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ABSTRACT

Jonathan P. Micancin:  Acoustic variation and species discrimination in cricket frogs, genus 

Acris

(Under the direction of R. Haven Wiley)

 Mate recognition systems, both the signals produced and the sensory mechanisms to 

receive them, often diverge to result in pre-mating reproductive isolation between closely 

related species.  Comparative and experimental studies of anurans have contributed to our 

understanding of this process.  By comparing populations of related species in allopatry, 

sympatry, and syntopy, it is possible to identify the environmental factors associated with 

divergence in mate recognition systems, including interactions with related species.

 Many pairs of species meet along the Fall Zone in the Southeast, but few have been 

well researched.  My study compared the two species of cricket frogs, Acris crepitans and A. 

gryllus, at 36 sites in North Carolina.  I assessed the acoustic and morphological traits used to 

identify the species, determined the extent of their ranges and sympatry, and identified 4 

syntopic sites in the upper Coastal Plain.  The dominant frequency and call rate of male 

vocalizations varied widely and overlapped between the species.  Body mass had the largest 

effect on these features.  In contrast, the effects of seasonality and temperature were minor.  

Additional variation between sites could not be attributed to sympatry or syntopy, so there 

was no evidence of reproductive character displacement in dominant frequency or call rate.
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 In playback experiments at a syntopic site, females of both species discriminated 

between conspecific and heterospecific signals on the basis of click structure, a fine-scale 

temporal feature, and had no preference for dominant frequency among conspecific signals.  

Reproductive isolation in Acris is promoted by divergence in the temporal structure of male 

signals.  Only studies like this one, conducted on geographic scales appropriate for 

comparisons of local populations, can identify patterns of geographic variation in signals that 

contribute to reproductive isolation.
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PREFACE

 Early in my graduate training, I heard a zoologist at a state agency express 

disappointment in the majority of biological research occurring at public universities.  He 

stated that the enormous intellectual, physical, and financial resources consumed by these 

institutions ought to be used for research on basic wildlife ecology and conservation rather 

than to address esoteric questions that few people understood and even fewer people could 

apply toward practical ends.  After my initially defensive feelings subsided, I recognized that 

the lack of even cursory knowledge of many species that are native to the United States 

justified his opinion.

 Like many behavioral ecologists, childhood experiences as an amateur naturalist 

informed my interest in this academic field.  My experiences emphasized field study for the 

sake of knowledge and stewardship of nature.   I was drawn to behavioral ecology because of 

its basic premise that field research is crucial to understanding behavior.  Field work usually 

depends on identifying an organism, knowing where it ranges, and having some information 

about its relationships with closely related taxa.  Such information is lacking for many 

species in the Southeast.  Although I addressed some important theoretical issues in my 

study, I also aimed to correct this oversight for the cricket frogs Acris crepitans and A. gryllus 

in North Carolina.
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 I believe that the most demanding and rewarding scientific research addresses theory 

but has practical applications outside of academia.  From the outset, the research recounted in 

this dissertation has been conducted with that approach.  My goal was to develop a system 

for the study of evolution, in particular speciation and communication, while simultaneously 

developing basic tools, like field marks and range maps, that could be used for conservation 

and human appreciation of natural history.
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Chapter 1

Acoustic and morphological identification and range overlap of the cricket frogs

Acris crepitans crepitans and Acris gryllus gryllus

Abstract

 Studies of speciation, including studies of reinforcement and reproductive character 

displacement, require the accurate identification of sibling taxa and the assessment of the 

degree of contact between them.  In order to use two cricket frogs, Acris crepitans crepitans 

and Acris gryllus gryllus, as subjects for the investigation of communication and mate choice 

in the context of speciation, I determined an efficient means to identify live and preserved 

cricket frogs, described their ranges in North Carolina, and determined the degree of co-

occurrence at breeding sites (syntopy).  I was able to identify preserved specimens by the 

extent of hind-foot webbing and the diameter of anal tubercles, but the small size and high 

variability of these features made it difficult to identify live frogs morphologically.  I 

determined that acoustic identification of breeding Acris was a practical approach in the field 

and used it to establish that A. c. crepitans and A. g. gryllus had ranges that overlapped (i.e. 

were sympatric) in the upper Coastal Plain of North Carolina.  The actual range of A. c. 

crepitans was more extensive than expected from published report because I found the 

species along rivers deep into the lower Coastal Plain.  The range of A. g. gryllus was more 

restricted than expected because I could not find it in much of its published range in the 



northern half of the state.  Therefore, the conservation status of A. g. gryllus should be 

monitored carefully.  A. c. crepitans and A. g. gryllus were syntopic at a few breeding sites in 

the upper Coastal Plain.

Introduction

 Much effort has recently been made by evolutionary biologists to address still-

unresolved issues to explain the origin and maintenance of species (Coyne and Orr, 2004).  

Species concepts are still debated and there is limited understanding of how reproductive 

isolation arises in nature.  One way to address these open questions is to study previously 

non-utilized groups of organisms that are believed to be sibling species.  Comparative and 

experimental studies of closely-related amphibians have contributed to our understanding of 

evolution and ecology including mechanisms of speciation (Gerhardt and Huber, 2002).  

Cricket frogs (Acris, Hylidae) are a good example.  Acris are small, primarily terrestrial 

treefrogs of eastern North America.  Two species, A. crepitans (Northern Cricket Frog) and 

A. gryllus (Southern Cricket Frog), and five subspecies are currently recognized (Crother et 

al., 2001).  Two subspecies of A. crepitans have been extensively studied in the Midwest.  A. 

crepitans blanchardi (Blanchard’s Cricket Frog) occupies open, xeric habitat in the Great 

Plains, while A. crepitans crepitans (Eastern Cricket Frog) occupies denser, mesic mixed 

hardwood forests of the eastern United States (Nevo, 1973a, 1973b).  

 Where the subspecies are parapatric (have adjoining but non-overlapping ranges) 

along the eastern edge of the Great Plains, differences in advertisement calls occur among 

populations and subspecies (Ryan et al., 1990).  Female A. c. blanchardi and A. c. crepitans 
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prefer vocalizations representing local males of their own subspecies to vocalizations of the 

other subspecies or of A. gryllus gryllus (Coastal Plain Cricket Frog) (Nevo and Capranica, 

1985).   Divergence in Acris calls might be the result of selection for increased transmission 

of vocalizations in different habitats, rather than indirect selection on body size or 

reinforcement of reproductive isolation in sympatry (Nevo and Capranica, 1985; Ryan and 

Wilczynski, 1988; Ryan et al., 1990; Sun et al., 2000; Witte et al., 2005).  Such behavioral 

evidence as well as recent molecular work (Beauclerc et al., 2007) suggest that the two 

subspecies of A. crepitans have recently become reproductively isolated.  Because the two 

subspecies are apparently never found at the same breeding sites, they are not a candidate for 

a study of secondary contact after divergence in allopatry.  By Rivas’ (1964) definitions, the 

two subspecies are sympatric (their ranges overlap) but not syntopic (so close that they could 

interbreed).  Variation in male vocalizations and female preferences along the border between 

grasslands and forests occupied by A. c. blanchardi and A. c. crepitans and the possibility of 

reinforcement of differences in vocalizations remain open topics.

 In the southeastern United States, A. c. crepitans and A. g. gryllus provide an 

opportunity to investigate relationships between closely related populations because of their 

occurrence in allopatry and sympatry, high abundance, and long breeding season (Nevo and 

Capranica, 1985).  The previously-published southeastern ranges of A. c. crepitans and A. g. 

gryllus correspond approximately to the Piedmont and Coastal Plain, respectively (Conant 

and Collins, 1991).  In allopatry, A. c. crepitans and A. g. gryllus occupy different habitats 

(Bayless, 1969; Nevo and Capranica, 1985).  The mixed hardwood and pine community of 

the Piedmont is drier and cooler than the extensive pine savannas or bottomland cypress-gum 
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(Taxodium, Nyssa) swamps of the Coastal Plain.  Precipitation and temperature differences 

between allopatric habitats of A. c. crepitans and A. g. gryllus in the Southeast resemble those 

between A. c. blanchardi and A. c. crepitans in the Midwest (Bayless, 1969; Nevo and 

Capranica, 1985).

 The two species occupy an extensive area of sympatry on or near the Fall Zone 

(Mecham, 1964), the region where the Piedmont and Coastal Plain meet (Stuckey, 1965).  

This sympatric zone, which extends from southeastern Virginia to the Mississippi River 

(Nevo and Capranica, 1985; Conant and Collins, 1991), is apparently narrowest at its 

northeastern limit in Virginia and gradually widens to encompass most of Alabama and 

Mississippi (Nevo and Capranica, 1985).  In Alabama, Mecham (1964) reported no hybrids 

of A. crepitans and A. gryllus despite the absence of hybrid inferiority in a laboratory 

experiment.  In contrast, Mount (1975) found cricket frogs with intermediate morphological 

features in Alabama’s Coastal Plain and suggested that these could be hybrids.

 These contradictory findings may reflect the perpetual confusion about the 

morphological identification of species and subspecies in Acris.  This difficulty suggests that 

some of the morphological features traditionally used to identify cricket frogs to species are 

not distinctive or geographically concordant, even though the basis for naming different Acris 

taxa is almost entirely morphological.  The descriptions of Acris crepitans from “the northern 

states” by Baird in 1854 and Rana gryllus, presumably from Georgia, by LeConte in 1825, 

did not include type specimens (Dunn, 1938).  Viosca (1923) argued that in Louisiana, there 

were two Acris occurring in close proximity without interbreeding.  Dunn (1938) reviewed 

the original descriptions of Acris and later specimens in the collection of the Academy of 
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Natural Sciences of Philadelphia and agreed that there were two species.  In allopatry, A. 

crepitans and A. gryllus were concluded to have distinct morphologies (Dunn, 1938; Brimley, 

1944; Wright and Wright, 1949; Neill, 1950; Mecham, 1964; Martof et al., 1980).  A. 

crepitans is larger overall, has a thicker build, broader snout, and shorter appendages relative 

to its body size than does A. gryllus.  A. crepitans has more rugose skin and more extensive 

webbing on the hind feet than does A. gryllus, and the anal tubercles (whitish glands on either 

side of the vent) are larger.  Stripes of dark pigment on the back of the thigh are wider, but 

with more irregular margins, in A. crepitans than in A. gryllus.  Subsequent morphological 

and ecological studies (Brimley, 1944; Neill, 1950; Boyd, 1964; Mecham, 1964; Mount, 

1975) confirmed the existence of two species in the Southeast which occasionally occurred in 

syntopy, but did not reach a consensus on whether they were reproductively isolated.

 Brimley (1944) loosely described the ranges of A. crepitans and A. gryllus in North 

Carolina and suggested that the ranges overlapped and that there were no morphologically 

intermediate individuals.  Subsequently, no publications have investigated the identification, 

ranges, or status of A. c. crepitans or A. g. gryllus in North Carolina.  Acris in or near the Fall 

Zone are still difficult to identify (Alvin Braswell, Curator of Herpetology at the North 

Carolina Museum of Natural Sciences, personal communication).  The status of A. g. gryllus 

in North Carolina and southeastern Virginia, at the northern extent of its range, is presumed 

to be stable, but the ability to monitor A. g. gryllus is probably obscured by its morphological 

and ecological similarity to A. c. crepitans.  A new study of Acris is needed not only to 

reexamine the traits used to identify the species in proximity to each other but also to 

promote their conservation.
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 My goals in this study were to determine an efficient means to identify Acris 

crepitans crepitans and Acris gryllus gryllus in the field and museum, to describe their ranges 

in North Carolina, and to investigate the possibility of syntopy at breeding sites.  Acris in 

North Carolina exhibited morphological and acoustic distinctions that permitted 

identification.  They had overlapping ranges, were syntopic at a few sites, and appeared to be 

reproductively isolated.  These results confirmed that A. c. crepitans and A. g. gryllus are 

attractive subjects for an investigation of communication and mate choice in the context of 

speciation. 

Methods

Field survey

 On visits to potential breeding wetlands for Acris in the Piedmont and Coastal Plain 

of North Carolina in 2004, 2005, and 2007, I recorded frogs in 36 sites (Figure 1.1; 17 sites 

from 4 May to 21 July 2004, 17 sites from 8 May to 24 July 2005, including 2 sites from 

2004, and 4 sites in 2007).  These sites included public and private properties in the western 

and eastern Piedmont (15, including 4 sites just west of the Fall Zone), and the upper and 

lower Coastal Plain (21, including 2 sites in the Sandhills).  At each site, there were one or 

more permanent freshwater bodies with choruses of cricket frogs.  At each chorus visited (up 

to 5 at each site), I recorded and collected a representative sample of the calling frogs (6 to 

10 frogs for 10 bouts each.  When the chorus was too small to remain active if I removed 

more males, I reduced the number of frogs collected (3 sites) or refrained from collecting 

altogether (3 sites).   Recording began at or after 2100 hours and ended when the chorus 
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waned (between 0100 and 0300 hours) or I had a complete sample.  Recordings were made 

with a Marantz PMD-221 or PMD-421 portable tape recorder (2004) or PMD-670 digital 

recorder (2005 and 2007), and Audio-Technica 815a microphones.  I digitized tape 

recordings from 2004 at a sampling rate of 22.05 kHz (WildSpectra version 060118, Wiley, 

2007).  Recordings in 2005 and 2007 produced WAV files at the same sampling rate.  I also 

photographed each recorded male, as well as any females and satellite males in obvious 

association with it, with a Canon Powershot A80 4.1 MP digital camera.  After capturing the 

male, I measured the surface temperature at its calling site with a Miller and Weber T-6000 

fast-read cloacal thermometer.  Within 12 to 36 hours after collection, I weighed each frog, 

euthanized it in a chlorotone solution, preserved a forefoot in a dimethyl sulfoxide and salt 

solution for genetic analysis, and fixed the frog for morphological study and deposition in the 

collection of the North Carolina Museum of Natural Sciences, raleigh, North Carolina.

Acoustic analysis

 Based on studies of acoustic communication in A. crepitans in the Midwest 

(especially Wagner, 1989c) I developed terminology to describe the temporally complex 

vocalizations of cricket frogs (Chapter 2 and 3).  Two studies (Blair, 1958, Nevo and 

Capranica, 1985) that compared the vocalizations of A. crepitans and A. gryllus at a 

continental scale have suggested that a temporal component of their vocalizations could be 

used for identification.  Wagner (1989c) interchangeably refers to this component as a “call” 

or “click”.  I use “click” exclusively for this component and avoid “call” when referring to 

components of cricket frog vocalizations.  Blair’s (1958) description of the differences within 
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clicks was primarily qualitative, but Nevo and Capranica (1985) showed that A. gryllus clicks 

contain more pulses, produced at a faster and more consistent rate, than do A. crepitans 

clicks.  Consecutive pulses decrease in amplitude in A. gryllus clicks but remain at about the 

same amplitude in A. crepitans clicks.  Figure 1.2 shows representative clicks of the two 

species in North Carolina.

 To verify that these differences occur in North Carolina, I used WildSpectra (version 

061025, Wiley, 2007) to analyze the structure within each click of a bout from six frogs from 

each of four sites in or near the putative zone of sympatry (Figure 1.1).  I chose two sites near 

the Fall Zone where clicks resembled published descriptions of one of the species (A. c. 

crepitans at Mason Farm Biological Reserve (MF), NAD83 Lat. 35.89005°, Long. 

-79.00866°; A. g. gryllus at the Pineberry Bay Tract of the Sampson County Gamelands (PB), 

NAD83 Lat. 34.97567°, Long. -78.48394°).  These sites were outside but near the edge of the 

presumed zone of overlap according to distribution maps (Conant and Collins, 1991; Martof 

et al., 1980).  I also included two sites in the upper Coastal Plain (Merchants Millpond State 

Park (MM), NAD83 Lat. 36.43179°, Long. -76.69666°; and Cliffs of the Neuse State Park 

(CN), NAD83 Lat. 35.22819°, Long. -77.88223°) where both types of clicks occurred.  The 

SongSignatures function in WildSpectra was used for all acoustic measurements.  

SongSignatures recognizes each note with user-defined starting and ending amplitude 

thresholds in a selected portion of a spectrogram.  It outlines each note identified and 

produces a file with spectral and temporal information for each.  I measured all the clicks in 

each bout at a sampling rate of 44.1 kHz and transform size of 16 to emphasize temporal 

resolution (0.18 milliseconds) at the expense of frequency resolution (5.512 kHz).  The data 
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produced by SongSignatures allowed convenient measurement of the mean duration, mean 

number of pulses, and mean interpulse interval of each bout.  JMP 6.0.3 (SAS Institute, 

2006) was used for all statistical analyses.

Morphometric analysis

To compare the morphological traits of the acoustically-identified species in North 

Carolina, I randomly selected (Haahr, 2007) preserved males from among frogs that had 

previously been identified by click type and used in additional acoustic analyses (Chapters 3 

and 4).  Vernier calipers (SPI Dial Max 31-415-3) were used to measure snout-vent length, 

length of the upper hind limb from the vent to the distal surface of the second leg joint 

(knee), length of the lower hind limb from the skin fold distal to the knee to the distal surface 

of the ankle (heel), lengths of the upper and lower thigh stripes from the their proximal 

origins at or near the vent to their distal ends on the upper hind limb (thigh), widths of the 

upper and lower thigh stripes at their widest and narrowest points, and diameter of the anal 

tubercle, all to the nearest 0.1 millimeter.  Thigh stripes are often discontinuous, and in such 

cases the narrowest point of the stripe was recorded as 0.0 millimeters.  To measure the 

extent of webbing on the hind foot, I used a Wild M5 dissecting stereomicroscope at 6x 

magnification.  I recorded the number of phalanges on the first (shortest) toe that were free of 

webbing, not including the small ridge of tissue that runs the length of each toe.  Because the 

extent of webbing on either side of the fourth (longest) toe often differed, I recorded the 

number of half-phalanges of the fourth toe that were free of webbing on the both the third 

and fifth toe sides.  All these measurements were taken on the right side of the frog.  To 
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control for influence of body size on hind limb length and thigh stripe length, I calculated the 

ratios of total hind limb length to snout-vent length and thigh stripe length to upper hind limb 

(thigh) length for each individual.  Regularity in the width of each thigh stripe was assessed 

by dividing the minimal width of each stripe by the maximal width.

JMP 6.0.3 (SAS Institute, 2006) was used for all statistical analyses.  I used logistic 

regressions to investigate the associations of six morphological features with each species: 

the three measurements of toe webbing, anal tubercle diameter, snout-vent length, the ratio of 

total leg length to snout-vent length, the ratio of upper and lower thigh stripe lengths to upper 

hind limb (thigh) length, and the regularity of width of the upper and lower thigh stripes.

Results

Acoustic analysis

 The audible differences in the clicks of cricket frogs from Mason Farm Biological 

Reserve and the Pineberry Bay Tract (Table 1.1 and 1.2a to 1.2d, Figure 1.3a to 1.3d) 

matched published differences between A. crepitans and A. gryllus.  The clicks of Acris at 

Mason Farm were similar to the clicks of A. crepitans in the Midwest: the click duration 

(Figure 1.3a), number of pulses (Figure 1.3b), and interpulse interval (Figure 1.3c) varied 

substantially between successive clicks.  Some Mason Farm clicks at or near the ends of 

bouts resembled the “rattle” clicks identified as a distinctive feature of A. crepitans in the 

Midwest.  The interpulse interval in the rattle was more regular than for other A. crepitans 

clicks, but still much longer than in A. gryllus.  Several rattles produced in succession have a 

throbbing quality.  At the Pineberry Bay Tract, clicks of Acris were different, with regular, 
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repeated pulses that decreased in amplitude like the clicks of A. gryllus studied by Nevo and 

Capranica (1985).   The distinctions between clicks at these two sites also separated the two 

types of clicks at the remaining two sites.  The lower number of pulses and duration of clicks 

for A. g. gryllus at the Pineberry Bay Tract compared to the syntopic sites is probably an 

artifact of higher background noise in the Pineberry Bay Tract recordings.  The fading of A. 

g. gryllus pulses over the course of every click made it difficult to count the final pulses in 

the background noise.  As a consequence, these clicks appeared to have fewer pulses and 

shorter durations in comparison to those at the other sites.

