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ABSTRACT

VICKI WEST: Comparisons of the Neural Mechanisms of Voluntary, Reflexive, and
Socially-Directed Attention

(Under the direction of Joseph B. Hopfinger)

Visual attention serves to select, from amongst a huge influx of visual information, an

item or location to receive greater processing. This focus of attention can be directed

voluntarily or it can be reflexively captured by a sudden onset or movement. In recent years

another type of attentional orienting has been studied: “social gaze orienting”. In this type of

orienting, the gaze of another person automatically causes one’s attention to shift in the

direction of the gaze. While this attentional shift is automatic in nature, its properties differ

from those typically associated with reflexive orienting, especially on terms of the timing of

facilitation effects. The relations between social gaze cueing, voluntary cuing, and reflexive

cueing are not well understood. The current study explores the similarities and differences

between the neural mechanisms of these types of orienting using event-related potentials

(ERPs). ERPs allow us to explore differences in the neural underpinnings of voluntary,

reflexive, and social gaze orienting that may or may not be exhibited in overt behavior. In

Experiment 1, it was discovered that a localization task at cue-target SOAs of 50-250 and

300-500ms was able to produce significant effects on behavior. In Experiment 2, when

timing was the same for each type of attention (an SOA of 300-500ms), behavioral and early

visual ERP effects were similar for social and voluntary attention, but reflexive attention
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showed a different pattern. In Experiment 3, when timing is varied for each type of attention,

producing the strongest effects on behavior, greater differences between social and voluntary

cuing emerged, as social attention no longer showed any significant effects on early visual

ERPs. In both ERP experiments social attention showed increased amplitude for invalid

targets on late negative component peaking around 420ms after the target. For reflexive and

voluntary attention, in both experiments, this effect is either absent or reversed suggesting

that continued processing that occurs after target response is distinct for social attention.

These new findings suggest that while more similar to voluntary attention, social attention

shows distinct processing at some levels, suggesting it should not be considered equivalent to

reflexive or voluntary attention.
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CHAPTER 1

INTRODUCTION

An enormous amount of information is presented to our sensory systems at any given

moment. The ability to focus upon a subset of this otherwise overwhelmingly complex

environment depends, in part, on mechanisms of attention. These mechanisms of selection

are influenced by voluntary, top-down processes as well as involuntary, bottom-up processes

(e.g. Cheal & Lyon, 1991; Desimone & Duncan, 1995; Jonides, 1981; Müller and Rabbitt,

1989; Posner & Cohen, 1984). Voluntary orienting allows one to consciously pick a location

or an item to receive greater processing; this type of orienting is very flexible but also

requires effort and mental resources. Reflexive attention, on the other hand, occurs

effortlessly with a flash, sudden movement, or other salient event grabbing attention

automatically. These types of attentional orienting serve to provide greater processing of the

attended stimulus in a given modality. For the current study, the modality of primary interest

is vision. When a location or item is visually attended to, it receives greater processing within

multiple visual processing cortical regions. This is evident as increased attention to a

particular stimulus leads to greater activation in visual areas in functional Magnetic

Resonance Imaging (fMRI) studies (e.g. Hopfinger et al., 2000; Kasnter et al., 1999; Liu et

al., 2005), greater amplitude in neural responses measured at occipito-parietal scalp locations

by event-related potentials (ERPs) (e.g. Van Voorhis & Hillyard, 1977; Mangun and Hillyard,

1991; Mangun et al, 2000; Hopfinger & Mangun, 1998;2001), and greater accuracy and

faster reaction times to the attended versus unattended stimulus (e.g. Posner, 1984). Other
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modalities (e.g., touch, audition) show similar enhancements in processing (Tracey et al,

2002; Petkov et al., 2004), although the current study will focus on visual attention.

In recent years, another type of visual attention, social gaze orienting, has been

explored (Friesen & Kingstone, 1998; Driver, 1999). Social gaze orienting occurs when one

orients attention to a location being overtly attended to, or looked at, by another person.

Experimentally, it is generally explored with a photograph or drawing of a face, which moves

its eyes to either the left or right before a target appears on either the same side, or the

opposite side of the gaze. When the target appears on the same side as the gaze, participants

are generally faster and/or more accurate at detection, discrimination, and localization tasks

than when the target appears on the opposite side (e.g. Driver et al., 1999; Friesen &

Kingstone, 1998). The effect has even been found when rhesus monkeys are viewing gaze

cues from another monkey (Deaner & Platt, 2003). Interestingly, this effect seems automatic,

but it also seems to differ from reflexive attention in terms of timing as will be described in

more detail below. The current study explores voluntary orienting, reflexive orienting, and

social gaze orienting and seeks to provide a better understanding of the similarities and

differences in these types of orienting.

Specifically, ERPs were used to explore the neural response to target processing

following each type of cue. While behavioral measures can provide a good understanding of

overt differences, ERPs can provide us with information on differences at the neural level

which may or may not exhibit themselves in specific behavioral measures (e.g. Handy et al.,

2001). This is important as the simple behavioral studies that are often designed to study

attention may not be able to pick up subtle differences that could affect the complex

behaviors in which attention is engaged in the real-world.
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Three Distinct Mechanisms of Attentional Orienting

Voluntary Orienting

Voluntary attention refers to when one purposefully selects a space or object to which

to attend. This is a top-down process of effortfully selecting a location to which to attend.

Experimentally, voluntary attention is often produced with the occurrence of a central

symbolic cue, indicating which target location a participant should attend to. For example,

the letters R and L appearing at fixation could serve as a voluntary cue instructing the

participants to attend to the right or left target location, respectively. Usually, the target will

be either predictive or instructive in order to encourage the participants to utilize the cue and

shift their attention to the valid location. In the case of a predictive cue, the target would

occur at the valid location on the majority of the trials (usually between 70% and 80% of the

time) (e.g. Posner et al., 1978). In the case of an instructive cue, participants are told to

respond only to targets that occur at the valid location and to ignore those that occur at the

invalid location (e.g. Clark and Hillyard, 1996; DiRusso et al., 2003; Hopfinger and West,

2006). When participants orient attention in response to a voluntary cue, there is facilitation

in the processing of a target that subsequently appears at the valid location making

participants’ responses to these targets more accurate and/or faster than the invalid location.

In voluntary cueing paradigms the cue-target stimulus onset asynchrony (SOA; the timing

from the onset of one stimulus to the onset of the next) is usually greater than 300 or 400ms

in order to allow participants enough time to shift attention. The facilitation can last a very

long time (e.g. 2000ms) as long as the participant has motivation to keep attention engaged at

the valid location (e.g. Posner et al., 1980; Müller and Rabbitt, 1989). In a 1980 study,
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Posner and colleagues not only compared valid and invalid trials, but they also compared

both types to neutral trials, in which no information was provided about where the target was

likely to occur. They found that responses to valid trials were faster than those to neutral

trials, which suggest a benefit of attending to the target location ahead of time. Responses to

invalid trials, on the other hand were slower than those to neutral trials, suggesting an extra

cost of attending to the incorrect target location, above and beyond the deficits of attending to

a neutral stimulus.

Reflexive Orienting

While voluntary orienting requires purposefully directing one’s attention, reflexive

attentional capture is automatically triggered by external events (e.g. Yantis and Jonides,

1984; Jonides, 1981). A sudden flash or movement may reflexively capture your attention to

a particular location. This is an example of a bottom-up process of attentional capture

triggered by basic sensory processes. Experimentally, reflexive attention is often produced

with a periphera1, sudden onset or offset at a target location. In most reflexive cueing

paradigms, the cue is non-predictive and the participants are instructed to ignore the cue in

order to ensure that the cue is creating an automatic capture of attention. The timing of

reflexive attentional capture greatly differs from that of voluntary attention. At short cue-

target SOAs, up to about 300ms, the reflexively valid location shows similar target

facilitation to that which is produced in voluntary cueing paradigms. That is, targets at the

valid location produce faster and more accurate responses than targets appearing at the

invalid location. However, after about 300ms the pattern is drastically different and the



5

invalid targets are actually responded to more quickly and accurately, a phenomenon called

inhibition of return (IOR) (Posner & Cohen, 1984).

Differences between Voluntary and Reflexive Attention

Studies have long pointed to a myriad of behavioral differences between voluntary

and reflexive attention including, as mentioned above, timing differences. Reflexive attention

produces its maximum facilitory effects at short cue to target SOAs up to about 300ms.

Around this time IOR occurs and the target processing at the valid location is actually

diminished while target processing at the opposite location is facilitated (Posner & Cohen,

1984). Interestingly, it is at these longer cue-target SOAs in which voluntary attention asserts

it greatest facilitation effects at the valid target location (e.g. Posner et al., 1980; Müller and

Rabbitt, 1989). As well as timing differences, the functional roles that reflexive and

voluntary attention play in basic perception have been found to differ. For instance, reflexive

attention seems to play a role in the binding of conjunctions of features in object recogntion,

while there is no evidence that this occurs with voluntary attentional orienting (Briand and

Klein, 1987; Briand, 1998).

ERP and fMRI evidence has suggested the possibility that voluntary and reflexive

attention arise from two separable attention systems (e.g. Mayer et al., 2004; Mort et al.,

2003; Hopfinger and West, 2006). FMRI studies suggest that when using times in which

reflexive and voluntary attention normally exert their greatest facilitory effects they employ

different brain areas in covert orienting tasks (Mayer et al., 2004) and overt saccade tasks

(Mort et al., 2003). In a recent ERP study, Hopfinger and West (2006) looked at reflexive

and voluntary cues occurring within the same trial and found that voluntary and reflexive
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attention were asserting opposite effects on neural processing at overlapping times during

early extrastriate processing of target stimuli following the two types of cues. The evidence

suggesting that reflexive and voluntary orienting are two separate attentional systems raises

the question of where social gaze orienting may fit into these systems. It seems possible that

social attention could be similar to voluntary orienting as it involves the use of a central

symbolic cue, but it also seems to be an automatic process, like reflexive orienting, that does

not involve effortful orienting.

Social Gaze Orienting

The relationship between the direction of a faces’ eye gaze and the viewer’s spatial

attention has been extensively studied in recent years beginning with simple experiments

using line drawings of faces. Friesen and Kingstone (1998) found that non-predictive gaze

cues produced automatic attentional orienting toward the gazed at location for detection,

localization, and identification tasks even though the participants in the study were informed

that the gaze was not predictive of where the target would occur. In a similar study, Driver

and colleagues (1999) used pictures of real faces, and explicitly told participants to try to

ignore the faces. They found that targets in the gazed at location were automatically attended

and responded to faster, even when the participants knew that the gaze direction was counter-

predictive (80% of the time the target appeared in the opposite location of the gaze).

In a 2006 study, Bayliss and Tipper found that even in the strongest case, where gaze

cues for some specific faces were 100% counter-predictive, participants still followed the

gaze of a face on the screen. Throughout the experiment, half of the faces were always non-

predictive (the target would appear at the gazed at location 50% of the time), one quarter of
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the faces were 100% predictive (the target would always appear at the gazed at location), and

one quarter were 100% counter-predictive (the target would always appear in the opposite

location of the gaze). Forty different faces were used over 480 different trials within the

experiment. The authors found that whether participants were completing a categorization

task or a localization task, and whether a particular face was predictive, non-predictive, or

counter-predictive, the standard gaze-cueing effect was produced, in which there were fewer

errors and faster reaction times when the target appeared at the gazed at location compared to

the invalid location. Interestingly, at the end of the experiment, participants tended to choose

the predictive faces as “more-trustworthy” suggesting that at some level, they were able to

pick up on the different contingencies, but still were unable to ignore the gaze direction of

“untrustworthy” faces.

Due to its automatic nature, gaze cue orienting is often thought to be similar to

reflexive orienting, although evidence suggests that it differs from the classic idea of

reflexive orienting. For example, patients with frontal-lobe damage are able to orient

attention normally to reflexive peripheral cues, but have problems using central symbolic

cues such as words, and also show deficits in orienting to gaze cues (Vecera & Rizzo, 2006).

Friesen and Kingstone (2003) directly compared reflexive orienting from a typical peripheral

onset cue and orienting produced by a gaze cue by combining both types of cue into a single

trial. The fixation display consisted of one circle in each of the four visual quadrants of the

screen. The cue was the abrupt onset of a set of eyes (gazing at one of the other circles or

straight ahead), a nose, and a mouth. This abrupt onset, gaze cue was followed by the target

event (the offset of one of the circles) at the location of the gaze direction, the location of the

abrupt onset, or one of the invalid locations. By having simultaneous reflexive and social
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gaze cues, the authors showed that these two types of attentional orienting produced opposite

effects at the same SOA. At the longer SOAs where the abrupt onsets produced IOR, the

gaze cue still produced facilitation for the gazed at location. This study also provides

evidence that gaze cues do not produce IOR, and continue to produce facilitation for a longer

time than peripheral abrupt onset cues, with SOAs as long as 1005ms.

Because gaze cues are central and symbolic they resemble voluntary cues also. In a

more recent study, Friesen, Ristic, and Kingstone (2004) looked at the effects of competing

gaze cues and top-down voluntary orienting by explaining to participants that gaze cues were

counter-predictive. Therefore, the gaze cue would be directing participants’ attention in one

direction and their volitional control would be directing them in the opposite direction. There

were four possible target locations which meant in each trial the target could appear at the

gaze cued location, the predicted location (opposite the gaze cue), or one of the neutral

locations. The authors found that processing of targets that appeared at both the valid

location and the predicted location was enhanced. Interestingly, the faster reaction times for

the social gaze cued targets occurred when the cue-target SOA was 105ms or 600ms, but

disappeared at an SOA of 1200ms. For the predicted targets, the facilitated reaction times

began for SOAs of 600ms and were present for the 1200ms and 1800ms SOAs as well. It is

especially interesting that at the 600ms SOA, both the social gaze cue and the predictive,

voluntary orienting were producing facilitory effects on target processing in opposite

directions. This provides evidence of separable independent systems controlling social gaze

orienting and voluntary orienting.

A 2005 study by Friesen, Moore, & Kingstone tested whether the robust gaze cueing

effect is due to gaze direction triggering an automatic attention shift, or whether it is simply



9

the abrupt onset of the target triggering the shift, with this shift simply being modulated by

the congruency with the gaze direction. They found that the gaze cueing effect for a single

lateralized sudden onset target was the same as that for a lateralized peripheral onset that

occurred simultaneously with another peripheral onset at the opposite target location,

suggesting that the gaze cue, and not the sudden onset, produced an automatic attention shift.

In a paradigm similar to those presented above, Langton and Bruce (1999) looked at

another type of joint social attention cue. Rather than the centrally presented face moving its

gaze, the entire head would turn in one of four directions: up, down, left or right. Both

predictive and non-predictive cues produced an effect very similar to the gaze cueing effect

reported above, where responses were faster for targets that appeared at the valid locations,

but this effect was only found with a 100ms cue-target SOA and was absent at longer SOAs

(500ms and 1000ms). The effect also disappeared when the face was turned upside down

suggesting that the effect of the cue is related to the social nature of the complete face and

not just the movement of the eyes.

Gaze cues have also been found to interact with other types of social variables such as

facial expression. While some studies find no evidence of an interaction between facial

expression and gaze cueing (Hietanen & Leppänen, 2003), many show that under certain

circumstances, an interaction is present. For example, a recent study (Tipples, 2006)

compared happy, fearful, and neutral faces and found that while the cueing effect for happy

faces did not differ from that for neutral faces, the fearful faces produced a greater cueing

effect than the neutral faces. However, in a 2005 study, Hori and colleagues compared happy

and angry faces to neutral faces of males and females and found that happy faces did produce

faster responses to targets that were congruent with gaze, but only for female faces. There
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were no other interactions between sex, facial expression, and gaze cue. Another study points

to possible reasons why some studies do not find interactions between facial expression and

gaze cue. Similar to the findings of Tipples (2006), Mathews and colleagues (2003) found

that fearful faces could lead to an increased gaze cueing effect. In this study though, high

anxiety participants and non-anxious participants were studied separately, and only the high

anxiety participants showed this increased cueing effect for fearful faces. These interactions

between facial expression and attentional cueing offer more evidence that the gaze cueing

effect has a distinctly social component and that it is not simply a sub-type of the classically

defined reflexive or voluntary attention.

A study by Ristic, Friesen, & Kingstone (2002) also pointed to the social component

of the gaze cueing effect by comparing the effects of the non-predictive eye gaze cues, to

non-predictive central arrows, which also produce automatic orienting. The arrows and gaze

cues produced very similar effects in both adults and in preschool aged children, but

interesting differences were observed in split-brain patients who showed reflexive orienting

to non-predictive arrows in both visual fields. A previous study of two split brain patients

who show face processing advantages in opposite hemispheres suggested that gaze cues only

produce reflexive orienting when the gaze cue projects to the hemisphere specialized for face

processing (Kingstone, Friesen, and Gazzaniga, 2000). This subtle difference suggests that

there is something special about social gaze orienting.

Behavioral measures of accuracy and response times have been able to provide a

basic platform of information on how all three types of attention discussed here (voluntary

orienting, reflexive orienting, and social gaze orienting) operate. Specifically, behavioral

evidence has suggested that, at certain cue-target SOAs, all three types of orienting lead to
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increased accuracy and faster reaction times at the valid location, suggesting greater visual

processing of the target stimulus. However, it is important to point out that overt behavioral

measures do not always provide a complete understanding of how perception is being

enhanced (e.g Handy et al., 2001). Therefore, it is necessary to explore perceptual

enhancement with the use of ERPs. ERPs provide a greater understanding of these attentional

mechanisms, as they can provide us with information on the timing of the underlying neural

processes that give rise to the overt behavioral effects. They allow us the opportunity to

explore the rapidly occurring differences in neural processing taking place in a matter of

milliseconds. Therefore, while the currently employed behavioral measures show similar

overt validity effects, the underlying neural mechanisms may be different. Again, behavioral

studies are carefully controlled and are designed to explore specific properties of perception

and performance (usually accuracy and reaction time) and may not be able to pick up subtle

effects on performance that could be represented in ERP waveforms. ERPs of voluntary and

reflexive attention have been studied extensively, while less information is available on the

underlying neural mechanisms of target processing following a social gaze cue.

Event-Related Potentials of Attentional Orienting

Behavioral facilitation can be produced by a number of different types of neural

responses. Faster reaction times could be due, for example, to an increase in the strength of

the signal measured by ERPs, or to faster latencies of the processing response. Also, the

underlying activity could be produced in a number of different areas, exhibiting themselves

in the topography of the ERPs. Therefore, ERPs can allow us to find distinct differences
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between the different types of attentional orienting in addition to, and even in the absence of,

obvious behavioral differences.

Voluntary Orienting

Voluntary attention effects on visual evoked potentials have been found to be fairly

consistent over many years. The earliest visual ERP component, the striate generated C1 or

NP80 component, has not been found to be affected by voluntary attention (e.g. Martinez et

al., 1999; Di Russo et al., 2003). The NP80 occurs at about 50-60ms after the onset of the

target and can be seen as a negative or positive peak in the waveform depending on where in

the visual field the target stimulus appears (e.g. DiRusso et al, 2003). This component is not

even affected in possibly the strongest case of attentional modulation when both a voluntary

cue and reflexive cue direct attention to the same target location (Hopfinger & West, 2006).

The later, extrastriate generated, P1 component however, has been shown to be

significantly enhanced by voluntary attention (e.g. Eason et al., 1969; VanVoorhis &

Hillyard, 1977). The increase in amplitude is often evoked using a task that involves the

detection of infrequent peripheral targets amongst frequent ones (e.g. Clark & Hillyard,

1996; DiRusso et al., 2003; Heinze et al., 1994; Mangun and Hillyard, 1991; Martinez et al.,

1999). In these studies, attention is usually directed by instructing the participant to pay

attention to either the left or right visual field at the beginning of a block, or with an arrow

pointing to possible target locations throughout the block. In a 1997 study, Mangun and

colleagues found that the difficulty of the task can affect the size of the P1 attention effect. A

difficult task, requiring subjects to decide if two symbols on one side of the visual field

matched one another, produced a greater attention effect at the timing of the P1 component.
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This was in comparison to a simpler task involving the detection of a dot that appears

amongst the symbols. It is important to note, however, that the dot (simple detection) task

still produced a significant amplitude increase at the timing of the P1 component for valid

trials compared to invalid trials, but the effect was larger for the more difficult task. Handy

and Mangun (2000) also found that manipulation of the task can affect the amplitude of the

P1 component. The authors looked at the effects of varying levels of perceptual load. The

discrimination of the targets in the low load was a fairly easy discrimination, where as in the

high perceptual load, the possible targets were more similar and harder to distinguish from

each other. The authors found that the high perceptual load conditions can produce a greater

P1 attention effect.

