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ABSTRACT

Leanna Kei Nosbisch:  Antigenic Variation at the vlsE Locus of the Lyme Disease 
Spirochete, Borrelia burgdorferi

(Under the direction of Aravinda de Silva)

Lyme disease is caused by the tick-borne spirochete, Borrelia burgdorferi.  The 

spirochete produces over 100 membrane anchored lipoproteins. One lipoprotein, designated 

VlsE, changes its antigenic properties through DNA recombination, most likely to evade 

adaptive immune responses in the host. Here we demonstrate that VlsE is on the surface of 

the spirochete and exposed to the outside.  Our hypothesis is that vlsE recombination is active 

in the host but not in the tick, which does not have an adaptive immune system.  We 

characterized the number of vlsE alleles present in culture and at different stages of the 

Borrelia life cycle in the vector and host.  The locus was stable in culture and in ticks, unlike 

in mice where many novel recombinants were readily observed.  These results support the 

hypothesis that vlsE recombination is more frequent in the host than in ticks.
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1.1 Introduction to Lyme Disease

Lyme disease is the most common vector-borne disease in the United States and 

Europe and is also found in Asia (43).  The disease is caused by spirochetes of the Borrelia 

burgdorferi sensu lato genospecies complex (95) and is transmitted by bites of Ixodes species 

ticks.  The vector on the east coast of the United States is I. scapularis, on the west coast is I. 

pacificus, in Europe is I. ricinus, and in Asia is I. persulcatus (134).  Lyme disease is a multi-

system disease that starts off in people with mild flu-like symptoms such as malaise, fatigue, 

headaches, and fever.  The appearance of a characteristic localized “bulls eye” rash, erythema 

migrans, at the site of the tick bite occurs in 70-80% of cases (131, 137).  During disease 

progression, the bacteria migrate from the site of infection throughout the body, leading to a 

disseminated infection that affects the joints, heart, and nervous system (134).  Antibiotic 

treatment is effective if the patient is treated within the early stages of infection (147).

Lyme disease was first recognized in 1976 in Lyme, Connecticut when a group of 

children were thought to have juvenile rheumatoid arthritis (136).  In 1981, Burgdorfer and 

colleagues identified the spirochete, Borrelia burgdorferi, as the etiologic agent of Lyme 

disease (24, 80, 133, 135).  The spirochete was found in ticks and also cultured from patients 

and recognized by convalescent patient serum, conclusively linking B. burgdorferi as the 

agent of Lyme disease (17, 135).  Since this original description, the genus Borrelia has been

divided into multiple species that can cause infection.  In the United States, B. burgdorferi

sensu stricto is the only cause of Lyme disease, while in Europe and Asia, B. garinii, and B. 

afzelii are responsible for illness (6, 28, 135).  Relapsing fever spirochetes such as B. 

recurrentis, and B. turicatae, are also included in this genus, although they are transmitted by 

different tick species and have a different progression of disease pathogenesis.
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The spirochetes live in nature in enzootic cycles involving ticks and a range of animal 

hosts including mice, rabbits, and birds.  The white-footed mouse, Peromyscus leucopus, is 

the main reservoir in the U.S. (95). Ixodes ticks have 4 life stages: egg, larval, nymphal, and 

adult stages that require a blood meal at each of the latter 3 stages.  Ixodid ticks pierce the 

skin of an animal with their mouthparts, secrete a cement substance to aid in attachment to 

the skin, and feed for 3-5 days (132).  During this feeding period, there are alternating 

periods of ingesting blood and salivating into the host during which pathogen transmission 

occurs.  The spirochetes are acquired from infected mice by feeding larvae, and are 

transmitted to uninfected mammals, including humans, during the nymphal stage.  Humans 

are an incidental host, and are not part of the enzootic life cycle.  Adult I. scapularis ticks 

feed on large mammals such as deer in order to mate and produce an egg mass, hence the 

common name, the deer tick.  

The reasons for the emergence of Lyme disease in the late 1970s are unclear; 

however, increases within the deer population may allow for more adult ticks to feed and lay 

eggs.  In addition, movement of families from cities to the suburbs raises the chance to 

encounter an infected tick, thus increasing the number of cases.  Spirochetal DNA has been

found in museum specimens of white-footed mice and ticks collected in the late 19th and 

early 20th centuries (89, 107, 108), indicating the infection has been present in North America 

for decades (43); however, human disease did not occur frequently enough to be recognized.

1.2 Tick-Borne Borrelia

In order for a pathogen to be successfully transmitted by an arthropod vector, it must 

be acquired by the vector either transovarially (adult female to egg) or when the vector feeds 
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on an infected host, it must be able to colonize and persist within the vector, it must be 

transmitted to a new host and persist until it can be acquired by another feeding vector.  

Borrelia cause two important tick-borne syndromes: Lyme disease and relapsing fever.  

While Lyme disease spirochetes are transmitted via an Ixodid tick vector, relapsing fever 

spirochetes are transmitted by Argasid ticks, or soft ticks.  Both types of spirochetes grow

extracellularly but are able to infect every tick organ except the ovaries, and are therefore not 

transovarially transmitted (132).  The structure of all Borrelia species consists of a 

protoplasmic cylinder surrounded by periplasm containing flagella that contribute to the 

corkscrew shape, and an outer membrane (9).  These bacteria are considered diderms for 

their two membranes; however, they are neither Gram positive nor Gram negative.  Borreliae 

are microaerophilic, 20-30 µm in length, and 0.2-0.5 µm in width.  

1.3 Lyme Disease Spirochetes

When a human or other mammalian host encounters a tick, it is important to remove 

the tick from the skin as quickly as possible, as B. burgdorferi is not transmitted until at least 

48 hours into the bloodmeal (98).  Once B. burgdorferi  have been injected by a feeding tick 

into a naïve vertebrate host, the infection can persist if not treated by antibiotics.  Spirochetes 

disseminate into organs in infected mammals and are rarely found in the blood.  The 1.5 Mb 

genome of B. burgdorferi strain B31 has been sequenced (53) and includes a linear 

chromosome of 950 kb as well as 12 linear and 9 circular plasmids.  The 853 genes located 

on the chromosome are responsible for most of the basic cellular functions such as growth 

and metabolism (53), with homologues in other bacteria.  The large number of plasmids in B. 

burgdorferi is the most known for any bacterium, and encode another 535 proteins unique to 
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Borrelia (53).  Over 150 of these genes are responsible for the production of putative 

lipoproteins and are thought to assist the bacterium in adaptation to different environments 

and different hosts.  B. burgdorferi is a fastidious organism as it has few proteins with 

biosynthetic activity and depends on the host for most of its nutritional requirements or a rich 

medium supplemented with mammalian serum for growth in vitro (53).  Barbour-Stoenner-

Kelly (BSK) II and a variation, BSK-H, are two rich medias that allow researchers to study 

Borrelia gene and protein expression within the laboratory (7, 111).  One unique feature of B. 

burgdorferi is it does not require iron during in vitro growth (112).  The genome contains no 

homologues for specialized secretion systems, lipopolysaccharide, or toxins, and the only 

known virulence factors allow for attachment, migration, dissemination through mammalian 

tissues, and evasion of immune clearance.

Until recently, methods for manipulating genes within B. burgdorferi was limited, so 

the functions of many genes are unknown (20, 48, 141).  We have only begun understanding 

gene function in B. burgdorferi through transposon mutagenesis (94, 140), transformation, 

gene inactivation (20, 47, 103, 121, 129), and generation of conditional lethal mutants (45).  

Plasmid loss with all of these methods is still a problem, as strains can become noninfectious.  

Both innate and acquired immunity are important for controlling infection. Borreliae

encode several proteins that can prevent complement-mediated lysis, one of the host’s first 

defense mechanisms.  Phagocytic cells such as macrophages and dendritic cells can clear 

bacteria before they disseminate from the site of inoculation.  B. burgdorferi lipoproteins can 

signal through toll-like receptors and the adaptor molecule MyD88 on host cell surfaces (2, 

16, 18, 19, 26, 54, 65, 87, 122), as well as stimulate adaptive T cell-independent B cell 
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responses (50, 92, 96).  Additionally, antibody-mediated responses are crucial for spirochetal 

killing and resolution of disease (1, 44, 51, 62).  