 Once the distinct differences between clicks of A. c. crepitans and A. g. gryllus 

described by other authors were confirmed in North Carolina, I was able to identify frogs 

from recordings as well as calling individuals in the field.  Based on these criteria, A. c. 

crepitans occurred throughout the Piedmont and near large rivers in the upper Coastal Plain, 

and A. g. gryllus occupied the lower Coastal Plain and upland sites of the upper Coastal Plain 

(Figure 1.1).  In the Sandhills region in south-central North Carolina, with the highest 

elevations in the Coastal Plain (Stuckey, 1965), A. g. gryllus occupied the two sites with 

cricket frogs.  A. c. crepitans and A. g. gryllus occurred in syntopy at four sites: the Crumpler 

Pond at Cliffs of the Neuse State Park, throughout the wetlands of Merchants Millpond State 

Park, a borrow pit downstream from Merchants Millpond, and Hare’s Millpond.  The three 

latter sites were within 25 kilometers of one another in the Chowan River basin of 

northeastern North Carolina.  Nowhere in the survey were there clicks that combined 

attributes of both species, such as short, regularly-spaced pulse intervals with no reduction in 
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amplitude or by combining diminishing pulse amplitude with long, irregular interpulse 

intervals.

Morphometric analysis

 The two species, as identified by their distinct acoustic features, differed significantly 

in each morphological measurement except in the ratio of lower thigh stripe to upper hind 

limb (thigh) length (Table 1.3 to 1.5).  Nested analyses of variance (ANOVA) and the 

assessment of variance components by the restricted maximum likelihood method (REML) 

showed that species accounted for little variance in snout-vent length, leg length relative to 

snout-vent length, and thigh stripe characteristics.  However, species did explain a substantial 

proportion of the variation in anal tubercle diameter and the extent of toe webbing.  The first 

principal component calculated from the last two features (Figure 1.4 and Table 1.6) also 

differs markedly between species.  A discriminant function analysis of anal tubercle diameter 

and the three measurements of webbing was used to predict species.  The discriminant 

function was calculated from 43 A. c. crepitans and 27 A. g. gryllus specimens (43% of total 

sample) selected randomly from each site and tested on the remaining 58 A. c. crepitans and 

35 A. g. gryllus.  It misidentified 3 A. c. crepitans and no A. g. gryllus (3.2% of the 

specimens).

 To identify cricket frogs morphologically, the anal tubercle diameter and extent of 

webbing on the first and fourth toe of the hind foot are sufficient.  The webbing on the third-

toe side of the fourth toe of A. c. crepitans includes all but the last two phalanges while in A. 

g. gryllus the webbing ends along the third phalange from the end.  In both species, the 
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webbing is usually less extensive on the outside of the fourth toe but the difference between 

species is maintained.  The webbing on the first toe typically ends at the base of the last 

phalange in A. c. crepitans and along the second to last phalange in A. g. gryllus.  The anal 

tubercles of A. c. crepitans are typically > 0.5 mm in diameter, but are much smaller, even 

invisible at 6x magnification, in A. g. gryllus.

Discussion

Acoustic identification of cricket frogs

  The consistent differences between clicks of A. c. crepitans and A. g. gryllus can 

identify Acris to species.  With experience, these differences can be used to identify Acris at 

breeding sites by ear.  While A. c. crepitans and A. g. gryllus vocalizations can have similar 

patterns of repetition over the course of seconds or longer, they differ substantially in the 

structure of the individual clicks.  Because of the rapid and regular production of pulses, a 

single click of A. g. gryllus sounds continuous, multiple clicks of one individual sound nearly 

identical, and the clicks of different individuals or different populations are often 

indistinguishable.  In A. c. crepitans, the few pulses produced at a slow and irregular rate 

make the clicks sound discontinuous and highly variable.  The clicks of neighboring A. c. 

crepitans individuals at a single wetland often sound different and the populations at 

neighboring A. c. crepitans breeding sites can often sound recognizably different.  The high 

variation between individuals and populations of A. c. crepitans is consistent with previous 

findings that the temporal and spectral structure of A. crepitans vocalizations varies 

according to the intensity of competition among males (Wagner, 1989a, 1989b, 1989c, 1992; 
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Burmeister et al., 1999).  The rattle click contributes to acoustic variation in both areas and is 

perhaps the most distinctive feature of A. c. crepitans vocalizations in North Carolina.  I 

found no individuals with intermediate vocalizations while conducting this study.

Morphological identification of cricket frogs

 Anuran specimens in museums rarely have associated audio recordings, so even 

recent taxonomic studies of Acris (McCallum and Trauth, 2006; Rose et al., 2006) have 

usually been restricted to the use of morphological features.   The inclusion of acoustic 

features in this study makes it possible to categorize Acris and then to assess morphological 

features for identification.  This analysis indicates that diameter of the anal tubercles and the 

extent of webbing on the fourth (longest) toe on the hind foot are the best morphological 

traits for distinguishing preserved A. c. crepitans and A. g. gryllus.  Nevertheless, occasional 

misidentification of A. c. crepitans as A. g. gryllus can occur when using morphological 

traits.  Given the absence in this study of any frogs with intermediate vocalizations, these 

misidentifications probably reflect the difficulty of identification by morphology rather than 

hybridization between A. c. crepitans and A. g. gryllus.

 Additional morphological features of A. c. crepitans and A. g. gryllus might be useful 

for identification of live specimens in the field.  Formalin and alcohol dramatically alter the 

dermal pigmentation, texture, and turgor of Acris specimens.  Preservation probably impaired 

the assessment of thigh stripes and eliminated the use of dermal texture and pigmentation as 

identifying features.  During two seasons of field work at a syntopic site, I became proficient 

in identifying frogs by the texture of the skin and the appearance of thigh stripes before 
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confirming this identification using the anal tubercles.   The skin of A. c. crepitans was 

distinctly rugose, which probably contributed to the waxy quality of its dorsal coloration. The 

skin of A. g. gryllus was much smoother and looked translucent, as though the pigmentation 

was deposited under a layer of unpigmented tissue.  The thigh stripes of A. c. crepitans were 

broader and had a more mottled appearance than A. g. gryllus, as if they had been drawn with 

a charcoal pencil.  The thigh stripes of A. g. gryllus appeared to have been painted with a fine 

watercolor brush.

Ranges of cricket frogs in North Carolina

 The range of A. c. crepitans appears to extend farther east than indicated by maps in 

many field guides such as Conant and Collins (1991), Martof et al. (1980), Bartlett and 

Bartlett (2006), and Dorcas et al. (2007).  The suggestion that A. c. crepitans might penetrate 

the Coastal Plain along rivers (Martof et al., 1980) appears to be valid.  There is concern that 

Coastal Plain A. c. crepitans populations in the Carolinas are isolated and, as a result, at 

greater risk for extirpation (Gray and Brown, 2005, Gray et al., 2005).  In the three coastal 

river systems that I was able to survey thoroughly (Roanoke, Neuse, and Cape Fear), A. c. 

crepitans choruses were easy to find and more or less evenly distributed on or near the major 

rivers.  The few breeding sites more than 2 km from a major river in the upper Coastal Plain 

were all occupied by A. g. gryllus.

 The range of A. g. gryllus in North Carolina appears to be less extensive than field 

guides show, at least in the northern part of the upper (western) Coastal Plain. This area of 

North Carolina has relatively little public or private protected land, which made surveys 
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difficult.  It is possible that A. g. gryllus is common on remote private properties in that area, 

but because the known A. g. gryllus populations in this study usually occurred in either sandy 

pine savannah or bottomland cypress swamp habitats, neither of which is common in the 

northwestern section of North Carolina’s Coastal Plain, it seems unlikely that A. g. gryllus 

currently has any significant presence there.

 Extensive surveying from 2002 onward produced no evidence that Acris of either 

species occur in the extreme northeastern part of the state, east of the Chowan river basin and 

north of the Albemarle Sound.  This area, which includes the Great Dismal Swamp and land 

that was formally a part of it, has been extensively ditched and drained for agriculture.  Little 

appropriate habitat was found for Acris in this area.

Implications for conservation

Species can be more sensitive to environmental change at the edges of their ranges 

than elsewhere (Mehlman, 1997).  The two subspecies of A. crepitans are in severe decline at  

the northern edges of their ranges in the upper Midwest and Northeast and though the precise 

causes of this decline are not established, several anthropogenic changes may be responsible 

(see Lannoo, 2005, for several discussions of decline in A. crepitans).  Acris gryllus appears 

to be in local decline in several southern areas of its range, possibly because of increased 

pine silviculture (Jensen, 2005).  The Coastal Plain of North Carolina contains vast pine 

plantations and edges of the ranges for both A. crepitans and A. gryllus.

A. crepitans populations in North Carolina, in the middle of its latitudinal distribution, 

may not be as sensitive to environmental disturbance as elsewhere, and concern for isolation 

16



of A. c. crepitans populations in the Coastal Plain appears to be unwarranted.  The results of 

this survey indicate that A. c. crepitans is fairly common in the Coastal Plain.

In contrast, A. g. gryllus is less common than initially expected.  The status of A. 

gryllus in North Carolina, near the northern limit of its range, is probably obscured by 

difficulties in separating it from A. crepitans.  A reevaluation of Coastal Plain specimens 

based on webbing and anal tubercles could establish the historical range of A. g. gryllus in 

North Carolina.  A recently introduced statewide anuran monitoring program (the North 

Carolina Calling Amphibian Survey Project) might define the current range of Acris, 

provided volunteers can accurately identify the two species acoustically.  In combination, 

these efforts could determine the recent stability of A. gryllus in North Carolina.  Although A. 

g. gryllus, like A. c. crepitans has an extensive range, regional concern for the species is 

warranted.

 The two species of Acris in North Carolina can be identified by acoustic and 

morphological features and have overlapping ranges that include shared breeding sites.  

These conditions make these sibling species a suitable subject for studies of behavioral 

ecology in sympatry and allopatry.  Preserved specimens can be accurately identified by the 

extent of hind-foot webbing and the diameter of anal tubercles, but the size and variability of 

these features makes field identification of live frogs difficult.  Other morphological features 

that do not preserve well might be more useful for identification of silent frogs in the field, 

but acoustic identification of breeding frogs is the most accurate way to separate these frogs.  
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The ranges of the two species in the Coastal Plain of North Carolina are different from 

published reports and the conservation status of A. g. gryllus should be monitored carefully.
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Table 1.1.  Click measurements by site and click type.

CN (1) MM (1) MF (1) total (1) CN (2) MM (2) PB (2) total (2)

Click Duration (ms) Mean 0.1479 0.1552 0.1658 0.1587 0.0429 0.0449 0.027 0.0355
SD 0.0807 0.0104 0.0484 0.0483 0.0135 0.0027 0.0035 0.0109
Min 0.0922 0.1436 0.1126 0.0922 0.0348 0.0419 0.0203 0.0203
Max 0.2405 0.1637 0.2339 0.2405 0.0585 0.0472 0.0296 0.0585

Pulses (N) Mean 5.28 4.79 5.9 5.47 11.16 12.38 8.79 10.28
SD 1.38 1.06 0.79 1.03 1.18 2.89 1.58 2.35
Min 4.33 3.86 5.11 3.86 9.95 10.09 6.17 6.17
Max 6.86 5.94 7.06 7.06 12.3 15.63 10.43 15.63

Interpulse Interval (ms) Mean 0.0147 0.0181 0.0153 0.0159 0.0021 0.002 0.0017 0.0019
SD 0.0041 0.0027 0.0039 0.0036 0.0005 0.0004 0.0002 0.0003
Min 0.0116 0.0151 0.0111 0.0111 0.0017 0.0016 0.0015 0.0015
Max 0.0193 0.0202 0.0209 0.0209 0.0026 0.0022 0.0019 0.0026

N Bouts 3 3 6 12 3 3 6 12
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Table 1.2a.  Means and standard deviations of click duration by site and click type

Site (click type) N Mean Standard 
Deviation

Standard 
Error Mean

Lower 95% Upper 95%

CN (1) 3 0.14794 0.080702 0.04659 -0.0525 0.34842

MM (1) 3 0.155151 0.010394 0.006 0.1293 0.18097

MF (1) 6 0.16583 0.048353 0.01974 0.1151 0.21657

CN (2) 3 0.042934 0.013495 0.00779 0.0094 0.07646

MM (2) 3 0.044936 0.002713 0.00157 0.0382 0.05168

PB (2) 6 0.027006 0.003463 0.00141 0.0234 0.03064
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Table 1.2b.  Means and standard deviations of total pulses per click by site and click type

Site (click type) N Mean Standard 
Deviation

Standard 
Error Mean

Lower 95% Upper 95%

CN (1) 3 5.2798 1.37611 0.7945 1.8613 8.698

MM (1) 3 4.7906 1.05634 0.6099 2.1665 7.415

MF (1) 6 5.8972 0.78854 0.3219 5.0697 6.725

CN (2) 3 11.1648 1.17656 0.6793 8.242 14.087

MM (2) 3 12.3782 2.88862 1.6677 5.2025 19.554

PB (2) 6 8.7894 1.57693 0.6438 7.1345 10.444
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Table 1.2c.  Means and standard deviations of inter-pulse interval by site and click type

Site (click type) N Mean Standard 
Deviation

Standard 
Error Mean

Lower 95% Upper 95%

CN (1) 3 0.014657 0.004062 0.00235 0.00457 0.02475

MM (1) 3 0.018114 0.002665 0.00154 0.01149 0.02473

MF (1) 6 0.015321 0.003926 0.0016 0.0112 0.01944

CN (2) 3 0.002064 0.000475 0.00027 0.00088 0.00325

MM (2) 3 0.002029 0.000373 0.00022 0.0011 0.00296

PB (2) 6 0.00168 0.000154 0 0.00152 0.00184
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Table 1.2d.  Means and standard deviations of the first principal component of click features 
by site and click type

Site (click type) N Mean
Standard 
Deviation

Standard 
Error Mean Lower 95% Upper 95%

CN (1) 3 1.338 0.747265 0.43143 -0.518 3.194

MM (1) 3 1.7635 0.328772 0.18982 0.947 2.58

MF (1) 6 1.43 0.659745 0.26934 0.738 2.122

CN (2) 3 -1.5674 0.127317 0.07351 -1.884 -1.251

MM (2) 3 -1.7655 0.523273 0.30211 -3.065 -0.466

PB (2) 6 -1.3144 0.260549 0.10637 -1.588 -1.041
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Table 1.3.  Logistic regressions of morphological features.  Asterisks after P values indicate 
models with a significant difference between the species in the feature.

Morphological feature Model type A. c. crepitans 
mean (SD)

A. g. gryllus 
mean (SD)

R2 P value

snout-vent length (SVL) overall 21.62 (1.09) 21.05 (1.1) 0.05 0.0009*
allotopy 21.84 (1.04) 21.01 (1.2) 0.1 0.0001*
syntopy 21.02 (0.94) 21.15 (0.91) 0 0.60

leg length/SVL overall 0.98 (0.04) 1.01 (0.04) 0.06 0.0002*
allotopy 0.98 (0.04) 1.01 (0.05) 0.05 0.0053*
syntopy 0.97 (0.04) 1.01 (0.04) 0.13 0.0023*

upper thigh stripe/thigh length overall 0.81 (0.06) 0.86 (0.05) 0.13 <0.0001*
allotopy 0.8 (0.06) 0.86 (0.05) 0.16 <0.0001*
syntopy 0.81 (0.06) 0.85 (0.05) 0.08 0.0213*

lower thigh stripe/thigh length overall 0.70 (0.13) 0.69 (0.14) 0 0.81
allotopy 0.66 (0.12) 0.70 (0.16) 0.01 0.173
syntopy 0.80 (0.11) 0.68 (0.11) 0.19 0.0003*

lower/upper thigh stripe length overall 0.87 (0.16) 0.8 (0.16) 0.03 0.0115*
allotopy 0.83 (0.14) 0.81 (0.18) 0 0.47
syntopy 0.98 (0.13) 0.80 (0.12) 0.33 <0.0001*

upper thigh stripe difference overall 0.95 (0.37) 0.66 (0.29) 0.13 <0.0001*
allotopy 0.96 (0.39) 0.63 (0.29) 0.18 <0.0001*
syntopy 0.84 (0.29) 0.70 (0.3) 0.04 0.0945

lower thigh stripe difference overall 1.12 (0.36) 0.82 (0.24) 0.14 <0.0001*
allotopy 1.13 (0.35) 0.79 (0.22) 0.2 <0.0001*
syntopy 1.06 (0.38) 0.87 (0.28) 0.06 0.0437*

anal tubercle size overall 0.59 (0.22) 0.12 (0.17) 0.54 <0.0001*
allotopy 0.60 (0.23) 0.15 (0.18) 0.5 <0.0001*
syntopy 0.53 (0.17) 0.08 (0.16) 0.61 <0.0001*

4th toe webbing (3rd toe side) overall 2.02 (0.14) 2.7 (0.28) 0.72 <0.0001*
allotopy 2.02 (0.16) 2.72 (0.32) 0.64 <0.0001*
syntopy 2.00 (0) 2.65 (0.23) 1 <0.0001*

4th toe webbing (5th toe side) overall 2.39 (0.33) 2.99 (0.06) 0.57 <0.0001*
allotopy 2.42 (0.34) 2.96 (0.18) 0.47 <0.0001*
syntopy 2.31 (0.29) 3.00 (0) 0.89 <0.0001*

1st toe webbing overall 1.01 (0.09) 1.39 (0.3) 0.42 <0.0001*
allotopy 0.96 (0.23) 1.39 (0.33) 0.42 <0.0001*
syntopy 1.02 (0.1) 1.38 (0.27) 0.41 <0.0001*
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Table 1.4.  Analyses of variance of morphological features.  Asterisks after P values indicate 
levels of analysis with a significant difference between the species in the feature.

Morphological feature Analysis level R2 adjusted R2 DF F ratio P value

snout-vent length (SVL) whole model 0.42 0.31 171 3.82 <0.0001*

Species 1 18.13 <0.0001*

Site [Species] 26 3.37 <0.0001*

leg length/SVL whole model 0.45 0.34 171 4.33 <0.0001*

Species 1 18.67 <0.0001*

Site [Species] 26 3.70 <0.0001*

upper thigh stripe/thigh length whole model 0.37 0.25 171 3.15 <0.0001*

Species 1 37.27 <0.0001*

Site [Species] 26 1.87 0.0111*

lower thigh stripe/thigh length whole model 0.34 0.21 171 2.71 <0.0001*

Species 1 0.44 0.5091

Site [Species] 26 2.81 <0.0001*

lower/upper thigh stripe length whole model 0.37 0.26 171 3.19 <0.0001*

Species 1 3.82 0.0527

Site [Species] 26 2.98 <0.0001*

upper thigh stripe difference whole model 0.31 0.18 171 2.35 0.0007*

Species 1 31.51 <0.0001*

Site [Species] 26 1.27 0.1866

lower thigh stripe difference whole model 0.3 0.16 171 2.24 0.0013*

Species 1 29.94 0.0001*

Site [Species] 26 1.05 0.42

anal tubercle size whole model 0.73 0.68 171 14.41 <0.0001*

Species 1 239.44 <0.0001*

Site [Species] 26 3.89 <0.0001*

4th toe webbing (3rd toe side) whole model 0.8 0.76 170 21.46 <0.0001*

Species 1 438.30 <0.0001*

Site [Species] 26 2.43 0.0005*

4th toe webbing (5th toe side) whole model 0.69 0.63 165 11.87 <0.0001*

Species 1 193.17 <0.0001*

Site [Species] 25 2.93 <0.0001*

1st toe webbing whole model 0.69 0.63 169 11.76 <0.0001*

Species 1 160.99 <0.0001*

Site [Species] 26 5.33 <0.0001*
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Table 1.5.  Assessment of total variance (REML method) in morphological features.  
Variations in anal tubercle size and toe webbing were strongly associated with species.

Morphological feature Analysis level R2 Variance component % of total variance

snout-vent length (SVL) Species 0.38 0.19092 13.68

Site[Species] 0.34837 24.97

Residual 0.85592 61.35

leg length/SVL Species 0.42 0.00028 12.44

Site[Species] 0.00068 29.65

Residual 0.00132 57.90

upper thigh stripe/thigh length Species 0.31 0.00161 30.45

Site[Species] 0.00049 9.16

Residual 0.0032 60.39

lower thigh stripe/thigh length Species 0.29 -0.00036 0.00

Site[Species] 0.00386 21.22

Residual 0.01432 78.78

lower/upper thigh stripe length Species 0.33 0.00044 1.78

Site[Species] 0.00595 24.04

Residual 0.01836 74.18

upper thigh stripe difference Species 0.21 0.04571 27.83

Site[Species] 0.00548 3.34

Residual 0.11305 68.83

lower thigh stripe difference Species 0.18 0.04239 28.95

Site[Species] 0.00095 0.65

Residual 0.10308 70.40

anal tubercle size Species 0.72 0.10216 69.87

Site[Species] 0.01521 10.40

Residual 0.02883 19.72

4th toe webbing (3rd toe side) Species 0.79 0.22775 83.70

Site[Species] 0.0094 3.45

Residual 0.03495 12.84

4th toe webbing (5th toe side) Species 0.67 0.16973 68.39

Site[Species] 0.02095 8.44

Residual 0.05752 23.17

1st toe webbing Species 0.68 0.08895 56.43

Site[Species] 0.03156 20.02

Residual 0.03711 23.54

26



Table 1.6.  Analysis of variance of the first principal component of morphological features by 
species.

