑥1)
) – 𝑥1log (

𝑥1

𝑛1 − 𝑥1
) ) 

 

We calculate the maximum likelihood estimates and likelihood ratio test statistic for a 

recessive model where: 

 

𝐻0: 𝑅𝐺1 = 𝑅𝐺2 = 1 
𝐻𝐴: 𝑅𝐺1 = 1, 𝑅𝐺2 ≠ 1 

 

The MLE of 𝑅𝐺2 is: 

𝑅̂𝐺2 =
𝑥2

𝑛2 − 𝑥2
 

 

The likelihood ratio test statistic (to be compared to a 1 DF chi-squared) is: 

 

𝐿𝑅𝑇 = −2 (𝑛2log (
𝑛2

2(𝑛2 − 𝑥2)
) – 𝑥1log (

𝑥2

𝑛2 − 𝑥2
) ) 

 

Note that families in which the father carries the variant allele are not information under a 

dominant model. And only families in which the father carries the variant allele are 

informative under a recessive model.  
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APPENDIX C: CLOSED FORM SOLUTIONS FOR THE PARENT-ONLY 

ANALYSIS 

 

As in the main paper, we define M, F, and C as the number of variant alleles carried by the 

mother, father and child and we define the relative risk of being affected (aff), conditional on 

mating type (M, F) to control for population stratification, as:  

 

  𝑅𝐵 = Pr(aff|boy, 𝐶 = 1) /Pr (aff|boy, 𝐶 = 0) 
 

𝑅𝐺1 = Pr(aff|girl, 𝐶 = 1) /Pr (aff|girl, 𝐶 = 0) 
 

            𝑅𝐺2 = 𝑅𝐺1 ∗ Pr(aff|girl, 𝐶 = 2) /Pr (aff|girl, 𝐶 = 1) 

 

 

C.1 Triads with affected sons 

 

We are interested in the following hypothesis test: 

 

𝐻0: 𝑅𝐵 = 1 
𝐻𝐴: 𝑅𝐵 ≠ 1 

 

Define: 

 n1 = the number of triads with M+F=1 

 x1 = the number of triads with M+F=1 and M=1 and F=0 

 n2 = the number of triads with M+F=2 

 x2 = the number of triads with M+F=2 and M=2 and F=0 

 

More generally, we have the following model (see Table 3 in paper): 

 

𝑝(𝑥1, 𝑥2|𝑛1, 𝑛2, 𝑠) = 

               (
𝑛1

𝑥1
) (

1 + 𝑅𝐵

2 + 𝑅𝐵
)

𝑥1

(
1

2 + 𝑅𝐵
)

𝑛1 −𝑥1

 (
𝑛2

𝑥2
) (

𝑅𝐵

1 + 2𝑅𝐵
)

𝑥2

(
1 + 𝑅𝐵

1 + 2𝑅𝐵
)

𝑛2−𝑥2

          (C. 1) 

 

To find the maximum likelihood estimate of 𝑅𝐵 (𝑅̂𝐵), we differentiate the log likelihood 

function (ignoring the constant terms) that corresponds to C.1, set it to 0 and solve for 𝑅̂𝐵: 

 

ℓ~𝑥1 log(1 + 𝑅𝐵) − 𝑛1log(2 + 𝑅𝐵) + 𝑥2 log(𝑅𝐵) + (𝑛2 − 𝑥2) log(1 + 𝑅𝐵) − 

     𝑛2log (1 + 2𝑅𝐵) 
 
𝑑ℓ

𝑑𝑠
=  

𝑥1 + 𝑛2 − 𝑥2

1 + 𝑅𝐵
−

𝑛1

2 + 𝑅𝐵
+

𝑥2

𝑅𝐵
−

2𝑛2

1 + 2𝑅𝐵
  

 

0 =  
𝑥1 + 𝑛2 − 𝑥2

1 + 𝑅̂𝐵

−
𝑛1

2 + 𝑅̂𝐵

+
𝑥2

𝑅̂𝐵

−
2𝑛2

1 + 2𝑅̂𝐵
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= (2𝑅̂𝐵 + 5𝑅̂𝐵
2 + 2𝑅̂𝐵

3)(𝑥1 + 𝑛2 − 𝑥2) − (𝑅̂𝐵 + 3𝑅̂𝐵
2 + 2𝑅̂𝐵

3)(𝑛1)

