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Abstract

FENG SHI: Modeling Networks and Dynamics in Complex Systems: from
Nano-Composites to Opinion Formation

(Under the direction of M. Gregory Forest and Peter J. Mucha)

Complex networks are ubiquitous in systems of physical, biological, social or tech-

nological origin. Components in those systems range from as large as cities in power

grids, to as small as molecules in metabolic networks. Since the dawn of network science,

significant attention has focused on the implications of dynamics in establishing network

structure and the impact of structural properties on dynamics on those networks. The

first part of the thesis follows this direction, studying the network formed by conductive

nanorods in nano-materials, and focuses on the electrical response of the composite to the

structure change of the network. New scaling laws for the shear-induced anisotropic per-

colation are introduced and a robust exponential tail of the current distribution across

the network is identified. These results are relevant especially to “active” composite

materials where materials are exposed to mechanical loading and strain deformations.

However, in many real-world networks the evolution of the network topology is tied to

the states of the vertices and vice versa. Networks that exhibit such a feedback are called

adaptive or coevolutionary networks. The second part of the thesis examines two closely

related variants of a simple, abstract model for coevolution of a network and the opinions

of its members. As a representative model for adaptive networks, it displays the feature

of self-organization of the system into a stable configuration due to the interplay be-

tween the network topology and the dynamics on the network. This simple model yields

interesting dynamics and the slight change in the rewiring strategy results in qualita-

tively different behaviors of the system. In conclusion, the dissertation aims to develop

ii



new network models and tools which enable insights into the structure and dynamics of

various systems, and seeks to advance network algorithms which provide approaches to

coherently articulated questions in real-world complex systems such as social networks

and composite materials.
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CHAPTER 1

Introduction

1.1. Background

Complex networks are ubiquitous in systems of physical, biological, social or techno-

logical origin. Components in those systems range from as large as cities in power grids,

to as small as molecules in metabolic networks. The complexity is embedded in both the

heterogeneity across components and the complex (e.g., nonlinear or stochastic) interac-

tions between them. The interdisciplinary study of such diverse systems using network

tools and theories has exploded during the past two decades [3–12]. In Epidemiology, the

spread of a disease is usually modeled as a contact process on networks [7, 13, 14], and

clinical immunization strategies are obtained through analysis on corresponding network

models [6, 15, 16]. In Biology, the neural system can be modeled as a network consisting

of neurons connecting through neural fibers [4], and the main structural supports in cells

are cytoskeletal polymer networks [3, 9, 17]. Perhaps the most well-known network is the

Internet which is a huge network of computers and routers, and there is still controversy

about whether it being a scale-free network [5, 18]. Facebook and Twitter are some of

the myriad types of networks which are intimately related to our daily life. As we enjoy

the convenience brought by fast information diffusion over those networks, we also suffer

from the spread of undesirable information such as spam or even anti-society messages

which lead to riots such as the Arab Spring in 2011. Understanding the dynamics of such

networks is of great importance in practice.

Although the study of networks has a long history from graph theory (since 300 years

ago) to sociology (e.g., Granovetter [19]), the emergence of network science was not seen

until the first decade of the 21st century. The two seminal papers by Watts and Strogatz



[4] and Barabási and Albert [5] marked the beginning of the modern chapter of network

science. It was discovered that regardless of their forms, sizes, natures, and origins, most

real networks that have been observed in nature and science are driven by a common

set of fundamental laws and organizing rules, which has drawn a wide class of audience

to this interdisciplinary field. The interdisciplinary nature is the first feature of network

science. It utilizes the conceptual framework of graph theory and probability, the tools

and principles of statistical physics, the computing algorithms from computer science, and

tools from statistics and other subjects to help us understand various systems in nature,

society, and technology. This feature will be amplified in this thesis on the study of nano-

composites and social influences. Numerical simulations reveal interesting behaviors of

the real complex systems, and abstract mathematical models such as lattice models from

graph theory provide insights into those systems and help us better understand the

fundamental structures. Another distinction of network science is its data-driven nature.

The boom of huge datasets during the past two decades, such as the map of Internet [20],

protein-protein interaction networks in human cells [21], and the human connectome [22],

spurs the development of network science. This thesis focuses on the modeling aspect of

networks, yet the models developed can be adapted to and compared with real data in

future studies.

Since the dawn of network science, significant attention has focused on the implica-

tions of dynamics in establishing network structure, including preferential attachment,

rewiring, and other mechanisms [8, 23–26]. At the same time, the impact of structural

properties on dynamics on those networks has been studied intensively [27]. The first part

of the thesis follows this direction, studying the network formed by conductive nanorods

in nano-materials, and focuses on the electrical response of the composite to the structure

change of the network. However, in many real-world networks the evolution of the net-

work topology is tied to the states of the vertices and vice versa. Networks that exhibit

such a feedback are called adaptive or coevolutionary networks [28, 29]. For instance, the

status of a server changes according to the requests from established connections, and
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when its status reaches certain level, the server may close certain connections and result

in a cascade of changes in the topology of the communication network; in opinion forma-

tion, a group of different believers might split up or become dominated by one opinion

over time. Compared to the rich literature on dynamical processes on static networks,

there is relatively limited study on coevolutionary networks; and simple scaling behaviors

and mean field theories which succeeded previously may fail when the system dynamics

and the network topology are coupled together. The second part of the thesis examines

two closely related variants of a simple, abstract model for coevolution of a network and

the opinions of its members.

So motivated, the dissertation focuses on the development of new network models

and tools which enable insights into the structure and dynamics of various systems, and

seeks to advance network algorithms which provide approaches to coherently articulated

questions in real-world complex systems such as social networks and composite materials.

Specifically, this thesis presents studies on current flow in random materials such as nano-

composites and opinion formation over social networks.

1.2. Overview of the Dissertation

The dissertation mainly consists of two parts (four chapters), which are based on

the four papers from my interdisciplinary collaborations [30–33]. The first part (chapter

2 and 3) studies the electrical responses of nanorod composites to the resistor network

formed by the rod phase. It aims to understand how the the network topology shapes the

material properties. The work in both chapters has been submitted [30, 31]. The second

part (chapter 4 and 5) studies the ‘evolving voter model’, an abstract mathematical model

originated from opinion formation. As a representative model for adaptive networks, it

displays the feature of self-organization of the system into a stable configuration due to

the interplay between the network topology and the dynamics on the network. The work

in chapter 4 is published in [32] and the work in chapter 5 is submitted [33].
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1.2.1. Brownian Nanorod Dispersion under Shear. Different from dynamics on

social networks, current flow in physical transport networks such as nano-composites

obey physical conservation laws such as the set of Kirchoff’s laws. The randomness of

the material comes from shear-induced anisotropy of the nanorod orientation distribution

due to processing history. The goal of this collaboration (including Dr. Zheng from Kent

State University, Dr. Zhou from Old Dominion University, Simi Wang and my advisors

Dr. Forest and Dr. Mucha) is to develop understandings of multi-scale (local and bulk)

electrical properties respective of the statistical mechanics and anisotropy of the material.

Our study of the physical nanorod system starts with the random resistor network

which is a random lattice in which each edge is present with probability p and takes

unit conductance if present. By large scale simulations and finite size scaling analysis we

identify an universal exponential distribution of large currents [30]. This work is included

in chapter 2.

Our numerical algorithm for a shear nanorod dispersion consists of three steps. The

first step is to compute the distribution of the rod orientation by numerically solving the

Doi-Hess-Smoluchowski equation of rigid-rod liquid crystalline polymer kinetic theory.

The second step uses the resulting distribution to populate Monte Carlo samples of 3D

sheared nanorod dispersions. In the third step, every ensemble of nanorods is mapped to

a resistor network which then can be simplified using network tools. Finally the Kirchoff’s

equation is solved to obtain currents in the network. Using this tool we find new scaling

laws for the shear-induced anisotropic percolation and a robust exponential tail of the

current distribution [31]. This work is included in chapter 3.

1.2.2. Opinion Formation: the Evolving Voter Model. Inspired by Holme and

Newman [34], we (including Dr. Durrett and Dr. Sivakoff from Duke Math, Dr. Gleeson

from Limerick Math, Dr. Lloyd from NCSU Math, Dr. Socolar and Chris Varghese from

Duke Physics, and Dr. Mucha) study a simple yet representative example for coevolu-

tionary networks, the evolving voter model. Although it is called a voter model, we not
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only tend to answer questions in opinion formation, but also target at the development

of fundamental models and theories for adaptive complex systems.

Starting from a random graph with each node assigned randomly an opinion from k

possible opinions, at rate 1 we pick an edge uniformly at random. If the two endpoints

of the edge have different opinions, two events may occur: rewiring and voting. With

probability α the edge breaks up and one node of the two will link to someone else in

the network (rewiring), and with probability 1− α one of the two will adopt the other’s

opinion (voting). The system will finally enter a consensus state in which every pair of

connected nodes has the same opinion.

We have studied the simplest case of this model in [32] in which there are only

two possible opinions and two rewiring strategies. This simple model yields interesting

dynamics and the slight change in the rewiring strategy results in qualitatively different

behaviors of the system. This work is included in chapter 4. In our most recent work

[33] we extend this model to the one with infinitely many opinions. The quasi-stationary

distribution of opinions is found to persist in higher dimensions and there are infinitely

many phase transitions. This work is included in chapter 5.
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CHAPTER 2

Random Resistor Networks

2.1. Introduction

Random resistor networks are intimately related to bond percolation which dates

back to Broadbent and Hammersley [35]. As a well studied subject in percolation theory,

bond percolation was first introduced as a model for diffusion through porous medium,

e.g., water penetrating a porous solid [35]. Different from conventional diffusion, the

medium is highly heterogenous and even random, hence demanding different treatments.

The mathematical representation of such a system is a d-dimensional integer lattice

Zd. Let d(x, y) be the graph distance between two lattice points x = (x1, ..., xd) and

y = (y1, ..., yd), i.e., d(x, y) =
∑d

i=1 |yi − xi|. The lattice Zd can be turned into a graph

by connecting all pairs of points x and y if d(x, y) = 1. For bond percolation, each edge

in the graph is open for “fluid” to pass with probability p, and closed with probability

1 − p. The open edges are called bonds by convention and hence this process is called

bond percolation.

A variation of bond percolation is called site percolation in which each lattice point

is open (for fluid to pass) with probability p and closed with probability 1 − p, and

only edges between two open neighboring lattice points are present. This version is

usually used to model the transmission of “diseases”. For example, in a hypothetical

forest where trees are grown on a square lattice, a healthy tree may be infected by a

neighboring blighted tree with probability p. Besides, there is a large array of variations

such as the combination of the above two processes (site-bond percolation), and same

processes as the above but on different lattices.



Despite so many types of percolation, the first question studied in percolation theory

is that when there will be a percolating path (i.e., a path of open edges and/or nodes)

connecting the two opposite ends of a finite lattice. In other words, for a given p, what

is the probability of having a percolating path from one side of the lattice to the other?

This seemingly easy question is actually hard, and things become simpler on an infinite

lattice. For an infinite system there is a critical p, called percolation threshold pc. Below

pc all the clusters (of nodes connected by open edges) are small and the probability that

an infinite cluster exists is zero; above pc an infinite cluster emerges and the probability

of having an infinite cluster is one. That is to say, there is always an infinitely long

percolating path above pc. The critical point pc is a singularity and theoretical results

at pc is limited to certain special lattices. Even there is not a theoretical prediction for

the value of pc in general. (It took 20 years to prove that pc = 1/2 for bond percolation

on the 2D quare lattice Z2 [36].) For most lattices the percolation thresholds cannot be

calculated analytically, and a significant amount of work is devoted to estimating them

numerically [37].

Besides percolation thresholds, percolation theory has studied various topological

properties of the models, e.g., distribution of cluster sizes, correlation length, etc. Re-

search on dynamical properties (i.e., properties induced by dynamical processes) such as

electrical or thermal conductivity is more recent but growing rapidly because of applica-

tions in a broad range of topics in materials science, epidemiology, geology, etc. The area

is too broad for this thesis to be exhaustive; the present work contributes to the under-

standing of current distributions in random resistor networks, which lays the foundation

for further study on nanorod dispersions. Previous results related to this work will be

briefly recalled when necessary and interested readers can refer to [36, 38–40].

Motivated by questions about macroscopic electrical properties in materials science,

this chapter revisits the classical problem of bond percolation [38, 39] in a three-dimensional

L×L×L cubic lattice and the scaling of the currents conducting through the percolating

bonds. In the seminal work of de Arcangelis et al. [41, 42], a hierarchical lattice model
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is given for the percolating backbone of the network, which yields a log-normal current

distribution in the network; this model was later generalized by Lin et al. [43]. These

models successfully capture the multifractal behavior of the current distribution at perco-

lation threshold (e.g., an infinite hierarchy of exponents in the moments). However, they

fail to predict the power law distribution of small currents (Straley [44] and Duering et

al. [45, 46]), and they do not address additional features of the current distribution that

are most relevant to materials applications (specifically, the large current distribution

properties).

Current distributions and their scaling behavior have fundamental importance in

materials science. Low moments of the current distribution dictate physically measurable

properties, e.g., the second moment describes the bulk conductance [41, 47]. Therefore,

measurable macroscopic scaling behavior at or above percolation threshold (cf. [48]) is

inherited from the current distribution. Another illustration is in the study of breakdown

of random media [49–52]. This critical network property motivated studies on the size and

location of the largest current in the network [53–56]. Li and Duxbury [54] showed that

the logarithmic scaling of the largest current with respect to the system size is consistent

with an exponential tail of the current distribution. Chan et al. [53] showed that large

currents in a “funnel-shaped” region had an exponential distribution. Note that the

maximum current does not fully characterize the large current tail of the distribution,

which dominates material properties.

