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ABSTRACT 

Sybil A. Yeboah: Do CD40L and CD40 contribute to Sickle Cell Anemia? 

(Under the direction of Leslie V. Parise, PhD) 

 

 

CD40 ligand (CD40L) is an important inflammatory mediator upregulated in inflammatory 

conditions such as atherosclerosis and sickle cell anemia (SCA).  CD40L is expressed on 

platelets, B cells and epithelial cells, with platelets being its main source.  Interaction with its 

receptor, CD40, has been shown to upregulate adhesion molecule expression, stimulate 

release of inflammatory molecules and initiate coagulation.  These manifestations are also 

observed in SCA.  Previously, our lab reported that the concentration of soluble CD40L 

ligand in sickle cell patient plasma is 30-fold higher than plasma of normal individuals.  

Based on these observations, we hypothesize that CD40L and CD40 contribute to SCA by 

increasing inflammation and blood cell adhesion to the endothelium.  To test this hypothesis, 

we will block the CD40L:CD40 interaction a mouse model of SCA using an anti-CD40L 

antibody and analyze the effects on lung, liver, spleen and kidney pathology.  Furthermore, 

we will also determine whether this blockade decreases expression of inflammatory 

mediators such as IL 8 and CD40L.  These studies will help to further understand the role of 

the CD40L:CD40 interaction in SCA, and may eventually help to enhance the overall health 

of SCA individuals. 
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CHAPTER I 

HYPOTHESIS AND SPECIFIC AIMS 

 

Sickle cell anemia (SCA) is a genetic disease that mainly affects people of African decent. It 

is caused by a point mutation in the sixth codon of beta globin, where glutamic acid is 

replaced with valine. This mutation causes polymerization of hemoglobin in red blood cells, 

causing them to become sickle shaped. SCA patients suffer from anemia and chronic 

inflammation. They normally have high leukocyte counts, indicative of inflammation, and 

mostly have activated platelets that express molecules, which initiate procoagulant activity in 

the disease. CD40L, a protein found in abundance in the plasma of SCA individuals, is a 

transmembrane protein expressed in B cells, dendritic cells, monocytes, thymic epithelial 

cells and platelets. Its receptor, CD40, is an integral membrane protein, and a member of the 

tumor necrosis factor receptor (TNFR) family. CD40 is expressed as a homotrimer on B 

cells, monocytes/macrophages, dendritic cells, platelets and epithelial cells. The interaction 

of CD40L with its receptor CD40 is a major factor in inflammatory conditions in 

atherosclerosis, acute coronary syndrome (ACS), lymphocytic leukemia and diabetes. 

Activated platelets are the main source of CD40L. CD40L is either expressed on the platelet 

surface or released as a soluble form (sCD40L) in plasma. CD40L then interacts with CD40 

to initiate immune and inflammatory responses. These responses include an increase in 

leukocyte proliferation, which correlates with inflammation, and an increase in adhesion 

molecules, which contributes to endothelial adhesiveness and plaque formation in diseases 
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such as atherosclerosis. Recent studies have shown that CD40L is ~30 fold higher in plasma 

concentration of patients with SCA than in unaffected individuals. Correspondingly, CD40L 

is significantly depleted from sickle cell platelets SCA patients suffer from endothelial and 

blood cells adhesion to the endothelium, which causes blood vessel blockage and pain crises. 

They also suffer from chronic inflammation, which is a hallmark of the SCA disease. Since 

the clinical manifestations of SCA are believed to correspond with the outcome of the 

CD40L:CD40 interaction in inflammatory diseases like atherosclerosis, I hypothesize that 

CD40L and CD40 contribute to the clinical manifestations of SCA. Preliminary studies 

from our lab using a mouse model of SCA, demonstrated that depletion of CD40L decreased 

liver, lung, spleen and kidney pathology in SCA. Since this interesting observation was 

performed only once, my goal is to confirm these results and to elucidate the pathologic role 

of CD40L in SCA.  

