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ABSTRACT 
 

JENNIFER M. JAMES: Mechanisms and Analysis of  
Blood Vessel Patterning in the Quail Neural Tube 

(Under the direction of Victoria L. Bautch) 
 
 

Neurovascular development requires communication between two embryonic 

organ systems, the neuroepithelium and blood vessels.  During neural tube development, 

blood vessels enter at stereotypical locations from the surrounding peri-neural vascular 

plexus, forming an intraneural vascular pattern.  We first investigated the role of VEGF- 

signaling from the neural tube in blood vessel ingression and pattern formation.  

Localized, ectopic expression of heparin-binding VEGF165 or VEGF189 from the avian 

neural tube resulted in supernumerary vessel sprouts and disrupted vessel patterning.  

Conversely, localized loss of endogenous VEGF-A signaling in the neural tube, via 

ectopic expression of the VEGF inhibitor sFlt-1, locally blocked blood vessel ingression. 

Thus, we demonstrated that neural-derived VEGF-A has a direct role in the spatially 

localized molecular crosstalk required for neurovascular development and vessel 

patterning in the neural tube.   

Though necessary and sufficient for blood vessel sprout formation, neural tube-

derived VEGF was not sufficient to explain why blood vessel sprouts form at specific 

times and highly stereotypical locations within the neural tube.  The neural tube is also a 

patterned structure, and we hypothesized that normal processes of neural tube 

development, such as programmed neurogenesis and dorsoventral patterning of neurons, 
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influence the blood vessel pattern.  To test this, we manipulated both the timing of 

neurogenesis and dorsoventral neuronal patterning via electroporation of genes known to 

regulate these processes.  We demonstrated that the specific time of neuronal 

differentiation within the neural tube is important for regulating the timing of angiogenic 

sprout ingression.  Furthermore, perturbations in neuronal cell fate specification along the 

dorsoventral axis of the neural tube predictably altered the locations where angiogenic 

sprouts ingressed.  This allowed us to identify pro- and anti-angiogenic regions along the 

dorsoventral axis of the neural tube.  This work demonstrates that neural tube 

development and blood vessel patterning are linked and that the neural tube directs both 

the timing and spatial distribution of ingressing blood vessels in quail. 
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The work presented in this dissertation is based on observations and analyses 

made quite a long time ago, as scientists from the early 1900’s painstakingly extracted 

patterns from what they saw in the intraneural blood vessels of many different organisms 

(Sterzi, 1904a).  They discovered that the vasculature was not a tangled disarray of tubes, 

but instead exhibited a high degree of order.  Neural blood vessels within organisms of 

the same species patterned reproducibly in both space and time; however, vessels within 

a single organism patterned differently depending on the region of the central nervous 

system (CNS) in which the vessels were found (Craigie, 1920; Feeney and Watterson, 

1946; Sterzi, 1913).  Following these observations, an idea emerged that the CNS may be 

able to shape the vasculature to suit its own metabolic needs.  What scientists did not 

understand at that time was how the neural tissue was able to establish communication 

with the vasculature to direct blood vessel growth and patterning.  Here, in the present 

study, we are focused on answering this question in one specific developmental niche of 

the CNS—the avian neural tube, as vessels first surround and invade the embryonic 

neural tissue. 

Neural vessels assemble via two major processes: vasculogenesis and 

angiogenesis (Cleaver and Kreig, 1999; Risau, 1997).  Vasculogenesis is the process by 

which endothelial cell (EC) precursors called angiogblasts assemble into primitive 

vascular beds.  Angioblasts are derived from mesodermal tissue, and can either undergo 

in situ differentiation to form vascular cords in a process called vasculogenesis type I or 

converge into blood vessels through migration and differentiation—a process known as 

vasculogenesis type II.  Once angioblasts and ECs have coalesced to form a primitive 

vessel bed, they undergo angiogenesis, or the growth of new blood vessels from pre-
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existing vessels.  Sprouting angiogenesis is the process in which ECs emerge from the 

parent vessel in response to pro-angiogenic signals in the surrounding environment, 

forming a blood vessel sprout.  In the avian neural tube, these processes are reproducibly 

coordinated in both time and space, forming a blood vessel pattern. 

   How do the neural vessels pattern?  The neural tube and the blood vessels arise 

from different germ layers, the ectoderm and the mesoderm, respectively.  This presents 

an interesting problem for the neural tube—it does not contain blood vessels or blood 

vessel precursor cells (Nakao et al., 1988) and instead must rely solely on recruiting 

angioblasts and ECs from the surrounding mesodermal tissue (Fig 1.1 A).  The first 

neural vessels form as migratory angioblasts and ECs coalesce into a ring of vessels 

surrounding the neural tube known as the peri-neural vessel plexus (PNVP) (Fig 1.1 B).  

Angioblasts arise in many regions within the embryo, and they are able to migrate 

extensively to incorporate into various vascular beds (Noden, 1989; Wilting et al., 1997).  

Grafted angioblasts have been shown to reproducibly migrate and incorporate into 

specific host vascular beds (Pardanaud et al., 1996; Wilms et al., 1991; Wilting et al., 

1995).  For example, mouse-avian chimeras containing mouse mesodermal grafts show 

that mouse angiogblasts migrate extensively and incorporate into the host’s PNVP 

(Ambler et al., 2001).  These results suggested that angioblasts were able to respond to 

local environmental signals that reproducibly induced migration and blood vessel 

formation in specific embryonic locations.  Furthermore, ectopic, mouse-derived neural 

tube grafts also directed PNVP formation in avian hosts (Hogan et al., 2004).  Taken 

together, these observations led to the hypothesis that the neural tube is the source of a 

diffusible blood vessel patterning signal that is sent out into the surrounding mesodermal 
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tissue to establish positive communication with angioblasts and ECs—resulting in the 

recruitment of a PNVP.  

Subsequent experiments revealed that a major component of this neural tube-

derived signal was Vascular Endothelial Growth Factor-A (VEGF).  Grafted mouse ECs 

mutant for Flk1, the receptor that mediates intracellular VEGF-signaling, were unable to 

migrate and incorporate into an avian host’s PNVP (Ambler et al., 2003).  Furthermore, 

explanted mouse pre-somitic mesoderm (PSM), a tissue rich in angioblasts, was able to 

form a blood vessel plexus when co-cultured in a collagen matrix with avian neural tubes; 

however, this plexus did not form when the PSM was cultured with neural tubes in the 

presence of a VEGF inhibitor (Hogan et al., 2004).  These experiments demonstrate that 

neural tube-derived VEGF is important for PNVP formation.  Proper patterning of the 

PNVP is crucial for CNS function in the adult, as blood vessels comprising the PNVP 

have an important role in the formation of the blood brain barrier (Bar, 1980; Risau et al., 

1986a; Risau et al., 1986b; Risau and Wolburg, 1990).  PNVP vessels have another role 

that is central to the work presented in this thesis; they are the source of ECs that 

subsequently invade and vascularize the CNS.   

While VEGF is clearly important for regulating PNVP formation, less is known 

about its role in the next step of neural tube vascularization—the angiogenic invasion of 

PNVP vessels into the neural tube.  Blood vessels form the PNVP approximately one day 

before angiogenic sprouts invade the neural tube, and vessel sprouts entering the neural 

tube do so in highly stereotypical locations.  Two works have illustrated much of what is 

known about the intraneural vascular pattern in the avian neural tube.  Feeney and 

Watterson (1946) described sixteen distinct blood vessels that form reproducibly and at 
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somewhat regular intervals along the anterior-posterior axis of the chick neural tube 

before it becomes uniformly vascularized.  Each vessel forms along both spatial and 

temporal axes, and earlier vessels build a scaffold onto which subsequent vessels will 

either anastomose with or sprout from.  The first three intraneural blood vessels (#1, #2, 

and #3 according to Feeney and Watterson) that form are of particular importance to this 

work.  The first angiogenic sprouts (#1) to invade the neural tube do so ventrally, 

adjacent to the floor plate (Fig. 1.1 C).  The next two vessels (#2 and #3) sprout medio-

laterally (Fig. 1.1 D) within 12-24 hours of ventral sprouting events.  The discovery that a 

hierarchal system of intraneural blood vessel growth and patterning exists, suggests that 

neural tube angiogenesis is highly regulated by the neural tissue, and the specific order 

and region in which each vessel forms likely serves an important role in proper neural 

development.   

The second body of work by Kurz and Christ (1996) focuses on a narrower 

window of embryonic development, during which only these first three blood vessels 

enter the quail neural tube.  They utilized an antibody recognizing a sugar moiety on the 

surface of quail angioblasts and ECs, called QH1 (Pardanaud et al., 1987), to label the 

quail vasculature.  This tool allowed Kurz and Christ to add to what was already known 

about vascular patterning in the avian neural tube because it allowed them visualize 

vessels that did not yet have blood flow, such as new vessel sprouts and individual 

angioblasts and ECs.   They found that the first vascular cells to enter the neural tube 

were invasive angioblasts that immigrated into the dorsal neural tube (Fig. 1.1, C; 

arrowhead).  Additionally, they confirmed that angiogenic sprouts do not invade the 

dorsal neural tube in quail as they do in mouse (Nakao et al., 1988).  Like Feeney and 
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Watterson, Kurz and Christ also believed that the neural tube directed intraneural vessel 

growth and patterning, but it was unclear how the neural tissue orchestrated these 

patterning events.  We were first interested in understanding how VEGF-signaling from 

the neural tube contributes to this stage of vessel patterning, as angiogenic sprouts from 

the PNVP invade the neuroepithelium.  

