ABSTRACT

MING-TA HSIEH Preliminary Study of the Growth of Metallic Aerosols
under Reduced Pressure Environment. (Under the direction of Dr.
PARKER C. REIST and Dr. PHIL A. LAWLESS)

The growth behavior of metallic aerosols under normal and reduced pressure environments was investigated. Particles grown at both environments exhibit very irregular profiles. Particles' growth, in general, can be categorized into three types in this study, they are: cluster-cluster aggregation, particle-cluster aggregation, and ballistic aggregation.

A descriptor, called fractal dimension, is applied to quanti fying the effect of reducing the pressure on the growth of particles. According to the measurements of fractal dimension, at higher pressure, 0. 1 and 1.0 atm., cluster-cluster aggregation occurred at the early stage of growth; while particle-cluster aggregation occurred at the later stage of growth. Opposite phenomenon was found when pressure decreased to 0.01 atm.

ACKNOWLEDGMENTS

The author vishes to express his appreciation to his advisor, Dr. Parker C. Reist, for his guidance and direction. Gratitude is also due to Dr. Phil A. Lavless, Research Triangle Institute, for his valuable advices. Appreciation is likevise expressed to my dear friends for their encouragement during vriting this report.

TABLE OF CONTENT

I. Introduction 1
I. 1 Grovth of Metallic Aerosols 2
I. 2 Fractal Dimension 5
II. Experimental Apparatus 8
II. 1 Introduction to the Exploding Wire Generator 8
II. 2 Sampling Devices 10
II. 3 Pumping and Pressure Keasuring System 13
II. 4 Other Equipments 13
II. 5 System Assembly 14
II. 6 Sampling Technique 14
III. Analyses 17
III. 1 Scanning Electron Microscope 17
III. 2 Fractal analysis 17

1. Perimeter Method 17
2. Dilation Method 18
IV. Results 23
IV. 1 Selection of Metallic Wire 23
IV. 2 Electron Micrographs Made by SEM 24
IV. 3 Fractal Analysis 25
V. Discussion 43
VI. Summary 51
VII. References 53
VIII. Appendix 60

LIST OF FIGURES

FiqureTitle
Page
2. 1 Basic Scheme of an Exploding Wire Generator 8
2. 2 Side-Viev of the Main Chamber 11
2. 3 In Situ Sampler. (a) Opened, (b) Closed 12
2.4 Assembly of Experimental Apparatus 15
3.1 Shape Representing an Image of a Particle for
Fractal Analysis
3.2 Tiling of Shape by (a) Unit Squares, (b) Squares 20 of Side 2, (c) Squares of Side 3
4.1 Electron Micrograph of Agglomerates, 1 atm.
Sample Taken at 37 sec. After Explosion. 20, 000x
4. 2 Electron Micrograph of Agglomerates, 1 atm. 26
Sample Taken at 26.3 min . After Explosion.
(a) $20,000 \mathrm{x}$, (b) $2,000 \mathrm{x}$
4. 3 Electron Micrograph of Agglomerates, 1 atm. 27
Sample Taken at 129.5 min. After Explosion.
(a) $20,000 \mathrm{x}$, (b) $2,000 \mathrm{x}$
4.4 Electron Micrograph of Agglomerates, 1 atm.
Sample Taken at 194.8 min . After Explosion. 20, 000 x
4. 5 Electron Micrograph of Agglomerates, 0.1 atm. 28
Sample Taken at 30 sec. After Explosion.
(a), (b) $20,000 x$, (c) $4,000 x$
4.6 Electron Micrograph of Agglomerates, 0. 1 atm.29Sample Taken at 30 min. After Explosion.(a) $20,000 x$, (b), (c) $4,000 x$
4. 7 Electron Micrograph of Agglomerates, 0.1 atm. 30
Sample Taken at 60 min. After Explosion.
(a) $20,000 x$, (b) $4,000 x$, (c) $800 x$
4. 8 Electron Micrograph of Agglomerates, 0.1 atm. 31
Sample Taken at 120 min. After Explosion.
(a) 4,000x, (b) $800 x$
4.9 Electron Kicrograph of Agglomerates, 0.1 atm.
Sample Taken at 180 min. After Explosion.
(a) $4,000 \mathrm{x}$, (b) $800 x$
4. 10 Electron Kicrograph of Agglomerates, 0.01 atm. 32Sample Taken at (a) 26 sec., $20,000 \mathrm{x}$, (b) 29.8 min.,12,000x, After Explosion.
4.11 Fractal Analysis for the Particle in Fig. 4.1 33
4. 12 Fractal Analysis for the Particle in Fig. 4.2(a) 34
4. 13 Fractal Analysis for the Particle in Fig. 4.3(a) 35
4. 14 Fractal Analysis for the Particle in Fig. 4. 5 (b) 36
4. 15 Fractal Analysis for the Particle in Fig. 4. 6 (a) 37
4. 16 Fractal Analysis for the Particle in Fig 4. 7 (a) 38
4. 17 Fractal Analysis for the Particle in Fig. 4. 9 (a) 39
4. 18 Fractal Analysis for the Particle in Fig. 4.10(a) 40
4. 19 Fractal Analysis for the Particle in Fig. 4.10(b) 41
4. 20 Fractal Analysis for the Particle Taken at 66.7 min 42
After Explosion at 0.01 atm.
5.1 Fractal Dimension Measured by Randon Walk Method 45

LIST OF TABLES

Table

Title
1.1 Fractal Dimensions Obtained from Tvo-Dimensional 7
Aggregation Models
4. 1 Measurements of the Charge Levels on Different 23
Aerosols
5. 1 Fractal Dimensions of Experimental Particles 47Determined by Dilation Kethod

I. Introduction

Aerosol growth is an area of study most interesting to aerosol technologists. For the past few decades much of research has been concentrated on particle coagulation due to Brownian motion. [1-9] However, almost all studies considered the atmospheric pressure parameter as constant having a value of one atmosphere, so that these studies were only applicable to the atmosphere near the surface of the earth. The pressure in the upper level of the atmosphere is less than 1 atm, decreasing exponentially as the altitude increases. Thus in the upper reaches of the atmosphere the gas mean free path is no longer the same as used in the traditional growth model. In other words, to study aerosol growth in the upper atmosphere, it is necessary to take into account the parameter of gas mean free path, i.e. gas pressure.

One of the major goals of this report is to investigate the growth behavior of metallic aerosols at several reduced pressure environments. To do this we have explored the use of a recently developed descriptor to characterize the shape of grown aerosols, called the fractal dimension of the particle.

Traditionally, the term most often used in characterizing aerosols is aerodynamic diameter. In many cases, however, aerodynamic diameter is hard to describe the irregular aggregates very well and cannot tell much characteristics of the irregular aggregates. It is the fractal dimension that can describe certain rugged profiles.

Fractal dimensions are numbers between the classical whole number dimensions of 1,2 and 3 . This term was first introduced by Mandelbrot in 1977. [10] He suggested that the concept of dimension can be extended from integer values of 1,2 , and 3 by the addition of a fractional value describing the space filling power of a boundary or a surface. Thus a line of fractal dimension 1.4 would fill space more efficiently than an extremely straight line, whose fractal dimension is 1.0, even though both would be topologically of dimension 1. Similarly, a rugged surface with fractal dimension 2. 4 would fill space more than a surface of fractal dimension 2.0 or 2.2.

I. 1 Growth of Metallic Aerosols

Metallic aerosols investigated in this report were generated by the Exploding Wire Generator (EWG), which will be described in Section II. The first step of growth is the nucleation of aerosols from the vapor phase, the second step is the liquid metal coaqulation, and the third step is the growth of solid aerosol particles. The time needed for the first two steps to go to completion is extremely short, so that observation is very difficult. Only the growth of solid aerosols could be "seen" via filter sampling at different times (see electron micrographs).

According to the literature, [11-22] formation of aggregates can be characterized in two categories: particle-cluster growth model, and cluster-cluster growth model.

For more than two decades, computer simulations have been
applied to the formation of aggregates in a vide variety of systems. This approach has been particularly successful in developing a better understanding of aggregation phenomena. In the 1960 s , the earliest model for computer simulation of floc formation in colloidal systems vere carried out by Vold[23, 24] and Sutherland et al. $[25,26]$ In these studies, particles vere added to groving clusters of particles via randomly oriented trajectories, vithout including the effects of Brovnian motion. A reasonable model of cluster formation in the colloidal systems should include the effects of long- and short-range interactions, particle size distribution and irregular shapes, hydrodynamic interactions, clustering of clusters, etc. [12] Recently, Witten and Sander[20] have introduced a particlecluster aggregation nodel where the effects of Brovnian motion vere included.

Witten and Sander start with a single-seed particle at the origin of a lattice. A second particle is added a long distance from the origin and undergoes a random valk on the lattice until it reaches a site adjacent to the seed and becomes part of the groving cluster. Then, a third particle is introduced at a random distant point and undergoes a random valk until it also becomes part of the groving cluster. The procedure is repeated until a cluster of sufficiently large size is formed.

As the case of particle-cluster aggregation, the earliest models for cluster-cluster aggregation vere carried out also
using linear trajectories. In recent years, Paul Meakin has explored a series of investigations[11-17) regarding the diffusion-limited aggregation in two- and three-dimensional simulations, in which both linear and random valk (Brovnian) trajectories are considered and in which both particle-cluster grovth model and cluster-cluster grovth model are taken into consideration.

In the original Witten-Sander model, all grovth originates from a single immobile grovth site and only one particle is alloved in the vicinity of the groving cluster at any time. These features are unrealistic for many real colloidal systems. [14] In Meakin's model, clusters of particles, ss vell as single particles, are alloved to diffuse; clusters of all sizes stick together on contact. [14]

Keakin uses tvo-dimensional simulations on a simple square lattice vith periodic boundary conditions. At the start of the simulation, a fraction of the lattice sites are picked at random and occupied (avoiding multiple occupancy). Particles at nearest neighbor positions are considered to belong to the same cluster. Clusters, including single-particle clusters, are picked randomly and moved vith a probability proportional to their mobility by one lattice spacing in one of four equally probable directions. If a cluster contacts other clusters, they are merged to form a single cluster. In this manner, the clusters grov larger and larger until only one large cluster remains.

I. 2 Fractal Dimension

Before discussing the fractal dimension, it is necessary to know what "fractals" are. Fractals are mathematical entities which have been developed to describe the geometrical similarities between irregular systems. This is a relatively new branch of mathematics and is increasingly applied to the problems dealing with irregular shapes.

According to Mandelbrot [27], fractals can be categorized into two kinds: mathematical fractals and natural fractals. An ideal fractal mathematical curve has two important properties. First, it has an indeterminate boundary magnitude approaching to infinity. Secondly, it is mathematically self-similar at any two different scales of scrutiny; in other words, the boundary looks the same whatever magnification is used in the examination of the structure of the curve. A natural fractal is a curve whose structure appears indeterminate at a series of resolutions but may ultimately exhibit other significant geometrical behavior when measured at a sufficiently high level of resolution. Methodology for measuring the fractal dimension will be discussed in Section III.