 

Specific Aim 1  

To determine whether blocking CD40L alters the pathologic features of SCA in mice.  

In order to generate enough SCA for experimental purposes, I will perform fetal liver 

transplants from Berkeley SCA mice into lethally irradiated wild type mice.  These SCA-

generated mice will express endogenous tissue CD40L and exogenous CD40L in their blood 

cells from the fetal liver transplant. These transplanted SCA mice will be treated with either a 

control or anti-CD40L antibody.  Organ damage (lung, kidney and liver) and hematological 

parameters (red blood cell, reticulocyte, leukocyte count, etc) will be assessed to determine 

whether CD40L affects SCA pathology. When mice treated with anti CD40L antibody are 

compared to mice treated with a control antibody, I expect to see decreased spleen size, 
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decreased lung, kidney and liver pathology and lower leukocyte count, all of which will be 

indicative of decreased inflammation in these mice.  Furthermore, I expect a decrease in 

inflammatory molecules such as CD40L, IL-1, and IL-8. 

 

Specific Aim 2 

To determine whether CD40 expressed in tissue or blood cells contributes to SCA 

pathology. 

The role of the CD40L - CD40 receptor interaction in SCA will be assessed in two main 

parts: 

A.  To determine whether blood cell CD40 or tissue CD40 contributes to SCA pathology, 

SCA fetal liver cells from SCA Berkley mice will be transplanted into lethally irradiated 

CD40 knock-out mice. These mice will lack endogenous CD40 in their tissues but will 

express CD40 on their blood cells from the transplantation. As a control, SCA fetal liver cells 

will be transplanted into wild type mice. Organ damage and hematologic parameters will be 

assessed for degree of SCA pathology as described in Aim 1. If SCA pathology remains the 

same in SCA-transplanted CD40 knock-out mice as compared to SCA-transplanted control 

mice, then I will conclude that CD40 in the tissues does not contribute to SCA pathology.  

However, if SCA pathology is reduced, I expect to see decreased spleen size, decreased lung, 

kidney and liver pathology, lower leukocyte and reticulocyte counts in our hematologic 

parameters and decreased levels of inflammatory molecules. Therefore, I will conclude that 

expression of CD40 in the tissues contribute to SCA pathology. This possibility will be 

further tested in the second part of my aim. 
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B.  To determine whether CD40 expressed on the introduced blood cells contribute to SCA 

pathology, SCA fetal liver cells will be transplanted into CD40 knockout mice, followed by 

treatment with either an anti-CD40 antibody or a control antibody.  These mice will lack 

endogenous CD40 in their tissues but have CD40 in their blood cells from the 

transplantation. As described above, organ damage and hematologic parameters will also be 

assessed. If SCA pathology in SCA-transplanted mice treated with an anti-CD40 antibody is 

similar to mice treated with a control antibody, then I will conclude that CD40 from the 

blood cells does not contribute to SCA pathology.  However, if the pathology is reduced in 

the anti-CD40-treated mice, I can conclude that CD40 from the blood cells contributes to 

SCA pathology. 

These two experiments will help me determine which source of CD40 – blood cells or 

tissues, contributes to SCA pathology.  

 

Background and significance 

Sickle cell anemia, the first known genetic disorder to be discovered on a molecular level, 

was identified in a Ghanaian family in 1670(1, 2). It is caused by a point mutation in codon 

six of the beta hemoglobin gene of red blood cells, where glutamic acid is replaced with 

valine (fig.1) (3). Low oxygen tension causes the hemoglobin to polymerize, causing the red 

cell to become sickle shaped (fig.2), more rigid and more likely to adhere to the blood vessel 

wall (4, 5). Hemoglobin  

  

