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ABSTRACT 

DAVID RICHARD PERKINS IV: Forecasting Tourist Decisions Regarding Zoo Attendance Using 
Weather and Climate References 

(Under the direction of Peter Robinson) 
 

Tourism climatology studies relationships among people, business, weather, and climate 

within the tourism industry. This research tests these interfaces in the southeast United States 

at the North Carolina Zoo and Zoo Atlanta. Historical weather data are paired with zoo 

attendance. Weather variables include observed variables of temperature, humidity, cloud 

cover, and wind speed; derived variables of wind chill and heat index; and biometeorological 

index variables of Physiologically Equivalent Temperature (PET), Standard Effective Temperature 

(SET), and Predicted Mean Vote (PMV). 

Three analyses are used: correlation, multiple regression, and probabilistic. Correlation 

analysis compares direct relationships between weather variables and attendance.  Multiple 

regression analysis combines standard variables in predictive models. Probabilistic analysis 

studies seasonal scale climate-attendance relationships. Results indicate weather influences on 

zoo attendances change by season, social influences, and geography of the zoo. Complex 

composite weather variables improve attendance predictability as they provide better 

assessments of how humans sense outdoor environments.  
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Chapter I 

Introduction 

Weather and climate play prominent roles in the tourism and recreation industry and 

influence tourist decisions to visit a location and engage in outdoor activities. Once the decision 

is made, the “tourist experience” begins. 

A “tourist experience” encompasses three stages: planning, the actual experience, and 

assessments. Weather and climate affect the tourist experience. The distinction between 

weather (shorter term) and climate (longer term) is apparent when these tourist experience 

stages are used. Climate information and forecasts are assessed during tourism planning; 

weather information supports the actual experience; assessments are combinations of weather 

and climate information—reconciling discrepancies between expectations and reality of the 

tourist experience. The following paragraphs detail these distinctions and are supported with 

contributing research. 

Tourism planning uses weather and climate information. Hamilton and Lau (2005) and 

Bigano et al. (2006) examined tourist destination choices based upon expectations and images 

of a location’s climate. Tourists access weather information when making vacation decisions. A 

tourist’s resourcefulness in accessing weather information occurs on two temporal scales. First, 

longer “climate” time scales dictate the focus and theme of a trip or vacation. Describing a 

destination as “warm and sunny” explains the goals of a tourist’s activity and vacation intent.  

Second, “weather” decisions relate to shorter-term information. 
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Information accessed prior to departure enters into decisions and modifies expectations based 

on earlier determinations. Modified expectations can include different dress attire, revised 

activity plans, or changes in destination. 

At the tourist destination, activity choices are impacted by local weather events 

(Gomez-Martin, 2005). Weather events influence on-site activity choices of tourists. Social 

factors and different activity choices diversify options for tourists and recreationalists. However, 

influences of weather on the availability and performance of an activity are still present. For 

example, if availability of an intended activity is reduced due to the influence of the weather 

(e.g. lack of snow for skiing), alternative choices are created by businesses to mitigate revenue 

losses and provide social outlets.  

Assessments of a tourist experience reconcile discrepancies between the expected and 

actual experience. Assessment shows how well prepared and how close to the planned itinerary 

the experience coincides. Daniel Scott, chairperson of the World Meteorological Organization’s 

Commission on Climatology, states, “Weather can ruin a holiday, but climate can ruin a 

destination” (Scott, 2008). This statement captures the philosophy of the assessment stage. 

Choice of a tourism location is in-part selected for its climate. Assessment determines how well 

weather coincides with the expected climate. In the event of great deviations from the intended 

experience, such as no snow for a ski vacation, weather can in fact, ruin a holiday.  

1.1 The Field of Tourism Climatology 

The academic field of tourism climatology studies relationships between tourists and 

the weather. One relationship is comfort preference. Researchers conduct surveys to assess 

different comfort preferences with respect to weather variables such as temperature, humidity, 

and cloud cover in outdoor environments (Hwang et al., 2007; Knez et al., 2006; Andrade et al., 
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2010; Scott et al., 2008; Lin, 2009; Matzarakis, 1996). Comfort is often impacted by perceptions 

of the outdoor environment. Activity type, spatial layout, proximity (Andrade et al., 2010) and 

expectations are drivers of many tourist perceptions. In addition, degrees of personal 

autonomy, culture, and regionalized acclimatization (Lin, 2009) are assessed in the tourism 

climatology literature.  

Another relationship is human physiological response to different atmospheric 

environments. Responses include sweat rate, internal body temperature, skin surface 

temperature, and heart rate changes.  Responses are studied clinically and developed into “heat 

balance models” which assess the body’s response to these different thermal and 

environmental conditions. Heat balance models (Fanger, 1972; Hoppe, 1999; Gagge et al., 1986; 

Vanos et al., 2010; de Freitas, 1985; Staiger et al., 2011), with results often termed “perceived 

temperature,” are tested and applied to human behavior in varying outdoor settings. Because 

tourists readily adapt to weather with different selections of clothing (Sprague & Munson, 1974) 

and changes in behavior, there is difficulty creating accurate heat balance models.  

Researchers use the RayMan model software to calculate perceived temperature. 

“The model ‘RayMan’ estimates the radiation fluxes and the effects of 
clouds and solid obstacles (urban morphologies) on short wave 
radiation fluxes. The model, which takes easy and complex structures 
into account, is suitable for land use and planning purposes on various 
local to regional levels. The final output of this model is the calculated 
mean radiant temperature, which is required in the energy balance 
model for humans” (Matzarakis, Rutz, Mayer, 2000).  

 

The RayMan model can be used to calculate Physiologically Equivalent Temperature 

(PET) (Hoppe, 1999), Predicted Mean Vote (PMV) (Fanger, 1972), and Standard Effective 

Temperature (SET) (Gagge et al., 1986). PET equates the heat balance of the body in the actual 
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environment to that which is experienced indoors under light activity. PMV quantifies 

discomfort based on human-assessed response to physiological stresses. SET compares 

individual physiological comfort to a reference environment. All outputs are in degrees Celsius 

(Davis et al., 2006). These thermal indices are calculated using atmospheric, geographical, and 

human-physiological inputs. Atmospheric inputs include temperature, wind speed, humidity, sky 

cover, and solar radiation. Geographical inputs include altitude and day length (assessed 

through latitude and longitude). Physiological inputs help approximate the type of person 

studied and include gender, age, height, weight, amount of clothing, and effort levels (measured 

in watts). 

A third relationship rates the climatic quality of a tourist destination.  The Tourism 

Climate Index (TCI) was pioneered in 1985 by Canadian geographer Z. Mieczkowski and is the 

most comprehensive climate index developed specifically for tourism (Scott, 2004). TCI rates the 

quality of outdoor weather conditions for “moderate sightseeing” forms of tourism (slow steady 

walking), and is based on monthly weather variables of temperature, sunshine, precipitation, 

and wind (Mieczkowski, 1985). These are combined into an index value derived by separately 

scoring each weather variable on a monthly basis and totaling the results in a weighted formula. 

TCI differs from perceived temperatures PET, PMV, and SET because TCI is an assessment 

variable, not a temperature output. More recent indices attempt to improve upon the 

application of the TCI. Prominent new indices include the “second generation climate index for 

tourism (CIT)” (de Freitas et al., 2008), the “beach comfort index” (Becker, 1998), and a “user-

based beach climate index” (Morgan et al., 2000).  

Finally, future tourism is assessed through climate change scenarios. These assessments 

concern changing climatic and environmental conditions which lead to varying attendances, 

tourist preferences, and tourist behavior. An example is displayed in the Mediterranean and 
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North Sea beach areas. Under certain climate change scenarios, studies discuss the potential for 

Mediterranean beach locations to become warmer than current thermal thresholds bear; thus, 

high temperatures will depress tourism in the region. The comparatively cooler North Sea beach 

areas, particularly along the north coast of Germany, will become warmer and have 

temperatures similar to the Mediterranean shores today. Assuming adaptive thermal 

capabilities do not change, nor do tourist preferences, future scenarios lead to different tourism 

patterns across the region. Tourists who currently visit the Mediterranean Sea are projected to 

frequent the North Sea coastal regions as a substitute (Willms, 2007). 

Less specific projections of climate change assess regional visitation making assumptions 

about the tourism industry, concluding that some businesses and sub-industries benefit while 

others, as a result of a changing climate, do not (Cegnar, 2007; Endler & Matzarakis, 2007; 

Oehler & Matzarakis, 2007). Studies utilize concepts of climate change to dialog with businesses 

and provide context for adequate adaptation planning. Quantifying and predicting potential 

impacts of climate change (Morehouse et al., 2007) and engaging businesses in adaptive 

strategy dialogs using climate change scenarios (Jetzkowitz, 2007) are ways research integrates 

business, tourism, and biometeorological science into more applied work. 

Prominent examples of climate change, global warming, and tourism studies look at the 

ski industry due to this industry’s dependence on and sensitivity to the weather. Ski recreation 

represents a majority of published findings in the tourism climate change literature. Research in 

the ski industry takes several different approaches including changing natural snowfall variability 

(Gajic-Capka, 2007), variations in geographic demand (Tepfenhart et al., 2007; Tervo, 2007), 

changing cost structures (Dawson et al., 2007; Scott et al., 2007), and tourist behavioral 

awareness (Vrtacnik Garbas, 2007). 
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1.2 Present research 

The question “How do weather and climate impact tourist attendance at the North 

Carolina Zoo and Zoo Atlanta?” is what this research seeks to evaluate. Assessment of this 

question determines research aims and objectives for this project: At the highest level, does 

weather affect zoo attendance? And if it does, how strong is the effect? The results of assessing 

what weather factors influence attendance most can provide insight to the relationship 

between humans and the outdoor environment. Results are of potential use to both tourism in 

the southeastern United States and to zoo tourism. 