This chapter analyzes the entire current distribution, reproducing the power-law dis-

tributions of small currents [44–46] while revealing the dominating extent of an exponen-

tial large current tail. It then takes moments to show the robustness of the exponential

large current tail above criticality which is independent of the bond density given a unit

uniform electric field in the system. Lastly it shows how the exponential current tail

controls macroscopic properties such as the scaling behavior of the largest current and

the power-law scaling of the bulk conductivity.
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2.2. Model and Method

A random resistor network is an L × L × L cubic integer lattice in which each edge

of the lattice takes conductance 1 with probability p (it is traditional to call such a

conducting edge a bond and p is the bond density), and conductance 0 with probability

1− p. The goal is to understand the relationship between the electrical and topological

properties of the resulting bond percolation network. In order to model an externally-

driven bulk electrical response, two perfectly conducting L× L plates are considered to

be present at opposite ends of the cube, representing the sink and source of current (in

response to either an external voltage drop or current source).

The bond percolation threshold pc for an infinite 3D cubic lattice is pc
.
= 0.2488

[57]. For p < pc, all clusters are small and almost surely no percolating cluster forms

in an infinite network. Above pc an infinite cluster emerges with probability one that

spans the network, i.e., the network has a percolating cluster. There is a significant

literature devoted to the scaling behavior of the distribution of cluster sizes. The typical

representation is in terms of a power law with a exponential cutoff [39],

ns ∝ s−τ exp(−|p− pc|1/σs),

where ns is the number of clusters with s bonds. Nonetheless, there is no known connec-

tion between the cluster distribution scaling and the distribution of currents supported

on the cluster distribution. Indeed, the non-zero values of the current distribution are

associated with the geometric properties of only those clusters that percolate, whereas

all other clusters are lumped together in the zero current value. Clearly, some connec-

tion exists between this cluster size scaling and the small and large tails of the current

distribution, yet this remains an open problem.

With this background, the simulation procedure is now summarized. The physical

distribution of currents is solved by large-scale simulations of the random resistor net-

work. Specifically, for each realized graph of the random resistor network model in which

nodes correspond to the lattice points and edges to the conducting bonds, a breadth-first
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search algorithm [58] identifies the union of percolating clusters that connect the two

plates. The key ingredient is the plate-constrained 2-core — defined here as the con-

nected subgraph containing both boundary plates with degree at least two in the interior

of the subgraph. This plate-constrained 2-core captures all bonds that potentially carry

non-zero current in the posed problem. This pre-processing step provides two significant

advantages. 1. Restriction to the plate-constrained 2-core filters approximately 90% of

the bonds near percolation threshold, therefore reducing the linear system to 10% of its

original size. 2. By a priori elimination of all bonds not in the plate-constrained 2-core,

a vast fraction of exactly zero-current bonds are removed from the numerical simulation

of the linear system, thereby improving numerical precision overall, and in particular

improved resolution of the small current tail. Kirchhoff’s law [59] is then solved on the

plate-constrained 2-cores with a standard linear solver, giving the current on each bond.

A statistical description of the network properties is obtained by averaging over 1000

realizations for each bond density and system size.

2.3. Results and Discussions

2.3.1. Multiscale Current Distributions. Because it is extremely rare that a bond

in the percolating backbone carries exactly zero current, bonds according to zero cur-

rent (within numerical precision) are separated from all the rest, and only the non-zero

currents are analyzed. Let f(i) denote the probability density function (PDF) of the

currents across the population of current-carrying bonds (that is, ignoring zero-current

bonds where present). Let h(x) be the corresponding PDF (again, restricted to non-zero

currents) of the logarithmic current X = ln(I). The two distributions are related by

h(x) = f(ex)ex.

The logarithmic current distribution h(x) and current distribution f(i) near (p =

0.25) and above (p = 0.29) the threshold are shown in Figure 2.1 for a unit voltage

source. (The alternative formulation of a unit current source is considered in 2.3.3.)

First, the logarithmic transformation of current exposes the small current region; the
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Figure 2.1. Distribution h(x) of the logarithmic current (left panel) and
distribution f(i) of the current (right panel) near threshold (p = 0.25) and
above threshold (p = 0.29) in 100×100×100 random resistor networks. The
logarithmic transformation of currents exposes small currents which have
a power law distribution (left panel) while the overall current distribution
looks exponential (right panel).

left panel in Figure 2.1 recapitulates the small currents [44–46]. Second, for relatively

large currents (i.e., to the right of the peak of the h(x) distribution), Figure 2.1 (right) is

clearly suggestive of exponential current distributions. This general shape of the current

distribution persists as bond density p increases above threshold for a “distance” p− pc

to be clarified below relative to persistence of the small current scaling. The implications

are two-fold: an exponential large current tail at percolation that persists for p − pc at

finite non-zero values; a small current tail that disintegrates relatively rapidly above the

critical bond density. Scattering can be observed in the current distribution at p = 0.25

because of finite size effects since the p = 0.25 correlation length [39] is larger than

the system size L = 100. Specifically, near threshold, the correlation length ξ scales as

ξ ∝ (p− pc)
−0.9 [39], a feature that we will incorporate in our study below.

While the small-current behavior is well understood and the maximum current has

been studied extensively, little is known or has been reported about the large current

tail of the distribution — even though the large currents dominate bulk properties. This

is not so surprising in retrospect. The theoretical allure of the physics community has

focused primarily on universality of power law scaling at percolation threshold, which
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is revealed by the small current tail as one approaches criticality from above. On the

other hand, concerns of network failure draw attention to the largest current in the

network. The bridge between these scaling behaviors (i.e., the large current tail), and

the relative robustness of both tails of the distribution above percolation, do not appear

to be addressed in the literature (with the caveat noted earlier of a cut-off function in

analysis of the cluster size distribution).

2.3.2. Finite Size Scaling Analysis. This subsection focuses on the large current tail,

revealing a robust exponential distribution above and close to percolation threshold, yet

persistent farther from threshold than the small current power law scaling. The empirical

densities of the current for a unit voltage source near percolation threshold (p = 0.25)

and above threshold (p = 0.29) for different system sizes are shown in Figure 2.2. Despite

slightly larger noise at bond density p = 0.25, the straight lines at both bond densities

point to exponential tails of the current distributions, and the rate of the exponential

decay increases with the system size L. In order to meaningfully capture an externally-

imposed voltage drop in the thermodynamic limit (L → ∞), and to better understand the

effect of system size on the current distribution, a finite-size scaling analysis is carried out

on the distributions. Let fL(i) be the probability density function (PDF) of the current

at system size L for a unit voltage source; then by properly rescaling fL(i) with L, the

effect of the system size is eliminated:

(2.1) L−ufL(L
−vi) = f∞(i),

where f∞(i) is a function independent of L, and u and v are unknown exponents to be

determined. By tuning u and v, the densities for different system sizes collapse onto a

single curve with u = 1 and v = 1 (see the insets of Figure 2.2). This is the expected

result for a material with bulk conductance: the total resistance of the cube per unit

cross-sectional area increases ∼ L. This results in v = 1, while u = 1 yields the correct

normalization factor so that the rescaled PDF integrates to 1. In other words, f∞(i) is

the limiting current distribution for system size L and external voltage source V ∗ = L

12



0 0.01 0.02 0.03 0.04

10
−2

10
0

10
2

current value i

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n 
f(

i)

 

 

L=50
L=70
L=100

0 0.5 1 1.5 2 2.5

10
−4

10
−2

10
0

L i

L−
1 f(

i)

0 0.01 0.02 0.03 0.04 0.05

10
−4

10
−2

10
0

10
2

current value i

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n 
f(

i)

 

 

L=50
L=70
L=100

0 1 2 3
10

−6

10
−4

10
−2

10
0

L i

L−
1 f(

i)

Figure 2.2. Empirical probability density function of the current in an
L×L×L cubic lattice at bond density 0.25 (left) and at bond density 0.29
(right) for various system sizes L. The percolation threshold is at bond
density 0.2488. A constant unit voltage is imposed across the system. The
plot is derived from the histograms of all the currents over 1000 realizations.
The inset shows the same distributions rescaled by the system L with
critical exponents u = 1 and v = 1.

(i.e., a unit uniform electric field, up to edge effects). Therefore in a finite system the

current density for a unit voltage source scales as:

(2.2) fL(i) = Lf∞(Li).

It might seem natural that the current distribution will not change with system size

L if the electric field in the system is kept constant as L increases. However, the simple

scaling form in equation (2.2) is not trivial. It implies that the multifractal property of

the current distribution [42] comes from small currents, since the large current tail has a

simple scaling form with respect to the system size. Specifically, the kth moment Mk of

the large currents described by this finite-size scaling is a simple scaling function of L:

(2.3) Mk =

∫ ∞

0

ikfL(i) di =

∫ ∞

0

ikLf∞(Li) di ∝ L−k.

To confirm this simple scaling form of the moments, the first several sample moments

at bond density 0.25 are computed for varying system sizes and plotted in Figure 2.3.
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Figure 2.3. Scaling of the first 6 sample moments with respect to the
system size L. The bond density is fixed at p = 0.25 and the system size L
varies from 50 to 200. The fitted equations of the moments Mk are shown
in the figure (cf. Equation (2.3)). Curves are normalized by their values
at L = 200.

The sample moments are calculated as M̂k = 1
N

∑
b i

k
b , where N is the number of bonds

with nonzero current and the sum of bond currents ib is taken over all current-carrying

bonds, b. The scaling forms of the moments are not exactly the same as Equation (2.3)

due to the multifractal property of small currents and numerical error; however for large

moments the exponential tail of the current distribution becomes dominant and thus the

scaling relationship approaches Equation (2.3).

2.3.3. Robustness of the Exponential Current Tail above Criticality. Given

the simple scaling form of the large current distribution with respect to system size, this

subsection examines the robustness of the exponential tail of the current distribution

above criticality and its scaling with bond density p. The limiting current distributions

f∞(i) = L−1fL(L
−1i) for a wide range of system sizes L and bond densities p are super-

imposed on each other in Figure 2.4, with colors representing the ratio L/(p− pc)
−0.9 as

an indicator of the extent to which our result is affected by the finite size effect. Large
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Figure 2.4. Limiting current distributions f∞(i) = L−1fL(L
−1i) at

different system sizes and bond densities. Colors represent the ratio
L/(p−pc)

−0.9 where pc
.
= 0.2488 is the percolation threshold for an infinite

system and thus the color serves as an indicator of the system size relative
to the correlation length. The overlap of current distributions at different
parameters demonstrates a robust exponential distribution for large cur-
rents.

values of this ratio indicate that the system size is larger than the correlation length

and hence there limited finite size effect exists. Despite the noise at low system-size-to-

correlation-length ratios, Figure 2.4 demonstrates apparent convergence to a robust class

of exponential distributions for the large current tails both near and above threshold. The

rate of the exponential tail does not depend on the bond density and the simple scaling

form of the tail of the distribution with respect to the system size remains the same. Note

that this robust feature of current distributions only holds sufficiently close to threshold.

For instance, at saturation (p = 1) the current distribution approaches a delta function

which is the current distribution at p = 1 where every bond on the straight-line paths

perpendicular to the two plates carries the same current while all other bonds carry zero

current.

To quantitatively confirm the independence of the exponential tail on the bond density

p given a unit voltage source, a unit current source flowing between the two plates is
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considered. Current distributions for a unit voltage source differ from those for a unit

current source by a factor of the bulk conductance C, because of the linearity of the

system. Formally, denoting the density of the current distribution for the unit current

source by gL(i), the density fL(i) of the current distribution for a unit voltage source

can be written as: fL(i) = gL(i/C)/C. Then assuming gL(i) ∼ e−λ(p)i for large currents

yields

(2.4) fL(i) ∼ exp{− λ(p)

C(p)
i}.

Therefore, the rate of the exponential tail of fL(i) being independent of the bond density

(over an observed range) indicates a linear relationship between the rate λ(p) of decay of

the exponential tail of gL(i) and the bulk conductance C(p), and vice versa.

It would seem surprising for these two properties to scale linearly with one another. To

quantify this relationship, exponential distributions are fitted to the current distributions

for a unit current source at various bond densities and their rates λ(p) are plotted against

the bond densities p in Figure 2.5, along with the scaling behavior of the bulk conductance

C(p). To account for the finite size effect in our system, the scaling behaviors are analyzed

with respect to p− peffc (L) where peffc (L) is defined as the effective percolation threshold

for a finite system in Stauffer et al. [1]. Figure 2.5 demonstrates that the quantitative

details of these power-law scalings are sensitive to the choice of peffc (L), yet the point

of emphasis here is that for either choice taken, there is a persistent linear relationship

between the rate of exponential decay λ(p) and the bulk conductance C(p). These results

indicate that λ(p) and C(p) have similar scaling behaviors with respect to bond density

near and above the percolation threshold.

Again, both the underlying exponential distribution and the power-law scalings break

down far above threshold, e.g., when p ≥ 0.35.