The amplitude of the extrastriate generated N1 component has similarly been found to

be enhanced with voluntary attention, and some studies also suggest that this N1 amplitude

effect may depend on task and stimuli parameters (Handy & Mangun, 2000; Vogel & Luck,

2000). As well as finding an effect of perceptual load on P1 amplitude, Handy and Mangun

(2000) found that the visually evoked N1 component in this experiment only showed

significant attentional enhancement in the high visual load task. Rather than increasing the

perceptual load, Vogel and Luck (2000) looked at the effects of changing the task that

participants completed. Rather than comparing the attention effects on the N1 component,

they simply compared the amplitude of the N1 component for central targets that required a

discrimination judgment to those that simply required detection. They found that the N1

component had greater amplitude for targets that required discrimination than those in the

simple detection task.
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The main voluntary attention effects that are observed in the early visually evoked

ERPs to target stimuli are seen in the modulation of the amplitude of the early P1 and N1

components. These differences can vary by hemisphere of the brain, and specifically are

usually stronger and occur earlier in the hemisphere contralateral to where the target is

appearing as this hemisphere’s striate and extrastriate cortex first process the incoming visual

information. While behaviorally, faster reaction times are often observed for valid trials

compared to invalid trials, latency differences in the early components of the visual ERPs are

not typically observed with voluntary attention tasks.

Later latency components have also exhibited amplitude increases in the absence of

latency differences for increased attentional allocation. For example, Mangun and Hillyard

(1990) found that the amplitude of the P300 (occurring 400-800ms after the onset of the

target stimulus) component increased when attention was 100% focused on the target

location compared to when it was divided 50/50 between the two target locations. In this case,

the amplitude was greater than when attention was 100% at the opposite target location. The

P300 component indexes higher order cognitive processing such as human information

processing. It is specifically related to the perceived relevance of a stimulus, and is also

involved in context updating (Donchin, 1981; Duncan-Johnson & Donchin, 1982). This

suggests that participants may perceive voluntarily valid items as being more important and

relevant. Another line of research suggests that the P300 ERP component is also a marker of

attentional orienting in response to an odd, novel, or infrequent stimulus (e.g., Ritter, Vaughn,

& Costa, 1968; Roth, 1973, Squires, Squires, and Hillyard, 1975). In a typical oddball task,

an infrequent target is interspersed with frequent distracters and participants are required to

respond to the odd target. A three-stimulus paradigm, in which a novel stimulus is present in
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addition to the frequent distracters and infrequent targets, suggests there are two different

distributions of the P300 component. The P3b component has central parietal distribution and

is elicited in the three-stimulus paradigm to the infrequent target stimuli. The P3a, which has

a more anterior distribution is elicited by novel stimuli, such as a dog bark presented in a

pitch discrimination task (e.g. Courchesne et al., 1984; Knight, 1984).

Reflexive Orienting

Visually evoked ERPs of target processing following reflexive attentional cues have

similarly been found to produce amplitude differences in some components, while latency

differences are, again, typically absent. Hopfinger and Mangun (1998; 2001) found evidence

that exogenous attention produces modulations in one early sensory component similar to the

modulations produced by voluntary attention. With both high load (target discrimination) and

low load (simple detection) tasks, the authors found that the level of processing indexed by

the P1 was the first level of processing to be affected by a peripheral abrupt onset. At short

SOAs (34-234ms), where one would expect facilitation of target processing in behavior, the

P1 amplitude was enhanced, while at longer SOAs (566-766ms), during the time range in

which one would expect IOR in behavior, the P1 was not enhanced (also replicated in

McDonald et al., 1999; Prime and Ward, 2004). In fact, when participants were completing a

discrimination task, the P1 at long SOAs was significantly reduced for valid targets

compared to invalid targets (Hopfinger and Mangun, 1998).

Unlike with voluntary attention, the level of processing indexed by the N1 component

was not enhanced even in the discrimination task. Some studies, in fact report a reduction in

the N1 amplitude at valid target locations (e.g. Fu et al., 2001), but other studies suggest that



16

the cueing effect on the P1 is simply extended over a longer period of time, pulling the N1 at

valid locations more positive, rather than the invalid location being enhanced (e.g. McDonald

et al., 1999; Hopfinger and Ries, 2005).

Later latency components such as the P300 have been explored in reflexive attention

paradigms as well. Again, the P300 component indexes later stages of information processing

such as the perceived relevance of a visual stimulus. Similar to voluntary attentional

modulation, reflexive cueing of a visual target has been found to lead to an increase in P300

amplitude when SOAs are short enough to produce facilitation. This suggests that the

reflexive cue leads subsequent valid targets to be considered more relevant to the task (e.g.

Hopfinger & Mangun, 1998; 2001).

Social Gaze Orienting

A few recent studies have used ERPs to explore the role of gaze cues on subsequent

target processing. As this is the least explored of the types of orienting, the three studies that

exist will be more thoroughly discussed than those exploring voluntary and reflexive

attention. Schuller and Rossion (2001) used a non-predictive gaze cue and replicated the

behavioral finding that participants were faster at responding to the location of a target that

appeared in the gazed at location as compared to the opposite location. The ERPs to these

targets suggested this social cue is able to affect neuronal processing of the visual target at

the stage of processing indexed by the P1 and N1 components. Specifically, a latency shift

and an amplitude increase were observed in both of these components, where valid targets

produced earlier and larger components compared to invalid targets. The latency differences

are especially interesting as most experiments using reflexive peripheral cues or symbolic
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central cues primarily find amplitude differences, but rarely find latency differences. While

no latency difference was reported for the P300, the author did report increased amplitude of

this component for invalid trials. This is at odds with voluntary and reflexive paradigms that

have produced increased P300 amplitude for valid trials, but the authors did not discuss this

finding.

In a following study, Schuller and Rossion (2004) addressed a shortcoming of their

original study. In their first study, each trial began with the face stimulus looking straight

ahead, after which the eyes moved either towards the left or the right, thus possibly

producing a confounding movement cue as well as a social gaze cue. The movement in one

direction or the other could produce a typical reflexive cue for the target location in the

direction of the eye movement. In the 2004 study, they used a similar paradigm but in this

case the eyes would be directed to either the left or the right when the face appeared at the

beginning of the trial (to eliminate the movement cue). Then, after a 500ms SOA, the target

appeared in a location either congruent or incongruent with the gaze direction. This study

also included the addition of neutral trials in which the gaze was straight ahead throughout

the trial. The previous study found that when the target was valid it produced increased

amplitude and shorter latency for both the P1 and N1 components compared to when the

gaze was in the opposite direction of the target. This allows for the possibility that visual

processing of the cue targets is enhanced and speeded or that the processing of the invalid

targets is diminished and slowed. The addition of neutral cues allows the authors to explore

whether this social gaze cue produces a benefit for valid stimuli and/or a cost for invalid

stimuli. The behavioral findings for this study suggest that the cue produces a benefit for the

valid location, but not a cost for the invalid location as reaction times to valid targets were
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significantly faster than those to neutral or invalid targets, but there was no significant

difference between reaction times for neutral and invalid targets. The latency of the

extrastriate P1 component showed a similar pattern to the reaction times, as the valid target

produced a P1 with a significantly earlier peak than the neutral or the invalid targets. There

was no significant difference in latency between the neutral and invalid targets. While there

was no significant main effect of validity on amplitude of the P1 component, there was an

interaction between congruency and hemisphere, where the right hemisphere exhibited a

significantly larger P1 for valid targets compared to neutral and invalid targets; there was no

difference in amplitude for the neutral and invalid trials. The left hemisphere showed no

significant amplitude difference due to congruency.

The N1 component showed similar modulation by the gaze cue. The N1 peak

occurred significantly sooner for valid targets as compared to neutral or invalid targets (with

no significant difference in latency for neutral compared to invalid targets). However, when

accounting for the P1 latency differences, there was no significant additional speeding of the

target processing for valid targets. The main effect of congruency on amplitude on the N1

component approached significance (p=0.069) with the valid targets producing a larger N1

component than neutral and invalid targets. Similar to the P1 component, there was an

interaction between hemisphere and congruency where the valid targets produced a

significantly greater amplitude N1 component than the neutral or invalid trials in the right-

hemisphere; again there was no significant difference between neutral and invalid targets and

there was not a significant congruency effect in the left hemisphere. The results of this study

suggest that even without the movement cue produced by the eyes shifting, there are

differences in amplitude and latency of the P1 and N1 components for targets that are
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preceded by a congruent eye gaze cue compared to those that are not. The addition of a

neutral condition allowed the authors to conclude that the gaze cue produced an enhancement

and speeding of processing for valid targets and not an inhibition in processing invalid targets.

The same group again found similar results in a more recent study (Schuller and

Rossion, 2005). In this study, instead of the asterisk used in the previous studies, the target

consisted of a checkerboard pattern stimulus. This larger stimulus is able to produce a larger

neural response. While the SOA in the previous experiments (Schuller and Rossion, 2001;

2004) remained constant at 500ms, it varied between 500 and 700 ms in this study. The other

main difference in this study was that rather than appearing just to the left and right of the

face, targets in this study could appear in each of the four quadrants of the screen (upper left,

upper right, lower left, lower right). This manipulation allowed the authors to explore

processing indexed by the C1 ERP component which can be a positive wave or a negative

wave depending on the visual field in which it is presented. The authors found no evidence of

a gaze cueing effect during the timing of the C1 component, but did find similar P1 and N1

effects as in their previous studies. They found that targets congruent with gaze direction

produced earlier and larger P1 and N1 components.

Each of the three types of attentional orienting explored here (voluntary, reflexive,

and social gaze orienting) seem to lead to facilitation of processing at the valid locations, as

indexed by both behavior (reaction times and/or accuracy measures) and by ERPs. While

voluntary and reflexive orienting have been studied for many years, the exploration into the

cueing effects produced by social gaze cues is comparatively new. The behavioral evidence

that suggests IOR does not occur in social gaze orienting suggests that it is a different process

than what occurs in peripheral reflexive orienting. While these few ERP studies of social
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gaze orienting seem to suggest that the underlying neural signature of this social orienting is

different from both reflexive and voluntary orienting, no studies directly compared these

three specific types of attention in a within-subject design. Also, no studies with which I am

familiar has explored voluntary or reflexive attention at the timing used in these ERP studies

exploring social gaze orienting. It is also important to point out that all three experiments

exploring the ERPs of social gaze orienting use a localization task in which participants are

required to respond to the location of a lateralized target. Again, no studies, to my knowledge,

have used this type of task in a voluntary or reflexive cueing paradigm. The ERP studies of

social attention show latency differences in early visual processing components, but it is

unclear if these difference are related to the use of a social attention cue, or if they are due to

varying stimuli, tasks, and timing. By using the same subjects, the same timing, and the same

task with social gaze orienting, voluntary orienting, and reflexive orienting, strict controls are

provided and the neural responses underlying target processing can be compared.

Current Study

The current set of experiments explores the similarities and differences between

voluntary, reflexive, and social gaze orienting in typical young adults. Previously, social gaze

orienting has been shown to be an automatic process as it occurs even in situations where it is

not beneficial, and in some cases even harmful for performance to follow the gaze of a face.

However, behavioral differences between reflexive and social gaze orienting have been

found. Specifically, some studies suggest that gaze cues, unlike reflexive cues, do not

produce IOR (Friesen & Kingstone, 2003), and in fact, produce facilitation at the valid

location long after reflexive attention effects typically disappear. Therefore, it is unclear what
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similarities and differences exist between social gaze orienting, reflexive orienting, and

voluntary orienting.

Previous studies have used ERPs to look at the neural processing of targets following

social gaze cues (Schuller & Rossion, 2001; 2004), but to our knowledge, none have directly

compared the three types of attention using similar targets, attempting to control for timing

differences, or in within-subjects design. Also, all of the ERP studies looking at social gaze

cueing have used a task (localization) that has not been explored using voluntary or reflexive

orienting. This study is specifically designed to look at ERP responses to the same target

stimuli over three different types of attention cue: (1) a voluntary, central symbolic cue, (2) a

reflexive peripheral flash, and (3) a social gaze cue. This design allows for the exploration of

how these types of cues affect targets processing differently, as opposed to only providing

information on how the valid trials compare to invalid trials for each of the cues separately.

Using ERPs as well as collecting behavioral responses allows us to explore how difference in

behavior may be related to specific differences in amplitude and latency of components in the

ERP waveform. Exploring amplitude, latency, and topographic (where on the scalp the

components are localized) differences in ERP components between the three types of

attentional orienting provides a greater understanding of why subtle behavioral differences

are often seen
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EXPERIMENT 1A: PILOT STUDY; SOCIAL DISCRIMINATION

Experiment 1a explored the behavioral cueing effect of our social gaze stimuli and

explored the effects of different SOAs on accuracy and reaction time with the current stimuli.

This was done so I could be confident that the cueing effects found previously can be

reproduced. Most of the gaze cue studies discussed above have used actual photographs of

faces as cues. For the current study, a realistic face with straight and diverted gaze was

created using POSER software (Version 6; by e-frontier/Curious Labs, Scotts Valley, CA).

The stimuli were created with this software to allow complete control over symmetry in

lighting, facial features, and background conditions which are hard to control for in

photographs of real faces. Because responses to targets appearing laterally are measured, it is

important that there are no physical differences between the left and right side of the cue

stimulus that may lead to participants favoring one side over the other. Creating gaze stimuli

also allows for the creation of more realistic scenarios than are often used in gaze cueing

experiments. In most gaze cueing experiments, a diverted gaze is followed by a peripheral

target appearing in mid air on either side of the face. We were able to make the target appear

more realistic by adding cylinders that act as place holders out of which the targets appear to

pop.

This experiment served as a pilot study to ensure that the behavioral effects found

with photographs of faces can be replicated using our created face. Also, a wide range of

SOAs has previously been found to produce facilitory cueing effects, so this experiment
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explores the behavioral effects produced with the gaze cues at the timing normally associated

with robust reflexive cueing effects, the longer SOAs associated with robust voluntary cueing

effects, and a middle range SOA which has previously been found to produce robust social

gaze cueing effects. This will provide an understanding of what timing best produces the

facilitory effects of the gaze cue on target processing with the current stimuli.

For the ERP study, a difficult discrimination task was preferred to delay the response

in the ERPs due to motor preparation. Most previous studies exploring social gaze orienting,

however, use either detection or localization tasks.

Methods

Participants

Participants consisted of 13 undergraduate students (all females) with a mean age of

18.5 years old (range-18-19). All participants had 20/20 or corrected to 20/20 vision,

determined by self report. Participants were recruited through the participant pool of the

University of North Carolina at Chapel Hill. In return for their participation, they received

credit towards the completion of their General Psychology class.

Materials and Procedure

Throughout the experiment, a male face constructed with POSER software was

presented centrally on the screen. A target consisting of either a blue or purple ball occurred

on either side of the face. A trial began with the face moving its eyes towards either a left or

right peripheral location. After a variable cue-target SOA, the target appeared to either the

left or the right side of the face for 100ms. The eyes return to the center of the screen after

600ms, and a new trial began after a variable inter-trial interval (ITI). (See Figure 2 for and
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example of the events in one trial). The target was non-predictive and was just as likely to

occur in the valid location (the direction in which the eyes look) as the invalid location. Short

(50-250ms), mid-length (300-500ms), and long (600-800ms) SOAs were each run in separate

blocks. As well as varying between blocks, the SOAs in each block varied within the block

(with a 200ms range). This timing was specifically being explored for a later ERP study.

During the ERP study, the SOAs for each condition need to be jittered, or variable, in order

to complete the adjacent response (Adjar) technique which has previously been used to

remove overlapping activity of the cue and target. This is necessary due to their close

temporal proximity (Woldorff, 1993; Hopfinger & West, 2006). The ITIs were 1200-1700ms

in the long SOA blocks, 1500-1700 for the middle SOA blocks, and 1750-2250 for the short

SOA blocks, in order for the total average trial length to be the same in each type of block.

Participants were instructed to respond with one button if the ball was blue and another if it

was purple. Each block consisted of thirty two trials total, 8 each of right valid, right invalid,

left valid, and left invalid. The experiment lasted a total of about one hour and consisted of a

total of 12 blocks, 4 blocks for each of the 3 different SOAs.

Data Analysis

Accuracy and reaction times for correct responses were averaged for each block and

six 2 x 2 ANOVAs (one each for accuracy and reaction time in each of the SOAs: short, mid-

length and long) with factors of validity and visual field were conducted.

Results

For the fastest SOA (50-240ms) there were no significant effects of validity or visual

field for reaction time measures (validity: F(1, 12)=0.77, p=0.40; visual field: F(1, 12)=0.22,
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p=0.65; interaction: F(1, 12)=0.00, p=0.97). For the middle range SOA (300-500ms) there was

again no main effect of validity (F(1, 12)= 1.01, p=0.33) and no significant interaction between

validity and visual field (F(1, 12)=0.05, p=0.82). There was a significant effect of visual field

(F(1, 12)=5.56, p=0.04) with right targets evoking a faster response than left targets

(Right=620.9ms, Left=641.8ms). For the longest SOA (600-800ms) there was no main effect

of validity or visual field and no significant interaction (validity: F(1, 12)=0.58, p=0.46; visual

field: F(1, 12)=0.14, p=0.71; interaction: F(1, 12)=0.01, p=0.91). (See Table 1 for a complete list

of the means).

Similarly, accuracy measures showed no significant effects at short SOAs (validity:

F(1, 12)=0.03; p=0.87; visual field: F(1, 12)=0.63, p=0.44; interaction F(1, 12)=1.25, p=0.29),

middle range SOAs (validity: F(1, 12)= 0.21, p=0.65; visual field: F(1, 12)=0.05, p=0.82;

interaction: F(1, 12)=0.97, p=0.34), or long SOAs (validity: F(1, 12)=0.70, p=0.42; visual field:

F(1, 12)=3.026, p=0.12; interaction: F(1, 12)=0.25, p=0.62). (See Table 2 for a complete list of

the means.)

Discussion

The results of Experiment 1a suggest that no gaze cuing effects were produced with

the current task and stimuli as there were no significant validity effects in either reaction time

or accuracy measures for any of the three SOAs. While early social gaze studies report that

gaze cues show a validity effect for detection, discrimination, and localization tasks (e.g.

Friesen and Kingstone, 1998), many studies use only a localization task (e.g. Schuller and

Rossion, 2001, 2004, 2005; Hori et al., 2005). This brings up the possibility that the cuing

effects are more robust with localization tasks, and that the effects may be harder to elucidate
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with a discrimination task. Because the stimuli used in the current task were unable to

elucidate the cuing effects with a discrimination task, a second pilot study was conducted

using similar stimuli, but with a localization task.



CHAPTER 3

EXPERIMENT 1B: PILOT STUDY; SOCIAL LOCALIZATION

Since the original pilot study did not produce significant cuing effects at any SOA, a

second pilot study was completed in an attempt to find a task that did produce a significant

behavioral effect for the ERP studies proposed here. In this study, the participants’ task was

changed from a blue/purple discrimination task to a localization task in which the

participants are required to specify with a button press whether the target appeared on the left

or right side of the face. This was changed from the original pilot study because a

localization task is often used in the literature.

Methods

Participants

Participants consisted of 12 undergraduate students (8 females) with a mean age of

18.8 years old (range:18-21). All participants had 20/20 or corrected to 20/20 vision,

determined by self report. Participants were recruited through the participant pool of the

University of North Carolina at Chapel Hill. In return for their participation, they received

credit towards the completion of their General Psychology class.

Materials and Procedure

Materials and procedures were identical to Experiment 1a, except instead of the

targets being blue 50% of the time and purple 50% of the time, the targets were always blue.

Also, rather than making a color discrimination of the targets, participants were now
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instructed to make a localization judgment in which they were required to press one button if

the target appeared on the right side of the face and another if it appeared on the left.

Data Analysis

Data Analysis was identical to Experiment 1a.

Results

For the fastest SOA (50-240ms) there was a significant validity effect for reaction

time (F(1, 11)=46.07, p<0.001). There was no visual field effect (F(1, 11)=0.11, p=0.74) or

interaction between validity and visual field (F(1, 11)=0.10, p=0.76). Reaction time measures

for the middle range SOA (300-500ms) showed a significant main effect of validity (F(1,

11)=22.43, p=0.001). There was no visual field effect (F(1, 11)=0.12, p=0.73) but there was a

significant interaction between validity and visual field (F(1, 11)=5.44, p=0.04). This

interaction suggests that there is a larger validity effect in the left visual field (31.1ms) than

in the right visual field (18.0ms). For the longest SOA (600-800ms) there was no main effect

of validity for reaction times (F(1, 11)=2.64, p=0.13). There is also no visual field effect (F(1,

11)=0.03, p=0.87) or interaction between validity and visual field (F(1, 11)=0.30, p=0.59). See

Table 1 for a list of means.