Figure 1 A point mutation at 

position six of beta globin gene 
Sickle Cell Anemia is a result of 

polymerization of the hemoglobin in 

red cells due to this mutation.  
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is comprised of 2 alpha and 2 beta globin chains. Because sickle cell anemia is a recessive 

trait, an individual will have to inherit a sickle beta globin gene from each parent to get the 

disease (31). SCA affects 72,000 Americans (30). One out of every 600 African American is 

affected by sickle cell anemia (30). Sickle red blood cells are abnormally sticky and adhere to 

blood vessel walls resulting in the obstruction of blood flow leading to poor perfusion and 

tissue damage (fig.4), (6). As a result, sickle cell patients suffer from vaso-occlusion; they 

experience periodic, excruciating pain crises that are caused by obstruction of blood flow to 

various tissues (6). Other clinical characteristics are commonly found in sickle cell patients 

are anemia or low red cell count, lung and heart injury, and spleenic sequestration (7).  

  

Another major manifestation of SCA is chronic inflammation (8). Previous studies have 

shown that leukocytes are elevated in SCA and may contribute to the inflammatory state of 

Figure 3 Blood cells adhesion to 

the vasculature 

Sickle red cells become more 

adhesive and stick to blood vessels 

to obstruct blood flow (Figure from 

ref 37). 

Figure 2 Normal red cell (disc 

shaped) and sickle shaped red cell 
Occurs as a result of polymerization of 

the hemoglobin on red cells (Copyright 

© 2005 Nucleus Communications, Inc. 

All rights reserved. 

www.nucleusinc.com) 
 

http://www.nucleusinc.com/
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this disease (8). Neutrophils, monocytes and platelets also contribute to inflammation; since 

these cells are activated in SCA, they may also play a role in SCA inflammation (8). In 

addition to leukocytes, neutrophils, monocytes, platelets and inflammatory mediators such as 

C-reactive protein, TNF- α, IL-1 and CD40L are also elevated in SCA (9-13). Studies have 

also shown that CD40L is also elevated in the plasma of individuals suffering from systemic 

lupus erythematosus, rheumatoid arthritis and sickle cell anemia (17, 34, 35). Previous data 

published by our lab indicates that the average concentration of soluble CD40L (sCD40L) in 

SCA plasma is 30-fold higher than in normal plasma, and that platelets, which are the major 

storage site of CD40L, contain less than half the CD40L found in platelets from normal 

individuals (Fig. 4) (14).   Since CD40L appears to play an important role in many 

inflammatory-related diseases, my long-term goal is to elucidate the pathologic role of 

CD40L in SCA. 

 

CD40L 

CD40L is a 39kDa type II transmembrane protein, and a member of the tumor necrosis factor 

(TNF) superfamily (15). CD40L exists as a homotrimer in two forms – membrane bound and 

soluble. The soluble form is cleaved into plasma as a result of intercellular enzymatic activity 

(16). Both forms may perform the same functions (16).  The membrane bound form is 

expressed on the surface of activated platelets, leukocyte subsets, smooth muscle cells and 

epithelial cells (17-20). CD40L initiates many immune and pro-inflammatory responses. It is 

upregulated in several diseases such as rheumatoid arthritis, lung inflammation, lymphocytic 

leukemia and atherosclerosis and is believed to contribute to the symptoms and progression 

of these diseases (14, 21-22). CD40L binds to its receptor CD40 to activate it. Once activated 
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CD40 gets internalized into cells, which then initiates cascades that release inflammatory and 

adhesion molecules such as vascular adhesion molecules (VCAM) and intercellular adhesion  
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molecules (ICAM) (fig.5) (32). Platelets are the main storage sites for CD40L (23) and 

release molecules CD40L upon activation. As a result of the role of CD40L in inflammatory 

conditions, we hypothesize that CD40L may perform the following functions in SCA:  

 CD40L may elevate leukocyte counts in SCA patients (6): CD40L is known to be 

involved in B cell proliferation and differentiation (fig. 6, 7) (21, 23). This activity 

increases leukocyte counts (18). Elevated leukocytes are indicative of inflammation. 

