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SUMMARY
Coronavirus infection causes diffuse alveolar damage leading to acute respiratory distress syndrome. The
absence of ex vivo models of human alveolar epithelium is hindering an understanding of coronavirus disease
2019 (COVID-19) pathogenesis. Here, we report a feeder-free, scalable, chemically defined, and modular
alveolosphere culture system for the propagation and differentiation of human alveolar type 2 cells/pneumo-
cytes derived from primary lung tissue. Cultured pneumocytes express the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) receptor angiotensin-converting enzyme receptor type-2 (ACE2)
and can be infected with virus. Transcriptome and histological analysis of infected alveolospheres mirror fea-
tures of COVID-19 lungs, including emergence of interferon (IFN)-mediated inflammatory responses, loss of
surfactant proteins, and apoptosis. Treatment of alveolospheres with IFNs recapitulates features of virus
infection, including cell death. In contrast, alveolospheres pretreated with low-dose IFNs show a reduction
in viral replication, suggesting the prophylactic effectiveness of IFNs against SARS-CoV-2. Human stem
cell-based alveolospheres, thus, provide novel insights into COVID-19 pathogenesis and can serve as a
model for understanding human respiratory diseases.
INTRODUCTION

In coronavirus disease 2019 (COVID-19), lung disease is the pri-

mary cause for mortality. Histopathological analyses reveal

widespread alveolar damage and pneumonia, which may even-

tually progress to acute respiratory distress syndrome (ARDS)

(Bradley et al., 2020). This clinically challenging manifestation

is accompanied by the production of multiple cytokines (‘‘cyto-

kine storm’’), loss of parenchyma, immune infiltration, and fluid

filled alveoli, all of which contribute to acute respiratory failure

and eventual death (Huang et al., 2020a; Zhu et al., 2020). The

causative agent of COVID-19 is the novel coronavirus severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This
virus uses the same receptor—ACE2 (angiotensin-converting 
enzyme receptor type-2)—for entry into target cells as the 
closely related viruses SARS-CoV (2003) and NL-63 (Hoffmann 
et al., 2020). However, the unique clinical symptoms and 
increased transmissibility of SARS-CoV-2 suggest that it uses 
different mechanisms to both infect and evade host immune 
responses, including the production of type I and type III inter-
ferons (IFN-IIIs) (Hou et al., 2020; Huang et al., 2020a; Wu and 
McGoogan, 2020; Zhu et al., 2020). To develop safe and 
effective therapies for COVID-19, it is critically important to 
understand the cell-type-specific innate immune mechanisms 
triggered in response to viral entry and how they orchestrate 
adaptive immune responses. One way to achieve this goal is to
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infect target cells of the adult human lung with virus ex vivo and to 
follow molecular and cellular responses over time. Ideally, this 
approach must be performed under well-defined, modular con-
ditions that can easily be adapted to high-throughput pharmaco-

genomic screens for therapeutic discovery. We report here the 
results of this approach by using SARS-CoV-2 infection of 3D al-
veolosphere cultures of primary human alveolar epithelial type-2 
cells (AT2s), the stem cells of the distal alveolar region.

Single-cell transcriptome profiling and immunolocalization 
studies showed that AT2s exhibit the highest enrichment of 
SARS-CoV-2 receptor ACE2, and its associated protease 
TMPRSS2, in the human distal lung (Hou et al., 2020; Muus 
et al., 2020; Sungnak et al., 2020; Ziegler et al., 2020). AT2s 
can both self-renew and differentiate into thin and flat gas 
exchanging alveolar epithelial type-1 cells (AT1s). In addition, 
they secrete surfactant proteins, namely, SFTPA and SFTPD, 
that promote alveolar patency but also can directly bind many vi-
ruses and other microbial pathogens to facilitate opsonization 
and phagocytosis (Crouch and Wright, 2001; McCormack and 
Whitsett, 2002). Therefore, AT2s play a key role in providing a 
first line of defense against viruses and in restoring cell numbers 
after injury. However, currently we do not know the nature of the 
pathways that are dysregulated in human AT2s in response to 
SARS-CoV-2 infection and how these pathways intersect with 
other forms of defense mechanisms. It is also unclear whether 
and how AT2s maintain stem cell characteristics while activating 
anti-viral defense mechanisms. Alveolosphere cultures derived 
from adult AT2s provide the opportunity to address these 
questions.

Numerous studies have demonstrated the potential of pri-
mary-tissue-derived organoids to serve as models for disease 
pathogenesis, organogenesis, and tissue repair (Drost and 
Clevers, 2018; Jacob et al., 2017; Lancaster and Huch, 2019; 
Lancaster and Knoblich, 2014; Neal et al., 2018; Yamamoto 
et al., 2017). For example, recent studies using intestinal organo-
ids combined with SARS-CoV-2 infection revealed the infectabil-
ity of intestinal epithelium and associated cellular responses 
(Lamers et al., 2020; Yang et al., 2020). In the case of the lung, 
AT2s have the ability to generate alveolospheres, which can pro-
liferate and differentiate into AT1s (Barkauskas et al., 2013, 2017; 
Chung et al., 2018; Dye et al., 2015; Hogan and Tata, 2019; Kat-
sura et al., 2019; Lancaster and Knoblich, 2014; Lee et al., 2013; 
Nikoli�c et al., 2018; Shiraishi et al., 2019a). However, current con-
ditions require the co-culture of AT2s with PDGFRa+ fibroblasts 
isolated from the alveolar stem cell niche or lung endothelial cells 
isolated from fetal tissues (Barkauskas et al., 2017; Lancaster 
and Huch, 2019; McQualter et al., 2010). In addition, current cul-
ture media are poorly defined and contain unknown factors 
derived from fetal bovine serum (FBS) or calf serum and bovine 
pituitary extracts (Barkauskas et al., 2017). Such complex condi-
tions do not provide a modular system in which AT2s can be 
either selectively expanded or differentiated into AT1 (Shiraishi 
et al., 2019a, 2019b; Weiner et al., 2019). Such defined condi-
tions are needed to study cell-type-specific effects and for 
high-throughput pharmaco-genomic studies to discover drugs 
for treating diseases.

To overcome these challenges, we have developed chemi-

cally defined conditions for human AT2 expansion and 
differentiation in alveolosphere cultures. We demonstrate that
SARS-CoV-2 infects and propagates in AT2s in these alveolo-

spheres. Complementary assays were used to assess the

transcriptome-wide changes in response to SARS-CoV-2

infection, and the results were directly compared with transcrip-

tome data from COVID-19 patients. Furthermore, we show that

viral infection induces the production of IFNs and that different

types of IFNs affect AT2 behavior in alveolosphere culture.

RESULTS

Establishment of Chemically Defined Conditions for
Alveolosphere Cultures
The cellular composition and properties of 3D culture models are

highly dependent on culture conditions (Barkauskas et al., 2017;

Drost and Clevers, 2018; Hu et al., 2018; Huch et al., 2013; Neal

et al., 2018; Peng et al., 2018; Velasco et al., 2019). Purified, line-

age-labeled mouse AT2s can be grown as alveolospheres (Bar-

kauskas et al., 2013, 2017; Katsura et al., 2019; Lee et al., 2013).

However, current culture conditions use a complexmedium con-

taining many variable components (serum and bovine pituitary

extract) and require the addition of lung-resident PDGFRa+ fibro-

blasts to support AT2 growth.We, therefore, established defined

conditions for long-term propagation of AT2s. Initially we used

mouse cells, and then subsequently similar conditions were

adapted for human AT2 cultures. Briefly, we performed single-

cell transcriptome analysis on AT2s grown in mouse tracheal

epithelial cell (MTEC) media (Figures S1A and S1B) and then

mined the single-cell RNA sequencing (scRNA-seq) data for

ligand-receptor pairs differentially expressed in epithelial cells

and fibroblasts (Figures S1C and S1D). Based on these data,

we tested different combinations of ligands and small molecules,

including interleukin-1b (IL-1b), a recently identified AT2 niche-

derived molecule, in a basal medium to generate a serum-free

feeder-free medium (SFFF) (Figures S1E–S1H; see Table S1 for

the full composition of the medium) (Katsura et al., 2019). SFFF

medium supports the growth of AT2s characterized by

numerous mature lamellar bodies packed with surfactants (Fig-

ure S1I). Of note, although the addition of IL-1b enhanced alveo-

losphere size, it did not increase alveolosphere number. Recent

studies identified that inhibition of bone morphogenetic protein

(BMP) signaling prevents AT2 differentiation (Chung et al.,

2018). Therefore, to promote a higher proportion of AT2s in al-

veolospheres, we supplemented SFFF medium with inhibitors

of BMP signaling (Noggin and DMH1), to generate AT2 mainte-

nance medium (AMM) (Figure S2A). In this medium, pneumo-

cytes maintain AT2 identity and can be sub-cultured for over

six passages (Figures S2B–S2F). Furthermore, we formulated a

medium (AT2 differentiation medium [ADM]) that contains 10%

FBS and stimulated AT2 differentiation, leading to a dramatic in-

duction of cells expressing markers of AT1s (see Table S1 for the

full composition of the media; Figures S2G and S2H).

Defined Culture Conditions for Human Alveolosphere
Cultures
Next, we sought to establish SFFF culture conditions for human

AT2s. We purified AT2s from healthy lungs using HTII-280

antibody (Gonzalez et al., 2010) and established alveolosphere

cultures using SFFF medium with human-specific recombinant

proteins in the absence of stromal cells (Table S2; Figure S3A).



Figure 1. Establishment of Chemically Defined Human Lung Alveolosphere Culture System

(A) Schematic representation of human alveolosphere cultures and passaging in SFFF medium.

(B) Representative images of human alveolospheres from different passages. Scale bar: 100 mm.

(C) Quantification of the colony formation efficiency (CFE) of human alveolospheres at different passages.

(D) Immunostaining for SFTPC (green), SFTPB (red), and AGER (gray) (left panel) or SFTPB (green), HTII-280 (red), and DC-LAMP (gray) (right panel) at P1 and P3

human alveolospheres cultured in SFFF medium for 14 days.

(E) Immunostaining for SFTPC (green) and HTII-280 (red) in cells dissociated from alveolospheres at P2 (top) and P8 (bottom).