Accuracy measures for short SOAs show a validity effect, (F(1, 11)=5.50; p=0.04), but

no visual field effect (F(1, 11)=1.00, p=0.34) or interaction (F(1, 11)=2.20, p=0.17). There are no

significant accuracy effects at middle range SOAs (validity: F(1, 11)=1.00, p=0.34; visual

field: F(1, 11)=0.00, p=1.00; interaction: F(1, 11)=1.00, p=0.34), or long SOAs (validity: F(1,

11)=0.00, p=1.00; visual field: F(1, 11)=0.00, p=1.00; interaction: F(1, 11)=0.00, p=1.00). See

Table 2 for a list of means.
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Discussion

Experiment 1b suggests that, while a discrimination task did not produce the social

gaze cuing effects with the current stimuli, a localization task is able to elucidate the normal

cuing effects at some SOAs. At the earliest (50-250ms) and mid-range (300-500ms) SOAs,

the reaction times to targets in valid trials (trials in which the eye gaze direction was

congruent with the target location) were significantly faster than reaction times to targets in

invalid trials (when the gaze and target location were incongruent). At the 50-250ms SOA,

participants were also more accurate when responding to valid trials than invalid trials. There

were no cuing effects present at the longest SOAs. The results of Experiment 1b suggest that

using the current stimuli with a localization task produces target facilitation at the valid

location for both short and mid-length SOAs. Therefore, in the following ERP experiments

these two SOAs are used to explore the ERPs to targets following social gaze cues. It is

important to recognize though, that previous ERP studies of social gaze cuing use an SOA

slightly longer than the current middle-length SOA (500ms: Schuller and Rossion, 2001;

2004; 500-700ms: Schuller and Rossion, 2005). This need to be considered when comparing

our ERPs to theirs.
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EXPERIMENT 1C: BEHAVIORAL COMPARISON OF

VOLUNTARY AND SOCIAL ATTENTION

The results of Experiments 1a and 1b suggest that with the current stimuli, the social

gaze cues produce no significant behavioral cuing effects with a discrimination task, but do

produce significant cuing effects with a localization task. This raises the possibility of an

unexpected difference between social gaze cuing and voluntary orienting, as most voluntary

attention tasks employ either a discrimination task or a detection task, but none with which I

am familiar use a localization task. Experiment 1c attempts to explore this possible difference

using the same subjects and stimuli with both voluntary and social attention using both a

discrimination task and a localization task. It is possible that the stimuli used in Experiment

1a and 1b are unable to elicit cuing effects with a discrimination task. In this experiment, we

will be able explore whether the voluntary attention cues can produce cuing effects with the

current stimuli which would suggest an unexpected, underlying difference between voluntary

orienting and social gaze orienting.

Methods

Participants

Participants consisted of 20 undergraduate students (15 females) with a mean age of

19 years old (range:18-22). All participants had 20/20 or corrected to 20/20 vision,

determined by self report. Participants were recruited through the participant pool of the
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University of North Carolina at Chapel Hill. In return for their participation, they received

credit towards the completion of their General Psychology class.

Materials and Procedure

Materials and procedures were similar to Experiment 1a and 1b. On all blocks,

whether participants were completing a localization task or a discrimination task, targets

were blue 50% of the time and purple 50% of the time. Out of a total of twenty blocks, half

of the blocks used the same social gaze cues used in Experiments 1a and 1b. On one half of

these social gaze blocks participant were instructed to complete a discrimination task (like in

Experiment 1a) in which they responded to whether the target was blue or purple. For the

other half of the social gaze cuing blocks the participants were instructed to complete a

localization task (like in Experiment 1b) in which they responded to which side of the screen

the target appeared. The other ten blocks used a voluntary attention cue. The background was

identical to the that for the social gaze blocks, in which the male face was present at all times,

but in this case, the eyes on the face were not diverted at the beginning of a trial, and instead

the fixation point changed color at the beginning of the trial. The fixation changed to either

red, indicating that the participant should shift attention to the right target location, or green

indicating that the participant should shift attention to the left target location (See Figure 2a

for an example of the voluntary cue). This cue was 75% predictive, giving the participants

incentive to direct their attention to the valid side. The fixation cross then returned to black

and the target ball appeared in one of the two target locations. Like in the social gaze blocks,

on half of the voluntary blocks, participants were instructed to complete a discrimination task,

on the other half they were instructed to complete a localization task. All blocks in this

experiment used a variable SOA of 300-500ms, as this SOA successfully elicited a cuing
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effect for social gaze cues in Experiment 1b, and should also allow participants enough time

to voluntarily shift attention before the target appears on the voluntary cuing blocks.

Data Analysis

A 2 x 2 x 2 x 2 ANOVA with factors of attention type (voluntary and social), task

(localization and discrimination), validity (valid or invalid), and visual field (left and right)

was conducted. Also, due to a particular interest in whether there is a cuing effect for each

type of attention with each task, four separate t-test with factor of validity was conducted.

Due to the increased possibility of Type I error from multiple t-tests, Benjamini-Hochberg

Procedure (See Benjamini & Hochberg, 1995; Thissen et all, 2002) was completed for the t-

test analysis.

Results

The ANOVA revealed a significant main effect of task (F(1, 19)=26.3; p<0.001), visual

field (F(1, 19)=15.9; p=0.001) and, validity (F(1, 19)=8.8; p=0.008), as well as significant

interactions between attention and task (F(1, 19)=12.1; p=0.003), attention and visual field (F(1,

19)=18.0; p<0.001), attention, task and visual field (F(1, 19)=7.6; p=0.013), attention and

validity (F(1, 19)=37.6; p<0.001), task and validity (F(1, 19)=25.9; p<0.001), visual field and

validity (F(1, 19)=11.3; p=0.003), attention, visual field and validity (F(1, 19)=9.0; p=0.007),

task, visual field and validity (F(1, 19)=27.6; p<0.001), and the four-way interaction between

attention, task, visual field, and validity (F(1, 19)=13.3; p=0.002). There was no significant

interaction between attention, task and validity (F(1, 19)=0.299; p=0.591).

For the voluntary discrimination blocks the reaction times were significantly faster

for valid targets than for invalid targets (Valid=641.4ms, Invalid=715.9ms; t(19)=3.97,
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p<0.001. Similarly reaction times were faster for the valid targets compared to the invalid in

the voluntary localization task (Valid=406.0ms, Invalid=535.6ms; t(19)=4.37, p<0.001), and

the social localization task (Valid=451.8ms, Invalid=479.0; t(19)=3.81, p<0.001). However,

there was no significant difference between valid and invalid targets for discrimination

blocks using a social gaze cue (Valid=495.7ms, Invalid=604.8ms; t(19)=1.16, p=0.13).

Discussion

The results of Experiment 1c raise the possibility of an unexpected behavioral

difference between voluntary and social gaze orienting. This experiment provides evidence

that, with the current stimuli, voluntary attention produces a significant cuing effect with

both localization and discrimination tasks, while social gaze orienting only produces cuing

effects with a localization task, and not a discrimination task. It seems that localization and

discrimination tasks may require different underlying processes that are differentially

activated by voluntary and social attention cues. For example, discrimination of a target may

require greater recruitment of the ventral “what” pathway allowing for the identification of

certain features needed to make a given discrimination, while a localization task may require

more recruitment of the dorsal “where” pathway. It seems possible that social gaze cues and

voluntary attention cues may prime these systems in different ways, or at different stage of

visual processing. This could lead to facilitation of processing is some instances or tasks, but

not in others. For example, perhaps voluntary attention exerts its effect early on in visual

processing before the dorsal and ventral steams split, leading to facilitation for either stream,

where social attention may not exert its effects until further down the dorsal steam leading to

facilitation only on tasks which recruit this visual pathway. It is also, however, important to
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recognize the possibility that localization and discrimination tasks may show such marked

differences between voluntary and social attention due the fact that the discrimination task is

simply more difficult. While there was a significant cuing effect for voluntary attention with

the discrimination task, there was a larger cuing effect for the voluntary attention with the

localization task. It is possible that the cuing effect for the social discrimination task is just

too small to be significant. Further exploration is needed to better understand the underlying

differences. ERPs can give us some understanding of the underlying neural differences

between the different types of attention.



CHAPTER 5

EXPERIMENT 2: ERPS OF SOCIAL, VOLUNTARY, AND REFLEXIVE ATTENTION

AT THE SAME SOA

Experiment 2 directly compares the neural activity evoked by peripheral targets

following reflexive, voluntary, and social gaze cues. While all produce behavioral facilitation

at the valid location at certain SOAs, previous ERP studies exploring each of these types of

attention separately suggest that the visually evoked ERPs produced by targets preceded by

each of the cues may be different. Here the visually evoked ERPs for targets following each

of these types of cue are directly compared within the same subjects using the same stimuli

and task.

Exploring ERPs for these three types of attention provides a greater understanding of

how social gaze orienting relates to each of the other types of widely studied attention. ERP

studies of social gaze orienting alone have raised the possibility that facilitory behavioral

effects of faster reaction times and/or greater accuracy are associated with latency shifts as

well as amplitude differences (Schuller & Rossion, 2001; 2004). Both reflexive and

voluntary orienting, however, have strictly produced amplitude differences in ERPs to target

processing. In the studies of social gaze processing, Schuller and Rossion (2001; 2004) used

a localization task with fixed SOAs of 500 ms, while most voluntary studies use longer SOAs

and most reflexive studies use either shorter SOAs (to produce facilitation) or longer SOAs

(to produce IOR). This study will use the mid-range SOA (300-500ms), which was found to

be successful at elucidating the social cueing effect in Experiment 1b, for all three types of
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attention in a within subjects design. This provides a control for possible timing and group

differences in previous studies. Using the same timing in the gaze cue blocks as in the other

blocks also allows us to conclude that any ERP differences we find are not be due to timing

differences that may affect the alertness of the participants on each trial. For example, if there

is 300ms between the cue and target in social gaze trials and 700ms between the cue and

target in voluntary orienting trials, there could possibly be differences in alertness when the

target appears. If the participants are more alert during one task, it could lead to a greater

focus of attention which could produce reduced reaction times, and bigger attention effects in

the ERP components of interest.

Methods

Participants

Twenty-one healthy young adults participated in this study and were paid $10 per

hour. Participants had 20/20 or corrected-to-20/20 vision and no known neurological

problems. Five participants’ data were not usable due to errors in data acquisition and/or

excessive artifacts; therefore, the final analysis included data from 16 participants (7 female)

with a mean age of 22.6 years old (range: 18-28).

Materials and Procedure

The experiment consisted of three different types of blocks: (1) social gaze orienting

blocks, (2) reflexive orienting blocks, and (3) voluntary orienting blocks. The social gaze

orienting blocks used the same set of stimuli as Experiments 1a, 1b, and 1c (See Figure 1).

An SOA of 300-500ms is used for each of the different types of attention blocks. This SOA



37

produced significant social gaze cueing effects in Experiment 1b and is closest to the timing

used by Shuller and Rossion (2001; 2004; 2005) in previous social gaze cuing ERP studies.

The reflexive orienting blocks used stimuli similar to those used on the gaze orienting

blocks, except that the face in the center of the screen kept its gaze directed straight ahead

through the entire block. At the beginning of a trial, the reflexive cue, consisting of a white

ring in one of the two possible target locations, appeared on the screen for 34ms, followed by

the background screen for 266-466ms, after which a target, consisting of a large blue ball

appeared for 100ms. Participants were required to respond to the location of the ball

indicating whether it appeared in the left or right visual field with the press of a button on a

game pad. The ITI, during which the background screen with neither the cue stimulus nor the

target stimulus appeared, was 2000-2500ms. (See Figure 2b for an example of the reflexive

cue).

The blocks exploring voluntary orienting used the same stimuli as voluntary blocks in

Experiment 1c.The fixation point changed color at the beginning of the trial for 300-500ms.

The fixation changed to either red, indicating that the participant should shift attention to the

right target location, or green indicating that the participant should shift attention to the left

target location. This cue was 75% predictive, giving the participants incentive to direct

attention to the valid side. Then the fixation cross then returned to black and a target ball

appeared in one of the two target locations. Participants were required to respond with one

button if the target appeared on the left and another if it appeared on the right. The ITI for the

voluntary blocks was 2000-2500ms. (See Figure 2a for an example of the voluntary cue).
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Recording and Analysis

While participants completed the localization task, accuracy data and reaction times

were collected, as well as EEG from 96 electrode sites. The EEG is referenced to the right

mastoid, amplified at a bandpass of 0.05-100 Hz and digitized at 250 samples per second.

Eye-movements were observed throughout all blocks with the use of a camera, and

electrodes located beneath and lateral to the outer canthus of each eye recorded the electro-

oculogram. All trials containing eye movements or blinks were rejected off-line and not

included in the analysis. EEG data was averaged to create ERP waveforms. The data was

low-pass filtered to remove high-frequency noise and high-pass pass filtered with a single-

pole causal filter to reduce low frequency drifts. Because the cues and targets in each of the

types of blocks occur temporally close to one another, the Adjar technique was used to

remove overlapping activity by convolving the cue and target waveforms with previous and

subsequent event distributions (Woldorff, 1993). This technique has been used previously to

successfully remove the overlap in waveforms (Hopfinger & Mangun, 1998, 2001; Woldorff,

1993; Hopfinger & West, 2006). Ten iterations of the Adjar filter were applied to individual

participant averages before the participants data was averaged together.

For the ERP data, a 4-factor ANOVA with factors of attention type, validity, visual

field, and electrode was conducted for amplitude and latency of the P1 and N1 components

and the amplitude of the P2, P300, and N400 components. Target prepossessing in the

ipsilateral hemisphere is not well understood and occurs at a slightly later latency than

processing in the contralateral hemisphere. Therefore, the current study, for the P1 and N1

components, analysis will concentrate on target processing in the hemisphere contralateral to

the target. The electrodes to be tested are picked based on topographic maps of the data
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which allow a visualization of where on the head the component is peaking. After collapsing

the data by visual field, the four electrodes (2 for each visual field) closest to the peak of the

activity on the scalp contralateral to the stimulus, as well are those that are used in the

subsequent analysis. Also, for the P1 and N1 ERP components, the amplitude and latency

will be explored so these measures can be compared to previous studies. For the later latency

components however, only the amplitude with be tested as with these broader components, it

is not always clear what should be considered the peak of the component as the peaks are

often imprecise and more affected by the low-pass filter.

Results

Behavioral Results

For reaction time measures, a 3 x 2 x 2 ANOVA with factors of attention type, visual

field and validity revealed a significant main effect of attention type (Social=315.1ms,

Voluntary=327.9ms, Reflexive=317.9ms; F(2, 14)=5.57, p=0.009), a significant main effect of

validity (Valid=300.4ms, Invalid=340.2ms; F(1,15)=43.76, p<0.001), a significant interaction

between attention type and validity (F(2,14)=12.22; p<0.001), an interaction between attention

type and visual field (F(2,14)=4.60; p=0.018), an interaction between visual field and validity

(F(1,15)=11.94; p=0.004), and finally a significant 3-way interaction between attention type,

visual field and validity (F(2,14)=4.44; p=0.021).

In order to better understand how the current results relate to previous studies in

which each type of attention was studied separately, 2 x 2 ANOVAs with factors of visual

field and validity were conducted for each type of attention separately. Social attention

blocks showed a validity effect (Valid=300.8ms, Invalid=329.4ms; F(1,15)=21.51, p<0.001),
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and a significant effect of visual field (RVF=322.6ms, LVF=307.6ms; F(1, 15)=8.75, p=0.010),

but no interaction between the factors (F(1, 15)=1.43, p=0.25). For voluntary attention blocks

there was a significant effect of validity (Valid=282.1ms, Invalid=373.8ms; F(1, 15)=24.37,

p<0.001), and a significant interaction between validity and visual field with the validity

effect being larger for left visual field targets (Valid RVF=288.7ms, Valid LVF=275.4ms,

Invalid RVF=380.0, Invalid LVF=367.5; F(1, 15)=7.07, p=0.018). For reflexive attention

blocks there was no validity effect (Valid=318.4ms, Invalid=317.4ms; F(1, 15)=0.02, p=0.888),

but there was a significant interaction between visual field and validity (Valid RVF=320.9ms,

Valid LVF=315.8ms, Invalid RVF=324.7ms, Invalid LVF=310.1ms; F(1, 15)=6.28, p=0.024).

(See Table3 for a complete list of means.)

For accuracy measures, a 3 x 2 x 2 ANOVA with factors of attention type, visual field,

and validity revealed a significant main effect of attention type (Social=98.2%,

Voluntary=96.0%, Reflexive=98.2%; F(2, 14)=9.61, p=0.001), a significant main effect of

validity (Valid=98.5%, Invalid=96.4%; F(1,15)=14.15, p=0.002), and a significant interaction

between attention type and validity (F(2,14)=8.05; p=0.002).

Again, a 2 x 2 ANOVA with factors of visual field and validity was conducted for

each type of attention separately. Social attention blocks showed a validity effect

(Valid=98.7%, Invalid=97.7%; F(1,15)=10.33, p=0.006), but no other main effects or

interactions. For voluntary attention blocks there was a significant effect of validity

(Valid=98.6%, Invalid=93.4%; F(1, 15)=10.62, p=0.005), a trend for left visual field targets

responses to be more accurate (RVF=95.3%, LVF=96.7%; F(1, 15)=3.68, p=0.074), and a

significant interaction between validity and visual field (F(1, 15)=4.57, p=0.049). For reflexive

attention blocks there was no validity effect (Valid=98.2%, Invalid=98.2%; F(1, 15)=0.00,
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p=0.964), and no other main effects or interactions. (See Table 3 for a complete list of the

means).

ERP results

P1: Amplitude

For the amplitude of the P1 ERP component, a 3 x 2 x 2 x 2 ANOVA with factors of

attention type (social, voluntary, and reflexive), validity (valid and invalid), visual field (right

visual field and left visual field), and electrode [E(electrode) 47/47 and E51/52] was

conducted with a 20ms time window around the peak. The peak varied between each type of

attention. A time range of 86-106ms was used for social attention, 82-102ms for voluntary

attention, and 78-98ms for reflexive attention. This ANOVA revealed a significant main

effect of attention type (Social=1.53µv, Voluntary=1.56µv, Reflexive=0.92µv; F(2, 14)=10.21,

p<0.001), as well as significant main effect of visual field (RVF=0.90µv, LVF=1.78µv; F(1,

15)=7.90, p=0.013). There was no significant main effect of validity (Valid=1.30µv,

Invalid=1.38µv; F(1, 15)=0.68, p=0.423). (See Figure 3 for plots of early attention effects).

Again, 2 x 2 x 2 ANOVAs were conducted for each type of attention separately to

allow comparison to previous ERP studies, most of which explore one type of attention alone.

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field, and

electrode revealed a near significant effect of visual field (RVF=1.10µv, LVF=1.96µv; F(1,

15)=4.06, p=0.062). There was no significant main effect of validity (Valid=1.48µv,

Invalid=1.58µv; F(1, 15)=0.40, p=0.574). (See Figure 4 for plots and Figure 5 for topography

of the P1 component for social attention blocks). For voluntary blocks a separate 2 x 2 x 2

ANOVA with factors of validity, visual field, and electrode revealed a significant effect of

visual field (RVF=1.03µv, LVF=2.08µv; F(1, 15)=9.40, p=0.008), as well as a main effect of



42

electrode (E47/48=1.44µv, E51/52=1.68µv; F(1, 15)=9.05, p=0.009). There was no significant

main effect of validity (Valid=1.55µv, Invalid=1.56µv; F(1, 15)=0.00, p=0.966). (See Figure 6

for plots and Figure 7 for topography of the P1 component for voluntary attention blocks).

For reflexive blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field, and

electrode revealed a significant effect of visual field (RVF=0.56µv, LVF=1.28µv; F(1,

15)=7.79, p=0.014). There was no significant main effect of validity (Valid=0.85µv,

Invalid=0.99µv; F(1, 15)=0.40, p=0.534). (See Figure 8 for plots and Figure 9 for topography

of the P1 component for reflexive blocks; See Appendix for complete ANOVA tables).

P1: Latency

For the latency of the P1 ERP component, a 3 x 2 x 2 x 2 ANOVA with factors of

attention type, validity, visual field, and electrode revealed a significant main effect of

attention type (Social=96.4ms ,Voluntary=91.6ms, Reflexive=88.4ms; F(2, 14)=13.38,

p<0.001). There was no significant effect of validity (Valid=91.3ms, Invalid=92.9ms, F(1,

15)=1.44, p=0.557), but there was a significant interaction between validity and visual field

(Valid Right=88.3ms, Invalid Right=91.5ms, Valid Left=94.3ms, Invalid Left=94.3ms; F(1,

15)=5.48, p=0.034). (See Figure 3 for plots of early attention effects).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode revealed a trend for a main effect of validity (Valid=95.6ms, Invalid=98.1ms;

F(1, 15)=4.10, p=0.061). (See Figure 4 for plots and Figure 5 for topography of the P1

component for social attention blocks). There were no other main effects or interactions. For

voluntary blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field, and

electrode revealed no significant main effect of validity (Valid=91.4ms, Invalid=91.2ms; F(1,
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15)=0.03, p=0.860) or any other main effects or interactions. (See Figure 6 for plots and

Figure 7 for topography of the P1 component for voluntary attention blocks). For reflexive

blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field, and electrode

revealed a near significant effect of visual field (RVF=84.4ms, LVF=88.3ms; F(1, 15)=4.48,

p=0.052). There was no significant main effect of validity (Valid=86.3ms, Invalid=86.4ms;

F(1, 15)=0.00, p=0.959). (See Figure 8 for plots and Figure 9 for topography of the P1

component for reflexive blocks; See Appendix for complete ANOVA tables).