− (2 + 7𝑅̂𝐵 + 7𝑅̂𝐵
2 + 2𝑅̂𝐵

3)(𝑥2) − (2𝑅̂𝐵 + 3𝑅̂𝐵
2 + 𝑅̂𝐵

3)(2𝑛2) 

 
=  𝑎0 + 𝑎1𝑅̂𝐵 + 𝑎2𝑅̂𝐵

2 + 𝑅̂𝐵
3  

 

 

where:  

𝑎0 =
𝑥2 

𝑥1 − 𝑛1
 

 

𝑎1 =
2𝑥1 + 5𝑥2 − 𝑛1 − 2𝑛2

2𝑥1 − 2𝑛1
 

 

𝑎2 =
5𝑥1 + 2𝑥2 − 3𝑛1 − 𝑛2

2𝑥1 − 2𝑛1
 

 

We can use Cardano’s folmula to solve for the cubic. This solution was published in the 

1500’s by Gerolamo Cardano in Ars Magna (Cardano 1545, Cardano and Witmer 1993) 

 

We are interested in the positive root for 𝑅̂𝐵: 

 

𝑄 =
3𝑎1 − 𝑎2

2

9
 

 

𝑅 =
9𝑎2𝑎1 − 27𝑎0 − 2𝑎2

3

54
 

 
𝐷 = 𝑄3 + 𝑅2 

𝑆 =  √𝑅 + √𝐷
3

 

𝑇 =  √𝑅 − √𝐷
3

 

 

The three roots are: 

(−
1

3
) 𝑎2 + (𝑆 + 𝑇) 

(−
1

3
) 𝑎2 −

1

2
 (𝑆 + 𝑇) +

1

2
𝑖√3(𝑆 − 𝑇) 

 

(−
1

3
) 𝑎2 −

1

2
 (𝑆 + 𝑇) −

1

2
𝑖√3(𝑆 − 𝑇) 

  
Let 𝑅̂𝐵 be the positive, real root (if D>0, the first root). An approach using trigonometry was 

later developed as well and can be used to avoid the imaginary number (Nickalls 2006). 
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The likelihood ratio test statistic (to be compared to a 1 DF chi-squared) is as follows: 

 

𝐿𝑅𝑇𝑆 = −2 (ℓ(𝑅𝐵 = 1) − ℓ(𝑅𝐵 = 𝑅̂𝐵)) 

= −2 (𝑥1 log(2) − 𝑛1 log(3) + 𝑥2log (
1

2
) − 𝑛2log (

3

2
) − 𝑥1log(1 + 𝑅̂𝐵)

+ 𝑛1log(2 + 𝑅̂𝐵) − 𝑥2log (
𝑅̂𝐵

1 + 𝑅̂𝐵

) + 𝑛2log (
1 + 2𝑅̂𝐵

1 + 𝑅̂𝐵

) ) 

= −2 (𝑥1 log (
2

1 + 𝑅̂𝐵

) + 𝑛1 log (
2 + 𝑅̂𝐵

3
) − 𝑥2log (

2𝑅̂𝐵

1 + 𝑅̂𝐵

)

+ 𝑛2log (
2(1 + 2𝑅̂𝐵)

3(1 + 𝑅̂𝐵)
)) 

 

 

 

C.2 Triads with affected daughters 

 

We are interested in the following hypothesis:  

 

𝐻0: 𝑅𝐺1 = 𝑅𝐺2 = 1 
𝐻𝐴: 𝑅𝐺1 ≠ 1 or  𝑅𝐺2 ≠ 1 

 

Define: 

 n1 = the number of triads where M+F=1 

 x1 = the number of triads where M+F=1 and M = 1 and F = 0 

 n2 = the number of triads where M+F=2 

 x2 = the number of triads where M+F=2 and M = 2 and F = 0 

 

More generally, we have the following model (see Table 3 in paper): 

 

𝑝(𝑥1, 𝑥2|𝑛1, 𝑛2, 𝑅𝐺1, 𝑅𝐺2) 
               

=  (
𝑛1

𝑥1
) (

1 + 𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑥1

(
𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑛1−𝑥1

 (
𝑛2

𝑥2
) (

𝑅𝐺1

2𝑅𝐺1 + 𝑅𝐺2
)

