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ABSTRACT

JOOHEE LEE: Mathematical descriptions of nematic polymers

in the monolayer limit.
(Under the direction of M. Gregory Forest.)

Monolayer films of liquid crystalline polymers (LCPs) are modeled with a two di-

mensional (2D) analog of the Doi-Hess (1981, 1976) kinetic model. In this dissertation,

we focus on the analysis of the Doi-Hess Smoluchowski equation for the orientational

distribution of LCPs, and an understanding of the distinctions which arise due to 2D

confinement relative to results for full orientational space distributions. In Chapter 2, we

study the mesoscopic model which approximates the Doi-Hess kinetic model, based on

a second-moment closure. In this setting, we establish a more complete solution to the

classical problem of how orientational degeneracy of quiescent nematic equilibria breaks

in weak shear, and we determine the distinctions between two versus three dimensional

sheared nematic-liquids. We give the first proof that limit cycles, known as tumbling

orbits, must arise beyond the parameter boundary for the steady-unsteady transition.

Finally, we show the shear-perturbed 2D phase diagram is significantly more robust to

closure approximations than the 3D system. In Chapter 3, we solve a two dimensional

Smoluchowski equation which is the extended Doi-Hess model for magnetic nano-rod

dispersions in linear flows. We obtain closed-form representations of all steady state so-

lutions in terms of Boltzmann distributions of the Smoluchowski equation. This method

yields an exact, finite-dimensional reduction of the infinite-dimensional PDE, from which

we construct bifurcation diagrams for all equilibria without external fields.
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Chapter 1

Introduction

Liquid crystalline polymers (rigid macromolecules dispersed in a solvent) form ordered

phases, which are intermediate between liquids and crystalline solids, on the scale of mi-

crons due to excluded volume interactions of approximately 105 macromolecules. Liquids

have only short-range order and crystalline solids ideally have perfect order both with

respect to the position and orientation of their component molecules. These ordered

“mesophases” are systems in which a liquid-like order exists at least in one direction of

space and in which some degree of anisotropy is present. There are three types of liquid-

crystalline structures: nematic, cholesteric, and smectic (de Gennes and Prost, 1993).

The nematic liquid crystalline phase has the simplest ordering. It possesses long range

orientational order in one direction like a solid but only a short range positional order

like a liquid. A cholesteric is similar to a nematic but the direction in space is twisted

helically. A smectic phase has structures with layered ordering.

In the early 1970’s, there was the first commercialization of Kevlar aromatic polyamide

fiber. This fiber can be almost as stiff and as strong as steel with 20% of the density. In

addition, it has high thermal stability and strong chemical resistance. Kevlar is used to

produce bullet proof vests, ropes, cables and high performance sporting goods like tennis

racquets, where high strength and light weight are essential. Optical properties of liquid

crystals are extremely sensitive to external perturbations. The color of cholesteric liquid

crystals varies with temperature. These properties have been exploited to build sensitive



temperature devices for medical applications. Twisted-nematic displays have been com-

mercialized successfully in the digital watch, hand-held calculator and computer display

industry.

Since the rheological properties of nematic liquid crystals are strongly affected by the dy-

namic behavior of the molecular alignment, it is very important to know how to control

the orientation. The Doi-Hess model for rod-like molecules has been very successful in

describing the hydrodynamics of liquid crystalline polymers. This model provides an evo-

lution equation for the orientational probability distribution function of a single molecule.

The rotational motion of a rod is severely constrained by surrounding rods. Interactions

between molecules are modeled by a mean-field excluded-volume potential. The model

also includes flow-coupling and Brownian diffusion for the orientational distribution. The

system forms a nematic phase, distinguished by a partially ordered, anisotropic orienta-

tional distribution, above a certain concentration of rods. Otherwise the system is in an

isotropic phase in which the orientation of the rod is completely random. An intermedi-

ate range of concentrations admits bi-stability.

The focus of this dissertation is on the analysis of the two-dimensional Doi-Hess model,

which is physically motivated by monolayer films (Maruyama et al., 1998), and an un-

derstanding of the distinctions which arise due to 2D confinement relative to results for

full orientational space distributions. The Doi-Hess kinetic model gives rise to a Smolu-

chowski equation for the orientational probability distribution function. A mesoscopic

approximation based on moment closure rules has been introduced to reduce the com-

plexity of the kinetic model (which is an infinite-dimensional dynamical system) to a

low-dimensional, more tractable, dynamical system. In Chapter 2, we begin with the

mesoscopic model to study what survives from orientational degeneracy of the quiescent

nematic phase as an external perturbation is turned on. We solve the two-dimensional

weak shear problem analytically and obtain shear-perturbed 2D phase diagrams numer-

ically for various second-moment closures.

The molecules of liquid crystals are anisotropic not only in shape but also with respect
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to charge. This makes their orientation affected by electric and magnetic fields, and

also makes them optically birefringent. Those properties are used in developing display

devices. The Doi-Hess model for rigid rod-like nematic polymers was extended to mag-

netic nano-rod dispersions by Bhandar and Wiest (Bhandar and Wiest, 2003). The

model includes magnetic field effects in addition to Browninan diffusion, flow-coupling

and excluded-volume interactions. In Chapter 3, we study the extended Smoluchowski

equation for magnetic dispersions. We obtain the steady state solution of the Smolu-

chowski equation for general linear flows in semi-implicit form. This is an exact reduc-

tion of the PDE to a two-dimensional system, a result first achieved formally by Onsager

(Onsager, 1949) and later made rigorous by Constantin and collaborations (Constantin

et al., 2004). We also construct bifurcation diagrams for the case of no external fields.

3



Chapter 2

Alignment and rheo-oscillator

criteria for sheared nematic polymer

films in the monolayer limit

2.1 Introduction

Hess (Hess, 1976) and Doi (Doi, 1981) proposed the nematic liquid crystalline model

which provides an evolution equation for the orientational probability density function of

rod-like molecules in a laminar flow field. Marrucci and Maffetonne developed an insight-

ful analysis of the two-dimensional form of this model to understand the steady-unsteady

transition in weak shear (Marrucci and Maffetone, 1989). For the case of two-dimensional

nematic polymers, Maffetonne and Crescitelli (Maffetone and Crescitelli, 1994, 1995) an-

alyzed a simplified constitutive equation in order to examine closure approximations

and numerically explored bifurcations of the kinetic model equation using the continua-

tion software AUTO (Doedel et al., 1998; Ermentrout, 2002). These model predictions

were applied to experiments on monolayers of nematic polymers performed in Fuller’s

group (Maruyama et al., 1998; Yim et al., 2001). Faraoni and Grosso et al. (Faraoni et

al., 1999), following initial results of Larson and Öttinger (Larson and Öttinger, 1991),

revealed various bifurcations of the 3-dimensional Doi model using spherical harmonic



expansions and AUTO. Forest, Wang and Zhou (Forest et al., 2003, 2004) provided the

3-dimensional Doi-Hess kinetic phase diagram, giving all attracting steady, periodic, and

irregular orientational distributions versus shear rate and polymer concentration.