Figure 4 Soluble CD40L is elevated in SCD plasma. Quantitative ELISA results comparing 

sCD40L in HbAA (n=16) plasma to HbSS anemia (n=10; P=0.0002), and to total HbSS anemia 

(n=45; P�0.0001). HbSS crisis plasma sCD40L content (n=10) was compared with HbSS steady 

state (n=37; P=0.065) (Figure from ref 14). 
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Figure 5. Downstream signaling of CD40L:CD40 interaction CD40L binds to CD40. Activated CD40 

recruits adaptor molecules, the TRAFs. CD40 has 2 TRAF binding domains: 1 for TRAF2, 3, and 5 (a 

binding domain that can also bind TRAF1 after TRAF2/3/5 have bound), and 1 for TRAF6. After binding 

of TRAF1, 2, 3, 5, or 6, further downstream signaling is elicited. Signaling translocates nuclear factor 

kappa B (NFκB) into the nucleus and this results in the expression of pathways of inflammation, 

thrombosis proteolysis, etc (figure adapted from ref 32).  
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CD40L

T cell

B cell

endothelial cell

platelets

ICAMVCAMFVII

FVIIa

 

CD40Lmay promote cell adhesion and procoagulant activity: CD40L activity 

increases secretion of P-selectin, E-selectin VCAM and ICAM, which are all adhesion 

molecules (fig 6) (14). Increased secretion of these adhesion molecules may facilitate 

sickle cells adhesion to the vasculature, which may increase the possibility of vaso-

occlusion in SCA patients. CD40L increases the production of tissue factor (TF) which 

is involved in procoagulant activity, and downregulates thrombomodulin, a protein that 

mediates anticoagulation expression (27-29). This process may increase thromboembolic 

events in SCA (fig. 6). 

 CD40L may promote inflammation in SCA:  The CD40L:CD40 interaction is 

known to initiate cascades that increase plasma levels of cytokines - IL-1, IL-6, IL-8, 

Figure 6 Functions of CD40L.CD40L induces B cell proliferation and activation, increases 

endothelial cell adhesion molecule expression and promotes coagulation (Lee, S. 2006). 
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and TNF (24 – 28, 32). These cytokines that are known to increase adhesion in the 

vasculature therefore may contribute the pathology of SCA (24-28).  

HbS
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exposure and 
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3

Potential Model for Chronic 

Inflammation in SCD

  

 

 

 

Murine studies using an anti-CD40L antibody to block CD40L activity in low density 

lipoprotein receptors (LDLR) knockout mice prevented progression of antheroslerotic 

plaques (33), suggesting that CD40L plays a significant role in the progression of 

cardiovascular disease. The vaso-occlusive crises SCA patients suffer from is due to sickle 

red cells adhering to the vascular endothelium (36). CD40L binding to its receptor increases 

the expression of VCAM, ICAM, P-selectin and E-selectin which are adhesion molecules 

that contribute the vaso-occlusion crises in SCA. Since CD40L is elevated in the plasma of 

SCA individuals, using an anti CD40L antibody to block its interaction with its receptor 

Figure 7 Model of Chronic. Chronic inflammation in SCA may be reduced by usinf 

an antibody to block CD40L (lee, S. 2006). 
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CD40 may reduce release of VCAM, ICAM, P-selectin and E-selectin, thereby decreasing 

the occurrence of vaso-occlusion (fig. 7). In addition, proinflammatory cytokines - TNF , 

IL-1 and IL-4 are upregulated in SCA (fig. 7). Since CD40L also increases the release of 

these cytokines, blocking CD40L may decrease cytokine levels in the plasma, thereby 

decreasing the chronic inflammation suffered by these individuals (fig. 7). 

Based on these findings, I hypothesize that CD40L and CD40 may contribute to the 

manifestations of SCA.  This hypothesis in will be addressed in the following specific aims:  

specific aim 1:  To determine whether blocking of CD40L alters the pathologic features 

of SCA in mice and specific aim 2:  To determine whether CD40 expressed in tissues or 

blood cells contributes to SCA pathology. 