R2 0.82

DF (Species) 1

DF (Error) 161

F ratio 742.45

Prob > F <.0001

N Mean Std Error

A. c. crepitans 101 -1.1827 0.07038

A. g. gryllus 62 1.9267 0.08982
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Figure 1.1.  Acris survey sites in North Carolina
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Figure 1.2.  Representative clicks of Acris c. crepitans and A. g. gryllus in North Carolina
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Figure 1.3a.  Click duration by site and click type.  Each point represents a bout.  Central bars 
indicate the mean and standard errors. Outer bars indicate standard deviations.
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Figure 1.3b.  Total pulses per click by site and click type.  Each point represents a bout.  
Central bars indicate the mean and standard errors. Outer bars indicate standard deviations.
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Figure 1.3c.  Inter-pulse interval by site and click type.  Each point represents a bout.  Central 
bars indicate the mean and standard errors. Outer bars indicate standard deviations.

0

0.005

0.01

0.015

0.02

In
te

r-
p
u
ls

e
 I
n
te

rv
a
l 
(s

)

CN (1) MM (1) MF (1) CN (2) MM (2) PB (2)

Site (Click Type)

32



Figure 1.3d.  First principal component of click features by site and click type.  Each point 
represents a bout.  Central bars indicate the mean and standard errors. Outer bars indicate 
standard deviations.
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Figure 1.4.  First principal component of morphological features by species.  Each point 
represents a frog.  Central bars indicate the mean and standard errors. Outer bars indicate 
standard deviations.
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Chapter 2

Acoustic variation among breeding sites and the influences of temperature and mass in the 

Eastern Cricket Frog, Acris crepitans crepitans

Abstract

 Reproductive character displacement occurs when selection for recognition of 

conspecifics produces greater differences in systems for mate recognition in an area where 

two species are in contact than in areas where they are not.  Detection of reproductive 

character displacement is complicated by the effects of temperature and body size on mating 

signals and the geographic scale at which populations are studied.  I assessed variation in 

vocalizations of A. c. crepitans, the Eastern Cricket Frog, at a geographic scale appropriate 

for reproductive character displacement in order to determine the effects of temperature and 

body size.  Among 27 sites in the Coastal Plain and Piedmont of North Carolina, the 

dominant frequency and click rate of vocalizations of A. c. crepitans varied substantially.  

Most of this variation was correlated with differences in mass, not temperature.  Additional 

differences that were not explained by mass or temperature existed among sites.  Possible 

explanations for this additional variation include differences among sites in the level of male 

competition or reproductive character displacement in response to sympatry or syntopy with 

A. g. gryllus.



Introduction

Mate recognition systems, both the signals produced and the sensory mechanisms that 

receive them, often diverge and result in pre-mating reproductive isolation between related 

species (Coyne and Orr, 2004).  Because selection for accurate mate recognition is greatest 

where two species occur together, mate recognition systems can differ more in sympatry than 

in allopatry, a situation called reproductive character displacement (Brown and Wilson, 

1956).

Divergence of mating signals or sensory reception in sympatry can have other 

explanations besides selection for accurate mate recognition.  Allopatric environmental 

selection on mate recognition systems or on morphological traits that influence signaling or 

reception, as well as genetic drift, can also cause divergence.  Therefore, identifying 

character displacement in natural populations is difficult, and it is particularly important to 

assess spatial variation precisely (Goldberg and Lande, 2006).  Of particular concern are 

environmental clines that can produce differences in sympatry that resemble differences 

resulting from character displacement, or alternatively, produce great differences in allopatry 

that mask slight differences in sympatry that result from character displacement (Goldberg 

and Lande, 2006).  Signals can diverge as a result of geographic gradients in environmental 

conditions that directly affect signals, such as temperature (Gerhardt, 1978), or that indirectly 

affect signals by influencing morphological traits like body size (Ryan et al., 1990; Hobel and 

Gerhardt, 2003).  Detection of reproductive character displacement is thus dependent on 

concurrent assessment of other biotic and abiotic factors that may influence mate recognition 

systems.  Another important consideration that receives less attention in character 
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displacement studies is the scale of geographic assessment of sympatry between species with 

continuous (non-disjunct) ranges.  Rivas (1964) distinguished between overlap between 

species in geographic distribution (sympatry) and in macrohabitat (syntopy); the latter occurs 

at a smaller scale at which the species could possibly interbreed.  Many studies assess 

reproductive character displacement on large scales, familiar from range maps, which are 

often too coarse to indicate the actual chances of individual interactions.  Detection of 

reproductive character displacement would be improved by comparing mate recognition 

systems in syntopy and allotopy.

 The acoustic communication system of cricket frogs, Acris, has been thoroughly 

studied in the midwestern United States, where two subspecies, A. c. crepitans and A. c. 

blanchardi, have parapatric (adjoining but non-overlapping) ranges.  Advertisement calls 

differ among populations and subspecies (Ryan et al., 1990).  The dominant frequency of 

male vocalizations (Ryan and Wilczynski, 1991) and the frequency response of the ear 

(Wilczynski, et al., 1992) change gradually in a cline across the line of contact.  Divergence 

in mate recognition systems in these populations could result from allopatric selection on 

vocalizations for increased transmission in different habitats, rather than indirectly from 

selection on body size or directly from reinforcement in sympatry (Nevo and Capranica, 

1985; Ryan and Wilczynski, 1988; Ryan et al., 1990; Sun et al., 2000; Witte et al., 2005).  

Studies of reproductive character displacement in these western Acris are limited because the 

subspecies do not overlap sufficiently to allow comparisons of populations in sympatry and 

allopatry.  In their study of acoustic variation in A. crepitans on a continental scale, Nevo and 

Capranica (1985) compared this species with the other species of cricket frog, A. gryllus, 
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which overlaps A. c. crepitans in the southeastern United States (Conant and Collins, 1991).  

In A. crepitans, body size, environmental factors including temperature, and geographic 

distance all correlated with temporal and spectral features of vocalizations.  They concluded 

that divergence in the mate recognition systems of different populations of the two species 

resulted from allopatric selection rather than selection in sympatry against heterospecific 

mating.  However, the study compared geographic variation on a scale far too coarse to 

assess reproductive character displacement. Indeed, their study included only one syntopic 

site.  Reproductive character displacement between A. crepitans and A. gryllus might have 

been obscured by large ecological differences among sites.  In North Carolina, allotopic and 

syntopic breeding choruses of A. crepitans and A. gryllus are separated only a few kilometers 

(Chapter 1).

 Chapter 1 describes the extent of sympatry between Acris crepitans crepitans, the 

Eastern Cricket Frog, and Acris gryllus gryllus, the Coastal Plain Cricket Frog, in North 

Carolina and identifies syntopy at breeding sites in the upper Coastal Plain.  In this study, I 

assess geographic variation in the dominant frequency and rate of vocalizations of A. c. 

crepitans in relationship to temperature and body size.  Chapter 3 discusses variation in these 

features in A. g. gryllus and compares populations of the two species in allopatry, sympatry, 

and syntopy to determine whether reproductive character displacement contributes to 

acoustic divergence between species of Acris.
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Methods

Field survey

 I recorded A. c. crepitans at 27 sites in the Piedmont and Coastal Plain of North 

Carolina in 2004, 2005, and 2007 (Figure 2.1).  At all but two sites, I collected and preserved 

frogs after recording them.  Recording took place from 4 May to 21 July 2004 (13 sites), 8 

May to 24 July 2005 (14 sites including 2 from 2004), and 3-4 June and 15 July 2007 (2 

sites).  Three sites were in the western Piedmont, 12 sites were in the eastern Piedmont 

(including 4 sites just west of the Fall Zone), and 12 sites were in the upper and lower 

Coastal Plain.  At each site were 1-5 permanent bodies of freshwater with choruses of cricket 

frogs.  At each chorus, I recorded 6-10 frogs for 10 bouts each.  I reduced the number of 

frogs collected when the chorus was too small to remain active otherwise.  Recording began 

at or after 2100 hours and ended when a chorus waned (between 0100 and 0300 hours) or I 

had a complete sample.  I used a Marantz PMD-221 or PMD-421 portable tape recorder 

(2004) or PMD-670 digital recorder (2005 and 2007) and an Audio-Technica 815a 

microphone to record each male.  Immediately after recording, I photographed the male and 

any females and satellite males in obvious association with it with a Canon Powershot A80 

4.1 MP digital camera.  After capturing the male, I measured the surface temperature at its 

calling site with a Miller and Weber T-6000 fast-read cloacal thermometer.  Within 12-36 

hours after collection, I weighed each frog, euthanized it in a chlorotone solution, preserved a 

forefoot in a dimethyl sulfoxide and salt solution for genetic analysis, and fixed the frog for 

morphological study and deposition in the collection of the North Carolina Museum of 

Natural Sciences, Raleigh, North Carolina.
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Acoustic analysis

 Cricket frog sounds have complex temporal structure in which smaller components 

are repeated to produce larger patterns at several levels (see Figure 1.2 of the previous 

chapter).  Wagner’s (1989c) terminology for these components was based on terms from 

Nevo and Capranica (1985).  I have modified Wagner’s terminology to refer unambiguously 

to the structure of cricket frog vocalizations in North Carolina.  The terms are pulse, pulse 

group, click, click group, bout, and episode, and they refer to temporal patterns of increasing 

duration.  Pulses are typically less than 10 ms long.  One or more pulses in succession 

constitute a pulse group.  One or several pulse groups are a click 25-125 ms long (Ryan et al., 

1995), the shortest component of easily resolvable by the human ear.  A bout is one or more 

click groups lasting a few seconds to over a minute.  An episode is the production of bouts 

over several minutes, preceded and succeeded by several minutes of silence.  A male has 

many episodes in a night of calling.  The vocalizations of A. crepitans and A. gryllus have 

different pulse patterns (Nevo and Capranica, 1985) that I used for species identification 

(Chapter 1).  This study focuses on clicks and bouts, the two most prominent temporal 

patterns in Acris vocalizations.

 I used WildSpectra (version 060125; Wiley, 2007) to digitize cassette recordings at a 

sampling rate of 22.05 kHz (2004) and to import WAV files recorded at 22.05 kHz (2005 and 

2007).  For this study, I included 275 male A. c. crepitans, identified by pulse pattern, from 

the 27 sites.  I selected 5 bouts from each male with a random number generator (Haahr, 

2007) unless < 5 bouts were available for analysis (1365 total bouts, 4.96 bouts per 

individual).  Previous studies of A. crepitans sounds (Nevo and Capranica, 1985; Wagner, 
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1989a, 1989b, 1989c; Burmeister et al., 1999; Burmeister et al., 2002) have measured a 

sample of clicks from the beginning, middle, and end of each bout in order to assess variation 

within bouts.  By using the SongSignatures procedure in WildSpectra, I could measure every 

click in a bout, use the data to calculate means for each bout overall, and retain data for 

future analysis of within-bout variation.  The SongSignatures procedure visually indicates 

each note identified and produces a text file with spectral and temporal information for each 

note and for the entire selection.  With this procedure, I measured the duration of each bout, 

the dominant frequency of each click in the bout, and the interval between each click.  I then 

calculated the click rate, mean dominant frequency and mean interval between clicks for each 

bout.  To confirm the accuracy of the measurements made by SongSignatures, I manually 

measured the duration and overall dominant frequency of 19 randomly-selected bouts on 

spectrograms with the same resolutions.  In addition, I manually counted the number of 

clicks in each bout before using the SongSignatures procedure.

 I emphasized frequency resolution (21 Hz) at the expense of temporal resolution 

(46.43 milliseconds) by using a sampling rate of 11.025 Khz and a transform size of 1024.  

This temporal resolution was sufficient for detecting temporal variation in bouts.  

SongSignatures recognizes each “note” in a selected portion of a spectrogram with user-

defined starting and ending thresholds of the power spectrum.  For each bout, I adjusted the 

amplitude thresholds to optimize detection of clicks.  Perfect detection of clicks occurred 

when all clicks in the bout were recognized as distinct notes.  This was difficult for some A. 

crepitans bouts because the high click rates and multiple pulse groups within each click 

caused Song Signatures to mistakenly identify and assess multiple clicks as one note.  For 
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these bouts, I lowered the starting amplitude threshold and used WildSpectra’s Exclude 

Selection procedure to remove background noise between some clicks, particularly in the last 

third of the bout.  With these adjustments, I could obtain perfect detection of clicks.

 Previous studies of Acris (Nevo and Capranica, 1985; Wagner, 1989c; Ryan and 

Wilczynski, 1991) have used linear regression to adjust acoustic features for the effects of 

temperature.  For studies with large samples and wide ranges of temperature such as Wagner 

(1989c), linear regression for each site can accurately describe temperature-dependent 

variation.  For studies with small sample sizes and narrow temperature ranges at each site, 

such as Nevo and Capranica (1985) or the present study, it is less satisfactory.  Furthermore, 

regressions on temperature can obscure the influence of other factors on properties of 

vocalizations.  For instance, body size has an important influence on acoustic features in A. 

crepitans (Ryan and Wilczynski, 1988; McClelland, et al., 1996), and calling site temperature 

and body size of Acris can change over the long breeding season.  Therefore, rather than 

control for relationships that are more complex than a linear regression can describe, I used a 

statistical approach to assess the relative influences of multiple factors, including temperature 

and mass, without a priori adjustment for any of them.

 Analyses of variance (ANOVA) of 5 measurements of bouts (mean dominant 

frequency, total duration, total clicks, click rate, and mean interval between clicks) and linear 

regressions of dominant frequency and click rate with temperature and mass were computed 

with JMP 6.03 (SAS Institute, 2006).  To include differences in temperature, body size, and 

time in the breeding season, I relied on nested ANOVA to assess the importance of all of 

these factors on click rate and dominant frequency.  These analyses of variance were 
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computed in two ways: either with individual frogs as the most nested factor or with 

individual’s mass and temperature as continuous covariates.  Because conditions changed 

over the breeding season and I visited most sites only once, I nested sites within months and 

then individual (or temperature and mass covariates) within sites to compare sites within 

months.  I calculated the variance components for random effects with the restricted 

maximum likelihood method (REML, Quinn and Keough, 2002; SAS Institute, 2006).  From 

the results of these tests, I could determine the statistical significance of the overall model, as 

well as the contributions of each variance component to the total variance in each acoustic 

feature.

 To illustrate the effects of mass and temperature on vocalizations, I calculated linear 

regressions of dominant frequency and mean click rate by temperature and mass using 

pooled data from the entire survey.  I used the regression equations for temperature to adjust 

dominant frequency and click rate to a mean temperature of 22.5° to compare site differences 

with the effect of temperature removed.

Results

 There was significant variation within months as well as among months, sites, and 

individuals for all acoustic features measured (Table 2.1).  Mass and temperature at calling 

sites also varied significantly among months and sites.  Intervals between clicks, numbers of 

clicks, and durations of bouts are interrelated temporal features contributing to click rate.  

Nested ANOVAs for these variables had only slightly lower coefficients of determination 

(R2) than click rate itself, so I do not present further analyses of these features.  Differences 
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among sites in click rate and dominant frequency (Table 2.2a and 2.2b; Figure 2.2a and 2.2b) 

are likely to have been partly determined by differences in mass and temperature (Table 2.2c 

and 2.2d; Figure 2.2c and 2.2d), which in turn might have resulted from recording in different 

months.  Temperature at calling sites increased significantly (nested ANOVA, d.f. = 2, p < 

0.0001) from May (20.3°) to June (23.0°) to July (25.9°), was significantly different among 

sites in each month (nested ANOVA, d.f. = 28, p < 0.0001), and was particularly variable 

among sites in May (12.2-24.3°).  Mean body mass also changed significantly (nested 

ANOVA, d.f. = 2, p = 0.0004) from May (1.06) to June (1.13) to July (1.01) and varied 

among sites in each month (nested ANOVA, d.f. = 26, p < 0.0001; May, 0.85-1.26 g; June, 

0.92-1.28 g; July, 0.80-1.22 g)

 To estimate variance components, I used nested analyses of variance with random 

effects for dominant frequency and click rate (Table 2.3a and 2.3b).  For both acoustic 

features, higher R2 occurred in analyses with individual as the terminal effect (Table 2.3a), 

rather than with temperature and mass as covariates (Table 2.3b).  Because each individual 

has a single measurement of mass and temperature, the greater R2 presumably results from 

additional variation among males not related to differences in mass and temperature.  The 

largest percentage of the total variance was attributed to mass in analyses of dominant 

frequency (85.2%) and click rate (55.0%).  Temperature and month contributed little to the 

total variance.  Differences among sites contributed more to total variation (dominant 

frequency, 8.4%; click rate, 15.0%) than did temperature differences (dominant frequency, 

0.7%; click rate, 2.3%).  Residual differences contributed more to variation in click rate 
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(27.7%) than any factors other than mass.  Month had inconsequential effects on either 

acoustic feature (dominant frequency, 1.9%; click rate, 0.0%).

 In the linear regressions (Table 2.4 and Figure 2.3a to 2.3d), there were substantial 

positive relationships between the temperature at a calling site and click rate (Figure 2.3a; 

adjusted R2 = 0.32, d.f. = 1365, p < 0.0001) and dominant frequency (Figure 2.3b; ANOVA: 

adjusted R2 = 0.32, d.f. = 1365, p < 0.0001) and and significant negative relationships 

between mass and click rate (Figure 2.3c; adjusted R2 = 0.05, d.f. = 1282, p < 0.0001) and 

dominant frequency (Figure 2.3d; adjusted R2 = 0.34, d.f. = 1282, p < 0.0001).  Mean click 

rate and dominant frequency at each site are shown adjusted to the study’s mean temperature 

of 22.5° C in Table 2.5a and 2.5b and Figure 2.4a and 2.4b.

Discussion

Acoustic variation in North Carolina

 Statistically significant differences occurred in the dominant frequency and click rate 

of A. c. crepitans vocalizations at 27 sites separated by a maximum of 530 km in the Coastal 

Plain and Piedmont of North Carolina (Table 2.1 to 2.2b; Figure 2.2a and 2.2b).  The range of 

mean dominant frequency among sites in North Carolina (3428-4132 Hz; 3542-4031 Hz after 

temperature correction to 22.5°) was not as large as Nevo and Capranica (1985) noted 

throughout the range of A. crepitans in eastern North America (2995-4484 Hz, 3164-4254 Hz 

after correction to 22.79°) but was equivalent to the range among their 5 southeastern sites 

for A. c. crepitans from eastern Texas to eastern Georgia (3972-4485 Hz; 3749-4254 Hz after 

correction to 22.79°).  The range of click rates within North Carolina (1.9-5.1 clicks/s; 
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2.9-4.9 clicks/s after temperature correction to 22.5°) was almost as large as they found 

throughout North America (2.3-5.7 clicks/s; 2.8-5.4 clicks/s after temperature correction to 

22.79°) and larger than they observed among their southeastern sites for A. c. crepitans 

(3.5-5.4 clicks/s; 3.8-4.6 clicks/s after temperature correction to 22.79°).  Ryan and and 

Wilczynski (1991) conducted a study of acoustic variation in A. c. crepitans and A. c. 

blanchardi in which 16 of 17 sites were located along a 500 km longitudinal transect in the 

eastern half of Texas.   Among these sites, temperature-adjusted mean dominant frequency 

ranged from 3520 to 3990 Hz and varied in a longitudinal cline with lower dominant 

frequencies in the A. c. blanchardi populations to the west and higher dominant frequencies 

in the A. c. crepitans populations to the east.  Among the 6 A. c. crepitans populations, mean 

dominant frequency again ranged from 3520 to 3990 Hz and click rate ranged from 4.03 to 

6.25 clicks/s.  Because of the variance in each population in Texas and North Carolina, A. 

crepitans in the two states have equivalent highest and lowest mean dominant frequencies 

and click rates across a similar geographic scale of 500 km.  Therefore, dominant frequency 

and click rate among A. c. crepitans populations vary as extensively in North Carolina as 

throughout the Southeast or in Texas.

 Differences in mass (Table 2.2c and Figure 2.2c) accounted for most of the acoustic 

variation in A. c. crepitans within breeding choruses (Table 2.3b) in North Carolina.  

Temperature at calling site varied widely (Table 2.2d and Figure 2.2d), undoubtedly resulting 

from the long breeding season and variety of habitats (from small rivers to large lakes) of A. 

c. crepitans.  Temperature was significantly correlated with dominant frequency and click 

rate, but had only a slight effect in comparison with mass (Table 2.3b).  After adjusting 
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dominant frequency and click rate to a mean temperature (Table 2.5a and 2.5b; Figure 2.4a 

and 2.4b), differences between adjacent sites within river systems usually remained.  