(F) Quantification of HTII-280+ SFTPC+ cells/total 40,6-diamidino-2-phenylindole (DAPI)+ cells derived from alveolospheres dissociation from P2 (orange) and

P8 (blue).

(G) Schematic representation of human AT2 to AT1 differentiation in alveolospheres. AT2s were cultured in SFFF medium for 10 days, followed by culture in ADM

for 14 days.

(H) Immunostaining for SFTPC (green) and AGER (red) in human alveolospheres cultured under ADM condition for 14 days. Scale bars: 100 mm (B); 50 mm (D);

20 mm (E); 20 mm (H). DAPI (blue) shows nuclei in (D), (E), and (H). Data are presented as mean ± SEM.
Anddition of IL-1b for the first 4–7 days of culture slightly

enhanced the size and number of alveolospheres, although

this effect varied in magnitude from donor to donor (Figures

S3B–S3D). Therefore, we did not use IL-1b treatment for further

experiments. Long-term sub-culture over 10 passages and
sphere quantification (P6) confirmed the ability of SFFF medium

to sustain long-term human AT2 self-renewal and maintenance

of morphology across passages (Figures 1A–1C; Figures S3E

and S3F). Immunostaining for general lung epithelial cell

(NKX2-1) and AT2-specific markers (SFTPC, SFTPB, HTII-280,



Figure 2. Alveolosphere-Derived AT2s Express Viral Receptors and Are Permissive to SARS-CoV-2 Infection

(A) Immunostaining for ACE2 (green) (left panel) and TMPRSS2 (green) (right panel) with HTII-280 (red) and AGER (gray).

(B) Co-staining for epithelial cell membrane marker EPCAM (green) with TMPRSS2 (red) and ACE2 (gray).

(C) Co-staining for ACE2 (red) (left panel) and TMPRSS2 (red) (right panel) with polarity marker ZO1 (green) and HTII-280 (gray).

(D) Co-immunostaining for ACE2 (green) (left panel) and TMPRSS2 (green) (right panel) with HTII-280 (red) in AT2s dissociated from P5-cultured alveolospheres.

(E) Co-immunostaining for ACE2 (green), HTII-280 (red), and TMPRSS2 (gray) in AT2s from alveolospheres.

(F) Quantification of percent ACE2+/total HTII-280+ cells (left) and percent TMPRSS2+/total HTII-280+ cells.

(G) Immunostaining for ACE2 (red) (left panel) and TMPRSS2 (red) (left panel) with HTII-280 (green) and AGER (gray) in alveolospheres cultured in ADM for 14 days.

(legend continued on next page)



and DC-LAMP) revealed that alveolospheres were composed 
solely of AT2s and that neither airway (SOX2, SCGB1A1, and 
TP63) nor AT1s (AGER) were present (Figures 1D–1F; Figures 
S3G and S3H). Quantitative RT-PCR (qRT-PCR) analyses for 
AT2 markers further corroborated these findings (Figure S3F).
To induce the differentiation of AT2s, we first tested differenti-

ation medium containing 10% bovine serum, but there were few 
or no AGER+ (AT1) cells in alveolospheres (Figure S3I). We there-
fore switched to human serum and found that this change 
induced a robust expression of the AT1 marker AGER that was 
co-incident with a decrease in SFTPC (Figures 1G and 1H; Fig-
ure S3J). Significantly, the AGER+ cells show the large, thin, 
and flat morphology characteristic of type-1 pneumocytes in vivo 
(Figure 1H). Collectively, these data indicate that our newly 
developed SFFF culture conditions facilitated the long-term 
expansion of primary human AT2s in the absence of feeder cells 
and that the addition of human serum stimulated the cells to 
differentiate into AT1s.

Alveolosphere-Derived AT2s Express Viral Receptors 
and Are Permissive to SARS-CoV-2 Infection
Recent studies have indicated that SARS-CoV-2 receptor ACE2 
and a key protease, TMPRSS2, which is needed for proteolytic 
cleavage of the viral spike protein, are expressed in AT2s (Hoff-
mann et al., 2020; Hou et al., 2020; Muus et al., 2020; Sungnak 
et al., 2020; Ziegler et al., 2020). We therefore assessed the 
expression and localization of ACE2 and TMPRSS2 in pneumo-

cytes derived from alveolospheres cultured in SFFF media or 
ADM that contain AT2s only or a mixture of AT2 and AT1s, 
respectively. Immunostaining in combination with a well-known 
apical marker of AT2 (HTII-280), polarity marker ZO1, and mem-

brane marker EpCAM showed that ACE2 is localized at the api-
cal surface (similar to HTII-280 and ZO1), whereas TMPRSS2 is 
enriched at the basal side of AT2s (Figures 2A–2C). We then 
quantified the number of AT2s that express ACE2 and TMPRSS2 
on single-cell preparations of alveolospheres. Our data revealed 
that 40% of AT2s express ACE2, whereas about 80% are posi-
tive for TMPRSS2 (Figures 2D–2F). We did not find ACE2 and 
TMPRSS expression in differentiated (AGER+) AT1s, a finding 
consistent with prior single-cell transcriptome as well as immu-

nolabeling assays on human lungs (Figure 2G; Hou et al., 2020; 
Muus et al., 2020).
To test whether SARS-CoV-2 can infect alveolosphere-

derived AT2s, we used a recently developed reverse-engineered 
SARS-CoV-2 virus harboring a GFP-fusion protein (Hou et al., 
2020). Human alveolospheres were cultured on a Matrigel sur-
face in SFFF media (lacking IL-1b) for 10–12 days, incubated 
with SARS-CoV-2-GFP for 2 h, washed with phosphate-buffered 
saline (PBS) to remove residual viral particles, and then collected
(H) Schematic representation for SARS-CoV-2-GFP infection in human alveolo

10–12 days, followed by infection with SARS-CoV-2 virus and RNA isolation or h

(I) Representative wide-field microscopy images from control and SARS-CoV-2-

(J) Quantification of low-infected (1–10 GFP+ cells) and high-infected (10 or mo

infection.

(K) Viral titers were measured by plaque assays using media collected from lung

(L) SARS-CoV-2 negative-strand-specific reverse transcription followed by qRT-

(blue) and SARS-CoV-2-infected human alveolospheres at 72 h post-infection. As

White box in merged image indicates region of single-channel images. All quant
for analysis over 72 h. GFP was detected as early as 48 hours

post-infection (hpi) in virus-exposed but not in control alveolo-

spheres (Figures 2H and 2I). Quantification of GFP-expressing

cells at 24, 48, and 72 hpi revealed a gradual decrease in the

number of GFP+ cells (Figure 2J). Consistent with this finding,

plaque-forming assays using culture supernatants revealed

that viral release peaks at 24 h but later declined (Figure 2K).

This observation was consistent across cells from three different

donors. Of note, we observed a significant number of viral parti-

cles immediately after infection despite numerous washes with

PBS. This result was likely due to the entrapment of virus in the

Matrigel. Nevertheless, the viral titer increased at 24 hpi, demon-

strating that SARS-CoV-2 productively replicates in AT2s (Fig-

ure 2K). qRT-PCR further revealed the presence of viral RNA in

SARS-CoV-2-infected cells compared to controls (Figure S4A).

To further confirm virus replication, we performed qRT-PCR us-

ing primers that specifically recognize the minus strand of the vi-

rus. Indeed, we observed viral replication in alveolosphere cul-

tures (Figure 2L).

AT2s Activate IFN and Inflammatory Pathways in
Response to SARS-CoV-2 Infection
To gain insights into the response of AT2s to SARS-CoV-2 (wild

type), we performed unbiased genome-wide transcriptome

profiling on alveolospheres cultures 48 h after infection (Fig-

ure 3A). Of all the sequenced reads, viral transcripts accounted

for 4.7%, indicating that virus was propagating in AT2s (Fig-

ure S4B). Previous studies have shown that in response to viral

infection, target cells typically produce type I IFNs (IFN-Is) and

IFN-IIIs (a/b and l, respectively) that subsequently activate tar-

gets of transcription factors IRF, STAT1/2, and NF-kB including,

IFN-stimulated genes (ISGs), inflammatory chemokines, and cy-

tokines that go on to exert anti-viral defensemechanisms (Barrat

et al., 2019). It was therefore significant that a differential gene

expression analysis of infected versus uninfected alveolo-

spheres revealed an enrichment of transcripts related to general

viral response genes, including multiple IFNs and their targets

(Figures 3A–3F). Specifically, SARS-CoV-2-infected AT2s were

enriched for transcripts of IFN-Is (IFNA7, IFNB1, and IFNE) as

well as IFN-IIIs (IFNL1, IFNL2, and IFNL3) but not type II IFN

(IFNG) ligands (Figures 3B and 3C; Figure S4C). Receptors for

IFN-Is (IFNAR1 and IFNAR2), type II IFNs (IFNGR1 and IFNGR2)

and IFN-IIIs (IFNLR1 and IL10RB) were expressed in control

AT2s, and amodest increase was found for IFNAR2 and IFNGR2

after SARS-CoV-2 infection (Figures 3B and 3D; Platanias, 2005;

Syedbasha and Egli, 2017). These data indicate that in response

to SARS-CoV-2 infection, AT2s produce IFN-I and IFN-III li-

gands, which can potentially act by either by autocrine or para-

crine (neighboring AT2s) mechanisms to activate their cognate
spheres. AT2s were cultured on Matrigel-coated plates in SFFF medium for

istological analysis after different time points.

GFP-infected human lung alveolospheres.

re GFP+ cells) alveolospheres 24, 48, and 72 h post SARS-CoV-2GFP virus

alveolosphere cultures at 24, 48, and 72 h post-infection.

PCR targeting two different genomic loci (1202–1363 and 848–981) in mock-

terisks show p < 0.05. Scale bars: 30 mm (A, B, and C); 20 mm (D); and 20 mm (F).

ification data are presented as mean ± SEM.



Figure 3. Transcriptome Profiling Revealed Enrichment of IFN, Inflammatory, and Cell Death Pathways in SARS-CoV-2-Infected Pneu-

mocytes

(A) Schematic for SARS-CoV-2-GFP infection in human alveolospheres. AT2s cultured in SFFF medium were infected with SARS-CoV-2 virus followed by RNA

isolation at 48 h after infection.