This research is guided with common principles and knowledge used in the tourism 

climatology field mentioned above. However, the research provides new information to an 

unexplored niche within the tourism climatology field. Research regarding tourist attendances at 

zoological parks has not yet been investigated. This study uses little-explored temporal scales. 

Historical attendance data are collected in daily resolution and paired with weather data. 

Geographical variables of spatial layout and location are included in analysis of the results. Zoos 

have been selected because of their outdoor activity. 

The research method used in this project compares observed weather to attendance 

and is called retrospective flow analysis (similar to Moreno, 2007; Bigano et al., 2006; Scott & 

Jones, 2006). Tourist attendance and weather are studied through predictive models of 

attendance. Three techniques are used in data analysis: correlation analysis, multiple regression 

analysis, and probabilistic analysis. Correlation analysis compares direct relationships between 

weather variables and attendance on a daily scale.  Multiple regression analysis combines 

standard variables in predictive daily-scale models. Probabilistic analysis studies seasonal scale 

climate-attendance relationships. 
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An important infusion of new knowledge to the tourism climatology field is provided by 

this research. Using grounded methods outlined above and applying them to a relatively 

unexplored tourist and geographic population is important to the growth and understanding of 

the field. The southeast United States has many climatic similarities to other world regions but 

with key differences which can help bridge previous findings. For expansion, Matzarakis and 

Mayer (1996) and Lin and Hwang (2009) created relative scales for thermal preferences in 

Western Europe and Taiwan. The southeast United States contains elements of both locations—

culturally similar to Western Europe, but hot and humid—climatically similar to parts of 

Southeast Asia. Testing attendance and temperature variables in the tourism climatology field 

(e.g. “perceived temperature”) help determine need for a more advanced weather variable 

tailored to the human. 

Zoos and zoological parks exist worldwide. Use of zoos provides an unexplored tourism 

sub-industry and a baseline of similar activity, effort levels, demography, and personal goals on 

a global scale. Zoos attract parents with children and surround them with an outdoor learning 

environment across a park-like space. This specific industry genre allows for assessment in 

similar activities which require relatively the same effort and clientele schemas. 

The research aims and research questions are as follow: 

 Do weather and/or climate factors influence zoo attendance? 

 What weather variables or prevailing conditions are most influential on decisions of 

whether to attend the zoo? 

 Are indices established within the tourism climatology literature helpful in prediction of 

zoo attendance? 
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 What social influences coalesce with weather factors in tourist decisions to visit the 

zoo? 

Chapter II, Sites, Data and Methods, describes the study sites and provides details for 

analysis of differing weather and attendance relationships. Weather information is displayed in 

American units of degrees Fahrenheit and inches of precipitation. Next, details the methods 

used in data analysis including correlation analysis, multiple regression analysis, and 

probabilistic analysis. Chapter III, Results, displays information arising directly from methods. 

Chapter IV Discussion and Chapter V Summary and Conclusions investigate with geographical 

and meteorological concepts to assist explanation in relationships between tourists and 

weather. 

 

 

 

 

 

 

 

 



 
 

Chapter II 

Sites, Data, and Methods 

2.1 Study sites 

This research encompasses two zoos in the southeastern United States: the North 

Carolina Zoo and Zoo Atlanta. These zoos are selected for their diverse socio-geographical 

appeal—one zoo in a rural location but with metropolitan visitors, the other in an urban location 

with metropolitan visitors. Different social contexts of the zoos are studied with respect to their 

spatial layout, zoological park path design, geographical location, and regional accessibility. 

The North Carolina Zoo (35.63°N, 79.765°W) is located one mile south of Asheboro, 

North Carolina, a community of approximately 25,000 residents. Attendance at the zoo varies 

greatly with season and the regional school schedule. Typically, the greatest average 

attendances and single attendance days occur in the spring (MAM), with winter (DJF) markedly 

the lowest in both categories. Annual attendance at the North Carolina Zoo often exceeds 

700,000. Zoo Atlanta (33.733°N, 84.37°W) is located inside Grant Park in Atlanta, Georgia. 

Atlanta is a large metropolitan area in the southeast United States with a population nearing 6 

million residents. Its attendance characteristics are similar in number and seasonal distribution 

to the North Carolina Zoo. The prominent difference between the two zoos with respect to 

attendance characteristics is that the North Carolina Zoo tends to have higher peak attendance 

days, but also lower attendance valley days. 
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The layout of the North Carolina Zoo is a linear path leading along exhibits. It is 

considered the longest walk-through zoo in the world. The typical exhibit type is a 

conservation/wild park theme with plentiful roaming acreage for the animals. End-to-end using 

the pedestrian path, the zoo measures approximately 3.85 miles (figure 1).  

 

While the zoo does have a tram connecting each end point along the linear path, visitors 

still have significant exposure to the outdoor environment. In events of sudden weather change, 

visitors are too far away from parking lots to seek personal shelter; however, exhibits and 

overhangs exist on the zoo premises for such situations. The walking path has a rolling 

topography making it moderately strenuous (figure 2).  

 

Figure 1: North Carolina Zoo Layout 

Figure 2: North Carolina Zoo Topography 
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Zoo Atlanta has a circular path and is a compact zoo (figure 3).  

 

There are distinct walking routes which are interconnected and lead visitors along paths 

that pass conservation/wild park atmospheres and caged exhibits. Paths are relatively flat with 

slight elevation changes. Walking Zoo Atlanta and visiting all exhibits measure approximately 

1.3-2.0 miles based upon the choice of the tourist’s route (figure 3). There is no tram or in-house 

transportation to return guests to the entrance, but, in the event of sudden weather change, all 

guests are within a 5 to 10 minute walk to the parking lot and/or personal shelter. Most paths 

have significant shading and sheltered areas are many, some of which offer air-conditioning.  

The North Carolina Zoo derives its daily attendance from Charlotte, NC; the “triad” 

consisting of Greensboro, Winston Salem, and High Point; the “triangle” consisting of Raleigh, 

Durham, Cary, and Chapel Hill; and Fayetteville, NC.  Charlotte is the largest city in North 

Carolina and the 18th largest city in the United States. The general Charlotte metropolitan area 

consists of approximately 2.4 million people as of 2009 (US Census). The “triad” has an 

estimated metropolitan statistical area (MSA) population of 1,581,122 according to the 2009 US 

Figure 3: Zoo Atlanta Layout 
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Census “making it the 30th largest metropolitan area in the USA.” The “triangle” has a MSA 

population of 1,742,816. Garner, Apex, Hillsborough and other small, suburban towns expand 

the triangle’s MSA population to exceed 2 million. Fayetteville, NC is the location of United 

States Army Installation FT. Bragg as well as Pope Air Force Base. The town is of particular 

benefit to the North Carolina Zoo because it has many families with children who frequent the 

zoo. These visits are usually on a cyclical schedule because attendances spike immediately prior 

to military deployments and after convoy returns. The Fayetteville metropolitan area has a 

population of 341,363 as of 2009.  

Figure 4 displays zoo membership—a proxy for attendance—for the origination point of 

most visitors to the North Carolina Zoo. The population of these areas is approximately 6 million 

residents. 

 

 

Figure 5 shows the average one-way drive times to the North Carolina Zoo. Drive times 

are calculated based on spatial analysis encompassing average speed limits. The nearest high-

Figure 4: North Carolina Zoo Society Membership 
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population area is the “triad,” approximately 45 minutes from the zoo. The North Carolina Zoo is 

only accessible via private vehicle; public transportation is not available. To encompass this full 

region and its 6 million population, the 120 minute drive time zone must be included. 

Lengthened drive times affect tourism and increase a tourist’s need for better planning and 

higher awareness of the weather when visiting the North Carolina Zoo. 

 

 

Zoo Atlanta is located two miles from the city center of Atlanta, Georgia, and 

approximately three miles from Hartsfield Jackson international airport. It is accessible via 

private vehicle and public transportation bus line which services other tourist attractions within 

the downtown Atlanta region. A large proportion of the visitors to the zoo come from the 

immediate area surrounding the zoo. Memberships are used as a proxy for attendance 

origination due to lack of admission gate sampling (figure 6).  

 

Figure 5: Drive Times to the North Carolina Zoo 
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Drive-time zones show that the majority of those visiting Zoo Atlanta are within 30 to 45 

minutes of the zoo (figure 7). This increases the accessibility of the zoo to its visitors and 

decreases required planning for a trip. In addition, close proximity of other tourist attractions in 

Atlanta facilitates both competition and complementary visitation. A visit to the zoo is a partial-

day activity, part of a tourist itinerary rather than a planned day-trip. 

 

Figure 6: Zoo Atlanta Membership 

Figure 7: Drive Times to Zoo Atlanta 
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Asheboro, North Carolina has a seasonal climate with distinct climate regimes through 

the year. High temperatures in the summer average in the upper 80s, with days 90 to 100 

degrees Fahrenheit not uncommon. Winter does not have extended periods below freezing; 

however, January low temperatures average near 30 degrees Fahrenheit with high 

temperatures in the low 50s. Precipitation is relatively stable through the year with no 

drastically distinct wet or dry season. Total precipitation varies from a maximum of 4.43 inches 

in January to a minimum of 3.16 in November.  

Figure 8 explains the experienced climate at the North Carolina Zoo using monthly PET 

frequencies. PET is a commonly used method of expressing temperature as felt by humans. 