 

1.4 B. burgdorferi Gene Expression in Ticks and Mammals

In order to be maintained in the environment, B. burgdorferi adapts to the different 

environments of the tick vector and the mammalian host by changing the expression profile 

of several genes. Differential gene expression in B. burgdorferi is linked to cell density, 

temperature and pH of the surrounding environment (29, 30, 117, 139, 148).  During tick 

feeding, the environment of the tick gut changes from 22 ºC to 37 ºC and from pH 7.4 to pH 

6.8 (148).  These conditions can be mimicked during in vitro cultivation to examine gene 

functions and gene expression patterns.  

Bacteria that are acquired by feeding larvae remain in a dormant state within the tick 

midgut during the fall, winter, and early spring when the ticks are also dormant.  An outer 

surface protein (Osp) encoded on lp 54, OspA, is primarily expressed during the dormant 

phase, during blood feeding, and through the molt from larvae to unfed nymphs (126).  

Recently, Pal and colleagues identified a tick receptor for OspA, TrospA, which allows the 

spirochetes to attach to the midgut wall (102).  Host antibody responses to OspA prevent tick 

midgut colonization, therefore blocking transmission (40, 41).  

When the nymphal ticks feed in late spring or early summer, the population of 

Borrelia within the tick midgut increases dramatically in the first 60 hours, and several genes 

are differentially expressed (38, 39, 66).  OspA is downregulated, and OspC, encoded on 

cp26, is upregulated (38, 39).  OspC is thought to be involved in migration of the spirochetes 

from the midgut into the tick hemolymph, into the salivary glands, and for establishing 
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infection in the mammalian host (30, 98, 103, 126).  Other “OspC-like genes” that are 

upregulated upon infection include decorin binding proteins A and B (dbpA and dbpB) (52, 

57), fibronectin binding protein (BBK32) (113), and a glycosaminoglycan-binding protein 

(Bgp) (83, 105).  The proteins encoded on these genes allow for B. burgdorferi dissemination

and adherence to integrins, proteoglycans, and glycoproteins on host cells or tissue matrices.  

The reciprocal gene expression in ticks is demonstrated in vitro where OspA is expressed at 

low cell density, high pH (7.4) and low temperature (22 ºC), while OspC and OspC-like 

genes are expressed at high cell density, low pH (6.8) and high temperature (37 ºC).  

B. burgdorferi also encode complement regulator-acquiring surface protein 

(CRASPs), also known as Erps, or OspE and OspE-related proteins, that bind complement 

factor H and factor H-like protein 1 (22, 75).  These proteins inactivate C3b, preventing 

further activation of the complement cascade, thus protecting the organism from 

complement-mediated killing (3, 75, 76, 91, 138).  Specific genes are required for

mammalian infection including a nicotinamidase encoded on lp25 (115) and a linear plasmid, 

lp28-1 (78).  B. burgdorferi genes that are known to be important during tick colonization or

mammalian infection are listed in Table 1.1.

1.5 Antigenic Variation as a Biological Process

Different strains of a pathogen can vary the immunodominant antigens on their 

surface differently, resulting in strain- specific immune responses in a vertebrate host.  

Diverse sequences between proteins as well as different immune responses can influence 

selection of the pathogen (10).  Diversity of an immunodominant antigen between strains is 

called antigenic variation.  The strict definition of antigenic variation “involves the loss, gain, 
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or change in a particular antigenic group, usually by loss, gain, or change in one of the 

polypeptide or polysaccharide antigens…(13).”  The adaptive immune system of a host 

mounts an immune response against the original infecting serotype, but this specific immune 

response may be ineffective against new emerging variants. Antigenic variation may also be 

used by a pathogen during adaptation to different niches within an infected host, or in order 

to colonize different host species (86, 130).

There are three main mechanisms that pathogens are known to use to change surface 

antigens: phase variation, slipped-strand mispairing, and gene rearrangement.  Phase 

variation, or on/off switching of a gene, is employed by Salmonella typhimurium to switch 

flagellin genes and fimbriae of Escherichia coli species, where promoter inversions can 

activate transcription of two different gene loci (144).  Slipped-strand mispairing within long 

nucleotide repeats in promoter regions of genes can also lead to changes in the reading frame 

of a gene and on/off phase variation in bacteria, such as the opa genes in Neisseria species 

(61).  Gene rearrangement is a mechanism involving gene conversion during DNA 

recombination that leads to replacement of an expressed recipient gene with variable DNA 

segments from silent copies located in different parts of the genome.  Recombination is uni-

directional and non-reciprocal, ensuring that the DNA sequence of the donor locus remains 

unaltered (61).  As we are focused on gene conversion methods for varying surface antigens, 

phase variation and slipped-strand mispairing will not be discussed further.

1.6 Overview of Antigenic Variation Systems and Organisms

Organisms within Borrelia spp., Anaplasma, African trypanosomes, Plasmodium

spp., and Babesia spp. are all vector-borne pathogens that use antigenic variation to evade the 
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host immune system (Table 1.2).  The exact mechanism between each organism differs;

however, a switch between at least three variable antigens rather than two, is common to all.  

Variation is achieved through switching one of several gene alleles expressed at any one 

time, rather than accumulating mutations in a single expressed gene.  Antigenic variation can 

happen through gene conversion mechanisms and multiple point mutations (42).  Gene 

conversion is the most widespread method for replacing expression of one gene with another 

(10).  The change in the protein occurs when a central hypervariable region of a protein is 

replaced through crossovers in highly homologous flanking regions.  Examples of this 

mechanism include major surface protein 2 (msp2) of Anaplasma marginale, variant-specific 

glycoprotein (VSG) of African trypanosomes, P. falciparum erythrocyte membrane protein 1 

(PfEMP1), variant erythrocyte surface antigen 1 (VESA1) of Babesia bovis, vmp genes in 

relapsing fever Borrelia, and VlsE in B. burgdorferi (10).  The second mechanism, multiple 

point mutations, usually occurs in a gene that is already activated through gene conversion.

The molecular mechanisms for many of the examples listed above are still not well 

understood; therefore, we will discuss antigenic variation through gene conversion using the 

well-studied type IV pilin genes of Neisseria gonorrhoeae.  Type IV pili are present on all 

clinical isolates of N. gonorrhoeae and are essential for colonization of the urogenital tract 

during infection (34).  There is one pilin expression locus in the genome, pilE, and one to six 

loci containing silent cassettes, termed pilS (144).  All of the pilS sequences lack the 

promoter, ribosomal binding site, and 5’ 150 bp found at pilE (59, 60, 127).  The pilin 

proteins are conserved for two-thirds of the N terminus, but vary at the remaining C terminus 

(reviewed in (144)).  Variation at the C terminus occurs when a sequence from one of the 

silent pilS loci transfers into pilE.   Recombination only requires 2 bp of conserved sequence,
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occurs at a high frequency (>10-3), and is dependent on the recombinases RecA and RecF

(68, 74, 93, 152).  

1.7 Antigenic Variation in Borreliae

Relapsing fever borreliae are capable of antigenic variation in an outer membrane 

protein called Vmp, or variable membrane protein (10).  Vmps within relapsing fever 

spirochetes can occur in two classes: the variable large proteins (vlps) of approximately 36 

kDa, and the variable small proteins (vsps) of approximately 20 kDa (11, 25, 118).  Up to 30 

antigenic variants can arise within a single cell of B. hermsii, and each can confer a specific 

serotype (10, 142).  Each acute phase of febrile illness and spirochetemia contains a 

population of spirochetes composed of one serotype, and relapses occur with a population of 

a differing serotype (142).  In B. hermsii, gene conversion between linear plasmids 

containing at least 40 silent vsp and vlp gene cassettes results in the replacement of one 

variable antigen gene with another downstream from a promoter of a single expression site in 

the genome (8, 71, 109).  Kitten et al. demonstrated that chimeric vlp genes can be created 

from partial gene conversion events (72).  The rate of change in B. hermsii has been 

calculated to be 10-4 to 10-3 per cell per generation (33). No function has been assigned to 

the relapsing fever Vmps, other than antigenic variation.

1.8 Antigenic Variation in Borrelia burgdorferi

Borrelia strains missing linear plasmid 28-1 show decreased infectivity to mice but 

not to ticks, indicating an important role for this plasmid within the vertebrate host (70).  