An approach to the description of rugged profiles using the concepts of fractal dimension to describe irregular profile of a fine particle has been widely developed by Brian H. Kaye and coworkers. [28-33] The concept of the fractal dimension of a nonEuclidean boundary is introduced by Mandelbrot.[10] The origin

```
of "fractal" comes from the Latin adjective "fractus", meaning
"irregular" or "fragmented". In his book Mandelbrot describes
the ruggedness of a line as its space filling ability and
assigns a dimension between one and two to the structure of a
line depending on its ability to fill space.[27] A simple
example is a straight line of traditional Euclidean geometry,
which has a fractal dimension of 1; the trajectory of Brownian
motion on a flat plane has a fractal dimension of 2.
Those studies dealing with computer simulations of growth models, as discussed previously, also worked out the measurements of fractal dimension of corresponding growth model. Table 1.1 summarizes these characteristic values of fractal dimension for different growth models.
```

Table 1.1 Fractal Dimensions Obtained from Tro-Dimensional
Aggregation Models
-
Model D
Linear trajectory,
particle-cluster 1.95 ± 0.002 [12]
Brovnian trajectory,
particle-cluster 5/3
Brovnian trajectory,
particle-cluster
$1.73=0.06$
[12, 13]
Linear trajectory,
cluster-cluster
1.50 ± 0.05
[15]
Brovnian trajectory,
cluster-cluster
1.44 ± 0.02
[15]
II. 1 Introduction to the Exploding Wire Generator

Metallic aerosols to be studied in this report are generated by the Exploding Wire Generator (EWG). The principle of aerosol generation is that the EWG supplies enough energy to vaporize a piece of vire mounted on two electrodes. After the vire is vaporized, i.e. exploded, condensation proceeds right avay, and aerosols are condensed from the vapor phase. Figure 2.1 shovs the basic scheme of an EWG. [34]

HV: High voltage pover supply
S1: Trigger svitch
W: Mire inside exploding chanber E
T: Timer for automatic dumping svitch
S2: Dumping svitch
Fig. 2.1 Basic Scheme of An Exploding Wire Generator

The physics of the exploding vire phenomens is vell investigated in the literature. [34-37] In general, the previous studies indicated that aerosols generated by the EWG have the folloving characteristica:

1) The primary particles form chain-like structures of smooth spherical particlea, whose aize diatribution can be characterized by a log normal distribution.
2) The mean diameter of these primary particles are betveen 0.01 and 0.1 micrometers in size, depending on the parameters used in their generation, such as electrical energy or diameter of vire.
3) The aerosols are reproducible if they are generated under the same operating conditions.

The EWG used for this study is a Tobe Deutschmann Laboratories Kodel ESB-118 energy Storage Sygtem. It is a selfcontained 9 kilojoule system consisting of three main assemblies: Capacitor Bank, Pover and Relay Tank, and Control Console.

This system is designed around a $45 \mu f, 20 \mathrm{KY}$ capacitor and a high voltage trigger unit. The capacitor may be charged up to 25 KV as desired. A push-button svitch is used to remotely trigger the capacitor to discharge the stored energy through a vire mounted across two electrodes. A dumping switch can be used to discharge the capacitor vithout exploding the wire when the test ie to be aborted. Pushing the "Start Charge" button connects the
high voltage pover supply to the capacitor and starts the tvominute time delay automatic dump circuit which is provided for safety purposes. This assures that no charge vill accidentally be left on the Capacitor Bank. The circuit is designed so that it allovs 15 seconds for the operator to trigger the capacitor for explosion before the system automatically dumps the charges on the capacitor. After vire explosion, the circuit vill automatically dump the residual charge left on the capacitor through a grounded vire. The distance betveen tvo electrodes is adjustable; the mass of vire exploded may be altered by changing the relative positions of electrodes, because sometimes it is necessary to obtain higher mass concentration or number concentration of particles.
II. 2 Sampling Devices

1. Laser Aerosol Spectrometer

This is an optical particle counter manufactured by Particle Measuring System, Inc. It is used to monitor particle size distribution and, roughly, number concentration. A size range of 0.09 to 3.0 micrometers is covered by this counter.
2. 47-mn Filter Holder

A $47-\mathrm{mm}$, 0.05 micrometer nuclepore filter is used to collected particles for Scanning Electron Microscope (SEM) analyses, and then image analyses on computer.
3. Main Chamber (Exploding Chamber)

This is a large stainless steel pipe tee, amounted on the top of the Exploding Wire Generator, vith a volume of 74.6 liters. Fig. 2.2 shovs a side-viev of this chamber.

Fig. 2.2 Side-Viev of the Main Chamber
4. Extractive Sampling Chamber

This is a small chamber, vith a volume of 145 cc , located near the center of the exploding chamber (main chamber). Extractive sampling is used because of the difficulties of collecting particles vithout disturbing the gas pressure in exploding chamber. Particles captured in this chamber can be quickly raised to atmospheric pressures and flushed through
several sampling devicea described above.

5. In Situ Sampler

When the operating pressure is reduced to lover values, the problem of particle settling vould become more severe, and extractive sampling would become more difficult also. Therefore, an in situ sampler is designed to overcome this difficulty. This sampler has been added, but not been applied, to the bottom of exploding chamber to collect timed particles samples directly on SEM substrates by settling. By this sampler, hovever, the time resolution may not be so good as with other samplers. Fig. 2.3 shovs the outline of this in situ sampler.

Fig. 2.3 In Situ Sampler. (a) Opened (b) Closed

There are six positions, where SEM substrates are located, on the sampler to collect settled particles, i.e. this sampler is designed such that only six samples can be obtained in an experiment. Essentially, this sampler consists of tvo round plates; one of them has one hole on it, and the other one has six. The one, having one hole, amounta atop the other one. When sample is to be taken, turn the plate on the top so that the hole on the top coincides one of six holes on the botton plate; othervise, turn it to the "blind" area as illustrated in Fig. 2. 3.
II. 3 Pumping and Pressure Keasuring System

The pumping and pressure measuring system are interfaced to the exploding chamber through vacuum-tight flanges on the arms of this chamber. A mechanical vacuum pump, direct drive vacuum pump, manufactured by Precision Scientific Group, is applied to provide reduced pressure. This pump can provide an ultimate lov pressure dovn to $0.1 \mu \mathrm{Hg}$ absolute. System pressure is monitored by the Barocel Electronic Manometer which can be calibrated by a Mcleod gauge if necessary.

II. 4 Other Equipment

1. Faraday Cage Filter and Electrometer

This assembly vas used in the early stage of experiment to measure total charges on aerosols. In practice, a metallic aerosol which vould have a lov residual electrostatic charge is desired.
2. Video Capture System --- PC-EYE, Computer Softvare

This system has been set up in order to analyze the fractal dimensions of particles. It consists of a video camera, an image analyzer board and a software package for the IBM-PC. A particle image on an electron micrograph is digitized by this system and then stored as a file to the floppy disk for further analyses. This video capture system, called PC-EYE, is a commercial product distributed by Chorus Data Systems, Inc.

II. 5 System Assenbly

Figure 2.4 shovs the assembly of entire chamber and monitoring system (top viev).
II. 6 Sampling Technique

It vas readily known that aerosols generated from EWG vere oxidized in normal air. In this study oxidized metallic aerosols are not desired, so that pure nitrogen is used as the gas medium to prevent metallic aerosols from being oxidized. Before the vire is exploded, it is required to "clean" the exploding chamber such that no particles other than exploded aerosols exist. This vas done by evacuating the exploding chamber and filling it vith pure, filtered nitrogen at least three times, and then adjusting the pressure to the desired value.

After the vire has exploded, particles diffuse into the open extractive sampling chamber. After several seconds, which is enough time for particles to enter this sampling chamber, the

F : 47-mm Filter Holder
FV: Four-vay Valve
G : Vacuum Gauge
L. : Laser Spectroneter
M : Manometer
N : Needle Valve

0 : Flov Meter
T : Toggle Valve
VP: Vacuum Pump
VT: Vacuum Tank
X : Extractive Sampling Chamber (Inaide Main Chanber)

Fig 2.4 Aseembly of Experimental Apparatus
chamber's door is closed, the pressure is raised with nitrogen gas, and then nitrogen flushes the particles out to the sampling devices, laser epectrometer, and nuclepore filter. The nitrogen flushing rate is $10 \mathrm{cc} / \mathrm{sec}$, of which $1 \mathrm{cc} / \mathrm{sec}$ is applied to laser counter; the remaining $9 \mathrm{cc} / \mathrm{sec}$ of aerosol is collected by the filter.

After all of the particles in the sampling chamber have been flushed out (this can be monitored by the laser counter), the sampling chamber is pumped out to the pressure of main chamber. Then sampling chamber's door is opened to receive particles again.

III. 1 Scanning Electron Microscope

Abstract

Every filter sample is examined by scanning electron microscopy (SEM). On the SEM in use, the maximum magnification for a picture with good resolution is about $20,000 x$. On certain electron micrographs, the primary particles are hard to identify, but appears to be about 0.04-0.05 micrometer spheres. Even so, this is not a major limitation, because in this study the measurement of size distribution of primary particles is not crucial.

For each filter sample, cut off about 1 square centimeter of this sample. Stick it on a specimen stub with carbon substrate, and then examine it by the scanning electron micrometer.
III. 2 Fractal Analysis

There are two ways applicable to fractal analysis: perimeter method (or compass walk method), and dilation method (or covering squares method).

1. Perimeter (Compass Walk) Method

The basic concept of this method is to estimate the perimeter of a profile by drawing a polygon around this profile. If p represents the estimated perimeter of the profile, i.e. exact perimeter of corresponding polygon, and S represents the length of each side of polygon; the plot of $\ln (P)$ versus $\ln (S)$ would be a straight line with a slope of m. The fractal dimension of this
profile is then calculated by

$$
D=1-m
$$

To measure it practically, take a drafting compass and open it to a stride length S. Starting at one end of Ferets diameter, swing the legs of the compass from the outside inwards to meet the profile, and then make repeated swings, until the compass returns to the starting point. There is a brief discussion of alternate ways to swing the compasses. [28] It should be noted, however, that a consistent method must be used throughout the entire analyses.

This analytical method seems easier than dilation method (to be described in the next section), but is a tedious process and will consume much more time than the dilation method because it can not be easily computerized.
2. Dilation (Covering Squares) Method

Consider an arbitrary planar profile, as illustrated in Fig. 3.1 outlined by the heavy line. The figure is then covered with a plane covering pattern of different scales, such as regular triangles, squares, pentagons, or hexagons (squares are usually used), until the figure is either completely covered or one pattern covers the figure exactly. The smaller the covering cell (triangle, square, etc.), the more the number of cells will be. Similar to perimeter method, the logarithmic plot of the number required to cover versus the length of the covering cell will show a straight line, whose negative slope can be used to
express the fractal dimension. That is, the negative slope of
the line will be:

$$
D=-\frac{d \ln (N)}{d \ln (b)}
$$

where N is the number of covering squares, b is the length of the side of the corresponding square, and D will be termed as
the fractal dimension.

Fig. 3.1 Shape Representing an Image of a Particle

(a)

(b)

(c)

Fig. 3.2 Tiling of Shape by (a) Unit Square, (b) Squares of Side 2, (c) Squares of Side 3

Fig. 3.2 shows the processes for three sizes of squares. It is possible for this method to be applied to computer. But it was found that a fractal analysis for a single picture would require more than two hours on the computer available. This leads to the consideration of applying another dilation method described below.

This alternative dilation method was addressed by S. R. Forrest and T. A. Witten in 1979. [38] A digitized electron micrograph presents a matrix of "ones" and "zeros" (or "blanks"), the "ones" ("zeros") corresponding to the presence (absence) of one point of a particle. This digitized image is analyzed by computer (IBM PC); the computer program is written by BetterBASIC, an improved version of the BASIC language, and is listed in the Appendix. When analyzing, a smallest box was picked such that its geometric center is near the center of mass of particle, then a series of nested squares of different sizes was placed around it and the number of "ones" in each square was counted. This analysis would yield a powerlaw relationship between the length B of the square and the number of pixels $N p$ within it, i.e. $N p \propto B^{D}$, where D is fractal dimension. [38] Forrest and Witten also found that results were most reproducible when squares were chosen whose centers of mass coincided with their geometric centers.