Categories are established with Matzarakis and Mayer’s 1996 thermal sensation classes based 

on a Middle Europe classification scheme of thermal perceptions experienced by Europeans in 

different temperature bands. It can be assumed that the range of highest comfort for patrons of 

the North Carolina Zoo exists between “Warm” and “Slightly Cool.” This assumption takes into 

consideration that people in the southeast United States are acclimatized to a warmer and more 

humid region than those tested in Europe.  

The climate of Atlanta, Georgia is very similar to that of Asheboro, North Carolina. 

Atlanta is 350 feet higher in elevation and is located approximately 300 miles southwest of 

Asheboro. It is seasonal in its temperature and precipitation and has equivalent summers to 

Asheboro but slightly warmer winters with low temperatures averaging above freezing. 

Precipitation amounts vary more in Atlanta than in Asheboro with a minimum precipitation of 

3.1 inches in October to a maximum precipitation of 5.3 inches in March. Figure 9 explains the 

“experienced climate” at Zoo Atlanta using monthly PET frequencies. Classifications, like the 

North Carolina Zoo, are established using Matzarakis and Mayer’s 1996 Middle European 
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thermal sensation scheme. It can be assumed that patron comfort is highest between “Warm” 

and “Slightly Cool.”  
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Figure 9: PET Frequencies for Zoo Atlanta 



17 
 

Table 1 displays a succinct comparison between Zoo Atlanta and the North Carolina Zoo 

emphasizing pertinent factors. 

 Shelter Air 
Conditioning 

Mass 
Transit 

Layout Walking 
Distance 

Closest 
Metro 
Area 

Farthest 
Metro 
Area 

Local 
Attendance 
Population 

Parking Park 
Area 

Number 
of 

Species 

Zoo 
Atlanta 

Y Y Y Linear 
3.85 
miles 

5 min 
60 

minutes 
6 million 

Tight 
when 
busy 

40 
acres 

220 

North 
Carolina 

Zoo 
Y Y N Circular 

1.3 
miles 

45 min 
120 

minutes 
6 million 

Ample 
spaces 

1371 
acres 

250 

 

2.2 Data 

Ideally, hourly scale weather and attendance data would be utilized assess the time 

periods when the zoos are open. Because tourists rely on weather forecasts days in advance, 

historical forecasts are important to the analysis of how weather affects attendances at the zoo. 

Unfortunately, data available do not meet all these needs. 

All daily weather data are obtained through the use of the CLIMOD tool from the 

Southeast Regional Climate Center (SERCC). Finer scale hourly weather data are obtained from 

the CLIMOD tool maintained by the Northeast Regional Climate Center (NRCC). Solar radiation 

data are obtained from the CRONOS tool at the North Carolina State Climate Office. CLIMOD 

and CRONOS tools are internet-based data clearinghouses that source their weather 

information from the National Climatic Data Center (NCDC). Weather data are quality controlled 

by these aforementioned organizations; however, lack of direct comparable weather stations in 

rural locations, such as Asheboro and stations which capture solar radiation, limit complete 

quality assurance. No modifications were made and data were used as received. 

Table 1: Zoo Comparison 
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Asheboro, North Carolina, has one weather station with a period of record of 85 years. 

This station is located at a water treatment plant within five miles of the center of the zoo and 

reports precipitation and daily high and low temperatures (figure 10).  

 

Weather data for Zoo Atlanta are obtained from a weather station located at the 

Hartsfield Jackson International Airport 3 miles southwest of the zoo property (figure 10). This 

weather station has a period of record in excess of 65 years and provides hourly data for 

temperature, precipitation, humidity, cloud cover, and wind speed. Solar radiation data are 

limited in the region and are obtained from Athens, Georgia, located approximately 55 miles 

east of Zoo Atlanta.  This station has a period of record January, 2004 to the present. 

Table 2 shows the weather variables available to each zoo in data analysis. “Daytime” 

indicates use of hourly values from 9am to 6pm—the times when zoos are open. At the North 

Carolina Zoo, all daytime calculations are based on the “piedmont composite” detailed in table 4 

and further explained in section 2.3. “Assessment Groups” functionally group weather variables 

to facilitate analysis and discussion in Chapters III and IV; these are noted in table 3 and further 

explained in Methods, 2.3. 

 

Figure 10: Regional Location of Study Sites 
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Directly Observed Variables 
Variables Derived from 

Observations 
Biometeorological Index 

Variables 

Maximum Temperature Wind Chill/Daytime Low Predicted Mean Vote (PMV) 

Minimum Temperature Heat Index/Daytime High PMV(I) 

Average Temperature 
Heating Degree Days 

(HDD) 
Physiologically Equivalent 

Temperature (PET) 

Precipitation 
Cooling Degree Days 

(CDD) 
PET(I) 

Maximum Daytime Temperature 
 

Standard Effective Temperature 
(SET) 

Minimum Daytime Temperature 
 

SET(I) 

Average Daytime Winds 
 

 

Average Daytime Sky Cover 
 

 

Daytime Precipitation* 
  

Average Relative Humidity* 
 

*Variable used only at the North Carolina Zoo 

Daytime Average* 
 

(I) Solar radiation data used in calculation 

Temperature Range* 
 

“Daytime” weather data from 9am to 6pm 

 

Assessment Groups 

High Temperature 
Variables 

Low Temperature 
Variables 

Degree Day 
Variables 

Other Variables 
Biometeorological 

Index Variables 

Maximum 
Temperature 

Minimum 
Temperature 

Heating Degree 
Days (HDD) 

Precipitation PET 

Maximum Daytime 
Temperature 

Minimum Daytime 
Temperature 

Cooling Degree 
Days (CDD) 

Average 
Daytime Winds 

PET(I) 

Heat Index/Daytime 
High 

Wind Chill/Daytime 
Low 

 Average 
Daytime Sky 

Cover 
SET 

  
 Daytime 

Precipitation* 
SET(I) 

  

 Average 
Relative 

Humidity* 
PMV 

*Variables used only at the 
North Carolina Zoo  

 Daytime 
Average* 

PMV(I) 

 

A comparison between Asheboro and Atlanta weather stations is shown in figure 11. 

Variables compared include high temperature, low temperature, and precipitation totals.  

Table 2: Weather Variables Used 

Table3: Assessment Groups 
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Figure 12 displays average attendances and peak attendances by season. Attendance 

averages for Zoo Atlanta are calculated from the period 2004-2010; North Carolina Zoo data are 

calculated from 2000-2009. Data show the average annual attendances were 622,184 at Zoo 

Atlanta and 679,661 at the North Carolina Zoo. Attendance data are provided by the general 

administration of each zoo and are daily counts of admissions through entry gates. Data are 

based upon ticket sales, free admissions, and groups. Data are available in finer grained analysis 

with free admissions, paid admissions, and group promotional admissions. Such level of detail is 

beyond the immediate scope of the study, therefore daily totals are used. Time of entry is not 

available at either zoo; the finest temporal scale exists at the daily scale. 
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Data exclusions are days in which the zoos are closed; closures occur for either holidays 

or severe weather. The most recent closure at Zoo Atlanta was due to a winter season ice storm. 

Hurricanes have caused closures at both zoos for the safety and security of the animals, 

employees, and visitors. In both locations the zoo scheduled closings on Christmas. Other day 

exclusions are promotional periods when zoo admission is free. Both zoos are pay-entry zoos, 

and free entry days cause very large spikes in attendance regardless of weather events. 

2.3 Methods 

To determine how weather and climate influence attendances at zoos, several methods 

are used to answer the research questions. These include attendance data pre-processing, 

weather data pre-processing, correlation analysis, multiple regression analysis, and probabilistic 

analysis. 
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Figure 12: Zoo Attendance Comparison 
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Attendance data are serially complete, without missing days, and maintained by zoo 

guest service officers. Attendance numbers are based on ticket sales in conjunction with gate 

admissions. Methods to collect attendance data are consistent throughout the period of record, 

creating a high degree of precision. Few pre-processing considerations are needed to prepare 

the data for statistical analysis. First, assessments are made to determine the appropriateness of 

excluding holidays, holiday weekends, and school group attendances (Parilla, 2007). Second, a 

seasonal analysis is made at both zoos comparing average attendance on holidays, holiday 

weekends, weekends, and all days. Results show that a “holiday” or “holiday weekend” 

classification do not necessitate exclusion because attendance does not show a consistent trend 

indicating anomalously high holiday attendances compared with all weekends (figures 13 & 14). 

Excluding school group and special event attendance does not improve relationships between 

weather variables and attendance. School group attendances stay in the total attendance 

numbers to maintain uniformity across the study period. Third, frequency distributions of 

attendance indicate needs for normalized data due to non-normal attendance data. Multiple 

linear regression (a method used in this thesis) requires skewed data sets to be given logistic 

treatments to normalize dependent variables (Kleinbaum, 2008). In instances with non-normal 

attendance, log(attendance) is used to satisfy statistical requirements. 
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Weather data pre-processing is needed for the North Carolina Zoo because serially 

complete hourly weather data is unavailable from any Asheboro weather station. As a result, 

Figure 13: North Carolina Zoo Holiday Analysis 

Figure 14: Zoo Atlanta Holiday Analysis 
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the “piedmont composite” was created in North Carolina utilizing surrounding stations which 

provide hourly weather information. Two goals are satisfied with the “piedmont composite”: 

one, to simulate the probable weather conditions at the zoo during business hours, and two, to 

represent the weather at tourists’ most likely points of origin. Stations used in the “piedmont 

composite” are located in Charlotte, Greensboro, Raleigh, and Fayetteville. Accuracy of 

projected Asheboro weather is the primary goal of the composite. Weighting of each station is 

based on the closest possible fit between composite data and actual daily data obtained at the 

Asheboro station. Best fit is determined by the highest obtainable Pearson correlation statistic 

squared (r-squared). The Pearson correlation statistic measures the strength of linear 

dependence between two variables (Burkard, 2012). Table 4 displays weightings used for each 

weather variable in the “piedmont composite.”  