(legend continued on next page)



receptors. Indeed, a large number of IFN target genes including 
ISGs, IFN-induced protein-coding genes (IFIs), and IFN-induced 
protein with tetratricopeptide repeats-coding genes (IFITs), were 
upregulated in SARS-CoV-2-infected AT2s (Figures 3B and 3E). 
Additionally, key transcription factors STAT1 and STAT2 that are 
known to be components of the signaling pathways downstream 
of IFN receptors were also upregulated in infected AT2s.
Pathway analysis revealed all three classes of IFN targets were 

upregulated, but the most prominent were IFN-I and IFN-III 
signaling. Despite the absence of type II IFN ligands (IFNG), we 
observed a significant upregulation of canonical targets of 
IFNg-response mediators in SARS-CoV-2-infected AT2s (Fig-
ures 3B and 3E). This finding suggests that there is a significant 
overlap of downstream targets and cross-talk between different 
classes of IFN pathways, as described previously (Barrat et al., 
2019; Bartee et al., 2008). Other prominent upregulated genes 
include chemokines (CXCL10, CXCL11, and CXCL17) and pro-
grammed cell-death-related genes (TNFSF10, CASP1, CASP4, 
CASP5, and CASP7) (Figure 3B; Figures S4D and S4E). In 
contrast, we observed a significant downregulation of tran-
scripts associated with DNA replication and cell cycle (PCNA, 
TOP2A, MCM2, and CCNB2) in infected AT2s (Figure 3B; Fig-
ure S4F). Selected targets were validated using independent 
qRT-PCR assays at early (48 h) and late (120 h) time points 
post-infection (Figure S5A). Taken together, transcriptome anal-
ysis revealed a significant upregulation of IFN and inflammatory 
and cell death signaling, juxtaposed to the downregulation of 
proliferation-related transcripts, in alveolosphere-derived AT2s 
in response to SARS-CoV-2.

SARS-CoV-2 Infection Induces Loss of Surfactants and 
Pneumocyte Death
To gain further insights into how primary AT2s respond early to 
SARS-CoV-2 infection, we analyzed cellular changes in alveolo-
spheres by using immunohistochemistry (Figure 4A). Quantifica-

tion of infected alveolospheres revealed that 29.22% are SARS+ 

(Figure 4B). Immunostaining revealed the co-expression of GFP 
and SARS-CoV-2 spike protein in infected alveolospheres (Fig-
ure 4C). We found variation in the number of GFP+ cells in 
each alveolosphere. Therefore, we broadly categorized alveolo-
spheres into low (1–10 cells) and high (>10) groups, depending 
on the number of SARS+ cells in each alveolosphere (Figures 
4C and 4D). Next, analyses for AT2 markers, including SFTPC, 
SFTPB, and HTII-280, revealed a dramatic loss or decrease in 
the expression of surfactant proteins SFTPC and SFTPB in in-
fected cells (GFP+ or SARS+) but not in control alveolospheres 
(Figures 4C and 4E; Figure S5B). Of note, HTII-280 expression 
was unchanged (Figure S5C). The loss of surfactant protein 
expression was more apparent in highly infected alveolospheres 
(Figure S5B). Some of the GFP+ cells showed a slightly elongated 
morphology, resembling that of AT1s, but immunostaining for 
AT1 markers revealed that infected cells did not differentiate
(B) Volcano plot showing upregulated (right) and downregulated (left) genes in alv

perform statistical analysis.

(C–E) Expression levels of listed genes in mock- (green) and SARS-CoV-2-infec

receptors (D), as well as downstream targets (E), are shown. Data are presented

(F) Pathway enrichment analysis of upregulated (left, red) and downregulated (

combined score obtained from BioPlanet database through Enrichr.
into AT1s (Figure S5D). These data are in accordance with our

scRNA-seq data that AT2s downregulate surfactant expression

in response to SARS-CoV-2 infection.

Histopathological evidence suggests that there is a loss of

alveolar parenchyma in COVID-19 lungs (Bradley et al., 2020;

Huang et al., 2020a). To test whether SARS-CoV-2 infection in-

duces cell death, we performed immunostaining for active cas-

pase-3, a marker for apoptotic cells. Apoptotic cells were found

in alveolospheres exposed to virus but not in controls, suggest-

ing that AT2s undergo cell death in response to SARS-CoV-2

infection (Figure 4F). Significantly, we observed cell death in

both SARS+ and SARS� cells suggesting a paracrine mecha-

nism inducing cell death in uninfected neighboring cells (Fig-

ure 4G). Furthermore, immunostaining for Ki67, a marker for

proliferating cells revealed no apparent difference in overall cell

replication in virus-exposed alveolospheres compared to

controls (Figure 4H). Taken together, these data show that

SARS-CoV-2 infection induces the downregulation of surfactant

proteins and an increase in cell death in AT2s by both cell auton-

omous and non-autonomous mechanisms.

Transcriptome-wide Similarities in AT2s from SARS-
CoV-2-Infected Alveolospheres and COVID-19 Lungs
To directly compare SARS-CoV-2-induced responses in AT2s in

alveolospheres to changes seen in COVID-19 lungs, we used a

publicly available scRNA-seq dataset from bronchoalveolar

lavage fluid (BALF) obtained from six severe COVID-19 patients

(Bost et al., 2020; Liao et al., 2020). First, we compared the gene

expression profiles of AT2s from COVID-19 patient lungs with

AT2s from healthy lungs (Figures S6A–S6D). We found a signifi-

cant upregulation of chemokines (CXCL10, CXCL14, and IL32),

IFN targets (IFIT1, ISG15, and IFI6), and cell-death-pathway

(TNFSF10, ANXA5, and CASP4) -related transcripts in COVID-

19 patient AT2s (Figures 5A and 5B). Intriguingly, surfactant

genes, including SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD,

as well as NAPSA, a gene product that catalyzes the processing

of the pro-form of surfactant proteins into mature proteins, were

significantly downregulated in COVID-19 patient AT2s, whereas

changes in other AT2 markers were minimal and insignificant

(Figures 5A and 5B). Pathway analysis revealed a significant

enrichment for IFN-I and type II IFN signaling, inflammatory pro-

grams, and cell death pathways in COVID-19 AT2s (Figures 5C

and 5D). We then made a direct comparison of transcripts be-

tween AT2s from SARS-CoV-2-infected ex vivo cultures and

COVID-19 patient lungs. This comparison revealed a striking

similarity in upregulated transcripts (Figure S6E). These included

an upregulation of chemokines and cytokines, including IFN li-

gands and their targets, indicating that AT2s derived from alveo-

lospheres respond similarly to AT2s from human lungs after

SARS-CoV-2 infection (Figures S6E and S6F). We then extended

these findings to COVID-19 lungs and uncovered thatSFTPB but

not other AT2smarkers, NKX2-1 or ABCA3, were downregulated
eolospheres cultured in SFFF infected with SARS-CoV-2. DESeq2 was used to

ted (red) human alveolospheres detected by bulk RNA-seq. IFN ligands (C),

as fragments per kilobase million (FPKM) mean ± SEM.

right, blue) genes in SARS-CoV-2-infected alveolospheres. Scale shows the



Figure 4. SARS-CoV-2 Infection Induces Loss of Surfactants and AT2 Death

(A) Schematic for SARS-CoV-2-GFP infection in human alveolospheres. Alveolospheres were cultured in SFFF medium, infected with SARS-CoV-2 virus, and

collected for histological analysis.

(B) Quantification of the percentage of SARS-CoV-2-infected alveolospheres.

(C) Immunostaining for GFP (green), SFTPC (red), and SARS (gray) (top panel) and GFP (green) and SFTPB (red) (bottom panel) in control, ‘‘low,’’ and ‘‘high’’

SARS-CoV-2-GFP-infected human lung alveolospheres at 72 h post-infection. Scale bar: 50 mm.

(D) Quantification of low-infected (1–10 SARS-CoV-2+ cells) and high-infected (10 or more SARS-CoV-2+ cells) alveolospheres.

(E) Quantification of SFTPC+ cells in uninfected control and SARS� and SARS+ cells in virus-infected alveolospheres.

(F) Immunostaining for GFP (green) in combination with the apoptotic marker active caspase 3 (red) and proliferationmarker Ki67 (gray) in control and SARS-CoV-

2-GFP-infected alveolospheres. Scale bar: 30 mm.

(G and H) Quantification of active caspase-3 (CASP3)+ (G) and Ki67+ (H) cells in uninfected control (gray), SARS-CoV-2� cells (blue), and SARS-CoV-2+ cells in

infected alveolospheres. The white box in the merged image indicates the region of single-channel images. DAPI stains nuclei (blue). All quantification data are

presented as mean ± SEM.



Figure 5. Transcriptome-wide Similarities in AT2s from SARS-CoV-2-Infected Alveolospheres and COVID-19 Lungs

(A) Volcano plot shows specific genes enriched in AT2s in bronchioalveolar lavage fluid from severe COVID-19 patients (right) and AT2s isolated from healthy

lungs (control) (left). Wilcoxon rank-sum test was used for the statistical analysis.

(B) Violin plots show gene expression of cytokines and chemokines (CXCL10, CXCL14, and IL32), interferon targets (IFIT1, ISG15, and IFI6), apoptosis targets

(TNFSF10,ANXA5, andCASP4), surfactant-related targets (SFTPC,SFTPD, andNAPSA), and AT2-related targets (LAMP3,NKX2-1, andABCA3) in AT2s derived

from control and severe COVID-19 patient lungs.

(C) Pathway enrichment analysis shows signaling pathways enriched in AT2s derived from severe COVID-19 patients. Scale shows combined score obtained

from BioPlanet database through Enrichr.

(legend continued on next page)



in SARS+ cells (Figures 5E–5G). Similar to alveolospheres, we

observed active caspase-3 in SARS+ cells in COVID-19 human

lungs (Figure 5H).