[^0]fractal dimension of 1.500 was analyzed. A mean value for this test was 1.509 , within $1 x$ of accuracy. There are two limitations for this method, which were also stated by Forrest and Witten. One is due to the finite total number of pixels in the image analyzed, the other is due to the finite size of digitized image. The first limitation will cause the exponent of the power law, D (fractal dimension), approaching 0. The second limitation results in the data span being limited to a range of B. Despite these two limitations, this approach spends much less time than the one described at the beginning of this section.
IV. 1 Selection of Metallic Nire

The earliest experiments vere engaged in the selection of metallic vire. Tvo criteria are required: lov melting point and lov residual charge on the particles generated from vire explosion. The higher melting point metala appear to become thermally ionized during the explosion, while the lov melting point metals could be easily dispersed vithout ionization. Besides, it is also necessary to have a vire that lov residual electrostatic charges can be built up on the particles after explosion, such that electrically dominant forces vould not influence the grovth of particles. The charges on numerous metal aerosols vere measured vith a Faraday cage filter. After trying Cu, Ag, Mo, and Al, Ag vire vas chosen. Table 4.1 liste the measurements of the charge levels on different aerosols.

Table 4.1 Keasurements of the Charge Levels on Different Aerosols

Material	Charge/Mass (C / g)	Space Charge $\left(\mathrm{C} / \mathrm{m}^{3}\right)$
Ag	3.5 E-8	2.9 E-9
Ag	3.9 E-8	2.1 E-9
Ag	1.1 E-8	7.5 E-10
Cu	4.3 E-9	1.0 E-9

IV. 2 Electron Micrographs Made by SEM

Fig. 4.1 through 4.10 shov the electron microscope (SEM) pictures of particles at different pressures and times. Four different pressures vere conducted: 1 atm, 0.1 atm, 0.01 atm, and 0.001 atm. There is no problen to collecting particles by using extractive sampler when the pressure vas equal to or higher than 0.01 atm, although particles settled more quickly at the lover pressures. Even with repeated attempts, no particles vere observed at 0.001 atm. Beside the pressure, other parameters vere fixed. They are: vire material, Ag; vire diameter, 0.012^{*}; electric energy, 15 KV ; distance betveen tvo electrodes, 3 cm.

After realizing that no particles could be collected at the pressure of 0.001 atm , it vas desired to knov the lover limit for particle formation. Another two pressure settings vere performed, 0.004 atm and 0.002 atm. In these two tests, it vas only desired to know the "threshold" of pressure, and no pictures vere taken. The PMS counter did shov the presence of particles vithin one hour after vire explosion for these two pressures.

From the electron microscope pictures (Fig. 4. 1 to Fig. 4.10), the primary particles reveal a dianeter of 0.04 - 0.05 micrometer at all levels of pressure. It was also seen that some primary particles remained molten long enough to coalesce into larger spheres at 0.01 atm (not shown in the figures).

Fig. 4. 11 to Fig. 4. 20 are the plots of fractal analysis for the particles grown at different pressures (1.0 atm, 0. 1 atm , and 0.81 atm). The fractal dimension revealed in the figures, as determined by one of dilation methods, do show a pressure dependent as well as time dependent tendencies.

For the particles grown at one atmosphere, the fractal dimension in the range of 0.07 to 0.5 micrometer is about 1.3 at short times after wire explosion, and increased to about 1.45 two hours later. The value of 1.45 is characteristic of clustercluster agglomeration, [11] i.e. the particle growth is due largely to the coagulation of clusters of particles of comparable sizes. Also in one atmosphere, particles grown above 0.5 micrometer have a fractal dimension of 1.7 , which is close to the value of $5 / 3$ expected for particle-cluster agglomeration.

In 0. 1 atmosphere, particles exhibited the same general trend; where the range of cluster-cluster growth was from 0.08 to 0.3 micrometer, and the particle-cluster growth range was from 0.5 micrometer and higher.

In ©. ©1 atmosphere, however, there was an opposite trend. The smaller size range (from 0.07 to 0.5 micrometer) showed a fractal dimension in a range from 1.4 to almost 1.7 . While at size of 0.5 micrometer and up to about 1.0 micrometer, the fractal dimension was about 1.35. This will be discussed later.

Fig. 4.1 Electron Micrograph of Agglomerates, 1 atm. Sample Taken at 37 sec . after Explosion. 20,000x

Fig. 4.2 Electron Micrograph of Agglomerates, 1 atm. Sample Taken at 26.3 min . after Explosion. (a) $20,000 x$, (b) $2,000 x$

Fig. 4.3 Electron Micrograph of Agglomerates, 1 atm. Sample Taken at 129.5 min . after Explosion. (a) $20,000 x$, (b) $2,000 x$

Fig. 4.4 Electron Micrograph of Agglomerates, 1 atm. Sample Taken at 194.8 min . after Explosion. 20,000x

Fig. 4.5 Electron Micrograph of Agglomerates, 0.1 atm. Sample Taken at 30 sec . after Explosion.
(a), (b) $20,000 \mathrm{x}$, (c) $4,000 \mathrm{x}$

Fig. 4.6 Electron Micrograph of Agglomerates, 0.1 atm . Sample Taken at 30 min . after Explosion.
(a) $20,000 \mathrm{x}$, (b), (c) $4,000 \mathrm{x}$

Fig. 4.7 Electron Micrograph of Agglomerates, 0.1 atm. Sample Taken at 60 m in, after Explosion.
(a) $20,000 \mathrm{x}$,
(b) $4,000 \mathrm{x}$,
(c) 800 x

Fig. 4.B Electron M1crograph of Agglomerates, 0.1 atm. Sample Taken at 120 min . after Explosion.
(a) $4,000 x$, (b) $800 x$

Fig, 4.9 Electron Micrograph of Agglomerates, 0.1 atm. Sample Taken at 180 min , after Explosion.
(a) $4,000 \mathrm{x}$,
(b) 800 x

Fig. 4.10 Electron Micrograph of Agglomerates, 0.01 atm . Sample TAken ar (a) $26 \mathrm{sec} ., 20,000 \mathrm{x}$, (b) 29.8 min. , 12,000x, after Explosion.

Fig. 4.11 Fractal Analysis for the Particle in Fig. 4.1

Fig. 4.12 Fractal Analysis for the Particle in Fig. 4.2(a)

Fig. 4.13 Fractal Analysis for the Particle in Fig. 4.3(a)

Fig. 4.14 Fractal Analysis for the Particle in Fig. 4.5(b)

Fig. 4.15 Fractal Analysis for the Particle in Fig. 4.6(a)

Fig. 4.16 Fractal Analysis for the Particle in Fig. 4.7(a)

Fig. 4.17 Fractal Analysis for the Particle in Fig. 4.9(a)

Fig. 4.18 Fractal Analysis for the Particle in Fig. 4.10(a)

Fig. 4.19 Fractal Analysis for the Particle in Fig. 4.10(b)

Fig. 4.20 Fractal Analysis for the Particle Taken at 66.7 min . after Explosion at 0.01 atm

v. Discussion

From the electron micrographe (Fig. 4.1 to Fig. 4.10), it is seen that at normal preasure (1 atm) particles tend to form a plane, chain-like agglomerate (Fig. 4.1 to Fig. 4.4). At short time after vire explosion, the agglomerates exhibit an outline of linear chain (Fig. 4.1). At the later stage of grovth, branched chain agglomerates appeared (Fig. 2 to Fig. 4). these branched chain agglomerates, obviously, are built up from a linear chain base. Besides, those branches are not long compared to their parent chain. Comparing these chain-like agglomerates it is found that the chains formed at earlier stage of grovth are opened and smaller than those formed at later stage of grovth, in that closed chains vere observed (Fig. 4.1 and Fig. 4. 2 veraue Fig. 4.3 and Fig. 4.4).

As the pressure vas reduced, distinct differences vere observed. At 0. 1 atn (Fig. 4.5 to Fig. 4.9), agglomerates are still chain-1ike. Nontheless, these chain-like agglomerates are more compact, or "thicker" (i.e. no longer in tvo dimensional pattern but three dimensional), than those formed at 1 atm ; and the formation of closed chain agglomerates seemed to be earlier. As pressure vent even lover, at 0.01 atm, grovn particles vere still in the form of chain; hovever, they became more and more compact, i.e. space among particles was less, than those grovn at higher pressures (see Fig. 4.10). The reason is that the grovth at lover pressure, say 0.01 atm , is due largely to ballistic collision of particles rather than Brovnian motion. This leads to the fact that either individual
particles or clusters of particles are more likely to penetrate inside a groving cluster of particles than to stick around it, such that a very compact structure of aggregate is formed. On the other hand, st higher pressure, say 0.1 atm and 1.0 atm, the interaction of the gas molecules vith the particles is essential in the aggregation process in which particles are more likely to stick around the periphery of a groving aggregate than to penetrate into it, such that an open structured aggregate is formed.

From the SEM micrograghs, it is obvious that the major effect of reducing gas pressure on particles' grovth is that particles vill grov into more compact structures. To quantify this effect, a descriptor named fractal dimension is applied.

Before measuring fractal dimensions, it should be noted that fractal dimension can be used to describe the ruggedness of an object only vhen this object exhibits fractal characteristics. It is necessary to realize whether or not the grown particles generated in this study reveal fractal characteristics.

Consider, for example, Fig. 4.6. Fig. 4.6(a) is a magnified picture of the particle laid on the left side of Fig. 4.6(b). Compare these two pictures, it is found that the structure of the particle shown on Fig. 4. $6(a)$ is similar to that of the particle laid on right side of Fig. $4.6(\mathrm{~b})$. They are constructed by the base of closed-chain structure. If ve take a closer look at this particle, hovever, the fundamental structure of this particle vould be changed. It vill be
found that this agglomerate is added up vith spherical primary particles even though the resolution getg higher and higher. Beyond this magnification, probably $25,000 x$ or more, the boundary of the agglomerate becomes a smooth finite profile and exhibits Euclidean structure rather than fractal structure, since spheres are Euclidean objects. By definition (aee Section I) particlea exhibiting the above described behavior are characterized as natural fractals, provided they also exhibit scale invariance of sone properties.

Fig. 5. 1 Fractal Dimension Measured by Compass Malk Method

If ve use compass valk technique (perimeter method) to measure the fractal dimension of a natural fractal, the plot on $\log -\log$ scale vould shov two linear regions (e.g. see Fig. 5.1). The linear region at higher resolution deacribes the general structure of the profile, the other region at lover reaolution deacribea the packing texture of the subunits (i.e. primary particles). Kaye suggests the former be described as structural fractal and the latter as textural fractal. [28] Furthermore, the break-point betveen these two linear regions should be theoretically at the dimension of the discernible subunit. [30]

The method used to measure fractal dimension in this study is dilation method which is described in Section III.2. Fig. 4.11 through Fig. 4. 20 are $\log -\log$ plots derived from the analysis of the digitized images of SEM micrographs. Unlike the plot shown in Fig. 5.1 which is obtained from the analysis using compass valk method, these plots shov positive slopes. This is true because they are based on the relation described in Section III. 2: Np $\propto_{B}{ }^{D}$. More actually, this relation can be vritten into

$$
M \propto R^{D} \quad[39]
$$

where M is the mass enclosed within a sphere of radius R. In this relation it assumes that the center of mass of the particle be the center of the circle.

According to the experience derived from analyzing those digitized images, there are some problems to which one has to pay attention. First and the most important, the boxes enclosing the
object should be expanded around the center of mass of the object. This requires at least an evaluation of the center of mass. Secondly, the slope of the plot is very sensitive to the initial location of the smallest box. In other vords, small changes in the location of the smallest box vill result in fluctuating slopes. This occurs even though the largest boxes contain the vhole image; in that case the total number of pixels (vhich are coded "1") is the same. To overcome these problems, an averaging technique has been applied. Several expansion centers vere chosen in order to derive an averaged plot. That is to say, Fig. 4. 11 to Fig. 4.20 are all averaged plots.