𝑥2

(
𝑅𝐺1 + 𝑅𝐺2

2𝑅𝐺1 + 𝑅𝐺2
)

𝑛2−𝑥2

     (C. 2)  

 

 

To find the maximum likelihood estimate of 𝑅𝐺1and 𝑅𝐺2 (𝑅̂𝐺1 and 𝑅̂𝐺2), we differentiate the 

log likelihood function that corresponds to equation C.2, set it to 0 and solve for 𝑅̂𝐺1 and 

𝑅̂𝐺2: 

 

ℓ~𝑥1 log(1 + 𝑅𝐺1) + (𝑥2 + 𝑛1 − 𝑥1) log(𝑅𝐺1) − 𝑛1 log(1 + 2𝑅𝐺1)
+ (𝑛2 − 𝑥2) log(𝑅𝐺1 + 𝑅𝐺2) − 𝑛2 log(2𝑅𝐺1 + 𝑅𝐺2) 
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𝑑ℓ

𝑑𝑅𝐺2
=  

𝑛2 − 𝑥2

𝑅𝐺1 + 𝑅𝐺2
−

𝑛2

2𝑅𝐺1 + 𝑅𝐺2
 

 

0 =
𝑛2 − 𝑥2

𝑅𝐺1 + 𝑅̂𝐺2

−
𝑛2

2𝑅𝐺1 + 𝑅̂𝐺2

 

 
= (2𝑅𝐺1 + 𝑅̂𝐺2)(𝑛2 − 𝑥2) − (𝑅𝐺1 + 𝑅̂𝐺2)(𝑛2) 

 
= 𝑅̂𝐺2(𝑥2) + 𝑅𝐺1(2𝑥2 − 𝑛2) 

 

𝑅̂𝐺2 = 𝑅𝐺1

𝑛2 − 2𝑥2

𝑥2
 

 

 

 
𝑑ℓ

𝑑𝑅𝐺1
=  

𝑥1

1 + 𝑅𝐺1
+

𝑥2 + 𝑛1 − 𝑥1

𝑅𝐺1
−

2𝑛1

1 + 2𝑅𝐺1
+

𝑛2 − 𝑥2

𝑅𝐺1 + 𝑅̂𝐺2

−
2𝑛2

2𝑅𝐺1 + 𝑅̂𝐺2

 

 

=
𝑥1

1 + 𝑅𝐺1
+

𝑥2 + 𝑛1 − 𝑥1

𝑅𝐺1
−

2𝑛1

1 + 2𝑅𝐺1
+

𝑛2 − 𝑥2

𝑅𝐺1 (1 + 𝑛2−2𝑥2
𝑥2

 )
−

2𝑛2

𝑅𝐺1 (2 + 𝑛2−2𝑥2
𝑥2

)
 

 

=
𝑥1

1 + 𝑅𝐺1
+

𝑥2 + 𝑛1 − 𝑥1

𝑅𝐺1
−

2𝑛1

1 + 2𝑅𝐺1
+

𝑥2

𝑅𝐺1
−

2𝑥2

𝑅𝐺1
 

 

=
𝑥1

1 + 𝑅𝐺1
+

𝑛1 − 𝑥1

𝑅𝐺1
−

2𝑛1 

1 + 2𝑅𝐺1
 

 
0 = (𝑅𝐺1 + 2𝑅𝐺1

2 )𝑥1 + (1 + 3𝑅𝐺1 + 2𝑅𝐺1
2 )(𝑛1 − 𝑥1) − (𝑅𝐺1 + 𝑅𝐺1

2 )2𝑛1 
 

= 𝑅𝐺1(𝑛1 − 2𝑥1) + 𝑛1 − 𝑥1 
 

𝑅̂𝐺1 =  
𝑥1 − 𝑛1

𝑛1 − 2𝑥1
 

 

 

The likelihood ratio test statistic (to be compared to a 2 DF chi-squared) is: 

 

𝐿𝑅𝑇𝑆 = −2 (𝑙(𝑅𝐺1 = 𝑅𝐺2 = 1) − 𝑙(𝑅𝐺1 = 𝑅̂𝐺1, 𝑅𝐺2 = 𝑅̂𝐺2)) 