AT2s Respond to Exogenous IFNs and Recapitulate
Features Associated with SARS-CoV-2 Infection
Our transcriptome analysis revealed a striking similarity in IFN

signatures in AT2s from alveolospheres and human lungs after

SARS-CoV-2 infection. Previous studies have shown that IFNs

induce cellular changes in a context-dependent manner. For

example, IFNa and IFNb provide protective effects in response

to influenza virus infection in the lungs, whereas IFNg induces

apoptosis in intestinal cells in response to chronic inflammation

(Koerner et al., 2007; Takashima et al., 2019). To test the direct

effects of IFNs on AT2s, we treated alveolospheres with purified

recombinant IFNa, IFNb, and IFNg in SFFF media and cultured

them for 72 h (Figure 6A). First, we observed detached cells in

all treatments, with a maximal �3-fold increased effect in

IFNg-treated alveolospheres (Figure 6B). Immunostaining for

active caspase-3 revealed a significant induction of cell death

in response to all IFN treatments, with a maximal effect with

IFNg (Figures 6C and 6D; Figure S7A). In contrast, we observed

a significant reduction in cell proliferation in IFNb and IFNg treat-

ments, as revealed by immunostaining for Ki67, a marker for cell

proliferation (Figures 6E and 6F). Significantly, immunostaining

revealed a reduction of SFTPB expression in alveolospheres

treated with all IFNs compared with that of controls (Figure 6E).

A similar trend was observed for SFTPC and SFTPB transcripts,

as assessed by qRT-PCR (Figures S7B and S7C). These data are

in accordance with transcriptome data from AT2 alveolospheres

after SARS-CoV-2 infection (Figure 3B). Of note, treatment with

IFNa, IFNb, and IFNg significantly enhanced the levels of

ACE2, but not TMPRSS2 transcripts, which is in line with results

of previous studies in other cell types (Hou et al., 2020; Ziegler

et al., 2020; Figures S7D and S7E). A similar trend was observed

in SARS-CoV-2-infected cells, suggesting a positive loop that in-

volves IFNs and ACE2 that subsequently amplifies SARS-CoV-2

infection (Figure S7F).

Pre-treatment with IFNs Reduces SARS-CoV-2
Replication in Alveolospheres
Recent studies suggested that pre-treatment with IFNs reduced

SARS-CoV-2 replication in Calu-3 and Vero-2 cells. We then

tested the effect of pre-treatment of alveolospheres with IFNs

before viral infection (Clementi et al., 2020; Felgenhauer et al.,

2020) because our above data from IFN treatments alone led

to an increase in AT2 death. Therefore, we pre-treated alveolo-

spheres with a lower dose of IFNa and IFNg (10 ng) for 18 h prior

to viral infection (Figure 6G). Subsequent plaque-forming assays

at 24 hpi and 48 hpi revealed that pre-treatment with IFNs signif-

icantly reduced the viral titers in alveolospheres (Figure 6H). In

addition, we also tested the effect of IFN signaling inhibition on
(D) Venn diagram shows enrichment of upregulated transcripts associated with d

(E) RNA in situ hybridization for SARS-CoV-2 (green) and SFTPB (red) on control

(F) Co-immunostaining for SARS-CoV-2 (green), ABCA3 (red) (left); SARS-CoV2 (g

COVID-19 lung sections. DAPI stains nuclei. Scale bars: 20 mm and 60 mm (NKX

(G) Quantification of SFTPB+ cells, NKX2-1+ cells, and ABCA3+ cells in total SAR

(H) Quantification of active CASP3+ cells in total SARS-CoV-2+ cells. Data are pr
viral replication. For this test, we pretreated alveolospheres

with ruxolitinib, an inhibitor of IFN signaling, for 18 h and

continued treatment following viral infection (Figure 6G). Pla-

que-forming assays revealed an increase in the viral replication

(Figure 6H). Taken together, these data suggest that pre-treat-

ment with IFNs gives a prophylactic effect, whereas IFN inhibi-

tion promotes viral replication.

DISCUSSION

Here, we used scRNA-seq-guided AT2-fibroblast interactome

maps to develop and optimize the first chemically defined,

serum-free, and stroma-free alveolosphere culture conditions

for mouse and human AT2 expansion, maintenance, and differ-

entiation. Our newly developed alveolosphere conditions facili-

tate long-term passaging and large-scale expansion, features

conducive to infection by viruses and potentially other patho-

gens, as well as large-scale biochemical assays. Furthermore,

our alveolosphere culture conditions are well suited for high-

throughput, pharmaco-genomic screening to identify both anti-

viral drugs and pathways that control cell fate choices in certain

pathophysiological conditions.

Using alveolosphere cultures, we demonstrate that AT2s ex-

press a SARS-CoV-2 receptor, ACE2, and are sensitive to virus

infection. Transcriptome profiling further revealed the emer-

gence of an ‘‘inflammatory state’’ in which AT2s activated the

expression of numerous IFNs, cytokines, chemokines, and

cell-death-related genes at later times post-infection. These

data are consistent with earlier studies showing delayed host

innate immune responses after SARS-CoV (2003) infection, until

later times (Menachery et al., 2014), but also underscore the

need for kinetic analyses of host responses at different times af-

ter infection. Both transcriptome and immunohistochemical

analysis revealed a downregulation of surfactant proteins in

SARS-CoV-2-infected alveolospheres. Interestingly, these find-

ings are in line with previous observations of surfactant protein

downregulation after influenza injury (Kebaabetswe et al.,

2015). The loss of surfactant proteins has adverse repercussions

for the host, as surfactants are essential for preventing alveolar

collapse and for controlling both innate and adaptive immune re-

sponses (Crouch and Wright, 2001; McCormack and Whitsett,

2002). Our finding that the type-II IFN pathway is activated in

AT2s ex vivo is somewhat surprising, as typically it is the IFN-I

and IFN-III pathways that are activated in cells by viral infection

(Barrat et al., 2019; Bartee et al., 2008). Significantly, these

unexpected findings from alveolosphere-derived AT2s mirror

responses in AT2s from COVID-19 patient lungs, further

supporting the relevance of alveolosphere-derived AT2 for

SARS-CoV-2 studies. Our study further provided evidence that

pre-treatment with IFNs shows prophylactic effectiveness in al-

veolospheres. Future studies will reveal whether such a prophy-

lactic effect can provide resistance to viral propagation in vivo.
ifferent IFN pathways in AT2s derived from COVID-19 human lungs.

and COVID-19 lung sections.

reen) and NKX2-1 (red) (middle); and active caspase-3 (CASP3) (red) (right) on

2-1).

S-CoV-2+ cells.

esented as mean ± SEM.



Figure 6. IFN Treatment Recapitulates Features of SARS-CoV-2 Infection Including Cell Death and Loss of Surfactants in Alveolosphere-

Derived AT2s

(A) Schematic of experimental design. Human lung alveolospheres were treated with IFNa, IFNb or IFNg for 72 h.

(B) Representative images of control and IFNa-, IFNb-, and IFNg-treated human lung alveolospheres.

(C) Immunostaining for active-caspase-3 (green), HTII-280 (red), and SOX2 (gray) in control and IFN-treated alveolospheres. DAPI stains nuclei (blue). Scale

bar: 30 mm.

(D) Quantification of active caspase-3+ cells in total DAPI+ (per alveolosphere) cells in control and IFN-treated human alveolospheres.

(E) Immunostaining for SFTPB (green), Ki67 (red), and AGER (gray) in controls and IFNa-, IFNb-, or IFNg-treated human alveolospheres. DAPI stains nuclei (blue).

Scale bar: 30 mm.

(F) Quantification of Ki67+ cells in total DAPI+ cells in control and IFN-treated human alveolospheres. *p < 0.05; **p < 0.01; ***p < 0.001.

(G) Schematic of IFNs or IFN inhibitor treatment followed by SARS-CoV-2 infection.

(H) Viral titers in control (gray), ruxolitinib-treated (orange), IFNa-treated (blue), and IFNg-treated (green) cultures were determined by plaque assay using media

collected from alveolosphere cultures at 24 and 48 h post-infection. Data are presented as mean ± SEM.
There are several reasons why AT2s grown in alveolosphere

cultures are preferred over the currently used cell lines, such

as Calu-3, A549, Vero, and H1299. For example, A549 cells

derived from a human lung adenocarcinoma have been widely

used as surrogates for alveolar epithelial cells in viral infection

studies (Hoffmann et al., 2020; Letko et al., 2020; Osada et al.,
2014; Ujie et al., 2019). However, the A549 cell line lacks the car-

dinal features of lung epithelial cells, including the ability to form

epithelial tight junctions; they also harbor numerous genetic al-

terations (Mason and Williams, 1980; Osada et al., 2014). More

importantly, A549 cells do not express the SARS-CoV-2 receptor

ACE2, and viral infection studies rely on the ectopic expression



of this receptor (Blanco-Melo et al., 2020). Accordingly, trans-
formed cell lines do not faithfully recapitulate the native lung 
epithelial cells (Mason and Williams, 1980). In contrast, AT2-
based alveolospheres are highly polarized epithelial structures 
that retain molecular and morphological features and maintain 
the ability to differentiate into AT1s under suitable conditions.

Other models, including AT2s derived from directed differenti-
ation of induced pluripotent stem cells (iPSCs), can serve as 
alternative models for ex vivo studies (Jacob et al., 2017; Yama-

moto et al., 2017). Indeed, recent studies using primary stem 
cells and iPSC-derived 3D cultures from lung, brain, kidney, 
and intestine have provided insights into SARS-CoV-2 cell 
tropism, viral replication kinetics, factors that promote viral entry, 
and the associated cellular responses (Huang et al., 2020b; 
Jacob et al., 2020; Lamers et al., 2020; Monteil et al., 2020; Ram-

ani et al., 2020; Yang et al., 2020). Furthermore, such models 
have been useful for the discovery of anti-viral drugs as well as 
preclinical humanized ex vivo models to test the efficacy of exist-
ing therapeutically relevant molecules (Monteil et al., 2020; Yang 
et al., 2020). Consistent with our data, a recent study using iPSC-
derived AT2s (iAT2s) uncovered epithelial intrinsic inflammatory 
responses, including IFN pathways, after SARS-CoV-2 infection 
(Huang et al., 2020b). Despite these similarities, primary lung 
stem cell-derived models and iPSC-derived iAT2 models have 
their unique advantages and disadvantages. For example, 
although iPSC-derived models are more conducive to genetic 
modulation, they may not be suitable for studying age-specific 
phenomena. This is particularly important in the case of severe 
COVID-19, as this disease is more severe in aged than in 
younger populations and the cellular responses to infection 
may differ in adolescents compared to the elderly (Muus et al., 
2020; Ziegler et al., 2020). Nevertheless, human stem cell-based 
models will be very valuable for rapid and scalable disease 
modeling and drug discovery.