2.3.4. Scaling Behaviors of the Largest Current. Given the explicit exponential

form of the tail of the current distribution, it is easy to calculate the statistics of the

largest current in the system and the result shows that they scale logarithmically with
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Figure 2.5. Scaling behaviors against bond density p − peffc for the bulk
conductance C(p), the rate λ(p) of the exponential tail of the current dis-
tribution, and the number Ñ(p) of bonds with current larger than 10−3.
The system size is fixed at L = 100 and the bond density p varies from
0.25 to 0.29. Curves are normalized by their values at p = 0.29. In the
parent figure peffc = 0.24 as defined in [1] and peffc = 0.2488 in the inset.
The inset demonstrates the sensitivity of the scaling exponent on the value
of pc used (with fitted exponents 1.919± .012, 1.969± .077 and 1.917± .013
respectively), but further supports the similar behavior of λ(p) and C(p).

respect to system size L, agreeing with the literature [53–56]. Let Mn be the largest

current in the network with n bonds and FMn(i) be the cumulative distribution of Mn.

Then assuming weak dependence between bonds and an exponential tail of the current

distribution fL(i) ∼ exp(−i), FM(i) can be expressed asymptotically as

(2.5) FMn(i) ∼ (1− e−i)n

for large current i. Therefore the mean of Mn is

⟨Mn⟩ ≈
∫ ∞

0

i · n(1− e−i)n−1e−idi

=
n∑

µ=1

1/µ ∼ lnn+ γ.
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Substituting in n = pL3, the logarithmic scaling of the mean largest current ⟨Mn⟩ ∼ lnL

is recovered. Similarly, solving F ′′
Mn

(i) = 0 confirms that the mode of Mn is also lnn,

and the characteristic largest value [60], which is the (n− 1)th n-quantile of the current

distribution, is calculated to be lnn as well. Note that the scaling of the largest value of a

distribution does not generally imply the shape of the distribution, since it is not hard to

construct different distributions with the same largest current scaling behavior. However,

the current distribution in this model results from a regular physical system and hence

it is expected to have a regular tail. Li et al. [54] showed that the logarithmic scaling of

characteristic largest value would imply an exponential tail of the current distribution.

The present work has not only identified an exponential tail but, more strongly, has

demonstrated that this exponential behavior dominates the current distribution and the

resulting macroscopic properties. Moreover, the dependence of that exponential on bond

densities in a range above the percolation threshold is identified.

2.3.5. Large Current Tail and Scaling of the Bulk Conductance. Recall that the

second moment of the current distribution is related to the conductance of the network.

This subsection connects the above scaling results for the current distribution to the

experimentally reported power-law scaling of the macroscopic conductance [48]. The aim

is to show that the scaling behavior of bulk conductance is inherited from the scaling

of the current distribution, and in particular, it is inherited from the large current tail.

Specifically, conservation of the energy in the system gives,

(2.6)
V 2

R
=
∑
b

i2brb,

where V and R are the external voltage and the bulk resistance of the system respectively,

ib is the value of the current on a bond, rb = 1 is the resistance of a bond, and the

sum is taken over all bonds with nonzero current. For a unit external voltage source,

Equation (2.6) can be rewritten as C = R−1 =
∑

b i
2
b , where C is the bulk conductance

of the network. Dividing by the number of current-carrying bonds N , the conductance
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is recovered from the continuous current distribution:

(2.7)
C

N
=

∑
i2b

N
=

∫ ∞

0

i2fL(i) di.

Equation (2.7) connects the scaling behavior of the bulk conductance to that of the cur-

rent distribution. Since the second moment of the current distribution fL(i) is dominated

by the exponential tail of fL(i) which is shown to be independent of the bond density p,

the number Ñ(p) of bonds carrying large currents (whose magnitudes are assumed to be

larger than 10−3) and the bulk conductance C(p) have the same scaling form with respect

to the bond density p, as demonstrated in Figure 2.5. The balance of Equation (2.7) con-

ditioned on large currents reveals an intrinsic consistency between the power-law scaling

of the conductance and the exponential large current tail of the current distribution.

2.3.6. Scaling Behaviors Far from Threshold. Near and above threshold pc
.
=

0.2488 various macroscopic electrical properties such as the bulk conductance and the

number of bonds with large current have power-law scaling behaviors as shown above,

and there exists a robust and universal exponential distribution describing large currents.

Note that both the power-law scalings and the underlying exponential distributions be-

come invalid further from the threshold as the system saturates.

Figure 2.6 (left) plots the bulk conductance for bond densities up to 0.5. The bulk

conductance gradually deviates from the power-law scaling near threshold after p = 0.3.

Figure 2.6 (right) shows the current distributions at large bond densities with colors

representing the bond density p, where p ranges from 0.3 to 0.4. The current distribution

at p = 0.3 still agrees with the universal exponential distribution while as p increases it

approaches a delta function which is the current distribution at p = 1 where every bond

on the paths perpendicular to the two plates carries the same current while all other

bonds carry zero current.
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Figure 2.6. Left: Scaling of the bulk conductance with respect to the
bond density p in an 100×100×100 cubic lattice. Right: Limiting current
distributions at bond density ranging from p = .3− .4.

2.4. Conclusion

The present chapter has identified a robust exponential large current tail of the global

current distribution in 3D random resistor networks for the boundary value problem of

conductance between two infinite parallel plates. This feature persists above percolation

threshold at bond densities for which the celebrated small current power law scaling

has already disintegrated. In the supercritical regime above percolation threshold, it is

precisely this range of currents that is most relevant for describing and diagnosing the

macroscopic electrical response for materials applications. The numerical simulations

leverage a network graph representation, whereby a breadth-first search preconditioner

removes a large fraction (∼ 90%) of the a priori zero current carrying bonds. This ap-

proach both reduces the linear system to allow larger system sizes at fixed computational

cost, and gives significantly better accuracy for capturing scaling behavior of the small

current tail.

There is possibly a geometric scaling behavior in the percolating bond component

that underlies this exponential large current tail, yet this remains an open question.

Finally, this property of the large current tail appears not to have been addressed in the

literature previously that can be ascertain. The exponential cut-off in the cluster size
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distribution may very well be related, as suggested by Dr. Michael Rubinstein at one of

my talks.
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CHAPTER 3

Brownian Nanorod Dispersions

3.1. Introduction

Nanorod (rods with nm-scale diameters and large aspect ratio) dispersions in poorly

conducting matrices possess remarkable macroscopic property enhancements when there

is percolation in the rod phase. Analogous mechanical property enhancements are ob-

served in nanorod-reinforced materials [48] and furthermore in diverse biological materials

including spider silk and many instances of fibrillar protein assemblies (see Veerman et

al. [61] and references therein). While transport properties at percolation threshold are

well understood [39, 40], we are interested in sheared thin films of nanorod dispersions

with two additional features of materials engineering relevance: volume fractions above

percolation threshold for property stability, and anisotropy in the particle phase due to

processing history [62–64] that is inherited by all properties concentrated on the particle

phase. Each of these features moves anisotropic nanorod composite films out of the uni-

versality class of equilibrium percolation theory. Given the extensive literature on rod

ensembles with isotropic or assumed anisotropic equilibrium orientational distributions

[65–71], we are interested in how the threshold scaling behavior, widely used for guidance

in materials engineering, is either perturbed or potentially strongly modified for sheared

nanorod composites.

Unlike sheared carbon nanotube dispersions [62, 64, 72], nanorod orientational distri-

butions are governed by rod rotational Brownian motion and nonlocal excluded volume

interactions coupled to shear flow. Thus one should evaluate properties on the basis of

statistical distribution functions of the rod ensemble, which the authors [73, 74] have



previously studied in detail from the kinetic theory of Doi [75] and Hess [76]. Homoge-

nization theory [77–79] (based on volume and ensemble averaging of kinetic distribution

functions) yields accurate, anisotropic bulk conductivity tensors in sheared nanorod dis-

persions below percolation thresholds, where the scaling is linear in rod volume fraction,

but fails to account for percolation in the rod phase and thereby misses the dramatic

power law scaling in conductivity enhancements at and above percolation threshold. Our

goal here is to extend the homogenization results [77–79] below threshold to above thresh-

old, again relying on pre-computed kinetic orientational distributions of sheared nanorod

dispersions, yet introducing new methods focused on percolation in the rod ensemble.

We also note that boundary confinement in thin films can generate significant spatial

gradients in the nanorod orientational distribution [80–82], yet in this work we focus first

at the cubic micron scale where spatial homogeneity can be safely assumed (the so-called

monodomain scale).

An additional consequence of nanometer scale particle composites is that relatively

little is known about performance properties within the particle phase due to a lack of

experimental resolution at scales bridging single nanorods to the bulk. We focus on cur-

rent distributions within the particle phase in this article, highlighting multi-resolution,

statistical tools to circumvent the lack of measurements. Previous predictions of current

distributions, and in particular the small current tails and the scaling of the largest cur-

rent in the network, have been limited to lattice resistor networks [30, 41, 44–46, 53].

The lack of progress on multi-scale transport properties in physical nanorod dispersions

may be attributed both to the lack of sufficient experimental results on local proper-

ties and to the notion that lattice percolation and continuum percolation belong to the

same universality class. In any case, the non-equilibrium and highly anisotropic fea-

tures of sheared nanorod dispersions violate assumptions of classical percolation theory

at criticality. Classical percolation theory explains the critical bulk threshold behavior in

model systems, but very little is known about the property implications of several features

studied herein: the scaling behavior above threshold (does it return to linear scaling with
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volume fraction?); the influence of shear processing (anisotropy of the particle phase);

multi-scale features of the current carrying rods (e.g., the fraction of rods with non-zero

current, the spatial morphology of the current carrying rods); and, the distribution of

currents (especially the large current tail) supported by the nanorod ensemble.

So motivated, we develop multiscale electrical property metrics based on percolation

in the particle phase that are reflective of the statistical properties and anisotropy of

sheared Brownian nanorod dispersions. We focus on material systems with three distinc-

tive properties: the nanorods are highly conducting relative to the matrix (cf. [48, 83, 84]);

the rod orientation distribution may be weakly or strongly anisotropic, induced by shear

flow [85, 86]; and the rod phase has macroscopic percolating clusters [2]. The first prop-

erty can be relaxed with a significant increase in computational complexity of the linear

electrical property transport solve. The latter two properties, however, distinguish nano-

scale rod composites for which existing property assessments are inadequate for realistic

particle number densities and the number of realizations required for reasonable statis-

tics, even at fixed rod volume fraction and Peclet number (Pe, shear rate normalized by

rotational relaxation rate of the Brownian rods). Buxton and Balazs [87] are quite close

in spirit to our work, whereas their model focuses on polymer-nanorod surface chemical

interactions and our approach is amenable to hydrodynamics of nanorod dispersions.

We also utilize a network representation and graph algorithms to significantly reduce

the transport property solve, and indeed to remove numerical error in the small current

tail of the current distribution across the network. Similar network-based methods with

fewer rod particles are used in the study of dielectric properties [88] and topology of the

composite [89] by Simoes, Vaia and collaborators, which motivated our approach.

We outline our method as a series of steps in section 3.2, referring to original publi-

cations for details of our previous results that are employed here. Then we go into detail

in section 3.2.3 for the new steps involving property metrics based on the network rep-

resentation of percolating components. The details for numerical simulations including
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the values of parameters are summarized in section 3.3, followed by results on the bulk

conductivities and current distributions across the percolation phase diagram.

3.2. Method and Model

3.2.1. Method. Here we study Brownian nanorod dispersions where contact percola-

tion occurs well below the nematic transition (see [2], for example). Externally imposed

shear induces anisotropic rod orientations which are reflected in the local and bulk proper-

ties carried by anisotropic percolating paths. Modeling single-particle electrical response

by effective resistance proportional to path length, we statistically assess multi-resolution

(local and bulk) electrical properties of a highly conducting rod particle phase dispersed

in a relatively very poorly conducting matrix phase.

Our first step is to calculate the rod orientational probability distribution function

(PDF) of a sheared nanorod dispersion by numerically solving the Doi-Hess-Smoluchowski

equation which takes into account the effects of Brownian motion and particle-particle

interactions. We refer to Forest et al. [74] for the kinetic theory and attractor phase

diagrams of the nanorod orientational distributions versus rod volume fraction θ and

normalized shear rate or Peclet number Pe. These orientational distributions arise from

imposed simple shear with a presumed rapid quench of rod microstructure. For each

θ and Pe we compute the kinetic distribution function, thereby creating a database of

distributions across the (Pe, θ) parameter space. (Since it turns out that percolation in

the rod phase occurs at volume fractions well below the nematic transition, we focus this

study at volume fractions where the unsheared stable equilibrium is isotropic [2]).

The second step populates Monte Carlo (MC) samples of 3D sheared nanorod disper-

sions in a cubic box of length L at each fixed (Pe, θ), as in Zheng et al. [2]. The nanorods

are randomly distributed in space with the orientation of each rod independently drawn

from the corresponding orientational distribution. The rods are modeled as cylinders

of length l and diameter d with two spherical caps, representing monodisperse soft-core

spheroids. Since we do not check for overlap between particles in this step, the Balberg
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formula [66] is adopted to determine the number N of rods for a given rod volume fraction

θ:

(3.1) N =
ln(1− θ)−1L3

V
,

where V is the volume of a single rod. For rods that are partially out of the box, periodic

boundary conditions are applied so that the correct rod volume fraction is achieved.