Lp28-1 carries 32 open reading frames (53), and one gene locus on lp28-1 that likely 



11

contributes to B. burgdorferi survival in a mammalian host is the variable major protein like 

sequence (vls) gene locus (4, 149).  The expression site (vlsE) encodes a 34 kDa lipoprotein 

that is expressed during in vitro cultivation (98, 149, 151), at low levels within ticks (70, 99), 

and highly expressed in the vertebrate host (149, 151). However, vlsE mRNA was not

differentially transcribed in response to temperature or pH changes in vitro by microarray 

analysis (100, 119).  When spirochetes harvested from mouse chamber implants were 

compared to spirochetes harvested from culture, vlsE message increased threefold in the 

mammal, indicating that VlsE may only be activated in the host (119).  The vlsE locus has 

also been shown to be expressed in vitro in response to endothelial cell membranes, further 

supporting its role in the host (69).  

The vlsE locus consists of two constant domains at the amino and carboxy terminii of 

the protein and a central variable domain enclosed by 17 bp direct repeats (4, 149) (Figure 

1.1). Within the central variable region of vlsE, there are six variable regions interspersed 

between 6 invariant regions (149).  Upstream of the expression site are 15 partial gene 

copies, or cassettes, that are promoterless, have no ribosome binding sites, and are therefore 

“silent” (149, 150). Mammalian infection with B. burgdorferi induces sequence changes 

through partial, non-reciprocal gene conversion events between cassettes with the central 

variable domain to generate alleles that are a mosaic of the silent copies (149, 150).  In 

theory, this mechanism could create 1030 different alleles at the expression site (143), thus 

altering the antigenic properties of VlsE (149).  Indeed, when the crystal structure of VlsE 

was solved, the most distal outer part of the protein exposed to the immune system consists 

primarily of the central variable region (46), and the variable regions could mask the 

invariant regions of the protein.
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1.9 Potential and Proven Functions of VlsE

VlsE is highly immunogenic, as Lyme disease patients mount a strong antibody 

response to VlsE (81, 88), especially to the IR6 invariant region of the protein (5, 64, 79, 84, 

85, 104, 106, 123).  Recombinants can be detected within the mammalian host as early as 4 

days after infection and continue throughout the course of infection (151).  Although VlsE is 

expressed in culture, novel recombinants have not been observed among spirochetes grown 

in culture (98), indicating that the recombination mechanism may be inactive, or the rate of 

recombination in culture is too low to be detected (99).  Furthermore, recombinants were not 

detected within mouse chamber implants (Steven Norris, personal communication).  This 

indicates that vlsE  recombination is initiated by either a host specific mechanism 

(extracellular matrix or cell contact dependent), or an antibody specific mechanism.

Recombination could help spirochetes escape antibody-mediated defense against 

VlsE variants that arise during infection, and variants are antigenically distinct from one 

another (4, 90, 143, 149).  The fact that B. burgdorferi is able to persist in the presence of an 

active anti-VlsE antibody response suggests that changes to the surface exposed epitopes in 

the variable region protect the spirochetes from host recognition.  The mechanism for how 

vlsE recombination in B. burgdorferi happens is unknown; however, the cis gene 

arrangement of vlsE and the upstream silent cassettes may be important (82).  The vls locus 

of two other Lyme Borrelia strains was recently characterized by Wang and colleagues 

(146). B. garinii lp90 and B. afzelii ACAI were found to have 11 and 14 silent vls cassettes, 

respectively.  This indicates that the mechanism of antigenic variation is a common feature of 

Lyme disease borrelia and is conserved (146).
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1.10 Two Models to Explain vlsE Recombination

Mutations and natural selection is a way for all organisms to genetically adapt to their 

environment.  Growth under selection allows for gene mutations to happen and allows for 

reproductive success for organisms that carry those mutations.  The major population 

expressing the dominant allele will be selected for, while any minor populations with 

mutated alleles will continue to survive.  Selection is distinct from mutation, where errors 

occur during DNA replication and repair.  The mutation rate is generally thought to be 

constant within a population, and is dependent on population size, genome size, and 

recombination frequency (120), but not environmental stimuli such as antibodies or immune 

effector cells.  

Because recombination at the B. burgdorferi vlsE locus can be detected within mice, 

but not within spirochetes grown in culture, we thought of two models for how vlsE

recombination may be influenced: an active model, and a passive model.  The active model is 

based on mutation frequency, and whether the frequency changes between in vitro and in 

vivo growth.  While it has been shown that antibodies can influence Borrelia gene expression 

(67, 86), it is generally not accepted that a bacterial pathogen can change its rate of mutation 

in the presence of antibody.  The passive model is based on selection and the mutation rate 

staying constant.  In this model, under selective pressure such as a specific antibody, minor 

vlsE variants could be detected.  

1.11 Thesis Overview

It is important to understand how a pathogen changes its antigenic profile during 

infection in order to understand disease pathogenesis.  It is well known that pathogens such 
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as B. burgdorferi are able to control gene expression in the many environments they 

encounter.  Sequence changes by recombination at the vlsE locus are hypothesized to be 

important for B. burgdorferi to establish a chronic infection within the mammalian host; 

however, it is unknown what happens to the vlsE sequences during acquisition by larval I. 

scapularis ticks, through a blood meal, through the molt into nymphal ticks, and through a 

second blood meal.  As many genes responsible for host colonization are upregulated during 

transmission from the feeding nymph, we asked the following questions:  1. Can we detect 

recombination at the vlsE locus during tick feeding?  2. Is there a role for VlsE 

recombination in tick colonization?  3. Is there selection within feeding ticks that allows for 

only certain alleles to be carried to the next stage?  In Chapter 2, we describe a series of 

experiments using an immersion technique with a clonal population of B. burgdorferi to 

infect larval I. scapularis ticks in order to follow the populatio n through the tick life cycle.

In addition to antigenic variation, we were interested in the antibody-mediated 

immune response to VlsE.  The fact that variation at the vlsE locus does not occur, or is at a 

frequency too low to be detected during in vitro cultivation led us to the following two 

questions: What is the rate of recombination at the vlsE locus?  Does the rate increase as 

spirochetes are adapting to the host environment (active model)?  Or are variants detectable 

within the mouse due to host immune selection of the minor population (passive model)?  

These questions led to creation of several tools to study whether antibodies to VlsE are 

bactericidal, and where in the cell VlsE is located.  In Chapter 3, we describe 

immunofluorescence, electron microscopy, and proteinase K experiments that were 

performed to understand the location of VlsE within bacterial cells grown in vitro.  The 
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results of these techniques were inconclusive, however we discuss several possibilities B. 

burgdorferi may use to avoid host immune recognition.
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Table 1.1 Important genes in B. burgdorferi enzootic life cycle.

Gene Location Expression Function Mechanism
OspA Lp54 Tick Midgut colonization Expressed in unfed 

tick and 
downregulated 

during the bloodmeal
OspC Cp26 Tick/mammal Migration from midgut 

to salivary gland, 
colonization of host

Upregulated during 
bloodmeal, 

downregulated 
during dissemination 

in host
Erps Cp32 Mammal Inactivation of host 

alternative complement
Expressed in 

mammalian host
DbpA, 
DbpB

Lp54 Mammal Binds decorin Host colonization

Bbk32 Lp36 Mammal Binds fibronectin Host colonization
P66 Chromosome Mammal Binds integrin Host colonization
vlsE Lp28-1 Mammal Immune evasion Recombination leads 

to antigenic variation
Bgp Chromosome Mammal Binds 

glycosaminoglycans
Host colonization

CRASP Lp54 and 
cp32

Mammal Binds factor H, blocks 
host complement 

activation

Upregulated in 
mammalian host

pncA Lp25 Tick/Mammal Nicotinamidase Host colonization
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Table 1.2 Vector-borne infections with antigenic variation (adapted from (10)). 
 

Disease Pathogen(s) Vector Variable 
antigen*

Relapsing Fever Several Borrelia species Soft (argasid) ticks 
and body lice

Vlp and Vsp

Anaplasmosis Anaplasma marginale Hard (ixodid) ticks MSP2
African 
trypanosomiasis

African Trypanosoma
spp., e.g. T. brucei

Tsetse fly VSG

Malaria Plasmodium falciparum Mosquito PfEMP1
Babesiosis Babesia bovis Hard (ixodid) ticks VESA1

* Vlp = variable large protein; Vsp = variable small protein; MSP2 = major surface protein 2; 
VSG = variant-specific glycoprotein; PfEMP1 = P. falciparum erythrocyte membrane protein 
1; VESA1 = variant erythrocyte surface antigen 1
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Figure 1.1 Schematic diagram of the vlsE locus of B. burgdorferi.  A. vlsE locus on lp28-
1.  B.  Diagram of the central variable domain of vlsE
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Chapter 2:  Lack of Detectable Variation at the Borrelia burgdorferi vlsE Locus in Ticks
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2.1 Abstract

VlsE is a surface exposed lipoprotein of the Lyme disease spirochete, Borrelia

burgdorferi.  Novel antigenic variants at this site are readily observed in the infected 

vertebrate host.  We followed a clonal population of spirochetes through a tick transmission 

cycle and report that unlike in vertebrates, the vlsE locus is stable in ticks.  