Amid all of these results, one of the classical issues of anisotropic molecular liquids,

dating back to Onsager and de Gennes, is what survives from orientational degeneracy

of the quiescent nematic phase just as an external field perturbation is turned on. This

issue was bypassed in the continuum liquid crystal theory of Leslie and Ericksen, which

did not involve an excluded-volume potential. The Leslie material parameters produced

either a shear flow-aligning or a tumbling liquid crystalline fluid, with no freedom to

transition between them, by varying experimental conditions such as volume fraction

of the nematic polymer solvent mixture or the shear rate. Furthermore, there was no

dynamics without an external field (hydrodynamic, electric or magnetic). For liquid

crystalline polymers, however, the experimental evidence was mounting in the 1980’s for

not only an equilibrium 1st-order isotropic-nematic phase transition, but a shear rate-

dependent, steady-unsteady transition (Kiss & Porter ’78, ’80) which was accompanied

by sign change in the first normal stress difference. The kinetic theory of Hess and

Doi, and mesoscopic second-moment tensor approximations of Landau-de Gennes type

(de Gennes & Prost ’93, Beris & Edwards ’95), became the focus of intense theoretical

and numerical study to explain the shear behavior of nematic polymers. We refer the

reader to several informative papers (Hinch & Leal ’76, Marrucci & Greco ’93, Larson

& Öttinger ’91, Burghardt ’98, Berry & Tan ’01, Rey & Denn ’02, Forest & Wang ’03,

Kroger ’04).

This chapter addresses the question posed above for a model 2 dimensional liquid,

physically motivated by monolayer films. Thin films of liquid crystalline polymers have

been of considerable interest due to their stability and nonlinear optical properties com-

pared to that of low molecular weight materials (Maffetone et al., 1996). Maffetone et

al. (Maffetone et al., 1996) showed the two-dimensional model proposed by Marrucci

and Maffetone (Marrucci and Maffetone, 1989) could quantitatively predict the dynamic
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behavior of thin films under planar extensional flow. Maruyama et al. (Maruyama et al.,

1998) examined the orientation dynamics of monolayer nematic polymer films for both

extensional and simple shear flows. They obtained evidence of wagging (finite amplitude

oscillations) and flow alignment in simple shear flow, depending on shear rate.

There is a qualitative difference between two-dimensional and three-dimensional isotropic-

nematic transitions. In three dimensions, the transition is first order, discontinuous and

the phase diagram exhibits hysteresis. On the other hand, mean field theory predicts that

the transition should be second-order and continuous in two dimensions (cf. (Faraoni et

al., 1999; Forest et al., 2004; Marrucci and Maffetone, 1989), Fig. 2.1, 2.2). The other

important feature distinctions are “degree of degeneracy” of nematic phases, and the

discrete number of ordered phases: In three dimensions, there are two types of ordered

phases with distinct degrees of orientation and different “shapes” of the orientational dis-

tribution with one stable and the other unstable. The unstable branch does play a role in

shear-dependent bifurcation diagrams as those branches subsequently collide with others

(Forest and Wang, 2003). In two dimensions, there is only one nematic phase; the “lower

branch” is identical to the upper branch associated with a Z2-symmetry (Golubitsky and

Schaeffer, 1985) unique to two-dimensional liquids, explained below. Thus, subsequent

bifurcations in shear flows with other applied fields will be qualitatively distinct.

The purpose of this chapter is to analytically solve the two-dimensional weak shear

problem. That is, we aim to rigorously explain how the 2D quiescent phase diagram ver-

sus dimensionless concentration N extends in the two parameter space of (N,Pe), where

Pe is the dimensionless shear rate, and to understand whether the extreme sensitivity

to closure rule of 3-dimensional nematic liquids (Forest and Wang, 2003) also obtains in

two-dimensional orientational dynamics.
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2.2 Kinetic theory and mesoscopic models

Let f(m, t) be the orientational probability distribution function (PDF) that the axis of

revolution of the molecule has an orientation given by the unit vector m=(cos θ, sin θ) at

time t. The Doi-Hess theory gives an evolution equation for the PDF f(m, t),

∂f

∂t
= D0

r

∂

∂m
· [ ∂f

∂m
+

f

kBT

∂VMS

∂m
]− ∂

∂m
· ( ·

mf), (2.1)

where D0
r is an averaged rotary diffusivity or relaxation rate, kB is the Boltzman constant,

T is the absolute temperature. The first term in (2.1) is Brownian diffusion on the sphere.

The second term is due to molecule interactions, explained further below. The third term

is the flow coupling through the velocity gradient,

∇v = Ω + D, (2.2)

where Ω is the vorticity tensor and D is the rate of strain tensor given by

Ω =
1

2
(∇v −∇vT ), D =

1

2
(∇v +∇vT ), (2.3)

·
m = Ω ·m + a[D ·m−D : mmm]. (2.4)

This is the so-called Jeffery orbit for spheroids in Stokes flow in a viscous solvent, where

−1 ≤ a ≤ 1 is the molecular shape parameter related to the molecular aspect ratio r by

a =
r2 − 1

r2 + 1
. (2.5)
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We assume two-dimensional simple shear flow v = γ̇(y, 0), where γ̇ is the shear rate, for

which the rate of strain and vorticity tensors are

D = γ̇D̃, Ω = γ̇Ω̃

D̃ = 1
2


 0 1

1 0


 , Ω̃ = 1

2


 0 1

−1 0


 .

(2.6)

In (2.1), VMS is the Maier-Saupe excluded-volume potential with strength proportional

to the dimensionless polymer concentration N ,

VMS = −2NkBTmm :< mm > . (2.7)

The second moment M of the PDF f(m, t) is prominent in any connections of theory to

experimental data:

M =< mm >=

∫ π

0

mmf(m, t)dm. (2.8)

The map between light scattering intensity I in the plane of m and the orientational

distribution function f is (Maruyama et al., 1998)

I =
2πhs

ω
, (2.9)

where h is the monolayer thickness, ω is the wavelength of the incident light and s is the

Hermans orientation parameter determined from M, equation (2.15). The mesoscopic

orientation tensor Q = M− 1
2
I is the traceless part of M. Similarly, one represents higher

moments of f with this bracket notation.

The nematodynamical equation for Q is derived from (2.1):

d

dt
Q = Ω ·Q−Q ·Ω + a[D ·Q + Q ·D] + aD− 2aD :< mmmm >

−6D0
r[Q−N(Q + 1

2
I) ·Q + NQ :< mmmm >]. (2.10)
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The variable coefficients in the linear Smoluchowski equation (2.1) translate to nonlinear-

ity and coupling between moments in the moment equations, so that any finite moment

truncation requires some closure approximation. Following tradition in polymeric sys-

tems, and motivated by a closed theory for the physically measurable second moment

properties, many models have posited a closed equation for M, respectively Q. The Doi

closure rule assumes (•) :< mmmm >= (•) :< mm >< mm >; other closures due to

Tsuji-Rey and Hinch-Leal are discussed and analyzed below.

We now non-dimensionalize the flow field and orientation dynamics (2.10) using the ne-

matic relaxation time scale (D0
r)
−1. The key dimensionless parameters are then the Peclet

number Pe =
·
γ

D0
r
, the shear rate normalized relative to nematic relaxation rate, and the

dimensionless concentration N . Hereafter, we work in dimensionless time t̃ = tD0
r .