In the third step, we extend the algorithm in Zheng et al. [2] to identify the percolat-

ing network across a specified dimension of the simulated sample; we do so by introducing

a network representation of the rod ensemble and utilizing network algorithms to identify

and restrict to the percolating paths (as described below). One can solve the whole resis-

tor network problem by any standard solver such as SPICE [71]. However, our a priori

elimination filters many zero-current rods; there may be “dangling” clusters connected

to the percolating paths that are not filtered here as we pragmatically balance computa-

tional impacts, as further demonstrated below. We then solve the corresponding resistor

network problem, restricted to the percolating components, which significantly reduces

the size of the system and improves numerical precision especially in the highly sensitive

small current tail of the current distribution. These steps are carried out for many Monte

Carlo (MC) realizations at each point across the (Pe, θ) phase diagram, generating a

database of electrical properties superimposed onto the dimensional percolation phase

diagram (as we will see in the results below in Figure 3.5 (Right)). We then perform

statistical analysis of this database that describes electrical properties in several ways,

including visual depictions.

3.2.2. Orientation of Nanorods under Shear. Before introducing the network rep-

resentation, this subsection digresses into fluid dynamics—orientation of rods under

shear—to provide necessary backgrounds of the model used here for the nanorod ori-

entations, which distinguishes sheared nanorod dispersions from previous study on rod

systems. The motion of ellipsoidal particles immersed in fluid flow is a long-studied area

of fluid dynamics. Following Jeffery’s seminal study [90] which examined the motion
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of axisymmetric ellipsoidal particles immersed in a simple shear flow, there has been a

significant amount of work devoted to experimental investigations of Jeffery’s hypotheses

[91, 92] and studies of effects of inertia [93, 94], particle-particles interactions [95], and

Brownian motions [96, 97]. To take proper account of Brownian motion and particle-

particle interactions in nanorod composites, the hydrodynamic model of Doi-Hess kinetic

theory for sheared nematic polymers [75, 76] is adopted here. A brief recall of the for-

mulation as in [73, 74] is presented in the following.

Denote the orientation of a rod by its axis of symmetry m and the probability distri-

bution function (PDF) for its orientation by f(m, t). The dynamics of f(m, t) in a flow

field v satisfy:

∂f

∂t
+ v · ∇f = R · [D0

r(Rf +
1

kT
fRV )]−R · [m× ṁf ],(3.2)

ṁ = Ω ·m+ [D ·m−D : mmm],(3.3)

whereD0
r is the rotary diffusivity; k is the Boltzmann constant; T is absolute temperature;

R is the rotational gradient operator m× ∂
∂m

; V is the mean-field, Maier-Saupe excluded-

volume potential

V = −3

2
NkTmm : M ,

M = ⟨mm⟩ =
∫
∥m∥=1

mmf(m, t)dm.

The imposed flow v is a simple shear (Figure 3.1) with x being the flow direction, y being

the flow-gradient direction, and z being the vorticity direction:

v(x, y, z) = Pe(y, 0, 0);

D and Ω are the corresponding rate-of-strain (symmetric) tensor and voticity (anti-

symmetric) tensor of the flow v.
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Figure 3.1. An illustration of the imposed shear flow with velocity field:
v⃗ = Pe(y, 0, 0), i.e., the direction of flow is along the x axis, with y axis
the flow gradient direction and z the vorticity direction.

Eq. (3.2) cannot be solved explicitly; however, its solution is well approximated by a

spherical harmonic expansion,

f(m, t) =
L∑
l=0

l∑
n=−l

al,n(t)Y
n
l (θ, ϕ),

where Y n
l are complex spherical harmonic functions and (θ, ϕ) are the spherical coordi-

nates of the axis m:

m = (sin θ cosϕ, sin θ sinϕ, cos θ).

The spherical harmonic expansion renders Eq. (3.2) into a set of ordinary differential

equations (ODE) for the coefficients anl which can be easily solved numerically. Forest

et al. [73, 74] showed that results are robust for a finite series expansion for L ≥ 10.

Similarly, in this work Eq. (3.2) is solved by numeric solution of the 65-dimensional ODE

system resulting from truncating the spherical harmonic expansion at L = 10.

To gain insight into the distribution function f(m, t), 3000 sample points are draw

from f(m, t) at different shear rate Pe. The sample points lie on the unit sphere S2

indicating the direction of m. Figure 3.2 plots the sample points in space viewed from

top (left column) and viewed from side (right column) at 4 shear rates, from no shear

(Pe=0) to strong shear (Pe=10). As shear increases, nanorods will be more likely to
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align with the flow direction (x axis), while slightly biased towards the shear direction

(y axis) and more orthogonal to the vorticity direction (z axis). This anisotropy in

orientation will be reflected in network properties such as anisotropic percolating paths

and conductivities.

The distribution of m can be quantitatively characterized by its second moment ten-

sor M =
∫
∥m∥=1

mmf(m, t)dm. The eigenvector associated with the largest eigenvalue

of M corresponds to the principal direction of alignment (i.e., the most likely direction).

When Pe = 0 (no shear) the three eigenvalues of M are {1/3, 1/3, 1/3} and hence the

orientation is isotropic. When Pe > 0 both asymptotic analysis [78] and numerical cal-

culation [74] show that the largest eigenvector (i.e., the one corresponding to the largest

eigenvalue) lies in the x-y plane, pointing approximately 45◦ from the x axis as Pe → 0+,

and moves closer to the x axis as shear increases; the second eigenvector also lies in the

x-y plane, and the smallest eigenvector aligns with z axis or the vorticity direction. These

results agree with the observations in Figure 3.2.

3.2.3. Network Model. Every MC realization of a 3D nanorod dispersion is mapped

to an undirected weighted network to study its linear DC electrical response. Recall

that each MC realization distributes rods uniformly in space with orientations drawn

from the specified single-particle orientation distribution. Electrically conducting contact

between rods is assumed wherever rods overlap, that is, whenever their axes are within

one rod diameter. To study percolation and conductance along each of the three physical

dimensions, (perfectly) conducting plates are assumed at the two opposite faces of the box

orthogonal to the specified dimension, corresponding to imposing a voltage drop across

that dimension, with all intersections between rods and the selected boundary taken to

be conducting. Working non-dimensionally, we treat each rod to be a conductor with

unit conductivity. Then the conductance of a full rod is equal to its cross-sectional area

divided by its length. For the purposes of the present model, we treat the matrix/solvent

as a perfect insulator, noting that the typical ratio of conductivities is many orders of

magnitude [48, 83, 84]. Every node in the corresponding electrical network represents
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Figure 3.3. Left: A randomly oriented (Pe = 0) dispersion of aspect
ratio 50 rods at volume fraction .0008. The box is four times the rod
length. Right: An illustration of the network representation of a few rods.
Nodes are contact points of rods (the red dots), and edges are the effective
conductances between contact points (the blue lines).

one of the points of electrical contact between two rods or with a conducting plate, with

weighted edges specified by the effective conductance between two contacts, inversely

proportional to the corresponding distance along the rod connecting the two contact

points (Figure 3.3 (Right)), as represented by the (symmetric) adjacency matrix A:

Aij =

 wij if node i and node j are connected

0 otherwise

with conductances wij = s/dij given by the rod cross-sectional area, s, and the distance

between node i and node j, dij. To investigate electrical conductivity in a specified

direction, the conducting end plates placed on the corresponding opposite faces are each

represented by a node, connected to one another through an external source.

Assuming the applied voltage is less than the dielectric breakdown strength and ignor-

ing all inductance and electron tunneling effects, those clusters isolated from the external

source will not be charged and hence only clusters containing the two plate nodes (i.e.,

a connected component containing all percolating paths) need to be considered. For

each realized network obtained above, we use a Dulmage-Mendelsohn decomposition of

the adjacency matrix to efficiently identify the connected components that contain the

two plates. The next key ingredient in our calculation procedure is the plate-constrained
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2-core — defined here as the connected subgraph containing both boundary plates with

degree at least two in the subgraph. This plate-constrained 2-core captures all edges

that potentially carry non-zero current in the posed problem. This pre-processing step

provides two significant advantages. 1. Restriction to the plate-constrained 2-core filters

approximately 90% of the edges near percolation threshold, therefore reducing the linear

system to 10% of its original size (e.g., see the reduction at volume fraction 1.3% in

the left panel of Figure 3.5). 2. By a priori elimination of all edges not in the plate-

constrained 2-core, we remove a vast fraction of exactly zero-current edges from the

numerical simulation of the linear system, thereby improving numerical precision overall,

and in particular improved resolution of the small current tail. Therefore, we pass from

the whole network to this plate-constrained 2-core and by slight abuse of terminology,

we continue to represent its adjacency matrix by A. More stringent reduction within

single percolating paths could be achieved by application of further graph theoretic cal-

culations, but such further reductions are deferred for the present results. We note that

this result already informs that while a given volume fraction is necessary to statistically

guarantee percolation, in fact on the order of 10% of the nanorods participate in the

property gains.

The linear electrical response of this reduced network is given by Kirchoff’s law (see,

e.g., Strang [59]) Lv = f , where v is a vector indicating the voltage at each node, f is a

vector consisting of the net current going out of each node, and L is the graph Laplacian

matrix of the network. L is related to the adjacency matrix A by L = D −A, with D

a diagonal matrix containing the strength of each node (Dii =
∑

j Aij). For all internal

nodes i, fi = 0, while fsink = −fsource = I at the two nodes representing the source and

sink at oppositely facing end plates.

The bulk conductance is the ratio of the external current to the obtained voltage drop

across the two plate nodes, with bulk conductivity σ following by multiplying by the

box’s length L and dividing by its cross-sectional area L2, that is, the bulk conductivity

characterizes the macroscopic relationship between the total current passing between the
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two plates and the associated voltage drop. Naturally, if the two virtual nodes are not

connected by a percolating path, the bulk conductivity in this model is zero. The current

distribution inside the network also follows as part of this calculation. By Ohm’s law,

the current on an edge is equal to the voltage drop between its two endpoints multiplied

by its effective conductance.

3.3. Results and Discussions

3.3.1. Monte Carlo Generation of Physical 3D Sheared Nanorod Dispersions.

For each fixed (Pe, θ) we create a physical 3D realization of the nanorod dispersion by

drawing from the kinetic orientational distribution. Next we assess the corresponding

electrical transport in each of the three spatial dimensions for each realization, obtaining

the bulk conductivity for each realization and the underlying distribution of edge (rod)

currents per realization. At the same (Pe, θ), we generate 1000 Monte Carlo realizations,

and then average over all these 1000 realizations to obtain a statistical description of the

electrical properties of a material volume of linear dimension 0.5 microns at each point

(Pe, θ) of the phase diagram of Figure 3.5 (Right). Below we will make contact with

the literature on bulk or mean properties first, then exploit our methods to drill into the

multiscale properties in the rod phase, and finally show that the key bulk properties that

are experimentally observed are consequences of our more detailed multiscale metrics.

The imposed flow is pure shear along the x axis, with y axis the flow gradient direction

and z the vorticity direction (Figure 3.1). For the present results, we consider a model

system of typical nanorods which are 1 nm × 50 nm, dispersed in an L × L × L cubic

domain. For consistently comparing results at different parameter values below, we

choose the box length L to be 10 times the rod length (containing approximately 40, 000-

70, 000 rods for the range of the volume fractions studied in this paper), except for the

finite size scaling analysis where we consider the effect of different box lengths (section

4.3.2).
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Figure 3.4. Average number of nodes in the network (square), number of
edges in the network (circle), number of edges in the percolating component
(triangle), number of edges in the plate-constrained 2-core (dot), number
of current-carrying edges (star) as rod volume fraction varies. All the
quantities are normailized by the average number of rods. The left panel
corresponds to Pe = 0 and the right panel corresponds to Pe = 5.

Figure 3.4 (left) shows the size of the network normalized by the number of rods as

rod volume fraction increases. The shear rate Pe = 0. When there are N rods, the

number of contacts between rods will be proportional to N2 since the rods are randomly

placed and oriented. Therefore the number of nodes normalized by N is proportional to

the rod volume fraction. However, the number of edges will be less in this model, because

at least two contacts must be present on a rod in order to have an edge. If the two rods

that intersect do not have contact with any other rod, then there will be one node but

no edge. Around percolation threshold (which will be defined in the next section) the

average degree of the network is larger than 1 (≈ 1.8). This is quite different from an

Erdős-Réyni random graph because in our network the maximum degree of a node is

only 4. The statistics for the network extracted from sheared (Pe = 5) dispersions are

presented in the right panel of Figure 3.4. Shear decreases the probability of contact and

consequently deceases the numbers. However, the scalings are qualitatively similar.

3.3.2. Dimensional Percolation. At each shear rate Pe, we calculate the critical rod

volume fraction for percolation θc(L) =
∫
θ dRL (i.e., the effective percolation threshold

as defined in [1] for a finite system with linear size L) for each of the three physical
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directions, where the percolating probability, RL(θ), is approximated by the fraction of

percolated samples out of 1000 realizations. We then plot the percolation thresholds for

each of the three physical dimensions against shear rate Pe in the right panel of Figure 3.5

and reproduce the percolation phase diagram in Zheng et al., Figure 4 [2] over a smaller

domain but with higher resolution. As previously described, alignment of nanorods

decreases the probability of contact, thus increasing the percolation thresholds, and the

influence of shear on percolation threshold depends on the direction being considered,

resulting in the observed dimensional percolation contrasts. In the right panel Figure

3.5 there is no percolation (statistically) in the region below the solid curve; percolation

appears in the flow (x) direction in the region between the solid curve and the dashed

curve; in the region between the dashed curve and the dotted curve, percolation emerges

in the flow gradient (y) direction in addition to the flow (x) direction; above the dotted

curve, percolation spans all three dimensions. We note that the percolation thresholds

appear to be linearly dependent on the normalized shear rate Pe over most of the range

of Figure 3.5 (Right).