One limitation of alveolosphere models in general is that they 
lack the complete cellular complexity of native tissues. However, 
such simplified models also offer several advantages. First, as 
has already been demonstrated here, they serve as an excellent 
model to study intrinsic cellular mechanisms that are triggered in 
response to viruses and other pathogens. For example, our 
study identified numerous IFN ligands and target genes that 
are activated by AT2s in response to SARS-CoV-2 infection. 
Second, our study found that AT2s activate type II IFN signaling 
in the absence of IFNG ligands, suggesting the possibility of un-
known non-canonical type II ligands. As discussed above, 
currently used cancer cell lines, e.g., Vero cells and A549 cells, 
are defective in their responses to certain IFN pathways 
(Blanco-Melo et al., 2020; Desmyter et al., 1968; Osada et al., 
2014) and, therefore, are not suitable for studying IFN signaling. 
As we demonstrated here, alveolosphere-derived AT2s express 
receptors and downstream components needed for IFN signal 
transduction. Therefore, alveolosphere-derived AT2s offer a 
faithful model that recapitulates in vivo cellular contexts for 
studying and identifying components that are either specific or 
shared between different classes of IFN signaling. Third, 
although not tested here, alveolosphere-derived AT2s can be 
combined with other cell types, e.g., specific immune cell 
subsets, to study the interactions between AT2s and immune 
cells in the presence and absence of pathogens, such as
SARS-CoV-2. Indeed, such efforts were made in the context of

tumor-immune cell interactions (Neal et al., 2018).

In conclusion, we provide chemically defined andmodular cul-

ture conditions for the selective expansion and differentiation of

AT2s that retain the cardinal features of AT2s, including the abil-

ity to self-renew, produce surfactants, and differentiate into

AT1s. SARS-CoV-2 infection of the defined AT2 alveolosphere

system revealed an induction of autocrine and presumed para-

crine IFN signaling and inflammatory pathways that blocked sur-

factant production and proliferation and induced cell death. This

newly developed alveolospheremodel offers a unique system for

studying SARS-CoV-2 infection and developing effective thera-

pies for COVID-19 and other respiratory diseases.

Limitations of Study
Human lung tissue specimens used for generating alveolospheres

came from healthy donors from different age groups. Our study

has not taken into account the differences in tissue composition

or cell behavior among different age groups. Future studies will

need to consider these variables in studying the properties of

AT2 cells in 3D cultures. Similarly, the affect age on viral infection

and the associated responses were not accounted in our study.

Although the AT2 expansion medium is completely defined, AT2

differentiation medium currently uses human serum. Develop-

ment of a defined AT2 differentiation medium will be valuable

for genetic and pharmacological screenings and will most likely

advance the use of alveolospheres for cell-based therapies.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Polyclonal anti-Prosurfactant protein C Millipore Cat# ab3786, RRID:AB_91588

Anti-ABCA3 Seven Hills Bioreagents Cat# WMAB-17G524

Monoclonal Rat anti-RAGE/AGER R&D systems Cat# MAB1179, RRID:AB_2289349

Polyclonal Goat Human RAGE/AGER R&D systems Cat# AF1145, RRID:AB_354628

Rat Monoclonal anti-Ki67 Thermo Fisher Scientific Cat# 14-5698-82, RRID: AB_10854564

Mouse Monoclonal anti-HTII-280 Terrace Biotech Cat# TB-27AHT2-280

Rat monoclonal anti-DC-Lamp Novus Biologicals Cat# DDX0191P

RRID: AB_2827532

Rabbit Polyclonal anti-SFTPB Thermo Fisher Scientific Cat# PA5-42000

RRID: AB_2609628

Mouse Monoclonal anti-SFTPB Thermo Fisher Scientific MA1-204

RRID: AB_2633311

Rabbit polyclonal anti-ACE2 Sino biological Cat# 10108-H31H

Mouse Monoclonal anti-ACE2 R&D systems Cat# MAB933-SP

RRID: AB_2223153

Mouse Monoclonal anti-TMPRSS2 Santa Cruz Biotechnology Cat# sc-515727

RRID: AB_10863728

Rabbit monoclonal anti-TMPRSS2 Abcam Cat# ab109131

RRID: AB_10863728

Mouse Monoclonal anti- SARS-CoV/ SARS-CoV-2 Genetex Cat# GTX632604

Rabbit polyclonal anti- SARS-CoV/ Coronavirus

Nucleocapsid

Thermo Fisher Scientific Cat# PA1-41098

RRID: AB_1087200

Rabbit monoclonal anti- Active Caspase-3 BD Biosciences Cat# 559565

RRID: AB_397274

Rabbit polyclonal anti-p63 Genetex Cat# GTX102425

RRID: AB_1952344

Goat-anti-SOX2 R&D systems Cat# AF2018

RRID: AB_355110

Rabbit monoclonal Anti-TTF1/NKX2-1 Abcam Cat# ab76013

RRID: AB_1310784

Goat polyclonal Anti-Scgb1a1 Santa Cruz Biotechnology Cat# sc-9772

RRID: AB_2238819

Mouse Monoclonal Anti-Human EPCAM-488 BioLegend Cat# 324209

RRID: AB_756083

Rabbit Polyclonal ZO-1 Abcam Cat# ab216880

Mouse SARS antiserum Hou et al., 2020 N/A

Alexa Flour 488 goat anti-mouse IgM Thermo Fisher Scientific Cat# 10680

RRID: AB_10892893

Alexa Fluor 546 goat anti-hamster IgG Thermo Fisher Scientific Cat# A21111,

RRID: AB_2535760

Alexa Fluor 594 goat anti-mouse IgG1 Thermo Fisher Scientific Cat# A21125, RRID:AB_2535767

Alexa Fluor 594 donkey anti-goat IgG Thermo Fisher Scientific Cat# A11058, RRID:AB_2534105

Alexa Fluor 647 goat anti-mouse IgG1 Thermo Fisher Scientific Cat# A21240, RRID:AB_2535809

Alexa Fluor 647 goat anti-rabbit IgG Thermo Fisher Scientific Cat# A21245, RRID:AB_2535813

Alexa Fluor 647 donkey anti-mouse IgG Thermo Fisher Scientific Cat# A31571, RRID:AB_162542

Mouse-CD31 MicroBeads Miltenyi Biotec Cat# 130-097-418 RRID:AB_2814657

Mouse-CD45 MicroBeads Miltenyi Biotec Cat# 130-052-301
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Human-CD326 (EpCAM) microbeads Miltenyi Biotec Cat# 130-061-101 RRID:AB_2832928

Human TruStain FcX Biolegend Cat# 422032

Mouse monoclonal CD326 (EpCAM) Thermo Fisher Scientific Cat#14-5791-81

Rat Monoclonal PE anti-mouse CD140a Biolegend Cat# 135905

RNAscope� Probe- Hs-SFTPB-C2 ACD Cat# 544251-C2

RNAscope� Probe- V-nCoV2019-S ACD Cat# 848561

Bacterial and Virus Strains

icSARS-CoV-2-GFP Hou et al., 2020 GenBank: MT461670

SARS-CoV-2 USA-WA1/2020 (kind gift of Greg Sempowski,

Duke University, US)

N/A

Biological Samples

Human lung tissue The University of North Carolina

at Chapel Hill or Yale University

N/A

Chemicals, Peptides, and Recombinant Proteins

SB431542 Abcam Cat# Ab120163

CHIR99021 Tocris Cat# 4423

BIRB796 Tocris Cat# 5989

DMH-1 Tocris Cat# 41-261-0

Heparin Sigma-Aldrich Cat# H3149

N-Acetyl-L-cysteine Sigma-Aldrich Cat# A9165

Human serum Sigma-Aldrich Cat# H4522

Human EGF GIBCO Cat# PHG0313

Mouse FGF7 R&D systems Cat# 5028-KG-025

Mouse FGF10 R&D systems Cat# 751004

Y27632 2HCl Selleckchem Cat# S1049

B-27 Supplement (50X) Thermo Fisher Scientific Cat# 17504044

N-2 Supplement (100X) Thermo Fisher Scientific Cat# 17502048

Insulin-Transferrin-Selenium (100X) Thermo Fisher Scientific Cat# 41400-045

Glutamax Thermo Fisher Scientific Cat# 35050061

HEPES (1M) Thermo Fisher Scientific Cat# 15630080

Antibiotic-Antimycotic (100X) Thermo Fisher Scientific Cat# A5955-100ML

MEM GIBCO Cat # 11095

Penicillin/Streptomycin GIBCO Cat # 15140

MEM NEAA GIBCO Cat# 11140

Human FGF10 BioLegend Cat# 559304

Mouse IL-1b BioLegend Cat# 575104

Human IL-1b BioLegend Cat# 579404

Mouse TNFa BioLegend Cat# 575204

Mouse Noggin Peprotech Cat# 250-38

Human FGF10 BioLegend Cat# 559304

Human IFNb Peprotech Cat# 300-02BC

Human IFNa BioLegend Cat# 592704

Human IFNg BioLegend Cat# 570204

Ruxolitinib Cayman Cat# 11609

Tamoxifen Sigma-Aldrich Cat# T5648

Dispase Corning Cat# 354235

DNase I Thermo Fisher Scientific Cat# 10104159001

Collagenase type I GIBCO Cat# 17100-017

Matrigel Corning Cat# 354230
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Lysotracker Thermo Fisher Scientific Cat# L7526

Accutase Sigma-Aldrich Cat# A6964

Citrate Buffer, pH 6.0 (10X) Sigma-Aldrich Cat# C9999

Fluoromount-G, with DAPI Thermo Fisher Scientific Cat# 00-4959

PBS GIBCO Cat# 20012027

Sodium bicarbonate Sigma-Aldrich Cat# S5761

Sodium hydroxide Sigma-Aldrich Cat# S8045

Terra PCR Direct Polymerase Takara Cat# 639271

TrypLE Select Enzyme Thermo Fisher Scientific Cat# #12563029

TRIzol LS Reagent #11588616 Invitrogen Cat# 11588616

Direct-zol RNA MicroPrep kit Zymoresearch Cat# 11-330M

SuperScript III Thermo Fisher Scientific Cat# 18080400

PowerUp SYBR Green Master Mix Thermo Fisher Scientific Cat# A25742

NEBNext Poly(A) mRNA Magnetic Isolation Module New England BioLabs Cat# E7490

NEBNext Ultra II RNA Library Prep Kit for Illumina New England BioLabs Cat# E7770