2.3 Q-tensor representations

2.3.1 Component representation

A component representation is a standard matrix representation with respect to a cho-

sen coordinate system. The typical Cartesian representation of Q satisfies a symmetry

constraint Qxy = Qyx and a trace zero constraint Qxx + Qyy = 0 having two independent

degrees of freedom. The symmetric traceless matrices form a two-dimensional vector

space with standard basis

Q(1) =


 1 0

0 −1


 , Q(2) =


 0 1

1 0


 , (2.11)

which have eigenvector frames {(1, 0), (0, 1)} and {(1, 1), (1,−1)}, respectively corre-

sponding to eigenvalues 1 and -1. In this basis, the two independent components Qxx, Qxy

are evident:

Q = QxxQ
(1) + QxyQ

(2). (2.12)

9



0 1 2 3 4 5 6 7
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

S

Figure 2.1: Isotropic-nematic transition diagram without flow of the 2D Doi closure
model. The order parameter S is plotted against dimensionless concentration N . The
stable isotropic solution becomes unstable and the stable nematic branch is born at
N = 2. Solid (dashed) curves denote stable (unstable) equilibria.

For the Doi closure, the nematodynamic model (2.10) takes the following form using the

component representation (2.12):

˙Qxx = −6Qxx(1− N
2

+ 2N(Q2
xx + Q2

xy)) + Pe(Qxy − 2aQxxQxy)

Q̇xy = −6Qxy(1− N
2

+ 2N(Q2
xx + Q2

xy)) + Pe(−Qxx + a
2
− 2aQ2

xy).
(2.13)

2.3.2 Spectral representation

Since Q is symmetric, the eigenvectors of Q form an orthonormal basis of R2. From the

spectral theorem, if di is the eigenvalue associated with eigenvector ni, then

Q =
∑

(di − 1

2
)nini, d1 + d2 = 1,

∑
nini = I. (2.14)
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It follows that Q has the spectral representation

Q = s(n1n1 − I

2
), s = d1 − d2 = 2d1 − 1, (2.15)

where
1

2
s is an eigenvalue of Q associated with major director n = (cos θ, sin θ).

The map between (Qxx, Qxy) and (s, θ) is

Qxx = s
2
cos 2θ

Qxy = s
2
sin 2θ,

(2.16)

and the Doi closure model (2.13) has an equivalent form:

θ̇ = −Pe
2

(1− a
s
cos 2θ)

ṡ = −3(N(s2 − 1) + 2)s + aPe(1− s2) sin 2θ.
(2.17)

From (2.17), the quiescent 2D nematic liquid (Pe ≡ 0) has equilibria s = 0 (the isotropic

state Q = 0) for all N , and nematic equilibria

s± = ±
√

1− 2

N
, (2.18)

for N > 2. From the first equation of (2.17), the director for nematic equilibria is

arbitrary, which is known as orientational degeneracy. From the second equation of

(2.17), one easily finds s = 0 is stable for N < 2 and unstable for N ≥ 2, whereas s± are

stable in the order parameter direction, while neutral in the θ direction. This explains

Fig. 2.1.

In any closure model, (2.17) takes the form θ̇ = −Pe
2

(1− λL cos 2θ), where λL is the

2-dimensional analog of the Leslie alignment parameter. This parameter gives an explicit

criterion for steady equilibria (|λL| > 1) versus unsteady behavior (|λL| < 1), and also

encodes the closure rule. For the Doi closure, λL = a
s
; for other closures, the form is

given in Appendix A.2.
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Figure 2.2: Isotropic-nematic transition diagram for 3D nematic liquids. The equilibrium

branches s0 = 0 and s± =
1±3
√

1− 8
3N

4
are given for the Doi closure model with solid

(dotted) curves representing stable (unstable) equilibria.

We now make note of a discrete symmetry that is special to two dimensions, which has

consequences for the isotropic-nematic phase diagram as shown in Fig. 2.1. From (2.14),

Q can be represented by either s+,n1 or s−,n2, and the representations are identical:

Q = s+

(
n1n1 − 1

2
I
)

= −s+

(
n2n2 − 1

2
I
)

= s−
(
n2n2 − 1

2
I
)
. (2.19)

This implies, in stark contrast to the 3-dimensional nematic equilibrium sets, that there is

only one nematic branch, i.e. the s−-branch is identical to the s+-branch, thus the termi-

nology Z2-symmetry (Golubitsky and Schaeffer, 1985). This observation has significant

physical consequences, captured in the bifurcation structure associated with simultane-

ous instability of the isotropic branch and onset of the nematic branch. This bifurcation

is depicted in Fig. 2.1 and is called a pitchfork bifurcation with Z2-symmetry. By com-

12



parison with Fig. 2.2 for 3-dimensional molecular liquids, the dotted lower branch of

unstable “oblate” nematic phases does not exist in 2D. Thus, the only orientation state

for which the major director is not unique (the definition of a defect) is the isotropic

state, Q = 0. In 3D, there are additional phases where the major director lies on a

circle, giving another class of defects.

2.4 Weak-shear solvability conditions for persistence

of equilibria

We now follow (Forest et al., 2003) to assess persistence of the isotropic and S1-invariant

branches of solutions in Fig. 2.1 in the presence of a weak shear flow. This is accomplished

by parametrizing all equilibria of (2.18) and then deriving solvability conditions at next

order in the weak flow parameter Pe.

Assume weak shear, Pe ¿ 1, and expand Q in powers of Pe:

Q = Q0 + PeQ1 + Pe2Q2 + · · · . (2.20)

We seek those equilibria Q0 which survive in weak shear and Q1 is the leading shear-

dependent correction. At order Pe, for any mesoscopic tensor model (2.10), Q1 must

satisfy a linearized tensor-operator equation,

A1(Q0) ·Q1 = r1(Q0), (2.21)

where A1(Q0) corresponds to rotational diffusion and linearized Maier-Saupe potential,

and r1(Q0) is the linearized flow perturbation. With the Doi closure model, these oper-

13



ators are given by

A1(Q0) ·Q1 = 6[Q1 −N(M0 ·Q1 + Q1 ·Q0)

+N((Q0 : M0)Q1 + (Q0 : Q1)M0 + (Q1 : M0)M0)],

r1(Q0) = Ω̃ ·Q0 −Q0 · Ω̃ + a[D̃ ·Q0 + Q0 · D̃]

+aD̃− 2aD̃ : M0M0

(2.22)

where M0 = Q0+
1
2
I. The Fredholm alternative theorem yields the weak-shear solvability

condition (Forest et al., 2003; Kuzuu and Doi, 1983):

r1(Q0) ⊥ N [AT
1 (Q0)], (2.23)

where N denotes the null space of the matrix AT
1 . This solvability condition must be

satisfied by these quiescent states Q0 in (2.18) which persist as steady states in weak

shear, arising either from the stable nematic equilibrium or isotropic equilibria.

2.4.1 The shear-perturbed, nearly isotropic branch

The isotropic steady state perturbs at O(Pe) to a unique, explicit branch of equilibria,

Q = 0 + Pe
a

3(2−N)
D̃ + O(Pe2), (2.24)

where D̃ is the normalized rate-of-strain for pure shear. The directors of Q are

n1 = (1, 1), n2 = (1,−1), (2.25)

with corresponding distinct order parameters

d1 =
1

2
+

a

6(2−N)
Pe, d2 =

1

2
− a

6(2−N)
Pe. (2.26)
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Note that the Leslie alignment angle θ ≡ π
4

from n1 = (1, 1) = (cos θ, sin θ), at lead-

ing order in Pe for all concentrations away from N = 2. This is consistent with 3D

kinetic (Forest et al., 2004) and mesoscopic (Forest et al., 2003) analysis. The degree

of anisotropy is measured by |d1 − d2|, and for |N − 2| > Pe, the Flory order parameter

|d1 − d2| is proportional to the presumed weak normalized shear rate, Pe.