To test Aim 1, I will use Berkeley mice. These are genetically engineered mice that have 

human alpha and beta globin genes, with a mutation in the beta globin gene (39). Their sickle 

red blood cells are irreversible (39). They exhibit anemia and multi-organ pathologies, which 

are similar to the clinical manifestations of SCA individuals (38, 39). I will transplant 

Berkeley SCA fetal liver cells into normal irradiated mice. 

For Aim 2, I will use CD40 knockout mice (40). These mice do not express CD40 and 

therefore will allow me to test the hypothesis of whether tissue or blood cell CD40 

contributes to SCA pathology. 

 

 

 

 

 



 

 

CHAPTER II 

PRELIMINARY STUDIES AND RESEARCH DESIGN AND METHODS 

 

A preliminary study using a monoclonal antibody (MR1) to block CD40L was performed by 

a former graduate student in our lab. Her results suggested that treating sickle cell mice with 

an anti-CD40L antibody improved the overall health of the SCA mice.   Interestingly, liver 

and kidney pathology was significantly reduced, as well as spleen size (14). Additional 

preliminary data showed that SCA bone marrow cells transplanted into CD40 knockout mice, 

followed by treatment with an anti-CD40 antibody, decreased lung pathology when 

compared to mice treated with a control antibody. These results suggest that CD40 expressed 

on blood cells may contribute to SCA pathology. Since these experiments were performed 

once, my goal is to ensure these results are reproducible, and to further determine the 

contributing source of CD40 to SCA pathology. In this experiment, I will examine the 

pathology of the lung, liver, spleen and kidney, specifically. 

 To prepare for this project, I have learned mouse handling, breeding and transplantation 

technologies. In addition, I have performed fetal liver transplants to produce sickle mice, 

have treated mice with an anti platelet aggregation drug, and performed surgery on the mice 

to obtain their organs for viewing. Practicing these experiments has given me hands-on 

experience on how to handle the mice for my study.  Currently I am in the process of 

purifying the (MR1) anti CD40L antibody which will be needed for my experiments.
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Research Design and Methods 

Specific Aim 1: To determine whether blocking of CD40L alters the pathologic features 

of SCA in mice.  

Rationale: The interaction of CD40L with CD40 contributes to atherosclerosis, chronic 

lymphocytic leukemia and other inflammatory diseases (21, 22). It also promotes 

prothrombotic and procoagulant activity. Since our preliminary data demonstrated that 

sCD40L is increased in SCA plasma, it may contribute to these characteristics in SCA.  

Therefore, our goal is to determine if CD40L contributes to the pathology of the lung, kidney 

and liver of SCA individuals. 

Experimental design: The Berkeley mouse model of SCA will be used in my study. 

Because of the decreased survival of these mice, I will generate enough mice for the 

experiments by irradiating wild type (WT) mice, then transplanting fetal liver cells with 

hematopoietic potential from SCA mice into WT mice. The resulting mice with acquired 

SCA will be treated with control or anti-CD40L antibody (MR1), and analyzed as described 

below. Fetal liver transplanted mice will be treated with an anti-CD40L antibody or an 

isotype-matched control IgG, 8-10 weeks after the FLT.  Histologic preparations of 

perfusion-fixed lung tissue will be prepared with Hematoxylin & Eosin (H&E), which will 

help to detect inflammation by examining the morphology of the tissues.  Gomori iron and 

the fibrin-indicator phosphotungstic acid-hematoxylin (PTAH) stains will help detect iron 

and fibrin deposits respectively in the organ tissues.  I will compare the degree of 

inflammation in lungs, liver and kidney of the anti-CD40L treated mice with the control IgG-

treated mice to assess if SCA pathology is improved. 
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Fetal liver transplantation: Eight-week old wild-type C57BL/6 mice will be exposed to two 

doses of total body irradiation, 700 Rad, and after a 4 hour period, exposed to 500 Rad, in a 

cesium-137 irradiator.  Two – three million
 
fetal liver cells from SCA mice will be retro-

orbitally injected into these mice. We will then perform hemoglobin electrophoresis and PCR 

analysis 8 - 10 weeks following the transplant, to confirm if these mice engrafted the SCA 

cells.   