= −2 (𝑥1 log(2) − 𝑛1 log(3) − 𝑥2 log(2) + 𝑛2 log (
2

3
) − 𝑥1 log (

1 + 𝑅̂𝐺1

𝑅̂𝐺1

)

− 𝑛1 log (
𝑅̂𝐺1

1 + 2𝑅̂𝐺1

) − 𝑥2 log (
𝑅̂𝐺1

𝑅̂𝐺1 + 𝑅̂𝐺2

) − 𝑛2 log (
𝑅̂𝐺1 + 𝑅̂𝐺2

2𝑅̂𝐺1 + 𝑅̂𝐺2

)) 
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= −2 (𝑥1 log (
2(𝑛1 − 𝑥1)

𝑥1
) − 𝑛1 log (

3(𝑛1 − 𝑥1)

𝑛1
) − 𝑥2 log (

2𝑥2

𝑛2 − 𝑥2
)

+ 𝑛2 log (
2𝑛2

3(𝑛2 − 𝑥2)
)) 

 

We can also consider a log-additive model such that: 

 

𝐻0: 𝑅𝐺1 = 𝑅𝐺2 = 1 
𝐻𝐴: 𝑅𝐺1

2 = 𝑅𝐺2 ≠ 1 

 
More generally, we have the following model: 

 

𝑝(𝑥1, 𝑥2|𝑛1, 𝑛2, 𝑅𝐺1, 𝑅𝐺2) 

      =  (
𝑛1

𝑥1
) (

1 + 𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑥1

(
𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑛1−𝑥1

(
𝑛2

𝑥2
) (

𝑅𝐺1

2𝑅𝐺1 + 𝑅𝐺2
)

𝑥2

(
𝑅𝐺1 + 𝑅𝐺2

2𝑅𝐺1 + 𝑅𝐺2
)

𝑛2−𝑥2

 

 

= (
𝑛1

𝑥1
) (

1 + 𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑥1

(
𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑛1−𝑥1

 

                            × (
𝑛2

𝑥2
) (

𝑅𝐺1

2𝑅𝐺1 + 𝑅𝐺1
2 )

𝑥2

(
𝑅𝐺1 + 𝑅𝐺1

2

2𝑅𝐺1 + 𝑅𝐺1
2 )

𝑛2−𝑥2

 

 

= (
𝑛1

𝑥1
) (

1 + 𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑥1

(
𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑛1−𝑥1

(
𝑛2

𝑥2
) (

1

2 + 𝑅𝐺1
)

𝑥2

(
1 + 𝑅𝐺1

2 + 𝑅𝐺1
)

𝑛2−𝑥2

         (C. 3) 

 

 

To find the maximum likelihood estimate of 𝑅𝐺1and 𝑅𝐺2 (𝑅̂𝐺1 and 𝑅̂𝐺2), we differentiate the 

log likelihood function that corresponds to equation C.3, set it to 0 and solve for 𝑅̂𝐺1 and 

𝑅̂𝐺2: 

 

ℓ~𝑥1 log(1 + 𝑅𝐺1) + (𝑛1 − 𝑥1) log(𝑅𝐺1) − 𝑛1log(1 + 2𝑅𝐺1) + (𝑛2 − 𝑥2) log(1 + 𝑅𝐺1) 
−𝑛2log (2 + 𝑅𝐺1) 

 
𝑑ℓ

𝑑𝑅𝐺1
=  

𝑥1 + 𝑛2 − 𝑥2

1 + 𝑅𝐺1
−

𝑛2

2 + 𝑅𝐺1
+

𝑛1 − 𝑥1

𝑅𝐺1
−

2𝑛1

1 + 2𝑅𝐺1
 

 

0 =
𝑥1 + 𝑛2 − 𝑥2

1 + 𝑅̂𝐺1

−
𝑛2

2 + 𝑅̂𝐺1

+
𝑛1 − 𝑥1

𝑅̂𝐺1

−
2𝑛1 

1 + 2𝑅̂𝐺1

 

 
= (2𝑅̂𝐺1 + 5𝑅̂𝐺1

2 + 2𝑅̂𝐺1
3 )(𝑥1 + 𝑛2 − 𝑥2) − (𝑅̂𝐺1 + 3𝑅̂𝐺1

2 + 2𝑅̂𝐺1
3 )(𝑛2)