N1: Amplitude

For the amplitude of the N1 ERP component, a 3 x 2 x 2 x 2 ANOVA with factors of

attention type (voluntary, reflexive and social), validity (valid and invalid), visual field (right

visual field and left visual field), and electrode (electrode 47/47 and electrode 89/90) was

conducted with a 20ms time window around the peak. The peak varied between each type of

attention. A time range of 142-162ms was used for social attention, 133-153ms for voluntary

attention, and 133-153ms for reflexive attention. The ANOVA revealed a significant main

effect of visual field (RVF=-0.06µv, LVF=-1.03µv; F(1, 15)=15.14, p=0.001) as well as a

significant interaction between attention type and validity (Social Valid=-0.46µv, Social

Invalid=-0.31µv, Voluntary Valid=-0.83µv, Voluntary Invalid=-0.90µv, Reflexive Valid=-

0.66µv, Reflexive Invalid=-0.12µv; F(2, 14)=3.98, p=0.029) and a significant interaction

between attention type and visual field (Voluntary RVF= -1.01µv, Voluntary LVF= -0.72µv,

Reflexive RVF=0.46µv, Reflexive LVF=-1.24µv, Social RVF=0.36µv, Social LVF=-1.13µv;

F(2,14)= 10.09, p<0.001). There was no significant main effect of attention type (Social=-

0.39µv, Voluntary=-0.87µv, Reflexive=-0.39µv; F(2, 14)=1.96, p=0.158) or validity (Valid=-
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0.65µv, Invalid=-0.44µv; F(1, 15)=1.92, p=0.186). (See Figure 3 for plots of early attention

effects).

Separate ANOVAs with two levels of attention type were conducted to explore which

types of attention specifically were interacting with validity. An ANOVA with voluntary and

social attention revealed no significant interaction between attention and validity (F(1, 15)=

0.35, p=0.562). An ANOVA with reflexive and social attention similarly revealed no

significant interaction between attention and validity (F(1, 15)= 2.33, p=0.148). An ANOVA

with reflexive and voluntary attention did show a significant interaction between attention

and validity (F(1, 15)= 12.45; p=0.003).

Separate 2 x 2 x 2 ANOVAs with factors of validity, visual field, and electrode for

each type of attention separately show no significant effect of validity for social attention

blocks (Valid=-1.23µv, Invalid=-1.13µv; F(1, 15)=0.13, p=0.722) (See Figure 4 for plots and

Figure 5 for topography of the N1 component for social attention blocks) or voluntary

attention blocks (Valid=-0.83µv, Invalid=-0.90µv; F(1, 15)=0.14, p=0.714) . (See Figure 6 for

plots and Figure 7 for topography of the N1 component for voluntary attention blocks). The 2

x 2 x 2 ANOVA conducted for reflexive attention blocks did show a significant effect of

validity (Valid=-1.69µv, Invalid=-1.13µv; F(1, 15)=10.32, p=0.006). (See Figure 8 for plots

and Figure 9 for topography of the N1 component for reflexive blocks; See Appendix for

complete ANOVA tables).

N1:Latency

For the latency of the N1 ERP component, a 3 x 2 x 2 x 2 ANOVA with factors of

attention type, validity, visual field, and electrode revealed a significant main effect of visual
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field (RVF=150.4ms, LVF=143.2ms; F(1, 15)=7.47, p=0.015), a significant main effect of

electrode (E47/48=148.8ms, E89/90=144.9ms; F(1, 15)=12.43, p=0.003), and a significant

interaction between visual field and electrode (RVF E47/48=153.0ms, RVF E89/90=147.8ms,

LVF E47/48=144.5ms, LVF E89/90=141.9ms, F(1, 15)=5.18, p=0.038). There was no

significant main effect of attention type (Social=151.6ms, Voluntary=143.3ms,

Reflexive=145.5ms; F(2, 14)=1.73, p=0.194) or validity (Valid=144.9ms, Invalid=148.7ms; F(1,

15)=1.81, p=0.199). (See Figure 3 for plots of early attention effects).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode revealed a small, but significant main effect of validity (Valid=146.6ms,

Invalid=148.7ms; F(1, 15)=6.7, p=0.021) as well as a main effect of electrode (E47/48=

148.3ms, E89/90=146.9ms; F(1, 15)=8.77, p=0.010). There were no other main effects or

interactions. (See Figure 4 for plots and Figure 5 for topography of the N1 component for

social attention blocks). For voluntary blocks a separate 2 x 2 x 2 ANOVA with factors of

validity, visual field, and electrode revealed a small, but significant main effect of validity

(Valid=139.6ms, Invalid=141.6ms; F(1, 15)=8.57, p=0.010) and a main effect of electrode

(E47/48= 141.3, E89/90=140.0; F(1, 15)=7.98, p=0.013). There were no other significant main

effects or interactions. (See Figure 6 for plots and Figure 7 for topography of the N1

component for voluntary attention blocks). For reflexive blocks a separate 2 x 2 x 2 ANOVA

with factors of validity, visual field, and electrode revealed a significant effect of electrode

(E47/48=143.4ms, E89/90=141.4ms; F(1, 15)=16.55, p=0.001). There was no significant main

effect of validity (Valid=141.5ms, Invalid=143.3ms; F(1, 15)=1.24, p=0.283). There were no

other main effects or interactions. (See Figure 8 for plots and Figure 9 for topography of the

P1 component for reflexive blocks; See Appendix for complete ANOVA tables).
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P2: Amplitude

While exploring the P300 component in the current data set, it became evident from

looking at the plots that there another component present in between the N1 and the P300

component; there was a faster, earlier, positive component, which was not initially expected

in the current study, but similar to the P2 component that has been explored in previous

studies, including some attention paradigms. For the amplitude of the P2 ERP component, a

3 x 2 x 2 x 3 ANOVA with factors of attention type (voluntary, reflexive and social), validity

(valid and invalid), visual field (right visual field and left visual field), and electrode

(electrode 82 and electrode 83) was conducted with a 20ms time window around the peak.

The peak varied between each type of attention and validity. A time range of 170-190ms was

used for valid trials with social attention, 190-210ms for invalid trails with social attention,

170-190ms for valid trials with voluntary attention, 190-210ms for invalid trials with

voluntary attention, 170-190ms for valid trials on reflexive attention, and 185-195ms for

invalid trials with reflexive attention.

Separate ANOVAs with two levels of attention type were conducted to explore which

types of attention specifically were interacting with validity. An ANOVA with voluntary and

social attention revealed no significant interaction between attention and validity (F(1, 15)=

0.44, p=0.519). An ANOVA with reflexive and social attention revealed a significant

interaction between attention and validity (F(1, 15)= 8.08, p=0.012). An ANOVA with

reflexive and voluntary attention showed a significant interaction between attention and

validity (F(1, 15)= 24.99; p<0.000) as well.
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The ANOVA revealed a significant main effect of attention type (Social=2.40µv,

Voluntary=2.45µv, Reflexive=1.66µv; F(2, 14)=6.95, p=0.003). While there was no significant

main effect of validity (Valid=2.24µv, Invalid=2.10µv; F(1, 15)=0.61, p=0.448), there was a

significant interaction between attention type and validity (Voluntary Valid=2.95µv,

Voluntary Invalid=1.95µv, Reflexive Valid=1.05µv, Reflexive Invalid=2.26µv, Social

Valid=2.72µv, Social Invalid=2.10µv; F(2, 14)=9.41, p<0.001), and an interaction between

attention type and electrode (Voluntary E82=2.33µv, Voluntary E83=2.58µv, Reflexive

E82=1.65µv, Reflexive E83=1.66µv, Social E82=2.23µv, Social E83=2.51µv; F(2, 14)=5.81,

p=0.007). (See Figure 10 for plots of late attention effects).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode showed no significant main effect of validity (Valid=2.73µv, Invalid=2.07µv;

F(1, 15)=2.63, p=0.123). (See Figure 11 for plots and Figure 12 for topography of the P2

component for social attention blocks). For voluntary blocks a separate 2 x 2 x 2 ANOVA

with factors of validity, visual field, and electrode revealed a significant effect of validity

(Valid=2.95µv, Invalid=1.95µv; F(1, 15)=10.52, p=0.005). (See Figure 13 for plots and Figure

14 for topography of the P2 component for voluntary attention blocks). For reflexive blocks a

separate 2 x 2 x 2 ANOVA with the same factors revealed a significant effect of validity

(Valid=1.05µv, Invalid=2.26µv; F(1, 15)=9.90, p=0.007). (See Figure 15 for plots and Figure

16 for topography of the P2 component for reflexive attention blocks; See Appendix for

complete ANOVA tables).

P300 Amplitude
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For the amplitude of the P300 ERP component, a 3 x 2 x 2 x 3 ANOVA with factors

of attention type (voluntary, reflexive and social), validity (valid and invalid), visual field

(right visual field and left visual field), and electrode (electrode 69, electrode 70 and

electrode 85) was conducted with a 20ms time window around the peak. The peak varied

between each type of attention and validity. A time range of 240-260ms was used for valid

trials with social attention, 290-310 for invalid trials with social attention, 280-300ms for

valid trials with voluntary attention, 290-310ms for invalid trials with voluntary attention,

270-290ms for valid trials with reflexive attention, and 240-260ms for invalid trials with

reflexive attention. The ANOVA revealed a significant main effect of validity (Valid=2.48µv,

Invalid=3.04µv; F(1, 15)=9.21, p=0.008). There was also a significant interaction between

attention type and validity (Voluntary Valid=2.20µv, Voluntary Invalid=3.66µv, Reflexive

Valid=2.66µv, Reflexive Invalid=2.40µv, Social Valid=2.60µv, Social Invalid=3.07µv; F(2,

14)=3.94, p=0.030), and an interaction between attention type and electrode (F(2, 14)=2.83,

p=0.032). (See Figure 10 for a plot of late attention effects).

Separate ANOVAs with two levels of attention type were conducted to explore which

types of attention specifically were interacting with validity. An ANOVA with voluntary and

social attention revealed no significant interaction between attention and validity (F(1, 15)=

3.05, p=0.101). An ANOVA with reflexive and social attention similarly revealed no

significant interaction between attention and validity (F(1, 15)= 0.86, p=0.368). An ANOVA

with reflexive and voluntary attention did show a significant interaction between attention

and validity (F(1, 15)= 15.45; p=0.001).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode revealed no significant main effect of validity (Valid=2.60µv, Invalid=3.07µv;
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F(1, 15)=1.24, p=0.283), but there was a significant interaction between validity and electrode

F(2, 14)=6.15, p=0.006). (See Figure 11 for plots and Figure 12 for topography of the P300

component for social attention blocks). For voluntary blocks a separate 2 x 2 x 2 ANOVA

with factors of validity, visual field, and electrode revealed a significant effect of validity

(Valid=2.20µv, Invalid=3.66µv; F(1, 15)=27.33, p<0.001). (See Figure 13 for plots and Figure

14 for topography of the P300 component for voluntary attention blocks). For reflexive

blocks a separate 2 x 2 x 2 ANOVA with the same factors revealed no significant main effect

of validity (Valid=2.66µv, Invalid=2.40µv; F(1, 15)=0.35, p=0.564). (See Figure 15 for plots

and Figure 16 for topography of the P300 component for reflexive attention blocks; See

Appendix for complete ANOVA tables).

N400 Amplitude

Like the P2 component, attention differences in a late negative component occurring

after the P300 were not expected. For the amplitude of this component, referred to as an

N400 from here on, a 3 x 2 x 2 x 3 ANOVA with factors of attention type (voluntary,

reflexive and social), validity (valid and invalid), visual field (right visual field and left visual

field), and electrode (electrode 69, electrode 70 and electrode 85) was conducted with a 20ms

time window around the peak. The peak varied between each type of attention and validity.

A time range of 410-430ms was used for valid trials with social attention, 410-430ms for

invalid trials with social attention, 405-425ms for valid trials with voluntary attention, 400-

420ms for invalid trials with voluntary attention, 470-490ms for valid trials with reflexive

attention, and 450-470ms for invalid trials with reflexive attention. The ANOVA revealed a

significant interaction between attention type and validity (Social Valid=-0.20µv, Social
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Invalid=-0.58µv, Voluntary Valid=-1.04µv, Voluntary Invalid=-0.39µv, Reflexive Valid=-

0.96µv, Reflexive Invalid=0.60 µv; F(2, 14)=7.31, p=0.003). (See Figure 10 for a plot of late

attention effects).

Separate ANOVAs with two levels of attention type were conducted to explore which

types of attention specifically were interacting with validity. An ANOVA with voluntary and

reflexive attention revealed no significant interaction between attention and validity (F(1, 15)=

0.81, p=0.382). An ANOVA with reflexive and social attention revealed a significant

interaction between attention and validity (F(1, 15)= 6.75, p=0.020). An ANOVA with

voluntary and social attention did show a significant interaction between attention and

validity (F(1, 15)= 24.84; p<0.001).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode showed that invalid trials produced a significantly larger N400 than valid trials

(Valid=-0.20µv, Invalid=-0.58µv; F(1, 15)=4.78, p=0.045). (See Figure 11 for plots and Figure

12 for topography of the N400 component for social attention blocks). For voluntary blocks a

separate 2 x 2 x 2 ANOVA with factors of validity, visual field, and electrode revealed a

significant effect of validity in the opposite direction (Valid=-1.04µv, Invalid=-0.39µv; F(1,

15)=14.91, p=0.002). (See Figure 13 for plots and Figure 14 for topography of the N400

component for voluntary attention blocks). For reflexive blocks a separate 2 x 2 x 2 ANOVA

with the same factors revealed no significant main effect of validity (Valid=-0.96µv,

Invalid=-0.60µv; F(1, 15)=2.11, p=0.167). (See Figure 15 for plots and Figure 16 for

topography of the N400 component for reflexive attention blocks; See Appendix for

complete ANOVA tables).
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Discussion

While social gaze cue orienting is often talked about as an automatic, reflexive form

of attentional orienting, the results of the current study suggest that social gaze orienting is

actually more similar to the classically defined voluntary attention than to the classically

defined reflexive attention in terms of behavioral performance, early visual processing, and

slightly later, higher-order visual processing. As expected, the reaction time measures for

social gaze cue blocks showed a significant effect of validity in which the valid targets were

responded to more quickly than invalid targets. These behavioral effects were exhibited in

the ERPs by a decreased latency of the P1 and N1 ERP components, but there were no

significant differences between valid and invalid targets on the amplitude of these

components. The latency shifts of the early processing components are similar to those found

by Shuller and Rossion (2001; 2004; 2005), but Shuller and Rossion also reported main

effects of validity on the amplitude of these components (2001; 2005). It is important to

recognize, however, that one study by the same group did not find a significant main effect of

validity on the amplitude of the P1 or the N1 (Shuller and Rossion, 2004). They found an

interaction in which only the right hemisphere showed significant validity effects. The only

differences between the studies in which they did find significant main effects of validity and

the one in which they did not, was (1) the face appeared with the eyes already diverted, and

(2) there were neutral trials in which the eyes gazed straight ahead. It is not clear why either

of these differences would reduce cuing effects which raises the possibility that these

amplitude differences are not easily elucidated with a localization task and that they may be

very sensitive to small stimulus differences. For example, the use of a computer generated

face, place holders for the targets, and timing differences may have lead to the differing
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results between the current study and those conducted by Shuller and Rossion (2001; 2004;

2005).

Similarly to the social blocks, the voluntary cuing blocks in which participants were

voluntarily directing their attention to the possible target locations produced the normal and

expected behavioral effect of shorter reaction times when the target appeared at the valid

location compared to when it occurred at the opposite location. This suggests that even

though the SOA was shorter than is often used in voluntary cuing paradigms, participants

were allowed enough time to shift their attention before the target appeared allowing

enhanced processing of the target. The enhanced processing of the target however, was, like

in the social blocks, not exhibited in the amplitude of either the P1 or N1 ERP component, as

there was no significant validity effect for the amplitude of either of these components.

Modulation of these components is often found in voluntary cuing paradigms. The current

study, unlike most previous voluntary cuing studies, used a localization task in which

participants were required to respond to the location of the target on each trial. This raises the

interesting possibility that reason no amplitude effects are observed is due the use of a

localization task. As reported previously, some studies suggest that the size of the P1 and N1

amplitude effects are affected by task difficulty and/or visual load (e.g. Handy and Mangun,

2000; Vogel and Luck, 2000). It is possible that the localization task and the targets used here

are too simple to evoke the validity effects normally observed with voluntary attention. There

was also no validity effect for the latency of the P1, but interestingly, like in social cuing

blocks, the N1 component occurred significantly sooner for valid trials compared to invalid

trials, a finding not previously reported in voluntary cuing paradigms. This small but

significant effect could be due to the use of a localization task, as well. Latency effects have
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previously been found for target processing following social gaze cues in studies in which a

localization task was used (Shuller and Rossion, 2001; 2003; 2005), but are not typically

found in voluntary and reflexive cuing paradigms.

As expected, reflexive attention produced no significant main effect of validity for reaction

times. The SOA range used in the current experiment was slower than that usually used to

explore facilitation of target processing following reflexive cues, and faster than that usually

used to explore IOR following a reflexive cue. Of the sixteen participants analyzed in the

current study, only four showed positive cuing effects greater than 20ms and only four

showed inhibitory cuing effects of greater than 20ms, suggesting the SOA was between that

which produces facilitation and that which produces IOR for half of the participants.

Similarly, the amplitude and the latency of the P1 component showed no effect of validity.

While there was no effect of validity on the latency of the N1 component, the amplitude of

the N1 component was significantly greater for valid trials compared to invalid trials.

Previously, reflexive attention cues have produced a greater amplitude N1 component

for invalid targets at SOAs that produce facilitation, and a greater amplitude N1 component

for valid targets at SOAs that produce IOR (e.g. Hopfinger and Mangun, 1998; 2001). Rather

than providing evidence of an enhancement of processing at levels of processing indexed by

the N1, it has been suggested that it is in fact evidence of an extended positivity overlapping

with the late stages of the P1 component (e.g. McDonald et al., 1999; Hopfinger and Ries,

2005). This would suggest, while neither facilitation nor IOR was observed with reaction

time measures, inhibition of valid targets may be beginning to occur with the current SOA

range. This suggests that we are able to see evidence of IOR in the neural responses even

before robust behavioral effects of IOR are seen.
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Exploration of each type of attention, suggests that both voluntary and social attention

cues are able to produce faster reaction times at the 300-500ms SOA and are associated

primarily with latency shifts at the early levels of processing indexed by the P1 and N1 ERP

components. Reflexive orienting did not produce behavioral effects at this SOA and was

associated exclusively with amplitude differences at early levels of processing indexed by the

later stages of the P1 component and the N1 component. ANOVAs including the factor of

attention type, point to main effects of attention on behavior as well as amplitude and latency

of some ERP components. Specifically, there was a main effect of attention on reaction time

in which targets in the voluntary attention blocks are responded to more slowly than those in

the social and reflexive blocks. Even though reaction times were delayed for voluntary

attention compared to social and reflexive attention, the early visual processing of the stimuli

was similar for voluntary and social attention. The main effect of attention type on the

amplitude of the P1 component suggests that at this early stage of processing, target

processing is similar for voluntary and social attention, both of which produce larger

amplitude P1 components than reflexive attention. There is also a main effect of attention

type for the latency of the P1 component. The reflexive P1 has the shortest latency, and

voluntary and social targets longer latency P1 component. The enhanced amplitude of the P1

component for targets following voluntary and social cues suggests targets may be perceived

as more salient in these conditions which could explain the larger behavioral effects. These

effects of attention type on the early visual components suggest that, although the timing

between the cue and target onset is the same for each type of attention, the cues may prepare

the participants differently for the following target.
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While the behavioral measures and the early visual components suggest large

differences between social attention and reflexive attention, perhaps the most interesting

results come from the later, higher-order processing, in which unexpected differences

between attention types emerged. Upon visual inspection of the long, slow, P300 wave, it

became evident that a faster component was overlapping with the early stages of the P300,

and this wave was showing different effects of validity than the P300. Closer inspection of

the topographies of these components, provide more evidence that they are two separate

components. The earlier P2 component has a more anterior distribution with an orientation

stretching from anterior sites back toward posterior sites along the central electrodes. The

later P300 component however, is generally more posterior than the P2, and has an

orientation stretching from left hemisphere sites, across central sites, to right hemisphere sites.

These variations in topography suggest the possibility of different underlying neural

generators, giving rise to varying functions.

The P2 component has been associated with various processes of target evaluation

(Song et al., 2006). Specifically, in adults, larger P2 components have been found with

ignored sounds compared to attended sounds (Wetzel et al., 2006). One previous study found

that P2 effects were enhanced for targets that were preceded by a non-informative cue

compared to a valid or invalid cue (Talsma, 2005). This is relevant to the current study as the

two types of cues that were not predictive and that participants were told ignore (reflexive

and social) produced validity effects opposite from the voluntary cues, which were predictive

of where the target would appear. Specifically, valid trials produced a significantly larger P2

component than invalid trials for voluntary attention. The opposite was true for reflexive

attention blocks in which the P2 amplitude was significantly larger for invalid trials than for
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valid trials. While the validity effect on the P2 was not significant for social attention, the

trend was in the same direction as voluntary attention. Based on the studies that show ignored

stimuli produce an enhance P2, one would expect an overall enhancement for both reflexive

and social attention blocks, but since these responses are to the targets and not the cues, this

P2 effect suggests that the different types of cues may differentially affect the alertness for

valid and invalid trials.

The P300 component showed different effects than the P2. The voluntary attention

blocks produced a larger amplitude P300 component for invalid trials than for valid trials.

Most likely, this is due to the predictability of the voluntary cue. Only 25% of all trials in this

condition were invalid making an invalid target an infrequent and odd event. As stated

previously, an oddball task in which an infrequent target is presented amongst a frequent

distracter, the odd, or infrequent stimuli produce a larger P300 component than the frequent

stimuli. When a very novel stimulus, such as picture of an animal amongst simple circle

distracters and square targets, occurs in the oddball paradigm a more anterior P3a is elicited.