The VEGF signaling pathway has well characterized roles in vascular 

development (Bautch and Ambler, 2004; Carmeliet and Collen, 1999; Olsson et al., 

2006).  VEGF binds two receptors expressed on the surface of ECs, Flt1 (VEGFR1) and 

Flk1 (VEGFR2).  VEGF binding to Flk1 mediates positive downstream effects such as 

angioblast differentiation into ECs, as well as EC proliferation, survival, and migration.  

The Flt1 receptor is alternatively spliced into two isoforms, a membrane-bound form (m-

Flt1), and a soluble form (s-Flt1).  Both Flt isoforms are thought to act as a ligand sink to 

negatively modulate the amount of VEGF available to bind Flk1 (Kendall and Thomas, 

1993).  Flt1 mutant mice and embryonic stem (ES) cells display a vessel overgrowth 

phenotype resulting in early embryonic lethality (Fong et al., 1995), and the formation of 

vascular sheets in ES cell cultures (Kearney et al., 2002).  The vessel overgrowth 

phenotype can be rescued by s-Flt1 expression and partially rescued by m-Flt1 expression 

in the ES cell cultures (Kappas et al., 2008).  These vascular defects may be caused by a 

VEGF gain of function, as elevated amounts of VEGF expression in embryos also results 

in vascular overgrowth (Miquerol et al., 2000).  The major components of the VEGF-

signaling pathway are shown in Fig. 1.2. 

VEGF expression is regulated, in part, by hypoxia (Pugh and Ratcliffe, 2003; 

Shweiki et al., 1992).  Quail embryos incubated in hypoxic conditions globally 
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upregulate VEGF (Nanka et al., 2006).  In the context of the developing neural tube, 

VEGF is upregulated early, as rapidly proliferating neural progenitor cells become 

hypoxic.  This VEGF diffuses into the surrounding mesodermal tissue, presumably 

forming a gradient.  The concept of a VEGF gradient is important for understanding how 

VEGF can act both as a long range signal, attracting angioblasts that are quite a distance 

from the neural tube, and also as a short-range blood vessel patterning cue to mediate 

local blood vessel patterning events.  The VEGF gradient can be broken down into two 

major components: 1) Concentration of VEGF, and 2) Alternative splicing of Vegf, 

leading to the generation of VEGF isoforms with different affinities for the extra-cellular 

matrix. 

1) Concentration of VEGF:  The level of VEGF expression in the developing 

embryo is crucial for embryonic survival.  Inactivation of one Vegf allele results in 

embryonic lethality in mice between embryonic (E) day 11 and 12 (Carmeliet et al., 

1996; Ferrara et al., 1996).  Blood vessels and ECs fail to develop properly in these 

mutant embryos.  Conversely, moderate increases in VEGF signaling, produced by 

insertion of a modified vegf gene into the endogenous locus, result in embryonic lethality 

due to cardiovascular defects and vessel overgrowth at E12.5 (Miquerol et al., 2000).  

Proper levels of CNS-derived VEGF are important for regulating the density of blood 

vessels in the brain.  A severe reduction, or targeted deletion, of CNS-derived VEGF in 

mouse resulted in early postnatal lethality, reduced blood vessel density in the brain, 

increased neuronal apoptosis, and severe degeneration of the cerebral cortex (Haigh et al., 

2003; Raab et al., 2004).  These experiments suggest that a narrow range of VEGF levels, 

allowing for proper blood vessel growth and patterning, exists in developing embryos.  If 
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sufficient levels aren’t met, not enough vessels form to allow proper development of 

embryonic organs, and if too much VEGF is expressed, vessel overgrowth is the result; 

however, these studies did not extensively examine the effects of modulating VEGF 

expression levels in the neural tube at the time of vessel ingression. 

2) Alternative splicing of vegf.  VEGF can act both as a long-range vessel 

patterning cue, as well as a short-range signal to locally guide vessel sprouts (Carmeliet 

et al., 1999; Ruhrberg et al., 2002; Stalmans et al., 2002).  It can achieve this signaling 

range because it is alternatively spliced into at least 6 isoforms, three of which are 

abundantly expressed in the mouse embryo: VEGF120, VEGF164, and VEGF188.  In the 

quail, there are four major isoforms: VEGF122, VEGF146, VEGF166, and VEGF190 

(Finkelstein and Poole, 2003).  Each isoform interacts differently with the extracellular 

matrix via heparin binding sites (Houck et al., 1992).  VEGF188 has two heparin-binding 

sites and is the least soluble, while VEGF120 has no matrix-binding sites and is 

completely soluble.  VEGF165 has one heparin-binding site and maintains intermediate 

properties (Park et al., 1993).  VEGF isoform mRNA expression analysis in mouse shows 

that all three major splice variants are expressed in the CNS, but they are present in 

greatly varying amounts.  VEGF165 is the most abundant transcript, comprising 

approximately 75% of the total mRNA, while VEGF120 and VEGF188 make up 20% 

and 5% of the remaining transcripts, respectively (Ng et al., 2001).  Mice generated to 

express only one of the three major isoforms have intraneural vessel patterning defects.  

VEGF120/120 neural tubes display delayed ingression and reduced sprout number.  

VEGF188/188 mouse neural tubes have hyper-branched, thin vessels, while VEGF165/165 

mice have phenotypically normal blood vessels (unpublished data, J.M.J. and V.L.B.).  
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These observations are consistent with reports describing vessel branching and 

morphogenesis defects in other regions of the isoform mutant mice (Ruhrberg et al., 

2002).  

Neuropilin-1 (NRP1) is also important for mediating isoform-specific, VEGF-

signaling effects.  NRP1, a co-receptor for VEGF, is expressed in endothelial cells and 

has been shown to enhance VEGF-Flk1 interactions in vitro (Soker et al., 1998) by 

complexing with Flk-1.  NRP1 is also highly expressed on neuronal axons and acts as a 

co-receptor for Semaphorin molecules, forming a complex with Plexin receptors 

(Kolodkin et al., 1997).  Although NRP1 can bind all three major VEGF isoforms, 

VEGF120 is too small to bridge the gap between Flk1 and NRP1 (Pan et al., 2007), thus 

precluding complex formation.  This is thought to partially account for the severity of 

blood vessel defects in the VEGF120/120 mice.  Mice mutant for NRP1 display embryonic 

blood vessel patterning defects (Kawasaki et al., 1999).  In these mutant mice, blood 

vessel ingression and blood vessel density within the embryonic hindbrain appear 

normal; however, there are defects in blood vessel branching as vessel sprouts interface 

the ventricular zone (Gerhardt et al., 2004).  Endothelial-specific deletion of Neuropilin-1 

has a different effect, resulting in the formation of large, un-branched vessels within the 

neural tube (Gu, 2003), which is reminiscent of the VEGF120/120 vessel phenotype. 

In Chapter II, we further dissect the role of VEGF-signaling in intraneural blood 

vessel patterning, demonstrating that neural tube-derived VEGF is required for blood 

vessel ingression.  We also explored how (or if) the spatial distribution of VEGF in the 

neural tube directs stereotypical blood vessel ingression, by overexpressing individual 

VEGF isoforms in quail neural tubes in the presence of endogenous quail VEGF.  We 
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found that VEGF isoforms differentially regulate ectopic angiogenesis and that matrix-

binding VEGF-expressing cells are able to provide precise patterning information to 

ingressing vessels, whereas non-matrix-binding VEGF cannot. 

While VEGF is clearly important for blood vessel ingression, recent studies have 

implicated other signaling pathways in intraneural blood vessel patterning.  For example, 

Wnt/ß-catenin signaling regulates sprouting angiogenesis into the mouse neural tube, 

revealing an important neural-specific role for endothelial ß-catenin in the formation of 

the blood brain barrier (Daneman et al., 2009; Stenman et al., 2008).  Mice mutant for 

Wnt7a and Wnt7b displayed intraneural vessel hemorrhage, resulting in “bloody neural 

tubes”; however, the mechanism behind the vessel phenotype remains to be elucidated.  

Although the general assessment was that Wnt signals emanating from the ventricular 

zone (VZ) of the neural tube positively mediated blood vessel ingression, blood vessels 

still ingressed in the Wnt mutant embryos, albeit in reduced numbers.  If genes such as 

Wnt and VEGF are expressed throughout the neruoepithelium, positively regulating 

blood vessel ingression, then why do blood vessels enter the neural tube in such highly 

stereotypical locations? 

In Chapter III we explore the possibility that specific regions of the neural tube 

may be anti-angiogenic while other regions promote blood vessel ingression.  Normal 

processes of neural development, such as programmed neurogenesis and dorsal-ventral 

(DV) neuronal cell fate specification, divide the neural tube into specific sub-populations 

of cells: neural progenitor cells and differentiated neurons, including dorsal interneurons, 

ventral interneurons, and motor neurons (Jessell, 2000; Lee and Jessell, 1999).  We 

altered the developmental landscape of the neural tube by manipulating the timing of 
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neurogenesis, as well as DV patterning, to assess whether or not ingressing blood vessels 

were negatively or positively influenced by certain neural populations.  We demonstrate 

for the first time that these normal processes of neural tube development direct the 

intraneural vessel pattern.  Most intriguingly, we identified motor neurons in the ventral 

neural tube as a transiently anti-angiogenic cell population that initially blocks vessel 

ingression into this area.  But what is the mechanism?  