Anti-CD40L treatment: Transplanted mice with acquired SCA after 8 – 10 weeks will be 

treated with monoclonal antibody MR1, an Armenian hamster antibody known to inhibit 

CD40L in vivo (41).  The mice will be weighed, and injected intraperitoneally with 250 g 

of MR1 twice per week for 6 weeks (28).  A non-specific, isotype-matched control antibody 

will also be administered to some of the SCA mice.  After treatment, we will weigh the mice 

again, to determine if they gained any weight during the treatment process, then we will draw 

blood by cardiac puncture, and perform CD40L ELISA to analyze CD40L levels (14). 

Organ histology: Mice will be sacrificed by CO2 inhalation and organs preserved by infusing 

4% paraformaldehyde followed by 70% ethanol.  Lung, liver, spleen and kidney will be 

embedded, sectioned, and stained with hematoxylin & eosin (H&E), gomori iron and the 

fibrin-indicator phosphotungstic acid-hematoxylin (PTAH) stains. SCA treated and control 

organ pathology will be compared.  

Measurement of inflammatory markers:  

We will use Luminex technology to measure plasma levels of inflammatory cytokines 

including CD40L (42). Any changes measured by Luminex technology will be verified by 

other methods such as ELISA (14).   
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Blood cell count: We will compare red blood cell and leukocytes of sickle cell mice treated 

with anti-CD40L versus control antibody to determine whether the anti CD40L antibody 

treatment reduced the anemia and improved the inflammatory state.  

 

Expected results: 

If treatment with the anti-CD40L antibody works as proposed, then I will expect to see a 

tremendous decrease in the lung, kidney and liver damage when compared to the control IgG 

treated mice. Spleen size for the CD40L treated mice is expected to be smaller than the 

control because the spleen in the CD40L antibody-treated mice will not work as hard in 

clearing sickle red cells, as compared to the IgG treated mice. I will also expect to see a 

decrease in inflammation markers such as CD40L in the plasma. These results should 

correlate with a decrease in leukocyte counts, since reduced leukocyte counts indicates 

reduced inflammation. Red blood cells are sickled and continuously being depleted in SCA, 

so new red cells are made at a higher rate than normal in SCA individuals. As a result, 

reticulocyte counts are normally high in SCA individuals. I therefore expect to see decreased 

reticulocyte counts in the CD40L antibody-treated mice, when compared to the untreated 

since, the treated mice will have less red cells being cleared from their system.  

Pitfalls 

FLT mice might not fully acquire SCA, but the hemoglobin electrophoresis might show that 

these mice acquired SCA. If this happens, the organ histology will appear normal, showing 

that the organs of these mice recovered from SCA as a result from treatment, although this 

might not be the case. To avoid this, we will have to wait more than 8 -10 weeks after FLT, 

just to make sure that these mice become fully engrafted with SCA cells. Furthermore, there 
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might be no rescue with the anti-CD40L antibody, because there might be other ligands 

besides CD40L that interact with CD40. 

 

Summary  

These experiments will tell us whether CD40L contributes to the pathology of these organs in 

SCA. As a result, we will help determine if CD40L mediates inflammation and organ 

damage in SCA patients. This knowledge may result in the development of drugs that could 

decrease the painful crises and symptoms of SCA.  

 

 

 

 

 



 

 

 

 

 

CHAPTER III 

SPECIFIC AIM 2: TO DETERMINE WHETHER CD40 EXPRESSED IN TISSUES OR 

BLOOD CELLS CONTRIBUTES TO SCA PATHOLOGY. 