Table 5.1 Fractal Dimensions Determined by Dilation Method

1.0 atm	0.1 atm	0.01 atm
Time. D	Time D	Time D

$$
0.6
$$

1. 26 (0.07-0.5) 0.5 1.227 (0.08-0.3)
$0.51 .425(0.07-0.2)$
$1.713(>0.5)$
$1.469(>0.3)$ 1.167 (>0.2)
26.31 .370

30
129.5

1. 451

60
1.392 (0.06-0.5)

67
$1.699(0.1-0.4)$
1.628 (>0.5)
$1.389(>0.4)$
1801.617 (0.3-0.9)

1. 882 (> 0.9)

* Time is counted after vire explosion and is in a unit of minute.
* Unit in the parentheses is in microneters.

Table 5.1 lists the measures of fractal dimensions determined by the dilation method. In this table, most of the values of fractal dimensions exhibit two regions. There is no evidence showing that, like the plot of compass walk method, the break point is near the size of primary particles. However, this can be described as two stages of growth. For example, let us take a look at the fractal dimension of a grown particle at 30 minutes after explosion under 0.1 atmosphere of pressure. At the early stage of growth (growing from 0. 08 to 0.2 micrometers), the fractal dimension of 1.414 manifests a cluster- cluster aggregation. While at the later stage of growth (growing from 0.2 micrometers and larger), the fractal dimension of 1.717 reveals that particle growing at this stage is in particlecluster aggregation.

For the particles grown at one atmosphere, at short time after explosion, the fractal dimension in the range of 0.07 to about 0.5 micrometer is about 1.3 , and is about 1.7 for the range above 0.5 micrometers. Two hours later, it increases to about 1.45 which is a characteristic value of cluster-cluster aggregation (see Table 1.1). The value of 1.7 is close to the value of $5 / 3$ which is an anticipated value for particle-cluster aggregation (see also Table 1.1). The trend of growth at this pressure manifests that cluster-cluster agglomeration will be dominated for long-term coagulation.

At 0. 1 atmosphere, particles' growth reveals similar features as they grow at one atmosphere. The data presented in Table 5.1 show that there is a transition to particle-cluster aggregation during the
coagulation times. The cluster-cluster aggregation occurs for the size ranging from 0.08 to 0.3 micrometerg, and from 0.5 micrometers and larger reveals particle-cluster aggregation.

Unlike 0.1 and 1 atmosphere, particles grovn at 0.01 atmosphere exhibit another character. For the size ranging fron 0.07 to 0.5 micrometers the fractal dimension is from 1.43 to 1.70 , and is from 1.2 to 1.4 for the size of 0.5 microneters and larger. This tells us that at the early stages of grovth cluster-cluster aggregation is dominated vithin 30 minutes after vire explosion; and particlecluster aggregation begins dominating at one hour after explosion and later. At the later stages of grovth, the grovth vill approach to cluster-cluster aggregation with longer coagulation time, say, one hour after explosion.

The reason that grovth svitches from cluster-cluster aggregation to particle-cluster aggregation can be described as follovs. $A s$ the size of cluster increases, its Brovnian motion vill become slov because this cluster is large enough that the bombardments of gas molecules on it could not affect its motion; that is to say, this cluster is "stable". In that case, the motion of this cluster is much less than the background particles or small clusters of much smaller size. Therefore those background particles and small clusters are more likely to collide with the relatively large clusters rather than stick themselves. This is the characteristics of particle-cluster aggregation.

As gas density is low, for example, 0.01 atmosphere, the fractal dimension for early stage of growth is larger than that for later stage of growth for the entire sampling time. The micrographs of the particles grown at 0.01 atmosphere (Fig. 4.10) can demonstrate these measurements. In the figures, the structure of the particles shows that it becones more compact and solid as looking from the periphery inward. From another point of view, particles collide together by cluster-cluster aggregation at the early stage of growth; since the gas density is low these clusters of particles can contact one another tightly, such that a compact structure forms. In the limit of purely ballistic aggregation, a nearly solid structure will have a fractal dimension of 2.0.

The method used to measure fractal dimension in this study is dealing with two-dimensional projecting shapes which are electron micrographs of the particles generated. However, the real particles are three-dimensional, which is apparent in low angle micrographs or stereo-pairs. However, in the literature reported by Weitz and Huang, [40] it was demonstrated that as long as the particles are sparse enough, the two dimensional projection of a three-dimensional particle will have the same fractal characteristics as the particle itself. Therefore, it is unnecessary to do a three-dimensional analysis, except perhaps in the ballistic limit.

In this report, the grovth behavior of metallic aerosols under normal and reduced pressure environments vas investigated. Particles grovn at both environments exhibit very irregular outlines, as shovn in the electron microscope pictures from Fig. 4.1 to Fig. 4.10. It vas found that the basic structure of agglomerates in all three pressure conditions performed is a chain vith some branches. At normal pressure, the agglomerates look like several branched chains stuck together end to end and, constructing an open-chain agglomerate. As pressure decreases, particles' profile is changing from open-chain to closed-chain and their structure becomes more compact and solid.

The grovth of particles is characterized into three types in this study, they are: cluster-cluster aggregation, particle-cluster aggregation, and ballistic aggregation, according to the measured fractal dimensions.

According to the observations in this study, the agglomerates under normal and reduced pressure exhibit fractal characteristics, and can be categorized as natural fractals.

A descriptor, called fractal dimension which is used to describe a fractal object, is applied to quantifying the effect of reducing the pressure on the grovth of particles. The measures of fractal dimensions of experimentally generated and grovn particles are
summarized in Table 5.1.

Particles grovn at 1.0 atmosphere exhibit cluster-cluster aggregation in the early stage of grovth, and particle-cluster aggregation for the later stage of grovth at short time after vire explosion. Then the grovth tends to be a cluster-cluster aggregation.

At 0.1 atmosphere, like at one atmosphere, the grovth is attributed to forming small clusters of particles initially. After that, these small clusters of particles aggregate one another by cluster-cluster aggregation to form a larger cluster vith a characteristic fractal dimension of about 1.4. The later stage of grovth is dominated by particle-cluster aggregation and is characterized by a fractal dimension of about 1.7.

At even lover pressure, 0.01 atmosphere, the initial grovth is changing from cluster-cluster aggregation to particle-cluster aggregation. While the later stage of grovth vill approach to a clustercluster aggregation, but vill presumably change to particle-cluster aggregation at longer times.

Throughout this report, it is obvious that gas mean free path is an important factor to the grovth of particles. Although the pressure does not decrease to very lov value, it seems clear that the aggregation of particles vill tend tovard forming more compact structures vith fractal dimensions approaching to a limit value of 2 . The most important point in this report is the concept and application of
fractal dimension. The fractal analysis is able to interpret the structural informations of agglomerates about their growth history.

REFEREMCES

1. Cheng, M. T. and Shav, D. T.
*Brovnian Coagulation of Chainlike Particles", Aerosols: Science, Technology, and Industrial Applications of Airborne Particles. Ed. by B. Y. H. Liu, D. Y. H. Pui and H. J. Fissan. Elsevier Science Publishing Co., Inc., 1984.
2. Davies, C. N.
Coagulation of Aerosols by Brovnian Motion, J. of Aerosol
Science, Vol. 10, pp 151-161, 1979.
3. Friedlander, S. K. and Kang, C. S.
The Self-Preserving Particle Size Distribution for Coagulation by Brovnian Motion, J. of Colloid and Interface Science, Vol. 22, pp 126-132, 1966.
4. Lai, F. S.; Friedlander, S. K.; Pich, J. and Hidy, G. K.
The Self-Preserving Particle Size Distribution for Brovnian Coagulation in the Free-Molecule Regime, J. of Colloid and Interface Science, Vol. 39, No. 2, pp 395-405, 1972.
5. Lee, K. Y.
hange of Particle Size Distribution during Brovnian Coagulation, J. of Colloid and Interface Science, Vol. 92, No. 2, pp 315-325, 1983.
6. Lee, Paul S. and Shav, David T.
*Dynamics of Fibrous-Type Particles: Brovnian Coagulation and the Charge Effect', J. of Aerosol Science and Technology, Vol. 3, No. 1, pp 9-16, 1984.
7. Lee, K. Y. ; Chen, H. ; and Gieseke, J. A.
Log-Normally Preserving Size Distribution for Brownian Coagulation in the Free-Molecule Regine, J. of Aerosol Science and Technology, Vol. 3, pp 53-62, 1982.
8. Tolfo, Flavio
A Simplified Model of Aerosol Coagulation, J. of Aerosol Science, Vol. 8, pp 9-19, 1977.
9. Wang, C. S. and Friedlander, S. K.
*The Self-Preserving Particle Size Distribution for Coagulation
by Brownian Motion. II Small Particle Slip Correction and
Simultaneous Shear Flov*, J. of Colloid and Interface Science,
Vol. 24, pp 170-179, 1967.
10. Mandelbrot, B. B.

Fractals: Form, Chance and Dimension. W. H. Freeman, San
Francisco, 1977.
11. Meakin, Paul
"Diffusion-Controlled Aggregation on Tvo-Dimensional Square
Lattices: Results from a Nev Cluster-Cluster Aggregation Model*,
Physical Reviev B, Vol. 29, pp 2930-2954, 1983.
12. Meakin, Paul
"Diffusion-Controlled Cluster Fornation in Tvo, Three and Four
Dimensions*, Physical Reviev A, Vol. 27, pp 604-607, 1983.
13. Meakin, Paul
*Diffusion-Controlled Cluster Formation in 2 - 6 Dimensional
Space*, Physical Reviev A, Vol. 27, pp 1495-1507, 1983.
14. Meakin, Paul
*Formation of Fractal Clusters and Netvorks by Irreversible

Diffusion Limited Aggregation", Physical Reviev Letters, Vol. 51, No. 13, pp 1119-1122, 1983.
15. Meakin, Paul
*Effects of Cluster Trajectories on Cluster-Cluster Aggregation:
A Comparison of Linear and Brovnian Trajectories in Two and Three-Dimensional Simulations*, Physical Reviev A, Vol. 29, No. 2, pp 997-999, 1984.
16. Meakin, Paul
Diffusion-Limited Aggregation on Tro-Dimensional Percolation Clusters, Physical Reviev B, Vol. 29, Ko. 8, pp 4327-4330, 1984.
17. Keakin, Paul and Wasserman, Z. R.
"Some Universality Properties Associated with the Cluster Cluster Aggregation Model", Physics Letters, Vol. 103A, No. 6, 7, pp 337 341, 1984.
18. Kolb, K.; Botet, R.; and Jullien, R.
"Scaling of Kinetically Groving Clusters*, American Physical
Society, Vol. 51, Mo. 13, pp 1123-1126, Sept. 1983.
19. Witten, T. A. and Meakin, Paul
"Diffusion-Limited Aggregation at Kultiple Grovth Sites",
Physical Reviev B, Yol. 28, No. 10, pp 5632-5642, 1983.
20. Witten, T. A. and Sander, L. K.
Diffusion-Limited Aggregation, A Kinetic Critical Phenomenon,
Physical Reviev Letters, Yol. 47, pp 1400-1403, 1981.
21. Hentschel, H. G. E.
Fractal Dimension of Generalized Diffusion-Limited Aggregates, Physical Reviev Lettera, Vol. 52, No. 3, pp 212-215, 1984.
22. Ball, R. C. and Witten, T. A.
"Causality Bound on the Density of Aggregates", Physical Reviev A, Yol. 29, No. 5, pp 2966-2967, 1984.
23. Vold, K. J.
"Computer Simulation of Floc Formation in a Colloidal Suspension", J. of Colloid and Interface Science, Vol. 18, Pp 684-695, 1963.
24. Vold, K. J.
"Sediment Volume and Structure in Dispersions of Particles", J. of Physical Chemistry, Vol. 63, pp 1608-1612, 1959.
25. Sutherland, D. N.
Comments on Yold's Simulation of Floc Formation, J. of Colloid and Interface Science, Vol. 22, pp 300-302, 1966.
26. Sutherland, D. N.
"A Theoretical Model of Floc Structure", J. of Colloid and Interface Science, Vol. 25, pp 373-380, 1967.
27. Mandelbrot, B. B.