Viewing the topography of the P300 effect for voluntary attention leads to the conclusion that

the increased P300 for invalid targets is probably a P3a component as the distribution is

much more anterior than the P300 distribution for any other condition. This suggests that,

while both voluntary and social attention show similar P300 effects of invalid trials

producing larger P300 components, the P300 elicit by the voluntary attention blocks, seems

to be a different process. The distribution of the P300 component for voluntary orienting,

suggests that the invalid trials are perceived as novel, while the P300 for social attention

blocks has a more posterior P300, suggesting that something about the cue cause the invalid

trials to seem more task relevant, but not necessarily novel.
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The late negative component occurring after the P300, is perhaps the most interesting

finding as it shows a social validity effect distinct from both voluntary and reflexive attention

as the amplitude is increased for invalid trials. This component occurs at a similar time and

has a similar topography to the N400 ERP component discussed in the language literature.

The N400 in the language literature is classically enhanced to sentences in which the final

word is anomalous (e.g. Kutas & Hillyard, 1980; 1984). This suggests that the incongruent

target is not expected and therefore may seem odd, or out of place. It is not clear however,

why the voluntary attention blocks would produce a larger N400 for valid trials as valid trials

would be more expected than invalid trials.

The results of Experiment 2 suggest that at early levels, the effects of social attention

cues are very similar to the effects elicited by voluntary cues than those of reflexive attention

when stimuli and timing are the same. The behavioral effects, as well as the early visual

processing effects indexed by the P1 and N1 components are similar for voluntary and social

attention, as both exhibit latency shifts, but are very different for reflexive attention, which

primarily elicits amplitude effects. On the surface, it also seems that higher-level processing

indexed by the P300 component is similar for voluntary and social attention, but a closer look

shows that the distribution of the P300 component across the scalp is very different for

voluntary invalid trials and social invalid trials. Interestingly, two unexpected ERP

components were elicited and provided more evidence that social gaze orienting is a separate

attentional process. The N400 component was particularly interesting as it was the only ERP

component to show distinct processing for social attention, in that the amplitude of the N400

was enhanced for invalid trials.
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This experiment explored these types of attention controlling for SOA. It seems

possible, though, that the reason reflexive attention produces such dramatically different ERP

effects, is due the fact that the timing used here is able to produce facilitation of target

processing for voluntary and social cues, but not reflexive cues. The following study explores

these same effects when each type of attentional cue is able to produce robust behavioral

facilitation.



CHAPTER 6

EXPERIMENT 3: ERPS OF SOCIAL, VOLUNTARY, AND REFLEXIVE ATTENTION

AT FACILITORY TIMING

The primary purpose of this experiment is to explore the differences between the

three types of attention, when they are producing their maximum facilitory effects on

behavior. Experiment 2 explored the neural underpinnings of the three types of attention,

with each type using the same cue-target SOA. However, the maximum facilitory effects of

each of the three types of cue should occur at different times, with reflexive attention and

social gaze cuing occurring quickly, and voluntary orienting occurring later and for the

longest period of time. The results of Experiment 2 are useful in understanding how social

gaze orienting is separate from the other types when similar timing is used, while this

experiment makes the behavioral effects more similar in order to examine whether the

underlying neural response is similar as well. By exploring the differences in neural activity

associated with similar behavioral outcomes, we gain further understanding of how social

gaze orienting relates to reflexive and voluntary attention, and more specifically, if it is just

part of one or both of these types of orienting simply being activated with a different type of

cue.

Methods

Participants
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Seventeen participants were recruited from flyers and mass-email distributed to

students at the University of North Carolina at Chapel Hill. They received $10/hour of

participation. The experiment lasted about three hours for each participant. One participant’s

data was not used due to excessive eye-blinks. Therefore, the final analysis included data

from 16 participants (7 female) with a mean age of 22.8 years old (range=18-29).

Materials and Procedure

Materials and procedure are identical to Experiment 2 with the exception of the

timing within each type of block. Rather than using the same timing in the voluntary,

reflexive, and social gaze paradigms, timing that produced facilitation of visual processing

for each type of orienting in pilot testing was used. For voluntary attention, a longer cue-

target SOA of 600-800ms was used, while both reflexive attention and social gaze orienting

blocks used an SOA of 50-250ms. The was the SOA that was found to produce the most

robust effects for social gaze orienting with our stimuli in Experiment 1b, as it produced

significant cuing for both reaction time and accuracy.

Recording and Analysis

The ERP recording and analysis was the same as in Experiment 2.

Results

Behavioral Results

For reaction time measures, a 3 x 2 x 2 ANOVA with factors of attention type, visual

field and validity revealed a significant main effect of validity (Valid=319.9ms,

Invalid=373.9ms; F(1,15)=50.7, p<0.001), as well as a significant interaction between attention

type and validity (F(1,14)=5.28; p=0.011). Separate 2 x 2 ANOVAs with factors of visual field
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and validity for each type of attention separately revealed a significant effect of validity for

voluntary attention (Valid=295.6, Invalid=400.7; F(1, 15)=18.4, p=0.001), reflexive attention

(Valid=338.3, Invalid=360.8; F(1, 15)=10.0, p=0.006), and social attention (Valid=325.7 ,

Invalid=360.2; F(1,15)=23.2, p<0.001). (See Table 4 for a complete list of means).

For accuracy measures a 3 x 2 x2 ANOVA with factors of attention type, visual field,

and validity also revealed a significant main effect of validity (Valid=99.1%, Invalid=96.8%;

F(1,15)=16.8, p=0.001). Separate 2 x 2 ANOVAs with factors of visual field and validity for

each type of attention separately revealed a significant effect of validity for voluntary

attention (Valid=99.0%, Invalid=96.6%; F(1, 15)=10.6, p=0.005), reflexive attention

(Valid=99.2%, Invalid=96.7%; F(1, 15)=10.8, p=0.005), and social attention (Valid=99.2% ,

Invalid=97.1%; F(1,15)=10.4 p=0.006). (See Table 4 for a complete list of means).

ERP results

P1: Amplitude

For the amplitude of the P1 ERP component, a 3 x 2 x 2 x 2 ANOVA with

factors of attention type (voluntary, reflexive and social), validity (valid and invalid), visual

field (right visual field and left visual field), and electrode (electrode 47/47 and electrode

51/52) was conducted with a 20ms time window around the peak. The peak varied between

each type of attention. A time range of 82-102ms was used for social attention, 80-100ms for

voluntary attention, and 78-98ms for reflexive attention. This ANOVA revealed a significant

main effect of attention type (Voluntary=1.22µv, Reflexive=0.36µv, Social=1.08µv; F(2,

14)=19.39, p<0.001), as well as significant main effect of visual field (RVF=0.60µv,

LVF=1.18µv; F(1, 15)=12.47, p=0.003). There was a significant interaction between attention
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type and visual field (Voluntary RVF= 0.60µv, Voluntary LVF=1.84µv, Reflexive RVF=

0.09µv, Reflexive LVF=0.63µv, Social RVF= 1.10µv, Social LVF=1.05µv; F(2, 14)=11.53.

p<0.001). There was no significant main effect of validity (Valid=0.90µv, Invalid=0.87µv;

F(1, 15)=0.12, p=0.730) and no interaction between attention type and visual field (F(2, 14)=0.38.

p=0.685). ). (See Figure 17 for plots of early attention effects).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode revealed no significant main effect of validity (Valid=1.03µv, Invalid=1.13µv;

F(1, 15)=0.29, p=0.597). (See Figure 18 for plots and Figure 19 for topography of the P1

component for social attention). For voluntary blocks a separate 2 x 2 x 2 ANOVA with

factors of validity, visual field, and electrode revealed a significant effect of visual field

(RVF=0.60µv, LVF=1.84µv; F(1, 15)=17.44, p<0.001). There was no significant main effect of

validity (Valid=1.26µv, Invalid=1.18µv; F(1, 15)=0.38, p=0.549). (See Figure 20 for plots and

Figure 21 for topography of the P1 component for voluntary attention). For reflexive blocks a

separate 2 x 2 x 2 ANOVA with factors of validity, visual field, and electrode revealed a

significant effect of visual field (RVF=0.09µv, LVF=0.63µv; F(1, 15)=9.06, p=0.009). There

was no significant main effect of validity (Valid=0.42µv, Invalid=0.30µv; F(1, 15)=0.30,

p=0.590). (See Figure 22 for plots and Figure 23 for topography of the P1 component for

reflexive attention; See Appendix for complete ANOVA tables).

P1: Latency

For the latency of the P1 ERP component, a 3 x 2 x 2 x 2 ANOVA with factors of attention

type, validity, visual field, and electrode revealed a significant main effect of visual field

(RVF=86.7ms, LVF=93.4ms; F(1, 15)=5.77, p=0.030), as well as a near significant main effect
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of electrode (E47/48=89.3ms, E51/52=90.9ms; F(1, 15)=4.13, p=0.060. There is also a

significant interaction between validity and visual field (Valid Right=89.3ms, Invalid

Right=84.3, Valid Left=93.4, Invalid Left=93.4; F(1, 15)=5.74, p=0.030). There was no

significant effect of attention type (Voluntary=90.3ms, Reflexive=88.4ms, Social=91.5ms;

F(2, 14)=1.27, p=0.296) or validity (Valid=91.3ms, Invalid=88.9, F(1, 15)=1.72, p=0.210).(See

Figure 17 for plots of early attention effects).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode revealed a main effect of visual field (RVF=87.0ms, LVF=94.3ms; F(1,

15)=18.05, p<0.001). There was no main effect of validity (Valid=90.2, Invalid=91.1; F(1,

15)=0.39, p=0.544). (See Figure 18 for plots and Figure 19 for topography of the P1

component for social attention). For voluntary blocks a separate 2 x 2 x 2 ANOVA with

factors of validity, visual field, and electrode revealed a significant effect of visual field

(RVF=87.5ms, LVF=93.4ms; F(1, 15)=5.38, p=0.035), but no significant main effect of

validity (Valid=90.3ms, Invalid=90.9ms; F(1, 15)=0.38, p=0.549) or any other main effects or

interactions. (See Figure 20 for plots and Figure 21 for topography of the P1 component for

voluntary attention). For reflexive blocks a separate 2 x 2 x 2 ANOVA with factors of

validity, visual field, and electrode revealed a significant interaction between validity and

visual field (Valid RVF=90.5ms, Valid LVF=86.0ms, Invalid RVF=80.3, Invalid LVF=87.3;

F(1, 15)=13.47, p=0.002). There was no significant main effect of validity (Valid=88.3ms,

Invalid=83.8ms; F(1, 15)=3.03, p=0.103). (See Figure 22 for plots and Figure 22 for

topography of the P1 component for reflexive attention; See Appendix for complete ANOVA

tables).
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Late P1: Amplitude

Although the peak of the P1 showed no significant validity effect for reflexive cuing

blocks, inspection of the reflexive waveforms suggest that there is a positive shift in the late

phase of the P1. Recent ERP and neural modeling studies suggest that the late phase of the

P1 that is actually generated from a area within the brain than the earlier peak of the P1

(Hopfinger and West, 2006; DiRusso et al., 2001; 2003; Martinez et al., 1999;2001).

Therefore a 2 x 2 x 2 ANOVA with factors of validity, visual field, and electrode was

conducted for the time range of 100-120ms for reflexive attention blocks. The amplitude of

the late phase of the P1 component was significantly larger for valid trials than for invalid

trials (Valid=0.32µv, Invalid=-0.54µv; F(1, 15)=4.89, p=0.043). (See Figure 22 for the

waveform and Figure 23 for the topography of the late phase of the P1 component; See

Appendix for complete ANOVA tables).

N1: Amplitude

For the amplitude of the N1 ERP component, a 3 x 2 x 2 x 2 ANOVA with factors of

attention type (voluntary, reflexive and social), validity (valid and invalid), visual field (right

visual field and left visual field), and electrode (electrode 47/47 and electrode 89/90)

revealed a significant main effect of validity (Valid= -0.90µv, Invalid= -1.22µv; F(1, 15)=6.67,

p=0.021), a significant main effect of electrode (E47/48= -0.95µv, E89/90= -1.17µv, F(1,

15)=7.98, p=0.013), and a significant interaction between attention type and validity

(Voluntary Valid= -0.98µv, Voluntary Invalid= -1.03µv, Reflexive Valid= -0.87µv,

Reflexive Invalid = -1.81µv, Social Valid= -0.84µv, Social Invalid= -0.82µv; F(1, 15)=11.56,
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p<0.001). There is no significant main effect of attention type (Voluntary= -1.00µv,

Reflexive= -1.34µv, Social= -0.83µv; F(2, 14)=2.35, p=0.113).

Separate ANOVAs with two levels of attention type were conducted to explore which

types of attention specifically were interacting with validity. An ANOVA with voluntary and

social attention revealed no significant interaction between attention and validity (F(1, 15)=

0.18, p=0.674). An ANOVA with reflexive and social attention revealed a significant

interaction between attention and validity (F(1, 15)= 12.21, p=0.003). An ANOVA with

reflexive and voluntary attention did show a significant interaction between attention and

validity (F(1, 15)= 12.33; p<0.001).

Separate 2 x 2 x 2 ANOVAs with factors of validity, visual field, and electrode for

each type of attention separately show a significant effect of electrode (E47/48= -0.60µv,

E89/90= -06µv; F(1, 15)=14.34, p=0.002), but no effect of validity (Valid= -0.84, Invalid= -

0.82; F(1, 15)=0.03, p=0.871) for social attention. (See Figure 18 for the waveform and Figure

19 for the topography of the N1 component for social attention). For voluntary attention there

was no significant effect of validity for voluntary attention blocks (Valid=-0.98µv, Invalid=-

1.03µv; F(1, 15)=0.14, p=0.715), but there was a trend towards a significant interaction

between validity and electrode (Valid E47/48= -0.92µv, Valid E89/90= -1.03µv, Invalid

E47/48= -0.92µv, Invalid E89/90= -1.14µv; F(1, 15)=4.39, p=0.054). (See Figure 20 for the

waveform and Figure 21 for the topography of the N1 component for voluntary attention).

For reflexive attention blocks there was a significant validity effect (Valid=-0.87µv, Invalid=

-1.81µv; F(1, 15)=19.18, p<0.001) and no other significant effects. (See Figure 22 for the

waveform and Figure 23 for the topography of the N1 component for reflexive attention; See

Appendix for complete ANOVA tables).
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N1:Latency

For the latency of the N1 ERP component, a 3 x 2 x 2 x 2 ANOVA with factors of

attention type, validity, visual field, and electrode revealed a significant main effect of

attention (Voluntary=139.4ms, Reflexive=150.4ms, Social=155.2ms; F(2, 14)=17.85, p<0.001),

and a significant interaction between attention type and validity (Voluntary Valid= 138.2ms,

Voluntary Invalid=141.2ms, Reflexive Valid= 156.7ms, Reflexive Invalid= 144.2ms, Social

Valid= 154.8ms, Social Invalid= 155.6ms; F(2, 14)=3.68, p=0.037), but no main effect of

validity (Valid=149.9ms, Invalid=147.0ms; F(1, 15)=0.79, p=0.387).

Separate ANOVAs with two levels of attention type were conducted to explore which

types of attention specifically were interacting with validity. An ANOVA with voluntary and

social attention revealed no significant interaction between attention and validity (F(1, 15)=

0.31, p=0.589). An ANOVA with reflexive and social attention similarly revealed no

significant interaction between attention and validity (F(1, 15)= 2.74, p=0.119). An ANOVA

with reflexive and voluntary attention did show a significant interaction between attention

and validity (F(1, 15)= 4.77; p=0.045).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode revealed a main effect of electrode (E47/48= 154.1ms, E89/90=152.4ms; F(1,

15)=7.82, p=0.014). There was no main effect of validity (Valid=153.3ms, Invalid=153.2ms;

F(1, 15)=0.02, p=0.882). (See Figure 18 for the waveform and Figure 19 for the topography of

the N1 component for social attention). For voluntary blocks a separate 2 x 2 x 2 ANOVA

with factors of validity, visual field, and electrode revealed a significant interaction between

validity and visual field (Valid RVF=138.0ms, Valid LVF=139.5ms, Invalid RVF=137.3ms,
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Invalid LVF=142.3ms; F(1, 15)=4.68, p=0.047), but no main effect of validity (Valid= 138.8,

Invalid= 139.8; F(1, 15)=2.35, p=0.146). (See Figure 20 for the waveform and Figure 21 for

the topography of the N1 component for voluntary attention For reflexive blocks a separate 2

x 2 x 2 ANOVA with factors of validity, visual field, and electrode revealed a significant

effect of electrode (E47/48=153.2ms, E89/90=151.5ms; F(1, 15)=18.26, p<0.001). There was

no significant main effect of validity (Valid=154.6ms, Invalid=150.1ms; F(1, 15)=3.0,

p=0.104). (See Figure 22 for the waveform and Figure 23 for the topography of the N1

component for reflexive attention; See Appendix for complete ANOVA tables).

P2 Amplitude

Since the P2 component was elicited in Experiment 2 and showed validity

differences, this component was explored in this experiment as well. For the amplitude of the

P2 ERP component, a 3 x 2 x 2 x 3 ANOVA with factors of attention type (voluntary,

reflexive and social), validity (valid and invalid), visual field (right visual field and left visual

field), and electrode (electrode 82 and electrode 83) was conducted with a 20ms time

window around the peak. The peak varied between each type of attention and validity. A

time range of 190-210ms was used for valid trials with social attention, 195-215ms for

invalid trails with social attention, 170-190ms for valid trials with voluntary attention, 190-

210ms for invalid trials with voluntary attention, 170-190ms for valid trials on reflexive

attention, and 170-190ms for invalid trials with reflexive attention.

The ANOVA revealed a significant main effect of attention type (Social=1.63µv,

Voluntary=3.29µv, Reflexive=1.13µv; F(2, 14)=16.96, p<0.001), and a significant main effect
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of validity (Valid=2.36µv, Invalid=1.67µv; F(1, 15)=7.11, p=0.018. (See Figure 24 for plots of

late attention effects).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode showed a significant main effect of validity (Valid=1.87µv, Invalid=1.17µv;

F(1, 15)=5.59, p=0.032). (See Figure 25 for plots and Figure 26 for topography of the P2

component for social attention blocks). For voluntary blocks a separate 2 x 2 x 2 ANOVA

with factors of validity, visual field, and electrode revealed a significant effect of validity

(Valid=3.86µv, Invalid=2.71µv; F(1, 15)=4.98, p=0.041). (See Figure 27 for plots and Figure

28 for topography of the P2 component for voluntary attention blocks). For reflexive blocks a

separate 2 x 2 x 2 ANOVA with the same factors revealed no significant effect of validity

(Valid=1.34µv, Invalid=0.91µv; F(1, 15)=2.50, p=0.134). (See Figure 29 for plots and Figure

30 for topography of the P2 component for reflexive attention blocks; See Appendix for

complete ANOVA tables).

P300 Amplitude

For the amplitude of the P3 ERP component, a 3 x 2 x 2 x 2 ANOVA with factors of

attention type (voluntary, reflexive and social), validity (valid and invalid), visual field (right

visual field and left visual field), and electrode (electrode 83 and electrode 84) revealed a

significant main effect of attention type (Voluntary=3.62µv, Reflexive=2.18µv,

Social=2.54µv; F(2, 14)=16.99, p<0.001), as well as significant interaction between attention

type and validity (Voluntary Valid=3.29µv, Voluntary Invalid=3.96µv, Reflexive

Valid=2.34µv, Reflexive Invalid=2.02µv, Social Valid=2.23µv, Social Invalid=2.86µv; F(2,

14)=4.23, p=0.024), and an interaction between attention type and electrode (Voluntary
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E83=3.61µv, Voluntary E84=3.64µv, Reflexive E83=2.02µv, Reflexive E84=2.33µv, Social

E83=2.44µv, Social E84=2.64µv; F(2, 14)=3.84, p=0.033).

Separate ANOVAs with two levels of attention type were conducted to explore which

types of attention specifically were interacting with validity. An ANOVA with voluntary and

social attention revealed no significant interaction between attention and validity (F(1, 15)=

0.57, p=0.463). An ANOVA with reflexive and social attention similarly revealed no

significant interaction between attention and validity (F(1, 15)= 3.80, p=0.070). An ANOVA

with reflexive and voluntary attention did show a significant interaction between attention

and validity (F(1, 15)= 6.31; p=0.024).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode revealed a significant main effect of validity (Valid=2.23µv, Invalid=2.84µv;

F(1, 15)=14.56, p=0.002). (See Figure 25 for plots and Figure 26 for topography of the P300

component for social attention blocks). For voluntary blocks a separate 2 x 2 x 2 ANOVA

with factors of validity, visual field, and electrode revealed a significant effect of validity

(Valid=3.34µv, Invalid=4.25µv; F(1, 15)=6.30, p=0.024). (See Figure 27 for plots and Figure

28 for topography of the P300 component for voluntary attention blocks). For reflexive

blocks a separate 2 x 2 x 2 ANOVA no significant main effect of validity (Valid=2.50µv,

Invalid=2.05µv; F(1, 15)=2.52, p=0.134). (See Figure 29 for plots and Figure 30 for

topography of the P300 component for reflection attention blocks; See Appendix for

complete ANOVA tables).