− (2 + 7𝑅̂𝐺1 + 7𝑅̂𝐺1
2 + 2𝑅̂𝐺1

3 )(𝑛1 − 𝑥1) − (2𝑅̂𝐺1 + 3𝑅̂𝐺1
2 + 𝑅̂𝐺1

3 )(2𝑛1) 

 
= 𝑎0 + 𝑎1𝑅̂𝐺1 + 𝑎2𝑅̂𝐺1

2 + 𝑅̂𝐺1
3  
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where:  

 

𝑎0 =
𝑥1 − 𝑛1 

𝑥2
 

 

𝑎1 =
2𝑥2 + 5𝑥1 − 𝑛2 − 3𝑛1

2𝑥2
 

 

𝑎2 =
5𝑥2 + 2𝑥1 − 2𝑛2 − 𝑛1

2𝑥2
 

 

See Appendix C.1 for how to solve for 𝑅̂𝐺1, then 𝑅̂𝐺2 = 𝑅̂𝐺1
2 .  

 

 

The likelihood ratio test statistic (to be compared to a 1 DF chi-squared) is: 

 

𝐿𝑅𝑇𝑆 = −2 (ℓ(𝑅𝐺1 = 𝑅𝐺2 = 1) − ℓ(𝑅𝐺1 = 𝑅̂𝐺1 , 𝑅𝐺2 = 𝑅̂𝐺1
2 )) 

= −2 (𝑥1 log(2) − 𝑛1 log(3) + 𝑥2log (
1

2
) − 𝑛2log (

3

2
) − 𝑥1log (

1 + 𝑅̂𝐺1

𝑅̂𝐺1

)

+ 𝑛1log (
1 + 2𝑅̂𝐺1

𝑅̂𝐺1

) − 𝑥2log (
1

1 + 𝑅̂𝐺1

) + 𝑛2log (
2 + 𝑅̂𝐺1

1 + 𝑅̂𝐺1

) ) 

= −2 (𝑥1 log (
2𝑅̂𝐺1

1 + 𝑅̂𝐺1

) + 𝑛1 log (
1 + 2𝑅̂𝐺1

3𝑅̂𝐺1

) + 𝑥2log (
1 + 𝑅̂𝐺1

2
)

+ 𝑛2log (
2(2 + 𝑅̂𝐺1)

3(1 + 𝑅̂𝐺1)
)) 

 

 

Similarly for triads with affected daughters, we can calculate the maximum likelihood 

estimates and likelihood ratio test statistic for a dominant or recessive model (results not 

shown). 
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APPENDIX D: CLOSED FORM SOLUTIONS FOR THE PIX-LRT 

 

In this section we define a likelihood that involves both the transmission-based 

information and the parental information. As in the main paper, we define M, F, and C as the 

number of variant alleles carried by the mother, father and child and we define the relative 

risk of being affected (aff), conditional on mating type (M,F) to control for population 

stratification, as:  

 

  𝑅𝐵 = Pr(aff|boy, 𝐶 = 1) /Pr (aff|boy, 𝐶 = 0) 
 

𝑅𝐺1 = Pr(aff|girl, 𝐶 = 1) /Pr (aff|girl, 𝐶 = 0) 
 

            𝑅𝐺2 = 𝑅𝐺1 ∗ Pr(aff|girl, 𝐶 = 2) /Pr (aff|girl, 𝐶 = 1) 

 

 

D.1 Triads with affected sons 

 

We are interested in the following hypothesis test: 

 

𝐻0: 𝑅𝐵 = 1 
𝐻𝐴: 𝑅𝐵 ≠ 1 

 

Define: 

 n1 = the number of triads where M+F=1 

 x1 = the number of triads where M+F=1 and  C=1 

 n2 = the number of triads where M+F=2 

 x2 = the number of triads where M+F=2 and  C=1 

 

We have the following model: 

 

𝑝(𝑥1, 𝑥2|𝑛1, 𝑛2, 𝑅𝐵) =  (
𝑛1

𝑥1
) (

𝑅𝐵

2 + 𝑅𝐵
)

𝑥1

(
2

2 + 𝑅𝐵
)

𝑛1−𝑥1

 (
𝑛2

𝑥2
) (

2𝑅𝐵

1 + 2𝑅𝐵
)

𝑥2

(
1

1 + 2𝑅𝐵
)

𝑛2−𝑥2

 

 