3.3.3. Anisotropic Bulk Conductivity. To elucidate the effect of shear on the scaling

of conductivities, we first take 2 slices in the right panel of Figure 3.5 at Pe = 0 and

Pe = 5. Figure 3.6 plots the mean conductivity σ in each of the three directions against

rod volume fraction θ− θc for isotropic (Pe = 0) dispersions (left) and sheared (Pe = 5)

dispersions (right). Figure 3.6 demonstrates that the power-law scaling of conductivity

σ persists under shear with scaling exponents along each physical axis tuned by the shear

rate Pe. Therefore we propose a general scaling form with shear:

(3.4) σ ∼ (θ − θc(Pe))t(Pe),

where the scaling exponent t(Pe) varies with the direction in physical space, i.e., tx(Pe),

ty(Pe), tz(Pe) are distinct. Here we focus on the three physical directions: flow direction

(x), flow gradient direction (y), and vorticity direction (z). At each normalized shear

rate Pe, we fit Equation 3.4 to the mean conductivity in each direction as in Figure 3.6,
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Figure 3.5. Left: The average number of edges in the rod contact network
(circle), in the percolating components (triangle), in the plate-constrained
2-core (dot), and in the current-carrying paths (star), normalized by the
total number of rods at each rod volume fraction. Rods are isotropically
oriented (Pe = 0). Thus restriction to the plate-constrained 2-core filters
approximately 90% of the rods near percolation threshold θc

.
= 1.3%, there-

fore reducing the problem to 10% of its original size. Right: Percolation
phase diagram with anisotropic percolation thresholds in the 2-parameter
space of (Pe, θ) (cf. Figure 4 in [2]). The solid, dashed and dotted curves
correspond to the percolation thresholds in the x, y and z directions, re-
spectively.
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Figure 3.6. Scaling of the mean conductivity σ in each of the three direc-
tions against rod volume fraction θ − θc for isotropic (Pe = 0) dispersions
(left) and sheared (Pe = 5) dispersions (right). The power-law scaling of
conductivity persists under shear, while the scaling exponent is anisotropic
for Pe > 0. Each data point is the average of 1000 realizations in a cubic
box of linear dimension 0.5 microns (10 times the nanorod length).

and plot the scaling exponents in Figure 3.7 against Pe. While shear diminishes the

conductivity exponents (and hence diminishes the property gains) in general, it has the
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Figure 3.7. Anisotropic conductivity exponents against normalized shear
rate Pe. The scaling exponents are estimated from fitting Equation 3.4 to
the mean conductivity in each direction. A 95% confident interval is shown
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least impact in the flow direction. The conductivity exponents t(Pe) are approximately

quadratic functions of Pe, as can be calculated from the data in Figure 3.7:

tx ≈ 1.83 + 0.053Pe− 0.01Pe2,

ty ≈ 1.83 + 0.018Pe− 0.017Pe2,(3.5)

tz ≈ 1.83 + 0.02Pe− 0.018Pe2.

3.3.4. Scaling of Current Distributions. In a previous study [30], we analyzed global

features of the current distribution on a cubic lattice (i.e., bond percolation) and identi-

fied a robust, exponential large current tail that persists above threshold and is locally

independent of the bond fraction. Here we perform similar analysis on the current distri-

bution in physical 3D nanorod dispersions, and show that similar scaling behavior arises

in these more complex systems even though the centers of mass of the nanorods are ran-

dom, the distances between nodes in the percolating clusters are highly non-uniformly

distributed, and the percolating network is spatially anisotropic.

3.3.4.1. Robust Exponential Tail of Current Distributions. Figure 3.8 plots current distri-

butions (left) and logarithmic current distributions (right) for isotropic (Pe = 0) disper-

sions at various rod volume fractions θ above threshold θc
.
= 1.3%, given a unit voltage
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Figure 3.8. Current distributions f(i) (left) and logarithmic current dis-
tributions h(x) (right) for isotropic (Pe = 0) dispersions at various rod
volume fractions θ given a unit voltage source. The logarithmic transfor-
mation of currents exposes small currents which have a power law distribu-
tion (right panel) while the overall current distribution is exponential (left
panel). The empirical densities are derived from the histograms of all the
currents over 1000 realizations.

source. Since the current distributions in all three directions are statistically similar as

the rods are isotropically oriented, only the current distribution in the flow direction

(x) is shown. Let f(i) be the probability density function (PDF) of the currents across

the population of current-carrying edges (i.e., ignoring zero-current edges where present)

and h(x) be the corresponding PDF of the logarithmic current X = ln(I). The two

distributions are related by h(x) = f(ex)ex.

First, the logarithmic transformation of current (Figure 3.8 (Right)) exposes the

small current region and reveals the power-law distribution of small currents, agreeing

with what has been reported for bond percolation on a cubic lattice [30, 44–46]. For

relatively large currents (i.e., to the right of the peak of the h(x) distribution), Figure

3.8 (left) is clearly suggestive of an exponential tail of the current distributions which

expands broadly over large to moderate currents and dominates the current distribution

at the expense of the vanishing power law scaling in the small current tail.

The second conclusion drawn from Figure 3.8 is that the rate of the exponential tail

above threshold is weakly dependent on the rod volume fraction θ near threshold given a

unit voltage source, despite the fact that the current distribution close to the percolation

threshold θc
.
= 1.3% shows some scattering because of the finite size effect. In [30] we
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Figure 3.9. Left: Current distributions in both the flow direction (x)
and the flow gradient direction (y) for sheared dispersions (Pe = 5). The
percolation threshold is θc(x)

.
= 1.35% in the flow direction (x) and θc(y)

.
=

1.4% in the flow gradient direciton (y). Right: Visualization of the current-
carrying rods and color-coded current values in a percolating cluster in the
x direction from one realization at (Pe, θ)=(10, .015).

quantitatively confirmed the independence of the exponential tail on bond density on

cubic lattices, and showed the convergence to a robust class of exponential distributions

for the large current tail both near and above threshold.

In order to study the effect of shear, we plot the current distributions in both the

flow direction (x) and the flow gradient direction (y) for sheared dispersions (Pe = 5) in

the left panel of Figure 3.9. We omit the current distributions in the vorticity direction

(z) for clarity because they almost overlap with the distributions in the y direction. (In

weak shear it is known that the principal axis of the rod orientational distribution is

approximately along the 45 degree line in the shear plane [74].) Because of the shear-

induced anisotropic rod orientation, the current distributions are likewise anisotropic

and the shear rate selects the exponential rates of the distributions. However, the robust

exponential tail, which dominates the current distribution above threshold, persists in

each spatial direction and is weakly dependent on the rod volume fraction θ as in the

isotropic (Pe = 0) case.

Mathematical reasoning for the existence of the exponential tail remains unknown.

The intuition behind the exponential tail is that large currents are very rare while small

currents are more abundant. We also note that the exponential cut-off in the cluster
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size distribution [39] may very well be related, as suggested by our colleague Michael

Rubinstein, yet this remains an open problem. Importantly, the small numbers of large

currents in the tail of the distribution of current-carrying rods exacerbates the separate

phenomena of there being relatively few current-carrying rods among the total dispersion,

as remarked on above (see the left panel of Figure 3.5). To illustrate the combined effect

of small numbers of current-carrying rods and even smaller numbers of large currents,

Figure 3.9 (Right) visualizes the currents flowing in the x direction in a single Monte

Carlo realization of a 3D sheared dispersion, at (Pe,θ)=(10, .015) and box length L =

250 nm, demonstrating how very few of the approximately 105 rods in this volume carry

the largest currents. This result compels a further study of the stability of percolating

components under small strain deformations, since such conditions arise in many thin

film applications.

3.3.4.2. Finite Size Scaling Analysis. Thus far we have considered the electrical response

to a unit voltage source in a finite system of length L. To meaningfully describe the

current distribution in an infinite system (L → ∞) and to better understand the effect

of system size on the distribution, we perform a finite size scaling analysis as in [30]. Let

fL(i) be the PDF of the current at system size L for a unit voltage source. We propose

a finite-size scaling form:

(3.6) L−ufL(L
−vi) = f∞(i),

where f∞ is a function independent of L. By tuning u and v we aim to eliminate the effect

of system size. Figure 3.10 (left) plots the current distributions in isotropic dispersions

(Pe=0) at rod volume fraction θ = 1.33% for different system sizes. The inset confirms

that the PDF’s for different system sizes collapse onto a single curve when u = 1 and

v = 1. One can carry out the same argument at other rod volume fractions above

threshold θc
.
= 1.3% and find the same scaling exponents. In other words, f∞ can be

viewed as the limiting current distribution for system size L and external voltage source

V ∗ = L (i.e., a unit electric field). This simple scaling form indicates that Mk, the k-th
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Figure 3.10. Left: current distributions in isotropic dispersions (Pe = 0)
at rod volume fraction θ = 1.33%. Two system sizes are considered: 10
times as long as a rod (L = 10l) and 15 times as long as a rod (L = 15l).
The inset shows the same distributions rescaled by the system size L with
u = 1 and v = 1. Right: rescaled current distributions in the flow direction
(x) and in the flow gradient direction (y) in sheared (Pe = 5) dispersions at
rod volume fraction θ = 1.5%. It demonstrates that the finite size scaling
form Equation 3.6 holds in each direction under shear.

moment of the current distribution, is a simple scaling function of L:

(3.7) Mk =

∫ ∞

0

ikfL(i) di =

∫ ∞

0

ikLf∞(Li) di ∝ L−k.

In [30] we showed that while this scaling of moments is not exact because of small currents

which are multifractal, for large moments the exponential tail becomes dominant and

Equation 3.7 is a good approximation.

Again this simple finite size scaling form Equation 3.6 remains the same in each

direction under shear regardless of the current distribution being anisotropic, as shown

in Figure 3.10 (Right) which plots the rescaled current distributions f∞ = L−1fL(L
−1i)

in both the flow direction (x) and the flow gradient direction (y) for a sheared (Pe = 5)

dispersion.

3.3.5. Electrical Property Phase Diagrams. The above arguments show that the

power-law scaling of bulk conductivities near threshold persists under shear, and demon-

strate a robust exponential tail of current distributions above threshold in response to a

unit voltage source, even under shear. To conclude, we paint the average bulk conduc-

tivities and the rates of the exponential current tails onto the percolation phase diagram
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(Figure 3.5 (Right)) in Figure 3.11. From left to right, the top three panels in the figure

show the color-coded average bulk conductivities in the flow (x) direction, flow-gradient

(y) direction, and vorticity (z) direction respectively; and the bottom three panels show

the rates of the exponential current tails in the three physical directions respectively. The

effect of shear on the conductivities are similar while shear has relatively smaller impact

in the flow (x) direction. However, the exponential current tails present qualitatively dif-

ferent behaviors. In the flow (x) direction, the exponential rate drops as shear increases,

i.e., the tail becomes fatter, indicating that large currents are more frequent in the flow

direction as shear increases. By contrast, in both the flow gradient (y) and the vorticity

(z) directions the exponential rates increase with shear rate, meaning thinner tails, indi-

cating that large currents are more rare in the plane normal to the flow direction as shear

increases. This result is supported by asymptotic results [74] on the weak shear limit

that show for small Pe, the peak of the orientational PDF aligns with the 45◦ axis in the

shear plane (x,y), and then progressively tilts toward the flow (x) axis as Pe increases,

always remaining in the shear plane for the low volume fractions relevant to percolation

threshold. Thus the anisotropy in the large tail currents are strongly correlated with the

orientational PDF of the rod phase.

Finally, we recall scaling analysis from our recent paper [30] on random resistor net-

works in cubic bond percolation. From the established exponential large current tail

across the percolation phase diagram (Figure 3.11, bottom row), two results immediately

follow. First, the largest current in the network scales as ln(L). Note that previous stud-

ies on the largest current in lattice bond percolation [53–56] do not analyze the tail of the

current distribution, and there are infinitely many tails consistent with the logarithmic

scaling of the maximum current. Knowing the tail is exponential, however, immediately

implies the scaling of the maximum current. Second, since the second moment of the

current distribution relates to the bulk conductivity, the celebrated power law scaling

of measured bulk conductivity is a consequence of the large current exponential tail.

Specifically, given a unit external voltage source, the bulk conductance C is related to
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the current distribution by [30]

(3.8) C/N =
∑
b

i2brb/N =

∫ ∞

0

i2rf(i, r) didr,

where the sum is taken over all edges with nonzero current, ib and rb are the current value

and the resistance of edge b, respectively, and N is the number of edges with nonzero

current. Assuming that the current distribution and the edge resistance distribution are

weakly dependent, the joint distribution f(i, r) can be approximated by the product of in-

dividual distributions fI(i) and fR(r), and Equation (3.8) yields C/N ≈ ⟨r⟩
∫∞
0

i2fI(i) di.

Since the second moment of the current distribution is dominated by the exponential

large current tail, the power law scaling of the bulk conductance with respect to rod

volume fraction θ is revealed by the scaling behaviors of the exponential current tail,

the mean edge resistance and the number of edges with large current. In other words,

the observable bulk properties (e.g., Equation (3.4) and (3.5)) can be reconstructed from

particle-scale property distributions (e.g., the exponential large-current tail of the cur-

rent distribution and mean edge resistance). These observations are relevant especially

to “active” composite materials where materials are exposed to mechanical loading and

strain deformations.