Therefore, differences in temperature between individuals and sites in a study of this scale 

did not greatly affect variation in vocalizations.

 The seasonal changes in mass reflected the mean age or condition of males.  In May, 

calling males were likely to be individuals which had over-wintered from the previous year.  

The slight increase in mass by June could have resulted from smaller males with lower 

energetic reserves abandoning calling activity after a few weeks or, because of a seasonal 

increase in prey availability, an increase in the mass of most males.  The large decrease in 

mean mass in July probably resulted from the sudden addition of small, newly-

metamorphosed males to the chorus.  Despite the seasonal shift in body size, differences in 

mean mass were greater among sites in the same month than within months.  Consequently, 

seasonality accounts for little of the differences in vocalizations among sites while non-

seasonal differences in mass contribute substantially to vocal variation among sites.  

Variation among sites was determined mostly by differences in mass.

 A. c. blanchardi facultatively decrease dominant frequency (Wagner, 1989a, 1992; 

Burmeister et al., 1999) and click rate of calls (Wagner, 1989b, 1989c) in response to a 

perceived increase in proximity of neighboring males (and increased competition as a result).  

Such facultative shifts in behavior might explain the differences between individuals and 

sites not explained by mass and temperature in the present study.  The number and density of 

males and the intensity of calling varied substantially among sites.  Many sites, most notably 

Merchants Millpond State Park (MeMi), contained large, high-density choruses in which 
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competition was undoubtedly high for physical position, acoustic space, and access to 

females.  Facultative shifts in calling behavior would be expected in these circumstances.  At 

a few sites, particularly Hanging Rock State Park (HaRo) and Hares Millpond (HARE), the 

few frogs in a chorus were widely separated so competition was probably low.  The 

remaining choruses, though not large in extent or numbers, had males in close proximity to 

one another.  If competition at the majority of sites was similar, interactions among males 

would not explain the additional variation among sites in dominant frequency and click rate.  

Among other possible differences between populations that might produce differences in 

vocalizations is overlap with a closely related species.

Geographic scale in studies of acoustic variation

 Reproductive character displacement is a possible explanation for acoustic divergence 

only in areas where the species or subspecies in question could have interacted 

reproductively with a related species.  At larger scales, the effects of reproductive character 

displacement could be masked by environmental gradients (Goldberg and Lande, 2006).  

Because of these limitations, studies of reproductive character displacement must assess 

variation at a small geographic scale.  Comparison should be made among populations with 

enough spatial separation that they differ in their interaction with a related species but are not 

so spatially removed that large environmental differences also occur among sites.  Syntopy, 

in which individuals of two species co-occur at a locality and could possibly interbreed 

(Rivas, 1964), rather than sympatry, as indicated by a general overlap in the ranges of two 

species, is more biologically relevant for reproductive character displacement.
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 Nevo and Capranica (1985) conducted a continental study of widely separated 

populations and included only one syntopic site (between A. crepitans and A. gryllus in 

Alabama).  They concluded that environmental selection in allopatry, not reproductive 

character displacement, accounted for acoustic divergence in Acris.  However, their scale of 

assessment was probably too large to test reproductive character displacement as an influence 

on divergence between A. crepitans and A. gryllus.  Not only could environmental selection 

have masked reproductive character displacement, but reproductive character displacement 

would probably have occurred at much smaller scale than they examined.  In North Carolina, 

A. c. crepitans and A. g. gryllus occur in syntopy at few sites within a large area of sympatry 

(Chapter 1).  Allotopic sites of one or the other species were only a few kilometers away.  

Reproductive character displacement in Acris could plausibly occur at syntopic sites relative 

to allotopic sites at this scale.

   Ryan and Wilczynski (1991) intended to address acoustic divergence between A. c. 

crepitans and A. c. blanchardi at a geographic scale that included populations that could 

interact reproductively.  Reproductive character displacement and selection on body size 

were rejected as possible explanations for acoustic variation.  While confirming that 

environmental selection in allopatry is an important influence in the divergence of Acris 

vocalizations, the study took place at a scale that, again, was too large to address 

reproductive character displacement as a possible influence.  In their study, populations of A. 

c. crepitans and A. c. blanchardi were parapatric, not sympatric, were separated by at least 50 

km, and occupied different habitats (forest and grassland, respectively), any of which could 

have precluded interactions between individuals of the two taxa.  With no reproductive 
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interaction, reproductive character displacement cannot plausibly occur between subspecies 

of A. c. crepitans and A. c. blanchardi and testing the relative influences of allopatric and 

sympatric selection is impossible.  Sympatry and syntopy between A. crepitans and A. 

gryllus, however, invites assessment of these influences.  Ryan and Wilczynski (1991) 

avoided A. c. crepitans populations that potentially overlapped with A. gryllus because of 

potential reproductive character displacement between species of Acris.  

 This study assessed variation in dominant frequency and click rate in A. c. crepitans 

among many breeding populations, occurring in allopatry, sympatry, allotopy, and syntopy 

with A. g. gryllus, at a scale much smaller than Nevo and Capranica (1985) and equivalent to 

Ryan and Wilczynski (1991).  The variation among populations in dominant frequency and 

click rate in North Carolina was at least as large the variation described by Nevo and 

Capranica (1985) among fewer populations over the entire Southeast and was equivalent to 

variation in an area of Texas where no sympatry occurs with other Acris taxa.  Variation in 

mass accounted for most of the acoustic variation in North Carolina, but some size-

independent variation between sites also occurred (Table 2.3b).

 The dominant frequency and click rate of vocalizations of A. c. crepitans, the Eastern 

Cricket Frog, vary substantially in a small part of its geographic range.  Most of this variation 

can be attributed to differences in mass.  In contrast, the effect of temperature is slight.  There 

are additional differences among sites that are not explained by mass or temperature.  The 

level of competition between males might differ among populations, but it is unlikely to 

account for all of the differences.  There is sufficient size-independent variation in 
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vocalizations of A. c. crepitans in North Carolina to investigate whether sympatry or syntopy 

with A. g. gryllus accounts for any of the variation within A. c crepitans.    Reproductive 

character displacement might account for some of this additional variation, a possibility 

examined in Chapter 3.
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Table 2.1  Nested analyses of variance of acoustic features, temperature, and mass

Feature Summary of fit Source DF F ratio P value

mean dominant R2 0.93 Model 274 49.68 0.000
     frequency (Hz) adjusted R2 0.91 Month 2 807.07 <.0001

Root mean square error 65.90 Site[Month] 28 218.61 0.000
Mean of response 3860.92 Indiv.[Site, Month] 244 23.76 <.0001
Observations 1365 Error 1090

click rate (N/s) R2 0.75 Model 274 11.69 <.0001
adjusted R2 0.68 Month 2 207.19 <.0001
Root mean square error 0.65 Site[Month] 28 44.04 <.0001
Mean of Response 4.02 Indiv.[Site, Month] 200 5.10 <.0001
Observations 1365 Error 1090

mean interclick R2 0.52 Model 274 4.37 <.0001
     interval (s) adjusted R2 0.40 Month 2 45.26 <.0001

Root mean square error 0.09 Site[Month] 28 13.57 <.0001
Mean of Response 0.27 Indiv.[Site, Month] 244 2.99 <.0001
Observations 1365 Error 1090

clicks (N) R2 0.63 Model 274 6.86 <.0001
adjusted R2 0.54 Month 2 25.75 <.0001
Root mean square error 11.86 Site[Month] 28 20.08 <.0001
Mean of Response 35.00 Indiv.[Site, Month] 244 5.11 <.0001
Observations 1365 Error 1090

duration (s) R2 0.62 Model 274 6.62 <.0001
adjusted R2 0.53 Month 2 19.16 <.0001
Root mean square error 3.68 Site[Month] 28 20.01 <.0001
Mean of Response 9.32 Indiv.[Site, Month] 244 5.13 <.0001
Observations 1365 Error 1090

temperature at R2 0.85 Model 30 47.70 <.0001
     calling site (°C) adjusted R2 0.84 Month 2 353.60 <.0001

Root mean square error 1.48 Site[Month] 28 24.79 <.0001
Mean of Response 22.48 Error 244
Observations 275

mass (g) R2 0.44 Model 28 6.37 <.0001
adjusted R2 0.37 Month 2 8.16 0.0004
Root mean square error 0.13 Site[Month] 26 6.06 <.0001
Mean of Response 1.06 Error 229
Observations 258
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Table 2.2a.  Mean click rate of A. c. crepitans at each site.  Sites are grouped by river 
system.  Upstream sites precede downstream sites in each system.

Site N (bouts) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

HARE 13 3.99063 0.5819 0.16139 3.639 4.3423
MeMi 105 3.42242 1.00851 0.09842 3.2272 3.6176
GATE 50 3.90575 0.67228 0.09507 3.7147 4.0968
HaRo 10 2.85223 0.52512 0.16606 2.4766 3.2279
Kerr 45 4.57894 0.7181 0.10705 4.3632 4.7947
ROAN2 30 4.26342 0.78461 0.14325 3.9704 4.5564
ROAN1 45 5.09503 1.02237 0.15241 4.7879 5.4022
CASH 25 4.65047 1.0707 0.21414 4.2085 5.0924
HAL 40 4.49782 0.65753 0.10396 4.2875 4.7081
OcMo 30 4.57753 0.89854 0.16405 4.242 4.9131
EnRi 29 4.34694 0.80949 0.15032 4.039 4.6549
FaLa-RV 40 4.12938 1.02087 0.16141 3.8029 4.4559
FaLa-CC 44 4.47786 0.83063 0.12522 4.2253 4.7304
WBUm 165 4.25805 1.21332 0.09446 4.0715 4.4446
MCB1 50 3.22871 0.71534 0.10116 3.0254 3.432
MCB2 30 1.90413 0.60386 0.11025 1.6786 2.1296
WHP 45 3.50713 0.47837 0.07131 3.3634 3.6508
ClNe-syn 47 3.60478 1.17745 0.17175 3.2591 3.9505
NRFK 50 3.48765 0.9464 0.13384 3.2187 3.7566
MFBR 45 2.65282 0.89389 0.13325 2.3843 2.9214
TLCJ 75 3.50557 0.91826 0.10603 3.2943 3.7168
RaRo 105 4.80112 0.9604 0.09373 4.6153 4.987
GAIN 27 4.97919 1.08381 0.20858 4.5505 5.4079
TAHE 50 4.86466 1.06607 0.15076 4.5617 5.1676
RHOD 30 4.48626 0.82269 0.1502 4.1791 4.7935
LaNo 95 3.96749 1.06624 0.10939 3.7503 4.1847
CrMo 45 3.63942 0.99453 0.14826 3.3406 3.9382
Total 1365 4.01623 1.15947 0.03138 3.9547 4.0778
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Table 2.2b.  Mean dominant frequency of A. c. crepitans at each site.  Sites are 
grouped by river system.  Upstream sites precede downstream sites in each system.

Site N (bouts) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

HARE 13 3681.46 54.522 15.122 3648.5 3714.4
MeMi 105 3948.26 214.223 20.906 3906.8 3989.7
GATE 50 3857.59 161.606 22.855 3811.7 3903.5
HaRo 10 3738.03 68.162 21.555 3689.3 3786.8
Kerr 45 3980.64 108.061 16.109 3948.2 4013.1
ROAN2 30 3752.84 112.333 20.509 3710.9 3794.8
ROAN1 45 4062.62 157.731 23.513 4015.2 4110
CASH 25 3960.19 108.327 21.665 3915.5 4004.9
HAL 40 4011.61 111.683 17.659 3975.9 4047.3
OcMo 30 3845.44 145.247 26.518 3791.2 3899.7
EnRi 29 3734.75 105.843 19.655 3694.5 3775
FaLa-RV 40 3761.58 94.534 14.947 3731.3 3791.8
FaLa-CC 44 3942.16 192.573 29.031 3883.6 4000.7
WBUm 165 3894.83 171.211 13.329 3868.5 3921.1
MCB1 50 3598.67 142.152 20.103 3558.3 3639.1
MCB2 30 3579.27 157.689 28.79 3520.4 3638.2
WHP 45 3644.91 79.527 11.855 3621 3668.8
ClNe-syn 47 3927.27 111.899 16.322 3894.4 3960.1
NRFK 50 3759.73 111.143 15.718 3728.1 3791.3
MFBR 45 3427.5 176.972 26.381 3374.3 3480.7
TLCJ 75 3837.5 140.327 16.204 3805.2 3869.8
RaRo 105 4091.55 132.056 25.414 4080 4184.5
GAIN 27 4132.23 132.056 25.414 4080 4184.5
TAHE 50 3975.67 200.97 28.421 3918.6 4032.8
RHOD 30 3949.68 111.386 20.336 3908.1 3991.3
LaNo 95 3800.96 125.529 12.879 3775.4 3826.5
CrMo 45 3727.38 112.157 16.719 3693.7 3761.1
Total 1365 3860.92 216.335 5.855 3849.4 3872.4
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Table 2.2c.  Mean mass of calling A. c. crepitans males at each site.  Sites are grouped 
by river system.  Upstream sites precede downstream sites in each system.

Site N (males) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

MeMi 21 0.988 0.130 0.028 0.928 1.047
HaRo 2 0.980 0.141 0.100 -0.291 2.251
Kerr 9 1.066 0.136 0.045 0.961 1.170
ROAN2 6 1.222 0.089 0.036 1.128 1.315
ROAN1 9 1.084 0.095 0.032 1.011 1.158
CASH 5 0.924 0.124 0.056 0.770 1.078
HAL 8 0.978 0.161 0.057 0.843 1.112
OcMo 6 0.998 0.079 0.032 0.916 1.081
EnRi 6 1.280 0.115 0.047 1.160 1.400
FaLa-RV 7 1.264 0.142 0.054 1.133 1.396
FaLa-CC 9 1.121 0.186 0.062 0.978 1.264
WBUm 32 1.091 0.180 0.032 1.026 1.156
MCB1 10 1.185 0.084 0.027 1.125 1.245
MCB2 6 1.108 0.119 0.048 0.984 1.233
WHP 9 1.169 0.086 0.029 1.103 1.235
ClNe-syn 10 0.965 0.065 0.021 0.918 1.012
NRFK 10 1.146 0.082 0.026 1.087 1.205
MFBR 9 1.186 0.116 0.039 1.097 1.275
TLCJ 15 1.039 0.142 0.037 0.960 1.117
RaRo 19 0.849 0.152 0.035 0.776 0.922
GAIN 6 0.800 0.074 0.030 0.723 0.877
TAHE 10 0.991 0.147 0.047 0.886 1.096
RHOD 6 0.947 0.085 0.035 0.858 1.035
LaNo 19 1.049 0.132 0.030 0.985 1.113
CrMo 9 1.140 0.110 0.037 1.055 1.225
Total 258 1.056 0.169 0.010 1.035 1.077
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Table 2.2d.  Mean calling site temperature of A. c. crepitans at each site.  Sites are 
grouped by river system.  Upstream sites precede downstream sites in each system.

Site N (males) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

HARE 3 26.50 0.95 0.55 24.13 28.87
MeMi 21 22.53 2.63 0.57 21.34 23.73
GATE 10 22.79 1.24 0.39 21.90 23.68
HaRo 2 20.80 1.13 0.80 10.64 30.97
Kerr 9 25.27 0.59 0.20 24.81 25.72
ROAN2 6 24.67 0.45 0.18 24.19 25.14
ROAN1 9 29.58 1.91 0.64 28.11 31.05
CASH 5 26.52 0.89 0.40 25.42 27.63
HAL 8 23.98 0.99 0.35 23.15 24.80
OcMo 6 20.77 0.50 0.20 20.25 21.29
EnRi 6 25.27 0.39 0.16 24.85 25.68
FaLa-RV 8 22.55 0.63 0.22 22.02 23.08
FaLa-CC 9 25.11 0.82 0.27 24.48 25.74
WBUm 33 23.21 1.54 0.27 22.67 23.75
MCB1 10 18.90 1.52 0.48 17.82 19.98
MCB2 6 16.90 3.06 1.25 13.69 20.12
WHP 9 19.47 0.57 0.19 19.03 19.91
ClNe-syn 10 20.12 3.18 1.00 17.85 22.39
NRFK 10 22.66 1.07 0.34 21.90 23.42
MFBR 9 12.20 3.50 1.17 9.51 14.89
TLCJ 15 19.09 1.59 0.41 18.21 19.97
RaRo 21 24.30 1.17 0.26 23.77 24.84
GAIN 6 26.50 0.53 0.22 25.94 27.06
TAHE 10 25.30 1.01 0.32 24.58 26.02
RHOD 6 27.93 1.53 0.63 26.33 29.54
LaNo 19 20.04 1.02 0.23 19.55 20.53
CrMo 9 20.42 0.72 0.24 19.87 20.98
Total 275 22.48 3.66 0.22 22.04 22.91
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Table 2.3a: Variance components for dominant frequency and click rate (individual 
model)
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Table 2.3b.  Variance components for dominant frequency and click rate (mass and 
temperature model)
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Table 2.4.  Linear regression formulas for click rate and dominant frequency on 
temperature and mass, including summaries of fit and analyses of variance.

Regression Summary of Fit Analysis of variance

Click Rate = R2 0.32 d.f. 1363

0.05 + (0.181 x temperature) adjusted R2 0.32 F ratio 652.5

Root MSE 0.95 P value 0.0001

Mean 4.02

Observations 1365

Dominant Frequency = R2
0.32 d.f. 1363

3104.48 + (33.67 x temperature) adjusted R2
0.32 F ratio 646.45

Root MSE 3861 P value <0.0001

Mean 3862

Observations 1365

Click Rate = R2
0.05 d.f. 1281

5.325 - (1.519 x mass) adjusted R2
0.05 F ratio 62.45

Root MSE 1.15 P value < 0.0001

Mean 4.02

Observations 1282

Dominant Frequency = R2
0.34 d.f. 1281

4663.72 - (759.48 x mass) adjusted R2
0.34 F ratio 666.25

Root MSE 177 P value < 0.0001

Mean 3862

Observations 1282
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Table 2.5a.  Mean click rate (adjusted to 22.5° C) of A. c. crepitans at each site.  Sites 
are grouped by river system.  Upstream sites precede downstream sites in each 
system.

Site N (bouts) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

HARE 13 3.23878 0.46776 0.12973 2.9561 3.5214
MeMi 105 3.41639 0.77405 0.07554 3.2666 3.5662
GATE 50 3.85326 0.57698 0.0816 3.6893 4.0172
HaRo 10 3.15993 0.64238 0.20314 2.7004 3.6195
Kerr 45 4.07817 0.69444 0.10352 3.8695 4.2868
ROAN2 30 3.87125 0.81287 0.14841 3.5677 4.1748
ROAN1 45 3.81395 1.09349 0.16301 3.4854 4.1425
CASH 25 3.92285 0.99772 0.19954 3.511 4.3347
HAL 40 4.23084 0.65146 0.10301 4.0225 4.4392
OcMo 30 4.89127 0.87908 0.1605 4.563 5.2195
EnRi 29 3.84825 0.80549 0.14958 3.5419 4.1546
FaLa-RV 40 4.12033 1.03790 0.16411 3.7884 4.4523
FaLa-CC 44 4.0048 0.85576 0.12901 3.7446 4.265
WBUm 165 4.1297 1.12712 0.08775 3.9564 4.303
MCB1 50 3.88031 0.69404 0.09815 3.6831 4.0775
MCB2 30 2.91773 0.49459 0.0903 2.7331 3.1024
WHP 45 4.05616 0.48772 0.0727 3.9096 4.2027
ClNe-syn 47 3.99721 0.75224 0.10973 3.7763 4.2181
NRFK 50 3.45869 0.85855 0.12142 3.2147 3.7027
MFBR 45 4.51712 0.45156 0.06731 4.3815 4.6528
TLCJ 75 4.12218 0.83759 0.09672 3.9295 4.3149
RaRo 105 4.47446 0.9436 0.09209 4.2918 4.6571
GAIN 27 4.26927 1.0716 0.20623 3.8454 4.6932
TAHE 50 4.35786 0.97413 0.13776 4.081 4.6347
RHOD 30 3.50282 0.87592 0.15992 3.1757 3.8299
LaNo 95 4.41237 1.04309 0.10702 4.1999 4.6249
CrMo 45 4.01550 0.94070 0.14023 3.7329 4.2981
Total 1365 4.11596 0.95383 0.02582 4.06532 4.16661
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Table 2.5b.  Mean dominant frequency (adjusted to 22.5° C) of A. c. crepitans at each 
site.  Sites are grouped by river system.  Upstream sites precede downstream sites in 
each system.