The next order solvability condition,

A2(Q0,Q1) ·Q2 = r2(Q0,Q1), (2.27)

determines stability of the persistent equilibria (2.24). For the Doi closure model, the

operators in (2.27) are given by

A2(Q0,Q1) ·Q2 = 6[Q2 −N(M0 ·Q2 + Q2 ·Q0)

+N(Q0 : M0Q2 + (Q2 : M0 + Q0 : Q2)M0)],

r2(Q0,Q1) = Ω̃ ·Q1 −Q1 · Ω̃ + a[D̃ ·Q1 + Q1 · D̃]

−2a(D̃ : M0Q1 + D̃ : Q1M0)

+6[NQ1 ·Q1 −N((Q1 : M0 + Q0 : Q1)Q1 + Q1 : Q1M0)].

(2.28)

The operator −A2 has explicit linearized eigenvalues,

λ1 ≈ λ2 = −3(2−N) + O(Pe), (2.29)

from which we deduce the shear-perturbed isotropic branch is stable for N < 2 and

unstable for N > 2. These results give detailed information about the corresponding

solution branches with |Qxx| ¿ 1 in Fig. 2.4 (Leslie angles) and Fig. 2.5, where solid

(dotted) lines indicate stable (unstable) states. The transition region surrounding N = 2

is treated next.
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Figure 2.3: The scaling behavior of the bifurcation point LP2, Fig. 2.5. The solid line is
the analytical prediction, while the diamonds represent LP2 points obtained by AUTO.
These bifurcation points represent the locus of turning points where the unstable isotropic
branch and the unstable nematic branch are connected.

2.4.2 Persistence of the I-N transition, i.e. the Z2-symmetric

pitchfork bifurcation

Near N = 2, the expansion (2.24) breaks down. This suggests we need a different scaling

in (2.20), e.g. a Peα expansion in a neighborhood of the isotropic-nematic transition

N = 2 for small Pe. See, Doi and Larson (See et al., 1990) calculated this scaling, Pe
1
2 ,

in the 3-dimensional case, which was confirmed by Forest, Wang and Zhou (Forest et al.,

2004) in their analysis of all solution branches.

To capture the scaling behavior for persistence of the Z2-symmetric pitchfork bifur-

cation at N = 2, in Fig. 2.1, we impose two solvability conditions from (2.13). First,

persistence of equilibria will yield 2 scalar equations, then a neutral (or marginal) sta-

bility condition on these equilibria yields a third condition. Together, these criteria give

16



3 conditions in (Qxx, Qxy, N, Pe), whose 1-parameter family of solutions gives the curve

of persistent bifurcation values (N, Pe), together with the Q-tensor along the curve. For

the Doi closure, the equilibria at leading order in Pe satisfy

H1 = −6Qxx(1− N

2
+ 2N(Q2

xx + Q2
xy)) = 0 (2.30)

H2 = −6Qxy(1− N

2
+ 2N(Q2

xx + Q2
xy)) + Pe

a

2
= 0. (2.31)

The marginal stability condition (See et al., 1990) is

DET
∂(H1, H2)

∂(Qxx, Qxy)
= 0. (2.32)

This yields

72NQxxQxy[2 + N(−1 + 4Q2
xx − 8QxxQxy + 12Q2

xy)] = 0. (2.33)

Solving these three equations in a neighborhood of N = 2, Pe = 0, we obtain the 2D

scaling behavior

Pe ' 2

a
√

3
[
(N − 2)3

N
]1/2. (2.34)

This behavior is quite different from the analogous 3D result (Forest et al., 2004; See

et al., 1990). In Fig. 2.3, this 2D scaling prediction is compared with eleven (11)

bifurcation diagrams for fixed finite values 0 < Pe < 0.02, employing the continuation

software AUTO. One such representative bifurcation diagram is given in Fig. 2.5 for

Pe = 0.1; the data point labeled LP2 is the object of the formula (2.34) and provides

one data point in Fig. 2.3.

2.4.3 The nematic equilibrium branch

We parameterize the S1 invariant director m0 by m0 = (cos θ, sin θ). As explained earlier,

the unique nematic equilibrium branch has order parameter s+ =
√

1− 2
N

. Therefore
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the nematic equilibrium has an explicit representation:

Q0 = s+(m0m0 − I

2
) =

s+

2


 cos 2θ sin 2θ

sin 2θ − cos 2θ


 . (2.35)

The solvability equation (2.21) has the following ingredients for the nematic phase:

A1 =
6s2

+

1− s2
+


 1 + cos 4θ sin 4θ

sin 4θ 2 sin2 2θ


 , (2.36)

r1 =




1
2
s+(1− as+ cos 2θ) sin 2θ,

−1
2
s+ cos 2θ + a

4
(2− s2

+(1− cos 4θ))


 . (2.37)

The eigenvalues of the system are:

−Pe

2
(4− 4s2

+ + 3as+ cos 2θ) tan 2θ, − 12s2
+

1− s2
+

+ O(Pe) (2.38)

with corresponding vectors

v1 = (− tan 2θ, 1), v2 = (cot 2θ, 1). (2.39)

If N > 2, the eigenvector v1 spans the null space of AT
1 , so the solvability condition

simplifies to rT
1 v1 = 0. After simplification, we get rT

1 v1 = 1
2
(a−s sec 2θ), which produces

the Leslie alignment angle in weak shear for the Doi closure

cos 2θ =
s+

a
=

1

a

√
1− 2

N
≡ 1/λL, (2.40)

where λL is the Leslie alignment parameter mentioned in Section 2.3. For |λL| < 1, any

solution that exists must be unsteady. If |λL| > 1, the equation (2.40) has two distinct
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Figure 2.4: The steady state Leslie alignment angle θ, formula (2.40), plotted versus
nematic concentration N for aspect ratio r = 3. The solid (dotted) lines represent stable
(unstable) solutions.

steady solutions (one stable and one unstable),

θ =
1

2
arccos

s+

a
, (2.41)

for −π
2

< θ < π
2
. From (2.38) and (2.40), the solution is stable if −π

2
< θ < −π

4
when

a is negative (i.e. disk-like molecules) or 0 < θ < π
4

when a is positive (i.e. rod-like

molecules). Otherwise, the solution is unstable. This yields agreement with Fig. 2.5

predicting the upper two (solid and dotted) curves between LP1 and LP2.

We solve the linear system (2.21) as well as the next order system (2.27), which

yields:

Q = Q0 + Pe
(1− s2

+)2

12s+


 2 sin 2θ − cos 4θ sec 2θ

− cos 4θ sec 2θ −2 sin 2θ


 + O(Pe2). (2.42)
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Figure 2.5: Steady state solution branches of the Doi closure model are plotted for
Pe = 0.1 using AUTO. Two folds exist at N=2.21 and 5.556. The unsteady regime
starts at N=5.556.

• For infinite aspect ratio |a| = 1, the right hand side of (2.40) always has modulus

less than 1, i.e. Q1 is solvable.