2.2 Journal of Bacteriology Note

The spirochete Borrelia burgdorferi, the causative agent of Lyme Disease, is able to 

maintain a persistent infection of mammals in spite of an active immune response (125, 134).  

One mechanism that contributes to persistence is recombination at the plasmid encoded 

variable-major-protein (Vmp)-like sequence, or vls on linear plasmid lp28-1 (149).  This 

locus has been well characterized in B. burgdorferi sensu stricto strain B31 (149-151), and 

consists of an expression site encoding a lipoprotein, vlsE, and 15 silent cassettes located 

upstream (149).  A nonreciprocal gene conversion mechanism recombines portions of the 

silent cassettes within a central variable domain of the expression site, allowing for novel 

alleles to be expressed and variation of the antigenic properties of VlsE (149-151).  

Recombination is detectable within days after infection of the mammalian host, but is not 

detectable in spirochetes cultured in vitro (98, 99, 151).  

As Lyme disease is spread through the tick vector Ixodes scapularis, we were 

interested in studying whether recombination can be detected in ticks.  Indest et al. observed 

the vlsE locus in infected nymphal ticks and reported the absence of recombination in 

ticks(70, 98, 99); however they studied a clonal population of spirochetes in nymphs 

introduced by capillary feeding (70).  Our group has previously studied ticks fed on mice 
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inoculated with a clonal population of B. burgdorferi to follow populations of vlsE alleles in 

ticks (98, 99); however, these studies are confounded by the fact that ticks feeding on an 

infected animal acquire many different vlsE alleles and it is not possible to separate 

recombinants that might arise in the vector from recombinants acquired from the host.   In 

this study we used a recently described larval immersion method (110) to introduce a clonal 

population into larval ticks and then followed the vlsE population by sequencing clones at 

different stages in order to determine whether the locus is stable through a larval blood 

feeding, through the molt into nymphs, and during a second nymphal blood feeding.  This 

method is faster than previous methods of analysis (99).

The study design is outlined in Figure 2.1.  Low passage B. burgdorferi strain B31 

(CDC, Fort Collins, CO) was grown on solid Barbour-Stoenner-Kelly II (BSKII) medium (7, 

77, 110) and a single clone designated B31-C1 was used in this study.  B. burgdorferi B31-

C1 was inoculated into liquid BSK-H medium (111)  and grown to 1 x 108 cells per ml.  B. 

burgdorferi B31-C1 was introduced into larval I. scapularis ticks (J. Bowman, Oklahoma 

State University) using the previously described larval immersion method (110).  Briefly, 

larval ticks were transferred to a 1.5 ml screw cap microcentrifuge tube (Starstedt, Newton, 

NC), and immersed in 1 ml of B. burgdorferi B31-C1 in BSK- H media.  Tubes were gently 

vortexed to suspend larvae, and incubated for 2 hours at 34ºC on a rocker (110).  After 

incubation, tubes were centrifuged at 200 x g for 30s, and supernatant medium was removed.  

The larval ticks were washed twice with phosphate-buffered saline (PBS) and excess 

moisture was wicked with strips of Whatman #1 filter paper (Whatman, Maidstone, 

England).  The larvae were immediately placed on a naïve 4-6 week old female C3H-HeN 

mouse (NIH) and allowed to feed until repletion.  
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Engorged larvae were held in a humidity controlled incubator at 21°C for 1 week and 

then a portion were separated for the fed larval group.  The rest of the ticks were held 

approximately 7 weeks postrepletion through the molt into nymphal ticks.  A second group 

was separated for the unfed nymph group, and the rest of the ticks were placed on a second 

naïve mouse.  This group of nymphs fed until repletion and were designated the fed nymph 

group.  To culture spirochetes from ticks, the ticks were surface sterilized by immersion in 

3% hydrogen peroxide for 10 min, followed by a 10 min. immersion in 70% ethanol and 2 

rinses with PBS.  Ticks were then crushed with a sterile molecular grinding pestle (Kontes, 

Vineland, NJ) in a microfuge tube in 50 µl PBS.  20 µl of the tick homogenate was used to 

inoculate 1.5 ml BSK-H media with Borrelia antibiotic mix containing fosfomycin, rifampin, 

and amphotericin B (Sigma Chemical Co. St. Louis, MO).  Cultures were incubated until 

they reached a density of 1 x 106 cells per ml.  DNA was harvested using the DNeasy kit 

(Qiagen, Valencia, CA).  In order to verify our sequencing method could detect vlsE allele 

differences, we sacrificed mice 3 weeks post feeding and cultured spirochetes from mouse 

tissue.  Cultures were treated as described above.

The vlsE variable region was amplified from DNA purified from spirochetes 

harvested from each tick group and mouse culture using the primers vlsE-F and vlsE-R (98).  

PCR products were visualized by 0.8% agarose gel electrophoresis, and then cloned into a 

TOPO PCR2.1 TA cloning vector (Invitrogen, Carlsbad, CA) and electroporated into 

Escherichia coli strain Top10 using the manufacturer’s instructions.  White E. coli colonies 

carrying vlsE variable region sequences from each original tick or mouse culture were 

randomly selected and analyzed by either restriction fragment length polymorphism (RFLP) 

(99) (data not shown) or were submitted for sequencing.  The sequences were aligned using 
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Vector NTI Software (Invitrogen) against the parental B31-C1 sequence, which is identical 

to the sequence in the Genbank database (U76405) (149).

The vlsE variable regions from 876 tick samples were sequenced or analyzed by 

RFLP and all had the same sequence or RFLP pattern as the parental strain, B. burgdorferi

B31-C1, with no insertions, deletions, or point mutations.  This indicated that no 

recombination events could be detected and there is no role for vlsE recombination in the 

tick.  A complete summary of the results is presented in Table 2.1.  Our results are consistent 

with the findings of Indest et al. (70) with our analysis of more sequences and a method for 

infecting larval ticks that is closer to the natural cycle of tick infection.  In contrast to ticks, 

we detected several sequence changes in mice using both RFLP and sequencing.  Our 

method was able to detect sequence changes within variable regions of mouse cultures (Table 

2.1), consistent with previous groups being able to detect recombinants in vivo.  

There are two possible explanations for why we were unable to detect recombinants 

in feeding ticks.  One may be the recombination mechanism is specifically turned on within 

mice in order to change surface antigenic properties, or detection of recombinants is easier in 

mouse samples due to immune selection (149-151).  We interpret our results as novel alleles 

of vlsE are not generated or not detectable by our methods throughout acquisition by larvae, 

through the larval feeding, through the molt into nymphs, and through a second nymphal 

feeding.  We conclude that there is no role for vlsE recombination in ticks and selection on 

vlsE is not occurring within the tick during the tick transmission cycle.  This indicates that 

the vlsE allele present in a population is stable for several months through various population 

changes and morphological changes in ticks.  
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Larval Immersion 2 hrs, 34°C
1 x 108 B31-C1 cells/ml

Feed on naïve C3H-HeN mouse until repletion
1 week post repletion sample FED LARVAE

Allow fed larvae to molt
Approx. 7 weeks later sample UNFED NYMPHS

Feed nymphs on 2nd naïve C3H-HeN mouse until repletion
1 week post repletion sample FED NYMPHS

Surface sterilized ticks, homogenized and 
culture spirochetes in BSK-H media

Figure 2.1 Experimental design. Experimental design for monitoring Borrelia burgdorferi
B31-C1 population through a tick feeding cycle.

Plated Borrelia, PCR 
amplified vlsE variable 

region of individual colonies

Harvested DNA, PCR 
amplified vlsE variable 

region 

Analyzed PCR 
products by RFLP

TA clone products into E. 
coli and sequence colonies
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Table 2.1 Summary of all RFLP and sequencing data from each tick group.