 

 

Due to the potential for temporal and spatial misalignments in data capture, these 

composite indices are used and compared with daily data from the Asheboro weather station; 

they are not used as a data replacement in the event they do not adequately correlate with 

attendance. A secondary use is that the piedmont composite weather station locations coincide 

with gateway points for many visitors of the North Carolina Zoo. It can be assumed that the 

composite does not always capture the weather in Asheboro; however, if it does not, it is likely 

Table 4: Piedmont Composite 
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that it will reasonably capture the weather throughout the region. People may make decisions 

to visit the zoo based on weather at their starting location, not on the actual weather at 

Asheboro. This is beneficial because it considers weather in departure cities. 

Pre-processing is needed for the biometeorological variable outputs of the RayMan 

Model software (Matzarakis, Rutz, Mayer, 2000). Default RayMan solar radiation values are 

modeled from latitude; however, as established in Data, section 2.2, radiation data from nearby 

agricultural weather stations are available. This data is used in calculations of these indices, 

when indices are renamed VARIABLE(I). It is determined that usage of radiation improves 

correlation with attendance in all circumstances except the summer season. 

The discussion of analysis methods begins with correlation analysis. Correlation analysis 

uses tables to assess the relationship of each weather variable with the dependent variable 

attendance or log(attendance). This method is used to assess weather variables singly and 

determine each variable’s strength of correlation with attendance. All variables used are 

described in table 2. “Assessment groups” were developed to allow comparisons between the 

performance of measures having similar characteristics (table 3). Assessment groups include 

biometeorological indices, high temperature variables, low temperature variables, degree day 

variables, and “other” variables which include precipitation, humidity, sky cover, and wind. 

Perceived temperature index variables of Physiologically Equivalent Temperature (PET) (Hoppe, 

1999), Predicted Mean Vote (PMV) (Fanger, 1972), and Standard Effective Temperature (SET) 

(Gagge et. al, 1986) assess realistic thermal profiles of zoo visitors. Their application is only 

within the correlation analysis of the study, and they are calculated with the RayMan software 

using meteorological and atmospheric data, which include temperature, wind velocity, solar 

radiation, relative humidity, and cloud cover.  
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As referenced in Chapter I, creation of physiological indices requires demographic and 

geographic inputs to accurately depict the experience of a zoo visitor. Tables 5 and 6 

demonstrate the thermal, physical, and effort classifications chosen for zoo visitors. Because 

there is inadequate information on the size of the group and the number of children 

accompanying the adult guardian, it is determined that the most accurate choice of physiology 

is that of the adult. “Child” classifications are left as a reference but not used in this research. 

Using adult data makes the reasonable assumption that children are always accompanied with 

an adult and that the adult makes the decision to visit the zoo. Interviews with zoo employees 

indicate that the most common description of an adult is a young mother with elementary aged 

children. Because of this, generalized physical and age determinants are assigned to accurately 

capture this demographic. Clothing (CLO) values are used to assess thermal insulation of people.  

For reference, “one CLO is the amount of thermal resistance which is necessary to 

maintain thermal comfort for a sitting-resting subject in a normally ventilated room at a 

temperature of 70 degrees Fahrenheit” (Hedge, 2011). CLO values are divided into three 

seasons—winter, summer, and shoulder seasons. Shoulder seasons of spring and fall have 

similar temperature variations, and finer scale categories will not lead to beneficial conclusions. 

Clothing amounts (CLO) are assumed based on observations made at individual zoos and general 

trends in the southeast United States. Effort level (in watts) is based on moderate paced walking 

and slightly augmented due to increased physical constraints of a “mother with child” zoo 

visitor. Physiological index variables are included in the analysis of the “primary weather 

variable,” which is the best single weather predictor for attendance.  
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Clothing Values (CLO) 

Season Parent Child 

Winter 1.1 1.5 

Shoulder Seasons 0.8 1 

Summer 0.3 0.4 

 

Physical Input Parent Child 

Age 37 7 

Gender Female Male 

Effort 145W 90W 

Height 1.65m 1.16m 

Weight 63kg 20.4kg 

 

Multiple regression is a statistical method used to examine the relationship between 

one dependent variable and one or more independent variables (MedCalc, 2012). Due to the 

automatic choice of predictive variables in stepwise regression (Draper et al., 1981), data 

cleaning occurs to remove extraneous or inappropriate variable choices. Model outputs are 

sorted by descending r-squared statistic and displayed with weather variables used within the 

multiple regressions. The r-squared statistic, or coefficient of determination, indicates how well 

the model explains variance and can predict future outcomes (Steel et al., 1980).  

Stepwise multiple regression analysis modeling is used in this research of weather and 

attendance data to determine the primary weather variables statistically explaining attendance 

variations. A multiple regression allows the simultaneous testing and modeling of multiple 

independent variables (Palmer, 2007). This method is used to determine how combinations of 

weather variables interact to produce the strongest relationships between weather and 

Table 5: RayMan CLO Value Inputs 

Table 6: RayMan Physical Value Inputs 
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attendance. Results help determine which particular weather situations have larger impacts on 

attendances.  

Below is an example of an output equation from the multiple regression analysis: 

                              

Y= attendance 

= constant 

= beta coefficient/slope 

= amount of precipitation 

= high temperature 

= average cloud cover 

=average wind speed 

= average relative humidity 

 

Both correlation analysis and multiple regression analysis use weather and attendance 

data on a day-temporal scale. Segmentations of weather and attendance data are required to 

allow for appropriate analysis. Because there is no clear or consistent guidance concerning 

attendance in the literature, exploratory analyses to reach these conclusions involve several 

statistical observations, outlined next. Correlation tables are created comparing attendances 

and weather variables. Review of variables show the need for sixteen attendance prediction 

models per zoo per year. These sixteen models are divided by season, weekend days or weekday 

days, and wet or dry days (figure 15).  

 Figure 15: Multiple Regression Annual Scenarios 
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A single annual attendance model where individual weather variables are used as 

predictors of attendance does not adequately predict attendance. This method is too coarse to 

provide useful information. Further analysis indicates that social factors relating to typical work 

weeks (Parrilla, 2007), different seasons, and confounding relationships between temperature 

and precipitation result in an annual model not appropriate for analysis.  

For this study seasons are separated because each zoo experiences seasons with varying 

climates and attendance distributions. Seasonal acclimatization (Lin, 2008; Armstrong et al., 

1987) expresses changing weather perceptions and expectations humans have in each season. 

Seasons are established as typical meteorological blocks of three month increments: December, 

January, February (DJF) for winter; March, April, May (MAM) for spring; June, July, August (JJA) 

for summer; and September, October, November (SON) for autumn. Weekend and weekdays 

are separated after reviews of attendance determined significant differences between weekend 

and weekday attendance. Each day of the week is plotted separately on a scatterplot grid 

pairing attendance with temperature (high and low temperatures are tested separately). This is 

performed for each season, and results confirm that slopes of the linear fit-lines exist in two 

groups. Saturday and Sunday, in every scenario, have different slopes than weekdays. Day of 

week review indicates that the separation between weekend days and weekday days is 

necessary in modeling. Results show that separating in finer groupings, such as Mondays and 

Fridays as peripheral weekend days, is unnecessary.  Weekend attendances appear to have 

decreasing dependence on the weather. It can be reasonably assumed that this relationship is 

socially driven as weekends are often the only time away from work and school for typical zoo 

visitors. Rain and no rain days are separated because controlling for wet and dry day scenarios 

drastically improves predictability (r-squared) of weather-attendance models. In addition, the 

presence of rain introduces different temperature relationships which can confound analysis. 
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Probabilistic analysis is performed in longer-term temporal scales than the daily scales 

used in correlation and multiple regression analyses. This method of analysis is only briefly 

applied in this study, indicating the potential for further work with zoos. This method is used to 

assess whether long-term climate forecasts can be of use to attendance relationships with 

weather. Also, this method evaluates the potential for seasonal acclimatization based on visitor 

expectations (further explained in Chapter IV). Long-term seasonal climate forecasting is 

displayed probabilistically, showing above normal, equal chance, or below normal scenarios. 

Methods are sought to replicate a probabilistic climate forecast using monthly values and 

compiling them in three month seasonal climate forecast groups.  

Data in this study are treated in the same fashion as Climate Prediction Center climate 

forecasts (using above, below probabilities), but diverging from a climatological “normal” by 

using the previous year as the baseline (Planalytics, 2010). A previous year baseline method uses 

a monthly calculation of percentage attendance departure from the previous analog year (i.e., 

March 2001 compared with March 2000). Scatter diagrams show above and below previous 

year results for attendance and respective weather variables (figure 16). Use of previous year 

departures helps to capture a social memory in the relationship and normalizes data. 

Comparison with the previous year allows results to capture short-term expectation 

adjustments patrons may make based on a previous year.  

For example, an unfavorable winter season during one year will be taken into 

consideration the next winter season with increased sensitivity and appreciation of any 

favorable conditions. Large attendance changes during one year, with respect to zoo marketing 

or exhibit openings, will only be realized in one point rather than the whole period. Probabilistic 

analysis periods are 1982-2010 at the North Carolina Zoo and 2004-2010 at Zoo Atlanta. Scatter 
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diagrams are the display output for results in the longer temporal scale analysis. Diagrams are 

designed to be read in only the upper half (positive y-axis) or the lower half (negative y-axis) of 

the figures. Upper half—positive y-axis—indicates that weather variables of interest are above a 

defined “normal”—the lower half indicates the opposite. Diagrams coincide with long-range 

climate forecast conventions. Such forecasts predict weather variables as either above or below 

a “climate normal” or previous season normal.  