• For |a| < 1, the right hand side of (2.40) will hit values ±1 at a critical concentra-

tion N . The relationship between this critical concentration and the aspect ratio r

is discovered as

N∗(a) =
2

1− a2
=

1

2

(
r +

1

r

)2

. (2.43)

– For 2 < N ≤ N∗(a), Q1 is solvable, i.e. steady solutions exist.

– For N > N∗(a), no steady solution exists for Q1.

N∗(a) predicts the AUTO generated bifurcation LP1, which represents the termination

of a steady state solution branch. For r = 3 or r = 1/3, N∗(a) = N∗(±0.8) ≈ 5.556, which

yields the point LP1 in Fig. 2.5. Marrucci and Maffettone (Marrucci and Maffetone,
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Figure 2.6: Convergence of a sample orbit to the tumbling limit cycle for N=8, Pe=0.66,
a=0.8, in the Doi closure model.

1989) predicted N∗(a) = 2.41 for the rigid rod (a = 1) kinetic model, but the meaning

of parameters N and a is blurred in the projection onto second moment models.

2.5 Limit cycles in unsteady regimes

The next task is to characterize oscillatory solutions at the onset of simple shear, beyond

the statement that they are expected since |λL(a,N)| < 1 in formula (2.40).

Theorem 2.5.1 For sufficiently small Pe 6= 0 and N > N∗(a) =
2

1− a2
, there exists a

stable limit cycle of (2.13), equivalently (2.17).

Proof. The Poincaré-Bendixson Theorem states that in a closed, bounded subset R of

the plane, if R has no fixed points and there exists a trajectory C that is confined in R,

then R contains a closed orbit, i.e. a limit cycle. To be sure that a confined trajectory
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C exists, we will show there is a trapping region R, i.e. a closed connected set such that

the vector field points inward everywhere on the boundary of R.

If N >
2

1− a2
, then the Leslie parameter λL obeys |λL| < 1. From (2.17), θ̇ can

never be zero. Thus there is no fixed point. Since −1 ≤ a(1− s2) sin 2θ ≤ 1,

−3s[N(s2 − 1) + 2]− Pe ≤ ṡ ≤ −3s[N(s2 − 1) + 2] + Pe.

For sufficiently small Pe, we can assume ṡ ≈ −3s[N(s2 − 1) + 2]. If we choose s2
max =

1 + ε1 − 2

N
, where 0 < ε1 < 2

N
, then ṡmax ≈ −3smax(ε1N) < 0. If we choose

s2
min = 1 − ε2 − 2

N
, where 0 < ε2 < 1 − 2

N
, then ṡmin ≈ 3smin(ε2N) > 0. Hence by

the Poincaré-Bendixson Theorem, there exists a closed orbit. ¤

To characterize the bifurcation N∗ following (Vicente et al., 2003), we expand the equa-

tion (2.17) using the method of two time scales as Pe → 0; the fast O(1) time scale

T0 = t and slow time scale T1 = Pe · t. Then the expansions are

s = s0(T0, T1) + Pe · s1(T0, T1) + O(Pe2) (2.44)

θ = θ0(T0, T1) + Pe · θ1(T0, T1) + O(Pe2). (2.45)

At leading order, the equations give s0 = s+ =
√

1− 2
N

, ∂θ0/∂T0 = 0 and so θ0(T0, T1) =

Θ0(T1). At first order in Pe,

θ1 = −T0[
dΘ0

dT1

+
1

2
(1− a

s0

cos 2Θ0)] + C(T1), (2.46)

where C(T1) is a function of T1 alone. To make θ1 independent of T0,

dΘ0

dT1

+
1

2
(1− a

s0

cos 2Θ0) = 0. (2.47)
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Figure 2.7: N -Pe phase diagram of the 2D Doi closure model. The parameter space is
divided into 4 regions. The Regions 1, 2, 3 are governed by flow-aligning states whereas
Region 4 has tumbling or wagging, stable limit cycles.

So, the period of the periodic orbit is

T =
4πs0

Pe
√

s2
0 − a2

. (2.48)

This shows that the period of the limit cycle is infinite as s0 goes to a. Since s0 =
√

1− 2
N

for Pe ¿ 1, the period goes to infinity as N → N∗(a) = 2
1−a2 , as confirmed by AUTO in

Fig. 2.7 by passing from Region 4 into Region 2.

23



0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N

Q
xx

HB

LP1

LP2 

Figure 2.8: The steady state solutions of the Doi closure model for Pe = 10.

2.6 The phase diagram of mesoscopic models: Ro-

bustness vs sensitivity to closure

In this section we summarize the behavior of a liquid crystal polymer monolayer in shear

flow in terms of phase diagrams. We calculate steady state solutions and bifurcation

branches, using XPPAUT and AUTO 97 for several closure models. The aspect ratio

parameter is fixed as a = 0.8 in each model.

Fig. 2.7 is the phase diagram for the Doi closure in (N,Pe)-space. This figure shows

that Hopf bifurcation ends at a limit point LP2. Vicente Alonso showed this point is a

so-called Bogdanov-Takens bifurcation in a 3D Landau-de Gennes model (Vicente et al.,

2003). The parameter space is separated into 4 regions:

Region 1 There is only one stable steady state solution, the perturbed isotropic phase.

Region 2 There are one stable and two unstable states (Fig. 2.5).

24



0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N

Q
xx

HB

Figure 2.9: The steady state solution of the Doi closre model for Pe = 12.

Region 3 There are two stable steady states. The nematic steady state is destabilized

by the Hopf bifurcation (Fig. 2.8).

Region 4 There is one unstable steady state and a stable limit cycle. The limit cycle

is generated by a global bifurcation called a saddle homoclinic bifurcation until

O(Pe) ∼ 1. For larger values of Pe, the limit cycle emanates from a Hopf bifurca-

tion (Fig. 2.9).

The bifurcation diagram for the Doi model and that of the Hinch-Leal 1 model,

Fig. 2.10, are able to capture the Bogdanov-Takens bifurcation (Vicente et al., 2003)

which is faithful to the 2D kinetic phase diagram (Maffetone and Crescitelli, 1995).

Fig. 2.10 and Fig. 2.11 show the Hinch-Leal and Tsuji-Rey closures compress Region 3 so

that detection of this aspect of the dynamical system is extremely sensitive to numerical

error.
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Figure 2.10: N -Pe Phase diagram for the Hinch-Leal 1 model. The 4 regions are same
as the Doi model.

2.7 Conclusion

In this chapter, we derived weak-shear steady and unsteady selection criteria for two-

dimensional nematic polymers using various second-moment closures. These results are

valid except in a neighborhood of the isotropic-nematic transition at N = 2; the per-

sistence of this bifurcation point for low Pe is deduced by methods similar to See et al.