The Fractal Geometry of Kature. W. H. Freeman, San Francisco, 1982.
28. Kaye, Brian H.
"Multifractal Description of a Rugged Fineparticle Profile*, Particle Characterization J., pp 14-21, 1984.
29. Kaye, Brian H. ; Leblanc, John E. and Clark, Garry G.
A Study of the Physical Significance of Three-Dimensional Signature Waveforms, Particle Characterization J., pp 59-65, 1984.
30. Kaye, Brian K.
"Specification of the Ruggedness and/or Texture of a Fine Particle Profile by its Fractal Dimension ", Powder Technology, Vol. 21, pp 1-16, 1978.
31. Kaye, Brian H. ; Leblanc, John E.; and Abbot, Paul
"Fractal Description of the Structure of Fresh and Eroded Aluminum Shot Fineparticles", Particle Characterization J., Pp $5661,1985$.
32. Kaye, Brian H.

Direct Characterization of Fineparticles, John Wiley and Son, New York, N. Y., 1981.
33. Kaye, Brian H.

Fractal Description of Fineparticle Systems, in J. K. Beddow: Modern Methods in Fineparticle Characterization. C. R. C. Press, Boca Raton, Florida, 1983.
34. Phalen, Robert F.
"Evaluation of An Exploded-Wire Aerosol Generator for Use in Inhalation Studies", J. of Rerosol Science, Vol. 3, pp 295-406, 1972.
35. Chace, W. G. and Moore, H. R., eds.

Exploding Wires, Vols. 1-4. Plenum Press, N. Y., 1958-1968.
36. Karioris, Frank G. and Fish, Birney R.
"An Exploding Wire Aerosol Generator", J. of Colloid Science, Vol. 17, pp 155-161, 1962.
37. Wegrzyn, James E.
"An Investigation of an Exploding Wire Aerosol", Proceeding: Symposium on Fine Particles, Minneapolis, Minnesota, pp 253-273, 1975.
38. Forrest, S. R. and Witten, T. A.
"Long-Range Correlations in Smoke-Particle Aggregates", J. of Physics A: Math. Gen., Yol. 12, No. 5, pp L109-L117, 1979.
39. Lavless, Philip A.; Reist, Parker C.; and Hsieh, M. T.
*Study of Mean Free Path Effects on the Grovth of Ultrafine
Metallic Aerosols: Statement-of-Progress.* (unpublished)
40. Veitz, D. A. and Huang, J. S.
*Self-Similar Structures and the Kinetics of Aggregation of Golds Colloids", Kinetics of Aggregation and Gelation, Ed. by F. Family and D. P. Landau. Preceedings of the International Topical Conference on Kinetics of Aggregation and Gelation, Athens, GA. 1984.

```
SOURCE
PRECISION 6
PROCS=44
BYTE ARRAY(16384): Ba/X
BYTE ARRAY (320, 200): A/X
INTEGER ARRAY(100): X1,X2,X3,X4,Y1,Y2,Y3,Y4
INTEGER ARRAY(100): V
REAL ARRAY(100): P
BYTE: Inc, Boxnum
INTEGER: Rb,Lb,U1, LI
PROCEDURE: Acqpic
END PROCEDURE
PROCEDURE: Shrink
END PROCEDURE
PROCEDURE: SetWidth
END PROCEDURE
PROCEDURE: Anykey
END PROCEDURE
PROCEDURE: Shovpic
END PROCEDURE
PROCEDURE: Counting
END PROCEDURE
PROCEDURE: Definevindov
END PROCEDURE
PROCEDURE: Plot
END PROCEDURE
PROCEDURE: Setbound
END PROCEDURE
PROCEDURE: Message1
END PROCEDURE
PROCEDURE: Resul
END PROCEDURE
PROCEDURE: Acqpic
    EXTERNAL: Ba,Anykey
    INTEGER: I
    STRING: File$(16)
    PROCEDURE: Mes
    END PROCEDURE
    PROCEDURE: Mea
        EXTERNAL: Files,Anykey
```

```
        1 0 \text { CLS}
        20 SET CURSOR 10, 25: INPUT *Picture file name ? *;Files
        30 CLS
            40 SET CURSOR 2, 19:PRINT "For picture to appear it needs 22
            seconds."
        50 SET CURSOR 5, 27:COLOR LTGREEN:PRINT "When picture appeara
        .....*
        6 0 \text { SET CURSOR 6,13:COLOR YELLOW:PRINT "Use arrov keys and}
        hit certain keys to set boundaries*
                70 SET CURSOR 9, 25:COLOR LTGREEN:PRINT *After setting
            boundarieg .....*
                80 SET CURSOR 10, 17:COLOR YELLOW:PRINT *The picture vill
        then be stored into an array."
            90 SET CURSOR 11, 28:COLOR YELLOW:PRINT *(It needs a fev
        minutes)*
        1 0 0 ~ S E T ~ C U R S O R ~ 1 4 , 1 9 : C O L O R ~ L T C Y A N : P R I N T ~ * H i t ~ t h e ~ f o l l o v i n g ~
        keys to set boundaries."
    110 SET CURSOR 16,13:COLOR YELLOW
    120 PRINT ''L' : Left boundary*;SPC(15) ''R' : Right
        boundary*
130 SET CURSOR 17,13:COLOR YELLOW
        140 PRINT ''U' : Upper boundary*;SPC(14) ''D' % Lover
        boundary*
    142 SET CURSOR 18, 29:COLOR YELLOW
    144 PRINT "<ESC> : Finish setting*
    150 SET CURSOR 21,28:COLOR LTRED:PRINT "Type anykey to
        continue. ';
160 Anykey
170 SET CURSOR 21,28:COLOR LTRED:PRINT *Acquiring Picture
    ......'*
END PROCEDURE
    10 Mes
    30 OPEN Files AS 1 LEN 16384
    4 0 ~ R E A D ~ R E C O R D ~ * 1 , 1 , B a
    S0 CLOSE 1
    60 FOR I = 4 TO 16003 : Ba(I) = Ba(I +252) ; NEXT
    70 Ba(0)=128: Ba(1)=2:Ba(2)=200: Ba}(3)=
END PROCEDURE
PROCEDURE: Shrink
EXTERKAL: A,Ul, Ll,Rb,Lb,Definevindov, Anykey
INTEGER: I,J
PROCEDURE: Modify
END PROCEDURE
PROCEDURE: Hes
END PROCEDURE
PROCEDURE: Modify
    EXTERNAL: Rb,Lb
        10 IF Rb HOD 2 = 1 THEN Rb=Rb+1
        20 IF Lb MOD 2 = 1 THEN Lb=Lb-1
END PROCEDURE
```

PROCEDURE: Mes
EXTERNAL: Definevindor, Anykey
10 Definevindov20 SET CURSOR 10, 14:PRINT *The picture has been stored intoa 320×200 array. ${ }^{*}$
30 SET CURSOR 12, 12:PRINT *Mext step is to set vidth and
number of counting boxes. *
40 SET CURSOR 15, 27:COLOR LTRED:PRINT *Type any key to
continue. *
50 Anykey
END PROCEDURE
10 Modify
20 CLEAR (A)
30 FOR J = U1 TO LI
40 FOR I $=\mathrm{Lb}$ TO Rb
$50 \mathrm{~A}(\mathrm{I} / 2, \mathrm{~J})=\operatorname{POINT}(\mathrm{I}, \mathrm{J})+\operatorname{POINT}(\mathrm{I}+1, \mathrm{~J})$
60 NEXT
70 NEXT
80 SOUND 1000, 2
90 Mes
END PROCEDURE
PROCEDURE: SetWidth
INTEGER: X,Y
BYTE ARRAY(5): Ptr
EXTERNAL: $W, X 1, X 2, X 3, X 4, Y 1, Y 2$
EXTERNAL: Y3, Y4, Shovpic, Inc, Definevindov, Boxnum, Anykey
STRING: K\$(5)
EXTERNAL: Ba
PROCEDURE: Init
END PROCEDURE
PROCEDURE: MovePtr
END PROCEDURE
PROCEDURE: Boxinit
END PROCEDURE
PROCEDURE: Box
END PROCEDURE
PROCEDURE: Mes
END PROCEDURE
PROCEDURE: Valreset
END PROCEDURE
PROCEDURE: Mes1
END PROCEDURE
PROCEDURE: Init
EXTERNAL: Ptr
$10 \operatorname{PSET}(10,10), 1$
$20 \operatorname{GET}(10,10)-(10,10)$, Ptr
30 PRESET $(10,10)$
END PROCEDURE

```
PROCEDURE: MovePtr
    STRING: K$[5], R[5], L[5], U[5], D[5]
    EXTERNAL: X,Y,Ptr,Shovpic
    EXTERNAL: Boxinit,Init
        10 Shovpic
        20 Init
        30 R=CHRS (0) +CHR$(77):L=CHR$ (0) +CHRS (75):
        U=CHRS (0) +CHR$(72): D=CHR$(0) +CHRS (80)
        40 X = 300 : Y = 50
        50 PUT (X,Y), Ptr, XOR
        6 0 ~ D O
        70 K$=INKEY$:IF Ks=** THEN GOTO 70
        80 IF Ks = CHR$(27) THEN Boxinit
        90 IF Ks = * * THEN EXIT
        100 IF KS = R THEN PUT(X,Y),Ptr,XOR : X = X + 5 :
                PUT(X,Y),Ptr, XOR
    110 IF KS = L THEN PUT(X,Y),Ptr,XOR : X = X - 4 :
                PUT (X,Y), Ptr, XOR
    120 IF KS = U THEN PUT(X,Y),Ptr,XOR : Y = Y - 4 :
                PUT(X, Y), Ptr, XOR
    130 IF Ks = D THEN PUT(X,Y),Ptr,XOR : Y = Y + 5 :
                PUT(X,Y), Ptr, XOR
    140 REPEAT
END PROCEDURE
```

PROCEDURE: Boxinit
EXTERNAL: $X, Y, X_{1}, X 2, X 3, X 4, Y 1, Y 2$
EXTERNAL: Y3,Y4
STRING: K\$[5]
$10 \mathrm{~K}=1$ NKEYS : IF K $=*$ THEN GOTO 10
20 IF K $\$={ }^{*} 1^{*}$ THEN $X 1(\theta)=X: Y 1(\theta)=Y$
30 IF $\mathrm{K} \$=2^{*}$ THEN $X 2(\theta)=X: Y 2(\theta)=Y$
40 IF $\mathrm{K} \$=3^{*}$ THEN $X 3(\theta)=X: Y 3(\theta)=Y$ 50 IF K $\$=4^{*}$ THEN $X 4(\theta)=X: Y 4(\theta)=Y$
END PROCEDURE

```
PROCEDURE: Box
    EXTERNAL: W, X1, X2, X3,X4,Y1,Y2,Y3
    EXTERNAL: Y4,Inc, Boxnum
    INTEGER: I
        1 0 ~ C L S ~
        20}W(0)=Y2(0)-Y1(0
        30 X3(0)=X1(0)+2*Y(0) : Y3(0)=Y2(0)
        40 X4(0)=X3(0) : Y4(0)=Y1(0)
        50 FOR I = 0 TO Boxnum
        60 X1(I+1)=X1(I)-2*Inc : Y1(I+1)=Y1(I)-Inc
        70 X2(I+1)=X2(I)-2*Inc : Y2(I+1)=Y2(I)+Inc
        80 X3(I+1)=X3(I)+2*Inc : Y3(I+1)=Y3(I) +Inc
        90 X4(I+1)=X4(I)+2*Inc : Y4(I+1)=Y4(I)-Inc
```

```
    100 W(I)=Y2(I)-Y1(I)
    110 LINE(X1(I),Y1(I))-(X3(I),Y3(I)), 1, B
    120 NEXT
END PROCEDURE
```