The likelihood and ML estimate are as follows:  

 

ℓ~𝑥1 log(𝑅𝐵) − 𝑛1 log(2 + 𝑅𝐵) + 𝑥2 log(𝑅𝐵) − 𝑛2 log(1 + 2𝑅𝐵) 

 
𝑑ℓ

𝑑𝑅𝐵
=

𝑥1 + 𝑥2

𝑅𝐵
−

𝑛1

2 + 𝑅𝐵
−

2𝑛2

1 + 2𝑅𝐵
 

 
0 = (2 + 5𝑅̂𝐵 + 2𝑅̂𝐵

2)(𝑥1 + 𝑥2) − (𝑅̂𝐵 + 2𝑅̂𝐵
2)(𝑛1) − (2𝑅̂𝐵 + 𝑅̂𝐵

2)(2𝑛2) 

 
= 𝑅̂𝐵

2(2(𝑥1 + 𝑥2 − 𝑛1 − 𝑛2)) + 𝑅̂𝐵(5𝑥1 + 5𝑥2 − 𝑛1 − 4𝑛2) + 2(𝑥1 + 𝑥2) 

 

If: 
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𝑎 = 2(𝑥1 + 𝑥2 − 𝑛1 − 𝑛2) 
𝑏 =  5𝑥1 + 5𝑥2 − 𝑛1 − 4𝑛2 
𝑐 =  2(𝑥1 + 𝑥2) 
 

Then 𝑅̂𝐵 =
(−𝑏−√𝑏2−4𝑎𝑐 )

2𝑎
 and the LRT statistic is: 

 

The likelihood ratio test statistic (to be compared to a 1 DF chi-squared) is: 

 

𝐿𝑅𝑇𝑆 = −2 (ℓ(𝑅𝐵 = 1) − ℓ(𝑅𝐵 = 𝑅̂𝐵)) 

= −2 (𝑥1 log(1) − 𝑛1 log(3) + 𝑥2log(1) − 𝑛2log(3) − 𝑥1log(𝑅̂𝐵) + 𝑛1log(2 + 𝑅̂𝐵)

+ 𝑥2log(𝑅̂𝐵) + 𝑛2log(1 + 2𝑅̂𝐵))   

= −2 (𝑥1 log (
1

𝑅̂𝐵

) + 𝑛1 log (
2 + 𝑅̂𝐵

3
) + 𝑥2log (

1

𝑅̂𝐵

) + 𝑛2log (
1 + 𝑅̂𝐵

3
)) 

 

 

D.2 Triads with affected daughters 

 

Define: 

 n1 = the number of triads where M+F = 1 

 x1 = the number of triads where M+F = 1 and C = 1 

 n2 = the number of triads where M+F = 2 

 x2 = the number of triads where M+F = 2 and C = 2 

 

We are interested in testing the following hypothesis: 

 

𝐻0: 𝑅𝐺1 = 𝑅𝐺2 = 1 
𝐻𝐴: 𝑅𝐺1 ≠ 1, 𝑅𝐺2 ≠ 1 

We have the following model: 

 

𝑝(𝑥1 , 𝑥2|𝑛1, 𝑛2, 𝑅𝐺1, 𝑅𝐺2)

=  (
𝑛1

𝑥1
) (

2𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑥1

(
1

1 + 2𝑅𝐺1
)

𝑛1−𝑥1

 (
𝑛2

𝑥2
) (

𝑅𝐺2

2𝑅𝐺1 + 𝑅𝐺2
)

𝑥2

(
2𝑅𝐺1

2𝑅𝐺1 + 𝑅𝐺2
)

𝑛2−𝑥2

 

 

The likelihood and ML estimates for R1 and R2 are as follows: 

 

ℓ~(𝑥1 + 𝑛2 − 𝑥2) log(𝑅𝐺1) − 𝑛1 log(1 + 2𝑅𝐺1) + 𝑥2 log(𝑅𝐺2) − 𝑛2 log(2𝑅𝐺1 + 𝑅𝐺2) 

 
𝑑ℓ

𝑑𝑅𝐺2
=

𝑥2

𝑅𝐺2
−

𝑛2

2𝑅𝐺1 + 𝑅𝐺2
 

 
0 = 𝑥2(2𝑅𝐺1 + 𝑅̂𝐺2) − 𝑛2(𝑅̂𝐺2) 
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𝑅̂𝐺2 =
2𝑅𝐺1𝑥2