Sample # ticks # clones 
RFLP

# clones 
sequenced

Analysis

Fed larvae 32 88 168 B31-C1
Unfed nymphs 32 123 157 B31-C1

Fed nymphs 44 123 217 B31-C1

Mouse NA 28 12
Sequence changes in 

variable regions
Totals 108 334 554

10-12 Clones were picked per tick to analyze by RFLP digestion with AluI and MboI or 
cloned into E. coli and sequenced.  All E. coli clones sequenced or B. burgdorferi clones 
analyzed by RFLP had the same sequence as the parental strain, B31-C1. NA=not applicable
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Chapter 3:  Do antibodies directed against VlsE kill Borrelia burgdorferi?
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3.1 Introduction

The genome of B. burgdorferi encodes at least 105 outer membrane lipoproteins that 

represent 8% of the coding sequences (53).  The function of many of the lipoproteins is 

unknown; however, it is well established that many genes are differentially regulated in 

response to temperature, pH, and cell density (29, 30, 116, 117, 148).  Several lipoproteins 

are important for colonization of the tick vector, transmission from the tick vector, and 

colonization of the mammalian host.  Borrelia lipoproteins are surface exposed, and anchored 

to the outer membrane lipid bilayer by an N-terminal triacyl-modified cysteine (15, 21).  

The exact mechanism for secretion and anchoring of the lipoproteins to the membrane 

is not well understood; however B. burgdorferi has homologues of all the essential genes 

involved in the general secretion pathway of E. coli (secA/D/E/F/Y, only the non-essential 

secB is missing) to secrete proteins across the inner membrane (53, 56).  Detailed studies on 

lipoprotein secretion to the outer membrane in other bacteria have been limited to a few 

model proteins, which are transported by a type II apparatus or through an autotransporter 

secretion pathway (36, 114, 145).  The Borrelia genome does not contain any homologues of 

type II secretion machinery, or other sec-dependent or independent secretion pathways (31, 

53, 58), and Borrelia lipoproteins do not contain autotransporter translocation domains (101).  

It was recently shown that Borrelia lipoproteins are secreted to the surface by default, not a 

active mechanism, although there are sequences that retain lipoproteins in the periplasm, 

rather than allowing surface exposure (124).

One B. burgdorferi lipoprotein, VlsE, undergoes antigenic variation within the 

mammalian host through non-reciprocal DNA conversion events (149).  This feature of VlsE 

may be driven by host immune response or cell contact dependent mechanisms during host 



28

colonization and dissemination (see Chapter 1).  Several assumptions must be made in order 

for VlsE antigenic variation to be driven by host antibodies: 1. VlsE must be surface 

exposed, 2. antibodies to VlsE must be bactericidal in order to select against variants 

expressing a specific allele, and 3. the subsequent antibody response must be specific for 

variants that arise during antigenic variation of VlsE.  In this chapter we describe studies to 

investigate the surface exposure of VlsE and the ability of anti-VlsE antiserum to kill 

spirochetes.

3.2 Materials and Methods

Cloning B31-C1 VlsE

In order to express B. burgdorferi VlsE in E. coli, we first designed primers with 

restriction enzyme sequences at the 5’ and 3’ ends to facilitate cloning.  The vlsE full open 

reading frame (1200 bp) was amplified by vls5A3F 

(CGGCATATGAGCCAAGTTGCTGATAAGGACGACCC) with a Nde1 restriction site at 

the 5’ end, and vlse5A3R 

(CGGCTCGAGCAATCATGAGGGCATAGTCGTGTCCATACA) with a Xho1 restriction 

site at the 3’ end, based on a previous strategy (149).  Primers were diluted to a working 

stock concentration of 10 µM.  Total DNA was harvested from B. burgdorferi strain B31-C1 

using a DNeasy kit (Qiagen).  PCR reactions were set up using high fidelity Vent Taq DNA 

polymerase in a 50 µl reaction in buffer concentrations recommended by the manufacturer, 

including negative controls for DNA contamination.  Reaction mixtures were subjected to 5 

min. at 95ºC, 35 reactions of 40 sec. denaturation at 95ºC, 40 sec. annealing at 60ºC, 2 min 

extension at 72ºC, and a final extension for 10 min at 72ºC.  PCR products were visualized 



29

using a 0.8% agarose gel electrophoresis. 

Once a product of the correct size was amplified, it was cloned and transformed into 

E. coli cells using the TOPO 2.1 TA cloning vector according to the manufacturer’s 

instructions (Invitrogen).  DNA from a single white colony was harvested using a miniprep 

kit (Qiagen), and correct insertion of PCR products was confirmed by restriction digest 

analysis with NdeI and XhoI restriction digest enzymes (NEB Biolabs).  Digested VlsE was 

cloned into the pET28 vector (Novagen) and transformed into Novablue E. coli  cells

(Novagen).  The resulting plasmid was named pLN6, and contained the pET28 vector 

backbone, vlsE inserted in frame under a lactose inducible promoter, and DNA sequence for 

an N-terminal six histidine tag for purification.  The final plasmid was confirmed by 

sequencing and restriction digest analysis.

Production of recombinant B31-C1 VlsE

A single colony of E. coli pLN6 was used to inoculate a 25 ml LB + 50 µg/ml 

kanamycin culture, which was grown overnight and then used to inoculate 1 L LB + 

kanamycin broth.  Cells were grown to an OD600 of 0.6, and then protein expression was

induced with 0.5 mM isopropyl-beta-D-thiogalactopyranoside (IPTG) for 1 hour.  Cell 

pellets were harvested by centrifugation and resuspended in lysis buffer (Phosphate buffered 

saline with 0.1% Triton-X 100, 0.5 mM Phenylmethylsulphonylfluoride (PMSF), and 

protease inhibitor cocktail (Sigma)).  Cells were sonicated, centrifuged to remove cell debris, 

and supernatants containing recombinant protein were bound to Ni-NTA slurry (Invitrogen) 

for protein purification.  The slurry mixture was loaded onto a column, the column was 

washed several times, and then recombinant VlsE protein was eluted from the column using 
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250 mM imidazole.  Protein concentrations were determined using a Bradford protein assay.

Production of variant B31 VlsE

To obtain recombinant VlsE proteins with different sequences within the variable 

region, a heterogeneous culture was grown from a B. burgdorferi infected mouse ear biopsy.  

The culture was plated on Barbour-Stoenner-Kelly H (BSK-H) borrelia agar plates and 

several colonies were submitted for sequencing at the UNC-CH genome analysis facility.  

The primers VlsE-F (GTAGTACGACGGGGAAACCAGATAGTAC) and VlsE-R 

(CCTAAAACTTTGCGAACTGCAGACTCAGC), which amplify the central 682 bp 

variable region of vlsE, were used for sequencing.  Two clones with diverse sequence from 

the parental B31-C1 B. burgdorferi sequence were chosen and recombinant VlsE was cloned 

into pET28, expressed in E. coli, and purified as described above.  The resulting plasmids 

were called pLN2 and pLN8.

Production of rabbit polyclonal antisera

To obtain a polyclonal anti-VlsE antiserum, we sent rVlsE (1mg/ml) to Strategic 

Biosolutions, Newark, DE.  They immunized 2 pathogen-free rabbits 4 times with 200 µg 

rVlsE each time using complete Freund’s adjuvant the first time, and incomplete Freund’s 

adjuvant each subsequent time.  Approximately 75 mls of polyclonal rabbit anti-VlsE sera 

was collected, and was subsequently used in immunofluorescence assays, transmission 

electron microscopy, and western blotting experiments.

Immunofluorescence assay

Low passage B. burgdorferi B31-C1 was grown in BSK-H media to mid-exponential
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phase and washed several times with PBS to remove media.  Depending on the experiment, 

cells were either spotted on silylated slides (approximately 105 cells/spot) or fixed in a 

microfuge tube with 4% paraformaldehyde (PFA) for 30 min.  Slides were fixed with acetone 

for 5 minutes.  Both PFA fixed spirochetes and slide spirochetes were blocked with 5% FBS-

PBS for 30 min., and then detected with rabbit polyclonal anti-VlsE at a 1:500 dilution.  

Some samples were treated with 0.05% Triton-X to permeabilize the cell.  PFA-fixed 

spirochetes were spotted on slides, allowed to air dry, and both aceteone fixed and PFA fixed 

bacteria were detected with a secondary goat anti-rabbit alexa 594 antibody and a goat anti 

Borrelia FITC-conjugated antibody for 30 min at room temperature.  Slides were mounted 

with slowfade/antifade (Molecular Probes) and observed by epifluorescence microscopy 

(Eclipse E 600, Nikon).  Images were captured with a digital camera (SPOT II, Diagnostic 

Instruments, Sterling Heights, MI) using SPOT software version 2.2.