Site N (bouts) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

HARE 13 3541.6 60.98 16.913 3504.8 3578.5
MeMi 105 3947.14 187.329 18.281 3910.9 3983.4
GATE 50 3847.83 162.821 23.026 3801.6 3894.1
HaRo 10 3795.27 92.105 29.126 3729.4 3861.2
Kerr 45 3887.48 102.124 15.224 3856.8 3918.2
ROAN2 30 3679.89 106.837 19.506 3640.0 3719.8
ROAN1 45 3824.31 175.139 26.108 3771.7 3876.9
CASH 25 3824.83 98.613 19.723 3784.1 3865.5
HAL 40 3961.95 130.553 20.642 3920.2 4003.7
OcMo 30 3903.8 152.566 27.855 3846.8 3960.8
EnRi 29 3641.98 111.259 20.66 3599.7 3684.3
FaLa-RV 40 3759.9 84.506 13.362 3732.9 3786.9
FaLa-CC 44 3854.16 192.73 29.055 3795.6 3912.8
WBUm 165 3870.95 163.922 12.761 3845.8 3896.2
MCB1 50 3719.88 124.514 17.609 3684.5 3755.3
MCB2 30 3767.82 213.947 39.061 3687.9 3847.7
WHP 45 3747.04 79.38 11.833 3723.2 3770.9
ClNe-syn 47 4000.27 111.444 16.256 3967.5 4033.0
NRFK 50 3754.34 93.886 13.277 3727.7 3781.0
MFBR 45 3774.3 244.253 36.411 3700.9 3847.7
TLCJ 75 3952.2 129.53 14.957 3922.4 3982.0
RaRo 105 4030.79 154.93 15.12 4000.8 4060.8
GAIN 27 4000.17 131.594 25.325 3948.1 4052.2
TAHE 50 3881.39 178.53 25.248 3830.7 3932.1
RHOD 30 3766.74 94.884 17.323 3731.3 3802.2
LaNo 95 3883.71 126.57 12.986 3857.9 3909.5
CrMo 45 3797.33 104.627 15.597 3765.9 3828.8
Total 1365 3877.90 178.273 4.825 3868.4 3887.4
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Figure 2.1.  Survey sites for Acris c. crepitans in North Carolina
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Figure 2.2a.  Mean click rate of A. c. crepitans at each site.  Each point represents a 
bout.  Central bars indicate the mean and standard errors. Outer bars indicate standard 
deviations.  Sites are grouped geographically by river system.  Within each system, 
the site furthest upstream is on the left and the site furthest downstream is on the 
right.
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Figure 2.2b.  Mean dominant frequency of A. c. crepitans at each site.  Each point represents 
a bout.  Central bars indicate the mean and standard errors. Outer bars indicate standard 
deviations.  Sites are grouped geographically by river system.  Within each system, the site 
furthest upstream is on the left and the site furthest downstream is on the right.
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Figure 2.2c.  Mean mass of A. c. crepitans at each site.  Each point represents a frog.  Central 
bars indicate the mean and standard errors. Outer bars indicate standard deviations.  Sites are 
grouped geographically by river system.  Within each system, the site furthest upstream is on 
the left and the site furthest downstream is on the right.
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Figure 2.2d.  Mean calling temperature of A. c. crepitans at each site.  Each point represents a 
bout.  Central bars indicate the mean and standard errors. Outer bars indicate standard 
deviations.  Sites are grouped geographically by river system.  Within each system, the site 
furthest upstream is on the left and the site furthest downstream is on the right.

8

10

12

14

16

18

20

22

24

26

28

30

32

T
e
m

p
e
ra

tu
re

 (
*C

)

H
A

R
E

M
e
M

i

G
A

T
E

H
a
R
o

K
e
rr

R
O

A
N

2

R
O

A
N

1

C
A

S
H

H
A

L

O
c
M

o

E
n
R
i

F
a
L
a
-
R
V

F
a
L
a
-
C

C

W
B
U

m

M
C

B
1

M
C

B
2

W
H

P

C
lN

e
-
s
y
n

N
R
F
K

M
F
B
R

T
L
C

J

R
a
R
o

G
A

IN

T
A

H
E

R
H

O
D

L
a
N

o

C
rM

o

Site (grouped by river system)

Te
m

pe
ra

tu
re

 (°
C)

66



Figure 2.3a.  Linear regression of click rate on temperature.  Each point represents a bout.
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Figure 2.3b.  Linear regression of dominant frequency on temperature.  Each point represents 
a bout.

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

D
o
m

in
a
n
t 

F
re

q
u
e
n
c
y
 (

H
z
)

8 10 12 14 16 18 20 22 24 26 28 30 32

Temperature (*C)Temperature (°C)

Dominant Frequency = 3104.48 + (33.67 x temperature)

68



Figure 2.3c.  Linear regression of click rate on mass.  Each point represents a bout.

1

2

3

4

5

6

7

8

C
li
c
k
 R

a
te

 (
c
li
c
k
s
/
s
e
c
)

.5 .6 .7 .8 .9 1 1.1 1.2 1.3 1.4 1.5

Mass (g)

Cl
ick

 R
at

e 
(c

lic
ks

/s
)

Click Rate = 5.325 - (1.519 x mass) 

69



Figure 2.3d.  Linear regression of dominant frequency on mass.  Each point represents a 
bout.
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Figure 2.4a.  Mean click rate at 22.5° of A. c. crepitans at each site.  Each point represents a 
bout.  Central bars indicate the mean and standard errors. Outer bars indicate standard 
deviations.  Sites are grouped geographically by river system.  Within each system, the site 
furthest upstream is on the left and the site furthest downstream is on the right.
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Figure 2.4b.  Dominant frequency at 22.5° of A. c. crepitans at each site.  Each point 
represents a bout.  Central bars indicate the mean and standard errors. Outer bars indicate 
standard deviations.  Sites are grouped geographically by river system.  Within each system, 
the site furthest upstream is on the left and the site furthest downstream is on the right.
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Chapter 3

Acoustic variation in the Coastal Plain Cricket Frog, Acris gryllus gryllus,

and the absence of reproductive character displacement in syntopic and sympatric Acris

Abstract

 Detection of reproductive character displacement depends on assessing variation in 

mate recognition systems at a biologically-relevant geographic scale and describing the 

influences of other factors such as temperature and body size.  I assessed variation in the 

click rate and dominant frequency of vocalizations of Acris gryllus gryllus, the Coastal Plain 

Cricket Frog, in order to determine the effects of temperature and body size and the degree of 

geographic variation among 14 sites in the Coastal Plain of North Carolina.  Click rate and 

dominant frequency varied substantially and overlapped with a sympatric and syntopic 

congener, A. crepitans crepitans.  As in A. c. crepitans, most acoustic variation was attributed 

to differences in mass, but unlike in A. c. crepitans and many other anurans, temperature had 

no influence on dominant frequency.  In both species, differences among sites not explained 

by mass were unlikely to result from reproductive character displacement in sympatry or 

syntopy.  The vocalizations of the two species were most similar at syntopic sites, where both 

had lowest mass.



Introduction

Reproductive character displacement occurs when differences in mating signals or the 

sensory systems to receive them are greater where two species are in close proximity (Brown 

and Wilson, 1956).  This differentiation contributes to pre-mating reproductive isolation

(Coyne and Orr, 2004).  Mate recognition systems can diverge as a result of selection against 

mistakes in species detection but are also directly affected by external conditions such as 

temperature (Gerhardt, 1978) or selection on traits like body size (Ryan et al., 1990; Hobel 

and Gerhardt, 2003).  Environmental clines can produce differences like those produced by 

reproductive character displacement (Goldberg and Lande, 2006).  These factors create 

challenges in determining whether differences in mate recognition systems arose in sympatry 

(where ranges overlap) or through direct or indirect selection on mating signals or reception 

in allopatry (where ranges do not overlap). 

 The acoustic communication of cricket frogs, Acris, has been extensively studied.  

Nevo and Capranica (1985) proposed four hypotheses for divergence in mating signals 

within Acris: reproductive character displacement in sympatry, selection on calls in allopatry, 

selection on other traits in allopatry that incidentally affected calls, and genetic drift.  They 

found that across the range of Acris in eastern North America, acoustic variation was 

correlated with body length, environmental factors, and geographic distance associated with 

eastern woodland and western grassland habitats in A. c. crepitans, A. c. blanchardi, and two 

other subspecies, A. g. gryllus and A. g. dorsalis.  Ryan et al. (1990) provided evidence that 

selection on A. c. crepitans for efficient transmission of calls in forested habitat contributed 

to acoustic divergence between A. c. crepitans and A. c. blanchardi.  Ryan and Wilczynski 
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(1991) found that among parapatric (adjacent but non-overlapping) A. c. crepitans and A. c. 

blanchardi populations in Texas, dominant frequency was correlated with longitude and body 

length.  Because body length did not vary longitudinally, it did not account for the cline in 

dominant frequency.  In these studies, size-independent clinal variation indicated that 

allopatric selection in different habitats accounted for most of the acoustic divergence within 

A. crepitans and selection to avoid interbreeding (reproductive character displacement) and 

allopatric selection on body size were rejected as possible explanations for acoustic 

divergence.

 Despite this body of information, reproductive character displacement in 

vocalizations remains untested in Acris (Chapter 2).  Ryan and Wilczynski (1991) assessed 

potential determinants of acoustic variation between A. c. crepitans and A. c. blanchardi in an 

area where the two subspecies have never been found in syntopy (at the same locality so they 

could possibly interbreed, Rivas, 1964).  Since the subspecies have apparently never had the 

opportunity to interbreed, no selection for reproductive character displacement has had the 

opportunity to occur.  They also avoided populations of A. c. crepitans occurring in sympatry 

with A. gryllus because of the potential for reproductive character displacement between the 

species of Acris.  Nevo and Capranica (1985) assessed variation on a large geographic scale.  

They demonstrated the influence of environmental conditions on Acris vocalizations, but the 

scale of analysis was too large to detect acoustic differences directly resulting from overlap 

between A. crepitans and A. gryllus.  Therefore, it is an unresolved question whether or not 

reproductive character displacement exists where A. crepitans overlaps with A. gryllus.
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 Chapter 2 describes the variation in click rate and dominant frequency of Acris 

crepitans crepitans, the Eastern Cricket Frog, in North Carolina, and the large influence of 

mass on these features compared with month, site, and temperature differences.  In this study, 

I discuss analogous variation in these features in A. g. gryllus.  I also determine whether or no 

there is evidence for reproductive character displacement in click rate or dominant frequency 

of either species.  In Chapter 4, I discuss species recognition by females of both species at a 

syntopic site.

Methods

Field survey

 The data for this study came from the same fieldwork described in Chapter 2 and is 

described similarly.  I recorded and collected Acris at 33 sites and recorded without 

collecting frogs at three additional sites in the Piedmont and Coastal Plain of North Carolina 

in 2004, 2005, and 2007 (Figure 3.1).   Recording took place from 4 May to 21 July 2004 (17 

sites), 8 May to 24 July 2005 (17 sites including 2 from 2004), and 3-4 June and 15-16 July 

2007 (4 sites).  Three sites were in the western Piedmont, 12 sites were in the eastern 

Piedmont (including 4 sites just west of the Fall Zone), and 21 sites were in the upper and 

lower Coastal Plain.  At each site were 1-5 permanent bodies of freshwater with choruses of 

cricket frogs.   At each chorus, I recorded 6-10 frogs for 10 bouts each.  I reduced the number 

of frogs collected at a few locations where a chorus was too small to remain active otherwise.  

Recording began at or after 2100 hours and ended when a chorus waned (between 0100 and 

0300 hours) or I had a complete sample.  I used a Marantz PMD-221 or PMD-421 portable 
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tape recorder (2004) or PMD-670 digital recorder (2005 and 2007) and an Audio-Technica 

815a microphone to record each male.  Immediately after recording, I photographed the male 

and any females and satellite males in obvious association with it with a Canon Powershot 

A80 4.1 MP digital camera.  After capturing the male, I measured the surface temperature at 

its calling site with a Miller and Weber T-6000 fast-read cloacal thermometer.  Within 12-36 

hours after collection, I weighed each frog, euthanized it in a chlorotone solution, preserved a 

forefoot in a dimethyl sulfoxide and salt solution for eventual genetic analysis, and fixed the 

frog for morphological study and deposit in the collection of the North Carolina Museum of 

Natural Sciences, Raleigh, North Carolina.

Acoustic analysis

 Chapter 2 describes the terminology modified from Wagner (1989) to describe cricket 

frog vocalizations in North Carolina.  I used WildSpectra (version 060125; Wiley, 2007) to 

digitize cassette recordings at a sampling rate of 22.05 kHz (2004) or to import WAV 

recordings with a sampling rate of 22.05 kHz (2005 and 2007).  Recorded frogs were 

identified as A. c. crepitans or A. g. gryllus by pulse patterns (Chapter 1).  The study included 

275 male A. c. crepitans from 27 sites and 140 male A. g. gryllus from 14 sites (4 sites had 

both species).  Five bouts were selected from each male with a random number generator 

(Haahr, 2007) unless < 5 bouts were available for analysis (2055 total bouts, 4.95 bouts per 

individual).  I measured every click in a bout using the SongSignatures procedure in 

WildSpectra.  SongSignatures visually indicates each identified note and produces a text file 

with spectral and temporal information.  I used this process to measure the duration of each 
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bout, the dominant frequency of each click in the bout, and the interval between each click.  I 

then calculated the click rate, mean dominant frequency and mean interval between clicks for 

each bout.  In addition, I manually counted the number of clicks in each bout before using 

SongSignatures.  I optimized frequency resolution (21 Hz) at the expense of temporal 

resolution (46.43 milliseconds) by using a sampling rate of 11.025 Khz and a transform size 

of 1024; this temporal resolution was sufficient for detecting temporal variation in bouts.  

SongSignatures recognizes each note in a selected portion of a spectrogram with user-defined 

starting and ending thresholds of amplitude of the power spectrum.  For each bout, I adjusted 

the amplitude thresholds to maximize detection of clicks and used WildSpectra’s Exclude 

Selection procedure to remove background noise between clicks when noise interfered with 

detection of clicks.

Statistical analyses

 Statistics were calculated with JMP 6.03 (SAS Institute, 2006).  Analyses of variance 

(ANOVA) of 5 measurements of bouts (mean dominant frequency, total duration, total clicks, 

click rate, and mean interval between clicks) were computed to assess variation within and 

among populations of A. g. gryllus.  To include differences in temperature, body size, and 

time in the breeding season, I relied on nested ANOVA to assess the importance of all of 

these factors on click rate and dominant frequency.  These analyses of variance were 

computed in two ways: either with individual frogs as the most nested factor or with 

individual’s mass and temperature as continuous covariates.  Because conditions changed 

over the breeding season and I visited most sites only once, I nested sites within months and 
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then individual (or temperature and mass covariates) within sites to compare sites within 

months.  I calculated the variance components for random effects with the restricted 

maximum likelihood method (REML, Quinn and Keough, 2002; SAS Institute, 2006).  From 

the results of these tests, I could determine the statistical significance of the overall model, as 

well as the contributions of each variance component to the total variance in each acoustic 

feature.

 To illustrate the effects of mass and temperature on vocalizations, I calculated linear 

regressions of dominant frequency and mean click rate by temperature and mass using 

pooled data for each species from the entire survey.  I used the regression equations for 

temperature to adjust dominant frequency and click rate to a mean temperature of 22.5° 

before using nested ANOVAs to determine the specific effects of syntopy and sympatry on 

click rate, dominant frequency, and mass.  I nested sites within biogeographic status (syntopy, 

allopatric sympatry, or allopatry).

Results

Variation in A. g. gryllus

 There was significant variation in all acoustic features among months, sites, and 

individuals, and significant variation in mass and temperature among sites and individuals in 

A. g. gryllus (Table 3.1).  As with A. c. crepitans (Chapter 2), intervals between clicks, 

number of clicks, and duration of the bout all contributed to click rate and all had slightly 

lower coefficients of determination (R2) than did click rate in the nested ANOVAs.  

Differences among sites in click rate and dominant frequency (Table 3.2a and 3.2b; Figure 
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3.2a and 3.2b) were expected to be related to differences in mass and temperature (Table 3.2c 

and 3.2d; Figure 3.2c and 3.2d).  Mean temperature at calling sites for A. g. gryllus increased 

significantly (nested ANOVA, d.f. = 2, p < 0.0001) from May (21.9°) to June (24.1°) to July 

(25.8°) and was significantly different among sites in each month (nested ANOVA, d.f. = 14, 

p < 0.0001).  The monthly means and range of temperatures among sites (19.9-26.9°) used by  

A. g. gryllus were both warmer than the corresponding values for A. c. crepitans.  Mean body 

mass of A. g. gryllus differed significantly among months (nested ANOVA, d.f. = 2, p = 

0.031).  There was a decrease from May (1.06) to June (1.02) to July (0.98), and mass 

differed among sites in each month (nested ANOVA, d.f. = 11, p = 0.028).  The variation in 

mean mass among A. g. gryllus sites was substantial (May, 1.03-1.18 g; June, 0.75-1.13 g; 

July, 0.84-1.05 g).

 As in A. c. crepitans, higher R2 values for individual models (Table 3.3a) compared 

with the corresponding temperature and mass models (Table 3.3b) indicate that there was 

additional variation in dominant frequency and click rate among individuals that was 

unrelated to mass or temperature.  As in A. c. crepitans, the largest percentage of total 

variance was attributed to mass in the analysis of dominant frequency (89.2%), but for click 

rate, mass (36.5%) was less important than the residual (47.8%).  Month and temperature had 

no effect on the dominant frequency of A. g. gryllus (month, 0.0%; temperature; 0.1%), 

compared with the small contributions of month and temperature to dominant frequency in A. 

c. crepitans.  The response of click rate to month and temperature in each species was nearly 

identical (A. g. gryllus: month, 0.0%; temperature, 14.8%).
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 The differences in the effects of mass and temperature on vocalizations in A. c. 

crepitans and A. g. gryllus are best illustrated by linear regressions (Table 3.4 and Figure 3.3a 

to 3.3d).  The positive relationship between temperature and click rate in A. g. gryllus (Figure 

3.3a; adjusted R2 = 0.12, d.f. = 689, p = <0.0001) had a much lower adjusted R2 and slope 

than in A. c. crepitans, an indication of a weaker relationship in A. g. gryllus.  The positive 

effect of temperature on dominant frequency was significant in A. c. crepitans, but there was 

no effect of temperature on dominant frequency in A. g. gryllus (Figure 3.3b; adjusted R2 = 

0.003, d.f. = 689, p = 0.064).  Unlike A. c. crepitans, there was no significant relationship 

between click rate and mass in A. g. gryllus (Table 3.3c: adjusted R2 = 0.00, d.f. = 521, p < 

0.86).  As with A. c. crepitans, there was a significant negative relationship between mass 

and dominant frequency for A. g. gryllus (Table 3.3d: adjusted R2 = 0.19, d.f. = 521, p < 

0.0001),

 The range of mean dominant frequency among sites in North Carolina (3314-3658 

Hz) is as great as Nevo and Capranica (1985) found among five sites throughout most of the 

range of A. g. gryllus (3426-3587 Hz, 3174-3597 Hz after adjustment to 22.79°).  The range 

of click rates within North Carolina (1.9-3.1 clicks/s; 1.4-2.7 clicks/s after temperature 

correction to 22.5°) was narrower than they found throughout the Southeast (1.5-3.7 clicks/s; 

1.5-3.5 clicks/s after temperature correction to 22.79°). Substantial overlap occurred between 

A. g. gryllus and A. c. crepitans in click rate, dominant frequency, and mass (Table 3.5a and 

Figure 3.4a to 3.4c).
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Acoustic and mass differences in syntopy and sympatry

 Variance components showed that biogeographic relationships contributed no more 

than 4.9% of the differences in click rate, dominant frequency, or mass in A. c. crepitans and 

A. g. gryllus (Table 3.5c).  Individual and residual variation, in combination, accounted for 

most differences in click rate for both species (A. c. crepitans, 87.1%; A. g. gryllus, 84.9%) 

while biogeographic status contributed only 3.1% to A. c. crepitans and 0.1% to A. g. gryllus.  