Figure 16 is an example of output from probabilistic analysis. Individual points match 

month attendance departures from a previous year baseline and the respective weather 

variable departure from its previous year baseline. As an example, one point on the graph uses 

data created from an attendance departure—March 2009 to March 2008. This point of data 

compares the temperature departure of March 2009 and March 2008. Seasonal presentation 

uses standard three-month climatological classifications, referred to earlier in this chapter. 

Figure 16 also provides an example of application. A climate forecast for any month where high 

temperatures in the MAM period are below the previous year’s MAM period facilitates readings 

from the negative y-axis region. Probabilities based on distributions between positive and 

negative x-axis values follow to complete the analysis. 
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The Tourism Climate Index (TCI) is studied in probabilistic analysis. It is an assessment 

index of tourism conditions “equivalent to walking outdoors at a speed of 2.5-3.0 km/h…” 

(Mieczkowski, 1985) and is appropriate to apply in the overview of zoo tourism. Meteorological 

inputs in the index are assessed separately and scored on predefined scoring tables. Sum of the 

scores constitutes the index value. Index values vary from -30 to 100 with scores in excess of 70 

being considered “very good” through “ideal” tourism climates. Figure 17 is an adapted chart 

from “Climate Change and the Distribution of Climatic Resources for Tourism in North America” 

(Scott et al., 2004) describing Mieczkowski’s TCI scale scores. Meteorological inputs in the TCI 

are temperature, humidity, sunshine, wind, and precipitation. TCI is a monthly score and is only 

applied in this temporal scale. 
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Figure 17: TCI Scoring System 



 
 

Chapter III 

Results 

Chapter III presents and reviews results for the data and methods presented in Chapter 

II and evidence is provided to answer the research aims and questions of the study. Results will 

be presented as follows: First (3.1), results from daily multiple regression modeling help to 

answer whether combinations of weather variables can predict zoo attendance and how well 

they predict. Next (3.2), correlations between individual weather variables and attendance are 

presented to answer which single variables are the strongest and most influential on zoo 

attendances. In addition (3.3), month and seasonal variables integrate climate and attendance 

and explore whether climatic factors influence decisions to visit a zoo. Finally (3.4), review and 

application of Mieczkowski’s TCI helps evaluate application of tourism climate indices 

established in the literature. How social influences coalesce with weather factors in tourist 

decisions is discussed in Chapter IV.  

3.1 Multiple regression weather modeling 

Results from multiple regression analyses are presented in tables 7 and 8 and arranged 

from highest r-squared value to lowest. Sixteen scenarios per zoo are presented and 

differentiated by day of week, season, and wet or dry scenarios. The single variable with the 

highest r-squared value with attendance is located in the fifth column. Multiple regression 

models are based solely on observed or derived weather variables (see table 2).  
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SET(I) and other biometeorological variables are not used in statistical modeling because they 

are combinations of observed weather variables.  Biometeorological indices are only assessed in 

correlation analysis. Results are displayed in the fifth column of tables 7 and 8 for completeness.  

 

 

Table 7: North Carolina Zoo Regression Results 

Table 8: Zoo Atlanta Regression Results 
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Additional tables that include all weather variables used in each multiple regression model 

scenario can be found in the Appendices. To maintain statistical integrity, when the r-squared 

between two weather variables is in excess of 0.6, those variables are not included in the same 

scenario. 

Models of the North Carolina Zoo have r-squared values ranging from 0.720 to 0.024. 

Scenarios with the highest correlations are wet weekends with lower observation values. All 

summer scenarios have low correlations, and weekends are better correlated than weekdays. 

Because fewer observations exist for weekend days, this higher correlation may be due to small 

sample sizes and care must be taken before justifying differences in results. In Zoo Atlanta 

models r-squared values range from 0.653 to 0.055. Scenarios with highest weather-attendance 

correlations are rainy weekends. This is partially due to lower numbers of observations. In the 

seven highest-correlated model scenarios at Zoo Atlanta, only one is attributed to dry 

conditions. All summer scenarios are poorly predicted as the highest r-squared value is 0.158. 

3.2 Correlation analysis of individual weather variables 

Assessment groups established in Methods, 2.3 and table 3 are used in the display of 

results of individual weather variables and their relationships with zoo attendance. At the North 

Carolina Zoo, among all biometeorological indices, SET(I) has a superior correlation with 

attendance in 11/16 of the scenarios. When SET(I) and SET are grouped, these variables have 

higher correlation with attendance than PET/PET(I) and PMV/PMV(I) indices in 13/16 of the 

scenarios. The high temperature category compares day high temperature, the “piedmont 

composite” of daytime high temperature between 9am and 6pm, and the daytime high/heat 

index (Steadman, 1979). In wet summer scenarios, addition of the heat index to daytime high 

does not improve correlation with attendance, though in dry summer scenarios the heat index 
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addition improves correlation. Because heat index occasionally occurs during shoulder seasons, 

it is tested as well, and results show that the addition of heat index to daytime high does not 

improve correlations in shoulder seasons.  

Comparing all three high temperature variables, daytime high temperature has the 

superior correlation in 9 of the 16 total scenarios, while daily high temperature is superior in 5 

of the 16 scenarios, indicating a gained benefit when using a daytime high variable. The low 

temperature category includes low daytime temperature, low daily temperature, and the 

variable of daytime low or lowest wind chill temperature (Eagan, 1964). In non-summer 

scenarios, addition of a wind chill component to daytime low improves correlations with 

attendance in 11 of the 12 scenarios. Heating degree days (HDD) and cooling degree days 

(CDD)—departures from a daily average temperature of 65 degrees Fahrenheit—are analyzed 

during shoulder seasons.  

While the numbers of observations are not equal, it is observed that of the 8 shoulder 

season scenarios, heating degree days have higher correlations to attendance in 7 of the 8 

scenarios.  Cooling degree days are superior only during dry fall weekdays. “Other variables” 

include wind speed, sky cover, relative humidity, and precipitation. Relative humidity is the best 

correlated variable in four scenarios; amount of precipitation is in three. Comparing all weather 

variables at the North Carolina Zoo, SET(I) is the superior variable in 6/16 of the scenarios, 

followed by average relative humidity and daytime high temperature, both superior in 2/16 of 

all scenarios. 

At Zoo Atlanta, SET(I) has the highest correlation with attendance of all the 

biometeorological indices in 13 of the 16 scenarios. Two exceptions are the dry summer 

scenarios when added radiation data decreased correlations. PET(I) is the superior predictive 
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variable in one scenario, though the advantage over SET(I) is not statistically significant. The high 

temperature grouping includes daily high, daytime high, and the daytime high/heat index 

variable. Addition of heat index to dry summer scenarios improves correlations with attendance, 

while wet summer scenarios are not assisted. During shoulder seasons, 2 of the 8 scenarios are 

benefited by the addition of heat index to the daytime high temperature. In these two 

scenarios, the conditions are wet.   

Benefits of using daytime high temperature (temperature between 9am and 6pm) 

versus daily high temperatures are slight.  Daytime high temperature is the best variable in 6 of 

the 16 scenarios and daily high temperature is the best variable in 5 of the 16 scenarios. 

Variables within the low temperature category, when compared to the high temperature 

category, have higher correlations with attendance in 2 of the 16 scenarios. This indicates that 

high temperature variables are more useful to predict attendances at Zoo Atlanta than low 

temperature variables. Addition of wind chill to daytime low temperature shows improvement 

in 12 of 12 tested scenarios. Degree days (CDD and HDD) are assessed during shoulder seasons. 

Of the 8 shoulder season scenarios, HDD is higher correlated with attendance in seven of these 

scenarios. “Other variables” at Zoo Atlanta include precipitation, sky cover, and average 

humidity.  

Eight (wet) scenarios are available for comparison. Sky cover is better correlated with 

attendance than amount of precipitation in 4 of the 8 scenarios. Overall, the highest correlated 

weather variable with attendance is SET(I) in 4 of the 16 scenarios. Daytime high temperature is 

highest correlated in 2 of the 16 scenarios. While no variable consistently is the best correlated 

variable, these two variables are among the highest in every scenario, and therefore can be 
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determined as the best overall single variables for Zoo Atlanta attendance prediction. Results for 

both zoos are graphically explained in table 9. 

 

3.3 Probabilistic climate-attendance relationships 

Month and seasonal variables are used to explore climate and attendance relationships. 