As motor neurons develop, they must project axons out of the neural tube to 

innervate multiple target tissues.  The axonal growth cone is an extremely tactile 

structure, sending out filopodia to interact with multiple signals in its environment.  

Signals are used to determine which way to migrate, based on a fine balance of positive 

and negative axonal guidance cues.  Numerous studies show that molecules regulating 

axonal guidance and patterning also regulate blood vessel patterning, and the tip cell of a 

growing vessel acts much like an axonal growth cone.  There are four main classes of 

guidance molecules that have roles in both axonal and blood vessel patterning: 

Semaphorins, Slits, Netrins, and Ephrins (Carmeliet and Tessier-Lavigne, 2005).  The 

Semaphorins and Slits are of particular interest to us because of their motor neuron-

restricted patterns (Holmes and Niswander, 2001; Luo et al., 1995).  A family of 

Semaphorin molecules, the Semaphorin III’s (Sema3), repels axons when expressed 

outside of the neural tube, placing motor axons on the correct trajectory toward muscle 

targets, while Sema3-sigaling within the neural tube sets axon sensitivity to this 

peripheral Sema expression by regulating Nrp1 expression (Moret et al., 2007).  Certain 

Sema3 family members also negatively regulate angiogenesis and EC migration (Gu et 

al., 2005; Serini et al., 2003; Torres-Vazquez et al., 2004).  Studies suggest that Slit2-



 12 

signaling through the Robo4 receptor on ECs, also negatively regulates EC migration 

(Jones et al., 2008; Park et al., 2003).  Slit2 is highly expressed in the motor neurons.  

These studies highlight possible mechanisms for the negative regulation of blood vessel 

ingression by the motor neurons demonstrated in Chapter III.  In Chapter IV, we begin to 

explore the possibility that motor neuron cell bodies negatively regulate blood vessel 

ingression via Semaphorin expression; however, this work is ongoing. 

Blood vessels invade the neural tube at a specific time and in highly stereotypical 

locations.   While studies show that the neural tube directs PNVP formation, the role that 

the neural tube plays in regulating blood vessel ingression has not been explored.  We 

demonstrate here that neural patterning and blood vessel patterning are linked, and that 

neural tube development directs the intraneural blood vessel pattern in quail. 
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Figure 1.1: Major blood vessel patterning events in the avian neural tube. 

(A) Angioblasts and ECs in the surrounding mesodermal tissue migrate toward 

the neural tube in response to secreted signals produced by the neural tube.  (B) 

Migratory cells begin to coalesce and form the PNVP as early as HH14 (Day 2).  (C) At 

HH22 (Day 3.5), ventral sprout formation commences (#1), and sprouts invade the neural 

tube lateral to the floor plate (FP) (arrow).  Ventral sprouts continue on a dorsal 

trajectory, migrating along the ventricular zone (VZ); however, they never invade this 

region.  Single angioblasts immigrate into the dorsal region of the neural tube at this stage 

(arrowhead).  (D) Approximately 12-24 hours after ventral sprouts ingress, medio-lateral 

sprouts form (#2 and #3, arrowheads).  At HH25 (Day 5), the stage depicted here, medio-

lateral sprouts branch laterally within the intermediate zone (IZ) as they interface the VZ.  

DRG, dorsal root ganglia; MZ, marginal zone; NC, notocord.   
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Figure 1.2: VEGF signaling in the neural tube. 

 (A) Overview of major VEGF-signaling components.  VEGF, expressed by 

neural cells, interacts with Flk1 and Flt1 receptors expressed by endothelial cells (ECs).  

VEGF binding Flk1 mediates positive downstream effects such as EC survival, 

proliferation, and migration, resulting in vessel plexus formation and angiogenesis.  Both 

s-Flt1 and m-Flt1 bind free VEGF, preventing VEGF interaction with Flk1 by acting as a 

ligand sink. 
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A. SUMMARY 
 
 
 
 
 Neurovascular development requires communication between two developing 

organs, the neuroepithelium and embryonic blood vessels.  We investigated the role of 

VEGF-A signaling in the embryonic crosstalk required for ingression of angiogenic 

vessel sprouts into the developing neural tube.  As the neural tube develops, blood vessels 

enter at specific points medially and ventrally from the surrounding peri-neural vascular 

plexus.  Localized ectopic expression of heparin-binding VEGF165 or VEGF189 from 

the developing avian neural tube resulted in supernumerary blood vessel ingression 

points and disrupted vessel patterning.  By contrast, localized, ectopic neural expression 

of non-heparin-binding VEGF121 did not produce supernumerary blood vessel 

ingression points, although the vessels that entered the neural tube became 

dysmorphogenic.  Localized loss of endogenous VEGF-A signaling in the developing 

neural tube via ectopic expression of the VEGF inhibitor sFlt-1 locally blocked blood 

vessel ingression.  The VEGF pathway manipulations were temporally controlled and did 

not dramatically affect neural tube maturation and dorsal-ventral patterning.  Thus, 

neural-derived VEGF-A has a direct role in the spatially localized molecular crosstalk 

that is required for neurovascular development and vessel patterning in the developing 

neural tube. 
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B. INTRODUCTION 

 

 A properly patterned network of blood vessels is crucial to embryonic 

development, as this network supplies nutrients and oxygen to developing organ systems 

within the embryo.  Embryonic blood vessels pattern reproducibly in both space and 

time, indicating that molecular cues emanating from other embryonic organs shape the 

vasculature and are also highly regulated (for reviews, see (Hogan and Bautch, 2004); 

(Coultas et al., 2005)).  Although it is known that the developing vasculature responds to 

spatial cues from other embryonic structures to produce a functional vessel network, 

relatively little is known about how this crosstalk is established and regulated. 

The central nervous system (CNS) is initially devoid of blood vessels and blood 

vessel precursors, so communication between the developing CNS and the developing 

vasculature outside the CNS is essential for proper development of the brain and spinal 

cord.  The brain and neural tube recruit blood vessels by inducing the proliferation, 

migration and differentiation of angioblasts and endothelial cells from the adjacent 

presomitic mesoderm and the lateral plate mesoderm (Ambler et al., 2001; Hogan et al., 

2004; Klessinger and Christ, 1996; Kurz et al., 1996; Pardanaud and Dieterlen-Lievre, 

1993; Pardanaud et al., 1996; Wilting et al., 1995).  A ring of vessels, known as the peri-

neural vascular plexus (PNVP), initially forms around the CNS.  Subsequently, vessels 

invade the neural tissue through angiogenic sprouting, and in avian neural tubes single 

angioblast migration into the dorsal neural tube also contributes to neural vascularization 

(Kurz et al., 1996).  Thus, a vessel network is established within the developing CNS to 
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support further growth and development.  As blood vessels enter the neural tube, they 

migrate along radial glia to move inwards from the lateral surface (Virgintino et al., 1998). 

In some areas of the CNS, the pattern of blood vessel ingression is highly stereotypical, 

as originally described by Feeney and Watterson (Feeney and Watterson, 1946), 

suggesting that neural-derived spatial cues regulate the patterning of ingressing vessels. 

Although there is recent evidence that endothelial cells may respond to intrinsic 

transcription factor programs to pattern in the telencephalon (Vasudevan et al., 2008), 

this paradigm is unlikely to be operative in the neural tube where internal vessels arise 

from nearby surface vessels. 

 Several signaling pathways are involved in embryonic vascular patterning, 

including VEGF-A (VEGF), Notch, ephrin and semaphorins (for reviews, see (Carmeliet 

and Tessier-Lavigne, 2005; Eichmann et al., 2005; Hogan and Bautch, 2004).  Target 

tissues produce ligands that interact with receptors expressed on angioblasts or 

endothelial cells, and these interactions impart attractive or repulsive cues that pattern 

blood vessels.  This paradigm, however, is difficult to demonstrate in the developing 

nervous system, because most of the relevant signaling pathways have roles in both the 

neural and vascular compartments (for reviews, see (Carmeliet and Tessier-Lavigne, 2005; 

Lambrechts and Carmeliet, 2006).  For example, genetic manipulation of components of 

the VEGF-A (VEGF) signaling pathway indicates a positive role for the pathway in 

neurovascular crosstalk, but the exact role of VEGF signaling in vascular versus nervous 

tissue is unclear.  Global deletion of VEGF or its major signaling receptor Flk-1 (VEGFR-

2) is embryonic lethal early in development (Carmeliet et al., 1996; Ferrara et al., 1996; 
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Shalaby et al., 1995), precluding analysis of neurovascular interactions.  Reduction of 

VEGF signaling from the developing CNS can be achieved by conditional deletion of 

VEGF-A using a nestin-Cre deletor strain.  This produces a reduced density of blood 

vessel branching with moderate reduction of VEGF-A signal, while a more profound 

reduction leads to neuronal apoptosis and lethality (Haigh et al., 2003; Raab et al., 2004).  