Click rate was the only response with substantial differences among the three biogeographic 

zones for each species (ANOVA; d.f. = 2, p < 0.001 for both species).  Because A. c. 

crepitans had a slower click rate and A. g. gryllus had a faster click rate in syntopy and 

sympatry than in allopatry, their click rates were more similar the closer they occurred to 

each other.  For dominant frequency, variation among individuals accounted for most 

differences (A. c. crepitans, 57.3%; A. g. gryllus, 64.8%) and biogeographic status made no 

significant contribution to dominant frequency in A. c. crepitans (0.0%; ANOVA, p = 0.529) 

despite a slightly higher mean in syntopy.  Biogeographic status made almost no contribution 

to dominant frequency (0.5%; ANOVA, p < 0.001) in A. g. gryllus.  In A. g. gryllus, dominant 

frequency was lower in non-syntopic sympatry than in syntopy or allopatry.  Mass was 

almost entirely determined by site (40.7%) and residual variation (58.5%) in A. c. crepitans 

and by residual variation (87.6%) in A. g. gryllus.  Both species had lower masses in syntopy 

than at other sympatric sites.
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Differences in the Neuse River basin

 Because the distribution of A. c. crepitans suggests that it colonized the Coastal Plain 

by moving down rivers from the Piedmont (Martof et al., 1980), adjacent populations within 

a river basin are likely to be more closely related to each other than to populations in adjacent 

basins.  Of the eight distinct river systems in the study, the Neuse River basin is the only one 

in which allopatric, sympatric, and syntopic wetlands were located for both species.  In 

sympatry and syntopy, the two species overlapped in click rate, dominant frequency, and 

mass (Table 3.7a to 3.7c; Figure 3.6a to 3.6c).  The syntopic wetland was one of the two 

ponds at Cliffs of the Neuse State Park (only A. g. gryllus bred at the other pond), less than 2 

km from the Neuse River.  At allopatric and sympatric sites upstream of the syntopic site, the 

temperature-corrected mean dominant frequency of A. c. crepitans varied from 3642 to 3904 

Hz (Table 3.7b and Figure 3.6b).  At the two A. c. crepitans sites adjacent to the syntopic 

pond (both within 25 m of the Neuse River), one 25 km upstream at the Waynesborough 

Historic Park (WHP) and the other 30 km downstream near Kinston (NRFK), the mean 

dominant frequencies were statistically indistinguishable (3747 and 3754 Hz; ANOVA d.f. = 

95, p = 0.1683).  At the syntopic pond, the mean dominant frequency of A. c. crepitans was 

4000 Hz, 96 Hz higher than anywhere else in the basin and 250 Hz higher than the two non-

syntopic sites nearby.  Click rates were similar at the three sites (Table 3.7a and Figure 3.6a).  

Because mass has a larger influence than site on dominant frequency in A. c. crepitans 

(Chapter 2), the high dominant frequency of A. c. crepitans at the syntopic site is likely to be 

related to the lower masses of frogs at that location (Table 3.7c and Figure 3.6c), rather than 

the presence of A. g. gryllus.
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Discussion

 A. g. gryllus varied extensively in click rate, dominant frequency, and mass within 

and among 14 breeding sites in the Coastal Plain of North Carolina (Table 3.1 to 3.2c; Figure 

3.2a to 3.2c).  On average, A. g. gryllus called at a lower dominant frequency (despite a lower 

mean mass) and slower rate than A. c. crepitans, but the two species overlapped in these 

features, even at syntopic sites (Table 3.5a; Figure 3.4a to 3.4c and 3.6a to 3.6c).  Mass had 

no effect, and temperature had only a slight effect, on click rate in A. g. gryllus (Table 3.3b).  

Individual variation unrelated to mass or temperature differences was the most important 

influence on click rate in A. g. gryllus.  As in A. c. crepitans, the most important influence on 

dominant frequency was body mass.  Unexpectedly and mysteriously, the dominant 

frequency of A. g. gryllus was not significantly affected by temperature (Table 3.4 and Figure 

3.3b), unlike in A. c. crepitans (Chapter 2) and many other anurans (Gerhardt and Huber, 

2002).

 There is little evidence that reproductive character displacement has occurred in the 

click rate or dominant frequency of A. c. crepitans or A. g. gryllus vocalizations in North 

Carolina.  There was no significant influence of syntopy and sympatry on the dominant 

frequency of A. c. crepitans, and their influence on the dominant frequency of A. g. gryllus 

and the click rates of both species was small in comparison with other effects (Table 3.5a and 

3.5b).  Rather than an increased difference in the click rates of A. c. crepitans and A. g. 

gryllus in sympatry, the difference was smaller, and the species were most similar in syntopy 

(Table 3.5a).  The difference between the species in dominant frequency was smaller in 

syntopy as well, because in syntopy compared with allotopy, the dominant frequency of A. g. 
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gryllus was higher and the dominant frequency of A. c. crepitans was not significantly 

different (despite a higher mean). The masses of both species were lower in syntopy than 

allotopy within the sympatric area, which accounts for the higher dominant frequencies in 

syntopy.  Within the Neuse River basin, the dominant frequency of A. c. crepitans was 

highest at a syntopic site, but its reduced body size at that location was more of a factor than 

the presence of A. g. gryllus.  The linear regressions of dominant frequency on mass for A. c. 

crepitans (Chapter 2) and A. g. gryllus (Table 3.4 and Figure 3.3d) have non-overlapping 

slopes and the two species overlap in mass (Figured 3.4c), so the differences in dominant 

frequency in the two species are the result of differences in mass.

 The lower mass of both species in syntopy was probably not a result of decreased 

survival or reduced prey availability that might favor reproduction at a younger age and 

smaller size.  The choruses at syntopic sites were dense, spatially extensive, and long-lasting.  

The high number of calling males at syntopic sites did not appear to wane during drought 

conditions that attenuated breeding activity at other permanent wetlands.  The insects that 

Acris were observed to eat seemed limitless at syntopic sites.  High habitat quality and prey 

availability at the syntopic breeding site might instead reduce pressure to reach a larger body 

size before commencing a long and energy-intensive breeding period.  The ecological 

constraints that dictate the range limits of A. crepitans and A. gryllus are unknown, but 

appear to be relaxed in syntopy.  The same factors that cause the species to occur in 

proximity to each other may also cause them to breed at a smaller body size than in other 

areas.
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 The extensive overlap between A. c. crepitans and A. g. gryllus in click rate and 

dominant frequency and the absence of important differences within each species among 

syntopic and allotopic populations suggest that some other acoustic feature, not dominant 

frequency or click rate, is used for species recognition by A. c. crepitans and A. g. gryllus.  

The distinct differences between these species in click structure (Chapter 1) are a good 

candidate.  A. c. crepitans produces fewer pulses per click, at a slower and more variable rate, 

than A. g. gryllus, and no overlap occurs in click structure in North Carolina.  Acoustic 

divergence between species of Acris appears to most pronounced in this small-scale temporal 

feature, not in dominant frequency or in a large-scale temporal feature such as click rate.  The 

four hypotheses that Nevo and Capranica (1985) proposed to explain divergence in the 

acoustic signals of Acris are still applicable for explaining differences in click structure and 

could be tested in future studies

 

 The dominant frequency and click rate of vocalizations of A. g. gryllus, the Coastal 

Plain Cricket Frog, vary substantially in a small part of its geographic range.  Like its 

sympatric congener A. c. crepitans, most of this variation is correlated with differences in 

mass, but unlike A. c. crepitans, temperature had no influence on dominant frequency.  In 

both species, differences among sites that are not explained by mass are unlikely to result 

from reproductive character displacement in sympatry or syntopy.
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Table 3.1  Nested analyses of variance of A. g. gryllus acoustic features, temperature, 
and mass

Feature Summary of fit Source DF F ratio P value

mean dominant R2 0.82 Model 139 18.11 <.0001
     frequency (Hz) adjusted R2 0.78 Month 2 35.14 <.0001

Root mean square error 94.06 Site[Month] 14 50.73 <.0001
Mean of response 3487.44 Indiv.[Site, Month] 123 14.56 <.0001
Observations 690 Error 550

click rate (N/s) R2 0.54 Model 139 4.63 <.0001
adjusted R2 0.42 Month 2 34.61 <.0001
Root mean square error 0.65 Site[Month] 14 15.08 <.0001
Mean of Response 2.2 Indiv.[Site, Month] 123 2.67 <.0001
Observations 690 Error 550

mean interclick R2 0.48 Model 139 3.59 <.0001
     interval (s) adjusted R2 0.34 Month 2 18.80 <.0001

Root mean square error 0.20 Site[Month] 14 8.90 <.0001
Mean of Response 0.55 Indiv.[Site, Month] 123 2.54 <.0001
Observations 690 Error 550

clicks (N) R2 0.46 Model 139 3.33 0.009
adjusted R2 0.32 Month 2 4.75 <.0001
Root mean square error 12.29 Site[Month] 14 5.39 <.0001
Mean of Response 29.36 Indiv.[Site, Month] 123 3.09 <.0001
Observations 690 Error 550

duration (s) R2 0.51 Model 139 4.12 <.0001
adjusted R2 0.39 Month 2 17.15 <.0001
Root mean square error 8.65 Site[Month] 14 8.54 <.0001
Mean of Response 15.70 Indiv.[Site, Month] 123 3.36 <.0001
Observations 690 Error 550

temperature at R2 0.66 Model 16 14.74 <.0001
     calling site (°C) adjusted R2 0.61 Month 2 48.13 <.0001

Root mean square error 1.40 Site[Month] 14 7.99 <.0001
Mean of Response 24.48 Error 123
Observations 140

mass (g) R2 0.23 Model 13 2.08 0.022
adjusted R2 0.12 Month 2 3.62 0.031
Root mean square error 0.16 Site[Month] 11 2.09 0.028
Mean of Response 1.01 Error 92
Observations 106
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Table 3.2a.  Mean click rate of A. g. gryllus at each site.  Sites are grouped by river 
system.  Upstream sites precede downstream sites in each system.

Site N (bouts) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

HARE 20 3.14 0.96 0.21 2.69 3.59
MeMi 93 1.98 0.81 0.08 1.81 2.14
GATE 28 2.29 0.77 0.15 1.99 2.59
BENN 50 1.91 0.58 0.08 1.74 2.07
Pett 40 1.97 0.70 0.11 1.75 2.19
ClNe-allo 65 3.21 1.18 0.15 2.92 3.51
ClNe-syn 76 2.13 0.73 0.08 1.96 2.30
COOL 40 1.70 0.58 0.09 1.51 1.89
WeWo 20 2.44 0.57 0.13 2.17 2.70
Jone 54 2.09 0.62 0.08 1.92 2.25
CaBe 59 2.22 0.80 0.10 2.01 2.43
PBBT 35 1.86 0.72 0.12 1.62 2.11
SGL 45 2.31 0.59 0.09 2.14 2.49
LaWa 65 2.03 0.59 0.07 1.88 2.18
Total 690 2.20 0.86 0.03 2.13 2.26
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Table 3.2b.  Mean dominant frequency of A. g. gryllus at each site.  Sites are grouped 
by river system.  Upstream sites precede downstream sites in each system.

Site N (bouts) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

HARE 20 3406.16 96.92 21.67 3360.80 3451.50
MeMi 93 3502.55 148.86 15.44 3471.90 3533.20
GATE 28 3657.97 190.23 35.95 3584.20 3731.70
BENN 50 3384.39 110.42 15.62 3353.00 3415.80
Pett 40 3613.34 226.29 35.78 3541.00 3685.70
ClNe-allo 65 3473.00 189.44 23.50 3426.10 3519.90
ClNe-syn 76 3560.72 163.04 18.70 3523.50 3598.00
COOL 40 3642.56 121.30 19.18 3603.80 3681.40
WeWo 20 3313.90 88.86 19.87 3272.30 3355.50
Jone 54 3473.85 135.27 18.41 3436.90 3510.80
CaBe 59 3352.28 186.34 24.26 3303.70 3400.80
PBBT 35 3508.08 153.45 25.94 3455.40 3560.80
SGL 45 3466.01 354.22 52.80 3359.60 3572.40
LaWa 65 3443.60 161.16 19.99 3403.70 3483.50
Total 690 3487.44 198.46 7.56 3472.61 3502.28

89



Table 3.2c.  Mean mass of A. g. gryllus at each site.  Sites are grouped by river 
system.  Upstream sites precede downstream sites in each system.

Site N (males) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

MeMi 19 1.033 0.136 0.031 0.967 1.098
BENN 2 1.125 0.007 0.005 1.062 1.189
Pett 7 0.837 0.158 0.060 0.691 0.983
ClNe-allo 13 1.048 0.145 0.040 0.960 1.135
ClNe-syn 13 0.936 0.175 0.048 0.831 1.042
COOL 8 0.975 0.116 0.041 0.878 1.072
WeWo 4 1.180 0.218 0.109 0.833 1.527
Jone 11 1.081 0.188 0.057 0.955 1.207
CaBe 9 0.994 0.122 0.041 0.901 1.088
PBBT 7 0.961 0.178 0.067 0.797 1.126
LaWa 13 1.036 0.182 0.050 0.926 1.146
Total 106 1.010 0.167 0.016 0.978 1.042
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Table 3.2d.  Mean calling temperature of A. g. gryllus at each site.  Sites are grouped 
by river system.  Upstream sites precede downstream sites in each system.

Site N (males) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

HARE 4 26.85 0.66 0.33 25.80 27.90
MeMi 19 22.86 2.57 0.59 21.62 24.10
GATE 6 23.03 1.20 0.49 21.77 24.30
BENN 10 23.52 2.17 0.69 21.97 25.07
Pett 8 25.30 1.48 0.52 24.07 26.54
ClNe-allo 13 26.17 1.35 0.37 25.35 26.99
ClNe-syn 16 23.41 3.24 0.81 21.69 25.14
COOL 8 22.05 0.81 0.28 21.38 22.72
WeWo 4 25.90 0.50 0.25 25.10 26.70
Jone 11 25.82 1.74 0.53 24.65 26.99
CaBe 12 25.52 0.66 0.19 25.10 25.94
PBBT 7 26.20 0.49 0.19 25.75 26.65
SGL 9 25.76 0.53 0.18 25.35 26.16
LaWa 13 23.82 0.86 0.24 23.30 24.33
Total 140 24.48 2.25 0.19 24.11 24.86
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Table 3.3a: Variance components for dominant frequency and click rate (individual 
model) in A. g. gryllus
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Table 3.3b.  Variance components for dominant frequency and click rate (mass and 
temperature model) in A. g. gryllus
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Table 3.4.  Linear regression formulas for click rate and dominant frequency on 
temperature and mass for A. g. gryllus, including summaries of fit and analyses of 
variance.

Regression Summary of Fit Analysis of variance

Click Rate = R2 0.12 d.f. 689

-1.12 - (0.135 x temperature) adjusted R2 0.12 F ratio 93.45

Root MSE 0.80 P value < 0.0001

Mean 2.12

Observations 690

Dominant Frequency = R2 0.00 d.f. 689

3644.41 - (6.40 x temperature) adjusted R2 0.00 F ratio 3.44

Root MSE 198.11 P value 0.0637

Mean 3487.44

Observations 690

Click Rate = R2 0.00 d.f. 521

2.238 + (0.041 x mass) adjusted R2 0.00 F ratio 0.03

Root MSE 0.88 P value 0.8598

Mean 2.20

Observations 522

Dominant Frequency = R2 0.19 d.f. 521

3960.99 - (465.06 x mass) adjusted R2 0.19 F ratio 123.58

Root MSE 159.71 P value < 0.0001

Mean 3490.45

Observations 522
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Table 3.5a.  Mean click rate, dominant freqency, and mass of A. c. crepitans and A. 
gryllus in allopatry, sympatry, syntopy, and throughout North Carolina.

A. c. crepitans
Status N Mean SD

     Click Rate (clicks/s) Allopatry 878 4.15 0.96
Sympatry 272 3.91 0.96

Syntopy 215 3.63 0.76

Total 1365 4.02 0.95

     Dominant Frequency (Hz) Allopatry 878 3862.80 178.96

Sympatry 272 3820.31 150.91

Syntopy 215 3911.13 193.95

Total 1365 3861.94 178.17

     Mass (g) Allopatry 170 1.07 0.18

Sympatry 61 1.05 0.16

Syntopy 44 0.98 0.11

Total 275 1.06 0.17

A. g. gryllus
Status N Mean SD

     Click Rate (clicks/s) Allopatry 204 1.77 0.69
Sympatry 269 1.95 0.91

Syntopy 217 2.04 0.74

Total 690 1.93 0.80

     Dominant Frequency (Hz) Allopatry 204 3500.70 209.59

Sympatry 269 3467.55 204.72

Syntopy 217 3540.78 169.55

Total 690 3500.38 197.97

     Mass (g) Allopatry 41 0.98 0.16

Sympatry 54 1.06 0.17

Syntopy 45 0.99 0.16

Total 140 1.01 0.17
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Table 3.5b.  Nested analyses of variance of click rate, dominant freqency, and mass of 
A. c. crepitans and A. g. gryllus.  Status refers to classification of each site (allopatry, 
sympatry, or syntopy with the other species).  Asterisks after P values indicate levels 
of analysis with a significant difference within the species.

A. c. crepitans
R2 adjusted R2 DF F Ratio P value

     Click Rate (clicks/s) Model 0.62 0.53 274 6.62
     Status 2 25.31 <0.001*

     Site[Status] 24 14.51 <0.001*

     Individual[Site,Status] 248 5.40 <0.001*

Error 1090 0.00

     Dominant Frequency (Hz) Model 0.89 0.86 274 32.42

     Status 2 0.64 0.529

     Site[Status] 24 121.72 <0.001*

     Individual[Site,Status] 248 22.91 <0.001*

Error 1090 0.00

     Mass (g) Model 0.43 0.37 24 7.36

     Status 2 8.95 <0.001

     Individual[Site,Status] 22 7.46 <0.001

Error 233 0.00

A. g. gryllus
R2 adjusted R2 DF F Ratio P value

     Click Rate (clicks/s) Model 0.48 0.34 139 3.60
     Status 2 16.21 <0.001*

     Site[Status] 11 14.45 <0.001*

     Individual[Site,Status] 126 2.57 <0.001*

Error 550 0.00

Model 0.82 0.77 139 18.00

     Dominant Frequency (Hz)      Status 2 46.00 <0.001*

     Site[Status] 11 42.83 <0.001*

     Individual[Site,Status] 126 15.43 <0.001*

Error 550 0.00

     Mass (g) Model 0.18 0.10 10 2.16

     Status 2 4.15 0.019*

     Individual[Site,Status] 8 1.97 0.058

Error 95 0.03
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Table 3.5c.  Variance components (REML) of click rate, dominant freqency, and mass 
of A. c. crepitans and A. gryllus.  Status refers to classification of each site (allopatry, 
sympatry, or syntopy with the other species).

A. c. crepitans

R2
Variance
Component

%
Variance

     Click Rate (clicks/s) Model 0.61 0.93 100.0
     Status 0.03 3.1

     Site[Status] 0.09 9.8

     Individual[Site,Status] 0.38 41.2

Residual 0.43 45.9

     Dominant Frequency (Hz) Model 0.89 32619.83 100.0

     Status -767.46 0.0

     Site[Status] 9930.42 29.7

     Individual[Site,Status] 19115.08 57.3

Residual 4341.79 13.0

     Mass (g) Model 0.42 0.03 100.0

     Status 0.00 0.7

     Site[Status] 0.01 40.7

Residual 0.02 58.5

A. g. gryllus

R2
Variance
Component

%
Variance

     Click Rate (clicks/s) Model 0.43 0.66 100.0
     Status 0.00 0.1

     Site[Status] 0.10 15.0

     Individual[Site,Status] 0.14 20.6

Residual 0.42 64.3

     Dominant Frequency (Hz) Model 0.82 40363.61 100.0

     Status 212.14 0.5

     Site[Status] 5145.21 12.7

     Individual[Site,Status] 26158.61 64.8

Residual 8847.64 21.9

     Mass (g) Model 0.13 0.03 100.0

     Status 0.00 4.9

     Site[Status] 0.00 7.5

Residual 0.03 87.6
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Table 3.6a.  Mean click rate (adjusted to 22.5° C) of A. g. gryllus at each site.  Sites 
are grouped by river system.  Upstream sites precede downstream sites in each 
system.

Site N (bouts) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

HARE 20 2.55 0.95 0.21 2.11 3.00
MeMi 93 1.91 0.69 0.07 1.77 2.05
GATE 28 2.21 0.72 0.14 1.93 2.49
BENN 50 1.77 0.52 0.07 1.62 1.91
Pett 40 1.59 0.76 0.12 1.35 1.84
ClNe-allo 65 2.72 1.21 0.15 2.42 3.02
ClNe-syn 76 1.99 0.69 0.08 1.83 2.15
COOL 40 1.76 0.59 0.09 1.57 1.95
WeWo 20 1.98 0.58 0.13 1.70 2.25
Jone 54 1.64 0.62 0.08 1.47 1.81
CaBe 59 1.81 0.80 0.10 1.60 2.02
PBBT 35 1.36 0.70 0.12 1.12 1.61
SGL 45 1.87 0.57 0.09 1.70 2.05
LaWa 65 1.85 0.57 0.07 1.71 1.99
Total 690 1.94 0.81 0.03 1.88 2.00
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Table 3.6b.  Mean dominant frequency (adjusted to 22.5° C) of A. g. gryllus at each 
site.  Sites are grouped by river system.  Upstream sites precede downstream sites in 
each system.