N400 Amplitude

Like the P2 component, the effects observed in Experiment 2, led us to

explore the N400 in this experiment as well. A 3 x 2 x 2 x 3 ANOVA with factors of
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attention type (voluntary, reflexive and social), validity (valid and invalid), visual field (right

visual field and left visual field), and electrode (electrode 69, electrode 70 and electrode 85)

was conducted with a 20ms time window around the peak. The peak varied between each

type of attention and validity. A time range of 430-450ms was used for valid trials with

social attention, 410-430ms for invalid trials with social attention, 400-420ms for valid trials

with voluntary attention, 390-410ms for invalid trials with voluntary attention, 380-400ms

for valid trials with reflexive attention, and 380-400ms for invalid trials with reflexive

attention. The ANOVA revealed no significant main effects of attention type or validity and

no interaction between the two. (See Figure 24 for a plot of late attention effects; See

Appendix for complete ANOVA tables).

For social blocks a separate 2 x 2 x 2 ANOVA with factors of validity, visual field,

and electrode showed no significant effect of validity (Valid=-1.11µv, Invalid=-1.17µv; F(1,

15)=0.04, p=0.844). (See Figure 25 for plots and Figure 26 for topography of the N400

component for social attention blocks). For voluntary blocks a separate 2 x 2 x 2 ANOVA

with factors of validity, visual field, and electrode revealed a significant larger amplitude

N400 for valid trials then for invalid trials (Valid=-0.85µv, Invalid=-0.37µv; F(1, 15)=4.84

p=0.044). (See Figure 27 for plots and Figure 28 for topography of the N400 component for

voluntary attention blocks). For reflexive blocks a separate 2 x 2 x 2 ANOVA with the same

factors revealed no significant main effect of validity (Valid=-0.90µv, Invalid=-1.24µv; F(1,

15)=1.35, p=0.263). (See Figure 29 for plots and Figure 30 for topography of the N400

component for reflexive attention blocks; See Appendix for complete ANOVA tables).
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Discussion

In the current experiment, all three types of attention were able to produce significant

behavioral cuing effects. Even in this case where behavior was similar, the underlying

processing of targets following each type of cue was different. At early stages of processing

indexed by the P1 and N1 components, the social cues produced no significant validity

effects, while the voluntary cues produced only a small latency effect at the N1 and the

reflexive cues produced large differences in the amplitude of the late stages of the P1 and the

N1.

Like in Experiment 2, the social gaze cues were able to produce significant behavioral

cuing effects, but in the current study, there was no evidence of enhanced target processing

exhibited in the early visual ERPs. There were no significant amplitude or latency differences

in either the P1 or N1 ERP components. Again, it seems possible that a localization task is

too simple to produce effects in these early visual processing components (e.g. Handy and

Mangun, 2000; Vogel and Luck, 2000) especially at the short SOAs.

The voluntary cuing blocks in which participants were voluntarily directing their

attention to the possible target locations, produced the normal and expected behavioral effect

of shorter reaction times when the target appeared at the valid location compared the when it

occurred at the opposite location. This suggests that participants were successfully shifting

their attention to the probable target location following the color change of the fixation point.

Like in Experiment 2 though, this validity effect was not exhibited in the amplitude of either

the P1 or N1 ERP component. Again it seems possible that this lack of amplitude modulation

could be due to the use of a localization task instead of either detection or discrimination task,
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as this is a main difference between the current study and most previous voluntary attention

studies.

There was also no main effect of validity for the latency of the P1 or, unlike in

Experiment 2, the N1 component. There was though, a significant interaction between

validity and visual field for the latency of the N1 component. While there was no validity

effect on N1 latency for right visual field targets, the N1 component for left visual field

targets was speeded when the target was valid compared to when it was invalid.

The short SOA used in this experiment led to facilitation of target processing for the

reflexively valid target location exhibited in reaction times. Interestingly the amplitude

differences exhibited in the late stages of the P1 and the N1 component are in the opposite

direction than those in Experiment 2, this suggests that while there was no behavioral

evidence of IOR for reflexive attention in Experiment 2, IOR may have been beginning to

occur at the early stages of visual processing. As well as amplitude difference in the present

study, there were also latency effects for the P1 component in which the valid trials had a

longer latency P1 than the invalid trials. It seems possible that this latency difference is due

to the enhancement of the amplitude of the P1 component at the later stage of the P1

component. The extra enhancement that only occurs at the late stages of the P1 seems to be

delaying the peak of the P1 for the valid trials. The emergence of latency effects which are

not usually present in reflexive cuing paradigms once again raises the possibility that the

latency effects seen in the current study, as well as those seen in the social gaze cuing studies

conducted by Shuller and Rossion (2001, 2004, 2005), is due to the use of a localization task

instead of the detection and discrimination tasks often used in reflexive and voluntary cuing

paradigms. Previous studies have not reported latency shifts for P1 and N1 components, but
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with a localization, we see latency shifts with both voluntary and reflexive attention in

certain situations.

An ANOVA including the factor of attention type revealed a significant effect of

attention type on the amplitude of the P1 component in which the targets following voluntary

cues produce the largest amplitude P1, than those following social cues and finally those

following reflexive cues. This suggests that the different types of cues, while all leading to

faster reaction times, affect overall target processing differently. This is also evident by the

fact that there is a significant interaction between attention type and visual field for the P1

amplitude. There is a larger amplitude P1 component for left visual field targets following

both reflexive and voluntary targets, but there is no visual field difference for targets

following social gaze cues. By the level of processing indexed by the N1 component, there is

also a main effect of attention type in which the latency of the N1 component is shortest for

targets following voluntary cues and longest for targets following social cues, again

suggesting that these cues are affecting target processing in varying ways regardless of

whether the cue is valid or invalid.

The P2 component, like in Experiment 2 showed different effects and a different

topography than the P300 component. Social and Voluntary attention both had an increased

P2 component for valid trials compared to invalid trials while reflexive attention showed no

significant effects. This again suggests the possibility that voluntary and social attention

produce different alerting effects than reflexive attention, as the P2 has been suggested by

some to evidence of general alerting from activity from the Reticular Activating System (e.g.

Naatanen & Picton, 1987; Woods et al., 1993).
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Similarly to the results of Experiment 2, the P300 component is larger for invalid

trials for both voluntary and social attention. Further exploration of the distribution of this

component again reveals that the invalid trials for the voluntary attention blocks have a more

anterior distribution suggesting a separate neural generator. It is unclear why the invalid trials

produce a larger P300 component for social attention, but it does replicate the findings of

Schuller and Rossion (2001; 2005). It is possible that the social gaze cues produce such a

strong cuing effect that an incongruent cue produces a oddball P3b response.

The N400 in this experiment was only showed a significant validity effect for

voluntary attention, again this does not seem comparable to the N400 attention effect in

which an out of place word at the end of a sentence produces a larger N400 component, as

the valid targets are the targets that are most expected. This suggests that this late negative

component may be reflecting a different process, such overlap from the P300 effect where

invalid targets had a more positive amplitude than valid targets for voluntary attention blocks.

The results of Experiment 3 suggest that even in the case where each type of attention

produces similar behavioral effects of reaction time and accuracy, there are different

underlying neural correlates to these cuing effects. In this third experiment, the behavioral

effects produced by social cues were not exhibited in the early levels of processing indexed

by the P1 or N1 component, while both voluntary and reflexive attention showed modulation

in the amplitude and/or latency of one or both of those components.



CHAPTER 7

GENERAL DISCUSSION

The current study provides us with a greater understanding of how social gaze

orienting compares to reflexive and voluntary orienting. Previous research has concentrated

on exploring whether voluntary and reflexive attention are separable systems or are just two

different ways of controlling the same system. The discovery of the phenomenon of social

gaze orienting leads to the question of where it fits within these two “classic” types of

attentional orienting. It seems to share some properties of reflexive attention (it is engaged

automatically) and voluntary attention (a central symbolic cue is used to produce it). It also,

though, seems to be separate form both types in that it has a distinct social component to it.

Exploring the relationships between these different types of orienting by exploring

ERPs of each within the same subjects, using similar stimuli, a similar task, and the same

timing for each, allows us to conclude that social gaze cuing is distinct from reflexive

attention. At the mid-length SOA (300-500ms), social attention and reflexive attention show

different behavioral effects as well as dramatically different early visual processing at levels

of processing indexed by the P1 and N1 EPR components. While the behavioral effects and

early stages of visual processing suggest that voluntary and social attention are similar, the

distributions of the higher-order P300 component suggest some underlying differences for

invalid voluntary and social targets. The distribution of the P300 component for invalid

voluntary trials resembles the distribution of the P3a component produced in a 3-stimulus

oddball task in which novel stimuli (such a dark bark) is presented through out a
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discrimination task in which infrequent targets (such low pitch beeps) need to distinguished

from frequent distracters (such as high pitch beeps). The similarity in the distribution

suggests that the voluntary invalid trials are considered odd and novel, compared to the

voluntary valid trials. This makes sense considering the invalid trials only occur 25% of the

time.

The N400 component pointed to the greatest differences between the underlying

neural processing of social attention and the other two classically defined types attention. A

similar component is studied widely throughout the language literature. This language N400

is elicited when the last word of a sentence is unexpected and anomalous. In both

experiments, the voluntary valid trials produced greater amplitude N400 component than

voluntary invalid trials. This is counterintuitive when considering the language N400

component, as the valid trials would be most expected and would therefore be expected to

have a smaller amplitude N400 component than the invalid trials. This suggests the

possibility that it is indexing another process, not indexed by the language N400. It is also

possible that the invalid N400 is being pulled positive by the overlapping late stages of the

P300 component. Since, in Experiment 2, the N400 for social cues shows the opposite

validity effect, it seems more likely that the increased amplitude for invalid trials around the

timing of the N400 is indexing a separate process. In this case the language definition of the

N400 component fits very well. The social gaze cue trial seems very comparable to a

sentence, which could end in a word that makes sense (a congruent target) or an anomalous

word (incongruent target). It seems possible that social gaze cue trials would be processed in

a more sentential manner than voluntary attention trials, as that would be a more naturally

occurring situation. The voluntary trials, more specifically may be produced in a more
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mechanical, less syntactic manner that does not produce the N400 component normally

evoked in language studies.

The evidence from this component, along with the differences in behavior, early

visual processing components, and the P300, suggest that social attention is not simply

another mechanism of directing voluntary and/or reflexive attention, but is instead a separate

mechanism that leads to distinct processing of a gazed at object.

It is not clear from the current data why a totally separate attentional system would

have evolved for social gaze attention. Most of the functions and outcomes of social gaze

attentional system would be similar to those of voluntary and reflexive attention

(behaviorally all types lead to faster and more accurate responses). In Experiment 1c

voluntary and social gaze attention were found to affect performance on a localization task

and a discrimination task differentially. Specifically validity effects were seen for both tasks

when voluntary attention cues were utilized, but only for the location task when social gaze

cues directed attention. This raises the possibility that an attentional system cued by social

stimuli developed separately because the information that a social gaze cue provides aids in

different tasks than those aided by either reflexive or voluntary attention. While voluntary

and reflexive attention can lead to information on features of a cued stimulus (such as in a

discrimination task), the most important information received from a gaze cue in a non-

verbal communication may be the location of where an interesting stimulus is (such as in a

localization task).

The evidence that suggests that reflexive, voluntary, and social attention are separate

attention systems needs to be considered in future explorations into attention and specifically

deficits in attention. When exploring possible problems with attention within a group, it is
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important to consider these key differences and explore each type of attention separately.

Specifically, certain clinical populations may exhibit marked differences in one of these

systems of attention, but to make a general assumption that the overall attention performance

is affected one may be missing strengths that the same group has with a separate system of

attention.

Future Directions

These studies point to differences between social attention and the classically defined

voluntary and reflexive attention at the neural level. It is important to recognize however, that

some of the normal voluntary attention effects produced in previous ERP studies (such as

increased amplitude of the P1 and N1 components) are not produced in the current study.

Previous voluntary attention studies have used detection and/or discrimination tasks and

some studies have found that easier tasks and lower visual loads produce less attentional

modulation of the amplitude of the P1 and N1. Therefore, it seems that use of a localization

task in the current study may make it more difficult to produce these amplitude effects. It is

also interesting that latency effects for the early components were found as these effects are

not normally seen for voluntary or social attention, but have been produced by the one group

who has explored neural underpinnings of social gaze orienting (2001; 2004; 2005). These

studies all used a localization task. The current findings of latency effects for each type of

attention suggest that the localization task is more sensitive at picking up on these possible

latency differences or that the three types of attentional orienting affect target processing

differentially for different types of tasks. Therefore while this study produced interesting new

data of voluntary and reflexive attention using a localization task, it is important for future
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studies to find a stimulus set in which the behavioral social gaze cuing effects can be

elucidated with detection or discrimination tasks with which the attention effects on early

visual processing are better understood.

The difference between these types of orienting can also be explored by finding out

how they are differentially affected in autism, a group that has both general attention deficits

and social deficits. Interestingly, while these deficits do exist, social gaze orienting is

generally intact in autism (e.g. Kyllianen & Hietanen, 2004; Senju et al., 2004). There are

however small differences, such as visual field differences, that suggest the underlying neural

mechanisms of social attention, and possibility voluntary and reflexive attention, may not

show the normal patterns. Exploration of these possible underlying deficits, and how they

vary across the different types of attention, can provide a better understanding of how the

different types of attention are separable.
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Table 1: Means and Standard Deviations for Reaction Times in Experiment 1a and 1b.

SOA Left Valid Left Invalid Right Valid Right Invalid

Exp1a: Short 652.6 ms 644.6 ms 649.4 ms 641.0 ms
SD (111.5) (103.2) (112.7) (102.7)

Exp1a: Mid 639.0 ms 644.5 ms 616.3 ms 625.4 ms
SD (121.3) (111.7) (106.8) (102.6)

Exp1a: Long 631.2 ms 639.5 ms 628.2 ms 634.5 ms
SD (115.3) (130.6) (114.5) (129.5)

Exp1b: Short 325.3 ms 355.6 ms 329.9 ms 357.6 ms
SD (55.3) (61.0) (66.3) (72.6)

Exp1b: Mid 312.0 ms 343.1 ms 316.1 ms 334.1 ms
SD (48.3) (54.4) (48.5) (60.6)

Exp1b: Long 332.6 ms 337.9 ms 328.5 ms 339.4 ms
SD (53.0) (60.9) (61.3) (61.4)
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Table 2: Means and Standard Deviations for Accuracy in Experiment 1a and 1b.

SOA Left Valid Left Invalid Right Valid Right Invalid

Exp1a: Short 89.0% 88.0 89.9% 91.8%
SD (16.8) (13.2) (20.4) (13.8)

Exp1a: Mid 92.5% 94.2% 94.2% 93.8%
SD (7.3) (6.2) (4.6) (8.7)

Exp1a: Long 90.9% 90.4% 96.2% 94.5%
SD (9.5) (10.3) (4.1) (7.6)

Exp1b: Short 100.0% 99.0% 99.7% 99.7%
SD (0.0) (1.5) (0.9) (0.9)

Exp1b: Mid 99.7% 99.7% 100.0% 99.5%
SD (0.9) (0.9) (0.0) (1.2)

Exp1b: Long 99.7% 99.7% 99.7% 99.7%
SD (0.9) (0.9) (0.9) (0.9)
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Table 3: Means and Standard Deviations for Reaction Times and Accuracy in Exp 2.

SOA Right Valid Right Invalid Left Valid Left Invalid

RT: Social 307.4 ms 337.8 ms 294.2 ms 321.0 ms
SD (43.9) (60.0) (38.3) (50.0)

RT: Voluntary 288.7 ms 380.0 ms 315.2 ms 367.5 ms
SD (51.1) (70.9) (81.8) (72.9)

RT: Reflexive 320.9 ms 324.7 ms 315.8 ms 310.1 ms
SD (51.3) (61.4) (42.3) (43.8)

Acc: Social 98.3% 97.4% 99.1% 97.9%
SD (2.8) (4.4) (1.3) (2.1)

Acc: Voluntary 98.4% 92.2% 98.8% 94.6%
SD (2.1) (9.0) (1.6) (6.3)

Acc: Reflexive 97.7% 98.1% 98.8% 98.4%
SD (4.0) (2.8) (1.5) (2.7)
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Table 4: Means and Standard Deviations for Reaction Times and Accuracy in Exp 3.

SOA Right Valid Right Invalid Left Valid Left Invalid

RT: Social 323.9 ms 364.2 ms 316.5 ms 357.8 ms
SD (77.5) (84.0) (60.2) (62.9)

RT: Voluntary 297.8 ms 400.5 ms 294.9 ms 398.5 ms
SD (64.1) (103.5) (57.3) (97.6)

RT: Reflexive 333.9 ms 368.4 ms 328.0 ms 360.5 ms
SD (73.7) (75.8) (57.3) (64.0)

Acc: Social 99.1% 96.9% 99.3% 97.5%
SD (1.6) (4.1) (1.0) (2.5)

Acc: Voluntary 98.8% 95.8% 99.3% 96.7%
SD (1.8) (5.9) (0.9) (3.6)

Acc: Reflexive 98.9% 95.5% 99.3% 96.6%
SD (4.0) (2.8) (1.5) (2.7)
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Figure 1. An example of the stimuli used in Experiment 1a of the Current Study.
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Figure 2a. An example the voluntary cue used in Experiments 1c, 2, and 3.

Figure 2b. An example the reflexive cue used in Experiments 2 and 3.

+

+
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Figure 3. Experiment 2. Lateral electrodes showing the validity effect for social, voluntary
and reflexive attention.
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Figure 4. Experiment 2: ERP plots of lateral electrodes showing early visual components for
Social attention blocks.
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Figure 5. Experiment 2: Topographic maps of the P1 and N1 component for Social attention
blocks.
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Figure 6. Experiment 2: ERP plots of lateral electrodes showing early visual components for
Voluntary attention blocks.
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Figure 7. Experiment 2: Topographic maps of the P1 and N1 component for Voluntary
attention blocks.
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Figure 8. Experiment 2: ERP plots of lateral electrodes showing early visual components for
Reflexive attention blocks
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Figure 9. Experiment 2: Topographic maps of the P1 and N1 component for
Reflexive attention blocks
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Figure 10. . Experiment 2. A medial electrode showing validity effects of social, voluntary,
and reflexive attention.
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Figure 11. Experiment 2: ERP plots of lateral electrodes showing later processing
components for Social attention blocks
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Figure12. Experiment 2: Topographic maps of the P2, P300 and N400 components for Social
attention blocks.
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Figure13. Experiment 2: ERP plots of medial electrodes showing later processing
components for Voluntary attention blocks

.
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Figure14. Experiment 2: Topographic maps of the P2, P300 and N400 components for
Voluntary attention blocks.
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Figure15. Experiment 2: ERP plots of medial electrodes showing later processing
components for Reflexive attention blocks.
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Figure16. Experiment 2: Topographic maps of the P2, P300 and N400 components for
Reflexive attention blocks.
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Figure 17. Experiment 3. Lateral electrodes showing the validity effect for social, voluntary
and reflexive attention.
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Figure 18. Experiment 3: ERP plots of lateral electrodes showing early visual processing
components for Social attention blocks.
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Figure19. Experiment 3: Topographic maps of the P1 and N1 components for Social
attention blocks.
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Figure 20. Experiment 3: ERP plots of lateral electrodes showing early visual processing
components for Voluntary attention blocks.
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Figure 21. Experiment 3: Topographic maps of the P1 and N1 components for Voluntary
attention blocks.
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Figure 22. Experiment 3: ERP plots of lateral electrodes showing early visual processing
components for Reflexive attention blocks.
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Figure 23. Experiment 3: Topographic maps of the P1 and N1 components for Reflexive
attention blocks.
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Figure 24. Experiment 3. A medial electrode showing validity effects of social, voluntary,
and reflexive attention.