(See et al., 1990) and Forest et al. (Forest et al., 2004) for three-dimensional nematic

liquids. The analysis is then confirmed with numerical simulations using the continu-

ation software AUTO. We showed the existence of a limit cycle beyond the parameter

boundary for the steady-unsteady transition as an application of the Poincaré-Bendixon

Theorem and characterized the transition boundary in the phase diagram in the weak

shear limit. The shear-perturbed 2D phase diagrams for the three closure models (Doi,

Tsuji-Rey and Hinch-Leal 1) are remarkably robust relative to the 3D shear problem.
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Figure 2.11: N -Pe Phase diagram of the Tsuji-Rey model. The aspect parameter ratio
a is fixed at 0.8. Regions 1,2 consist of flow-aligning states while Region 3 has tumbling-
wagging limit cycles.
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Chapter 3

Analysis of a 2D Smoluchowski

equation for flowing magnetic

dispersions

3.1 Introduction

Many liquid crystalline substances are composed of molecules with a permanent dipole

moment. In (Bhandar and Wiest, 2003), Bhandar and Wiest extended the Doi-Hess

model for rigid rod-like nematic polymers to dipolar nano-rod dispersions. They devel-

oped the model including magnetic effects, e.g. the effects of external magnetic fields

and the magnetic interactions that exist between the permanent magnetic moments in

the ferromagnetic rods. This simple kinetic model gives rise to a Smoluchowski equation

for the orientational probability distribution function (PDF). Recently, various attempts

have been made to solve the Smoluchowski equation analytically or numerically (Con-

stantin et al., 2004; Forest et al., 2007; Ji et al., 2007; Wang et al., 2005; Zarnescu, 2006).

In this model, the fore-aft symmetry of the PDF is broken due to magnetic polarity of the

particle. Thus the first moment of the PDF, which is zero for non-ferromagnetic particles,

strongly couples to the second moment. The dynamics of magnetic dispersions were stud-

ied using moment closure equations in (Bhandar and Wiest, 2003; Grandner et al., 2007).



In this chapter, we extend the previous work. We obtain the exact steady state so-

lution of the Smoluchowski equation under general linear flows in semi-implicit form.

Steady state solutions of the Smoluchowski equation under imposed magnetic fields and

linear flow fields with zero vorticity tensor are of Boltzmann type, and therefore com-

pletely determined by the total potential (Constantin et al., 2004; Wang et al., 2005).

The total potential can be parameterized by order parameters and material parameters,

and governed by algebraic-integral equations. Even though these equations are transcen-

dental, they represent an exact, finite-dimensional reduction of the infinite-dimensional

PDE. We focus on the equation with dipolar and Maier-Saupe interaction potentials and

no external fields. We construct bifurcation diagrams by solving the algebraic-integral

equations and investigating the stability of solutions in terms of the free energy functional.

3.2 Steady state solutions under an imposed general

linear flow and magnetic field

Let m be a unit vector for the axis of symmetry of the molecule and f(m, t) be the

orientational probability distribution function (PDF). Average properties are defined in

terms of this PDF as < m >=
∫

mf(m, t)dm, < mm >=
∫

mmf(m, t)dm. In the

presence of an external magnetic field H, the total potential is given by

Vt(m) = −kBT [αm· < m > +νm ·H + 2N < mm >: mm +
α0

2
HH : mm], (3.1)

where α is the strength of dipolar interaction, ν is the strength of the permanent dipole,

N is the concentration and α0 is the difference between the susceptibility parallel and

perpendicular to the molecular direction. The first term of (3.1) is the dipole-dipole

interaction potential. The second term is the interaction with the external magnetic field

and the third term is the Maier-Saupe interaction potential. When an external magnetic
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field is imposed, an induced moment occurs yielding the last term.

The rotational transport equation for the PDF is given by

∂

∂t
f = D0

r

∂

∂m
· (f ∂µ

∂m
)− ∂

∂m
· (ṁf), (3.2)

ṁ = Ω ·m− a[D ·m + D : mmm], (3.3)

µ = ln f +
1

kBT
Vt, (3.4)

where D0
r is an averaged relaxation rate, ∂

∂m
= (I−mm) · 5m is the rotational gradient

operator, D and Ω are the rate-of-strain tensor and vorticity tensor, respectively, a is

the molecular shape parameter related to the molecular aspect ratio r as a = r2−1
r2+1

, and

µ is the normalized chemical potential.

We assume a homogeneous flow i.e.

∇v =


 v11 v12

v21 −v11


 (3.5)

where vij are constant.

The rate of strain tensor D and the vorticity tensor Ω are defined as

D =
1

2
(∇v +∇vT ) =


 v11 p

p −v11


 , (3.6)

Ω =
1

2
(∇v −∇vT ) = q


 0 1

−1 0


 (3.7)

where p = v12+v21

2
and q = v12−v21

2
.
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Since D is symmetric and constant,

∂

∂m
· (D : mm) = (I−mm) · 5m(D : mm)

= (I−mm) · (D : (Im + mI))

= D ·m−D : mmm. (3.8)

Therefore the straining component can be absorbed into an effective chemical potential

µ̃ as follows:

∂

∂t
f =

∂

∂m
· (Drf

∂µ̃

∂m
)− ∂

∂m
· (Ω ·mf), (3.9)

µ̃ = µ +
1

kBT
VD, (3.10)

VD =
akBT

Dr

D : mm. (3.11)

One observes that the straining flow field potential is equivalent to the magnetic field

potential term, VH = −α0kBT
2

HH : mm. The straining flow modifies the magnetic field

strength VH,

V eff = VH +
1

kBT
VD = (−α0kBT

2
HH +

a

Dr
D) : mm. (3.12)

Thus, key issue remaining here is rotational flow term. Let m = (cos θ, sin θ) and t be

an orthogonal vector such that t = (− sin θ, cos θ), then ∂
∂m

= t ∂
∂θ

. The Smoluchowski

equation (3.9) is

∂f

∂t
= t

∂

∂θ
· (Drft

∂µ̃

∂θ
)− t

∂

∂θ
· (Ω ·mf)

=
∂

∂θ
(Drf

∂µ̃

∂θ
)− t

∂

∂θ
· (Ω ·mf). (3.13)
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Since

Ω ·m = q


 0 1

−1 0





 cos θ

sin θ


 = q


 sin θ

− cos θ




= −qt = −t ∂
∂θ

(qθ + q0),

(3.14)

the 2D reduction of the vorticity contribution is again a grad flow (Zarnescu, 2006) and

we can absorb the vorticity component in the extended chemical potential µ̄.

∂f

∂t
=

∂

∂θ
(Drf

∂µ̄

∂θ
), (3.15)

µ̄ = µ +
1

kBT
(VD + VΩ), (3.16)

VΩ = −kBT

Dr

(qθ + q0). (3.17)

The steady state solution of the equation (3.15)

Drf · ∂µ̄

∂θ
= Dr(

∂f

∂θ
+ f

∂

∂θ
V ) = C1 (3.18)

leads to

f(θ) = f(θ0)e
V (θ0)−V (θ) + C

∫ θ

θ0

eV (σ)−V (θ)dσ, (3.19)

V =
1

kBT
[Vt + VD + VΩ]. (3.20)

The integration constant C plays a critical role (Zarnescu, 2006) in restoring 2π-periodicity

of f , with the result

C =
f(0)(1− e−2qπ)∫ 2π

0
eV (σ)−V (2π)dσ

. (3.21)

If the vorticity tensor Ω is zero, i.e. q = 0, steady state solutions are of Bltzmann type.
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3.3 Equilibrium case

We consider the case that external flow and magnetic field effects are absent. So, the

total potential (3.20) reduces to

V (m) = −[αm· < m > +2N < mm >: mm]. (3.22)

Then the steady state solution is given by a Boltzmann distribution

f =
1

Z
e−V (3.23)

where Z is the normalizing coefficient. Let n1, n2 be the two orthonormal eigenvectors

of the second moment tensor < mm >. Then the unit vector m and the first moment

< m > are parameterized as

m = cos θn1 + sin θn2

< m > = s1[cos θ′n1 + sin θ′n2],
(3.24)

where s1 is a polar order parameter which measures the average polarity in the dispersion.