Thermo Scientific

Maxima Reverse Transcriptase (200 U/mL)

Thermo Fisher Scientific Cat# EP0742

Exonuclease I New England BioLabs Cat# M0293

Nextera XT DNA Library Preparation Kit Illumina Cat# FC-131-1096

Glutaraldehyde Sigma Cat# G5882

Sodium cacodylate buffer pH 7.4 Electron Microscopy Sciences Cat# 11652

Uranyl acetate Electron Microscopy Sciences Cat# 22400

Tannic Acid Sigma Cat# 403040

Osmium tetroxide Electron Microscopy Sciences Cat# 19180

Propylene oxide Polysciences Cat# 00236-1

EMbed 812 Electron Microscopy Sciences Cat# 14120

Deposited Data

Raw and analyzed data This paper GEO: GSE141634, 152586

Experimental Models: Cell Lines

N/A N/A

Experimental Models: Organisms/Strains

Sftpctm1(cre/ERT2)Blh Rock et al., 2011 N/A

Rosa26R-CAG-lsl-tdTomato Arenkiel et al., 2011 N/A

Oligonucleotides

See Table S3 N/A N/A

Recombinant DNA

N/A N/A N/A

Software and Algorithms

dropSeqPipe v0.3 N/A https://hoohm.github.io/dropSeqPipe

Seurat v3.0.6 Stuart et al., 2019 https://satijalab.org/seurat/

R v3.6.3 N/A https://www.r-project.org/

R Studio v1.2.5033 N/A https://rstudio.com/

FastQC v0.11.9 N/A https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

Cutadapt v1.18 Martin, 2011 https://cutadapt.readthedocs.io/en/stable/

Trimmomatic v0.39 Bolger et al., 2014 http://www.usadellab.org/cms/?page=

trimmomatic

HISAT 2.2.0 http://daehwankimlab.github.io/hisat2/

SAMtools v1.9 Li et al., 2009 http://samtools.sourceforge.net/
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Subread v2.0.1 Liao et al., 2014 http://subread.sourceforge.net/

DESeq2 Love et al., 2014 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

EnhancedVolcano v1.5.4 N/A https://bioconductor.org/packages/release/

bioc/html/EnhancedVolcano.html

Enrichr Kuleshov et al., 2016 https://maayanlab.cloud/Enrichr/

GraphPad Prism 7 Graph Pad https://www.graphpad.com

FIJI NIH https://fiji.sc

Other

Previously published datasets reanalyzed in this study GEO GSE145926, and GSE135893
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resource/reagents should be directed to and will be fulfilled by the Lead Contact, Purushothama

Rao Tata (pt93@duke.edu).

Materials Availability
This study did not generate new unique materials.

Data and Code Availability
RNA-seq data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession

codesGEO: GSE141634 (MTEC alveolosphere scRNA-seq) andGEO: GSE152586 (Bulk RNA-seq from SARS-CoV-2 infected alveo-

lospheres). Previously published sequencing data that were re-analyzed here are available under accession code GEO: GSE145926

(scRNA-seq data from severe COVID-19 patient lungs) and GEO: GSE135893 (scRNA-seq data from control lungs). All analysis code

is available from corresponding author upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal Studies
Mouse strains used in this study were maintained in the C57BL/6 background, including Sftpctm1(cre/ERT2)Blh(Sftpc-CreER) (Rock

et al., 2011) and Rosa26R-CAG-lsl-tdTomato (Arenkiel et al., 2011) mice were described previously. For lineage labeling, two doses

of Tamoxifen (0.2 mg/g body weight, Sigma-Aldrich) was given via Intraperitoneal (IP). All Animal experiments were approved by the

Duke University Institutional Animal care and Use Committee. All animals were handled in accordance with the NIH and AAALAC

guidelines for humane care and use of laboratory animals. Mice used for experiments were not involved in previous procedures

and were drug or test naive. Mice were kept in a SPF breeding area under specified pathogen free conditions. Cages, bedding,

food and water were autoclaved. Animals were maintained on the same 12h light/dark cycle and monitored daily by caretakers or

researchers. Health monitoring did not reveal any infections in the past 18 months.

Human lung tissue
Excisedsubtransplant-qualityhuman lungtissues fromdonorswithoutpreexistingchronic lungdiseaseswereobtainedfromtheMarsicoLung

Instituteat theUniversityofNorthCarolinaatChapelHill under theUniversityofNorthCarolinaBiomedical InstitutionalReviewBoard-approved

protocols (#03-1396) and from Yale University (#0901004626). Informed consent was obtained from all participants where necessary.

Human COVID-19 infected subjects
Tissue blocks or cut sections obtained from three COVID-19 autopsy lungs were obtained from Drs. Ross. E. Zumwalt (University of

New Mexico, Albuquerque, NM) and Edana Stroberg (Office of the Chief Medical Examiner, Oklahoma City, OK). Donor demo-

graphics are described below. The paraffin blocks were cut to produce 5 mm serial sections for immunofluorescence.

Donor 1. 40-year-old, male. Medical history: Diabetes mellitus. Clinical course: This donor had upper respiratory infection (URI)

symptoms three days before he was found dead at home. No intubation occurred. Postmortem testing of the lung was positive for

SARS-CoV-2.

Donor 2. 77-year-old, male. Medical history: Acute pancreatitis, acute cholecystitis, and splenectomy. Clinical course: This donor

was transferred to the ER because of fever and respiratory distress six days before death. He was dead shortly after arrival.

A swab from the nasal cavity and the postmortem lung were positive for SARS-CoV-2.
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Donor 3. 91-year-old, female. Medical history: Coronary artery disease, hyperlipidemia, and hypertension. Clinical course: This

donor was transferred to the ER because of URI symptoms, hypoxia, weakness, and shortness of breath. A nasal swab was

positive for SARS-CoV-2. She was treated with high flow nasal canula, but died from acute pneumonia due to SARS-CoV-2

complicated by an acute hypoxic respiratory failure.
METHOD DETAILS

Mouse lung tissue dissociation
Lung dissociation and FACS were performed as described previously (Chung et al., 2018). Briefly, lungs were intratracheally inflated 
with 1ml of enzyme solution containing Dispase (5 U/ml), DNase I (0.33U/ml) and Collagenase type I (450 U/ml) in DMEM/F12. 
Separated lung lobes were diced and incubated with 3ml enzyme solution for 30min at 37�C with rotation. The reaction was 
quenched with an equal amount of DMEM/F12+10% FBS medium and filtered through a 100mm strainer. The cell pellet was resus-
pended in red blood cell lysis buffer (100mM EDTA, 10mM KHCO3, 155mM NH4Cl) for 5min, washed with DMEM/F12 containing 10%
FBS and filtered through a 40mm strainer. Total cells were centrifuged at 450 g for 5min at 4�C and the cell pellet was processed for 
AT2 isolation by FACS.

Human lung tissue dissociation
Human lung dissociation was as described previously (Zacharias et al., 2018). Briefly, pleura was removed and remaining human lung 
tissue (approximately 2g) washed with PBS containing 1% Antibiotic-Antimycotic and cut into small pieces. Visible small airways and 
blood vessels were carefully removed to avoid clogging. Then samples were digested with 30 mL of enzyme mixture (Collagenase 
type I: 1.68 mg/ml, Dispase: 5U/ml, DNase: 10U/ml) at 37�C for 1h with rotation. The cells were filtered through a 100mm strainer and 
rinsed with 15ml DMEM/F12+10% FBS medium through the strainer. The supernatant was removed after centrifugation at 450 g for 
10min and the cell pellet was resuspended in red blood cell lysis buffer for 10min, washed with DMEM/F12 containing 10% FBS and 
filtered through a 40mm strainer. Total cells were centrifuged at 450 g for 5 min at 4�C and the cell pellet was processed for AT2 
isolation.

Isolation of human and mouse AT2s
AT2s were isolated by Magnetic-activated cell sorting (MACS) or Fluorescence-activated cell sorting (FACS) based protocols. For 
mouse AT2 isolation the total lung cell pellet was resuspended in MACS buffer (1x PBS, pH 7.2, 1% BSA, and 2mM EDTA). 
CD31/CD45 positive cells were depleted using MACS beads according to the manufacturer’s instructions. After CD31/CD45 deple-
tion AT2s were sorted based on TdTomato reporter and for AT2s without a reporter, cells were stained using the following antibodies: 
EpCAM/CD326, PDGFRa/CD140a and Lysotracker as described previously (Katsura et al., 2019). For isolation of human AT2s, 
approximately 2-10 million total lung cells were resuspended in MACS buffer and incubated with Human TruStain FcX for 15min 
at 4�C followed by HTII-280 (1:60 dilution) antibody for 1h at 4�C. The cells were washed twice with MACS buffer and then incubated 
with anti-mouse IgM microbeads for 15min at 4�C. The cells were loaded into the LS column and labeled cells collected magnetically. 
For FACS based purification of human AT2s, the total lung cell pellet was resuspended in MACS buffer. Cells were positively selected 
for the EpCAM population using CD326 (EpCAM) microbeads according to the manufacturer’s instructions. CD326 selected cells 
were stained with HTII-280 and LysoTracker at 37�C for 25min followed by secondary Alexa anti-mouse IgM-488 for 10min at 
37�C. Sorting was performed using a FACS Vantage SE and SONY SH800S.

Alveolosphere culture
Mouse conventional Alveolosphere culture (using MTEC medium) was performed as described previously (Barkauskas et al., 2013). 
Briefly, FACS sorted lineage labeled AT2s (1-3 3 103) from Sftpc-CreER; R26R-lsl-tdTomato mice and PDGFRa+ (5 3 104) cells were 
resuspended in MTEC/Plus or serum free medium and mixed with an equal volume of growth factor-reduced Matrigel.

For feeder free culture, AT2s (1-3 3 103) were resuspended in serum free medium and mixed with an equal amount of Matrigel. For 
drop culture, 3 drops of 50ml of cells-medium/Matrigel mixture were plated in each well of a 6-well plate. The medium was changed 
every other day. For detailed SFFF and AMM media composition see Table S1. For human alveolosphere culture, HTII-280+ human 
AT2s (1-3 3 103) were resuspended in serum free medium and mixed with an equal amount of Matrigel and plated in 6 well plates. For 
detailed mouse and human SFFF media composition, see Tables S1 and S2.