3.3.6. Properties along Eigenvector Directions. The results and analyses above

are for the three physical directions (i.e., x-flow direction, y-flow gradient direction, and

z-vorticity direction), which are natural choices since properties in these directions are

easy to measure in the lab frame. However, the eigenvectors of the second moment

tensor M of the orientational distribution function f(m, t) (see section 3.2.2) suggest a

different reference frame, which might be less intuitive but is intrinsic to the orientational

distribution function. Denote the three eigenvalues of M by λ1 ≥ λ2 ≥ λ3 and the

corresponding eigenvectors by v1, v2, and v3, respectively. Figure 3.12 superimposes the

percolation thresholds in the eigenvector directions v1, v2, and v3 onto the percolation

phase diagram in lab frame (Figure 3.5). v1 is the most likely orientation of rods and hence

the percolation threshold in this direction is always the lowest. Note that the percolation
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Figure 3.11. Multi-scale electrical properties across the percolation
phase diagram (Figure 3.5 (Right)). The top row shows the color-coded
average bulk conductivities in the flow (x) direction (left panel), flow-
gradient (y) direction (center panel), and vorticity (z) direction (right
panel). The bottom row shows the rates of the exponential current
tails in the three physical directions respectively.

threshold in direction v1 decrease in 0 < Pe < 1, implying that very weak alignment

actually increases the chance of contact of rods and therefore lowers the percolation

threshold, which is a feature not seen in the lab frame. The second key observation is

that the order of percolation switches as shear increases. When Pe < 5, the rod phase

percolates in the v3 direction before v2 direction, while the order is reversed when Pe > 5.

This apparent contradiction with the percolation order in the lab frame deserves further

study.

The scaling behavior of bulk conductance and the exponential tail of the current

distribution in the eigenvector directions are similar to their counterparts in the lab

frame; therefore they are not included here.
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Figure 3.12. Percolation phase diagram with anisotropic percolation
thresholds in the 2-parameter space of (Pe, θ) (cf. Figure 3.5). The black
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3.4. Conclusion

In summary, we construct a network representation to efficiently and accurately cal-

culate the linear electrical response on percolating anisotropic nanorod dispersions in

3D across the phase diagram of rod volume fraction and imposed normalized shear rate

associated with a thin film flow. The dispersions are generated from pre-computed ori-

entational probability distributions across the phase diagram [73, 74]. Network methods

provide an efficient algorithm to identify the current-carrying rods in percolating nanorod

components, combining with Monte Carlo calls to the orientational distributions to de-

liver robust, multi-resolution distributions of conductivity consistent with the statistical

properties of the underlying nanorod ensembles. Putting these tools together, we statis-

tically investigate electrical properties on the sheared nanorod percolation phase diagram

of [2]. For each data point in the phase diagram, we determine the mean and variance

of the bulk conductivity as well as current distributions within percolating rod clusters,
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with the ability to identify current values at the rod scale in each 3D physical realiza-

tion. The numerical results show that the celebrated power-law scaling of conductivity

above percolation threshold persists under shear, even while the conductivity becomes

anisotropic due to the sheared nanorod orientational distribution. Furthermore, we show

that the anisotropic power-law scaling in the observable bulk conductivity tensor is a con-

sequence of a deeper transport property within the network. Namely, there is a robust

exponential, large current tail in the current distribution throughout the nanorod phase;

the exponential tails imply the conductivity scaling by taking second moments of the

current distribution. We compute the large current tails, and exponential rates, across

the phase diagram of nanorod volume fraction and normalized shear rate. Remarkably, at

approximately 1.3% rod volume fraction, the percolating dispersions typically yield mean

conductivities that are only 4 orders of magnitude lower than the pure rod phase. The

volume averaged boost in conductivity for the same parameters [2] is negligible compared

to this percolation effect.
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CHAPTER 4

Evolving Voter Model with Two Opinions

4.1. Introduction

In recent years, a variety of research efforts from different disciplines have combined

with established studies in social network analysis and random graph models to funda-

mentally change the way we think about networks. Significant attention has focused

on the implications of dynamics in establishing network structure, including preferential

attachment, rewiring, and other mechanisms [8, 23–26]. At the same time, the impact

of structural properties on dynamics on those networks has been studied [27], including

the spread of epidemics [7, 98–100], opinions [101–103], information cascades [104–106],

and evolutionary games [107, 108]. More recently there has been a number of studies of

systems in which the states of individuals and the connections between them coevolve

[29, 109]. The systems considered include evolutionary games [110–114] and epidemics

[115–119], but the concentration here is on the spread of opinions [120–124]. Different

from the models of cascades [19, 104, 125] which are also widely used in the study of

opinion spread, the evolving voter model allows an agent to switch between different

opinions and the network topology to change accordingly, yet it is assumed that agents

impose equal influence over each other (cf. multi-state complex contagions [126–128]).

This model provides building blocks to quantitatively study collective behaviors in vari-

ous social systems, e.g., segregation of a population into two or more communities with

different political opinions, religious beliefs, cultural traits, etc.

The starting point is the model proposed by Holme and Newman [34]. In their

model there is a network of N vertices and M edges. The individual at vertex v has

an opinion ξ(v) from a set of G possible opinions and the number of people per opinion



γN = N/G stays bounded as N gets large. On each step of the process, a vertex x is

picked at random. If its degree d(x) equals 0, nothing happens. If d(x) > 0, (i) then with

probability 1− α a random neighbor y of x is selected and the opinion of vertex x is set

to ξ(x) = ξ(y); (ii) otherwise (i.e., with probability α) an edge attached to vertex x is

selected and the other end of that edge is moved to a vertex chosen at random from those

with opinion ξ(x). This process continues until the ‘consensus time’ τ , at which there

are no longer any discordant edges—that is, there are no edges connecting individuals

with different opinions.

For α = 1, only rewiring steps occur, so once all of the M edges have been touched,

the graph has been disconnected into G components, each consisting of individuals who

share the same opinion. Since none of the opinions have changed, the components of the

final graph are all small (i.e., their sizes are Poisson with mean γN). By classical results

for the coupon collector’s problem, this requires ∼ M logM updates, see e.g., page 57

in [129]. In the case of sparse graphs considered here M ∼ cN (i.e., M/N → c) so the

number of steps is O(N logN), i.e., when N is large it will be ≈ cN logN .

In contrast, for α = 0 this system reduces to the voter model on a static graph. If the

initial graph is an Erdős-Rényi random graph in which each vertex has average degree

λ > 1, then (see e.g., Chapter 2 of [102]) there is a giant component that contains a

positive fraction, µ, of the vertices and the second largest component is small having

only O(logN) vertices. The voter model on the giant component will reach consensus in

O(N2) steps (see, e.g., Section 6.9 of [102]), so the end result is that one opinion has µN

followers while all of the other groups are small.

Using simulation and finite size scaling, Holme and Newman [34] showed that there is

a critical value αc so that for α > αc all of the opinions have a small number of followers

at the end of the process, while for α < αc “a giant community of like-minded individuals

forms.” When the average degree λ = 2M/N = 4 and the number of individuals per

opinion γN → 10, this transition occurs at αc ≈ 0.46. See [130–133] for recent work on

this model.
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4.2. Evolving Voter Model with Two Opinions

The model studied here differs from that of Holme and Newman in a number of ways.

There are only two opinions (namely 0 and 1) instead of a number proportional to the

size of the graph. On each step, a discordant edge connecting voters that disagree, rather

than a vertex, is chosen at random and is given a random orientation, (x, y), avoiding

the problem of picking vertices with degree zero or vertices that agree with all of their

neighbors. Then with probability α vertex x breaks its edge to y and reconnects to (a)

a vertex chosen at random from those with opinion ξ(x) as in Holme and Newman, a

process labeled as ‘rewire-to-same’, or (b) at random from the graph, a process labeled

as ‘rewire-to-random’; otherwise (i.e., with probability 1− α), the voter at x adopts the

opinion of the voter at y (i.e., set ξ(x) = ξ(y)). The process continues until there are no

discordant edges.

4.2.1. Phase Transition. Suppose, for concreteness, that the initial social network is

an Erdős-Rényi random graph in which each individual has average degree λ > 1, and

that vertices are assigned opinions 1 and 0 independently with probabilities u0 and 1−u0.

Despite the differences in implementation, the rewire-to-same model has a phase

transition similar to that of Holme and Newman. In particular, the final fraction ρ of

voters with the minority opinion undergoes a discontinuous transition at a value αc that

does not depend on the initial density as α varies. Figure 4.1 (left) shows results of

simulations for the rewire-to-same model starting from Erdős-Rényi random graphs with

N = 100, 000 vertices and average degree λ = 4. Opinions are initially assigned randomly

with the probability of opinion 1 given by u0 = 0.5, 0.4, 0.3, 0.2 and 0.1. The figure

shows the final fraction ρ of voters with the minority opinion for each u0 and α. For

α > αc ≈ 0.44, it suggests that ρ ≈ u0 and for α < αc, ρ ≈ 0.

The single difference in the rewiring step in the rewire-to-random model leads to

fundamentally different model behaviors, as seen in Figure 4.1 (right), showing simulation

results for the rewire-to-random model on initial Erdős-Rényi graphs with N = 100, 000

nodes and average degree λ = 4 for u0 = 0.5, 0.4, 0.3, 0.2, and 0.1. When u0 = 0.5,
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Figure 4.1. Fraction ρ of voters with the minority opinion in consensus
state for the rewire-to-same model (left) and the rewire-to-random model
(right). Phase transitions are observed in both models as the rewiring
probability α varies. Simulations start from Erdős-Rényi random graphs
with N = 100, 000 vertices and average degree λ = 4. Opinions are initially
assigned randomly with the probability of opinion 1 given by u0 = 0.5, 0.4,
0.3, 0.2, and 0.1.

the final fraction ρ of voters with the minority opinion is constant at 0.5 over [αc(0.5), 1]

and then decreases continuously to a value near zero as α decreases to zero. For each

initial density u0 < 0.5 there exists a critical value αc(u0), so that the ending density

ρ(α, u0) stays constant at u0 until the flat line (α, u0) hits the curve ρ(α, 0.5) and then

ρ(α, u0) ≈ ρ(α, 0.5) for α < αc(u0). Because all of the ρ(α, u0) agree with ρ(α, 0.5) when

they are less than u0, the graph of ρ(α, 0.5) on [0, αc(0.5)] is called the universal curve.

To further describe the phase transitions, Figure 4.2 plots the average time to consen-

sus at each α for the rewire-to-same model (left) and the rewire-to-random model (right),

showing the same behavior for the phase transitions as in Figure 4.1. In addition, Figure

4.2 distinguishes the time scales for the two different dynamics: voting is slow (requir-

ing O(N2) steps to consensus) while rewiring is fast (requiring only O(N logN) steps to

consensus). The voting dynamic dominates when α < αc(u0) and the rewiring dynamic

takes over when α > αc(u0), yielding the phase transitions seen above.

To confirm that the phase transition at αc for the rewire-to-same model is a dis-

continuity but not a sharp transition under-resolved by the simulation, Figure 4.3 (left)

amplifies the region around the critical value αc ≈ 0.43 and plots the results for three
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Figure 4.2. Average time to consensus as the rewiring probability α
varies for the rewire-to-same model (left) and the rewire-to-random model
(right), showing the same behaviors for the phase transitions as in Fig-
ure 4.1. Each data point in the figure is an average over 100 simulations
starting from Erdős-Rényi random graphs with N = 10, 000 vertices and
average degree λ = 4. Opinions are initially assigned randomly with the
probability of opinion 1 given by u0 = 0.5, 0.4, 0.3, 0.2, and 0.1.

different graph sizes N = 5, 000, 10, 000 and 20, 000. Figure 4.3 (right) shows the corre-

sponding finite size scaling result. The three curves correspond to different system sizes

cross at approximately α − 0.43 = 0 (i.e., αc = 0.43), and they collapse for α < 0.43.

This indicates the following finite size scaling form:

(4.1) ρN = F (α− 0.43),

where F (·) is a function independent of the system size. Therefore, ρ ∼ 1/N → 0 as

N → ∞ for α < αc, and αc ≈ 0.43. The seemingly continuous sharp transition is a

finite size effect, and the transition approaches a discontinuity as N → ∞. Further

explanations for the nature of the transitions are presented in the following sections

along with heuristic arguments for the universal curve ρ(α, 0.5) on α < αc(0.5) in the

rewire-to-random model.

The conclusion drawn from this section is that the system has the following

Phase transition. For each initial density u0 ≤ 1/2 there is a critical value αc(u0) so

that for α > αc(u0), consensus occurs after O(N logN) updates and the fraction of voters
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Figure 4.3. Left: Fraction ρ of voters with the minority opinion in con-
sensus state as the rewiring probability α varies in the region near the
phase transition point αc ≈ 0.43 for the rewire-to-same model. Results
for three different graph sizes N = 5, 000, 10, 000 and 20, 000 are shown
and initial fraction of the minority u0 = 0.5. Right: The same plots as in
the left panel rescaled by the system size. The three curves correspond to
different system sizes cross at approximately α− 0.43 = 0 (i.e., αc = 0.43),
and they collapse for α < 0.43.

with the minority opinion at the end is ρ(α, u0) ≈ u0. For α < αc(u0) consensus is slow,

requiring O(N2) updates, and ρ(α, u0) ≈ ρ(α, 0.5).

Note that αc is independent of u0 in the rewire-to-same model. The behavior of the

models for α > αc is easy to understand. As discussed above, when α = 1 consensus will

be reached in O(N logN) steps and when α = 0 in O(N2) steps. Assume the boundary

between the two dynamics takes N τ (1 < τ < 2) steps to consensus on average. When

an edge is chosen between voters with different opinions, then a rewiring event does not

change the number of ones, whereas a voting event will increase and decrease the number

of ones with equal probability. In other words, the number of ones N1(t) is a random

walk:

N1(t+ 1) =


N1(t) with probability α

N1(t) + 1 with probability 1−α
2

N1(t)− 1 with probability 1−α
2
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By Azuma’s inequality:

P (|N1(t)−N1(0)| > x) ≤ exp(
−x2

2t
), ∀ x > 0.