Tables 10 and 11 summarize yearly results for each season at the North Carolina Zoo and Zoo 

Atlanta observed from scatter diagrams outlined in Methods, 2.3. Percentages in the table are 

based on historical observations of departures. Resultant points in the scatter diagrams were 

counted and converted to percentages.  The tables have two different metrics for attendance 

predictability: greater attendance predictability and lower attendance predictability. Greater 

attendance predictability indicates that attendances are comparatively higher with the previous 

analog year, and the associated variable yields the best prediction. Lower attendance 

North Carolina Zoo 

Biometeorological 
Variables 

High 
Temperature 

Variables 

Low Temperature 
Variables  

(winter only) 

Degree 
Day 

Variables 

Other 
Variables 

Overall 
 

SET(I)/SET 13/16 
Daytime 

High 
Temp 

9/16 
Daytime 

Low/Wind 
Chill 

11/12 HDD 7/8 
Relative 

Humidity 
4/8 SET(I) 6/16 

PET(I)/PET 3/16 
Daily 
High 

Temp 
5/16 

Daytime 
Low 

1/12 CDD 1/8 
Amount 
of Precip 

3/8 
Daytime 

High 
Temp 

2/16 

Zoo Atlanta 

Biometeorological 
Variables 

High 
Temperature 

Variables 

Low Temperature 
Variables  

(winter only) 

Degree 
Day 

Variables 

Other 
Variables 

Overall 
 

SET(I)/SET 13/16 
Daytime 

High 
Temp 

6/16 
Daytime 

Low/Wind 
Chill 

12/12 HDD 7/8 
Sky 

Cover 
4/8 SET(I) 4/16 

PET(I)/PET 1/16 
Daily 
High 

Temp 
5/16 N/A N/A CDD 1/8 

Amount 
of Precip 

3/8 
Daytime 

High 
Temp 

2/16 

Table 9: Summary of individual weather variable comparison 
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predictability indicates that the variable observed yields the best prediction for lower 

attendances when compared with the previous year.   

The purpose of dividing greater and lower attendance predictabilities is that different 

weather variables have different influences on people. Rain, for example, has negative impacts 

on zoo attendance. Assumption of the opposite does not yield the best possible result—lack of 

rain does indicate positive impacts for zoo attendance, but is not as strong an indicator as high 

temperature. As a result, the need for greater and lower attendance influences is important to 

the overall results. Negative percentages indicate negative relationships between attendance 

and the respective variable.  

Weather variables tested at the North Carolina Zoo are high temperature, low 

temperature, amount of precipitation, days of precipitation, and in the summer season, days 

over 90 degrees Fahrenheit. The highest predictable period for greater attendance departures is 

the winter season (DJF). Results show that if high temperature is above the previous year 

baseline, there is a 78% probability that attendance will be above the previous season’s month 

baselines. Summer season displays the strongest lower attendance predictability of -69% with 

the variable “days over 90 degrees F.”  

Results from Zoo Atlanta are displayed in table 11. In the spring season, compared with 

previous spring months, greater attendance is predicted 80% with decreased days of 

precipitation; lower attendance is predicted 89% with increased amounts of precipitation. 

Summer season (JJA) results show low temperature as the best variable on a month/seasonal 

time scale. When low temperatures are cooler than the previous year baseline, there is a 75% 

probability that attendance is also reduced. 
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North Carolina Zoo 

Season DJF MAM JJA SON 

Highest Greater Attendance 
Predictability (Previous Year) 

78% 64% -74% -75% 

Variable 
High 

Temperature 
High 

Temperature 
Days over 

90°F 
Days of 

Precipitation 

Highest Lower Attendance 
Predictability (Previous Year) 

56% -63% -69% -66% 

Variable 
High 

Temperature 
Days of 

Precipitation 
Days over 

90°F 
Days of 

Precipitation 

 

Zoo Atlanta 

Season DJF MAM JJA SON 

Highest Greater Attendance 
Predictability (Previous Year) 

-63% -80% 67% 78% 

Variable 
Amount of 

Precipitation 
Days of 

Precipitation 
Low 

Temperature 
High 

Temperature 

Highest Lower Attendance 
Predictability (Previous Year) 

-67% -89% 75% 80% 

Variable Amount of 
Precipitation 

Amount of 
Precipitation 

Low 
Temperature 

High 
Temperature 

 

Included in the appendix to this thesis are two panels, each with six scatter diagrams of interest. 

Various weather variables are selected and six examples per zoo are offered. Scatter diagrams 

include examples from all seasons paired with differing variables of interest such as high 

temperature departure, low temperature departure, precipitation amount departure, and 

number of precipitation days departure. 

3.4 TCI analysis 

The monthly TCI variable is tested in two contexts. First, TCI scores are paired with 

monthly attendance throughout the period of study. Second, departures using probabilistic 

methodologies are presented. Figure 18 compares TCI scores with average daily attendance 

Table 10: North Carolina Zoo Scatter Diagram Results 

Table 11: Zoo Atlanta Scatter Diagram Results 
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(converted from month totals) at the North Carolina Zoo. TCI scores are lowest in the winter 

season and highest in the spring season. TCI favors thermal conditions which are more 

representative of the shoulder seasons in Asheboro—with summer temperatures too high for a 

high TCI score, and winter temperatures too low for a high TCI score. The lowest score in the 

study period is within the “marginal” tourism classification scheme while other scores are in 

favorable tourism classifications. It appears that the most favorable TCI scores for high 

attendances at the North Carolina Zoo are above 80. 

 

 

Figure 19 shows the relationship between monthly TCI scores and average daily 

attendance at Zoo Atlanta. Higher TCI scores indicate higher average attendances. One month of 

the 2004-2010 study period is rated as “unfavourable.” All other scores indicate “marginal” 

conditions or better. Spring season results display three distinct groupings with respect to 

Figure 18: North Carolina Zoo Monthly TCI & Attendance 
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increasing TCI scores.  Spring and fall have, in general, the highest TCI scores, followed by 

summer; winter is lowest. Favorable spring conditions outperform all other seasons.  

 

 

Figures 20 and 21 display the relationships between both monthly TCI score departures 

and attendance departures at the North Carolina Zoo and Zoo Atlanta. Attendance departures 

are based on the month averages for the entire periods of study, rather than previous year 

baselines. Probabilities are calculated from the number of observations in the scatter diagram 

quadrants and converted to percentages. 

At the North Carolina Zoo, in any month where the TCI index is higher than the month 

average for the period of study (61 instances), there is a 69% (42/61) probability that monthly 

attendance will also be greater than the average for that month. Conversely, if TCI is below the 

Figure 19: Zoo Atlanta Monthly TCI & Attendance 
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month average, there is a 70% probability that attendance will also be below the average 

attendance for that month.  

 

 

Figure 21 displays the scatter diagram distribution of TCI scores for all months plotted 

with respective attendance departures at Zoo Atlanta. When the TCI score is above month 

averages, attendance is also above average 27 of 38 months or 71% of the occurrences.  

Conversely, if month TCI is below average there is a 24 of 34 (or 71%) probability that 

attendance is also below the month average. Results show that greater TCI departures in both 

positive and negative directions indicate greater magnitudes in attendance departures.  

Figure 20: North Carolina Zoo Monthly TCI & Attendance Departures 
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Results show that at the North Carolina Zoo the magnitude of TCI departure has little 

influence on the magnitude of attendance departure. These are opposite the results of Zoo 

Atlanta. Increased TCI departures from the period average are not followed by equivalent 

magnitudes in attendance departures.  

 

 

 

 

 

 

 

Figure 21: Zoo Atlanta Monthly TCI & Attendance Departures 



 
 

Chapter IV: 

Discussion 

This discussion section contextualizes results and findings of the study. It begins with a 

discussion of results that reviews points of interest arising directly from Chapter III with detailed 

analysis of weather variables influencing zoo attendance. Next, it discusses implications of 

findings through analysis and speculation of what factors may be causing the results seen in 

Chapter III. 

4.1 Discussion of results 

Correlation analysis of individual weather variables, section 3.2, displays results from 

“assessment groups” of biometeorological indices, high temperature, low temperature, and 

“other weather variables” (table 3). Overall, the most influential variable grouping is the high 

temperature group of weather variables. This indicates it is likely that people in the southeast 

United States are most aware of high temperature variables when planning zoo visits.  

Another factor (brought about in analysis of degree days during shoulder seasons) is 

that cold weather, not warm weather, is the more prominent factor affecting attendances at the 

zoos. There is an important distinction between this result and the previous result in that high 

temperature variables are most influential. During events of cold weather and warm weather, 

high temperature variables are equally important—in fact, more important when associating 

attendance than low temperature variables. Cold weather promotes a prominent behavior 
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change in attendance decisions, but the best measure for these changes is with high 

temperature variables. Seen in table 9, heating degree days (a proxy for colder temperatures) is 

better correlated with attendance variables than cooling degree days (a proxy for warmer 

temperatures). It is reasonable to assume that in the southeast United States (a relatively warm 

climate), visitors are more sensitive to cold weather than to warm weather. As a result, when 

temperatures decrease, weather-attendance relationships at the zoos show more definitive 

associations. To further explain, a wind chill factor turns visitors away from a zoo visit more than 

the presence of a heat index.  

On wet days, relative humidity appears to have a stronger influence on attendance than 

the amount of precipitation (table 9). Effects of rain on zoo attendances are nonlinear. Rain has 

a large effect on attendances, but also reaches an affect threshold quickly. Increasing amounts 

of precipitation cause attendances to drop rapidly to a point when they no longer decline. For 

example, a half-inch of precipitation can create “wash-out” days with low attendances; any 

additional precipitation does not affect attendances. 

Lack of precipitation in peak visitation hours can mean that amounts of precipitation 

received have little or no effect on visitors at the zoo. In the summer season, heavy 

thunderstorm rain occurs in the afternoon and early evening. Thunderstorm rain falls quickly 

and usually does not affect a zoo visit for more than an hour. In the event of rain falling over a 

short time span, use of an average relative humidity variable helps to discount a storm that did 

not greatly affect zoo visitors. When light rain and lingering showers accrue precipitation 

throughout the day, average relative humidity is high. Average relative humidity captures the 

type of the precipitation event and better approximates attendances than using precipitation 

amounts.  Sky cover can serve as a proxy variable for relative humidity and, thus, also provides 
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benefits over using precipitation amounts when approximating attendances. High daily average 

sky cover, especially in the southeast United States, often indicates the presence of rainy 

weather. Heavy summer season rains come from cumulus clouds and occur more often in the 

afternoon. This is reflected in the sky cover variable as these types of rain events are discounted 

when using a daytime average. Day-long precipitation events, which have more damaging 

effects on zoo attendances, are associated in the data with high average cloud cover numbers 

and high relative humidity numbers.  