Genetic deletion of a VEGF-A co-receptor, Neuropilin-1 (NRP1), results in appropriate 

vessel ingression but reduced lateral branching in the sub-ventricular zone (Gerhardt et al., 

2004), whereas endothelial-specific deletion of NRP1 results in large unbranched vessels 

in the brain, indicating a role for NRP1 in vessel branching and morphogenesis after 

ingression (Gu et al., 2003). 

VEGF-A RNA is alternatively spliced to yield several major isoforms, and 

different isoforms have differential affinity for the extracellular matrix.  VEGF165 and 

VEGF189 interact moderately or strongly with the matrix via heparin-binding domains, 

whereas VEGF121 does not have heparin-binding properties and is more diffusible (Park 

et al., 1993).  Analysis of mice that express individual VEGF-A isoforms shows that 

vessel morphogenesis is affected by these perturbations (Ruhrberg et al., 2002; Stalmans 

et al., 2002).  VEGF120/120 embryos have larger diameter vessels that branch less often 

than normal, whereas VEGF188/188 embryos have smaller diameter vessels that branch 

more often than normal.  However, embryos expressing single VEGF-A isoforms 

supported vessel ingression into the CNS. 

We have previously shown that endothelial cells of presomitic mesoderm origin 

make a significant contribution to the PNVP (Ambler et al., 2001), and that VEGF 
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signaling is important in this process (Ambler et al., 2003; Hogan et al., 2004).   

Ectopically grafted neural tubes recruited a PNVP, and an explant model was used to 

show that neural tube derived VEGF-A is required for formation of a vascular plexus from 

presomitic mesoderm.  Here, we address the role of VEGF-A signaling in the next step of 

neurovascular communication: the ingression of blood vessels into the developing neural 

tube.  We show that locally mis-expressed heparin-binding VEGF-A isoforms induce 

ectopic ingression of blood vessels into the neural tube, and that local blockade of 

endogenous VEGF-A prevents vessel ingression in a spatially restricted manner.  These 

perturbations are temporally controlled and do not dramatically affect the patterning of 

the neuronal populations of the developing neural tube, indicating that direct 

communication between neural tissue and developing vessels via VEGF-A signaling is 

crucial to proper and patterned blood vessel ingression into the neural tube. 
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C. MATERIALS AND METHODS 

 

Expression Vectors 

The human VEGF121, VEGF165 and VEGF189 cDNAs (gift of J. Abraham) 

(Tischer et al., 1991) were inserted into the pCAGGS-IRES2-nucEGFP (pCIG) vector 

(Megason and McMahon, 2002) (gift of L. Pevny and A. McMahon) between the PstI 

and SmaI sites (VEGF121 and VEGF165) or the EcoRI and PstI sites (VEGF189) to 

make the VEGF expression vectors pCIG-VEGF121, pCIG-VEGF165 and pCIG-

VEGF189.  Mouse soluble Flt1 cDNA (Kappas et al., 2008) was inserted into the EcoRI 

site of the pCIG vector, generating pCIG-sFlt-1. 

 

In ovo quail electroporation 

Hamburger and Hamilton stage 16-18 (HH 16-18) Japanese quail embryos 

(Coturnix japonica, Ozark Egg Company, Stover, MO) were electroporated in ovo as 

described previously (Itasaki et al., 1999), with modifications.  Briefly, the pCIG control 

vector (0.5 µg/µl), VEGF121, VEGF165, VEGF189 (0.2 µg/µl), or sFlt-1 (0.5 µg/µl) 

DNA was suspended in DMEMF12 media (GIBCO, Grand Island, NY) containing 1 

penicillin/ streptomycin and 50 ng/ml Fast Green (Sigma, St Louis, MO).  Approximately 

1 nl was injected, to fill the posterior lumen of the neural tube.  Electroporation was with 

three pulses (50 milliseconds each) of 20 mV using a BTX ECM830 Square 

Electroporator (Harvard Apparatus, Holliston, MA) equipped with 3 mm gold-tipped, L-

shaped BTX genetrode electrodes (Genetronics) that flanked the neural tube.  Eggshells 

were taped and embryos developed an additional 48 hours at 37°C before dissection into 
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cold PBS. Embryos were viewed under an Olympus IX-50 epifluorescence microscope 

(Opelco, Sterling, VA) to visualize DNA incorporation via GFP expression. 

 

Immunofluorescence and Analysis of Ingression Patterns 

At stage HH 25-26, embryos were dissected from the yolk and fixed for 1-2 hours 

in 4% PFA (paraformaldehyde)/PBS at 4°C, rinsed in cold PBS, then washed for 1 hour 

in PBS on ice.  Embryos were incubated in 30% sucrose/PBS overnight at 4°C, then 

embedded in OCT media (TissueTEK, Sakura Finetek, Torrance, CA), and 12 µm 

sections through the upper-limb level (thoracic neural tube just posterior to the heart) 

were cut with a cryostat (Microm HM505E, Germany).  Frozen sections were washed in 

PBS, briefly blocked in antibody staining solution containing: 1X PBS, 0.1% Triton X- 

100 (Sigma), 1% heat-inactivated goat serum (GIBCO), then incubated in antibody 

staining solution and primary antibody overnight at 4°C.  Monoclonal mouse antibodies 

to Pax7, Pax6 and MNR2 were used at a concentration of 1:50 [obtained from the 

Developmental Studies Hybridoma Bank (DSHB) developed under the auspices of the 

NICHD and maintained by The University of Iowa Department of Biological Sciences, 

Iowa City, IA 52242]. QH1 (DSHB), transitin (DSHB) and anti-β-Tubulin type III (Tuj1, 

Covance, Emeryville, CA) were used at a concentration of 1:500.  Sections were rinsed 

twice in antibody staining solution, then incubated with anti-mouse IgG conjugated Cy3 

(Sigma) for 2 hours at room temperature at a concentration of 1:250.  Mounted sections 

were visualized with an Olympus IX-50 epifluorescence microscope and images were 

acquired with an Olympus DP71 digital camera (Center Valley, PA).   

Ingression patterns were analyzed quantitatively as follows.  A 1 mm region of 
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quail neural tube, starting at the upper limb, was sectioned.  Cryostat sections (12 µm) 

were taken at intervals of approximately 72 µm and stained with QH1.  Vessel ingression 

points were scored when a clear vascular connection from the PNVP into the neural tube 

was noted.  Angle measurements of ingressing angiogenic sprouts were calculated for 

each image by drawing a center line through the lumen of the neural tube from the floor 

plate to the roof plate and locating the center point of this line.  To determine the location 

of angiogenic sprouts, we plotted the angle of ingression from the initiation point of each 

sprout to the center, then down to the ventral-most point.  Angles were then measured 

using Metamorph software.  The ventral-most point along the center line is labeled 0°, 

whereas the dorsal-most point is 180° (Fig. 2A).  Angles were binned into each 10° of 

arc. In each group, five embryos were analyzed and the total number of ingression points 

in each 10° of arc plotted on a graph. 

 

In situ hybridization 

cDNAs were generated from quail genomic DNA obtained from whole embryos 

(HH 23).  Published quail VEGF (qVEGF) primer sequences were used to amplify 

fragments of qVEGF166 cDNA (Flamme et al., 1995).  The fragment was gel-extracted 

and ligated into the pCR-Blunt II-TOPO vector (Invitrogen, Carlsbad, CA).  Quail 

VEGF166 antisense probe was amplified using the SP6 promoter according to 

manufacturer’s instructions (Roche, Indianapolis, IN).  In situ hybridization was 

performed as described (Colbert et al., 1995), with minor modifications, on 20 µm 

transverse sections cut with a cryostat. 
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RNA Analysis 

Neural tubes electroporated on day 3 (HH16-17) were harvested on day 5 

(HH25), and three to five neural tubes/construct were pooled.  Total RNA was isolated 

using Trizol (Invitrogen) and cDNA was generated as described (Kappas et al., 2008).   

Equivalent amounts of cDNA were amplified using human VEGF-A (hVEGF-A) primers 

that spanned the alternative splice region, and PCR products were visualized by agarose 

gel electrophoresis and normalized to GFP.  The primers used were:  

forward hVEGF-A, 5-CTGCTGTCTTGGGTGCATTGG-3;  

reverse hVEGF-A, 5 -TCACCGCCTCGGCTTGTC-3;  

eGFP forward, 5 -CCTACGGCGTGCAGTGCTTCAGC-3; 

eGFP reverse, 5 -CGGCGAGCTGCACGCTGCGTCCTC-3. 
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D. RESULTS 

 

Blood vessel patterning around and within the quail neural tube 

Feeney and Watterson described stereotypical vessel ingression into the 

embryonic chick neural tube at the cervical level from days 4-16 of development using 

dye injection (Feeney and Watterson, 1946).  Our studies focused on the thoracic level of 

the quail neural tube between days 3-5 of development.  To establish a developmental 

time frame for major blood vessel patterning events in this area of the neural tube, we 

performed a time-course analysis of blood vessel patterning in transverse sections at 

stages HH 16-27, using QH1 immunostaining to visualize both patent vessels and non-

patent sprouts (Hamburger and Hamilton, 1992; Pardanaud et al., 1987) (Fig. 2.1 A, D, 

G, J, M, P). Similar to initial neurovascular patterning events in mouse (Hogan et al., 