Substituting in x = ϵN and t = N τ , therefore

P (|N1(t)

N
− N1(0)

N
| > ϵ) ≤ exp(

−ϵN2−τ

2
) → 0, as N → ∞.

The universal curve for α < αc is not trivial and will be examined in the following

sections.

4.3. Quasi-Stationary Distributions

Considering one typical simulation of the rewire-to-random model, Figure 4.4 shows

the changes over time of the fraction N1(t)/N of vertices with opinion 1 and the fraction

N01(t)/M of discordant edges (i.e., edges connecting vertices with different opinions),

starting from an Erdős-Rényi random graph with N = 1000 nodes and M = 2000 edges,

and rewiring probability α = 0.3. The initial density of ones is u0 ≈ 0.3, so the initial

fraction of discordant 0-1 edges is approximately 2u0(1 − u0) = 0.42, but the N01(t)/M

curve drops very quickly to a value near 0.3, and then begins to change more slowly. The

second key observation is that the fraction of 0-1 edges and the fraction of nodes with

opinion 1 appear to be strongly correlated. The initial transient and the reason for the

correlation will be seen more clearly in Figure 4.5.

Figure 4.5 shows results from simulations of the rewire-to-random model with rewiring

probability α = 0.5. The initial graph is Erdős-Rényi with N = 100, 000 nodes and

average degree λ = 4. Observations of the pair (N1(t)/N,N01(t)/M) are plotted every

1,000 steps starting from densities u0 = 0.2, 0.35, 0.5, 0.65, and 0.8. The plotted points

converge quickly to a curve that is approximately (fitting to a parabola) ≈ 1.710x(1 −

x)− 0.188 and then diffuse along the curve until they hit the axis (N01 = 0) near 0.12 or

0.88. Thus the final fraction with the minority opinion ρ ≈ 0.12, a value that agrees with

the universal curve in Figure 4.1 (right) at α = 0.5. This quadratic curve is fundamental
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Figure 4.4. Time series of the fraction N1(t)/N of vertices with opinion
1 and the fraction N01(t)/M of discordant edges in one simulation, starting
from an Erdős-Rényi random graph with N = 1000 nodes and M = 2000
edges, and rewiring probability α = 0.3. The initial density of ones is
u0 ≈ 0.3.

to the understanding of the observed system behavior, and it is referred to as the ‘arch’

hereafter.

The phenomena just described for α = 0.5 also hold for other values of α. Figure 4.6

(right) shows the arches that correspond to α = 0.1, 0.2, ..., 0.7 for the rewire-to-random

model fitted from simulation data of (N1(t)/N,N01(t)/M) as in Figure 4.5. Numerical

results show that the curves are well approximated by cαu(1− u)− bα for the rewire-to-

random model. Let (v(α), 1−v(α)) be the “support interval” where the arch has positive

values. Simulations show that if u0 < v(α), then the simulated curve rapidly goes almost

straight down and hits the axis where N01 = 0.

Though the nature of the phase transition looks different in the rewire-to-same model,

the underlying picture is the same. Figure 4.6 (left) shows arches computed from sim-

ulations for the rewire-to-same model that correspond to the ones in the right panel of

the figure for the rewire-to-random model. However, now all the arches have the same
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Figure 4.5. Evolution of the fraction of edges that are discordant 0-1
edges, N01(t)/M , versus the population of opinion 1 N1(t)/N when α = 0.5
for the rewire-to-random dynamic. Five simulations starting from u=0.2,
0.35, 0.5, 0.65, and 0.8 are plotted in different colors. Each simulation starts
from an Erdős-Rényi graph with N=100,000 nodes and average degree
λ = 4. After initial transients, the fraction of discordant edges behaves as
a function of the population of opinions.
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Figure 4.6. Observed arches for the rewire-to-same model (left) and the
rewire-to-random model (right). The specified parabolas are fits to simu-
lation data with N = 10, 000 nodes and average degree λ = 4.

support interval, (0, 1), and the formulas in the figure show that the curves are well

approximated by cαu(1 − u) for different values of α. Vazquez et al. [131] noticed sim-

ilar behavior that the fraction of active links N01/M plotted versus the fraction of ones

converged rapidly to an arch and then diffused along it (figure 4 in [131]).
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To explain the arches derived from simulations, recall results for the voter model on

the d-dimensional integer lattice Zd, in which each node decides to change its opinion at

rate 1, and when it does, it adopts the opinion of one of its 2d nearest neighbors chosen

at random. Let ξt(x) be the opinion of the voter at x at time t. Holley and Ligget [134]

and Liggett [135] proved the following result.

Theorem 4.3.1. [134, 135] In d ≤ 2, the voter model approaches complete consen-

sus; that is, if x ̸= y then P [ξt(x) ̸= ξt(y)] → 0. In d ≥ 3, if the voter model starts

from product measure with density p (i.e., ξp0(x) are independent and equal to one with

probability p), then ξpt (x) converges in distribution to a limit νp, which is a stationary

distribution for the voter model.

Simulations of the voter model are done on a finite set, typically the torus (Z

mod L)d. In this setting, the behavior of the voter model is “trivial” because it is a

finite Markov chain with two absorbing states, all ones and all zeros. As the next result

shows (Cox and Greven [136]), the voter model has interesting behavior along the road

to absorption.

Theorem 4.3.2. [136] If the voter model on the torus in d ≥ 3 starts from product

measure with density p, then at time Nt it looks locally like νθ(t) where the density θ(t)

changes according to the Wright-Fisher diffusion process

dθt =
√
βd · 2θt(1− θt)dBt

and βd is the probability that two random walks starting from neighboring sites never hit.

The fact that, after the initial transient, N01(t)/M is a function of N1(t)/N suggests

that the evolving voter model has a one parameter family of quasi-stationary distributions

analogues to Cox and Greven [136]. To make it easier to compare the results here

with the previous papers, time is rescaled so that times between updating steps are

exponential with rate M , where M is the total number of edges. Let v(α) = ρ(α, 0.5).
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Two conjectures similar to Cox and Greven [136] are proposed for the two evolving voter

models:

Conjecture 4.3.1. In the rewire-to-random model, if α < αc(1/2) and v(α) < u0 ≤

1/2 then starting from product measure with density u0 of 1’s, the evolving voter model

converges rapidly to a quasi-stationary distribution να,u0. At time tM the evolving voter

model looks locally like να,θ(t) where the density θ(t) changes according to a generalized

Wright-Fisher diffusion process

(4.2) dθt =
√

(1− α)[cαθt(1− θt)− bα]dBt

until θt reaches v(α) or 1− v(α), the two solutions of cαx(1− x) = bα.

Conjecture 4.3.2. In the rewire-to-same model, the behavior is as described in

Conjecture 4.3.1 but now bα = 0, so αc is independent of the initial density u0, and for

α < αc, ρ(α, u0) ≈ 0.

To begin to explain the behavior of θt given in (4.2), note that when an edge is picked

with two endpoints that differ, a rewiring will not change the number of 1’s, while a

voting event, which occurs with probability (1−α), will result in an increase or decrease

of the number of 1’s with equal probability. Hence the quantity under the square root

is (1− α)N01/M with (1− α) equal to the fraction of steps that are voter steps because

rewiring steps do not change the number of ones. When θt = u the rate at which 0-

1 edges are chosen is equal to the expected fraction of 0-1 edges under να,u, which is

cαu(1− u)− bα.

4.4. Evolution of Network Statistics

If the above conjectures are true, then the values of all of the graph statistics can

be computed from N1/N . This is somewhat analogous to a stationary distribution from

equilibrium statistical mechanics—e.g., the Maxwell-Boltzmann distribution associating

the velocity distribution with the temperature. To further test this hypothesis, several
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network statistics are examined for the rewire-to-random model in this section. Results

for the rewire-to-same model are similar.

4.4.1. Joint Distribution of the Opinions at Three Sites. Let Nijk be the number

of oriented triples x-y-z of adjacent nodes having opinions i, j, k, respectively. Note

for example, in the 0 − 1 − 0 case, this will count all such triples twice, but this is the

approach taken in the theory of limits of dense graphs [137], where the general statistic

is the number of homomorphisms of some small graph (labeled by ones and zeros in our

case) into the random graph being studied.

Figure 4.7 shows four plots of Nijk(t)/N versus N1(t)/N for α = 0.5 and u0 = 1/2.

After an initial transient, in each subplot the observed values stay close to a curve that

is well approximated by a cubic polynomial. Because the numbers of 0 − 1 − 0 triples

must vanish when the number of 0 − 1 edges do, the fitted cubic shares two roots with

the quadratic approximating the graph of N01/M versus N1/N .

4.4.2. Degree Distribution. The degree of a node is its number of neighbors. The

degree distribution of an Erdős-Rényi random graph with average degree λ is known to be

Poisson(λ). However, the degree distribution does not remain Poisson(λ) throughout

the process.

Figure 4.8 shows the degree distributions in the consensus state for five simulations

starting at initial density of ones u0 = 0.1, 0.2, 0.3, 0.4 and 0.5 respectively. The initial

graphs are Erdős-Rényi random graphs with N = 100, 000 nodes and average degree

λ = 4. The probability density function of Poisson(4) is shown for comparison. The

rewiring probability is α = 0.6 larger than αc(0.1) but less than αc(0.2). Hence the final

degree distribution starting from u0 = 0.1 is different from others. Regardless, Figure

4.8 indicates that the final degree distribution is close to but not Poisson; however, the

final degree distribution does not depend on the initial density u0 for α < αc(u0). The

skewness in the distributions may be due to the fragmentation of the network in the end.

58



Figure 4.7. Evolution of the number of oriented triples Nijk(t)/N versus
the population with opinion 1 N1(t)/N , when α = 0.5 for the rewire-to-
random model. All simulations start at u0 = 0.5 because multiple runs
from one starting point are enough to explore all of the arch. Each simula-
tion starts from an Erdős-Rényi graph with N=100,000 nodes and average
degree λ = 4. After an initial transient, in each subplot the observed values
stay close to a curve that is well approximated by a cubic polynomial.

Figure 4.9 (left) shows the changes in the average degrees of nodes with opinion 0,

nodes with opinion 1 and all the nodes in the network, against the fraction N0(t)/N of

nodes with opinion 0. Simulations start from Erdős-Rényi random graphs with N =

10, 000 nodes and average degree λ = 3. The initial density of ones u0 = 0.5 and the

rewiring probability α = 0.3. The average degree of the whole network remains the same

simply because the number of nodes and the number of edges do not change during the

process. The average degree of 1-nodes (i.e., nodes with opinion 1) depends linearly
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Figure 4.8. Degree distributions in the consensus state for five simu-
lations starting at initial density of ones u0 = 0.1, 0.2, 0.3, 0.4 and
0.5 respectively. The initial graphs are Erdős-Rényi random graphs with
N = 100, 000 nodes and average degree λ = 4. The probability density
function of Poisson(4) is shown for comparison. The rewiring probability
is α = 0.6 larger than αc(0.1) but less than αc(0.2). Hence the final degree
distribution starting from u0 = 0.1 is different from others.

on the inverse of the fraction of 1-nodes, and so does 0-nodes. To see this relationship

clearer, Figure 4.9 (right) presents the same data in a slightly different way. Denoting

the degree of a node v by d(v) and the opinion of a node v by ξ(v), the average degree

of 1-nodes is calculated as

E[d(v)|ξ(v) = 1] =
1

N1

∑
ξ(v)=1

d(v).

Instead, Figure 4.9 (right) plots
∑

ξ(v)=i d(v)/N for i-nodes against the fraction of 0-

nodes N0/N . The straight lines indicate that
∑

ξ(v)=i d(v)/N is a linear function of

N0/N , and hence E[d(v)|ξ(v) = 0] =
∑

ξ(v)=0 d(v)/N0 is a linear function of 1/N0. In

other words, the number of “stubs” or edge ends in opinion i (i.e.,
∑

ξ(v)=i d(v)) is linear

in the fraction of nodes in opinion i. The two curves correspond to 0-nodes and 1-nodes

cross at N0/N = 0.5 because at that point the system is symmetric under interchange of

0’s and 1’s the the two classes of nodes will be statistically similar.
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Figure 4.9. Left: changes in the average degrees of nodes with opinion
0, nodes with opinion 1 and all the nodes in the network, against the
fraction N0(t)/N of nodes with opinion 0. Simulations start from Erdős-
Rényi random graphs with N = 10, 000 nodes and average degree λ = 3.
The initial density of ones u0 = 0.5 and the rewiring probability α = 0.3.
Right: the number of “stubs” or edge ends in opinion i (i.e.,

∑
ξ(v)=i d(v))

normalized by the total number of nodes against the fraction of 0-nodes
N0(t)/N . The data shown are the same as in the left panel but presented
differently.

One interesting observation from Figure 4.9 is that the average degree of the minority

at the end is approximately 1. Combining with the linear dependence of
∑

ξ(v)=i d(v)/N

on Ni/N , this observation provides an alternative to calculate the population density at

the end. Specifically, assume opinion 0 is the minority opinion at the end, and the linear

relationship

1

N

∑
ξ(v)=0

d(v) = a
N0

N
+ b.