Transmission Electron Microscopy

Low passage B. burgdorferi B31-C1 were grown in BSK -H media to mid-exponential

phase, and washed several times with PBS to remove media.  Cells were fixed in a microfuge

tube with 4% paraformaldehyde (PFA) for 30 min and sent to the Microscopy Services 

Laboratory (Department of Pathology and Laboratory Medicine, UNC-CH).  The cell pellet 

was washed, stained en bloc with 2% uranyl acetate, and dehydrated in an increasing 

concentration of ethanol series (75%, 90%, 100%, 100%).  The pellet was infiltrated 

overnight in L.R. White resin (hard grade, Ted Pella, Inc,. Redding, CA) at 4ºC.  The 

embedded cells were sectioned using a diamond knife and a Leica Ultracut UCT 

ultramicrotome (Leica, Inc., Deerfield, IL) to 80 nm thickness.  The sections were mounted 
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on 300 mesh nickel grids, immunostained, and post-stained with 4% aqueous uranyl acetate 

and Reynolds’ lead citrate.  Grids were observed and photographed using a LEO EM910 

transmission electron microscope operating at 80 kV (LEO Electron Microscopy, 

Thornwood, NY).

Western blot

B. burgdorferi B31-C1 was grown in BSK- H media at 34 ºC to a density of 1-2 x 

108cells/ml.  Cells were pelleted by centrifugation, washed in PBS, resuspended in SDS-

PAGE running buffer and 0.4 M DTT.  In Western blots with rVlsE, protein was resuspended 

in SDS-PAGE running buffer and 0.4 M DTT as above, and 5 µg was electrophoresed on the 

gel.  Samples were boiled for 5 minutes at 90 ºC, and electrophoresed in a single prep well on 

a 12% SDS-PAGE running gel, 5% SDS-PAGE stacking gel.  Gels were transferred to 

nitrocellulose, and blocked with 2-5% milk in Tris-buffered saline-1% Tween 20 (TBST).  

Rabbit polyclonal anti-VlsE antibody or rabbit anti-C6 antibody was added at a 1:500 

dilution in Milk-TBST for 1 hour, washed, and detected with goat anti-rabbit alkaline 

phosphatase antibody for 30 min.  Blots were developed using BCPIP/NBT alkaline 

phosphatase substrate (KPL, Gaithursburg, MA).

Proteinase K Accessibility Experiments

Low passage B. burgdorferi B31-C1 was grown in BSK-H media to mid-exponential

phase, washed several times, and resuspended in PBS.  Aliquots of washed cells were 

removed and digested for 45 min. at room temperature with 200 µg proteinase K (Sigma), 

and stopped with the addition of 1.6 mg/ml phenylmethyl-sulfonyl fluoride (PMSF) (Sigma).  
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Some samples received 0.05% Triton-X 100 to permeabilize the outer membrane.  SDS-

PAGE sample buffer and DTT were added to samples before they were boiled at 90 ºC for 5 

min and run on 12% SDS- PAGE resolving, 5% stacking gels.  Polyacrylamide gels were 

transferred to nitrocellulose at 380 mAmps for 75 mins, and blocked with 2% Milk-TBS for 

30 min. at room temperature.  Blots were probed with rabbit polyclonal anti-VlsE serum, 

mouse anti-FlaB or mouse anti-OspA sera, and detected with goat anti-rabbit or goat anti-

mouse conjugated to alkaline phosphatase.  Finally, blots were developed with BCPIP/NBT 

alkaline phosphatase substrate (KPL, Gaithursburg, MA).

Borreliacidal Assays

Borreliacidal assays were adapted from existing protocols (35, 128).  B. burgdorferi

B31-C1 were grown to mid-exponential phase in BSK-H media, centrifuged, and 

resuspended to 1 x 107 cells/ml.  Cells were plated at 2 x 106 bacteria per well of a sterile 96 

well plate in duplicate.  Serum was heat inactivated for 45 min at 56 ºC, and added to the 

wells at various dilutions.  Antibodies were allowed to bind for 20 minutes, and then normal 

rabbit serum was added as a source of complement.  Plates were allowed to incubate for 2-4 

days and then spirochetes were visualized by dark field microscopy for motility indicating 

viability.  Normal rabbit serum or BSK- H media alone served as controls for no killing.

3.3  Results 

Creation of recombinant VlsE and polyclonal serum

If antigenic variation at the vlsE locus is driven by the host immune system, the 

protein must be surface exposed and antibodies directed against the protein must be 
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bactericidal.  Here we describe the results of studies that were conducted to test if VlsE is 

surface exposed and if antibodies against the protein are bactericidal.  

In order to produce immune sera against VlsE, we cloned, expressed and purified the 

VlsE allele from B. burgdorferi B31-C1.  The recombinant protein (Figure 3.1 A) was 

recognized by polyclonal rabbit sera specific for constant region 6 within the variable region 

by Western blot (Figure 3.1 B).  As only 1 band is detected in lanes 3,4,7, and 8, we 

determined that there was no cross reactivity of the antibody with the E. coli  lysate and that 

protein bands underneath main protein bands are rVlsE degradation products.  We repeated 

this same strategy with 2 heterologous vlsE alleles from two B. burgdorferi clones isolated 

from a mouse (Figure 3.2) in order to create variant recombinant proteins.

The first goal of this project was to produce and characterize a polyclonal rabbit anti-

serum using recombinant VlsE protein to localize the protein on the spirochete’s envelope.  

Rabbits were immunized with recombinant VlsE.  The immune rabbit serum recognized the 

VlsE protein in Western Blots.

Bactericidal activity of VlsE antiserum

In order to test our hypothesis that VlsE is involved in immune evasion in vivo, we 

wanted to see if our B31-C1 VlsE rabbit polyclonal antiserum was bactericidal using in vitro

assays with cultured spirochetes.  We used heat inactivated polyclonal rabbit antiserum at 

various dilutions as our test serum, and normal rabbit serum or no rabbit serum (BSK media 

only) as controls.  In addition, we used various concentrations of fresh rabbit serum as our 

complement source, to see if the addition of complement would increase antibody-mediated 

killing.  The results of one representative experiment are shown in Figure 3.3.  As the 
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doubling time of B. burgdorferi in vitro is approximately 12 hours, we allowed the 

spirochetes to be in the presence of specific antibody and complement for several days.  The 

spirochetes continued to grow and all wells reached the same density under all conditions 

tested.  There was no membrane blebbing or loss of motility to indicate loss of membrane 

integrity or cell lysis.  

VlsE cellular location experiments

Several other groups have demonstrated VlsE expression by IFA in culture, however 

they always used acetone fixation methods, which do not distinguish between surface 

exposed  and intracellular proteins (70, 99).  We tried to answer where VlsE was located 

within cells using IFA, TEM, and proteinase K experiments.  For IFA, we used two different 

fixation methods: acetone and paraformaldehyde (PFA).  Acetone fixation will create spaces 

within the lipid bilayers, allowing antibodies to freely diffuse to their antigenic targets, 

whether on the surface or inside the cell.  PFA fixation will fix the whole bacterium but will 

not create spaces for antibodies to penetrate beyond the outer surface of the spirochete.  

Addition of Triton-X 100 to PFA fixed cells will disrupt the lipid bilayer and create spaces 

for antibodies to enter the periplasm and cytoplasm.  

Using the rabbit polyclonal anti-VlsE serum, we were able to detect VlsE in acetone 

fixed spirochetes and paraformaldehyde plus 0.5% Triton-X 100 samples the majority of the 

time (95.4% and 89%, respectively); however, we only detected VlsE on paraformaldehyde 

fixed spirochetes without Triton-X 100 36% of the time (Figure 3.4).  We also performed 

immuno EM using this rabbit serum (Department of Pathology and Laboratory Medicine, 

UNC-CH).  Figure 3.5 shows VlsE immunogold labeling mostly on the inner membrane of 
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in vitro grown B. burgdorferi B31-C1.  Some outer membrane labeling was observed by 

TEM, which is consistent with the small proportion of PFA only cells (36%) that were 

positively stained with the polyclonal rabbit anti-VlsE serum.