𝑛2 − 𝑥2
 

 
𝑑ℓ

𝑑𝑅𝐺1
=

𝑥1 + 𝑛2 − 𝑥2

𝑅𝐺1
−

2𝑛1

1 + 2𝑅𝐺1
−

2𝑛2

2𝑅𝐺1 + 𝑅𝐺2
 

 

0 =  
𝑥1 + 𝑛2 − 𝑥2

𝑅̂𝐺1

−
2𝑛1

1 + 2𝑅̂𝐺1

−
2𝑛2

2𝑅̂𝐺1 + 𝑅̂𝐺2

 

=
𝑥1 + 𝑛2 − 𝑥2

𝑅̂𝐺1

−
2𝑛1

1 + 2𝑅̂𝐺1

−
2𝑛2

2𝑅̂𝐺1 (
𝑛2

𝑛2 − 𝑥2
)

  

= (1 + 2𝑅̂𝐺1)𝑥1 − 2𝑅̂𝐺1𝑛1 

 

𝑅̂𝐺1 =
𝑥1

2(𝑛1 − 𝑥1)
   

 

 

 

The likelihood ratio test statistic (to be compared to a 1 DF chi-squared) is: 

 

𝐿𝑅𝑇𝑆 =  −2 (ℓ(𝑅𝐺1 = 𝑅𝐺2 = 1) − ℓ(𝑅𝐺1 = 𝑅̂𝐺1, 𝑅𝐺2 = 𝑅̂𝐺2)) 

= −2 (𝑥1 log(1) − 𝑛1 log(3) + 𝑥2 log(1) − 𝑛2 log(3) − 𝑥1 log(𝑅̂𝐺1)

+ 𝑛1 log(1 + 2𝑅̂𝐺1) − 𝑥2 log (
𝑅̂𝐺2

𝑅̂𝐺1

) + 𝑛2 log (
2𝑅̂𝐺1 + 𝑅̂𝐺2

𝑅̂𝐺1

)) 

= −2 (𝑥1 log (
2(𝑛1 − 𝑥1)

𝑥1
) + 𝑛1 log (

𝑛1

3(𝑛1 − 𝑥1)
) + 𝑥2 log (

𝑛2 − 𝑥2

2𝑥2
)

+ 𝑛2 log (
2𝑛2

3(𝑛2 − 𝑥2)
))   

 

We can also consider a log-additive model such that: 

𝐻0: 𝑅𝐺1 = 𝑅𝐺2 = 1 
𝐻𝐴: 𝑅𝐺1

2 = 𝑅𝐺2 ≠ 1 

 
Our model is as follows: 

𝑝(𝑥1, 𝑥2|𝑛1, 𝑛2, 𝑅1, 𝑅2) 

     =  (
𝑛1

𝑥1
) (

2𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑥1

(
1

1 + 2𝑅𝐺1
)

𝑛1−𝑥1

 (
𝑛2

𝑥2
) (

𝑅𝐺2

2𝑅𝐺1 + 𝑅𝐺2
)

𝑥2

(
2𝑅𝐺1

2𝑅𝐺1 + 𝑅𝐺2
)

𝑛2−𝑥2

 

= (
𝑛1

𝑥1
) (

2𝑅𝐺1

1 + 2𝑅𝐺1
)

𝑥1

(
1

1 + 2𝑅𝐺1
)

𝑛1−𝑥1

(
𝑛2

𝑥2
) (

𝑅1
2

2𝑅1 + 𝑅1
2)

𝑥2

(
2𝑅1

2𝑅1 + 𝑅1
2)

𝑛2−𝑥2

 

= (
𝑛1

𝑥1
) (

2𝑅1

1 + 2𝑅1
)

𝑥1

(
1

1 + 2𝑅1
)

𝑛1−𝑥1

 (
𝑛2

𝑥2
) (

𝑅𝐺1

2 + 𝑅𝐺1
)

𝑥2

(
2

2 + 𝑅𝐺1
)

𝑛2−𝑥2
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The likelihood and ML estimates for R1 and R2 are as follows: 

 

ℓ~(𝑥1) log(𝑅𝐺1) − 𝑛1log(1 + 2𝑅𝐺1) + 𝑥2 log(𝑅𝐺1) − 𝑛2 log(2 + 𝑅𝐺1) 
 