2004), the perineural vascular plexus (PNVP) begins to form first along the mid-levels of 

the lateral (pial) surface of the neural tube (Fig. 2.1 A; arrow).  As development proceeds, 

the PNVP becomes progressively more complete (Fig. 2.1D, G).  Dorsal angioblast 

immigration (Fig. 2.1 G; arrowheads) and ventral sprouting (Fig. 2.1 G; arrows) were 

first observed at stage HH 22-24, and medial angiogenic sprouting was first observed at 

stage HH 24-25 (Fig. 2.1 J, M; arrows).  Angiogenic sprouting from the PNVP never 

occurred dorsal to the entry site for the DRG (dorsal root ganglia), and vessels were never 

seen sprouting into the floor plate.  These results are consistent with an earlier description 

of developmental vessel ingression in the cervical region of the quail embryo (Kurz et al., 

1996) and with the work of Feeney and Watterson (Feeney and Watterson, 1946), given 

that events occur earlier in more anterior regions of the CNS. 
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 β-Tubulin III was visualized by staining with the TuJ1 antibody on adjacent 

sections to follow neural development.  During early development the neural tube exists 

primarily as a proliferating pool of neural progenitor cells that maintain connections with 

both the luminal and pial surfaces of the neural tube.  As these cells undergo programmed 

differentiation, they lose contact with the luminal surface of the neural tube and migrate 

laterally to the pial surface, where they begin to express β-tubulin III (Fig. 2.1 B, E, H, K, 

N, Q).  At these stages, the Tuj1-positive cells are primarily neurons (Nakai and Fujita, 

1994).  Angiogenic sprouts ingressed into the Tuj1-positive area, but only in specific 

medial and ventral regions (compare Fig. 2.1 G-R).  Once in the neural tube, angiogenic 

sprouts avoided the Tuj1-negative medial area that contained proliferative progenitor 

cells, as described for the hindbrain (Gerhardt et al., 2004).  These data suggest that the 

developing neural tube may influence blood vessel ingression. 

 

Blood vessel ingression into the neural tube is highly stereotypical 

To determine the spatial patterning of ingressing blood vessels in the developing 

neural tube, a region of the quail embryo at the upper limb level (thoracic) was serially 

sectioned in the transverse plane, stained for QH1 and analyzed as described in the 

Materials and Methods (n=5 embryos).  Control analyses showed that the ingression 

points of angiogenic sprouts within the quail neural tube were highly stereotypical (Fig. 

2.2 A, B).  Approximately 33% of blood vessels ingressed into the neural tube between 

70 and 110 degrees, whereas the remaining 66% of vessels ingressed between 10 and 20 

degrees.  To determine whether electroporation and/or expression of GFP affected the 

spatial pattern of vessel ingression, quail neural tubes were electroporated with a vector 
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that only expressed eGFP (Fig. 2.2 C, D).  At the time of electroporation (HH stage 16-

18, day 3), the DNA enters the cells that line the lumen of the neural tube.  The neural 

cells that acquire DNA are primarily neuroepithelial and radial glia progenitor cells 

whose descendents form neurons and glial cells such as astrocytes and oligodendrocytes 

(Gotz and Huttner, 2005; Leber and Sanes, 1995).  At this time, no blood vessel sprouts 

have entered the neural tube, so they are not electroporation targets.  Analysis of these 

embryos at HH stage 25-26 (day 5) showed that the pattern of vessel ingression was 

similar to that of unperturbed controls, on both the side of the neural tube that expressed 

eGFP and the contralateral side that received current but no DNA.  Thus, these technical 

manipulations did not affect the spatial pattern of vessel sprouting ingression into the 

developing neural tube.  As in ovo electroporation at these developmental stages 

ultimately delivered DNA to the medial vessel ingression area of the neural tube more 

efficiently than to the ventral ingression area, medial blood vessel ingression into the 

neural tube was further analyzed. 

 

Localized mis-expression of matrix-binding VEGF isoforms alters the neural tube blood 

vessel ingression pattern 

We hypothesized that VEGF-A expressed by the developing neural tube was 

involved in the ingression of angiogenic sprouts into the tube.  We confirmed that VEGF-

A was expressed in the quail neural tube at the stages analyzed (see Supplementary Fig. 

2.1), consistent with previous reports (Aitkenhead et al., 1998; Nanka et al., 2006).  The 

pattern of VEGF-A RNA expression did not correlate with specific ingression points.  

Rather, it was fairly uniform throughout the developing neural tube, with a modest 
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concentration of signal in the floor plate, roof plate and motoneuron area, which are sites 

blocked to blood vessel ingression (see Supplementary Fig. 2.1).  To analyze the role of 

individual VEGF isoforms in blood vessel ingression into the developing neural tube, we 

electroporated DNAs that expressed VEGF121, VEGF165 or VEGF189 from the 

ubiquitous chicken β-actin promoter into stage HH 16-18 quail neural tubes.  The DNAs 

also expressed eGFP from an IRES sequence, so GFP-positive cells corresponded to cells 

that expressed the VEGF isoforms.  The amount of DNA and the electroporation 

conditions were titrated to achieve moderate and localized expression of the reporter GFP 

and VEGF isoform cDNAs, so that the phenotypes could be analyzed in a spatial 

context.  Analysis of human VEGF mRNA in electroporated neural tubes by semi-

quantitative RT-PCR indicated that equivalent amounts of each transgene were expressed 

relative to the GFP signal (see Supplementary Fig. 2.2).  Expression ofVEGF121 did not 

alter the vessel ingression pattern (Fig. 2.3 A-D; n=5 embryos).  The pattern was 

indistinguishable from that seen on the contralateral non-electroporated side and in the 

controls, although medial ingression points were scored more frequently on the 

VEGF121-expressing side of the neural tube (Fig. 2.3 D).  In some cases, the vessels that 

ingressed into neural tubes expressing VEGF121 had an increased diameter (data not 

shown, Fig. 2.4 A and Fig. 2.5 A).  By contrast, expression of similar levels of the 

heparin-binding VEGF-A isoforms VEGF165 or VEGF189 induced ectopic vessel 

ingression points along the PNVP (Fig. 2.3 E-L; n=5 embryos for each group).  Analysis 

of the ingression points in relation to the cells expressing VEGF165 or VEGF189 showed 

that ectopic ingression points were localized to areas of the neural tube that contained 
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cells expressing the heparin-binding VEGF isoform (Fig. 2.4 B, C, E, F).  By contrast, 

neural tubes with cells that ectopically expressed VEGF121 showed blood vessel 

ingression only in the medial region, despite the presence of VEGF121-expressing cells 

along the dorsoventral axis of the neural tube (Fig. 2.4 A, D). 

 We next analyzed several regional markers of neural tube patterning to determine 

whether ectopic VEGF-A isoform expression affected neural tube development (Fig. 2.5).  

Pax7 is expressed in population of dorsal neural progenitors, Pax6 is expressed in a group 

of medial neural progenitors and MNR2 is a marker for motoneuron progenitors, which 

are localized to the ventral-most region of the developing neural tube.  The localized, 

moderate expression levels of the VEGF isoforms over 48 hours did not significantly 

affect the expression patterns of these markers (Fig. 2.5 D-F, K-M, R-T).  Thus, VEGF 

isoforms that interact with the matrix induce ectopic blood vessel sprouting from the 

PNVP into the developing neural tube and perturb vascular patterning, without 

significantly affecting neural tube development on the dorsoventral axis. 

 Because blood vessels migrate along radial glia once they enter the neural tube, we 

asked whether electroporated neural tubes had perturbed patterning of the radial glia. 

Staining with the radial glia marker transitin showed that expression of moderate levels of 

any of the VEGF isoforms did not significantly alter the staining pattern (see 

Supplementary Fig. 2.3).  Moreover, the radial glia staining pattern on both the 

electroporated and control sides of the neural tube suggested that radial glia do not 

selectively associate with ingression points.  Instead, the staining indicated that radial glial 

processes are spaced relatively evenly along the dorsal-ventral axis of the lateral edge of 
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the neural tube (see Supplementary Fig. 2.3). 

 

Loss of VEGF-signaling from the neural tube blocks vessel ingression 

 To assess the effect of loss-of-function of the VEGF signaling pathway, we 

electroporated a soluble Flt-1 (sFlt-1)-expressing cDNA into the developing neural tube.   

sFlt-1 is a natural splice form of the Flt-1 receptor that can bind and sequester VEGF-A, 

thus preventing binding of VEGF-A to Flk-1 and downstream signaling (Kendall and 

Thomas, 1993).  In contrast to the supernumerary blood vessel ingressions seen with 

VEGF isoform over-expression, localized ectopic expression of sFlt-1 led to a complete 

blockade of vessel ingression in areas of sFlt-1 expression (Fig. 2.6, n=5 embryos).  

Relative to the contralateral control side of the neural tube, the sFlt-1-expressing side 

showed no ingression points in the medial area where sFlt-1 cDNA was expressed, and 

reduced ingression even in the ventral area of the developing neural tube (Fig. 2.6 A-C, H).  

Expression of the VEGF-A blocking peptide over a 48-hour period did not significantly 

affect the dorsoventral patterning of the neural tube (Fig. 2.6 D-G).  These findings 

indicate that endogenous VEGF-A expressed by cells of the developing neural tube is 

required for the stereotypical ingression of angiogenic blood vessels into the medial and 

ventral regions. 
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E. DISCUSSION 

 

 Our results show that VEGF-A signaling is crucial to the communication between 

the developing neural tube and the developing vascular system.  Moreover, here we 

highlight the precise choreography between neural VEGF-A expression and blood vessel 

patterning, and we show that a very reproducible pattern of blood vessel ingression 

depends on proper spatial regulation of VEGF signaling from the neural compartment.  