Site N (bouts) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

HARE 20 3434.00 95.78 21.42 3389.20 3478.80
MeMi 93 3505.66 147.98 15.35 3475.20 3536.10
GATE 28 3661.58 191.64 36.22 3587.30 3735.90
BENN 50 3390.91 107.00 15.13 3360.50 3421.30
Pett 40 3631.26 231.25 36.56 3557.30 3705.20
ClNe-allo 65 3496.48 192.24 23.84 3448.80 3544.10
ClNe-syn 76 3567.34 172.19 19.75 3528.00 3606.70
COOL 40 3639.68 122.23 19.33 3600.60 3678.80
WeWo 20 3335.66 89.59 20.03 3293.70 3377.60
Jone 54 3494.83 132.98 18.10 3458.50 3531.10
CaBe 59 3371.60 186.21 24.24 3323.10 3420.10
PBBT 35 3531.76 155.21 26.23 3478.40 3585.10
SGL 45 3486.85 353.54 52.70 3380.60 3593.10
LaWa 65 3452.02 160.39 19.89 3412.30 3491.80
Total 690 3487.44 198.46 7.56 3472.61 3502.28
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Table 3.7a.  Click rates (adjusted to 22.5° C) of A. c. crepitans and A. g. gryllus in the 
Neuse River basin.  Upstream sites precede downstream sites.

Species Site N (bouts) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

A. c. crepitans OcMo 30 4.89 0.88 0.16 4.56 5.22

A. c. crepitans EnRi 29 3.85 0.81 0.15 3.54 4.15

A. c. crepitans FaLa-RV 40 4.12 1.04 0.16 3.79 4.45

A. c. crepitans WBUm 165 4.13 1.13 0.09 3.96 4.30

A. c. crepitans FaLa-CC 44 4.00 0.86 0.13 3.74 4.27

A. c. crepitans MCB1 50 3.88 0.69 0.10 3.68 4.08

A. c. crepitans MCB2 30 2.92 0.49 0.09 2.73 3.10

A. c. crepitans WHP 45 4.06 0.49 0.07 3.91 4.20

A. g. gryllus ClNe-allo 65 2.72 1.21 0.15 2.42 3.02

A. c. crepitans ClNe-syn 47 4.00 0.75 0.11 3.78 4.22

A. g. gryllus ClNe-syn 76 1.99 0.69 0.08 1.83 2.15

A. c. crepitans NRFK 50 3.46 0.86 0.12 3.21 3.70

A. g. gryllus COOL 40 1.76 0.59 0.09 1.57 1.95
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Table 3.7b.  Dominant frequencies (adjusted to 22.5° C) of A. c. crepitans and A. g. 
gryllus in the Neuse River basin.  Upstream sites precede downstream sites.

Species Site N (bouts) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

A. c. crepitans OcMo 30 3903.80 152.57 27.86 3846.80 3960.80

A. c. crepitans EnRi 29 3641.98111.25920.66 3599.70 3684.30 4.15

A. c. crepitans FaLa-RV 40 3759.90 84.51 13.36 3732.90 3786.90

A. c. crepitans WBUm 165 3870.95 163.92 12.76 3845.80 3896.20

A. c. crepitans FaLa-CC 44 3854.16 192.73 29.06 3795.60 3912.80

A. c. crepitans MCB1 50 3719.88 124.51 17.61 3684.50 3755.30

A. c. crepitans MCB2 30 3767.82 213.95 39.06 3687.90 3847.70

A. c. crepitans WHP 45 3747.04 79.38 11.83 3723.20 3770.90

A. g. gryllus ClNe-allo 65 3496.48 192.24 23.84 3448.80 3544.10

A. c. crepitans ClNe-syn 47 4000.27 111.44 16.26 3967.50 4033.00

A. g. gryllus ClNe-syn 76 3567.34 172.19 19.75 3528.00 3606.70

A. c. crepitans NRFK 50 3754.34 93.89 13.28 3727.70 3781.00

A. g. gryllus COOL 40 3639.68 122.23 19.33 3600.60 3678.80
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Table 3.7c.  Masses of A. c. crepitans and A. g. gryllus in the Neuse River basin.  
Upstream sites precede downstream sites.

Species Site N (frogs) Mean
Standard
Deviation

Standard
Error Mean Lower 95% Upper 95%

A. c. crepitans OcMo 6 1.00 0.07 0.01 0.97 1.03

A. c. crepitans EnRi 6 1.28 0.11 0.02 1.24 1.32

A. c. crepitans FaLa-RV 8 1.26 0.13 0.02 1.22 1.31

A. c. crepitans WBUm 9 1.09 0.18 0.01 1.06 1.12

A. c. crepitans FaLa-CC 9 1.12 0.18 0.03 1.07 1.18

A. c. crepitans MCB1 10 1.19 0.08 0.01 1.16 1.21

A. c. crepitans MCB2 6 1.11 0.11 0.02 1.07 1.15

A. c. crepitans WHP 9 1.17 0.08 0.01 1.14 1.19

A. g. gryllus ClNe-allo 13 1.05 0.14 0.02 1.01 1.08

A. c. crepitans ClNe-syn 10 0.96 0.06 0.01 0.94 0.98

A. g. gryllus ClNe-syn 16 0.93 0.17 0.02 0.89 0.97

A. c. crepitans NRFK 10 1.15 0.08 0.01 1.12 1.17

A. g. gryllus COOL 8 0.98 0.11 0.02 0.94 1.01
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Figure 3.1.  Survey sites for A. c. crepitans and A. g. gryllus in North Carolina
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Figure 3.2a.  Mean click rate of A. g. gryllus at each site.  Each point represents a 
bout.  Central bars indicate the mean and standard errors. Outer bars indicate standard 
deviations.  Sites are grouped geographically by river system.  Within each system, 
the site furthest upstream is on the left and the site furthest downstream is on the 
right.
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Figure 3.2b.  Mean dominant frequency of A. g. gryllus at each site.  Each point represents a 
bout.  Central bars indicate the mean and standard errors. Outer bars indicate standard 
deviations.  Sites are grouped geographically by river system.  Within each system, the site 
furthest upstream is on the left and the site furthest downstream is on the right.
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Figure 3.2c.  Mean mass of A. g. gryllus at each site.  Each point represents a frog.  Central 
bars indicate the mean and standard errors. Outer bars indicate standard deviations.  Sites are 
grouped geographically by river system.  Within each system, the site furthest upstream is on 
the left and the site furthest downstream is on the right.
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Figure 3.2d.  Mean calling temperature of A. g. gryllus at each site.  Each point represents a 
bout.  Central bars indicate the mean and standard errors. Outer bars indicate standard 
deviations.  Sites are grouped geographically by river system.  Within each system, the site 
furthest upstream is on the left and the site furthest downstream is on the right.
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Figure 3.3a.  Linear regression of click rate on temperature for A. g. gryllus.  Each point 
represents a bout.
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Figure 3.3b.  Linear regression of dominant frequency on temperature for A. g. gryllus.  Each 
point represents a bout.
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Figure 3.3c.  Linear regression of click rate on mass for A. g. gryllus.  Each point represents a 
bout.
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Figure 3.3d.  Linear regression of dominant frequency on mass for A. g. gryllus.  Each point 
represents a bout.
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Figure 3.4a.  Overlap in click rate between A. c. crepitans and A. g. gryllus.  Each point 
represents a bout.  Points are jittered (spread on x-axis)  to show distribution on y-axis.
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Figure 3.4b.  Overlap in dominant frequency between A. c. crepitans and A. g. gryllus.  Each 
point represents a bout.  Points are jittered (spread on x-axis)  to show distribution on y-axis.
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Figure 3.4c.  Overlap in mass between A. c. crepitans and A. g. gryllus.  Each point 
represents a frog.  Points are jittered (spread on x-axis)  to show distribution on y-axis.
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Figure 3.5a.  Mean click rate at 22.5° of A. g. gryllus at each site.  Each point represents a 
bout.  Central bars indicate the mean and standard errors. Outer bars indicate standard 
deviations..  Sites are grouped geographically by river system.  Within each system, the site 
furthest upstream is on the left and the site furthest downstream is on the right.
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Figure 3.5b.  Dominant frequency at 22.5° of A. g. gryllus at each site.  Each point represents 
a bout.  Central bars indicate the mean and standard errors. Outer bars indicate standard 
deviations..  Sites are grouped geographically by river system.  Within each system, the site 
furthest upstream is on the left and the site furthest downstream is on the right.
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Figure 3.6a.  Click rates of A. c. crepitans and A. g. gryllus in the Neuse River basin.  Central 
bars indicate the mean and standard errors. Outer bars indicate standard deviations. 
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Figure 3.6b.  Dominant frequencies of A. c. crepitans and A. g. gryllus in the Neuse River 
basin.  Central bars indicate the mean and standard errors. Outer bars indicate standard 
deviations. 
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Figure 3.6c.  Mass of A. c. crepitans and A. g. gryllus in the Neuse River basin.  Central bars 
indicate the mean and standard errors. Outer bars indicate standard deviations.
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Chapter 4

Acoustic species discrimination in syntopy by female cricket frogs, Acris crepitans 

crepitans and Acris gryllus gryllus

Abstract

 The cricket frogs Acris crepitans crepitans and A. gryllus gryllus occur in syntopy in 

North Carolina and appear to be reproductively isolated, but the isolation mechanism has not 

previously been known.  I conducted antiphonal playback experiments on females of both 

species with natural and synthesized vocalizations of males to determine whether differences 

in vocalizations contributed to pre-mating isolation.  Both species discriminated between 

conspecific and heterospecific vocalizations differing in fine-scale temporal components and 

showed no preferences between conspecific vocalizations differing in dominant frequency.  

Although mate-quality discrimination can be compromised when high-quality conspecifics 

resemble heterospecifics, the results of the present study suggest that selection for species 

recognition is stronger than selection for mate-quality discrimination in syntopic Acris.

Introduction

Divergence in mate recognition systems often results in pre-mating reproductive 

isolation between related species (Coyne and Orr, 2004).  The evolution of mate recognition 

systems can be complicated by the conflict between species recognition and mate-quality 
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discrimination when high-quality conspecifics resemble heterospecifics (Pfennig, 1998), as 

in the spadefoot toad, Spea multiplicata (Pfennig, 2000).  Signal detection theory (Wiley and 

Richards, 1982; Wiley, 1994, 2006) predicts that organisms optimize transmission and 

reception of species-identifying signals and the identification of conspecific mates. 

The cricket frogs Acris crepitans crepitans and A. gryllus gryllus have broadly 

overlapping ranges and are syntopic in at least four wetlands in North Carolina (Chapter 1).  

Morphological identification of Acris has previously been difficult and whether reproductive 

isolation exists between species and subspecies has been uncertain.  A. crepitans females 

from an allopatric population in New Jersey and a sympatric population in Georgia 

successfully discriminated against the calls of A. gryllus but females from a Texas population 

did not (Nevo and Capranica, 1985).  Mount (1975) identified frogs with intermediate 

morphological traits in Alabama as hybrids of A. crepitans and A. gryllus, but Mecham 

(1964) reported finding no frogs with intermediate morphologies in wild populations despite 

successfully hybridizing the species in the laboratory.  Limited genetic divergence (Kaela 

Beauclerc, personal communication) has prevented development of mitochondrial (Rose et 

al., 2006) and microsatellite (Beauclerc et al., 2007) markers suitable for differentiating Acris 

species until recently.  The mating vocalizations of both species of Acris are highly variable 

in dominant frequency and large-scale temporal structure (Nevo and Capranica, 1985).  

These factors all suggest that divergence within Acris is minor, and perhaps has only 

occurred recently.  Characterizing the distinct differences between A. c. crepitans and A. g. 

gryllus in a small-scale temporal feature (the pulses within clicks) led to identifying 

morphological distinctions between the species at syntopic sites (Chapter 1).  No hybrids 

121



have been found in North Carolina (Chapter 1; Brimley, 1944).  Thus, despite only slight 

morphological, genetic, and behavioral divergence, reproductive isolation appears to be 

strong in Acris.  Pre-mating isolation, whether or not there is post-mating isolation, is 

probable.

The previous analyses of variation in click structure (Chapter 1) and click rate and 

dominant frequency in A. c. crepitans (Chapter 2) and A. g. gryllus (Chapter 3) indicated that 

the most consistent acoustic differences between the species were the patterns of pulses 

within clicks.  Furthermore, reproductive character displacement had not occurred in 

dominant frequency or click rate even where the species are syntopic.  These results 

suggested that dominant frequency or large-scale temporal features were less likely than the 

fine-scale structure of vocalizations to contribute to species recognition by females of either 

species.  This study tests the hypotheses that female A. c. crepitans and A. g. gryllus use the 

distinct differences in click structure rather than the slight differences in dominant frequency 

for species discrimination in syntopy.

Methods

Natural playback experiments on A. g. gryllus

 I conducted a test of the ability of female A. g. gryllus to discriminate species based 

on natural male vocalizations recorded for studies of variation between populations (Chapters 

2 and 3) and species (Chapter 3) in Acris.  I used recordings from five sites (Figure 4.1): the 

syntopic populations at Merchants Millpond (“MM”; NAD83 Lat. 36.43179°, Long. 

-76.69666°); two sites that were near Merchants Millpond but had only one of the species 
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(“proximate allotopic”; A. c. crepitans from the Cashie River in Martin County, “CA”, 

NAD83 Lat. 35.92478°, Long. -76.73445°; A. g. gryllus from Lake Phelps in Washington 

County, “PT”, NAD83 Lat. 35.73400°, Long. -76.44083°); and two sites far from Merchants 

Millpond with only one species (“distant allotopic”; A. c. crepitans near Middle Creek in 

Johnston County, “MC”, NAD83 Lat. 35.57138°, Long. -78.58368°; A. g. gryllus near Swift 

Creek in Cool Springs, Craven County, “CS”, NAD83 Lat. 35.19123°, Long. 77.08344°).  

Within these geographic groups, I paired bouts of each species that differed by no more than 

4 clicks and 2 s in total duration, but differed in the structure of pulses within clicks, 

dominant frequency, and bout-scale temporal structure.  From these pairs, I randomly 

selected four pairs of Merchants Millpond bouts, two pairs of Cashie River and Lake Phelps 

bouts, and two pairs of Middle Creek and Neuse River bouts (Table 4.1).  I used Sound 

Studio 2.2.4 (Felt Tip Software, 2005) to concatenate the two bouts of each pair into a two-

channel AIFF file with 1 s of silence separating the antiphonal bouts.  Half of the exemplar 

pairs began with an A. c. crepitans bout.  Each file contained an equal number of bouts of the 

two species and ended after approximately 15 min (once the bout nearest the 15 min point 

was complete).  I removed background vocalizations with the Silence function in Sound 

Studio and equalized the amplitudes of the two channels.

 Amplexed A. g. gryllus females were collected from a chorus at Merchants Millpond 

containing both species from 10 June to 22 June 2006 between 2100 and 2400 hours.   I 

photographed each female with its mate, captured the pair and confirmed the species of each 

female and male based on anal tubercle size, thigh stripe characteristics, and rugosity of the 

dorsum (Chapter 1), and released the male at the site of capture.  I tested females within 5 
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hours of capture and released them on Merchants Millpond at another chorus at least 1500 

meters from the collection site.  The playback arena (240 x 120 x 71 cm high) had walls 

covered with acoustic tile.  An incandescent red bulb was suspended over the center of the 

arena.  An amplified speaker (Radioshack 277-1008) located 20 cm from each end of the 

arena was connected to the playback device (third-generation iPod, Apple Inc.).  I alternated 

the speaker presenting each species from one night to the next.  Before each trial, I measured 

the amplitude of a test vocalization emitted by each speaker with a sound pressure level 

meter (Realistic 33-2050, C weighting, fast response) and adjusted the speaker until each 

click peaked at 80 dB.  For each trial, I randomly selected a female, placed her at the center 

of the arena under a perforated plastic cone, and released her remotely after one round of 

antiphonal bouts of a randomly selected playback file.  Each playback continued for fifteen 

minutes or until a female left the arena or made a choice by demonstrating a phonotactic 

response to one of the signals and moving to within 20 cm of the speaker producing that 

signal.

Natural models for synthetic playback experiments

 The temporal structure of synthesized clicks was modeled on recordings of five A. c. 

crepitans and four A.g. gryllus males recorded on 12 May 2005 at a mixed-species chorus at 

Merchants Millpond.  I focused on recordings from one night and chorus to address click 

differences between the species from a single mixed chorus (Figure 4.2) rather than mean 

click differences between the two species.  This decision also excluded any changes in click 

features by either species in choruses with different numbers of heterospecific males or 
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differences between males calling at substantially different temperatures.  The resultant 

synthesized clicks therefore represented the vocalizations of males as a female would 

perceive them in a mixed chorus rather than the average vocalizations for each species or 

population.  I used the SongSignatures function in WildSpectra (version 061025, Wiley, 

2007a) to assess the structure of pulses within each click for 5 bouts of each of the 5 A. c. 

crepitans males and 2 A. g. gryllus males, 4 bouts for one A. g. gryllus male, and 2 bouts for 

1 A. g. gryllus male.  SongSignatures recognizes each note in a selected portion of a 

spectrogram based on a user-defined starting and ending amplitude thresholds and produces a 

text file with spectral and temporal information for each note and the selection overall.   I 

used a sampling rate of 44.1 kHz and transform size of 16 for these measurements, which 

optimized temporal resolution (under 1 ms) at the expense of spectral resolution.  

SongSignatures indicated the number of pulses in each click, the duration of each pulse, and 

the interval from one pulse to the next.  JMP 6.03 (SAS Institute, 2006) was used to calculate 

the median number of pulses, mean pulse duration, and mean interval between pulses in each 

quartile of a bout for each bout, individual, and species.  This procedure generated means for 

the click structure in each quartile of a bout for each species.  I modeled the dominant 

frequency of synthesized vocalizations on measurements from the previous study of 

dominant frequency in both species (Chapters 2 and 3).

Synthesis of files for playback

 SoundSynth2 version 070516b (Wiley, 2007b) was used to synthesize the clicks as 

uncompressed AIFF files (Figure 4.3a and 5.3b).  I created 4 A. c. crepitans clicks, one for 
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each quartile of a bout.   For each quartile, I selected the 12 May 2005 natural click that most 

closely reflected the median pulse number and mean click duration and used it as the model 

for the intervals between pulses and the relative amplitude of each pulse in the synthesized 

click.  I used the calculated median pulse numbers, mean intervals between pulses, and mean 

click durations to model the A. g. gryllus clicks directly.   Because A. g. gryllus clicks varied 

so little in the latter 3 quartiles of a bout, I only synthesized 2 clicks: one for the first quartile 

and one to represent the 3 other quartiles.  The latter synthesized click consisted of the click 

for the first quartile with two additional pulses and an amplitude profile adjusted to account 

for the additional pulses.  I synthesized each click with each of three dominant frequencies.  I 

used the population mean temperature-adjusted dominant frequency for each species (A. c. 

crepitans, 3962 Hz; A. g. gryllus, 3502 Hz) to synthesize clicks for both species, and the 

dominant frequency one standard deviation above the mean for A. c. crepitans (4150 Hz) and 

one standard deviation below the mean for A. g. gryllus (3353 Hz).  To model the large-scale 

temporal structure of bouts for each species, I categorized natural bouts from Merchants 

Millpond A. c. crepitans (N=102) and A. g. gryllus (N=96) according to the number of clicks 

in each bout and randomly selected a bout from each quartile.  This resulted in models 

representing short bouts (those in the first quartile for click number), intermediate bouts (in 

the second and third quartiles for click number), and long bouts (in the last quartile for click 

number) for each species.  To assemble synthesized bouts, I concatenated the SoundSynth2 

text files for each click into larger files.  Finally, I used the natural bout as a template for the 

start time of each click in the synthesized bout and selected the synthesized click that most 
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reflected the structure of the natural click at that point in the bout.  Figure 4.3c shows the two 

shortest bouts synthesized for Experiment 1. 

 I created two-channel AIFF files for each playback experiment with Sound Studio 

2.2.4 (Felt Tip Studio, 2005).  Each file began with 3 min of silence as an acclimation period 

and then consisted of antiphonal bouts separated by 1 s of silence for approximately 15 min 

(once the bout nearest the 15 min point was complete).  For each of the 4 exemplar pairs in 

an experiment, I created files differing in the initial exemplar and the channel of each 

exemplar.  Altogether I produced 16 files for each experiment.