The second moment can be represented by the director n1 and the order parameter s as

we have already seen in Chapter 2:

< mm >= s(n1n1 − 1

2
I) +

1

2
I. (3.25)

With the above parametrization, the order parameters are given by

s1 =
1

s1

< m > · < m >=
1

s1

<< m > ·m >

= < cos θ cos θ′ + sin θ sin θ′ > (3.26)

s = 2n1· < mm > ·n1 − 1 = 2 < (n1 ·m)2 > −1 =< cos 2θ > (3.27)
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where the averages are defined in terms of the equilibrium PDF

f =
1

Z
eαs1(cos θ cos θ′+sin θ sin θ′)+N(s cos 2θ+1). (3.28)

In the equilibrium case, the first moment is in the eigenspace of the second moment.

The relation and the proof established in (Ji et al., 2007) for 3D pass to 2D as follows.

Theorem 3.3.1 The first moment vector either vanishes or must be parallel to one of

the eigenvectors of the second moment tensor.

Proof. We want to prove that < m > is parallel to one of the eigenvectors of the second

moment < mm >. Without loss of generality, we can choose x and y axes such that the

second moment tensor is diagonal i.e. < m1m2 >= 0. Let e1 and e2 be the orthonormal

basis of the eigenspace. Now expand < m > in the basis, < m >= r1e1 + r2e2 and we

want to show that r1 or r2 is zero. The total potential is

V (m1,m2)

kBT
= −α(r1m1 + r2m2)− (c1m

2
1 + c2m

2
2)

= −α(r1m1 + r2m2)−B(m1, m2), (3.29)

where cj = 2N < mjmj >. Note that B is an even function of m1 and m2.

< m1m2 > =
1

Z

∫

|m|=1

m1m2 exp[r1m1 + r2m2 + B(m1,m2)]dm

=
1

Z

∫

|m|=1 with m1>0,m2>0

m1m2 exp[B(m1, m2)]×

[exp(r1m1 + r2m2)− exp(−r1m1 + r2m2)

− exp(r1m1 − r2m2) + exp(−r1m1 − r2m2)]dm

=
4

Z

∫

|m|=1 with m1>0,m2>0

m1m2e
B(m1,m2) ×

sinh(r1m1) sinh(r2m2)dm. (3.30)

Since sinh(x) is zero if and only if x = 0, r1 or r2 should be zero in order to make the
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integration zero. Hence < m > is either parallel to e1 or e2. ¤

Now let’s assume that < m > is parallel to n1, i.e. θ′ = 0. From (3.26) to (3.28), s1

and s are determined by solving the system of algebraic equations

∫ 2π

0

(s1 − cos θ)eαs1 cos θ+Ns cos 2θdθ = 0 (3.31)

∫ 2π

0

(s− cos 2θ)eαs1 cos θ+Ns cos 2θdθ = 0. (3.32)

We note that for any α and N , s1 = 0 is a solution corresponding to the purely ne-

matic solution branch which is already well known. Also, < m >= s1(cos θ′, sin θ′) =

−s1(cos(θ′ + π), sin(θ′ + π)) implies that −s1 is equivalent to s1. Hence, we will consider

only positive s1 here.

In (Ji et al., 2007), the authors establish a lower bound on the material parameter α

below which solutions are purely nematic for the 3D model. We now obtain the identical

lower bound on α for the 2D model following their method.

Theorem 3.3.2 There exist only purely nematic equilibria (s1 = 0) when α ≤ 1.

Proof. Since < m > is parallel to n1, < m > can be rewritten as < m >= r1e1.

We will show that when α ≤ 1, r1 must be zero so the only equilibrium is non-polar.

We prove it by contradiction. Suppose r1 > 0, otherwise we can change the coordinate

system to achieve this.

r1 =< m1 > =

∫
m1 exp[αr1m1 + B(m1,m2)]∫

exp[αr1m1 + B(m1,m2)]

=

∫
m1>0

m1 exp[B(m1,m2)] sinh(αr1m1)∫
m1>0

exp[B(m1,m2)] cosh(αr1m1)
. (3.33)
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Using the fact that tanh x < x for x > 0, we have

m1 exp[B(m1,m2)] sinh(αr1m1)

≤ exp[B(m1,m2)] cosh(αr1m1) tanh(αr1m1)

< αr1 exp[B(m1,m2)] cosh(αr1m1).

(3.34)

Substituting this inequality into the expression for r1, we obtain

r1 < αr1, (3.35)

which is a contradiction when α ≤ 1 and r1 > 0. ¤

3.3.1 Phase diagrams of equilibria without external fields
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Figure 3.1: The bifurcation diagrams of s1 and s are plotted against the dimensionless
concentration N for α = 2.5. Solid curves denote stable equilibria, while unstable equilib-
ria are denoted by dashed curves. Three distinct branches of equilibria (s1, s) are found.
There exists a stable polar-nematic solution (s1 > 0, s > 0) for all N . The isotropic
branch (s1 = s = 0) and the purely nematic branch (s1 = 0, s > 0) are unstable.

For α > 1, new solution branches may exist and destabilize stable steady state so-
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lutions which already exist for a purely nematic system. In this section, we will study

steady state solutions obtained by solving (3.31), (3.32) numerically and construct bi-

furcation diagrams. We describe equilibria according to their two order parameters, s1

and s, where s1 > 0 is a polar phase and s > 0 is a nematic phase. States with s1 > 0

and s = 0 do not exist; states with s1 = 0, s > 0 are called non-polar, nematic; states

with s1 > 0, s > 0 are called polar nematic, and states with s1 = s = 0 are non-polar and

isotropic or simply isotropic. The stability is determined by examining the free energy

density of the system:

A[f ] =

∫

‖m‖=1

[kBT ln f +
V

2
]fdm. (3.36)

From (3.28), we arrive at the free energy density at equilibrium:

A[f ] =

∫

‖m‖=1

[−kBT ln Z − V

2
]fdm

= −kBT [ln Z − αs2
1

2
− N

2
(s2 + 1)], (3.37)

Z =

∫

‖m‖=1

eαs1 cos θ+N(s cos 2θ+1)dm. (3.38)

To guarantee stability of the solution, the eigenvalues of the Hessian matrix of the

second variation of the free energy density must be positive. At the isotropic branch

(s1 = 0, s = 0), the Hessian matrix is given by

δ2A|s1=0,s=0 = kBT


 α(1− 1

2
α) 0

0 N(1− 1
2
N)


 . (3.39)

We thus conclude the isotropic equilibrium is unstable whenever α > 2 or N > 2. It

is well known that there is an isotropic-nematic transition at N = 2 and the isotropic

branch loses stability beyond the transition point in a two-dimensional purely nematic

system. In our numerical simulations, we observe that there exists a new stable solution

branch for all N , if α > 2. The existence of the new solution explains the loss of stability

of the isotropic branch. Fig. 3.1 shows that there exists a new polar solution for all N at

37



0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

N

s 1

LP

BP

0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

N

s

LP

BP

Figure 3.2: Bifurcation diagrams of s1 and s are plotted against dimensionless concen-
tration N for α = 1.8. Solid (dashed) curves denote stable (unstable) equilibria. In
addition to the isotropic-nematic transition at N = 2, there exist two bifurcation points
at N = 2.01 (BP) where a new branch comes out of the purely nematic branch and
N = 1.61 (LP) which is a turning point of the non-zero polar branch.