The essential aspects of our model are shown in Fig. 2.7.  We have previously shown that 

neural tube-derived VEGF-A was required for formation of the PNVP that surrounds the 

developing neural tube (Ambler et al., 2003; Hogan et al., 2004) (Fig. 2.7 A).  By 

manipulating ectopic expression of VEGF-A isoforms or the sFlt-1 inhibitor in time and 

space, we now reveal a second requirement for neural-derived VEGF-A in blood vessel 

ingression into the developing neural tube (Fig. 2.7 B-E).  This ingression requires VEGF-

A at the ingression sites, as local loss via sFlt-1 expression prevents ingression (Fig. 2.7 

E).  However, VEGF-A localization does not explain why vessels only ingress at specific 

points along the dorsoventral axis.  We hypothesize that stereotypical vessel ingression 

into the neural tube also uses negative patterning cues (Fig. 2.7 B-E), and this is discussed 

further below. 

 Why is it important that blood vessels sprout into the developing neural tube at 

specific places?  One possibility is that ingressing vessels must coordinate with neural 

development and maturation to prevent mis-routing of neural connections and disruption 

of fasciculation of the axon tracts.  For example, the motoneurons form in the ventral part 
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of the neural tube, and their axons subsequently migrate out of the neural tube ventro-

laterally to enervate their targets (for a review, see (Price and Briscoe, 2004)).  As axons 

leave the neural tube they form bundles, and perturbation of either their fasciculation or 

egression compromises their ability to migrate and properly connect to their targets. 

Thus, extensive vessel ingression at points of motoneuron egression may compromise the 

function of the nervous system.  Stereotypical ingression patterns of vessels into the 

neural tube may also be important for efficient functioning of the vascular system.  Once 

angiogenic sprouts enter the neural tube at the medial ingression point, they migrate 

forward until they reach the sub-ventricular zone that separates differentiated neurons 

from neural progenitors cells.  When they reach this border, they branch and migrate in 

both the dorsal-ventral and rostral-caudal axes.  The rostral-caudal migration leads to 

interconnections within the neural tube and eventual blood flow (Feeney and Watterson, 

1946; Nakao et al., 1988).  These interconnections are probably made more efficiently and 

sooner if the vessels are at the same level on the dorsal-ventral axis, which is 

accomplished by having a defined medial ingression point. 

 We used a naturally produced inhibitor of VEGF-A signaling, sFlt-1, to 

downregulate endogenous VEGF signaling.  We, and others, have shown that this spliced 

isoform of the sFlt-1 receptor complexes with VEGF-A and competitively inhibits 

binding to Flk-1 (VEGFR-2) (Kappas et al., 2008; Kendall and Thomas, 1993; Roberts et 

al., 2004).  Because we were able to direct modest expression of sFlt-1 to localized areas 

within the neural tube for a specific time period, neural degeneration was minimized and 

neural development and dorsal-ventral patterning was not significantly affected.  
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However, even this modest blockade of VEGF-A signaling was sufficient to block normal 

vessel ingression dramatically in areas of sFlt-1 expression, revealing an absolute 

requirement for VEGF-A signaling for proper blood vessel ingression into the developing 

neural tube.  Our preliminary results show that, just as the supernumerary sprouts 

ingressed locally in conjunction with ectopic VEGF-A expression, the block to ingression 

produced by sFlt-1 expression was also localized and did not extend significantly beyond 

areas of sFlt-1 expression (J.M.J. and V.L.B., unpublished).  The localized nature of the 

blockade indicates that sFlt-1 is also a local morphogenetic mediator, as suggested by its 

ability to bind heparin and thus the surrounding matrix (Park et al., 1993). 

 Localized ectopic expression of the three major VEGF-A isoforms revealed that, 

although all isoforms perturbed neural tube angiogenesis, VEGF165 and VEGF189 but 

not VEGF121 were able to induce supernumerary sprouts at locations along the 

periphery that normally did not allow for sprout ingression.  There are two major 

differences between these VEGF isoforms.  VEGF165 and 189 bind heparin and thus can 

interact with the matrix, whereas VEGF121 does not bind heparin.  VEGF165 and 

presumably VEGF189 can use NRP1 as a co-receptor to enhance signaling through the 

Flk-1 (VEGFR-2) receptor, whereas VEGF121 binds NRP1 but does not use it as a co-

receptor for signaling through VEGFR-2 (Pan et al., 2007; Soker et al., 1998).  Deletion of 

NRP1 affects vascular development (Gerhardt et al., 2004; Gu et al., 2003; Kawasaki et 

al., 1999).  However, ingression of vessels into the CNS is not compromised; the vessel 

defects in NRP1 mutant neural tubes result from mis-patterning in lateral branching and 

vessel size increases, indicating that neural tube vessel ingression is not NRP1 dependent 
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(Gerhardt et al., 2004; Gu et al., 2003).  Our preliminary results show that co-

electroporation of VEGF165 and a soluble form of NRP1 that is predicted to act as a 

dominant-negative block to NRP1/Flk-1 interactions does not block ectopic ingression of 

vascular sprouts (J.M.J. and V.L.B., unpublished).  Taken together, these findings suggest 

that NRP1 interactions are not crucial to blood vessel ingression into the neural tube, and 

that the heparin-binding properties of VEGF165 and 189 confer on these isoforms the 

ability to induce ectopic ingression points. 

 The hypothesis that VEGF isoform interactions with the local matrix within the 

neural tube are crucial to proper vessel ingression is also supported by our finding that 

ectopic sprouting ingression is localized to areas of the neural tube that contain cells 

expressing either VEGF165 or VEGF189.  When broad areas expressed heparin-binding 

VEGF ectopically, there were numerous sprouts in these areas.  However, even when 

only a few cells expressed heparin-binding VEGF DNA, supernumerary sprouts 

correlated with their placement.  This finding strongly indicates that heparin-binding 

VEGF-A is normally deposited near the cells of origin in the neural tube, and this spatial 

arrangement of VEGF-A contributes to the stereotypical ingression pattern.  It also 

shows that endothelial cells outside the neural tube can sense sources of VEGF-A within 

the neural tube, over multiple cell diameters, and can overcome normal restraints to 

ingression if the positive signal is strong enough.  Although it is formally possible that 

VEGF-A signaling could travel over space via a relay system from a localized ligand 

source, existing data suggest that the gradient hypothesis of VEGF-A signaling is 

responsible for our findings.  This model proposes that a gradient of VEGF-A protein 
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emanating from a source provides a haptotactic slope that directs the migration of 

angiogenic sprouts.  Support for this model was provided by Ruhrberg and colleagues, 

who showed that VEGF-A protein is concentrated at the midline of the developing 

hindbrain and decreases in lateral areas (Ruhrberg et al., 2002).  The use of a VEGF-A 

gradient for blood vessel ingression into the developing neural tube is also consistent with 

our finding that ectopic expression of VEGF121 is not capable of inducing supernumerary 

vessel ingression points, although once in the neural tube vessels exposed to ectopic 

VEGF121 become dysmorphogenic.  However, mice that express only VEGF120 still 

exhibit ingression of angiogenic vessels into the developing neural tube (Ruhrberg et al., 

2002), although ingression is delayed and ingression points are less dense than in controls 

(J.M.J. and V.L.B., unpublished).  This finding contrasts with our results showing that 

ectopic expression of VEGF121 does not result in supernumerary vessel ingression into 

the neural tube.  One explanation of this paradox is that in the absence of normal VEGF-A 

isoforms, VEGF120 forms a ‘soluble’ gradient from its source that can provide 

instructional information for endothelial sprout migration, although with less efficiency 

than a gradient formed by heparin-binding VEGF-A isoforms.  However, when VEGF121 

is overexpressed in the context of a normal gradient it cannot contribute significantly to 

the positional information conveyed by that gradient. 