Alveolosphere passaging
Mouse alveolosphere passaging experiment was performed in AMM medium, composition as described above. Briefly, FACS sorted 
mouse AT2s (2 3 103) were resuspended in AMM medium and mixed with an equal volume of Matrigel. 3 drops of 50 ml of cells-me-

dium/Matrigel mixture were plated in each well of a 6-well plate for each biological replicate (n = 3). For every passage mouse IL-1b 
(10ng/ml) was added for the first 4 days and subsequently, the media was replaced with AMM without IL-1b. The medium 
was changed every three days. Mouse alveolosphere were passaged every 10 days. For human alveolosphere passages, AT2s 
(3 3 103) were resuspended in SFFF medium and mixed with an equal volume of Matrigel. 3 drops of 50ml of cells-medium/Matrigel 
mixture were plated in each well of a 6-well plate for each donor (n = 3). Alveolospheres were passaged every 10-14 days.



AT2 differentiation
For detailed mouse and human AT2-Differentiation medium (ADM) composition see Tables S1 and S2, respectively. For differenti-

ation, mouse alveolospheres were cultured in AMM for 10 days were switched to AT2-differentiation medium followed by culture

for an additional 7 days, except where stated otherwise. For differentiation, human alveolospheres cultured in SFFF media for

10 days were switched to ADM and cultured for an additional 12-15 days, except where stated otherwise. Themediumwas changed

every three days. Human AT2-Differentiation medium contains human serum instead of FBS.

Cell culture and SARS-CoV-2 Virus Propagation
Vero E6 cells were the kind gift of Greg Grey and were maintained at 37�C and 5% CO2 in MEM supplemented with 1% Penicillin/

Streptomycin, 10% FBS, 1mMSodium Pyruvate, and 1xMEMNEAA. To grow stocks of SARS-CoV-2, Vero E6 cells were inoculated

with BEI isolate SARS-CoV-2 USA-WA1/2020 (kind gift of Greg Sempowski) at a MOI 0.01 in viral growth media (MEM supplemented

with 1%Pen/Strep, 2%FBS, 1mMSodium Pyruvate, and 1xMEMNEAA). After 1h incubation at 37�C, viral growth media was added

to bring the final volume to 30 ml. Virus was collected after 72 h and titered on Vero E6 cells using 2x MEM and 0.7%Oxoid Agar and

standard procedures. Plaques were stained with crystal violet and counted.

Alveolosphere infection experiment for bulk RNaseq and qPCR studies
To infect alveolosphere cultures, cells were washed with 1 mL PBS then virus was added to cells at a MOI of 1. Virus and cells were

incubated for 3.5 hours at 37�C after which virus was removed and cell culture media was added. Infection proceeded for 48 or 120

hours and then alveolospheres were washed with PBS, dissociated as described above. Finally, alveolosphere derived cells were

stored in Trizol and stored at �80�C.

Infection of AT2 alveolospheres with SARS-CoV-2
Human alveolosphere cultures were briefly washed twice with 500ml 1X PBS. SARS-CoV-2-GFP (icSARS-CoV-2-GFP virus was

described previously (Hou et al., 2020). Briefly, seven cDNA fragments covering the entire SARS-CoV-2WA1 genomewere amplified

by RT-PCR using PrimeSTAR GXL HiFi DNA polymerase (TaKaRa). Junctions between each fragment contain non-palindromic sites

BsaI (GGTCTCN^NNNN) or BsmBI (CGTCTCN^NNNN) with unique four-nucleotide cohesive ends. Fragment E and F contain two

BsmBI sites at both termini, while other fragments harbor BsaI sites at the junction. Each fragment was cloned into high-copy vector

pUC57 and verified by Sanger sequencing. A silent mutation T15102A was introduced into a conserved region in nsp12 in plasmid D

as a genetic marker. GFP was inserted by replacing the ORF7 gene. Cultures were then inoculated with 200ml of 1x107 PFU/ml of

icSARS-CoV-2-GFP virus (Hou et al., 2020) or 200ml of 1X PBS for mock cultures. Alveolospheres were allowed to incubate at

37�C supplemented with 5%CO2 for 2h. Following incubation, the inoculumwas removed, and alveolosphere cultures were washed

three times with 500ml 1X PBS. 1mL of SFFF media was added to each culture. Alveolospheres were incubated at 37�C for 72h, with

samples taken every 24h during infection. To sample, 100ml of media was removed. Equal volumes of freshmedia were then added to

the cultures to replace the sampled volume. Viral titers were ultimately determined after 72h by plaque assay on Vero E6 cells

(USAMRIID). Viral plaques were visualized by neutral red staining after 3 days (Hou et al., 2020). For histological analysis

alveolospheres were fixed for 7 days in 10% formalin solution followed by 3 washes in PBS.

Interferon treatment
For interferon and cytokine treatment experiment, Human AT2s (2.5 3 104) from P2 or P3 passage were cultured on the surface of

matrigel. Prior to the plating of cells 12 well plates were precoated with matrigel (1:1 matrigel and SFFFM mix) for 30min. AT2s were

grown in SFFFM without IL-1b for 7 to 10 days to allow the formation of alveolospheres. Alveolospheres were treated with 20ng/ml

interferons (IFNa, IFNb, IFNg) for 12h or 72h for RNA isolation and quantitative PCR. For histological analysis, Alveolospheres were

treatedwith indicated interferons for 72h. Human alveolosphere cultures were pretreated with 10ng IFNa or 10ng IFNg for 18h prior to

virus infection. For IFN inhibition studies, alveolospheres were treated with 1mM Ruxolitinib throughout the culture time.

Alveolospheres fixation and sectioning
Alveolospheres were fixed with 4% paraformaldehyde (PFA) at 4�C for 2h or at room temperature for 1h, respectively. Submersion

cultures of alveolospheres were first immersed in 1% low melting agarose (Sigma) and fixed with 4% PFA at room temperature for

30 min. For OCT frozen blocks, alveolospheres were washed with PBS, embedded in OCT and cryosectioned (8-10mm). For paraffin

blocks, samples were dehydrated, embedded in paraffin and sectioned at 7mm.

Immunostaining on COVID-19 lungs
Immunohistochemical staining was performed on COVID-19 autopsy lung sections according to a protocol as previously described

(Hou et al., 2020). Briefly, paraffin-embedded sections were baked at 60 �C for 2–4 hours and deparaffinized with xylene (2 changes

3 5 min) and graded ethanol (100% 23 5 min, 95% 13 5 min, 70% 13 5 min). After rehydration, quenching of endogenous perox-

idase was performed with 0.5% hydrogen peroxide in methanol for 15 min. Antigen retrieval was performed by boiling the slides in

0.1 M sodium citrate pH 6.0 (3 cycles with microwave settings: 100% power for 6.5 min, 60% for 6 min, and 60% for 6 min, refilling

the Coplin jars with distilled water after each cycle). After cooling and rinsing with distilled water, slides washed in PBS, and blocked

with 4% normal donkey serum, for an hour at RT. Primary antibody (NKX2-1:1:500, ABCA3: 1:1000, SARS-CoV-2 nucleocapsid:



1:500, Anti-SARS mouse antiserum: 1:4000, cleaved-CASP3: 1:200) were diluted in 4% normal donkey serum in PBST and incubated 
overnight at 4 �C. Mouse and rabbit gamma globulin was used as an isotype control at the same concentration as the primary 
antibody. Sections were washed in PBST, and secondary antibodies were applied for 1h at RT. After washing in PBST, the Vector� 
TrueVIEW Autofluorescence Quenching Kit (Vector laboratories) was used to reduce background staining, and glass coverslips were 
placed over tissue sections with the ProLong Gold Antifade Reagent with DAPI (Invitrogen).

Immunostaining on alveolospheres
Paraffin sections were first dewaxed and rehydrated before antigen retrieval. OCT section were defrosted and washed with PBS. 
Antigen retrieval was performed using 10mM sodium citrate buffer in either an antigen retrieval system (Electron Microscopy Science) 
or water bath (90�C for 15 min), or 0.05% Trypsin (Sigma-Aldrich) treatment for 5 min at room temperature. Sections were washed 
with PBS, permeabilized in PBST (0.1% Triton X-100 in PBS), and incubated with 1% BSA and 0.1% Triton X-100 in PBS for 30 min at 
room temperature followed by primary antibodies at 4�C overnight. Sections were then washed 3 times in PBST, incubated with 
secondary antibodies in blocking buffer for 1h at room temperature, washed with PBST 3 times, and mounted using Fluor G reagent 
with DAPI. Primary antibodies were as follows: Prosurfactant protein C (1:500), RAGE/AGER (Rat, 1:500), human RAGE/AGER (Gt, 
1:500), DC-Lamp (1:250), SFTPB (Rb, 1:500), SFTPB (Ms, 1:500), ACE2 (Rb, 1:500), ACE2 (Ms, 1:500), TMPRSS2 (Rb, 1:500), 
TMPRSS2 (Ms, 1:250), SARS (Rb, 1:500), SARS (Ms, 1:500), Active Caspase-3 (1:500), NKX2-1(1:500), SCGB1A1 (1:250), TP63 
(1:500), HTII-280 (1:250), Ki67 (1:250), ABCA3 (1:250), EPCAM (1:500), ZO1 (1:250), SOX2 (1:500).

For quantifying the stainings on near single cell suspensions, Alveolosphere bubbles were dissociated using TrypLE Select Enzyme 
at 37�C for 15min. Matrigel was disrupted by vigorous pipetting. Alveolosphere derived cells were then plated on matrigel precoated 
(5%–10% Matrigel for 30min) coverslips or chamber slides for 2-3h. Cells were then fixed in 4% paraformaldehyde.

RNA in situ hybridization
RNA-ISH was performed on paraffin-embedded 5 mm tissue sections of COVID-19 autopsy lungs according to the manufacturer’s 
instructions (Advanced Cell Diagnostics). Sections were deparaffinized with xylene (2 changes 3 5 min) and 100% ethanol (2 changes 
3 1 min), and then incubated with hydrogen peroxide for 10 min, followed by target retrieval in boiling water for 15 min, and incubation 
with Protease Plus (Advanced Cell Diagnostics) for 15 min at 40�C. Slides were hybridized with custom probes at 40�C for 2 hours, 
and signals were amplified according to the manufacturer’s instructions.