108

Figure 25.Experiment 3: ERP plots of medial electrodes showing later processing
components for Social attention blocks.
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Figure 26. Experiment 3: Topographic maps of the P2, P300 and N400 components
for Social attention blocks.
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Figure 27.Experiment 3: ERP plots of medial electrodes showing later processing
components for Voluntary attention blocks.
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Figure 28. Experiment 3: Topographic maps of the P2, P300 and N400 components for
Voluntary attention blocks.
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Figure 29.Experiment 3: ERP plots of medial electrodes showing later processing
components for Reflexive attention blocks.
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Figure 30. Experiment 3: Topographic maps of the P2, P300 and N400 components for
Reflexive attention blocks.
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Appendix: ANOVA tables for ERP component statistics

Experiment 2: P1 amplitude; All types of attention

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
----------------------------------------------------------
Att.Type 32.91 2 16.45 10.21 0.0004*

Validity 0.65 1 0.65 0.68 0.4227

Att.Type x 0.30 2 0.15 0.14 0.8667
Validity

Vis.Field 73.93 1 73.93 7.90 0.0132*

Att.Type x 1.70 2 0.85 0.72 0.4948
Vis. Field

Validity x 0.05 1 0.05 0.05 0.8186
Vis.Field

Att.Type x 0.11 2 0.06 0.14 0.8719
Val. X Vis.Field

Electrode 1.75 1 1.75 3.40 0.0852

Att.Type x 0.99 2 0.50 8.27 0.0014*
Electrode

Validity x 0.10 1 0.10 2.86 0.1117
Electrode

Att.Type x 0.03 2 0.01 0.24 0.7860
Val x Electrode

Vis.Field x 0.14 1 0.14 0.43 0.5198
Electrode

Att.Type x 0.03 2 0.02 0.41 0.6688
Vis. Field x Electrode

Validity x 0.01 1 0.01 0.33 0.5748
Vis.Field x Elctrode

Att. Type x 0.00 2 0.00 0.16 0.8528
Val. x Vis.Field x Electrode
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Experiment 2: P1 Amplitude; Social Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 0.35 1 0.35 0.33 0.5744

Vis.Field 23.60 1 23.60 4.06 0.0623

Validity x 0.01 1 0.01 0.01 0.9148
Vis. Field

Electrode 0.86 1 0.86 3.29 0.0899

Validity x 0.00 1 0.00 0.14 0.7183
Electrode

Vis. Field x 0.09 1 0.09 0.62 0.4439
Electrode

Val. x Vis.Field x 0.00 1 0.00 0.01 0.9110
Electrode

Experiment 2: P1 Amplitude; Voluntary Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
--------------------------------------------------------------
Validity 0.00 1 0.00 0.00# 0.9658

Vis.Field 35.23 1 35.23 9.40 0.0079*

Validity x 0.16 1 0.16 0.38 0.5477
Vis.Field

Electrode 1.87 1 1.87 9.05 0.0088*

Validity x 0.05 1 0.05 1.28 0.2757
Vis.Field

Vis.Field x 0.00 1 0.00 0.03 0.8630
Electrode

Val. x Vis.Field x 0.01 1 0.01 0.55 0.4703
Electrode
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Experiment 2: P1 Amplitude; Reflexive Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 0.60 1 0.60 0.40 0.5342

Vis.Field 16.81 1 16.81 7.79 0.0137*

Validity x 0.01 1 0.01 0.01 0.9387
Vis. Field

Electrode 0.00 1 0.00 0.00# 0.9829

Validity x 0.08 1 0.08 0.83 0.3768
Electrode

Vis. Field 0.08 1 0.08 0.66 0.4306
Electrode

Val. x Vis.Field x 0.00 1 0.00 0.12 0.7384
Electrode
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Experiment 2: P1 latency; All types of attention

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Att.Type 4307.58 2 2153.79 13.38 0.0001*

Validity 260.04 1 260.04 1.44 0.2490

Att.Type x 114.08 2 57.04 0.60 0.5567
Validity

Vis. Field 1855.04 1 1855.04 3.26 0.0910

Att.Type x 100.08 2 50.04 0.49 0.6145
Vis. Field

Validity x 247.04 1 247.04 5.48 0.0335*
Vis.Field

Att.Type x 115.58 2 57.79 0.53 0.5955
Val. x Vis. Field

Electrode 126.04 1 126.04 1.62 0.2221

Att.Type x 21.58 2 10.79 0.85 0.4376
Electrode

Validity x 9.37 1 9.37 0.90 0.3584
Electrode

Att.Type x 7.75 2 3.88 0.24 0.7896
Validity x Electrode

Vis.Field x 234.37 1 234.37 3.52 0.0802
Electrode

Att.Type x 118.75 2 59.38 1.74 0.1924
Vis.Field x Electrode

Validity x 0.38 1 0.38 0.09 0.7714
Vis.Field x Electrode

Att.Type x 3.25 2 1.62 0.11 0.8923
Val. x Vis.Field x Electrode
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Experiment 2: P1 Latency; Social Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 190.12 1 190.12 4.10 0.0611

Vis.Field 496.12 1 496.12 3.60 0.0774

Validity x 105.12 1 105.12 3.61 0.0769
Vis.Field

Electrode 28.12 1 28.12 1.19 0.2921

Validity x 10.12 1 10.12 1.65 0.2180
Electrode

Vis.Field x 6.12 1 6.12 0.41 0.5314
Electrode

Val. x Vis.Field x 10.12 1 10.12 1.81 0.1984
Electrode

Experiment 2: P1 Latency; Voluntary Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 2.00 1 2.00 0.03 0.8596

Vis.Field 128.00 1 128.00 2.26 0.1532

Validity x 40.50 1 40.50 0.80 0.3853
Vis.Field

Electrode 18.00 1 18.00 1.90 0.1881

Validity x 0.50 1 0.50 0.24 0.6326
Electrode

Vis.Field x 4.50 1 4.50 0.33 0.5732
Electrode

Val. Vis.Field x 0.00 1 0.00 0.00 1.0000
Electrode
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Experiment 2: P1 Latency; Reflexive Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 0.12 1 0.12 0.00# 0.9590

Vis.Field 496.12 1 496.12 4.48 0.0515

Validity x 1.12 1 1.12 0.02 0.8884
Vis.Field

Electrode 28.12 1 28.12 1.74 0.2064

Validity x 36.12 1 36.12 2.92 0.1084
Electrode

Vis.Field x 91.12 1 91.12 3.39 0.0853
Electrode

Val. x Vis.Field x 1.12 1 1.12 0.12 0.7341
Electrode
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Experiment 2: N1 amplitude; All types of attention

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
---------------------------------------------------------
Att.Type 19.36 2 9.68 1.96 0.1583

Validity 4.23 1 4.23 1.92 0.1861

Att.Type x 6.08 2 3.04 3.98 0.0294*
Validity

Vis.Field 90.01 1 90.01 15.14 0.0014*

Att.Type x 76.86 2 38.43 10.09 0.0004*
Vis. Field

Validity x 0.42 1 0.42 0.30 0.5927
Vis. Field

Att.Type x 0.35 2 0.18 0.23 0.7981
Val. x Vis.Field

Electrode 0.06 1 0.06 0.24 0.6344

Att.Type x 0.38 2 0.19 2.26 0.1220
Electrode

Validity x 0.02 1 0.02 1.04 0.3237
Electrode

Att.Type x 0.44 2 0.22 4.49 0.0196*
Val. x Electrode

Vis.Field x 0.05 1 0.05 0.54 0.4742
Electrode

Att.Type x 0.06 2 0.03 0.39 0.6772
Vis.Field x Electrode

Validity x 0.01 1 0.01 0.65 0.4326
Vis.Field x Electrode

Att.Type x 0.06 2 0.03 2.32 0.1155
Val. x Vis.Field x Electrode
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Experiment 2: N1 Amplitude; Social Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 0.31 1 0.31 0.13 0.7220

Vis.Field 0.29 1 0.29 0.05 0.8220

Validity x 0.34 1 0.34 0.26 0.6187
Vis. Field

Electrode 0.08 1 0.08 0.93 0.3507

Validity x 0.08 1 0.08 3.22 0.0931
Electrode

Vis.Field x 0.02 1 0.02 0.65 0.4335
Electrode

Val. x Vis.Field x 0.00 1 0.00 0.01 0.9263
Electrode

Experiment 2: N1 Amplitude; Voluntary Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 0.12 1 0.12 0.14 0.7141

Vis.Field 2.71 1 2.71 0.55 0.4682

Validity x 0.02 1 0.02 0.03 0.8716
Vis.Field

Electrode 0.13 1 0.13 1.06 0.3194

Validity x 0.08 1 0.08 2.35 0.1464
Electrode

Vis.Field x 0.01 1 0.01 0.05 0.8254
Electrode

Val. x Vis.Field x 0.02 1 0.02 1.32 0.2690
Electrode
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Experiment 2: N1 Amplitude; Reflexive Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
----------------------------------------------------------
Validity 10.01 1 10.01 10.32 0.0058*

Vis.Field 3.61 1 3.61 1.02 0.3281

Validity x 0.04 1 0.04 0.06 0.8142
Vis.Field

Electrode 0.01 1 0.01 0.08 0.7849

Validity x 0.17 1 0.17 1.93 0.1854
Electrode

Vis.Field x 0.08 1 0.08 1.00 0.3326
Electrode

Val. x Vis.Field x 0.01 1 0.01 0.26 0.6191
Electrode



123

Experiment 2: N1 Latency; All types of attention

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
---------------------------------------------------------------
Att.Type 4697.33 2 2348.67 1.73 0.1940

Validity 1365.04 1 1365.04 1.81 0.1988

Att.Type x 622.33 2 311.17 0.64 0.5326
Validity

Vis.Field 4959.37 1 4959.37 7.47 0.0154*

Att.Type x 2131.00 2 1065.50 2.49 0.0997
Vis.Field

Validity x 84.38 1 84.38 0.12 0.7305
Vis.Field

Att.Type x 1623.00 2 811.50 2.05 0.1461
Val. x Vis.Field

Electrode 1457.04 1 1457.04 12.43 0.0031*

Att.Type x 42.33 2 21.17 0.17 0.8434
Electrode

Validity x 222.04 1 222.04 2.04 0.1741
Electrode

Att.Type x 121.33 2 60.67 0.78 0.4659
Val. x Electrode

Vis.Field x 165.38 1 165.38 5.18 0.0380*
Electrode

Att.Type x 13.00 2 6.50 0.25 0.7805
Vis.Field x Electrode

Validity x 12.04 1 12.04 0.38 0.5468
Vis.Field x Electrode

Att.Type x 126.33 2 63.17 1.62 0.2144
Val. x Vis.Field x Electrode
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Experiment 2: N1 Latency; Social Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
---------------------------------------------------------------
Validity 144.50 1 144.50 6.70 0.0206*

Vis.Field 338.00 1 338.00 2.05 0.1728

Validity x 0.50 1 0.50 0.04 0.8503
Vis.Field

Electrode 60.50 1 60.50 8.77 0.0097*

Validity x 8.00 1 8.00 2.73 0.1194
Electrode

Vis.Field x 0.50 1 0.50 0.17 0.6839
Electrode

Val. x Vis.Field x 2.00 1 2.00 1.15 0.2997
Electrode

Experiment 2: N1 Latency; Voluntary Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
--------------------------------------------------------------
Validity 128.00 1 128.00 8.57 0.0104*

Vis.Field 18.00 1 18.00 0.22 0.6483

Validity x 8.00 1 8.00 0.20 0.6632
Vis.Field

Electrode 50.00 1 50.00 7.98 0.0128*

Validity x 0.00 1 0.00 0.00 1.0000
Electrode

Vis.Field x 18.00 1 18.00 3.14 0.0967
Electrode

Val. x Vis.Field x 0.00 1 0.00 0.00 1.0000
Electrode
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Experiment 2: N1 Latency; Reflexive Attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
--------------------------------------------------------------
Validity 98.00 1 98.00 1.24 0.2831

Vis.Field 4.50 1 4.50 0.05 0.8328

Validity x 144.50 1 144.50 3.37 0.0864
Vis.Field

Electrode 128.00 1 128.00 16.55 0.0010*

Validity x 0.00 1 0.00 0.00 1.0000
Electrode

Vis.Field x 4.50 1 4.50 0.38 0.5445
Electrode

Val. x Vis.Field x 0.50 1 0.50 0.17 0.6839
Electrode
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Experiment 2: P2 Amplitude; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
--------------------------------------------------------------
Att.Type 50.88 2 25.44 6.95 0.0033*

Validity 2.02 1 2.02 0.61 0.4478

AttType x 91.02 2 45.51 9.41 0.0007*
Validity

Vis.Field 0.66 1 0.66 0.16 0.6977

Att.Type x 0.18 2 0.09 0.04# 0.9612
Vis.Field

Validity x 2.04 1 2.04 2.61 0.1273
Vis.Field

Att.Type x 2.95 2 1.48 1.26 0.2970
Val. x Vis.Field

Electrode 2.54 1 2.54 1.60 0.2248

Att.Type x 1.05 2 0.52 5.81 0.0074*
Electrode

Validity x 4.41 1 4.41 17.29 0.0008*
Electrode

Att.Type x 0.79 2 0.40 3.15 0.0571
Val. x Electrode

Vis.Field x 0.01 1 0.01 0.03 0.8686
Electrode

Att.Type x 0.01 2 0.01 0.08 0.9201
Vis.Field x Electrode

Validity x 0.11 1 0.11 3.47 0.0824
Vis.Field x Electrode

Att.Type x 0.13 2 0.07 2.05 0.1464
Val. x Vis.Field x Electrode
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Experiment 2: P2 Amplitude; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 13.62 1 13.62 2.63 0.1255

Vis.Field 0.13 1 0.13 0.11 0.7462

Validity x 0.02 1 0.02 0.01 0.9072
Vis.Field

Electrode 1.65 1 1.65 2.55 0.1310

Validity x 1.56 1 1.56 11.87 0.0036*
Electrode

Vis.Field x 0.00 1 0.00 0.00# 0.9586
Electrode

Val. x Vis Field x 0.07 1 0.07 6.09 0.0261*
Electrode

Experiment 2: P2 Amplitude; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 32.02 1 32.02 10.52 0.0054*

Vis.Field 0.06 1 0.06 0.03 0.8643

Validity x 4.96 1 4.96 5.60 0.0319*
Vis.Field

Electrode 1.94 1 1.94 3.39 0.0856

Validity x 3.32 1 3.32 12.80 0.0027*
Electrode

Vis.Field x 0.00 1 0.00 0.01 0.9278
Electrode

Val. x Vis.Field x 0.01 1 0.01 0.31 0.5880
Electrode
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Experiment 2: P2 Amplitude; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
---------------------------------------------------------------
Validity 47.41 1 47.41 9.90 0.0067*

Vis.Field 0.65 1 0.65 0.12 0.7366

Validity x 0.01 1 0.01 0.01 0.9044
Vis.Field

Electrode 0.01 1 0.01 0.01 0.9085

Validity x 0.32 1 0.32 2.75 0.1179
Electrode

Vis.Field x 0.02 1 0.02 0.23 0.6407
Electrode

Val. x Vis.Field x 0.16 1 0.16 3.06 0.1008
Electrode
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Experiment 2: P300 Amplitude; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Att.Type 16.99 2 8.50 0.98 0.3873

Validity 45.32 1 45.32 9.21 0.0084*

Att.Type x 71.62 2 35.81 3.94 0.0302*
Validity

Vis.Field 2.02 1 2.02 0.68 0.4213

Att.Type x 7.78 2 3.89 1.95 0.1604
Vis.Field

Validity x 0.89 1 0.89 0.22 0.6469
Vis.Field

Att.Type x 3.68 2 1.84 0.58 0.5666
Val. x Vis.Field

Electrode 6.19 2 3.10 3.88 0.0316*

Att.Type x 1.12 4 0.28 2.83 0.0323*
Electrode

Validity x 0.45 2 0.23 4.70 0.0167*
Electrode

Att.Type x 0.43 4 0.11 1.96 0.1121
Val. x Electrode

Vis.Field x 0.24 2 0.12 1.11 0.3433
Electrode

Att.Type x 0.04 4 0.01 0.32 0.8645
Vis.Field x Electrode

Validity x 0.02 2 0.01 0.26 0.7728
Vis.Field x Electrode

Att.Type x 0.79 4 0.20 4.02 0.0059*
Val. x Vis.Field x Electrode
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Experiment 2: P300 Amplitude; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Validity 10.88 1 10.88 1.24 0.2830

Vis.Field 3.02 1 3.02 2.07 0.1707

Validity x 0.86 1 0.86 0.24 0.6299
Vis. Field

Electrode 2.05 2 1.03 3.63 0.0388*

Validity x 0.72 2 0.36 6.15 0.0058*
Electrode

Vis. Field x 0.13 2 0.07 1.11 0.3438
Electrode

Val. x Vis.Field x 0.20 2 0.10 1.66 0.2066
Electrode

Experiment 2: P300 Amplitude; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 102.89 1 102.89 27.33 0.0001*

Vis.Field 4.70 1 4.70 3.82 0.0695

Validity x 2.78 1 2.78 2.07 0.1705
Vis.Field

Electrode 4.55 2 2.28 5.33 0.0105*

Validity x 0.14 2 0.07 1.89 0.1691
Electrode

Vis.Field x 0.02 2 0.01 0.10 0.9083
Electrode

Val. x Vis.Field x 0.18 2 0.09 5.77 0.0076*
Electrode
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Experiment 2: P300 Amplitude; Reflexive attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
---------------------------------------------------------------
Validity 3.17 1 3.17 0.30 0.5916

Vis.Field 2.08 1 2.08 0.49 0.4953

Validity x 0.93 1 0.93 0.17 0.6872
Vis.Field

Electrode 0.71 2 0.35 1.24 0.3032

Validity x 0.02 2 0.01 0.16 0.8556
Electrode

Vis.Field x 0.14 2 0.07 2.12 0.1372
Electrode

Val. x Vis.Field x 0.43 2 0.21 3.80 0.0338*
Electrode
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Experiment 2: N400 Amplitude; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Att.Type 17.00 2 8.50 1.06 0.3585

Validity 6.40 1 6.40 3.18 0.0947

Att.Type x 27.08 2 13.54 7.31 0.0026*
Validity

Vis.Field 0.94 1 0.94 0.29 0.5976

Att.Type x 8.55 2 4.28 2.17 0.1316
Vis Field

Validity x 1.02 1 1.02 1.09 0.3139
Vis.Field

Att.Type x 1.09 2 0.55 0.54 0.5859
Val. x Vis.Field

Electrode 0.76 2 0.38 1.29 0.2893

Att.Type x 0.40 4 0.10 1.45 0.2284
Electrode

Validity x 0.04 2 0.02 0.46 0.6341
Electrode

Att.Type x 0.04 4 0.01 0.44 0.7783
Val. x Electrode

Vis.Field x 1.55 2 0.78 14.61 0.0000*
Electrode

Att.Type x 0.17 4 0.04 1.23 0.3095
Vis.Field x Electrode

Validity x 0.00 2 0.00 0.10 0.9028
Vis.Field x Electrode

Att.Type x 0.16 4 0.04 1.97 0.1111
Val. x VisField x Electrode
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Experiment 2: N400 Amplitude; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Validity 6.86 1 6.86 4.78 0.0451*

Vis.Field 1.33 1 1.33 0.39 0.5399

Validity x 0.26 1 0.26 0.19 0.6712
Vis. Field

Electrode 0.69 2 0.34 2.52 0.0974

Validity x 0.06 2 0.03 1.23 0.3077
Electrode =

Vis. Field x 0.81 2 0.41 10.16 0.0004*
Electrode

Val. x Vis.Field x 0.00 2 0.00 0.03# 0.9707
Electrode

Experiment 2: N400 Amplitude; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Validity 20.50 1 20.50 14.91 0.0015*

Vis.Field 3.03 1 3.03 1.75 0.2060

Validity x 1.84 1 1.84 2.20 0.1584
Vis.Field

Electrode 0.28 2 0.14 1.15 0.3313

Validity x 0.02 2 0.01 0.21 0.8125
Electrode

Vis.Field x 0.70 2 0.35 7.77 0.0019*
Electrode

Val. x Vis.Field x 0.09 2 0.04 3.23 0.0537
Electrode



134

Experiment 2: N400 Amplitude; Reflexive attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Validity 6.11 1 6.11 2.11 0.1673

Vis.Field 5.14 1 5.14 2.49 0.1353

Validity x 0.01 1 0.01 0.02 0.8933
Vis.Field

Electrode 0.19 2 0.09 0.55 0.5854

Validity x 0.01 2 0.00 0.13 0.8797
Electrode

Vis.Field x 0.22 2 0.11 2.76 0.0792
Electrode

Val. x Vis.Field x 0.08 2 0.04 1.22 0.3104
Electrode
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Experiment 3: P1 Amplitude; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
----------------------------------------------------------
Att.Type 54.26 2 27.13 19.39 0.0000*

Validity 0.11 1 0.11 0.12 0.7297

Att.Type x 0.83 2 0.42 0.38 0.6849
Validity

Vis.Field 32.16 1 32.16 12.47 0.0030*

Att.Type x 26.74 2 13.37 11.53 0.0002*
Vis.Field

Validity x 0.08 1 0.08 0.14 0.7150
Vis.Field

Att.Type x 1.74 2 0.87 1.60 0.2181
Val. x Vis.Field

Electrode 0.41 1 0.41 0.65 0.4332

Att.Type x 1.66 2 0.83 6.42 0.0048*
Electrode

Validity x 0.03 1 0.03 1.04 0.3238
Electrode

Att.Type x 0.05 2 0.02 0.48 0.6245
Val. x Electrode

Vis.Field x 0.31 1 0.31 1.49 0.2415
Electrode

Att.Type x 0.05 2 0.02 0.46 0.6361
Vis. Field x Elctrode

Validity x 0.02 1 0.02 0.47 0.5029
Vis. Field x Electrode

Att.Type x 0.11 2 0.06 1.26 0.2990
Val. x Vis.Field x Electrode
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Experiment 3: P1 Amplitude; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
----------------------------------------------------------
Validity 0.29 1 0.29 0.29 0.5969

Vis.Field 0.08 1 0.08 0.07 0.7904

Validity x 0.68 1 0.68 1.04 0.3229
Vis.Field

Electrode 0.09 1 0.09 0.57 0.4603

Validity x 0.00 1 0.00 0.12 0.7388
Electrode

Vis.Field x 0.02 1 0.02 0.17 0.6868
Electrode

Val. x Vis.Field x 0.03 1 0.03 0.69 0.4176
Electrode

Experiment 3: P1 Amplitude; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 0.18 1 0.18 0.38 0.5487