 

 

Rationale: CD40 is a major receptor for CD40L. It is expressed as a homotrimer on platelets 

and epithelial cells. My objective is to inject SCA fetal liver cells into CD40 knockout mice 

to determine whether CD40 from tissues or blood cells promotes SCA pathology. 

Experimental design: For the first part of this experiment we will use the procedure in Aim 

1 to generate SCA mice by transplanting SCA fetal liver cells into irradiated CD40 knock-out 

or wild type mice. These mice will lack endogenous CD40 in their tissues but will express 

CD40 on their blood cells from the transplantation. Eight weeks following transplant, we will 

measure inflammatory and hematologic parameters as described in Aim 1, and compare 

organ histology.  For the second part, we will use the same procedure to generate SCA mice 

by transplanting SCA fetal liver cells into CD40 knockout mice, followed by treating the 

mice with an anti-CD40 antibody or control antibody. Note that these mice will have CD40 

from only the sickle blood cells that were transplanted. Both experiments will help determine 

whether CD40 from the tissues or the blood cells contribute to SCA pathology. 

Fetal Liver Transplantation: We will generate SCA mice as in Aim 1. 

CD40 antibody treatment: SCA transplanted mice will undergo treatment with an anti-CD40 

function blocking antibody, HM40-3, or its control IgG. Mice will be treated with 250 g of 
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HM40-3 or control antibody twice a week for 6 weeks.  SCA pathology will be analyzed as 

in the CD40L experiment. 

Organ histology: Mice will be sacrificed by CO2  inhalation and organs removed for 

perfusion with 4% paraformaldehyde followed by 70% ethanol.  Lung, liver, and kidney will 

be embedded, sectioned, and stained with hematoxylin & eosin (H&E), gomori iron and the 

fibrin-indicator phosphotungstic acid-hematoxylin (PTAH) stains to examine degree of 

inflammation, and iron and fibrin deposits respectively. 

Expected results 

In the first experiment, I will transplant SCA fetal liver cells into the CD40 knockout mice, 

and my control will be SCA fetal liver cells transplanted into wildtype mice. If SCA 

pathology in SCA-transplanted CD40 knockout mice is similar to control SCA-transplanted 

mice, then I will conclude that CD40 in the tissues does not contribute to SCA pathology.  

However, if SCA pathology is reduced, I expect to see decreased spleen size, decreased lung, 

kidney and liver pathology, lower leukocyte and reticulocyte counts and a decrease in 

inflammatory molecules. My conclusion will be that CD40 in the tissues contribute to SCA 

pathology.  

In the second experiment, SCA fetal liver cells were transplanted into CD40 knockout mice. 

After engraftment, these animals will be treated with an anti-CD40 antibody or control IgG. 

If SCA pathology is the same as compared to my control, then I will conclude that CD40 

from the blood cells does not contribute to SCA pathology. If the pathology is reduced, then 

CD40 from the blood cells contributes to SCA pathology.  To further investigate the major 

source of CD40 in SCA pathology, we will perform the same experiment as in Aim 2. We 

will treat SCA transplanted mice on a wild type background with HM40-3 or a control 
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antibody. Organs from this experiment will be compared to organs from treatment with anti 

CD40 antibody on CD40knockout background SCA mice. The goal is to verify which source 

of CD40 – tissues or blood cells – contributes most to SCA pathology.  

 

Pitfalls 

Mice might not fully engraft SCA from the fetal liver transplantation. As a result, we may 

have to wait for a longer period than 8 - 10 weeks after transplantation (i.e. 12-14 weeks), to 

make sure we have full SCA engraftment.  

  

Conclusion 

These experiments will help determine whether CD40 increases SCA pathology. We will 

also be able to identify which source of CD40 contributes most to the SCA disease. These 

results will take us closer to finding drugs that can improve the health of SCA individuals.
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