α = 2.5. This suggests that if the strength of the dipole-dipole interaction is sufficiently

high, the system is anisotropic regardless of the concentration N .

For the purely nematic branch (s1 = 0, s 6= 0), the Hessian matrix is given by

δ2A|s1=0,s6=0 = kBT


 α(1− 1+s

2
α) 0

0 N(1−N(< cos2 2θ > −s2))


 . (3.40)

Let’s say g(s) = 1 − N(< cos2 2θ > −s2), then g(0) = 0 and g′(s) > 0 for all s > 0.

Thus, g(s) is positive for all s > 0. The critical value for α is

α1 =
2

1 + s
, (3.41)

beyond which the purely nematic branch is unstable. In other words, the purely nematic

branch loses its stability beyond sc = −1+ 2
α

for a given α. Since s is positive, the purely

nematic solution is unstable for all N > 2, if α > 2. Numerical solutions show that the

critical point sc is the point where the new branch comes out (BP).

The calculation of the Hessian matrix of a new polar solution branch reduces to a nu-
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merical calculation.

We will give bifurcation diagrams of s and s1 as a function of N for selected values

of α using the continuation software AUTO 97 (Doedel et al., 1998) and the above ar-

gument about stability.

Fig. 3.1 is the bifurcation diagram for α = 2.5. The isotropic branch and the purely ne-

matic branch are unstable. However, there exists a stable nonzero polar solution for all N .
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Figure 3.3: Bifurcation diagrams of s1 and s are plotted against dimensionless concen-
tration N for α = 1.3. Solid (dashed) curves denote stable (unstable) equilibria. The
non-zero polar solution branch starts at N = 2.39 (BP).

Fig. 3.2 is the bifurcation diagram for α = 1.8. A non-zero polar solution branch

bifurcates at Nc = 2.01, which is unstable. The nematic branch loses stability beyond

Nc. The new polar branch becomes stable at a turning point Nt = 1.61. Thus, there

exists bi-stability between N = 1.61 and N = 2

Fig. 3.3 depicts the bifurcation diagram for α = 1.3. There exists an isotropic-nematic

transition for the order parameter s at N = 2. A new stable branch comes out of the

purely nematic branch at Nc = 2.39 due to the polarity. Beyond Nc, the purely nematic

branch becomes unstable. The solution branch s1 = 0 has multiplicity 2 between N = 2

and N = 2.39. One corresponds to a stable nematic solution branch of s and the other
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Figure 3.4: The parameter space is divided into 4 regions. The Region 1 is same with a
purely nematic system. There exist a stable and unstable polar solution in the Region
2. There exists a polar solution in the Region 3 and 4.

branch corresponds to an unstable isotropic solution branch of s.

Now, we summarize the behavior of dipolar nano-rod dispersions under a dipolar

interaction potential and an excluded-volume potential. Fig. 3.4 is the phase diagram

of the dipolar nematic system in (N, α)-space. The parameter space is separated into 4

regions.

Region 1 In this region, a dipolar system has the same equilibria as a purely nematic

system. There is no polar solution. The isotropic branch is stable if N < 2. If

N > 2, there is a stable nematic branch and an unstable isotropic branch.

Region 2 In the Region 2, there exists bi-stability. There is a stable polar solution and

an unstable polar solution. If N > 2, there exits a stable nematic branch and an

unstable isotropic branch. If N < 2, there exist a stable isotropic branch.
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Region 3 There exist a stable polar solution, an unstable nematic solution and an un-

stable isotropic solution.

Region 4 There exist a stable polar solution and an unstable isotropic solution.

3.4 Conclusion

In this chapter, we characterize all steady state solutions of magnetic nano-rod disper-

sions under general linear flows with a 2-parameter Boltzmann distribution. A pair of

nonlinear integral equations must be solved instead of the infinite dimensional partial

differential equation. We then construct bifurcation diagrams of equilibrium solutions of

the Smoluchowski equation without external fields for a dipole-dipole interaction poten-

tial together with an excluded-volume potential. We determine the stability of solutions

by examining the free energy density.
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Appendix A

A.1 Closure approximations for 2D models

◦ Quadratic (Doi) Closure

(•) :< mmmm > = (•) : MM. (A.1)

◦ Tsuji-Rey (TR) Closure

(•) :< mmmm > = 1
4
[((•) : Q)Q + (•) ·Q2 + Q · (•) ·Q + Q2 · (•)
−(((•) ·Q) : Q)I] + 1

2
((•) : Q)I.

(A.2)

◦ Hinch-Leal 1 (HL1) Closure

(•) :< mmmm > = 1
5
[6M · (•) ·M− (MM) : (•)
−2((MM) : (•)−M : (•))I].

(A.3)

◦ Hinch-Leal 2 (HL2) Closure

(•) :< mmmm > = M(M : (•))
+2[M · (•) ·M−M2(M2 : (•))/(I : M2)]

+α(M)[ 52
315

(•)− 8
21

[(•) ·M + M · (•)− (M : (•))I]]
(A.4)

where

α(M) = exp[2(I− 3M2 : I)/(I−M2 : (•))I]]. (A.5)
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A.2 Model equations (s, θ) for each closure

◦ Quadratic Closure

ṡ = 3s[N(1− s2)− 2] + aPe(1− s2) sin 2θ,

θ̇ = −Pe
2

(1− a
s
cos 2θ),

s =
√

1− 2
N

,

N∗(a) = 2
1−a2 .

(A.6)

◦ Tsuji-Rey Closure

ṡ = 1
8
(3s[N(8− 5s2)− 16] + aPe(8− 5s2) sin 2θ),

θ̇ = −Pe
2

(1− a(8−s2)
8s

cos 2θ),

s =
√

5
8
(1− 2

N
),

N∗(a) = 10+2a2+5
√

4+2a2

10−4a2 .

(A.7)

◦ HL1 Closure

ṡ = 2
5
(3s[N(1− s2)− 5] + aPe(1− s2) sin 2θ),

θ̇ = −Pe
2

(1− a(2+3s2)
5s

cos 2θ),

s =
√

1− 5
N

,

N∗(a) = 5−6a2+
√

25−24a2

2(1−a2)
.

(A.8)

◦ HL2 Closure

ṡ = 2(3s[N{ 68
315

e
6+ 16

s2−3 + s2

1+s2 (1− s2)} − 1]

+aPe[ 68
315

e
6+ 16

s2−3 + s2

1+s2 (1− s2)] sin 2θ),

θ̇ = −Pe
2

(1− a
315

(136e
6+ 16

s2−3 + 315s2) cos 2θ).

(A.9)
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A.3 Free energy density and its second variation

For the free energy density

A[f ] =

∫

‖m‖=1

[kBT ln f +
V

2
]fdm, (A.10)

its first and second derivatives are given by

∂A
∂s1

= αkBT (s1+ < cos θ >)

∂A
∂s

= NkBT (s+ < cos 2θ >)

∂2A
∂s2

1
= αkBT + α2kBT (s2

1 − s+1
2

)

∂2A
∂s∂s1

= −αNkBT (2 < cos3 θ > −s1 − ss1)

∂2A
∂s2 = NkBT [1−N(< cos2 2θ > −s2)].

(A.11)
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