Vis.Field 49.43 1 49.43 17.44 0.0008*

Validity x 0.07 1 0.07 0.16 0.6983
Vis.Field

Electrode 1.98 1 1.98 3.04 0.1015

Validity x 0.01 1 0.01 1.37 0.2607
Electrode

Vis.Field x 0.16 1 0.16 1.13 0.3044
Electrode

Val. x Vis.Field x 0.02 1 0.02 2.00 0.1776
Electrode
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Experiment 3: P1 Amplitude; Reflexive attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 0.48 1 0.48 0.30 0.5939

Vis.Field 9.40 1 9.40 9.06 0.0088*

Validity x 1.07 1 1.07 2.00 0.1775
Vis. Field

Electrode 0.00 1 0.00 0.00# 0.9781

Validity x 0.06 1 0.06 0.71 0.4133
Electrode

Vis.Field x 0.17 1 0.17 4.23 0.0576
Electrode

Val. x Vis.Field x 0.08 1 0.08 1.08 0.3159
Electrode



138

Experiment 3: P1 Latency; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
---------------------------------------------------------
Att.Type 639.08 2 319.54 1.27 0.2957

Validity 570.38 1 570.38 1.72 0.2099

Att.Type x 1054.75 2 527.38 2.25 0.1229
Validity

Vis.Field 4293.38 1 4293.38 5.77 0.0297*

Att.Type x 900.75 2 450.37 2.32 0.1153
Vis.Field

Validity x 570.37 1 570.37 5.74 0.0301*
Vis.Field

Att.Type x 2395.75 2 1197.88 8.55 0.0011*
Val. x Vis.Field

Electrode 234.38 1 234.38 4.13 0.0601

Att.Type x 45.25 2 22.62 0.82 0.4519
Electrode

Validity x 5.04 1 5.04 0.12 0.7352
Electrode

Att.Type x 18.58 2 9.29 0.52 0.5983
Val. x Electrode

Vis.Field x 77.04 1 77.04 2.34 0.1466
Electrode

Att.Type x 21.58 2 10.79 0.47 0.6302
Vis.Field x Electrode

Validity x 35.04 1 35.04 1.51 0.2382
Vis.Field x Electrode

Att.Type x 7.58 2 3.79 0.20 0.8205
Val. x Vis.Field x Electrode



139

Experiment 3: P1 Latency; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Validity 24.50 1 24.50 0.39 0.5436

Vis.Field 1682.00 1 1682.00 18.05 0.0007*

Validity x 4.50 1 4.50 0.21 0.6544
Vis.Field

Electrode 40.50 1 40.50 1.49 0.2409

Validity x 18.00 1 18.00 1.42 0.2517
Electrode

Vis.Field x 0.50 1 0.50 0.03 0.8545
Electrode

Val. x Vis.Field x 8.00 1 8.00 1.50 0.2396
Electrode

Experiment 3: P1 Latency; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Validity 10.12 1 10.12 0.38 0.5489

Vis.Field 990.12 1 990.12 5.38 0.0349*

Validity x 36.12 1 36.12 1.98 0.1799
Vis.Field

Electrode 36.12 1 36.12 2.92 0.1084

Validity x 1.12 1 1.12 0.11 0.7475
Electrode

Vis.Field x 10.12 1 10.12 0.97 0.3393
Electrode

Val. x Vis.Field x10.12 1 10.12 0.97 0.3393
Electrode
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Experiment 3: P1 Latency; Reflexive attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 648.00 1 648.00 3.02 0.1028

Vis.Field 50.00 1 50.00 0.71 0.4130

Validity x 1058.00 1 1058.00 13.47 0.0023*
Vis.Field

Electrode 50.00 1 50.00 3.57 0.0783

Validity x 2.00 1 2.00 0.15 0.7054
Electrode

Vis.Field x 0.00 1 0.00 0.00 1.0000
Electrode

Val x Vis.Field x 32.00 1 32.00 3.87 0.0679
Electrode
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Experiment 3: Late P1 Amplitude; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
--------------------------------------------------------------------
Att.Type 54.87 2 27.44 15.54 0.0000*

Validity 5.22 1 5.22 1.64 0.2193

Att.Type x 19.15 2 9.58 5.49 0.0093*
Validity

Vis.Field 76.01 1 76.01 15.33 0.0014*

Att.Type x 12.05 2 6.03 3.65 0.0383*
Vis.Field

Validity x 2.12 1 2.12 5.01 0.0408*
Vis.Field

Att.Type x 8.08 2 4.04 4.92 0.0142*
Validity x Vis.Field

Electrode 0.43 1 0.43 0.42 0.5265

Att.Type x 1.03 2 0.51 4.29 0.0230*
Electrode

Validity x 0.18 1 0.18 4.86 0.0435*
Electrode

Att.Type x 0.12 2 0.06 0.89 0.4223
Val. X Electrode

Vis.Field x 0.63 1 0.63 2.52 0.1331
Electrode

Att.Type x 0.04 2 0.02 0.24 0.7878
Vis.Field x Electrode

Validity x 0.00 1 0.00 0.16 0.6941
Vis.Field x Electrode

Att.Type x 0.03 2 0.01 0.37 0.6912
Val. x Vis.Field x Electrode
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Experiment 3: Late P1 Amplitude; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 0.05 1 0.05 0.04 0.8514

Vis.Field 10.76 1 10.76 5.20 0.0377*

Validity x 0.97 1 0.97 1.51 0.2380
Vis.Field

Electrode 0.00 1 0.00 0.00# 0.9539

Validity x 0.00 1 0.00 0.00 0.9474
Electrode

Vis.Field x 0.12 1 0.12 0.81 0.3830
Electrode

Validity x 0.02 1 0.02 0.68 0.4222
Vis.Field x Electrode

Experiment 3: Late P1 Amplitude; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
--------------------------------------------------------------
Validity 0.50 1 0.50 0.96 0.3428

Vis.Field 61.45 1 61.45 12.10 0.0034*

Validity x 0.27 1 0.27 0.51 0.4854
Vis.Field

Electrode 1.46 1 1.46 2.09 0.1689

Validity x 0.07 1 0.07 3.18 0.0948
Electrode

Vis.Field x 0.18 1 0.18 0.88 0.3625
Electrode

Val. X Vis.Field x 0.01 1 0.01 0.40 0.5361
Electrode
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Experiment 3: Late P1 Amplitude; Reflexive attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
---------------------------------------------------------------
Validity 23.82 1 23.82 4.89 0.0429*

Vis.Field 15.85 1 15.85 14.21 0.0019*

Validity x 8.96 1 8.96 9.95 0.0065*
Vis.Field

Electrode 0.00 1 0.00 0.01 0.9312

Validity x 0.22 1 0.22 2.05 0.1727
Electrode

Vis.Field x 0.37 1 0.37 6.22 0.0248*
Electrode

Val. x Vis.Field x 0.00 1 0.00 0.02 0.8987
Electrode
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Experiment 3: N1 Amplitude; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Att.Type 17.39 2 8.70 2.35 0.1126

Validity 10.00 1 10.00 6.67 0.0208*

Att.Type x 18.19 2 9.09 11.56 0.0002*
Validity

Vis.Field 11.57 1 11.57 0.85 0.3709

Att.Type x 0.06 2 0.03 0.01# 0.9916
Vis.Field

Validity x 0.41 1 0.41 0.67 0.4265
Vis.Field

Att.Type x 0.21 2 0.11 0.15 0.8624
Val. x Vis.Field

Electrode 4.86 1 4.86 7.98 0.0128*

Att.Type x 3.02 2 1.51 11.11 0.0002*
Electrode

Validity x 0.08 1 0.08 7.19 0.0171*
Electrode

Att.Type x 0.06 2 0.03 1.12 0.3382
Val. x Electrode

Vis.Field x 1.06 1 1.06 3.36 0.0868
Electrode

Att.Type x 0.23 2 0.11 2.30 0.1175
Vis.Field xElectrode

Validity x 0.02 1 0.02 1.01 0.3299
Vis.Field x Electrode

Att.Type x 0.02 2 0.01 0.59 0.5600
Val. x Vis.Field x Electrode
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Experiment 3: N1 Amplitude; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 0.02 1 0.02 0.03 0.8712

Vis.Field 3.77 1 3.77 0.30 0.5941

Validity x 0.28 1 0.28 0.31 0.5886
Vis.Field

Electrode 6.99 1 6.99 14.34 0.0018*

Validity x 0.03 1 0.03 1.76 0.2042
Electrode

Vis.Field x 0.97 1 0.97 3.88 0.0677
Electrode

Val x VisField x 0.00 1 0.00 0.00# 0.9728
Electrode

Experiment 3: N1 Amplitude; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 0.11 1 0.11 0.14 0.7150

Vis.Field 4.60 1 4.60 0.76 0.3972

Validity x 0.34 1 0.34 0.92 0.3520
Vis.Field

Electrode 0.82 1 0.82 3.56 0.0788

Validity x 0.11 1 0.11 4.39 0.0536
Electrode

Vis.Field x 0.14 1 0.14 1.33 0.2661
Electrode

Val x Vis.Field x 0.03 1 0.03 8.28 0.0115*
Electrode
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Experiment 3: N1 Amplitude; Reflexive attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 28.06 1 28.06 19.18 0.0005*

Vis.Field 3.26 1 3.26 1.93 0.1850

Validity x 0.00 1 0.00 0.00# 0.9928
Vis.Field

Electrode 0.07 1 0.07 0.44 0.5167

Validity x 0.00 1 0.00 0.03 0.8624
Electrode

Vis.Field x 0.18 1 0.18 2.92 0.1084
Electrode

Val x Vis.Field x 0.01 1 0.01 0.25 0.6223
Electrode
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Experiment 3: N1 Latency; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Att.Type 16198.08 2 8099.04 17.85 0.0000*

Validity 805.04 1 805.04 0.79 0.3868

Att.Type x 4504.08 2 2252.04 3.68 0.0372*
Validity

Vis.Field 852.04 1 852.04 0.86 0.3679

Att.Type x 111.58 2 55.79 0.07 0.9308
Vis.Field

Validity x 570.37 1 570.37 1.15 0.3008
Vis.Field

Att.Type x 30.25 2 15.13 0.06 0.9400
Val. x Vis.Field

Electrode 198.37 1 198.37 2.10 0.1675

Att.Type x 45.75 2 22.88 0.16 0.8541
Electrode

Validity x 7.04 1 7.04 0.17 0.6866
Electrode

Att.Type x 19.08 2 9.54 0.42 0.6601
Val. x Electrode

Vis.Field x 260.04 1 260.04 1.61 0.2235
Electrode

Att.Type x 205.58 2 102.79 0.86 0.4337
Vis.Field x Electrode

Validity x 7.04 1 7.04 0.30 0.5920
Vis.Field x Electrode

Att.Type x 27.58 2 13.79 0.47 0.6265
Val. x Vis.Field x Electrode
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Experiment 3: N1 Latency; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 1.12 1 1.12 0.02 0.8824

Vis.Field 171.12 1 171.12 1.12 0.3062

Validity x 6.12 1 6.12 0.07 0.8016
Vis.Field

Electrode 91.12 1 91.12 7.82 0.0136*

Validity x 3.12 1 3.12 0.37 0.5524
Electrode

Vis.Field x 6.12 1 6.12 0.59 0.4546
Electrode

Val x Vis.Field x 10.12 1 10.12 0.95 0.3452
Electrode

Experiment 3: N1 Latency; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 32.00 1 32.00 2.35 0.1459

Vis.Field 338.00 1 338.00 3.50 0.0811

Validity x 98.00 1 98.00 4.68 0.0470*
Vis.Field

Electrode 18.00 1 18.00 4.09 0.0613

Validity x 0.00 1 0.00 0.00 1.0000
Electrode

Vis.Field x 0.00 1 0.00 0.00 1.0000
Electrode

Val x Vis.Field x 2.00 1 2.00 1.67 0.2162
Electrode
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Experiment 3: N1 Latency; Reflexive attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Validity 630.12 1 630.12 3.00 0.1038

Vis.Field 6.12 1 6.12 0.08 0.7844

Validity x 45.12 1 45.12 0.62 0.4427
Vis.Field

Electrode 91.12 1 91.12 18.26 0.0007*

Validity x 3.12 1 3.12 0.34 0.5699
Electrode

Vis.Field x 1.12 1 1.12 0.22 0.6461
Electrode

Val x Vis.Field x 3.12 1 3.12 1.34 0.2644
Electrode



150

Experiment 3: P2 Amplitude; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
---------------------------------------------------------------
Att.Type 326.39 2 163.19 16.96 0.0000*

Validity 44.44 1 44.44 7.11 0.0176*

Att.Type x 10.28 2 5.14 1.32 0.2813
Validity

Vis.Field 2.45 1 2.45 0.68 0.4211

Att.Type x 7.77 2 3.89 1.68 0.2037
Vis.Field

Validity x 1.87 1 1.87 0.79 0.3890
Vis. Field

Att.T 3.39 2 1.69 0.78 0.4696
Val. x Vis.Field

Electrode 0.06 1 0.06 0.07 0.7961

Att.Type x 6.12 2 3.06 15.50 0.0000*
Electrode

Validity x 2.23 1 2.23 24.14 0.0002*
Electrode

Att.Type x 2.22 2 1.11 7.31 0.0026*
Val. x Electrode

Vis.Field x 0.02 1 0.02 0.12 0.7362
Electrode

Att.Type x 0.01 2 0.00 0.06 0.9403
Vis.Field x Electrode

Validity x 0.01 1 0.01 0.12 0.7318
Vis.Field x Electrode

Att.Type x 0.02 2 0.01 0.17 0.8470
Val. x Vis.Field x Electrode
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Experiment 3: P2 Amplitude; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 15.72 1 15.72 5.59 0.0319*

Vis.Field 2.22 1 2.22 0.71 0.4136

Validity x 2.03 1 2.03 0.60 0.4509
Vis.Field

Electrode 0.75 1 0.75 2.49 0.1357

Validity x 0.23 1 0.23 4.60 0.0488*
Electrode

Vis.Field x 0.00 1 0.00 0.02 0.8917
Electrode

Val. x Vis.Field x 0.00 1 0.00 0.05 0.8196
Electrode

Experiment 3: P2 Amplitude; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-----------------------------------------------------------
Validity 41.79 1 41.79 4.98 0.0414*

Vis.Field 6.49 1 6.49 2.65 0.1240

Validity x 2.85 1 2.85 1.45 0.2466
Vis.Field

Electrode 1.58 1 1.58 2.02 0.1758

Validity x 4.02 1 4.02 19.85 0.0005*
Electrode

Vis.Field x 0.02 1 0.02 0.19 0.6732
Electrode

Val. x Vis.Field x 0.02 1 0.02 0.63 0.4395
Electrode



152

Experiment 3: P2 Amplitude; Reflexive attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Validity 5.94 1 5.94 2.50 0.1344

Vis.Field 1.64 1 1.64 0.60 0.4500

Validity x 0.50 1 0.50 0.36 0.5574
Vis.Field

Electrode 3.50 1 3.50 18.53 0.0006*

Validity x 0.01 1 0.01 0.04 0.8452
Electrode

Vis.Field x 0.00 1 0.00 0.05 0.8299
Electrode

Val. x Vis.Field x 0.00 1 0.00 0.01 0.9421
Electrode
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Experiment 3: P300 Amplitude; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
----------------------------------------------------------
Att.Type 219.06 2 109.53 10.47 0.0004*

Validity 29.63 1 29.63 5.13 0.0387*

Att.Type x 35.23 2 17.61 3.92 0.0307*
Validity

Vis.Field 5.95 1 5.95 1.32 0.2678

Att.Type x 0.52 2 0.26 0.12 0.8894
Vis.Field

Validity x 1.21 1 1.21 0.81 0.3820
Vis.Field

Att.Type x 10.69 2 5.35 2.74 0.0811
Val. x Vis.Field

Electrode 1.23 2 0.61 1.32 0.2812

Att.Type x 2.73 4 0.68 4.46 0.0032*
Electrode

Validity x 0.35 2 0.17 2.49 0.0998
Electrode

Att.Type x 0.26 4 0.07 0.72 0.5787
Val. x Electrode

Vis.Field x 0.99 2 0.49 2.38 0.1099
Electrode

Att.Type x 0.33 4 0.08 2.06 0.0970
Vis. Field x Electrode

Validity x 0.12 2 0.06 1.85 0.1753
Vis.Field x Electrode

Att.Type x 0.27 4 0.07 1.35 0.2606
Val. x Vis.Field x Electrode
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Experiment 3: P300 Amplitude; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 20.26 1 20.26 3.65 0.0756

Vis.Field 0.69 1 0.69 0.12 0.7317

Validity x 2.96 1 2.96 1.81 0.1980
Vis.Field

Electrode 0.15 2 0.07 0.57 0.5707

Validity x 0.19 2 0.09 0.94 0.4024
Electrode

Vis.Field x 0.33 2 0.17 1.69 0.2020
Electrode

Val. x Vis.Field x 0.20 2 0.10 1.70 0.1998
Electrode

Experiment 3: P300 Amplitude; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 42.14 1 42.14 8.37 0.0112*

Vis.Field 3.22 1 3.22 2.97 0.1056

Validity x 4.86 1 4.86 3.47 0.0821
Vis.Field

Electrode 2.88 2 1.44 2.65 0.0872

Validity x 0.06 2 0.03 0.37 0.6916
Electrode

Vis.Field x 0.03 2 0.02 0.16 0.8523
Electrode

Val. x Vis.Field x 0.05 2 0.02 0.84 0.4409
Electrode
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Experiment 3: P300 Amplitude; Reflexive attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 2.45 1 2.45 0.59 0.4547

Vis.Field 2.57 1 2.57 1.14 0.3018

Validity x 4.08 1 4.08 1.72 0.2091
Vis.Field

Electrode 0.94 2 0.47 4.77 0.0159*

Validity x 0.37 2 0.18 2.38 0.1101
Electrode

Vis.Field x 0.95 2 0.48 5.13 0.0122*
Electrode

Val.x Vis.Field x 0.14 2 0.07 1.57 0.2248
Electrode
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Experiment 3: N400 Amplitude; All attention types

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
---------------------------------------------------------
Att.Type 32.18 2 16.09 2.29 0.1189

Validity 0.12 1 0.12 0.06 0.8075

Att.Type x 16.52 2 8.26 2.02 0.1504
Validity

Vis.Field 0.26 1 0.26 0.05 0.8238

Att.Type x 4.53 2 2.26 1.13 0.3375
Vis.Field

Validity x 11.02 1 11.02 4.97 0.0415*
Vis.Field

Att.Type x 6.83 2 3.41 1.32 0.2831
Val. x Vis.Field

Electrode 1.92 2 0.96 1.23 0.3069

Att.Type x 0.49 4 0.12 1.54 0.2028
Electrode

Validity x 0.06 2 0.03 0.35 0.7104
Electrode

Att.Type x 0.31 4 0.08 1.52 0.2064
Val. x Electrode

Vis.Field x 0.50 2 0.25 3.32 0.0496*
Electrode

Att.Type x 0.25 4 0.06 1.50 0.2132
Vis.Field x Electrode

Validity x 0.25 2 0.13 2.73 0.0814
Vis.Field x Electrode

Att.Type x 0.43 4 0.11 3.25 0.0177*
Val. x Vis.Field x Electrode
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Experiment 3: N400 Amplitude; Social attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
------------------------------------------------------------
Validity 0.15 1 0.15 0.04 0.8437

Vis.Field 0.09 1 0.09 0.03 0.8581

Validity x 16.18 1 16.18 8.80 0.0096*
Vis.Field

Electrode 0.40 2 0.20 0.81 0.4523

Validity x 0.27 2 0.13 1.87 0.1715
Electrode

Vis.Field x 0.17 2 0.08 1.52 0.2359
Electrode

Val.x Vis.Field x 0.48 2 0.24 6.56 0.0043*
Electrode

Experiment 3: N400 Amplitude; Voluntary attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
--------------------------------------------------------------
Validity 11.01 1 11.01 4.84 0.0440*

Vis.Field 4.01 1 4.01 1.52 0.2359

Validity x 0.32 1 0.32 0.13 0.7213
Vis.Field

Electrode 0.18 2 0.09 0.31 0.7378

Validity x 0.08 2 0.04 0.65 0.5287
Electrode

Vis.Field x 0.05 2 0.02 0.40 0.6735
Electrode

Val.x Vis.Field x 0.10 2 0.05 2.16 0.1325
Electrode
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Experiment 3: N400 Amplitude; Reflexive attention only

ANALYSIS OF VARIANCE TABLE

SOURCE SS DF MS F p
-------------------------------------------------------------
Validity 5.47 1 5.47 1.35 0.2628

Vis.Field 0.69 1 0.69 0.19 0.6732

Validity x 1.34 1 1.34 0.43 0.5219
Vis.Field

Electrode 1.83 2 0.91 2.32 0.1160

Validity x 0.01 2 0.01 0.14 0.8677
Electrode

Vis.Field x 0.53 2 0.27 5.89 0.0069*
Electrode

Val.x Vis.Field x 0.10 2 0.05 0.97 0.3917
Electrode
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