Solving

1 =
1

N0

∑
ξ(v)=0

d(v) = a+ b
N

N0

,

yields

ρ =
N0

N
=

b

1− a
.

4.5. Conclusion

This chapter discusses a model in which the opinions of individuals and network

structure coevolve. Based on a combination of simulations and heuristic arguments it
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is concluded that (i) there is a discontinuous transition in the rewire-to-same model,

similar to that in Holme and Newman [34], which occurs at an αc independent of the

initial fraction u0 of ones; and (ii) there is a continuous transition in the rewire-to-

random model at the critical value αc(u0) that depends on u0, and the curves for the

final fraction ρ(α, u0) of voters in the minority agree with ρ(α, 0.5) for α < αc(u0).

Therefore a small change in the dynamics of the model results in a large change in

the qualitative behavior. Moreover, in the rewire-to-same case, the size of the minority

opinion shrinks to almost zero for α < αc, whereas in the rewire-to-random case, the

group fissions into two, leaving a significant minority group. Conjectures are made on a

family of quasi-stationary distributions of the system, which explain the phase transitions

and the qualitative difference in behaviors of the two models. However, it would be nice

to derive results directly from the exact differential equations and in a way that gives

some insight into the mechanisms underlying the differences between the two models.
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CHAPTER 5

Multi-Opinion Evolving Voter Model

5.1. Introduction

Böhme and Gross [138] have studied the three-opinion version of the evolving voter

model with rewire-to-same dynamics. In this case, the limiting behavior is complicated

— one may have partial fragmentation (1’s split off rapidly from the 2’s and 3’s) in

addition to full fragmentation and coexistence of the three opinions. See their Figures

3–5. As seen in the present chapter, the behavior of the multi-opinion rewire-to-random

model is much simpler because small groups of individuals with the same opinion will be

drawn back into the giant component. This chapter aims to extend the understanding

of the two-opinion model behavior to the same model with large numbers of opinions.

5.2. Multi-Opinion Model

Consider now the k-opinion (namely 1,2,...,k) model in which voters are assigned

independent initial opinions that are equal to opinion i with probability ui. In other

words, ui can be treated as the fraction of nodes with opinion i, and it will change as

the system evolves. Let u = (u1, u2, ..., uk) and let N̸= be the number of edges at which

the endpoint opinions differ. When k = 3, frequencies of the three types must lie in

the triangle of possible values ∆ = {u = (u1, u2, u3) : ui ≥ 0,
∑

i ui = 1}. To preserve

symmetry, ∆ is drawn as an equilateral triangle in barycentric coordinates by mapping

(x, y, z) → (x, z
√
3/2). The top panel in Figure 5.1 plots N̸=(t)/M as a function of the

opinion densities as the system evolves, generalizing the one-dimensional arch observed

for k = 2 to a two-dimensional cap for k = 3. Multiple simulations corresponding to

different initial densities are shown while each one starts from an Erdős-Rényi graph with

N=10,000 nodes and average degree λ = 4.



Generalizing the parabolic form of the arch for k = 2, the high-dimensional arch is

conjectured to be

(5.1) EuN̸=/M =
c2(α)

2

(
1−

k∑
i=1

u2
i

)
− c0(α).

As in the two opinion case, the simulated values come quickly to the surface and then

diffuse along it. In some situations, one opinion is lost before consensus occurs and the

evolution reduces to that for the two opinion case. However, in one of the simulations

shown, the realization ending with x ≈ 0.5, all three opinions persist until the end.

The picture is somewhat easier to understand if looking at the cap from a top view,

where the EuN̸= = 0 level sets for different α are observed to be circles. The bottom

panel of Figure 5.1 plots the EuN ̸= = 0 circles for different α’s fitted from simulation

data using Eq. (5.1) as well as the consensus opinion frequencies from the simulations

(indicated by small circle data points). The two agree with each other up to small sto-

chastic fluctuations. The size of the EuN ̸= = 0 level set then dictates different consensus

state properties. For example, the circle corresponding to α = 0.5 intersects ∆ in three

disconnected arcs. As α increases, the radius of the EuN̸= = 0 level set decreases. When

α > αc(1/2), the critical value of the two opinion model, the circle EuN ̸= = 0 falls fully

inside the triangle, so an initial condition including all three opinions will continue to

demonstrate all three opinions at consensus. For example, the small circles around the

innermost circle give the ending frequencies for several simulations for α = 0.8. If the

initial frequencies fall within the EuN ̸= = 0 circle, then the model will quickly relax to the

quasi-stationary distributions above the circle and then diffuse along the cap until con-

sensus is reached at some EuN̸= = 0 point. If instead the initial frequencies u fall outside

the EuN ̸= = 0 circle—that is, for α above the phase transition point α3(u)—the consen-

sus time jumps from O(N2) to O(N logN), similar to αc(u) for the two-opinion model,

with the final opinion frequencies essentially the same as the initial u. What is new in this

case is that when starting with three opinions and αc(u) < α < α3(u) ≤ α3({1
3
, 1
3
, 1
3
}),

the system always ends up with three distinct opinions.
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Figure 5.1. Top: plot of the fraction of discordant edges versus the popu-
lation of opinions in barycentric coordinates for three opinions and α = 0.5.
Multiple simulations corresponding to different initial densities are shown
while each one starts from an Erdős-Rényi graph with N=10,000 nodes
and average degree λ = 4. Similar to the two-opinion case, the simulations
quickly converge to a parabolic cap of quasi-stationary distributions. Bot-
tom: top view of the parabolic caps of quasi-stationary distributions for
α=0.1,0.2,...,0.8. The parabolic cap Eq. (5.1) are fitted to simulation data
at various α’s and then the level sets EuN ̸= = 0 are plotted, which are
the intersections of the parabolic caps with the N̸= = 0 plane, as the large
circles with colors indicating values of α.
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For k > 3, simulation results indicate the same type of behavior as the system evolves.

Define αk to be the largest α for which consensus takes O(N2) updates when starting

with k opinions with density 1/k for each opinion. Then as k → ∞ the multi-opinion

model has infinitely many phase transitions. When αk < α < αk+1, consensus occurs

after O(N logN) steps if the model starts with k opinions, while if starting with k + 1

equally likely opinions the system quickly converges to a quasi-stationary distribution

and diffuses until consensus occurs after O(N2) updates and there will always be k + 1

opinions present at the end. The associated picture is the natural dimensional extension

of the relationship between the k = 2 and k = 3 models: just as α2 = αc(1/2) corresponds

to the point at which the EuN̸= = 0 circle for k = 3 is the inscribed circle within the ∆

triangle, α3 corresponds to the point at which the EuN̸= = 0 circle reaches zero radius—

that is, the point at which the EuN ̸= = 0 sphere for k = 4 has become the inscribed

sphere within the corresponding barycentric tetrahedron.

5.3. Quantitative Characterization of Quasi-Stationary Distributions

For each k, the multi-opinion rewire-to-random model is simulated starting from k

opinions with each opinion taking 1/k fraction of nodes at random for a wide range

of α’s. Generalizing the picture of the one-dimensional arch for k = 2 and the two-

dimensional cap for k = 3, the number of discordant edges as a function of opinion

frequencies conjectured in Eq. (5.1) is a co-dimension 1 hypersurface characterizing the

quasi-stationary states, and the behavior of the equal-initial-populations case allows to

describe this surface, thereby characterizing behaviors for general initial populations.

The critical αk’s are identified when the slow diffusion of N̸= cannot be observed for

the first time as α increases from 0 to 1. Then N̸=(t)/M is fitted to ui(t) = Ni(t)/N

(i = 1, ..., k) using Eq. (5.1) at every α up to αk, and the fitted coefficients c0 and c2 are

plotted against β = α/(1 − α) in Figure 5.2. Remarkably, the coefficients in Eq. (5.1)

appear to be well approximated by linear functions of β = α/(1− α). The graphs shows

some curvature near β = 0, which may be caused by the fact that β = 0 (α = 0)
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Figure 5.2. Coefficient c0(β) (left) and c2(β) (right) in Eq. (5.1) for mod-
els with multiple opinions. Each value of the coefficients is obtained by
fitting Eq. (5.1) to multiple simulations starting from Erdős-Rényi graphs
with N=100,000 nodes and average degree 4. The fitting error is very small
(R2 ≈ 0.99) except for β close to the critical values.

corresponds to a voter model without evolution of the underlying network. The rest of

the chapter will work with β for simplicity. Naturally, critical points αk translate to

βk = αk/(1− αk).

The fitted coefficients from the 2-opinion model deviate slightly from those fitted

from higher-order models, which implies that Eq. (5.1) is not universal for the multi-

opinion model and higher-order terms are possible. However, while the discrepancy

between the fitted coefficients of the 2-opinion model and those of the 3-opinion one is

apparent, difference between fitted coefficients of higher-order models is negligible, which

implies that the inclusion of higher-order terms beyond the 3rd would not make significant

changes to the equation. To probe the effect of higher-order terms we introduce terms

up to kth order for k opinions. Noting (
∑

i ui)
2 = 1, Eq. (5.1) is equivalent to:

(5.2) EuN ̸=/M = −c0(α) + c2(α)
k∑

i,j=1;i>j

uiuj.
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Figure 5.3. Coefficients c0(β) (left) and c2(β) (right) in Eq. (5.3) for
models with multiple opinions. Each value of the coefficients is obtained
by fitting Eq. (5.3) to the same data as in Figure 5.2.

Given the symmetry of the system in ui’s, the only possible choice in degree-k polynomials

is:

EuN̸=/M = −c0(α) + c2(α)
∑

{i1,i2}∈A2

ui1ui2

+c3(α)
∑

{i1,i2,i3}∈A3

ui1ui2ui3 + · · ·

+ck(α)
∑

{i1,··· ,ik}∈Ak

ui1ui2 · · ·uik ,(5.3)

where Ai is the collection of all i-element subsets of {1, 2, ..., k}. Using the same simula-

tion data as above, N ̸=(t)/M is refitted to ui(t)’s (i = 1, ..., k) according to the general-

ized formula Eq. (5.3) and the fitted coefficients c0 and c2 are plotted against β in Figure

5.3. Fitting diagnostics suggest that higher-order terms are significant from zero (with

p-values < 10−4) and it can be seen that those terms explain the inconsistency between

fitted coefficients of different models in Figures 5.2. However, the difference between the

two fitted functions of Eq. (5.1) and Eq. (5.3) is actually small (≈ .1 in L2-norm) and

thus higher-order terms are small corrections to the hyper-surface Eq. (5.1).

Values of the coefficients ci(β) for the three opinion model near its critical value

β3 ≈ 5.2 show some scatter, but this is to be expected since the surface is very small at
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this point. Values for the four opinion model appear to become more difficult to fit prior

to β4 since EuN̸= = 0 is a three-dimensional hyper-surface in four-dimensional space, so

much more data is required to get reliable estimates of coefficients.

As is visually apparent in Figure 5.3, the coefficients c0 and c2 for the first two terms

in Eq. (5.3) are well approximated by linear functions, with best fits c0(β) ≈ 0.22β and

c2(β) ≈ 1.3 + 0.38β, while coefficients for higher-order terms are not linear in β (e.g.,

see Figure 5.4 for c3(β)). For comparison, the best fits for c0 and c2 in Eq. (5.1) (as in

Figure 5.2) are

(5.4) c2(β) ≈ 1.3 + 0.5β, c0(β) ≈ 0.25β.

Since Eq. (5.1) well approximate the higher-order hyper-surface Eq. (5.3), its simple form

can be used to estimate the critical points for phase transitions. Combining (5.1) and

(5.4), and then solving

(0.65 + 0.25β)(1− k(1/k)2)− 0.25β = 0

gives

βk = 2.6(k − 1) .

which agrees with the critical βk’s identified when the slow diffusion of N̸= cannot be

observed in simulations as β increases.

5.4. Conclusion

The multi-opinion voter model studied here has infinitely many phase transitions.

When βk < β < βk+1, freezing occurs rapidly when we start with k opinions; however,

starting with k + 1 equally likely opinions will always yield k + 1 opinions present at

freezing for this β range (Figure 5.5). A corollary drawn from Figure 5.5 is that when

starting from n > k+ 1 opinions and βk < β < βk+1, the number of different opinions at

the end can be any number between k + 1 and n, and its distribution deserves further

study. To a good approximation βk = 2.6(k − 1), but the departures from linearity in

69



0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

β

c
3

 

 

3 opinions
4 opinions
5 opinions

Figure 5.4. Coefficient c3(β) in Eq. (5.3) for models with multiple opin-
ions. Each value of c3(β) is obtained by fitting Eq. (5.3) to the same data
in Figure 5.2.

0 2 4 6 8 10

2

3

4

5

β=α/(1−α)

# 
of

 o
pi

ni
on

s 
at

 e
nd

 

 

β
2

β
3

β
4

k=3
k=4
k=5

Figure 5.5. Number of opinions observed at freezing for different β =
α/(1− α), starting from k equally likely opinions. Each data point corre-
sponds to a simulation starting from an Erdős-Rényi graph with 100, 000
nodes and average degree 4. Results above βk when starting from k opin-
ions are omitted because the final density of opinions under such conditions
is the same as the initial density.

the plots of c2(β) and c0(β) suggest that this result is not exact. However, formulas

for various quantities associated with this model are close to polynomials, so an exact

solution may be possible.

More complicated rewiring rules might also be considered, particularly if they main-

tained high clustering or other global macroscopic properties. An even more complete
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understanding of the present rewiring system would help motivate similar investigations

for other rewiring rules.
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