PROCEDURE: Mes

```
    EXTERNAL: Inc, Boxnum
    STRING: K$[5]
    1 0 \text { CLS : COLOR YELLOW}
    20 SET CURSOR 8, 12:PRINT "Hit <CR> to choose number of boxes
        and increment value."
            3 0 ~ S E T ~ C U R S O R ~ 9 , ~ 2 3 : P R I N T ~ * O t h e r ~ k e y s ~ v i l l ~ u s e ~ d e f a u l t ~
        values*
            40 SET CURSOR 13,19:PRINT "Default values are: Number of
        boxes = 20"
                50 SET CURSOR 14,19:PRIMT * Box
    increment = 4*
        60 SET CURSOR 18, 24:COLOR LTGREEN:PRINT *<ESC> vill use
    earlier values.
    70 K$=INKEY$:IF Ks = ** THEN GOTO 70
    80 DO IF K$=CHRS(13)
    90 CLS : COLOR YELLOW
    100 SET CURSOR 9,16:INPUT *Number of boxes vanted ?*;Boxnum
    110 SET CURSOR 11,16:INPUT *Box increment ? ";Inc
    120 END DO
    130 DO IF K$<>CHRS(13) AND Ks<>CHR$(27)
    140 Boxnum = 20 : Inc = 4
    150 END DO
END PROCEDURE
PROCEDURE: Yalreset
    EXTERNAL: Inc, Boxnum,Definevindov
    STRING: K$[5]
        1 0 \text { Definevindov}
        20 SET CURSOR 10,8
        30 PRINT "Want to reset number of boxes and box increment
        values ? (Y/N)"
    40 Ks=INKEYs:IF Ks=* THEN GOTO 40
    50 DO IF K$=*'Y* OR K$=*Y*
    6 0 ~ C L S ~
    70 SET CURSOR 9, 29:IMPUT *Number of boxes ?*;Boxnum
    80 SET CURSOR 11,29:INPUT *Box increment ?*;Inc
    90 END DO
END PROCEDURE
PROCEDURE: Mes 1
EXTERNAL: Anykey
10 CLS : COLOR YELLOW
20 SET CURSOR 3, 24:PRINT "Use arrov keys to move pointer. *
30 SET CURSOR 5, 15:PRINT "The pointer should be moved to the position where*
40 SET CURSOR 6, 15:PRINT "is one of the four corners of the most inner box."
50 SET CURSOR 7, 15:PRINT "The corners can be set by doing
```

```
            the folloving vay*
            6 0 \text { SET CURSOR 9, 12:PRINT "Hit <ESC> and 1 to set the upper}
            left corner of that box."
            70 SET CURSOR 10, 12:PRIMT "Hit <ESC> and 2 to set the lover
                left corner of that box."
                    80 SET CURSOR 12,15:PRINT "The upper and lover left corners
                    should be set*
                        90 SET CURSOR 13,15:PRINT "before vieving the boxes. After
                setting these*
                100 SET CURSOR 14,15:PRINT "corners, hit SPACE bar to viev
                hov those boxes*
                    110 SET CURSOR 15,15:PRINT *look like and hov do you like
                    them. You could*
                    120 SET CURSOR 16,15:PRINT "either reset box number and box
                    increment values*
            130 SET CURSOR 17, 15:PRINT "or remain these values but change
                the positions*
            140 SET CURSOR 18, 15:PRINT "of those boxes."
            150 SET CURSOR 21,27:COLOR LTRED:PRINT "Type any key to
                continue. *;
            160 Anykey
    END PROCEDURE
        10 Mes
        20 CLS:COLOR YELLOW
        30 SET CURSOR 10, 27:PRINT *Need instructions ? (Y/K)*
        40 Ks=INKEYs:IF K$=** THEN GOTO 40
        50 IF K$=* ' O OR K$=*Y* THEN Mes1
        6 0 \text { MovePtr}
        70 Box
        80 PUT( (0, 0), Ba, XOR
        90 LOCATE 24,65:PRINT "OK ? (Y/N) *;
    100 KS=INKEY$:IF K$=** THEN GOTO 100
    110 IF Ks<>"Y* AND Ks<>"y* THEN Valreset : GOTO 60
    120 LOCATE 24,65:PRINT "Computing .... *;
END PROCEDURE
PROCEDURE: Anykey
STRING: S[5]
\(10 \mathrm{~S}=\) INKEY\$ \(:\) IF \(\mathrm{S}=*\) THEN GOTO 10
END PROCEDURE
PROCEDURE: Shovpic
EXTERNAL: Ba
10 SCREEN 2
15 'LINE (2, 0)-(639, 191), 1, BF
\(20 \operatorname{PUT}(0,0), B a, X O R\)
END PROCEDURE
PROCEDURE: Counting
EXTERNAL: \(\mathrm{A}, \mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \mathrm{X} 4, \mathrm{Y} 1, \mathrm{Y} 2, \mathrm{P}\)
EXTERNAL: Boxnum
INTEGER: I, J, K
PROCEDURE: Modify
```

END PROCEDURE

```
PROCEDURE: Modify
    INTEGER: I
    EXTERNAL: X1, X2, X3, X4, Boxnum
        10 DO IF X1(0) MOD 2=1
        20 FOR I = 0 TO Boxnum-1
        30 X1(I) = X1(I) - 1
        40 X2(I) = X2(I) - 1
        50 X3(I) = X3(I) - 1
        60 X4(I) = X4(I) - 1
        70 NEXT
        80 END DO
END PROCEDURE
    10 Modify
    20 CLEAR(P)
    30 FOR J = Y1(0) TO Y2(0)-1
    40 FOR I = X1 (0)/2 TO X4(0)/2-1
    50 P(0)=P(0) +A(I,J)
    60 NEXT
    7 0 ~ N E X T
    8 0 ~ S O U N D ~ 1 0 0 0 , 0 . 5
    90 FOR K = 1 TO Boxnum-1
100 P(K)=0
110 FOR J = Y1(K) TO Y1(K-1)-1
120 FOR I = X1(K)/2 TO X4(K)/2-1
130 P(K) = P(K) + A(I,J)
140 MEXT
150 NEXT
160 FOR J = Y2(K-1) TO Y2(K)-1
170 FOR I = X1(K)/2 TO X4(K)/2-1
180 P(K) = P(K) + A(I,J)
190 NEXT
200 NEXT
210 FOR J = Y1(K-1) TO Y2(K-1)-1
220 FOR I = X1(K)/2 TO X1(K-1)/2-1
230 P(K) = P(K) + A(I,J)
240 NEXT
250 NEXT
260 FOR J = Y1(K-1) TO Y2(K-1)-1
270 FOR I = X4(K-1)/2 TO X4(K)/2-1
280 P(K) = P(K) + A(I,J)
290 NEXT
300 NEXT
310}P(K)=P(K) + P(K-1
320 SOUND 1000,0.5
330 NEXT
340 SOUND 1000,0.5
END PROCEDURE
PROCEDURE: Definevindov
10 CLS : SCREEN 0 : STATUSLINE OFF 20 DEFINE WINDOW \(1,0,0,23,79\), YELLOW, ON BLUE 30 FRAME KINDOW 1,10
```

```
        4 0 ~ C O L O R ~ B O R D E R ~ R E D ~
END PROCEDURE
PROCEDURE: Plot
    EXTERHAL: W,P,Anykey, Boxnum, Definevindov
    INTEGER: L,Vc,Hc,Pmin
    PROCEDURE: Coord
    END PROCEDURE
    PROCEDURE: Scale
    END PROCEDURE
    PROCEDURE: Regression
    END PROCEDURE
    PROCEDURE: Plot4x3
    END PROCEDURE
    PROCEDURE: Plot3x3
    END PROCEDURE
    PROCEDURE: Plot 3x2
    END PROCEDURE
    PROCEDURE: Plot 2x2
END PROCEDURE
PROCEDURE: Plot 2\times3
END PROCEDURE
PROCEDURE: Coord
    EXTERNAL: Hc,Vc
    PROCEDURE: FourxThree
    END PROCEDURE
    PROCEDURE: ThreexThree
    END PROCEDURE
    PROCEDURE: ThreexTvo
    END PROCEDURE
    PROCEDURE: TvoxTvo
    END PROCEDURE
    PROCEDURE: TvoxThree
    END PROCEDURE
    PROCEDURE: FourxThree
        INTEGER: I,J
            10 LINE (170,0)-(470, 180), 1, B
            20 FOR I = 0 TO 1
            30 LINE (270 +100 + I, 0)-(270 +100 + I, 4),1
```

```
    40 LINE(270+100*I, 176)-(270*100*I, 180), 1
    5 0 ~ M E X T
    60 FOR I = 0 TO 2
    70 LINE(170, 135-45*I)-(177, 135-45*I),1
    80 LINE (463, 135-45*I)-(470, 135-45*I),1
    9 0 ~ N E X T ~
    100 FOR J = 2 TO 5 STEP 3
    110 FOR I = 0 TO 2
                        120 LINE(170+100*(I +LOG(J)/2.3),0)-
                        (170+100* (I +LOG(J)/2.3),4),1
                        130 LINE(170+100*(I*LOG(J)/2.3),176)-
                (170.100*(I +LOG(J)/2.3), 180),1
    140 NEXT
    150 FOR I = 0 TO 3
        160 LINE(170,180-45*(I+LOG(J)/2.3))-(177,180-
                45*(I + LOG(J)/2.3)),1
        170 LINE (463,180-45*(I+\operatorname{LOG}(J)/2.3))-(470,180-
        45* (I * LOG(J)/2.3)),1
    180 NEXT
    190 NEXT
END PROCEDURE
PROCEDURE: ThreexThree
    INTEGER: I, J
        10 LINE(125,0)-(515, 180), 1, B
        20 FOR I = 0 TO 1
    30 LINE (255+130*I,0)-(255*130*I, 4),1
    40 LINE(255*130*I, 176)-(255*130*I, 180),1
    5 0 ~ N E X T
    60 FOR I = TO 1
    70 LINE (125,60*60.I)-(132,60*60.I),1
    80 LINE(508,60+60*I)-(515,60*60*I),1
    9 0 ~ N E X T
    100 FOR J = 2 TO 5 STEP 3
    110 FOR I = 0 TO 2
                                    120 LINE(125+130*(I+LOG(J)/2.3),0) =
                                    (125+130*(I+LOG(J)/2.3),4),1
                                    130 LINE(125+130*(I +LOG(J)/2.3), 176)-
                                    (125+130*(I +LOG(J)/2.3),180),1
    140 NEXT
    150 FOR I = 0 TO 2
        160 LINE(125, 180-60*(I +OG(J)/2.3))-(132,180-
        60* (I * LOG(J)/2.3)),1
                            LINE(508, 180-60* (I +LOG(J)/2.3)) -(515,180-
                                60.(I *LOG(J)/2.3)),1
    180 NEXT
    190 NEXT
END PROCEDURE
PROCEDURE: ThreexTvo
    INTEGER: I,J
        10 LINE (190,0)-(450, 180), 1, B
        20 LINE (320,0)-(320,4),1
        30 LINE(320, 176)-(320,180),1
```

```
    40 FOR I = TO 1
    5 0 \operatorname { L I N E } ( 1 9 0 , 1 2 0 - 6 0 * I ) - ( 1 9 7 , 1 2 0 - 6 0 * I ) , 1
    60 LINE (443,120-60.I)-(450,120-60*I),1
    7 0 ~ N E X T
    80 FOR J = 2 TO 5 STEP 3
    90 FOR I = 0 TO 1
                100 LINE(190+130*(I+LOG(J)/2.3),0)-
                (190+130*(I+LOG(J)/2.3), 4),1
                    110 LINE(190+130*(I*LOG(J)/2.3),176)-
                                (190+130*(I +LOG(J)/2.3), 180), 1
    120 NEXT
    130 FOR I = 0 TO 2
        140 LINE(190,180-60*(I+LOG(J)/2.3))-(197,180-
                60*(I+LOG(J)/2.3)),1
        150 LINE(443,180-60*(I+LOG(J)/2.3))-(450, 180-
                60*(I +LOG(J)/2.3)),1
    160 NEXT
    170 NEXT
END PROCEDURE
PROCEDURE: TvoxTvo
    INTEGER: I,J
            10 LIME (120,0)-(520, 180), 1, B
            20 LINE (320, 0)-(320,4), 1
            30 LIME (320, 176) - (320, 180), 1
            40 LINE (120,90)-(127,90),1
            50 LINE (513,90)-(520,90),1
            60 FOR J = 2 TO 5 STEP 3
            70 FOR I = 0 TO 1
                                    80 LINE(120*200*(I +LOG(J)/2.3),0)-
                                    (120+200*(I+LOG(J)/2.3),4),1
                                    90 LINE(120+200*(I +LOG(J)/2.3), 176)=
                                    (120+200*(I+LOG(J)/2.3),180),1
    100 NEXT
    110 FOR I = 0 TO 1
        120 LINE(120,180-90*(I+LOG(J)/2.3))-(127,180-
                90*(I+LOG(J)/2.3)),1
                        LINE(513,180-90*(I +LOG(J)/2.3))=(520,180-
                90*(I +LOG(J)/2.3)),1
    140 NEXT
    150 NEXT
END PROCEDURE
PROCEDURE: TvoxThree
    INTEGER: I,J
        10 LIME (20,0)-(620, 180), 1, B
        20 FOR I = 0 TO 1
    30 LINE (220+200 I, 0)-(220+200 I I, 4),1
    40 LINE (220+200 * I, 176)-(220+200*I, 180),1
    5 0 ~ N E X T
    60 LINE (20, 90)-(27,90), 1
    70 LINE (613,90)-(620,90), 1
    80 FOR J = 2 TO 5 STEP 3
    90 FOR I =0 TO 2
```

```
                    100
                                    LINE(20*200-(I*LOG(J)/2.3),0)-
                                    (20*200*(I +LOG(J)/2.3), 4),1
                                    110 LINE(20+200*(I+LOG(J)/2.3), 176) =
                                    (20+200 (I +LOG(J)/2.3), 180), 1
    120 NEXT
        130 FOR I = 0 TO 1
            140 LINE (20,180-90*(I+LOG(J)/2.3))-(27,180-
                90*(I+LOG(J)/2.3)),1
                                    LINE(613,180-90.(I +LOG(J)/2.3))-(620,180-
                                90 (I +LOG(J)/2.3)),1
        160 NEXT
        170 NEXT
    END PROCEDURE
    1 0 ~ D O ~ I F ~ Y c = 4 ~ A N D ~ H c = 3 ~
    20 FourxThree
    3 0 ~ E N D ~ D O ~
    4 0 \text { DO IF Vc=3 AND Hc=3}
    50 ThreexThree
    6 0 \text { END DO}
    70 DO IF Yc=3 AND Hc=2
    80 ThreexTvo
    9 0 ~ E N D ~ D O ~
    100 DO IF Yc=2 AMD Hc=2
    110 TvoxTvo
    120 END DO
    130 DO IF Vc=2 AMD Hc=3
    140 TvoxThree
    150 END DO
END PROCEDURE
PROCEDURE: Scale
    EXTERNAL: Vc,Hc,W,Pmin
    PROCEDURE: FourxThree
    END PROCEDURE
    PROCEDURE: ThreexThree
    END PROCEDURE
    PROCEDURE: ThreexTvo
    END PROCEDURE
    PROCEDURE: TvoxTvo
    END PROCEDURE
    PROCEDURE: TvoxThree
END PROCEDURE
PROCEDURE: FourxThree
        EXTERNAL: Pmin
            10 DO IF INT(LOG(Pmin)/2.3)=1
            20 LOCATE 1,14:PRINT *100,000*;
            30 LOCATE 6,15:PRINT *10,000*;
            40 LOCATE 12, 16:PRINT *1,000";
```

```
50 LOCATE 17,18:PRINT *100*;
60 LOCATE 23,19:PRINT *10*;
70 END DO
DO IF INT(LOG(Pmin)/2.3)=0
LOCATE 1,15:PRINT *10,000*;
100 LOCATE 6,16:PRINT *1,000*;
110 LOCATE 12,18:PRINT '100';
120 LOCATE 17,19:PRINT *10*;
130 LOCATE 23,20:PRINT "1";
140 END DO
150 LOCATE 24,22:PRINT '1";
160 LOCATE 24,34:PRINT "10';
170 LOCATE 24,46:PRINT "100*;
180 LOCATE 24,58:PRINT "1000';
```