 In Experiment 1, I tested the effectiveness of the synthesized vocalizations in eliciting 

species recognition by females.  I created 4 A. c. crepitans bouts, at 3962 Hz, and 4 A. g. 

gryllus bouts, at 3502 Hz, each with the number and intervals of clicks and total duration 

patterned on a natural bout.  I randomly paired a bout from each species to create the 4 

exemplar pairs for the experiment, so in each exemplar pair, the two signals differed not only 

in temporal and spectral structure of clicks but also in bout duration and the number and 

pattern of clicks in the bout.  Each exemplar pair emphasized differences between the species 

and included both the dominant frequency and click differences that might be used by 

females for species recognition.

 In Experiment 2, I tested the ability of females to discriminate between vocalizations 

differing only in specific click structure.  I paired each bout used in Experiment 1 with a bout 

in which I replaced the clicks of one species with the clicks of the other species, so within 

each pair, the exemplars had exactly the same dominant frequency and large-scale structure.  

This produced 4 exemplar pairs for use on each species.
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 In Experiment 3, I tested the ability of females to discriminate between vocalizations 

with the mean conspecific dominant frequency (A. c. crepitans, 3962 Hz; A. g. gryllus, 3502 

Hz) and with dominant frequencies one standard deviation above the mean for A. c. crepitans 

(4150 Hz) and below the mean for A. g. gryllus (3353 Hz).  I paired each bout used in 

Experiment 1 with a bout resynthesized at the other dominant frequency, again producing 4 

exemplars for use with females of each species.

Synthetic playback experiments

 I collected amplexed females from a mixed-species chorus at Merchants Millpond 

State Park between 2100 and 0030 hours from 16 May to 10 July 2007.  I photographed each 

female with its mate, captured the pair and determined the species of each female and male 

based on thigh stripe characteristics and rugosity of the dorsum (Chapter 1), and released the 

male at the site of capture.  I tested each female within 5 h of capture before releasing it the 

following night on Merchants Millpond at another chorus at least 700 meters from the site of 

capture.  I conducted experiments on both species concurrently.  Experiment 1 (synthesis) 

took place from 16 May to 30 May and Experiment 2 (click structure) and 3 (dominant 

frequency) concurrently from 30 May to 4 July.  I used the same arena as in 2006 but 

replaced the single incandescent bulb with a pair of red button-cell LEDs for more uniform 

lighting and connected the speakers to a compact two-channel mixer (Radioshack 32-2056) 

with input from a third-generation iPod (Apple Inc.).  Before each trial, I measured the 

amplitude of a test vocalization emitted by each speaker with a sound pressure meter 
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(Radioshack 33-2055, C weighting, fast response) and adjusted the speaker and mixer until 

each click peaked at 80 dB.

 For each trial, a female was selected randomly, placed at the center of the arena under 

a perforated plastic cone, and released remotely after one round of antiphonal bouts of a 

randomly selected playback file.  I recorded the time and direction of the female’s first hop 

and each hop thereafter.   Each playback continued for 15 min (no choice) or until a female 

demonstrated a phonotactic response to one of the signals and moved to within 20 cm of the 

speaker producing that signal (choice).  In Experiment 1, I tested each female once.  I 

continued testing females until I  recorded one choice for each of the 16 playback files for 

both species.  Because each exemplar was played an equal number of times from either side 

of the arena, any side bias in the arena could be detected and corrected before progressing to 

the other experiments.  In Experiment 2 and 3, I randomly assigned an experiment and 

playback file to each female and continued testing females until I recorded 4 choices for each 

exemplar pair.  Because no bias was detected in the first experiment, I randomized the 

presentation of each exemplar pair instead of seeking a response to each of the 16 playback 

files.  If a female made a choice in the initial trial, it was placed in a sample of pond water for 

60 seconds and then returned to the center of the arena to begin a trial for the other 

experiment.

 A Sign Test was used to assess preference and JMP 6.0.3 (SAS Institute, 2006) was 

used to conduct Wilcoxon tests on the latency to first hop and latency to choice for each 

experiment.
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Results

 Table 4.2 summarizes the results.  In 2006, female A. g. gryllus preferred the 

vocalizations of conspecific males (Sign Test: N = 15, p < 0.05).  In the one trial in which a 

female chose an A. c. crepitans recording, the stimulus was the first syntopic exemplar pair.  

The latency to choice for this female did not differ significantly from the 15 choices for A. g. 

gryllus (Wilcoxon Test:  χ2 = 0.29, d.f. = 1, p = 0.59).

 In the first experiment of 2007, both species preferred conspecific vocalizations (Sign 

Test: A. c. crepitans, N = 15, p < 0.05; A. g. gryllus, N = 13, p < 0.05), an indication  that the 

synthesized signals were sufficient for species discrimination.   Because the stimulus pairs 

differed to varying degrees in duration and other large-scale temporal features, these were 

unlikely to have influenced species discrimination.  In both species, there were no significant 

differences in the latency to first hop between females that chose conspecific signals and 

those that chose heterospecific signals (Wilcoxon Test: A. c. crepitans, χ2 = 1.42, d.f. = 1, p = 

0.23; A. g. gryllus, χ2 = 0.11, d.f. = 1, p = 0.74) or latency to choice (Wilcoxon Test: A. c. 

crepitans,  χ2 = 1.42, d.f. = 1, p = 0.23; A. g. gryllus, χ2 = 0.11, d.f. = 1, p = 0.74)

 While the second and third experiments were taking place, A. c. crepitans stopped 

amplexing at the collection site before 16 choices were made in each experiment.  

Nonetheless, enough choices were available for statistical analysis.  In Experiment 2, which 

tested preference for pulse structure of clicks, 8 of 8 A. c. crepitans females preferred the 

conspecific signal (Sign Test, p < 0.05).  In Experiment 3,there was no preference for 

conspecific signals at the mean dominant frequency or one standard deviation above the 

mean (Sign Test; 8 for mean, 6 for SD, p > 0.05) and no difference in latency to choice 
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(Wilcoxon Test; χ2 = 0.27, d.f. = 1, p = 0.60).  There was a difference in latency to first hop 

(Wilcoxon Test; χ2 = 9.75, d.f. = 1, p = 0.0018) between females that chose the high-

frequency bout (mean = 44 s) and the low-frequency bout (mean = 204 s).

 Every female A. g. gryllus preferred bouts with conspecific clicks in Experiment 2 

(Sign Test; N = 16, p < 0.05).  In Experiment 3, A. g. gryllus females had no preference for 

conspecific signals at the mean dominant frequency or one standard deviation below the 

mean, as half the females chose each signal (Sign Test; N = 16, p > 0.05).  There was no 

difference in the latency to first hop (Wilcoxon Test; mean = 100 s., χ2 = 0.07, d.f. = 1, p = 

0.79) or latency to choice (Wilcoxon Test; mean = 319 s., χ2 = 0.28, d.f. = 1, p = 0.60).

Discussion

 With pairs of natural A. g. gryllus and A. c. crepitans bouts, with varying differences 

in dominant frequency and large-scale temporal structure, female A. g. gryllus were able to 

recognize the conspecific signal (Table 4.1).  The experiments with synthesized vocalizations 

showed that the temporal structure within clicks was sufficient for species discrimination by 

females of both species (Table 4.2).  Females had no preference between synthesized 

conspecific vocalizations differing in dominant frequency, except that A. c. crepitans females 

that chose the signal with the higher dominant frequency hopped sooner than those that chose 

the lower dominant frequency.  No preference occurred in either species for the dominant 

frequency that was most removed from the dominant frequency of the heterospecific males.

 Several differences separate the clicks of the two species, including duration, pulse 

number, variance in the interpulse interval (Chapter 1), pulse shape, and pulse rate.  One or a 
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combination of these differences could have been used by females for identification of 

conspecific males.  Furthermore, because the clicks of A. c. crepitans vary more than those of 

A. g. gryllus and because the difference in variation was reflected in the synthesized clicks, 

the extent of variation among the clicks, rather than any specific component of the clicks 

themselves, might have been used for discrimination.  In grey treefrogs, Hyla chrysoscelis 

and H. versicolor, differences in pulse rate were sufficient for species discrimination but 

changes in pulse duration and interpulse interval also affected female preference in H. 

versicolor (Gerhardt and Huber, 2002).  Among field crickets (Orthoptera: Gryllidae), pulse 

rate or period is the most important feature used by females for mate selection, including 

species discrimination (Gerhardt and Huber, 2002).  The taxonomic and geographic 

relatedness of grey treefrogs to Acris makes an informative comparison.  The acoustic 

similarity of Acris to the Gryllidae and two other families of orthopteran insects is not just a 

inspiration for nomenclature, but invites comparison of mate recognition systems.

 Experiments on the spectral and temporal preferences of female A. crepitans in the 

Midwest have found inconsistent results.  The basilar papilla of the female ear was tuned 

below the mean dominant frequency of three A. crepitans populations in which females also 

demonstrated preferences for lower dominant frequency (Ryan and Wilczynski, 1988; Ryan 

et al., 1992).  In another study, female A. crepitans blanchardi did not have a preference 

among vocalizations with different dominant frequencies, but they preferred vocalizations 

that included facultative temporal changes made by males in proximity to other males (Kime 

et al., 2004).  Temporal complexity might have affected the discriminability of vocalizations 

differing in dominant frequency (Witte et al., 2001; Kime et al., 2004).  Pulse-scale temporal 
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features did not affect the preferences of female A. crepitans in Illinois, but dominant 

frequency did (Perrill and Lower, 1994).  Smaller females prefer dominant frequencies that 

are higher than those preferred by larger females because basilar papilla tuning is size-

dependent (Ryan et al., 1992), so even within populations, selection by females is not purely 

directional.  It is probable that differences in female preferences in the Midwest are 

population-specific (Perrill and Lower, 1994).  Selection on female choice could differ 

among populations, but genetic drift may also produce such differences.

 The results of this study indicate that there is strong selection in syntopy for 

avoidance of heterospecific mating.  At the edge of the range of A. crepitans and in syntopy 

with A. gryllus, the geographic, ecological, and morphological overlap between the species, 

together with the low incidence of hybridization in syntopy, indicates a reliable reproductive 

isolating mechanism.  When choosing conspecific males, females of both species used the 

most distinct difference between species, temporal structure within clicks (Chapter 1), for 

species discrimination.  Females disregarded a feature, dominant frequency, that correlates 

with body size (Chapters 2 and 3) and might thus indicate male quality but that overlaps with 

the dominant frequency of heterospecifics.  In A. c. crepitans in the Midwest, selection on 

temporal components of vocalizations for decreased signal degradation during propagation 

has been more important than selection on spectral features (Wilczynski and Ryan, 1999).  

The importance of temporal features for A. c. crepitans and A. g. gryllus and the consistency 

with previous experiments on A. crepitans indicates that similar interpretations might be 

apply to the Southeast. 
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 Important aspects of the reproductive ecology of Acris in syntopy were not addressed 

in this study.  Although post-metamorphic Acris with hybrid phenotypes have never been 

detected in North Carolina, cross-fertilization and rearing experiments would determine 

whether or not post-mating isolation mechanisms, such as hybrid inviability or failure of 

hybrids to reach the adult stage, might result in selection for pre-mating isolation.  Because 

of their disregard for dominant frequency, it is not clear how females of either species assess 

conspecific mate quality in the syntopic chorus.  The lower mass of males in syntopy 

(Chapter 3) and, in this study and others, the lack of female preference for lower dominant 

frequency associated with body size, should be explored further.  A. c. crepitans breeding 

activity appeared to peak earlier in the summer than that of A. g. gryllus, perhaps because the 

species is better adapted for cooler temperatures, but it is still unclear what factors determine 

the occurrence of each species at a particular site within the zone of sympatry.

 Female Acris crepitans crepitans and Acris gryllus gryllus from a syntopic site 

discriminated the vocalizations of conspecific and heterospecific males based on the structure 

of clicks and not on dominant frequency.  Discrimination of large-scale temporal structure 

was not directly assessed, but such differences did not appear to affect female responses.
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Table 4.1  Natural vocalizations used for playback to female A. g. gryllus in 2006

Category Site Species N (clicks) duration (s)
mean dominant
frequency (Hz)

Syntopic 1 CASH A. c. crepitans 23 4.36 4076
Pett A. g. gryllus 20 4.46 3470

difference 3 -0.1 606

2 CASH A. c. crepitans 35 12.12 3811
Pett A. g. gryllus 35 13.65 3537

difference 0 -1.53 274

3 MCB1 A. c. crepitans 46 17.92 3480
COOL A. g. gryllus 45 18.52 3582

difference 1 -0.6 -102

4 MCB1 A. c. crepitans 21 8.63 3747
A. g. gryllus 18 8.49 3777
difference 3 0.14 -30

Non-syntopic 1 MeMi A. c. crepitans 36 10.63 3700
MeMi A. g. gryllus 32 11.28 3563

difference 4 -0.65 137

2 MeMi A. c. crepitans 20 13.18 3796
MeMi A. g. gryllus 17 13.09 3480

difference 3 0.09 316

3 MeMi A. c. crepitans 36 14.99 3703
MeMi A. g. gryllus 36 15.69 3301

difference 0 -0.7 402

4 MeMi A. c. crepitans 63 24.14 4173
MeMi A. g. gryllus 66 24.25 3549

difference -3 -0.11 624

135



Table 4.2.  Results of playback experiments in 2006 and 2007.  Asterisks indicate 
significant preferences by females.

Experiment Subject Stimulus N (choices)
mean latency 
to first hop (s)

mean latency
to choice (s)

2006: Natural A. g. gryllus A. c. crepitans 1 - 393
vocalizations A. g. gryllus 15* - 302

total 16 308

2007: Synthesis A. c. crepitans A. c. crepitans 15* 147 487
A. g. gryllus 1 335 497
total 16 187 488

A. g. gryllus A. c. crepitans 3 189 491
A. g. gryllus 13* 194 370
total 16 193 393

Click type A. c. crepitans A. c. crepitans 8* 120 446
A. g. gryllus 0 - -
total 8 - -

A. g. gryllus A. c. crepitans 0 - -
A. g. gryllus 16* 82 346
total 16 - -

Dominant A. c. crepitans 4150 8 44 381
frequency 3962 6 204 418

total 14 182 397

A. g. gryllus 3502 8 101 338
3353 8 81 300
total 16 100 319
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Figure 4.1.  Recording sites for 2006 female choice experiments
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Figure 4.2.  Oscillograms of typical clicks of Acris c. crepitans and A. g. gryllus
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Figure 4.3a.  Oscillograms of 4 synthesized clicks of Acris c. crepitans used in 
playback experiments in 2007.

100 ms
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Figure 4.3b.  Oscillograms of 2 synthesized clicks of Acris g. gryllus used in playback 
experiments in 2007.
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Figure 4.3c.  Oscillograms of short (10 s) Acris bouts synthesized for Experiment 1 in 
2007.  These are modeled on bouts in the first quartile for click number at Merchants 
Millpond.
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Appendix.  Field sites, management agencies, and geographic coordinates (NAD83 datum).  
NCDPR: North Carolina Department of Parks and Recreation. NCWRC: North Carolina 
Wildlife Resources Commission. RCWC: Roanoke-Chowan Wildlife Club. TLC: Triangle 
Land Conservancy. UNC: University of North Carolina.  WHC: Waynseborough Historic 
Commission.

Site Location Management Species Latitude Longitude

BENN Bennett’s Millpond Chowan Co. A. g. gryllus 36.15287 -76.66357

CaBe Carolina Beach State Park NCDPR A. g. gryllus 34.04309 -77.90969

CASH (CA) Cashie River none A. c. crepitans 35.92418 -76.73445

ClNe-allo Cliffs of the Neuse State Park NCDPR A. g. gryllus 35.23613 -77.88506

ClNe-syn (CN) Cliffs of the Neuse State Park NCDPR both 35.22819 -77.88223

COOL (CS) Cool Springs boat launch NCWRC A. g. gryllus 35.19123 -77.08344

CrMo Crowder’s Mountain State Park NCDPR A. c. crepitans 35.21016 -81.29326

EnRi Eno River State Park NCDPR A. c. crepitans 36.08026 -79.00616

FaLa-CC Falls Lake State Rec. Area NCDPR A. c. crepitans 35.95424 -78.61367

FaLa-RV Falls Lake State Rec. Area NCDPR A. c. crepitans 36.01103 -78.73368

GAIN Gainie Road Gravel Pit private A. c. crepitans 34.96911 -78.78715

GATE Gatesville borrow pit private both 36.39785 -76.74918

HAL Halifax beaver pond private A. c. crepitans 36.19955 -77.86637

HARE Hare’s Millpond RCWC both 36.37260 -76.91055

HaRo Hanging Rock State Park NCDPR A. c. crepitans 36.38864 -80.27112

Jone Jones Lake State Park NCDPR A. g. gryllus 34.68122 -78.59874

Kerr Kerr Lake State Rec. Area NCDPR A. c. crepitans 36.43823 -78.34382

LaNo Lake Norman State Park NCDPR A. c. crepitans 35.67728 -80.94046

LaNo Lake Norman State Park NCDPR A. c. crepitans 35.67551 -80.93837

LaNo Lake Norman State Park NCDPR A. c. crepitans 35.67762 -80.94091

LaWa Lake Waccamaw State Park NCDPR A. g. gryllus 34.26094 -78.52350

LaWa Lake Waccamaw State Park NCDPR A. g. gryllus 34.25921 -78.48366

LaWa Lake Waccamaw State Park NCDPR A. g. gryllus 34.26000 -78.51872

MCB1 (MC) Middle Creek Bottomlands TLC A. c. crepitans 35.57138 -78.58368

MCB2 Middle Creek Bottomlands TLC A. c. crepitans 35.52441 -78.48677

MeMi (MM) Merchants Millpond State Park NCDPR both 36.43179 -76.69667
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Site Location Management Species Latitude Longitude

MeMi Merchants Millpond State Park NCDPR both 36.43122 -76.69647

MeMi Merchants Millpond State Park NCDPR both 36.43150 -76.69663

MeMi Merchants Millpond State Park NCDPR both 36.42441 -76.67717

MFBR (MF) Mason Farm Biological Reserve UNC A. c. crepitans 35.89005 -79.00866

MFBR Mason Farm Biological Reserve UNC A. c. crepitans 35.89215 -79.02037

MFBR Mason Farm Biological Reserve UNC A. c. crepitans 35.89018 -79.00935

NRFK Neuse River in Kinston, NC none A. c. crepitans 35.25923 -77.62067

OcMo Occoneechee Mountain SNA NCDPR A. c. crepitans 36.06011 -79.11407

PBBT (PB) Pineberry Bay NCWRC A. g. gryllus 34.97568 -78.48395

Pett (PT) Pettigrew State Park NCDPR A. g. gryllus 35.73400 -76.44083

RaRo Raven Rock State Park NCDPR A. c. crepitans 35.44016 -78.87911

RaRo Raven Rock State Park NCDPR A. c. crepitans 35.44158 -78.87788

RaRo Raven Rock State Park NCDPR A. c. crepitans 35.44576 -78.87048

RaRo Raven Rock State Park NCDPR A. c. crepitans 35.44359 -78.87098

RaRo Raven Rock State Park NCDPR A. c. crepitans 35.44142 -78.87304

RaRo Raven Rock State Park NCDPR A. c. crepitans 35.43929 -78.87323

RaRo Raven Rock State Park NCDPR A. c. crepitans 35.44673 -78.86413

RHOD Rhodes Millpond NCWRC A. c. crepitans 35.22589 -78.65241

ROAN1 Roanoke River Wetlands NCWRC A. c. crepitans 35.88325 -77.13712

ROAN2 Roanoke River boat launch NCWRC A. c. crepitans 36.20569 -77.38601

SGL Sandhills Gameland NCWRC A. g. gryllus 34.99828 -79.51797

TAHE Tar Heel boat launch NCWRC A. c. crepitans 34.74723 -78.78435

TLCJ Justice Tract TLC A. c. crepitans 35.62966 -79.11966

TLCJ Justice Tract TLC A. c. crepitans 35.63414 -79.10582

WBUm WB Umstead State Park NCDPR A. c. crepitans 35.86411 -78.75387

WBUm WB Umstead State Park NCDPR A. c. crepitans 35.87117 -78.76282

WBUm WB Umstead State Park NCDPR A. c. crepitans 35.84007 -78.74436

WBUm WB Umstead State Park NCDPR A. c. crepitans 35.83947 -78.74673

WeWo Weymouth Woods NCDPR A. g. gryllus 35.15509 -79.35639

WHP Waynesborough Historic Village WHC A. c. crepitans 35.37415 -78.01898
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