To confirm the location of VlsE, we performed proteinase K experiments.  Proteinase 

K is a nonspecific serine protease that cleaves proteins off the surface of bacteria.  We used 

FlaB, a component of the periplasmic flagella, as a control for outer membrane integrity.  We 

also included OspA, an outer membrane lipoprotein, as a control for extracellular protein 

digestion (Figure 3.6).  Triton-X 100, a nonionic detergent, was included to disrupt the lipid 

bilayer (37) and allow for total protein digestion.  OspA does not completely go away with 

the addition of Triton-X 100, which could be from incomplete lysis of all of the cells.  

Although the FlaB signal is slightly diminished with the addition of proteinase K, the 

majority of it is protected, and the VlsE signal is gone (Figure 3.6B).  These results indicate

that VlsE is surface exposed, as FlaB is protected and OspA is digested (Figure 3.6C). 

3.4 Discussion

We are interested in the mechanism that drives antigenic variation at the B. 

burgdorferi vlsE locus because recombinants can be detected in mice as early as 4 days after 

inoculation, but not in culture-grown spirochetes.  We thought of two possible scenarios 

influencing recombination: an active increase in the frequency of recombination within the 

mouse, and a passive selection model, where specific anti-VlsE antibodies kill the major 

population expressing that allele, allowing for minor variants within the population to be 

detected.  In order to test these two models, we first cloned and expressed recombinant 

proteins from B31-C1 and variant vlsE alleles in E. coli.  Although we are unsure if the 
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recombinant protein is properly folded, it is the same size as protein from culture lysate (data 

not shown) and is recognized by immune mouse serum.  

Recombinant VlsE was highly immunogenic, and we were successful in c reation of a 

polyclonal rabbit anti-serum.  The serum recognized variant VlsE alleles as well as the 

parental allele, and we think this is due to the serum recognizing the many conserved 

domains of VlsE, not just the variable domain. Because vlsE variants can be detected within 

the mouse, it is surmised to be involved in evasion of the host’s immune system; however, 

the exact function of VlsE is unknown.  The next goal was to investigate whether our 

polyclonal antiserum was bactericidal against B31-C1 B. burgdorferi cells expressing the 

vlsE allele that was used to immunize rabbits.  The sera did not kill B. burgdorferi  B31-C1 

bacteria in the presence or absence of rabbit complement (Figure 3.3). These results indicate 

that the antibody present in each individual well did not have borrelia cidal activity with or 

without a complement source.  It is possible that VlsE is not surface exposed in vitro, while it 

may be abundant on the surface in vivo.  In addition, it is possible that the bacteria expressing 

the B31-C1 allele on the surface underwent antigenic variation in the presence of antibodies 

and complement source in order to escape selection; however, we did not test the spirochetes 

for recombination after incubation with antibodies.

Antibodies against several B. burgdorferi antigens are borreliacidal, and efficiency of 

antibody-mediated killing goes up in the presence of a complement source (14, 27, 32, 49, 

51, 55, 73, 97).  Because our serum did not kill spirochetes in our in vitro assay, we used 

several techniques to understand where in the cell VlsE was expressed.  Using two different 

fixation methods and IFA, we determined that VlsE was intracellular, either within the cell or 

on the inner membrane, but not surface exposed.  This was confirmed by TEM where we 
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observed immunogold labeling on the inner membrane, but rarely on the outer membrane.

We tried to confirm the microscopy results by protease digestion with proteinase K 

and we saw a different result.  VlsE was surface exposed and had the same digestion pattern 

as OspA, while FlaB protein within the periplasm was protected.  There are several 

interpretations for this:  1. Another protein (unknown protein X) could be masking VlsE on 

the surface, or 2. VlsE is expressed at low levels in vitro.  The first possibility should be 

considered, and it is possible that protein X is OspA as it is one of the most abundant 

lipoproteins expressed on the surface of B. burgdorferi during in vitro cultivation (12, 148).  

There is a precedence for Osp proteins masking or shielding other antigens on the surface of 

B. burgdorferi (23).  It is also possible that another protein would hide surface exposed VlsE 

from antibody recognition due to steric hindrance, but not proteinase K digestion.  This 

masking protein (protein X or OspA) could be downregulated within the feeding tick or 

during host colonization, thus allowing for VlsE to be exposed to the host immune system.  

Other groups have argued that surface lipoproteins may have limited surface exposure 

or low expression in vitro (37, 63), and VlsE may fall into this category.  Surface lipoproteins 

could be tethered to the inner leaflet of the outer membrane (37, 63), or exist within an 

intracellular pool.  The mechanism for regulating surface exposure is unknown.  We favor a 

masking protein model to explain our data.  Our IFA, transmission EM, and proteinase K 

digestion experiments were conflicting, and we were unable to resolve which mechanism 

may be occurring.
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Figure 3.1  Creation of recombinant VlsE protein in E. coli.  A.  Simply blue stained 12% 
resolving SDS-PAGE gel of rVlsE.    B.  Western blot using rabbit anti-C6 VlsE antibody.  
As only 1 band is detected in lanes 3, 4, 7, and 8, we determined that there was no cross 
reactivity of the antibody with the E. coli lysate and that protein bands underneath main 
protein band are rVlsE degradation products.  Lanes indicated on the right are same for both 
A and B, rVlsE is approximately 48 kDa.
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1 2 3 4  5  6 7 8 9 10 11 12 13 14  15
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41 14950 60 70 80 90 100 110 120 130(41)
GAGGGGGCTATTAAGGAAGTTAGCGAGTTGTTGGATAAGCTGGTAAAAGCTGTAAAGACAGCTGAGGGGGCTTCAAGTGGTACTGATGCAATTGGAGAAGTTGTGGCTGb31c1 vlse gene (1)
GAGGGGGCTATTAAGGAAGTTAGCGAGTTGTTGGATAAGCTGGTAAAAGCTGTAAAGACAGCTGAGGGGGCTTCAAGTGGTACTGATGCAATTGGAGAAGTTGTGGCTGm5#8seq (41)
GAGGGGGCTATTAAGGAAGTTAGCGAGTTGTTGGATAAGCTGGTAAAAGCTGTAAAGACAGCTGAGGGGGCTTCAAGTGGTACTGATGCAATTGGAGAAGTTGTGGCTGm5#2seq (19)  

153 261160 170 180 190 200 210 220 230 240 250(153)
CTGATGCTGCAAAGGTTGCTGATAAGGCGAGTGTGACGGGGATTGCTAAGGGGATAAAGGAGATTGTTGAAGCTGCTGGGGGGAGTGAAAAGCTGAAAGCTGTTGCTGCb31c1 vlse gene(113)
CTGATGCTGCAAAGGTTGCTGATAAGGCGAGTGTGACGGGGATTGCTAAGGGGATAAAGGAGATTGTTGAAGCTGCTGGGGGGAGTGAAAAGCTGAAAGCTGTTGCTGCm5#8seq(153)
ATAATGCTGCGAAGGTTGCTGATAAGGCGAGTGTGACGGGGATTGCTAAGGGGATAAAGGAGATTGTTGAAGCTGCTGGGGGGAGTGAAAAGCTGAAAGCTGTTGCTGCm5#2seq(131)  

262 370270 280 290 300 310 320 330 340 350 360(262)
TGCTACAGGGGAGAATAATAAAGAGGCAGGGAAGTTGTTTGGGAAGGCTGGTGCTGATGCTAATGGGGACAGTGAGGCTGCTAGCAAGGCGGCTGGTGCTGTTAGTGCTb31c1 vlse gene(222)
TGCTACAGGGGAGAATAATAAAGAGGCAGGGAAGTTGTTTGGGAAAGTTGATAATGCTAATGCTGGGGACAGTGAGGCTGCTAGCAAGGCGGCTGGTGCTGTTAGTGCTm5#8seq(262)
TGCTAAAGGGGAGAGCAATGAAAAGGCAGGGAAGTTGTTTGGGAAGGCTGGTGCTGGTGCTAATGGGGACAGTGAGGCTGCTAGCAAGGCGGCTGGTGCTGTTAGTGCTm5#2seq(240)  

371 479380 390 400 410 420 430 440 450 460(371)
GTTAGTGGGGAGCAGATATTAAGTGCGATTGTTACGGCTGCTG------ATGCGGCTGAT------CAGGAGGGAAAGAAGCCTGGGGATGCTACAAATCCGATTGCTGb31c1 vlse gene(331)
GTTAGTGGGGAGCAGATATTAAGTGCGATTGTTAAGGCTGCTG------CTGCTGGTGAG------CAGGATGGAGAGAAGCCTGCAGAGGCTACAAATCCGATTGCTGm5#8seq(371)
GTTAGTGGGGAGCAGATATTAAGTGCGATTGTTAAGGCTGCTGGTGCGGCTGCTAGTGAGGCTGATCAGGAGGGAAAGAAGCCTGAGGAGGCTAAAAATCCGATTGCTGm5#2seq(349)  