 A model of patterned vessel ingression into the neural tube that only considers 

VEGF-A, however, is obviously not sufficient to explain the stereotypical pattern we 

observed.  VEGF-A RNA expression is not localized to areas of ingression, but is broadly 

expressed, with no observable differences along the dorsal-ventral axis at stages when 
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blood vessels ingress at specific medial locations.  Moreover, staining for the heparin 

sulfate proteoglycans that bind VEGF165 and VEGF189 showed uniform expression 

along the lateral edge of the neural tube, suggesting that VEGF protein is not 

preferentially localized to ingression points via matrix binding (J.M.J. and V.L.B., 

unpublished).  We thus conclude that VEGF-A is necessary but not sufficient to pattern 

the angiogenic blood vessels that enter the developing neural tube.  Although it is formally 

possible that the endothelial cells at the ingression points are uniquely able to respond to 

the VEGF-A signal due to cell-autonomous differences between them and neighboring 

endothelial cells, our data do not support such a model, as all PNVP endothelial cells seem 

capable of responding to ectopic expression of heparin-binding VEGF-A.  Likewise, a 

model whereby egression of motor neurons and/or ingression of DRG neurons physically 

blocks blood vessel ingression does not account for the extensive areas of the floor plate, 

ventral neural tube, and dorsal neural tube that do not support ingression of the adjacent 

PNVP vessels.  Our data best support a model in which the positive signals emanating 

from the neural tube are balanced by negative spatial cues that are also produced by the 

neural tube and prevent ingression both dorsally and ventrally (Fig. 2.7 B-E).  Several 

signaling pathways are candidates to coordinate with VEGF signaling to pattern vessel 

ingression into the neural tube, based on the expression of the ligands and their ability to 

negatively influence vessel migration (see review by (Eichmann et al., 2005).  Among 

these are the semaphorins that signal through plexins, the slits that signal through robo 

receptors and netrins that signal through UNC and DCC receptors.  Thus, VEGF-A 

signaling is predicted to provide a positive spatial cue that, when balanced by a negative 
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spatial cue, is neutralized.  However, this balance can be tipped in favor of VEGF-A and 

vessel ingression by ectopic expression of VEGF-A.  In our model endothelial cells are 

capable of a sophisticated reading of incoming cues, and of integrating these cues to 

produce a behavior that leads to proper neurovascular communication.  Moreover, 

pathologies such as the CCMs (cerebral cavernous malformations) disrupt a unique 

communication between the neural and vascular compartment (for reviews, see (Lok et al., 

2007; McCarty, 2005) that begins at the earliest stages of development. 
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Figure 2.1: Formation of the PNVP and vessel ingression coordinate with neural 
differentiation in the quail neural tube. 
  

HH stage 16-27 Japanese quail embryos were sectioned in the transverse plane at 

the thoracic level and stained with either QH1 (red, A, D, G, J, M, P) to label blood 

vessels or Tuj1 (β-tubulin III, blue, B, E, H, K, N, Q) to label differentiated neurons. 

Merged images (C, F, I, L, O, R) represent two super-imposed, adjacent 12µm sections at 

the upper limb level.  (A-C) At stage HH 16-18, initiation of PNVP formation correlated 

with the start of neuronal differentiation and migration of Tuj1-positive neurons to the 

pial surface of the neural tube.  (D-F) At stage HH 19-21, the PNVP continued to develop 

around the ventral neural tube, whereas motoneurons extended axonal projections from 

the motor horn, and DRG axons innervated the neural tube at the dorsal root entry zone. 

(G-I) By stage HH 22-24, PNVP formation was complete.  Single QH1-positive 

angioblasts were noted dorsally and medially (arrowheads), and ventral angiogenic 

sprouts were seen (arrows) adjacent to the floor plate.  (J-L) At stage HH 24-25, 

angiogenic sprouts from the PNVP formed mediolaterally (arrows) along the dorsal-

ventral axis of the neural tube (this vessel ingression site was maintained at later stages, 

see M and P).  (M-O) At stage HH 25-26, both ventral and medial (arrow) vessel 

ingression sites were noted, along with continued differentiation of Tuj1-positive 

neurons.  (P-R) By stage HH 27, the amount of Tuj1 positive neurons increased, while 

the vessel ingression pattern established at earlier stages was maintained.  Scale bar: 

100µm. 
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Figure 2.2: Quantitative analysis of angiogenic sprouting into the developing neural 
tube reveals stereotypical ingression points.  
 

Unperturbed quail embryos and embryos whose neural tubes were electroporated 

with eGFP control DNA at HH stage 16-18 were serially sectioned at stage HH 25-26 

through the upper limb.  Every sixth 12µm section was stained for QH1 (red).  Fourteen 

images were analyzed for each embryo as described in the Materials and Methods.  (A) 

Unperturbed quail embryo section stained with QH1 to illustrate blood vessel analysis 

strategy.  (B) Total number of angiogenic sprouts within the left (gray) and right (black) 

neural tube halves of five unperturbed embryos. There were concentrations of ingression 

points between 0-20° (ventral ingression points) and 70-110° (medial ingression points).  

(C) Representative image of a quail neural tube electroporated with eGFP DNA 

(electroporated side to the right).  (D) Total number of ingressing angiogenic sprouts 

within the neural tubes of five control embryos electroporated with eGFP DNA (green); 

untransfected control contralateral neural tube side (black).  Scale bar: 100µm. 
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Figure 2.3: Ectopic expression of heparin-binding VEGF isoforms induces 
supernumerary vessel ingression points into the developing neural tube.  
 

Quail neural tubes were electroporated with hVEGF121-GFP, hVEGF165-GFP or 

hVEGF189-GFP DNAs (green, panels B, F, J) on day 3 (HH 16-18) and harvested 48 

hours later (HH 25-26).  Transverse sections were stained with QH1 antibody (red, panels 

A, E, I) to visualize vessels, and five embryos from each group were analyzed as 

described (panels D, H, L; green lines, total ingression points for ectopic VEGF 

expressing sides of neural tubes at each 10° of arc; black lines, total ingression points for 

contralateral control sides of the neural tubes at each 10° of arc).  C, G and K are a merge 

of red (QH1) and green (eGFP) channels.  (A-C) Quail neural tubes electroporated with 

hVEGF121 DNA displayed a grossly normal distribution of angiogenic ingression points 

along the dorsoventral axis of the ectopic VEGF-expressing side of the neural tube 

(arrows in A, C).  (D) The quantitative analysis showed no change in the distribution of 

ingression points for sprouts between the control (black) and VEGF121-expressing 

(green) sides of the neural tube, and a slight increase in the frequency of ingression points 

in the medial region of the VEGF-expressing side of the neural tubes (n=5 embryos).  (E-

G) Quail neural tubes electroporated with hVEGF165 DNA had ectopic dorsal sprouts 

(arrows in E, G).  (H) The quantitative analysis showed increased distribution and 

frequency of vessel ingression points in the dorsal region of the hVEGF165-expressing 

side of the neural tube (green), where ectopic expression is localized (n=5 embryos).  (I-

K) Quail neural tubes electroporated with hVEGF189 DNA had ectopic dorsal sprouts 

(arrows in I, K).  (L) The quantitative analysis showed increased distribution and 

frequency of  ingression points in the dorsal region of the hVEGF189-expressing side of 

the neural tube, where ectopic expression is localized (n=5 embryos).  Scale bar: 100µm.
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Figure 2.4: Localized ectopic expression of heparin-binding VEGF-A isoforms in the 
developing neural tube correlates with supernumerary vessel ingression points.  
 

Neural tubes processed for QH1 (red) and eGFP (green, reporter for ectopic 

VEGF-A isoform expression) were examined for the relationship between vessel 

ingression points and ectopic VEGF-A isoform expression.  (A-C) Lower power views to 

show location of normal (A) or supernumerary (B, C) vessel sprout ingressions on the 

dorsoventral axis of the neural tube.  (D-F) Higher magnification of the boxed areas in A-

C.  Several eGFP-positive cells that ectopically express heparin-binding hVEGF165 or 

hVEGF189 are close to the supernumerary vessel sprouts (arrows in E, F), whereas 

numerous eGFP-positive cells that ectopically express hVEGF121 (arrowheads in D) do 

not induce supernumerary vessel ingression points.  Scale bar: 100µm in A-C; 50µm in 

D-F. 
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Figure 2.5: Neural patterning is not perturbed in neural tubes that ectopically express 
VEGF-A isoforms.  
 

(A-U) Quail neural tubes were electroporated with (A-G) hVEGF121, (H-N) 

hVEGF165 and (O-U) hVEGF189 on day 3 (HH 16-18), and harvested 48 hours later 

(HH 25-26).  Neural tubes were sectioned and adjacent sections were stained with 

antibodies to: QH1 (red, A, H, O, C, J, Q) to visualize vessels; Pax7 (purple, D, K, R) to 

visualize dorsal neural precursors; Pax6 (orange, E, L, S) to visualize medial neural 

precursors; MNR2 (yellow, F, M, T) to visualize ventral motoneuron precursors; and 

Tuj1 (blue, G, N, U) to visualize differentiated neurons. (B, I, P) eGFP expression (green) 

illustrates the neural tube side expressing ectopic VEGF-A isoforms (left) versus the 

control contralateral side (right); (C-G, J-N, Q-U) merges of marker and eGFP channels 

for each section.  Scale bar: 100µm. 
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Figure 2.6: VEGF signaling from the neural tube is required for blood vessel 
ingression.  
 

Quail neural tubes were electroporated with sFlt1-GFP and analyzed as previously 

described.  (A-C) No medial vessel ingression and little ventral vessel ingression was 

seen in areas of the neural tube that were eGFP positive.  (D-G) Neural patterning is not 

detectably perturbed on the electroporated side of the neural tube (left) based on Pax7 (D, 

purple), Pax6 (E, orange), MNR2 (F, yellow) and Tuj1 (G, blue) expression patterns.  (H) 

Quantitative analysis of five electroporated neural tubes showed no medial and few 

ventral vessel ingression points in areas of localized sFlt1 expression (green), compared 

with the control contralateral side (black) (n=5 embryos).  Scale bar: 100µm. 
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Figure 2.7: Model of blood vessel ingression into the developing neural tube.  
 