Image acquisition, processing and quantification
For Alveolosphere number and size quantitation images were obtained at 1.25x objective, all other phase contrast images were taken 
at 10x or 20x objective using Zeiss Axiovert 200 microscope. Alveolosphere numbers and sizes were quantified using FIJI ImageJ 
software. Human Alveolosphere numbers and sizes (> 300 mm in perimeter) were counted on day 15, except where stated otherwise. 
Microscope. Scale bar 1 mm, except where stated otherwise. Confocal images were collected using Olympus Confocal Microscope 
FV3000 using a 20X or 40X or 60x objective.

Electron microscopy
Sample preparation for electron microscopy was performed as described previously (Jacob et al., 2017). Alveolospheres were fixed 
for 3h in 2.5% glutaraldehyde in 0.1M cacodylate buffer pH 7.4 at room temperature. The sample was then washed in 0.1M caco-
dylate buffer three times for 10min each, post-fixed in 1% Tannic Acid in 0.1M cacodylate buffer for 5min at room temperature and 
washed again three times in 0.1M cacodylate buffer. Alveolospheres were post-fixed overnight in 1% osmium tetroxide in 0.1M 
cacodylate buffer in the dark at 4�C. Samples were washed three times in 0.1N acetate buffer for 10 min and block stained in 1%
Uranyl acetate for 1h at room temperature. Next, the sample was dehydrated through acetone on ice: 70%, 80%, 90%, 100% for 
10min each, and then incubated with propylene oxide at room temperature for 15min. The sample was changed into EMbed 812 
for 3h at room temperature followed by fresh Embed 812 and left overnight at room temperature, after which it was embedded in 
freshly prepared EMbed 812 and polymerized overnight at 60�C. Sections were prepared at 70 nm and grids were stained in 1%
aqueous Uranyl Acetate for 5 min at room temperature followed by lead citrate for 2.5min at room temperature. Sections on grids 
were imaged on FEI Tecnai G2 Twin at a magnification of 2200x and 14500x.

RNA isolation and qRT-PCR
For RNA isolation, Alveolospheres were dissociated into single-cell suspension using TrypLE Select Enzyme at 37�C for 10min. The 
cell pellet was resuspended in 300ml of TRIzol LS Reagent Total RNA was extracted using the Direct-zol RNA MicroPrep kit according 
to the manufacturer’s instructions with DNase I treatment. Reverse transcription was performed using SuperScript III with random 
hexamer or negative-strand specific RT primer. 600ng of purified total RNA was used from each sample. The specificity of negative 
strand RT primer was confirmed by using viral genomic RNA purified from viral supernatants as this contains only positive strand. 
Negative strand RNA was detected at high levels in our infected organoids (Ct value for primer- 1202-1363, 24.76 ± 0.73; primer-

848-981, 24.79 ± 0.80) compared to RNA isolated from viral inoculum (Ct value > 29). Quantitative RT-PCR assays were performed 
using StepOnePlus system (Applied Biosystems) with PowerUp SYBR Green Master Mix. The relative quantities of mRNA for all 
target genes were determined using the standard curve method. Target-gene transcripts in each sample were normalized to Glyc-

eraldehyde 3-phosphate dehydrogenase (GAPDH). Primers used are listed in Table S3.



Bulk RNA sequencing and differential gene expression analysis
Purified RNA (1 mg) from each sample was enriched for Poly-A RNA using NEBNext Poly(A) mRNA Magnetic Isolation Module (New

England BioLabs, #E7490). Libraries were prepared using NEBNext Ultra II RNA Library Prep Kit for Illumina (New England BioLabs,

#E7770). Paired-end sequencing (150 bp for each read) was performed using HiSeq X with at least 15 million reads for each sample.

Quality of sequenced reads were assessed using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). PolyA/T

tails were trimmed using Cutadapt (Martin, 2011). Adaptor sequences were trimmed and reads shorter than 24 bp were trimmed us-

ing Trimmomatic (Bolger et al., 2014). Reads were mapped to the reference genomes of human (hg38) and SARS-CoV-2 (wuhCor1)

obtained from UCSC using Hisat2 (Kim et al., 2019) with default setting. Duplicate reads were removed using SAMtools (Li et al.,

2009). Fragment numbers were counted using the featureCounts option of SUBREAD (Liao et al., 2014). Normalization and extraction

of differentially expressed genes (DEGs) between control and treatments were performed using an R package, DESeq2 (Love

et al., 2014).

Droplet-based single-cell RNA sequencing (Drop-seq)
Alveolospheres embedded in Matrigel were incubated with Accutase at 37�C for 20min followed by incubation with 0.25% trypsin-

EDTA at 37�C for 10min. Trypsin was inactivated using DMEM/F-12 Ham supplemented with 10% FBS and cells were then resus-

pended in PBS supplemented with 0.01% BSA. After filtration through 40mm strainer cells at a concentration of 100 cells/ml were run

throughmicrofluidic channels at 3,000 ml/h, together withmRNA capture beads at 3,000 ml/h and droplet-generation oil at 13,000 ml/h.

DNA polymerase for pre-amplification step (1 cycle of 95�C for 3min, 15-17 cycles of 98�C for 15 s, 65�C for 30 s, 68�C for 4min and 1

cycle of 72�C for 10 min) was replaced by Terra PCR Direct Polymerase. The remaining steps were performed as described in the

original Drop-seq protocol (Macosko et al., 2015). Libraries were sequenced (150-bp paired end) using HiSeq X.

Computational analysis for Drop-seq
The FASTQ files were processed using dropSeqPipe v0.3 (https://hoohm.github.io/dropSeqPipe) and mapped on the GRCm38

genome with annotation version 91. Unique molecular identifier (UMI) counts were then further analyzed using an R package Seurat

v3.0.6 (Stuart et al., 2019). UMI counts were normalized using SCTransform v0.2 (Hafemeister and Satija, 2019). Principle compo-

nentswhich are significant based on Jackstraw plots were used for generating t-SNE plots. After excluding duplets, specific cell clus-

ters were identified based on enrichment for Sftpc, Sftpa1, Sftpa2, Sftpb, Lamp3, Abca3, Hopx, Ager, Akap5, Epcam, Vim, Pdgfra,

Ptprc, Pecam1 and Mki67 in tSNE plot.

Computational analysis for single-cell RNA sequencing of COVID-19 patient lungs
Publicly available single-cell RNA-seq dataset of six severe COVID-19 patient lungs (GEO: GSE145926; Bost et al., 2020) and control

lungs (GEO: GSE135893; Habermann et al., 2019) were obtained from Gene Expression Omnibus (GEO). EpCAM-positive epithelial

cell cluster in the severe COVID-19 patient lungs was further clustered based on LAMP3, ABCA3, KRT5, KRT15, DNAH1, FOXJ1,

SCGB3A1 and SCGB1A1. AT2s that haveS 1 UMI count of LAMP3, NKX2-1 and ABCA3 were utilized for comparison between se-

vere COVID-19 patient lungs and control lungs. UMI counts were normalized and regressed to percentage of mitochondrial genes

using SCTransform. Enriched genes in severe COVID-19 patient and control lungs were extracted using FindMarkers and shown in

volcano plot drawn by R package Enhanced Volcano v1.5.4 Genes that have S 2 log2 fold change were used as input for Enrichr

(Kuleshov et al., 2016) query to get enriched signaling pathways through database - BioPlanet.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical methods relevant to each figure are outlined in the figure legend. Sample size was not predetermined. Data are presented

as means with standard error (SEM) to indicate the variation within each experiment. Statistics analysis was performed in Excel,

Prism and R. A two-tailed Student’s t test was used for the comparison between two experimental conditions. For experiments

with more than two conditions, statistical significance was calculated by ANOVA followed by the Tukey-HSD, Steel-Dwass or Dun-

nett’s test for multiple comparisons. We used Shapiro-Wilk test to test whether data are normally distributed and usedWilcoxon rank

sum test for the comparison between two conditions that showed non-normal distributions.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://hoohm.github.io/dropSeqPipe

	STEM2944_annotate.pdf
	Human Lung Stem Cell-Based Alveolospheres Provide Insights into SARS-CoV-2-Mediated Interferon Responses and Pneumocyte Dys ...
	Introduction
	Results
	Establishment of Chemically Defined Conditions for Alveolosphere Cultures
	Defined Culture Conditions for Human Alveolosphere Cultures
	Alveolosphere-Derived AT2s Express Viral Receptors and Are Permissive to SARS-CoV-2 Infection
	AT2s Activate IFN and Inflammatory Pathways in Response to SARS-CoV-2 Infection
	SARS-CoV-2 Infection Induces Loss of Surfactants and Pneumocyte Death
	Transcriptome-wide Similarities in AT2s from SARS-CoV-2-Infected Alveolospheres and COVID-19 Lungs
	AT2s Respond to Exogenous IFNs and Recapitulate Features Associated with SARS-CoV-2 Infection
	Pre-treatment with IFNs Reduces SARS-CoV-2 Replication in Alveolospheres

	Discussion
	Limitations of Study

	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Experimental Model and Subject Details
	Animal Studies
	Human lung tissue
	Human COVID-19 infected subjects

	Method Details
	Mouse lung tissue dissociation
	Human lung tissue dissociation
	Isolation of human and mouse AT2s
	Alveolosphere culture
	Alveolosphere passaging
	AT2 differentiation
	Cell culture and SARS-CoV-2 Virus Propagation
	Alveolosphere infection experiment for bulk RNaseq and qPCR studies
	Infection of AT2 alveolospheres with SARS-CoV-2
	Interferon treatment
	Alveolospheres fixation and sectioning
	Immunostaining on COVID-19 lungs
	Immunostaining on alveolospheres
	RNA in situ hybridization
	Image acquisition, processing and quantification
	Electron microscopy
	RNA isolation and qRT-PCR
	Bulk RNA sequencing and differential gene expression analysis
	Droplet-based single-cell RNA sequencing (Drop-seq)
	Computational analysis for Drop-seq
	Computational analysis for single-cell RNA sequencing of COVID-19 patient lungs

	Quantification and Statistical Analysis