Summer season results show a negative correlation between attendance and high 

temperatures. This is different from trends observed in all other seasons and scenarios. Summer 

seasons contain many days that are very warm and, as seen in figures 9 and 10, witness 

perceived temperatures that are “very hot.” In the summer season, when high temperature has 

a positive relationship with attendance, scenarios are wet. Wet days in the summer are usually 

much cooler than dry days. These cooler temperatures create a situation where the high 

temperature thresholds, seen on very hot days, are not reached.  

Because all biometeorological index variables correlate higher with attendance than 

simple composite indices of heat index and wind chill, it can be guardedly confirmed that 

biometeorological indices are superior in this context (table 9). SET/SET(I) performs consistently 

and correlates higher with attendance than PMV/PMV(I) and PET/PET(I) indices in almost every 

instance of comparison. This is an interesting assessment as Lin (2009) has stated that PET is the 

biometeorological index more often and appropriately used in an outdoor setting for comfort 

assessment. This result may indicate SET as being a more appropriate index for thermal 

assessment than the other biometeorological temperature indices. More study is needed to 
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assess these differences across the indices and their applicability in different disciplines and 

research contexts. 

Probabilistic climate-attendance relationships (3.3) show results from direct 

comparisons of the TCI score with attendance. Scatter diagrams (figures 20 & 21) indicate that 

the TCI index is well adapted for use within zoo tourism. Seen in figures 18 and 19, TCI index 

values coincide well with attendance at both the North Carolina Zoo and Zoo Atlanta. The index 

can be tailored for zoo activity to yield the best possible results. TCI application in the southeast 

United States can be improved, given its current tourism classifications. In the study period, 

weather conditions, rarely in Atlanta and never at the North Carolina Zoo, score below a 

“marginal” classification. Given low attendance figures in the winter season, one assumes that 

the “unfavourable” classification should be applied to the weather conditions. Classifications are 

currently measured in equal sized groups on a linear scale. A non-linear scale with a more 

narrow “favorable” range, and fewer classifications in the favorably scoring months, can be 

useful to zoo tourism in the Southeast United States. Zoo Atlanta analysis indicates season 

change from summer to fall displays an immediate drop of 850 average daily visitors for 

equivalent TCI scores. Due to social changes in the fall season, weather no longer drives people 

to the zoos with as much efficiency. TCI scatter diagram analyses show more variable clustering 

at the North Carolina Zoo than Zoo Atlanta. This indicates Zoo Atlanta attendances may react to 

the magnitude of weather departures more than the North Carolina Zoo. Monthly forecasting of 

components within the TCI is difficult given current climate forecasting abilities. Developments 

of forecasting will allow the TCI to become more applied. Currently it is most useful for its 

addition to understanding of how weather factors affect attendances. Also, it contributes to the 

knowledge that zoo visitors respond to the atmospheric environment on both weather and 

climate time scales.  
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Multiple regression weather modeling results, displayed in tables 7 & 8 and observed in 

results section 3.1, indicate that North Carolina Zoo attendance appears to have higher 

correlations with weather variables than Zoo Atlanta. A scenario where attendance variance is 

explained in excess of 30% (r-squared is above 0.3) is used as a threshold for a “good” scenario.  

Zoo Atlanta displays 37.5% of its yearly observations as “good,” while the North Carolina Zoo 

displays 46.2% of the annual observations as “good.” Both zoos are well predicted on a basis of 

total days. The North Carolina Zoo, however, has a higher proportion of days with “good” 

attendance predictability. Counting scenarios, not days, show “good” attendance predictability 

at the North Carolina Zoo in 63% (10/16) of scenarios versus 50% (8/16) at Zoo Atlanta.  

Figure 22 ranks the r-squared of scenarios in descending order at both zoos. Scenarios 

are not necessarily the same in each pairing. Figure 22 shows how well each zoo predicts 

attendances from best to worst. The North Carolina Zoo has the highest correlated model of all 

tested, but the following scenarios show Zoo Atlanta correlates higher.  In the least adequate 

scenarios, Zoo Atlanta performs poorly. Differences between rankings are not all statistically 

significant due to scenarios with low numbers of observations. Both zoos have several well-

correlated scenarios, but the North Carolina Zoo is more consistent overall. Zoo Atlanta 

correlates well, but only to a point—their good models are of high quality but their bad models 

are very poor.  
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4.2 Implications of findings 

Results indicate that zoo visitors are attentive to the weather only as much as needed in 

order to make adequate decisions about their visit; however, while expected relationships exist, 

there are nuances within the results which implicate additional insights. Travel time, perceived 

distances, zoo layout, personal exposure and exertion influence how visitors access and 

interpret weather impacts on a visit to the zoo.  

Figures 4 and 5 and figures 6 and 7 indicate that most visitors at the North Carolina Zoo 

have a one-way transit time nearly double that of Zoo Atlanta. Many visitors at Zoo Atlanta are 

within a 30 minute drive time, while at the North Carolina Zoo, the closest metropolitan area is 

in excess of 45 minutes. To encompass the equivalent number of potential visitors as in the 

Atlanta metropolitan area (60 minute drive time), the area surrounding the North Carolina Zoo 

must be expanded to 120 minutes. As a result, a maximized tourist draw at the North Carolina 

Figure 22: Model Scenario Comparison 
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Zoo requires double the travel time of Zoo Atlanta. North Carolina Zoo marketing must 

encompass an area four times the spatial area to satisfy the equivalent coverage of Zoo Atlanta.  

Perceived distance and association with one’s metropolitan area are important 

proximity illusions in decision making. Zoo Atlanta and the North Carolina Zoo have many 

variables to consider for actual transit time. Traffic around Zoo Atlanta is substantially higher 

than traffic along any route to the North Carolina Zoo. In addition, the availability of adequate 

parking is more limited at Zoo Atlanta compared with capacities at the North Carolina Zoo. 

Visitors familiar with these added time factors will have differing perceptions in their time 

calculation of a visit to the zoo; this may change behaviors and attention to any weather 

influence when planning a trip. Perception of proximity helps Zoo Atlanta establish short 

perceived travel times. Travel mode availability and place name affect perception. Travel mode 

availability at Zoo Atlanta is expanded through the regional mass transit authority, MARTA, 

which operates bus line #32, a city bus that stops near the zoo. Mode availability is 

comparatively limited at the North Carolina Zoo because regional mass transit is not available 

for tourists from the surrounding metropolitan areas. Spatial connectedness is created 

linguistically by the place name of the zoo.  Zoo Atlanta creates an aura of city-scale and close 

proximity as the zoo name describes a city. On the contrary, the North Carolina Zoo creates a 

state/regional-scale aura as it uses the name of a state. 

Difference in linear and circular zoo layouts is established in figures 1 and 3. These 

concepts affect weather-tourist interactions in two ways: exposure (concept adapted from Lin, 

2009 and Wohlwill, 1974) and exertion. Exposure describes tourists’ outdoor connectedness to 

the environment. Exposure at the North Carolina Zoo is higher than that of Zoo Atlanta. The 

linear path of the North Carolina Zoo layout provides visitors with an increasing feeling of 
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exposure when they depart further from their origination point. Zoo Atlanta’s circular design 

promotes a static feeling of exposure when visitors stray from their origination point in an 

oscillating manner. A highly tree-canopied layout and closer proximity of exhibits gives security 

and decreased exposure perception at Zoo Atlanta because shelter, in the event of sudden 

weather changes, appears closer. Knowledge of increased exposure is likely to increase a 

visitor’s attention to the weather. High degrees of exertion will have effects on people’s 

interpretation of weather. With knowledge of the North Carolina Zoo’s long (3.85 mile) spatial 

layout and moderate topographic difficulty, it can be assumed that North Carolina Zoo visitors 

have greater awareness to weather factors compared to Zoo Atlanta visitors (1.3 miles). High 

temperatures and heat indices in warm months are important as zoo tourists take into 

consideration atmospheric variables that will have the most effect on their outdoor comfort and 

health. In the winter season, wind chill is a variable of interest because its effects on outdoor 

tourists increase their feelings of exposure when traversing zoo paths. Spatial design and layout 

allow Zoo Atlanta visitors to be less dependent on weather. As a result, attendances have lower 

correlations (tables 7 & 8) with the weather variables than the North Carolina Zoo. 

“Better weather” in a region moves decisions away from a decision threshold between 

“no, do not attend” and “yes, attend” (figure 23).  In the southeast United States, during a dry 

weather scenario, temperature signals are less reliable because a change in temperature under 

good conditions is less influential on attendances. This change affects the strength of decision 

but is not likely to move a decision to the threshold of choice (movement from point A to point 

B). In scenarios with fewer observations, there are two components that create better 

predictability seen in the results. First, visitors have less experience with the weather conditions 

and therefore are more wary. Second, many of the low observation scenarios are “wet”, 

indicating that people are less likely and willing to change decisions. Attendances in wet 
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conditions are better predicted in a regression model because decisions are in close proximity to 

the decision threshold (point C).  

 

Wetness promotes a higher degree of uncertainty and exposure because changes in 

temperature are amplified, affecting visitor comfort. For example, a clear dry day in the fall 

season, with temperatures around 75 degrees Fahrenheit, will likely see few threshold decisions 

even within a ten degree buffer (movement between points A and B). On the contrary, a wet fall 

day with cloud cover probably has many more attendance decisions close to the threshold. In 

this situation, a five degree buffer can be even more influential on patron decisions than the ten 

degree buffer mentioned above (movement from point C to point D). 