𝑑ℓ

𝑑𝑅𝐺1
=  

𝑥1 + 𝑥2

𝑅𝐺1
−

2𝑛1

1 + 2𝑅𝐺1
+

𝑛2

2 + 𝑅𝐺1
 

 

0 =
𝑥1 + 𝑥2

𝑅̂𝐺1

−
2𝑛1

1 + 2𝑅̂𝐺1

+
𝑛2

2 + 𝑅̂𝐺1

 

 

= (2 + 5𝑅̂𝐺1 + 2𝑅̂𝐺1
2 )(𝑥1 + 𝑥2) − (2𝑅̂𝐺1 + 𝑅̂𝐺1

2 )(2𝑛1) − (𝑅̂𝐺1 + 2𝑅̂𝐺1
2 )(𝑛2) 

 
= 𝑎𝑅̂𝐺1

2 + 𝑏𝑅̂𝐺1 + 𝑐 
 
 

 

Where: 

𝑎 = 2(𝑥1 + 𝑥2 − 𝑛1 − 𝑛2) 
𝑏 =  5𝑥2 + 5𝑥1 − 4𝑛1 − 𝑛2 
𝑐 = 2(𝑥1 + 𝑥2) 
 

So  𝑅̂𝐺1 =
−𝑏−√𝑏2−4𝑎𝑐

2𝑎
 and 𝑅̂𝐺2 = 𝑅̂𝐺1

2 . The LRT statistic (to be compared to a 1 DF chi-

squared) is:  

 

𝐿𝑅𝑇𝑆 = −2 (ℓ( 𝑅𝐺1 = 𝑅𝐺2 = 1) − ℓ(𝑅𝐺1 = 𝑅̂𝐺1, 𝑅𝐺2 = 𝑅̂𝐺1
2  )) 

= −2(𝑥1 log(1) − 𝑛1 log(3) + 𝑥2log(1) − 𝑛2log(3) − 𝑥1log(𝑅̂𝐺1)

+ 𝑛1log(1 + 2𝑅̂𝐺1) − 𝑥2log(𝑅̂𝐺1) + 𝑛2log(2 + 𝑅̂𝐺1) ) 

= −2 (𝑥1 log (
1

𝑅̂𝐺1

) + 𝑛1 log (
1 + 2𝑅̂𝐺1

3
) + 𝑥2log (

1

𝑅̂𝐺1

) + 𝑛2log (
2 + 𝑅̂𝐺1

3
)) 

 

Similarly for triads with affected daughters, we can calculate the maximum likelihood 

estimates and likelihood ratio test statistic for a dominant or recessive model (results not 

shown).
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The details of the collection and methods for samples used in this oral cleft study are 

described by Beaty et al. (Beaty, Murray et al. 2010). The data sets used for the analyses 

described in this manuscript were obtained through dbGaP at www.ncbi.nlm.nih.gov/gap 

through accession number phs000094.v1.p1. Funding support for the study entitled 

‘International Consortium to Identify Genes and Interactions Controlling Oral Clefts’ was 

provided by several previous grants from the National Institute of Dental and Craniofacial 

Research (NIDCR), including: R21-DE-013707, R01-DE-014581, R37-DE-08559, P50-DE-

016215, R01-DE-09886, R01-DE-012472, R01-DE-014677, R01-DE-016148, R21-DE-

016930; R01-DE-013939. Additional support was provided in part by the Intramural 

Research Program of the NIH, National Institute of Environmental Health Sciences, the 

Smile Train Foundation for recruitment in China and a Grant from the Korean government. 

The genome-wide association study, also known the Cleft Consortium, is part of the Gene 

Environment Association Studies (GENEVA) program of the trans-NIH Genes, Environment 

and Health Initiative [GEI] supported by U01-DE-018993. Genotyping services were 

provided by the Center for Inherited Disease Research (CIDR). CIDR is funded through a 

federal contract from the National Institutes of Health (NIH) to The Johns Hopkins 

University, contract number HHSN268200782096C. Assistance with genotype cleaning, as 

well as with general study coordination, was provided by the GENEVA Coordinating Center 

(U01-HG-004446) and by the National Center for Biotechnology Information (NCBI).  
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