480 490 500 510 520 530 540 550 560(480)
CTGCTATTGGGAAGGGTAATGAGGAGAATGGTGCGGAGTTT---AAGGATGAGATGAAGAAGGATGATCAGATTGCTGCTGCTATTGCb31c1 vlse gene(428)
CTGCTATTGGGAAGGGTAATGAGGA---TGGTGCGGATTTTGGTAAGGATGAGATGAAGAAGGATGATCAGATTGCTGCTGCTATTGCm5#8seq(468)
CTGCTATTGGGGA---TAAAGATGG---GGATGCGGAGTTTAATCAGGATGGGATGAAGAAGGATGATCAGATTGCTGCTGCTATTGCm5#2seq(458)  

567 580 590 600 610 620 630 640 650(567)
CTTTGAGGGGGATGGCTAAGGATGGAAAGTTTGCTGTGAAG---GATGGTGGTGAGAAAGGGAAGGCTGAGGGGGCTATTAAGG----b31c1 vlse gene(512)
CTTTGAGGGGGATGGCTAAGGATGGAAAGTTTGCTGTGAAGAAGGATAATAATGAGAAAGGGAAGGCTGAGGGGGCTATTAAGGGAGCm5#8seq(552)
CTTTGAGGGGGATGGCTAAGGATGGAAAGTTTGCTGTGAAG---GATGGTGGTGAGAAAGAGAAGGCTGAGGGGGCTATTAAGGGAGCm5#2seq(539)  

Figure 3.2 Alignment of variant vlsE alleles.  Two B. burgdorferi clones isolated from an 
infected mouse are shown aligned with the parental strain, B31-C1.  Variable regions are 
underlined.

VR1 VR2
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Figure 3.3 Borreliacidal assays with rabbit polyclonal anti B31-C1 VlsE serum.
Various dilutions of polyclonal rabbit anti-B31-C1 rVlsE serum were mixed with 1 x 105

B31-C1 B. burgdorferi with various dilutions of rabbit complement in BSK-H media.  
Cultures were followed for 4 days post-incubation with the antibody.
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95.4% (294/308) 36% (255/700) 89% (870/976)

Figure 3.4  Acetone vs. PFA fixation IFA.  B. burgdorferi B31-C1 were grown to mid-
exponential phase in BSK-H media and stained with rabbit polyclonal anti-VlsE sera.  The 
top row of panels is VlsE expression, detected with goat anti-rabbit alexa 594 antibody.  The 
bottom row is goat anti-Borrelia FITC antibody.  The number underneath the figure 
represents the percentage VlsE positive cells in each condition.

Acetone fixed PFA fixed, no TX-100 PFA fixed, TX-100
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Figure 3.5  Transmission electron micrographs of VlsE.  All 3 pictures represent VlsE 
cellular localization detected by rabbit polyclonal anti-VlsE serum and anti-rabbit secondary 
antibody conjugated to colloidal gold.  Notice inner and outer membrane staining, and 
location of periplasmic flagella.
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VlsE

Figure 3.6  VlsE Proteinase K experiments.  A.  Simply Blue stained 10% SDS-PAGE gel.  
Lane 1 is See Blue molecular weight standards in KDa on left.  Band above 64 KDa is carry-
over bovine serum albumin from BSK-H.  B.  Western blot with rabbit anti-VlsE antibody.  
C.  Western blot with mouse anti-FlaB (upper band) and mouse anti-OspA (lower band) 
antibodies.  Lanes are same for A, B, and C, and indicated above.
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Chapter 4:  Discussion and Perspectives
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Lyme disease is a good example of an emerging disease where not much is 

understood about how the bacterium causes disease.  In addition, as it is the most prevalent 

vector-borne disease in the United States, it is important to understand how the bacterium, B. 

burgdorferi is able to colonize both the vector and the host.  Changes in gene expression 

between the vector and host lead to changes in the antigenic profile that is displayed to the 

host’s immune system.  Many vector-borne pathogens, including B. burgdorferi, are able to 

undergo antigenic variation at a specific locus through non-reciprocal gene conversion events 

with silent gene cassettes.  The experiments described in this thesis were aimed at 

understanding recombination in the tick vector and surface localization of a specific 

lipoprotein, VlsE.  

Variant vlsE alleles can be rapidly detected within the mammalian host shortly after 

infection, but not in cultured spirochetes.  One of our goals was to determine whether 

recombinants could be detected within a tick transmission cycle.  Our initial hypothesis was 

that we would be able to detect vlsE recombinants within feeding nymphs, the tick stage 

responsible for transmission of B. burgdorferi  to a naïve host; however, we found that this is 

not what happens.  We used the larval immersion technique to infect larval I. scapularis ticks 

with a clonal population of B. burgdorferi. We were unable to detect changes within the 

variable region of vlsE through a larval tick feeding, through the morphological changes 

during the tick molt, and through the subsequent nymphal feeding (Chapter 2).  

Recombinants could readily be detected in the infected mouse.  This indicates that the vlsE 

locus is stable in feeding ticks.  This also would indicate that there is not a role for 

recombination within feeding ticks.  The fact that VlsE protein is expressed at low levels in 

the tick and high levels within the host supports  the role for VlsE in host immune evasion.
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We were also interested in trying to understand the mechanism of recombination 

interacting with the host immune response.  We presented two models: an active model, and 

a passive model.  The active model asserts that recombination at the vlsE locus is actively 

being turned on specifically in response to mouse colonization.  The passive model asserts

that recombination frequency does not change during mouse colonization, only that selection 

is occurring in the presence of specific antibodies.  While we were successful in creating the 

necessary reagents needed to try and test these two models, we were unable to figure out a 

frequency of recombination.  Teasing out the differences between the two models is also not 

as simple as we have stated.  There are many variables involved within a host that are 

difficult to control and that confound easy interpretation of data from experiments.  Our 

polyclonal antiserum was not bactericidal for Borrelia grown in culture (C hapter 3), and 

therefore we were unable to look for minor allele variants that may exist within the 

population.

Because our serum was not bactericidal, we questioned the cellular location of VlsE 

within the bacterial cell.  While our immuno-microscopy experiments indicated that VlsE 

was intracellular, protease digestion experiments indicated that VlsE was indeed on the 

surface (Chapter 3).  These conflicting results raised several questions about possible 

masking proteins, limited surface exposure of VlsE, or low levels of expression in vitro.  It is 

difficult to look at bacteria within host tissues, and unfortunately we have  to use a culture 

amplification step to be able to get substantial spirochetes to do experiments.  

The next step to understand VlsE surface localization would be to use high resolution 

microscopy such as transmission electron microscopy using the same polyclonal sera with 

protease digested spirochetes, to see if there is a masking protein.  Another idea that is in 
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progress is to develop monoclonal antibodies to B. burgdorferi B31-C1 VlsE in hopes of 

finding one that is bactericidal and specific to the variable region of the protein.  This reagent 

could be used in experiments to try and determine a recombination frequency, or used in 

mouse immunization studies.  Finally, it is possible that VlsE may be differentially expressed 

in response to pH and temperature, and both parameters are easily manipulated during lab 

culture conditions.  Therefore, surface exposure and antibody accessibility may be dependent 

on pH and temperature and still needs to be tested.

Several questions in regard to VlsE function in the host still remain, such as is VlsE 

involved in colonization of specific niches (i.e. joints, heart, attachment to host extracellular 

matrix proteins)?  Because B. burgdorferi colonizes the tissues and does not stay in the blood 

like relapsing fever Borreliae, it is possible that changes in the variable region provide 

multiple functions for the bacteria.  Finally, is immunization to one allele of VlsE protective 

against that allele?  Is it possible to design a multi-valent vaccine composed of several 

diverse VlsE sequences that protects against subsequent challenge with spirochetes?  Basic 

mechanism questions also still exist, such as is recombination RecA dependent as it is in 

Neisseria?  Or does another recombinase exist specifically for DNA conversion events at the 

vlsE locus?  Why do the upstream cassettes have to be in the cis orientation in B. burgdorferi, 

while they are scattered throughout the genome in relapsing fever spirochetes?  As the ability 

to manipulate genes within Borrelia is rapidly progressing, some of the answers to these 

questions will soon be addressed.
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