Review of heating degree days/cooling degree days and wind chill days/heat index days 

shows acclimatizations and expectations that are derived regionally. The climate of the 

southeast United States is seasonal, and high temperatures and high humidity are more 

pervasive than low temperatures and winter weather events (Robinson, 2005). Because of this 

type of regional weather, zoo visitors gradually develop both physical and psychological 

acclimation to the regional weather. 

Figure 23: Tourist Decisions 
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Physical acclimation is thermal acclimatization. It seems reasonable to assume that 

people react in a stronger manner to low temperatures than high temperatures because of the 

regional climate. The strong reaction occurs when zoo visitors are not accustomed to low or 

cooler than normal temperatures and perceive them as too uncomfortable for an outdoor visit 

to the zoo. This theory is confirmed with the results in two manners. First, correlations between 

attendance and winter season low temperatures are almost unanimously improved by a wind 

chill index. A wind chill index can be assumed to capture a higher thermal discomfort in cold 

temperatures. Second, small changes in temperature, when the temperature is cold, are better 

modeled. This finding indicates that, in these cold conditions, decisions are closer to a threshold 

decision than in many warmer scenarios (figure 23). 

Psychological acclimation parallels physical acclimation but is more grounded in 

expectations. Zoo visitors expect certain weather impacts. If expectations are realistic, then they 

are similar to climatology. People in the southeast United States expect, and are better 

prepared for, “hot and humid” conditions. “Cold” conditions are observed as aberrations to a 

casual visitor and are responded to in a stronger manner. Figures 8 and 9 provide an explanation 

of the climates at the North Carolina Zoo and Zoo Atlanta using PET frequencies. These figures 

indicate a seasonal and temperate climate with a variety of thermal sensations across the 

annum and a large amount of temperatures near a thermally neutral range.  Shoulder seasons 

have more coloration, which is warmer than “neutral” than colder than “neutral” at both zoo 

locations.  

Atmospheric knowledge helps provide insight into many results. Anomalous results in 

this study when analyzed meteorologically can be better explained. Such seemingly anomalous 

findings are detailed in the following questions: Why do summer season models yield poor 



56 
 

correlations with attendance? Why does wind have a small effect, if any, on attendance? Why 

are TCI values less reliable in the spring season?  

Summer season models in this study have low correlations due to the nature of summer 

season weather in the southeast United States. Summer weather in this region is generally well 

suited for outdoor activities. When conditions are very warm, people adjust intensity or 

duration rather than changing activity. Poor correlations occur because weather can be 

relatively homogenous, thus leaving multiple days as options for trips to the zoo. Therefore, 

weather is not a definitive attendance driver. Wind in the southeast United States is not an 

influential weather event except during severe weather. Because of its normally benign 

existence, wind is generally excluded from decisions of those performing most outdoor 

activities. Spring TCI variables are not necessarily less reliable, but appear so when the season is 

displayed as a whole. Figures 18 and 19 show different groupings of TCI scores witnessed during 

a spring season in the two study locations. Spring is the most varied atmospheric season in the 

southeast United States due to the presence of increasing day length (increased solar radiation 

and energy), colder mid-level atmospheric conditions, and often a southward depressed jet-

stream. These conditions can create very good outdoor tourism days, as well as the least 

favorable tourism days of the year.  

While many results can be assumed, further work in decision psychology and 

motivations of zoo tourists are needed to establish better connections between weather and 

zoo visitor attendance decisions. Personal knowledge of the climate in the southeast United 

States and anecdotes from administrators of the zoos regarding varying weather conditions 

assist in contextualization of results. These informational sources allow for additional authority 
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to be given to results; however, explanations and assumptions for their occurrences are 

scientifically untested and cannot be used as definite justifications for results. 

 

 

 

 

 

 

 

 

 



 
 

Chapter V 

Summary and Conclusions 

Research aims and questions were outlined at the end of Chapter I. They are presented 

here again, along with brief answers derived from the data: 

1) Do weather and/or climate factors influence zoo attendances? Yes, at both locations it is 

seen in the results that on weather and climate scales there are substantive 

relationships between weather factors and attendances.  

2) What weather variables or prevailing conditions are most influential on decisions of 

whether to visit the zoo? Several weather variables do perform better than others. For 

example, results show that high temperature variables usually are the best indicators of 

attendance in all weather conditions. Cold weather is the environmental condition that 

creates the most direct response seen in tourists on an annual basis.  

3)  Are indices established within the tourism climatology literature helpful in prediction of 

zoo attendances? Biometeorological variables are often better assessments than all 

other weather variables; however, these variables themselves are not higher correlated 

with attendance than the variable combinations used within the multiple regression 

model scenarios. The TCI, though not developed specifically for zoo tourism, is shown to 

work well in long-term attendance prediction.  
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4)  What social influences coalesce with weather factors in tourist decisions to visit the 

zoo? This study uses a geographic perspective to determine the social influences which 

potentially cause differences in results between the two zoos studied. It is determined 

that several factors impact perception of weather and are socially derived influences on 

tourist decisions in spite of weather. These include zoo spatial layout and regional 

location, time involved in a visit (both perceived and real), exertion, and exposure. 

5.1 Future work 

Future work should involve additional testing of relationships between weather and zoo 

attendance. This would include more statistically robust and refined usage of data, geographical 

expansion, multi-discipline physical modeling, and use of a mixed-methods approach to 

quantitatively and qualitatively assess hypotheses and trends seen in preliminary studies. 

Statistically more refined data is subject to the quality of the collection methods at the 

individual zoo. Access to gate sampling, timing of arrivals and departures, and tracking zip codes 

of visitors can assist with modeling weather-attendance relationships. Refining data with respect 

to the weather requires more advanced and specific data applications. One application could be 

the use of hourly weather data encompassing the time around a departure for a zoo visitor. In 

many circumstances, once the trip decision has been made, the weather plays a smaller role in 

actual attendance. Critical decision-making hours, which likely occur in the morning from 7am to 

10am, may display better weather and attendance correlations. Historical forecast data days 

prior to a zoo visit are also useful. (Anecdotally, zoos comment how weather, forecasted days 

prior, affects attendance regardless of the actual weather conditions.) Trips planned several 

days in advance likely use weather forecasts, therefore, historical forecast data should benefit in 

refining data analysis. 
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Geographical expansion of study sites will allow different climate regimes to be tested. 

Results of this study are methodologically tailored for the climate of the southeastern United 

States based on expectations and general cultural knowledge. Extrapolating results to other 

locations would not yield optimal results. Also, a larger variety of zoological park layouts can be 

assessed. Regional acclimatization is a focus of the biometeorological community. By varying the 

location of zoos, research studies a common activity in differing weather conditions. 

Modeling methods across disciplines might be beneficial in explaining tourist decisions 

and actions. Examples include attract-repel models (similar to higher and lower attendance 

predictabilities from tables 10 & 11) as weather elements which attract visitors are likely 

different than those which repel visitors to other tourism activities. Weighted population 

potential models (Rich, 1978) and geographic proximity can also be used to explain differences 

in driving times and ease of access to a zoo. 

Use of mixed-methods can be achieved qualitatively through questionnaires, surveys, 

and interviews and quantitatively through more refined statistical modeling of historically 

observed attendance. These methods can be combined to assess the best combination of 

mathematical and sociological/psychological approaches to produce a predictive model.  

5.2 Conclusions, business & policy 

Decision-makers at the zoo administration level and regional tourism planning 

authorities at the government, state, and regional levels can use this information to maximize 

revenues. The location choice of a zoo, park, or other outdoor themed attraction will largely be 

a product of the space required for its existence. Results of this research, however, show how 

nuances in planning can create long-term consequences in attendance. Substantiated by an 

example with results of this study, it makes sense for a zoo located in a “poor weather climate” 
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to be built in closer proximity to metropolitan areas and to be designed to minimize perceived 

outdoor exposure, likely through a circular, interconnected design. On the contrary, a zoo 

located in an area without particularly severe weather or an abundance of pleasant weather 

may benefit from regionalizing their location and promoting a more outdoor, linear concept in 

design and planning.  

Zoos established and permanent in their positioning can use this information at the 

management level. Depending on the level of managerial and operational control, zoos can 

adjust their operating strategies to maximize their profits during attendance fluctuations 

attributable to the weather. In the event of weather factors that decrease attendance turnout, 

zoo managers can adjust their volunteer and temporary worker staffing and energy costs. On a 

longer-term plan, if conditions allow, poor weather can be a time to close exhibits for repairs 

and upgrades. This minimizes the number of disappointed visitors. Knowledge of marginal 

conditions can facilitate marketing promotions helping smooth visitor demand through 

competitive pricing strategies. In poor weather, discounted ticket prices can act as ways to 

mitigate attendance drops. Good weather days are taken into consideration. Pent-up demand 

over winter months can lead to explosive attendances on spring season weekends with good 

weather. To enhance visitor experience, zoo staffs can prepare to monitor vending stocks, 

custodial staffing, volunteer guides, and appropriate entrance booths to limit lines at zoological 

park services. 

Future research and more complete visitor and climate data are needed to further unify 

the results and conclusions of this research effort. Results from this study begin to explain the 

multi-faceted interrelationships between weather and tourist decisions. Conclusions can also be 

applied outside the zoo industry. Pursuit of this research can increase understanding of 
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environmentally induced responses exhibited by consumers in the tourism and recreation 

industry. 
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