END PROCEDURE

```
PROCEDURE: ThreexThree
    EXTERNAL: Pmin
        10 DO IF INT(LOG(Pmin)/2.3)=2
    20 LOCATE 1, 9:PRINT "100,000";
    30 LOCATE 8,10:PRINT *10,000*;
    40 LOCATE 16,11:PRINT "1,000';
    50 LOCATE 23,13:PRINT "100*;
    6 0 \text { END DO}
    DO IF INT(LOG(Pmin)/2.3)=1
        LOCATE 1,10:PRINT * 10,000*;
        LOCATE 8,11:PRINT "1,000*;
        LOCATE 16,13:PRINT "100*;
        LOCATE 23,14:PRINT "10";
    1 2 0 ~ E N D ~ D O ~
    130 LOCATE 24,16:PRINT "1";
    140 LOCATE 24,32:PRINT "10";
    150 LOCATE 24,48:PRINT *100*;
    160 LOCATE 24,63:PRINT *1,000';
END PROCEDURE
```

PROCEDURE: ThreexTvo
EXTERNAL: $\mathrm{N}, \mathrm{Pmin}$
10 DO IF INT(LOG(Pmin)/2.3)=2
20 LOCATE 1,17:PRINT "100,000";
30 LOCATE 8,18:PRINT * 10,000";
40 LOCATE 16,19:PRINT "1,000";
50 LOCATE 23,21:PRINT "100';
60 END DO
70 DO IF INT(LOG(Pmin)/2.3)=1
80 LOCATE $1,18:$ PRINT ${ }^{10,000 * ; ~}$
90 LOCATE 8,19:PRINT *1,000*;
100 LOCATE 16, 21:PRINT '100";
110 LOCATE 23,22:PRINT ${ }^{-10}$ *;
120 END DO
130 DO IF INT(LOG(H(0))/2.3)=1
140 LOCATE 24, $24:$ PRINT "10*;
150 LOCATE 24, 40:PRINT "100";
160 LOCATE 24,55:PRINT *1,000*;

```
    170 END DO
    180 DO IF INT(LOG(W(0))/2.3)=0
    190 LOCATE 24, 25:PRINT *1";
    200 LOCATE 24, 41:PRINT *10";
    210 LOCATE 24,57:PRINT *100*;
    220 END DO
END PROCEDURE
PROCEDURE: TvoxTvo
    EXTERNAL: W,Pmin
        10 DO IF INT(LOG(Pmin)/2.3)=3
        20 LOCATE 1, 8:PRINT *100,000*;
        30 LOCATE 12, 9:PRINT *10,000*;
        40 LOCATE 23,10:PRINT *1,000*;
        5 0 ~ E N D ~ D O ~
        6 0 ~ D O ~ I F ~ I N T ( L O G ( P m i n ) / 2 . 3 ) = 2
        70 LOCATE 1, 9:PRINT *10,000*;
        80 LOCATE 12,10:PRINT * 1,000*;
        90 LOCATE 23,12:PRINT *100*;
        100 END DO
        1 1 0 ~ D O ~ I F ~ I N T ( L O G ( K ( 0 ) ) / 2 . 3 ) = 1
        120 LOCATE 24,15:PRINT *10*;
        130 LOCATE 24,39:PRINT *100*;
        140 LOCATE 24,63:PRINT *1,000*;
        150 END DO
        160 DO IF INT(LOG(M(0))/2.3)=0
        170 LOCATE 24, 16:PRINT "1";
        180 LOCATE 24,40:PRINT *10*;
        190 LOCATE 24,65:PRINT *100*;
        200 END DO
END PROCEDURE
PROCEDURE: TvoxThree
    EXTERNAL: Pmin
        10 DO IF INT(LOG(Pmin)/2.3)=3
        20 LOCATE 12, 5:PRINT *10,000*;
        3 0 ~ E N D ~ D O ~
        4 0 ~ D O ~ I F ~ I N T ( L O G ( P m i n ) / 2 . 3 ) = 2
        50 LOCATE 12, 5:PRINT *1,000*;
        6 0 \text { END DO}
        70 LOCATE 24, 3:PRINT "1";
            80 LOCATE 24, 27:PRINT *10";
            90 LOCATE 24,52:PRINT *100*;
            100 LOCATE 24,75:PRINT *1,000*;
END PROCEDURE
    10 DO IF Vc=4 AND Hc=3
    20 FourxThree
    3 0 \text { END DO}
    4 0 ~ D O ~ I F ~ V c = 3 ~ A N D ~ H c = 3 ~
    50 ThreexThree
    6 0 ~ E N D ~ D O ~
    70 DO IF Vc=3 AND Hc=2
    80 ThreexTvo
    9 0 ~ E N D ~ D O ~
```

```
    100 DO IF Vc=2 AND He=2
    110 TvoxTvo
    120 END DO
    130 DO IF Vc=2 AND Hc=3
    140 TvoxThree
    150 END DO
END PROCEDURE
PROCEDURE: Regression
    EXTERNAL: Y,P,Boxnum
    INTEGER: I
    REAL ARRAY(100): RegX, RegY
    REAL: Xsum, Ysum, U, Xysum, X2sum
    REAL: Y2gum, Numer, Denom, R, B
        10 CLEAR(RegX, RegY, U, Xsum, Ysum, Xysum, X2sum, Y2sum)
        20 FOR I = 0 TO Boxnum-1
        30 DO IFW(I) > 0 AND P(I) > 0
        40 RegX(I) = LOG(N(I))/2.3: RegY(I) = LOG(P(I))/2.3
        5 0 ~ E N D ~ D O ~
        60 Xsum = Xsum + RegX(I) : Ysum = Ysum * RegY(I)
        70 U = RegX(I)*RegY(I) : Xysum = Xysum * U
        80}U=\operatorname{RegX(I)^2 : X2sum = X2sum + U
        90 U = RegY(I)^2 : Y2sum = Y2sum + U
    100 NEXT
    110 Numer = Xysum - Xeum*Ysum/Boxnum
        120 Denom = (SQR(X2sum-Xsum^2/Boxnum))*(SQR(Y2sum-
                        Ysum^2/Boxnum))
    130 R = Numer/Denom
    140 B = (Xysum-Xsum*Ysum/Boxnum)/(X2sum-Xsum^2/Boxnum)
    150 DO IF ABS(R) > 0.98
    160 LOCATE 21,42:PRINT *Slope m*;:PRINT USING *&.*&*;B
    170 LOCATE 22,42:PRINT * R =*;:PRINT USING **.****;R
    180 END DO
END PROCEDURE
PROCEDURE: Plot 4x3
    EXTERNAL: W,P,L,Pmin
        10 DO IF INT(LOG(Pmin)/2.3)=1
        20 CIRCLE(170+100*LOG(W(L))/2.3,180-45*(LOG(P(L))/2.3-
            1)), 2,1
        3 0 ~ E N D ~ D O ~
        4 0 ~ D O ~ I F ~ I N T ( L O G ( P m i n ) / 2 . 3 ) = 0
        5 0 ~ C I R C L E ( 1 7 0 ~ - 1 0 0 * L O G ( Y ( L ) ) / 2 . 3 , 1 8 0 - 4 5 * L O G ( P ( L ) ) / 2 . 3 ) , ~ 2 , 1
        6 0 \text { END DO}
END PROCEDURE
PROCEDURE: Plot 3x3
    EXTERNAL: K,P,L,Pmin
    10 DO IF INT(LOG(Pmin)}/2.3)=
        20 CIRCLE(125+130*LOG(M(L))/2.3,180-60*(LOG(P(L))/2.3-
            2)), 2,1
    3 0 ~ E N D ~ D O ~
    40 DO IF INT(LOG (Pmin)/2.3)=1
        50 CIRCLE(125+130*LOG(Y(L))/2.3,180-60*(LOG(P(L))/2.3-
```

1)), 2, 1

60 END DO END PROCEDURE

PROCEDURE: Plot 3×2
EXTERAAL: $W, P, L, P m i n$
10 DO IF INT(LOG(Pmin)/2.3)=1 AND INT(LOG(K($\theta)) / 2.3)=1$
20 CIRCLE $190+130 \cdot(\operatorname{LOG}(M(L)) / 2.3-1), 180-60 \cdot(\operatorname{LOG}(P(L)) / 2.3-$ 1)), 2, 1

30 END DO
40 DO IF INT $(\operatorname{LOG}(\operatorname{Pmin}) / 2.3)=1$ AND $\operatorname{INT}(\operatorname{LOG}(N(0)) / 2.3)=0$
$50 \quad \operatorname{CIRCLE}(190+130 \cdot \operatorname{LOG}(W(L)) / 2.3,180-60 \cdot(\operatorname{LOG}(P(L)) / 2.3-$ 1)), 2, 1

60 END DO
70 DO IF INT $\left(\operatorname{LOG}\left(\mathrm{P}_{\mathrm{min}}\right) / 2.3\right)=2$ AND $\operatorname{INT}(\operatorname{LOG}(\mathbb{Y}(\theta)) / 2.3)=1$
$80 \operatorname{CIRCLE}(190+130 \cdot(\operatorname{LOG}(W(L)) / 2.3-1), 180-60 \cdot(\operatorname{LOG}(P(L)) / 2.3-$ 2)), 2, 1

90 END DO
100 DO IF $\operatorname{INT}(\operatorname{LOG}(\operatorname{Pmin}) / 2.3)=2$ AND $\operatorname{INT}(\operatorname{LOG}(N(0)) / 2.3)=0$
$110 \operatorname{CIRCLE}(190+130 \cdot \operatorname{LOG}(W(L)) / 2.3,180-60 \cdot(\operatorname{LOG}(P(L)) / 2.3-$ 2)), 2, 1

120 END DO
END PROCEDURE
PROCEDURE: Plot 2×2
EXTERNAL: $W, P, L, P m i n$
10 DO IF INT $(\operatorname{LOG}(\operatorname{Pmin}) / 2.3)=2$ AND $\operatorname{INT}(\operatorname{LOG}(N(\theta)) / 2.3)=1$
$20 \operatorname{CIRCLE}(120+200 *(\operatorname{LOG}(\mathbb{K}(L)) / 2.3-1), 180-90 \cdot(\operatorname{LOG}(P(L)) / 2.3-$ 2)), 2, 1

30 END DO
40 DO IF INT(LOG(Pmin)/2.3) $=2$ AND $\operatorname{INT}(\operatorname{LOG}(W(0)) / 2.3)=0$
50 CIRCLE $(120+200 * \operatorname{LOG}(W(L)) / 2.3,180-90 *(\operatorname{LOG}(P(L)) / 2.3-$ 2)), 2, 1

60 END DO
70 DO IF INT(LOG(Pmin)/2.3)=3 AND INT(LOG(W(0))/2.3)=0 $80 \operatorname{CIRCLE}(120+200 * \operatorname{LOG}(W(L)) / 2.3,180-90 *(\operatorname{LOG}(P(L)) / 2.3-$ 3)), 2, 1

90 END DO
100 DO IF INT $(\operatorname{LOG}(\operatorname{Pmin}) / 2.3)=3$ AND $\operatorname{INT}(\operatorname{LOG}(W(\theta)) / 2.3)=1$
$110 \operatorname{CIRCLE}(120+200 \cdot(\operatorname{LOG}(W(L)) / 2,3-1), 180-90 \cdot(\operatorname{LOG}(P(L)) / 2.3-$ 3)), 2, 1

120 END DD
END PROCEDURE

PROCEDURE: Plot 2×3
EXTERNAL: W, P, L, Pmin
10 DO IF INT(LOG(Pmin)/2.3)=2
$20 \operatorname{CIRCLE}(20+200 \cdot \operatorname{LOG}(W(L)) / 2.3,180-90 \cdot(\operatorname{LOG}(P(L)) / 2.3=$ 2)), 2, 1

30 END DO
40 DO IF INT $(\operatorname{LOG}(P m i n) / 2.3)=3$
$50 \operatorname{CIRCLE}(20+200 \cdot \operatorname{LOG}(W(L)) / 2.3,180-90 \cdot(\operatorname{LOG}(P(L)) / 2.3-$ 3)), 2, 1

60 END DO

```
END PROCEDURE
    10 FOR L = TO Boxnum-1
    20 DO IF P(L) >0
    30 Vc = INT(LOG(P(Boxnum-1))/2.3)-INT(LOG(P(L))/2.3)*1
    40 Pmin = P(L) : EXIT 2 LEVELS
    50 END DO
    6 0 ~ N E X T ~
    70 Hc = INT(LOG(W(Boxnum-1))/2.3) - INT(LOG(V(0))/2.3) + 1
    80 CLS ; SCREEN 2
    90 Coord
    1 0 0 \text { Scale}
    110 DO IF Yc=4 AND Hc=3
    120 FOR L = 0 TO Boxnum-1
    130 DO IF P(L)>0
    140 Plot 4x3
    150 END DO
    160 NEXT
    170 END DO
    180 DO IF Yc=3 AND Hc=3
    190 FOR L = 0 TO Boxnum-1
    200 DO IF P(L)>0
    210 Plot3x3
    220 END DO
    230 NEXT
    240 END DO
    250 DO IF Vc=3 AND Hc=2
    260 FOR L = 0 TO Boxnum-1
    270 DO IF P(L)>0
    280 Plot3x2
    290 END DO
    300 NEXT
    310 END DO
    320 DO IF VC=2 AND Hc=2
    330 FOR L = 0 TO Boxnum-1
    340 DO IF P(L)>0
    350 Plot2x2
    360 END DO
    370 NEXT
    380 END DO
    390 DO IF YC=2 AND He=3
    400 FOR L = 0 TO Boxnum-1
    4 1 0 ~ D O ~ I F ~ P ( L ) > 0
    4 2 0 ~ P l o t ~ 2 \times 3 ~
    4 3 0 ~ E N D ~ D D ~
    4 4 0 ~ N E X T
    4 5 0 ~ E N D ~ D O ~
    4 6 0 \text { Regression}
    470 Anykey
    4 8 0 ~ D e f i n e v i n d o v ~
END PROCEDURE
PROCEDURE: Setbound
    BYTE ARRAY(200): B,C
    EXTERNAL: Rb,Lb,Ul,Ll
```

```
PROCEDURE: Init
END PROCEDURE
PROCEDURE: Leftright
END PROCEDURE
PROCEDURE: Updown
END PROCEDURE
PROCEDURE: Init
    EXTERNAL: B,C
        10 LINE(0,25)-(0,175),1 : GET(0,25)-(0,175), B
        20 LINE (0, 25)-(0, 175),0
        30 LINE(170,0)-(470,0),1 : GET(170,0)-(470,0),C
        40 LINE (170,0)-(470,0),0
END PROCEDURE
PROCEDURE: Leftright
    EXTERNAL: B,Rb,Lb
    STRING: R[5),L(5),A(5)
    INTEGER: X
        10 R=CHR$(0)+CHRS(77) : L=CHRS (0)+CHRS(75)
        20 X=50
        30 PUT(X, 25), B, XOR
        40 DO
    50 A=INKEYS:IF A=" THEN GOTO 50
    60 IF A=CHRS(27) THEN PUT (X, 25), B, XOR : EXIT
                70 IF A=R THEN PUT(X,25), B, XOR : X = X * 5 :
                PUT(X, 25), B, XOR
                        80 IF A=L THEN PUT(X,25),B,XOR : X = X - 4 ;
                PUT(X, 25), B, XOR
            90 IF A=*R* THEN Rb=X
        100 IF A=*L" THEN Lb=X
        110 REPEAT
END PROCEDURE
PROCEDURE: Updown
    ExTERNAL: C,Ul,Ll
    STRING: U(5),D[5],A[5]
    INTEGER: Y
        10U=CHRs(0)+CHRS(72) : D=CHRs(0)+CHRS(80)
        20 Y=0
        30 PUT(170,Y),C,XOR
        40 DO
    50 A=INKEYS:IF A=* THEN GOTO 50
    60 IF A=CHRS(27) THEN PUT(170,Y),C,XOR : EXIT
                70 IF A=D THEN PUT(170,Y),C,XOR : Y = Y + 5 :
                PUT(170, Y), C, XOR
                80 IF A=U THEN PUT(170,Y),C,XOR : Y = Y - 4 :
                PUT(170, Y), C, XOR
    90 IF A=*U* THEN Ul=Y
    100 IF A=*D* THEN LI=Y
    110 REPEAT
```

```
    END PROCEDURE
    1 0 ~ I n i t
    20 Leftright
    30 Updovn
END PROCEDURE
```


PROCEDURE: Messagel

EXTERNAL: Definevindov
STRING: Ks[5]
PROCEDURE: Directory
END PROCEDURE
PROCEDURE: Directory
STRING: Ks[5]
10 CLS
20 PRINT *Which dirve ? (A/B)*;SPC(20) *Hit <CR> to

```
                    continue*
        30 K$=INKEY$:IF K$=** THEN GOTO 30
        40 IF Ks=CHR$(13) THEN EXIT
            50 IF Ks<<>"A" AND K$<>"a* AND KS<>"B" AND Ks<>" b" THEN GOTO
                1 0
            60 IF KS=*A* OR Ks=*a* THEN FILES*a:*.** ELSE FILES*b:*.**
            70 PRINT : PRINT : PRINT *Once Again ? (Y/N)*
            80 K$=INKEY$:IF K$=** THEN GOTO 80
            90 IF Ks=*Y* OR Ks=*y* THEN GOTO 10
    END PROCEDURE
        1 0 \text { Definevindov}
            20 SET CURSOR 10, 14:PRINT "Hit 'd' for directory, any other
        keye to continue*
        30 Ks=INKEYs:IF Ks=** THEN GOTO 30
        40 IF K$=*D* OR Ks=*d* THEN Directory
END PROCEDURE
PROCEDURE: Resul
EXTERNAL: Definevindov, Anykey, P, W, Boxnum
INTEGER: I
STRING: K\$[5]
10 Definevindov
20 SET CURSOR 9, \(28:\) PRINT *Counting has completed. *
30 SET CURSOR 11, 26:COLOR LTRED:PRINT "Type any key to see result. *
40 SET CURSOR 18, 25:COLOR LTGREEN:PRINT *<ESC> vill bypass to the plot. *;
\(50 \mathrm{Ks}=\mathrm{INKEY} 5: \mathrm{IF} \mathrm{K} \$=*\) * THEN GOTO 50
60 IF K \(\$=\) CHRS (27) THEN EXIT
70 CLS : COLOR YELLON
80 FOR I = TO Boxnum-1
90 PRINT SPC(24) *W(*;I;") =*;W(I), "P(*;I;") \(=* ; P(I)\)
100 NEXT
110 SET CURSOR 21,27:COLOR LTRED:PRIMT *Type any key to see plot. ";
120 Anykey
END PROCEDURE
```


COMPUTER PROGRAM

'MAIN Program:

```
10 '*** This is a Dilation Fractal Analysis.
20 Message1
30 Acqpic
4 0 \text { Shovpic}
50 Setbound
6 0 \text { Shrink}
70 SetWidth
80 Counting
90 Resul
100 Plot
110 GOTO 70
```


ENDFILE

[^0]: In order to verify the availability and accuracy of this procedure, a Koch curve (see, e.g., Mandelbrot[27]) with known