The model covers events of neurovascular patterning between stages HH 16 and 

HH 26 in the avian embryo, and also shows the VEGF-A perturbations analyzed in this 

study.  (A) At early stages (HH 16-18), VEGF-A isoforms (121, 165, 189) expressed by 

the developing neural tube set up a gradient that leads to angioblast migration from the 

lateral plate and presomitic mesoderm to form the PNVP.  At this stage, blood vessel 

ingression does not occur because of insufficient levels of neural tube-derived VEGF-A.  

(B) At later stages (HH 22-25), increased levels of VEGF165 and VEGF189 are required 

for blood vessel ingression, but negative patterning cues that are co-expressed prevent 

ingression except at specific medial and ventral points.  (C) By stage HH 26 there are 

obvious stereotypical blood vessel ingression points medially and ventrally, whereas 

angioblasts migrate in dorsally.  (D) Neural tubes electroporated with VEGF165 or 

VEGF 189 show ectopic ingression in normally avascular dorsal areas on the 

electroporated side.  (E) Neural tubes electroporated with sFlt-1 do not have ingression at 

the normal medial site on the electroporated side. For each set of panels, the left side 

demonstrates the signals and the right side demonstrates the vessel-patterning outcome.  

Symbols are described in the key below the figure. 
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Supplementary Figure 2.1: Time course of VEGF-A expression in the quail neural 
tube at the limb (thoracic) level.  
 

In situ hybridization of transverse cryostat sections of quail neural tubes with an 

antisense probe to VEGF-A.  (A) At HH stage 18, when electroporations were performed, 

there was some VEGF-A reactivity, with a concentration in the floor plate and the roof 

plate.  (B) At HH stage 23, VEGF-A reactivity was increased and seen prominently in the 

motoneuron area and the floor plate.  (C) At HH stage 25, approximately when the 

analysis was done, the overall level of VEGF-A reactivity was increased, with some 

concentration of the signal in the floor plate and the roof plate. Scale bar: 100µm. 

 





 56 

Supplementary Figure 2.2: Expression analysis of VEGF-A isoform transgenes in 
electroporated neural tubes.  
 

Quail neural tubes were electroporated as described on day 3, and harvested on 

day 5.  Total RNA was isolated from three to five pooled neural tubes and processed for 

RT-PCR using primers that recognize the hVEGF-A transgene (they span the alternative 

splice sites) or eGFP.  Neural tubes were electroporated with: lane 1, eGFP only; lane 2, 

hVEGF121-GFP; lane 3, hVEGF165-GFP; lane 4, hVEGF189-GFP.  The size of the 

amplification products is shown on the right. 
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Supplementary Figure 2.3: Radial glia patterning is not perturbed in neural tubes that 
ectopically express VEGF-A isoforms.  
 

(A-R) Quail neural tubes were electroporated with hVEGF121 (A-F), hVEGF165 

(G-L) or hVEGF189 (M-R) on day 3 (HH 16-18) and harvested 48 hours later (HH 25-

26).  Neural tubes were sectioned and adjacent sections were stained with antibodies to: 

QH1 (red, A, G, M) to visualize vessels; and transitin (red, D, J, P) to visualize radial 

glia. (B, E, H, K, N, Q) eGFP expression (green) illustrates the neural tube side 

expressing ectopic VEGF-A isoforms (left) versus the control contralateral side (right) on 

adjacent sections; (C, F, I, L, O, R) merge of marker and eGFP channels for each section. 

Scale bar: 100µm. 
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CHAPTER III 
 
 
 
 
NEURAL TUBE DEVELOPMENT DIRECTS INTRANEURAL BLOOD VESSEL 

PATTERNING IN THE AVIAN EMBRYO 
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A. SUMMARY 
 
 
 

 Blood vessel sprouts form at a specific time and at highly stereotypical locations 

during neural tube development.  Neural tube patterning is also spatially and temporally 

regulated.  The work in this chapter explores how normal processes of neural tube 

development, such as programmed neurogenesis and dorsoventral (DV) patterning of 

neurons, influence the blood vessel pattern.  We manipulated both the timing of 

neurogenesis and DV neuronal patterning via electroporation of genes known to regulate 

these processes.  Here, we report that the specific time when neurons differentiate and 

migrate to the lateral edge of the neural tube is important for regulating the time that 

angiogenic sprouts enter the neural tube.  Furthermore, we identified pro- and anti-

angiogenic regions along the DV axis of the neural tube by precisely measuring where 

vessels ingress and where they do not, mapping these regions to particular neuronal 

subclasses in the quail neural tube.  We found that blood vessels do not enter the region 

of the neural tube where motor neurons develop and hypothesized that motor neuron cell 

bodies found within this region were initially anti-angiogenic.  This was confirmed when 

the block to angiogenesis was conferred to a normally permissive region of the neural 

tube by generating ectopic motor neurons there.  This work demonstrates that normal 

processes of neural tube development and blood vessel patterning are linked, and that the 

neural tube directs both the timing and spatial distribution of ingressing blood vessels in 

quail. 
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B. INTRODUCTION 
 
 

 
 Blood vessels invade the avian neural tube at a specific time and at highly 

stereotypical locations during development, constituting a vascular pattern (Feeney and 

Watterson, 1946; Kurz et al., 1996).  Specific aspects of neural tube development, such as 

programmed neural cell differentiation and dorsoventral (DV) neuronal cell fate 

specification, also have reproducible spatial and temporal components.  These processes 

pattern the neural tube, forming distinct sub-populations of neural cells.  On its medio-

lateral axis, the differentiation and lateral migration of neurons segregates the neural tube 

into regions of progenitor cells (ventricular zone, or VZ) or differentiated neurons 

(marginal/mantle zone, or MZ).  Along its DV axis, the neural tube further divides into 

specific subclasses of neurons, such as dorsal interneurons, ventral interneurons, and 

motor neurons, projecting axons toward different target tissues (Jessell, 2000; Lee and 

Jessell, 1999) (Figure 3.1 A).  Within the avian neural tube, we can correlate the 

formation of these regions with the timing and spatial organization of specific blood 

vessel patterning events; however, little is known about how these sub-populations of 

neural cells communicate with ingressing blood vessels, or if certain regions can 

positively or negatively mediate intraneural blood vessel growth and patterning.  In this 

chapter, we explore how both the maturation of the neural tube and the regional 

specification of neuronal subclasses influence the intraneural vessel pattern. 

Endothelial cells (ECs) migrate and coalesce into a ring of blood vessels 

surrounding the neural tube known as the peri-neural vessel plexus (PNVP) during early 

stages of neural tube development (Ambler et al., 2001; Pardanaud et al., 1996; Wilms et 
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al., 1991; Wilting et al., 1995).  During this time, the immature neural tube is comprised 

of a pseudo-stratified layer of rapidly proliferating progenitor cells maintaining contacts 

with both its luminal and pial surfaces (Huttner and Brand, 1997).  These cells are 

initially known as neuroepithelial cells or neural stem cells, and they form the ventricular 

zone (VZ) of the neural tube at the onset of neurogenesis (reviewed in Gotz and Huttner, 

2005).  Certain genes regulate the progenitor state of these cells, such as members of the 

SOX family of transcription factors, including the SOXB1 sub-family members Sox1, 

Sox2 and Sox3 (Bylund et al., 2003; Graham et al., 2003; Kishi et al., 2000; Pevny et al., 

1998).  Notch1 signaling and its downstream mediator Hes-1 also play roles in neural 

stem-cell maintenance (Gaiano and Fishell, 2002; Ishibashi et al., 1995).   

Initially, neural progenitor divisions are symmetrical, producing two identical 

daughter progenitors acting to increase the size of the neural tube (McConnell, 1995; 

Rakic, 1995) (Fig. 3.1 B).  As proliferative divisions proceed, opposing morphogen 

gradients of Sonic Hedgehog (Shh) from the floor plate and TGF-ß/BMP family members 

from the roof plate of the neural tube regulate expression of homeodomain transcription 

factors along its DV axis (reviewed in Briscoe and Ericson, 2001; Helms and Johnson, 

2003).  Overlapping expression of these proteins reveals a complex system of 

transcription factor coordination and cross-repression that delineates neuronal progenitor 

domains, specifying neuronal cell fate before the onset of neurogenesis.  Ectopic 

expression of homeodomain transcription factors in chick neural tubes predictably 

changes the position of neural progenitors along the DV axis and also changes neuronal 

cell fates (Tanabe et al., 1998).  Although vessels in the PNVP closely associate with the 
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neuroepithelium as these neuronal patterning events take place, blood vessels do not 

invade the neural tube at this time.  

The regional fate restriction of neuronal progenitors by homeodomain 

transcription factors initiates programmed neurogenesis via the regulation of basic Helix-

Loop-Helix (bHLH) transcription factor expression (Mizuguchi et al., 2001; Novitch et 

al., 2001; Roztocil et al., 1997).  For example, Neurogenin-1, a bHLH transcription 

factor, coordinates cell cycle exit and neuronal differentiation (Sun et al., 2001).  At the 

onset of neurogenesis, specified neural progenitor cells undergo a symmetrical division to 

form two neurons, or an asymmetrical division, forming one neuron and one radial glial 

cell (Fig. 3.1 B).  Radial glial cells can also give rise to neurons in subsequent division 

cycles (Noctor et al., 2004).  Changes in cell adhesion allow a differentiating neuron to 

leave the VZ and migrate laterally to the pial surface (marginal zone) of the neural tube 

where they begin to express markers of terminally differentiated neurons such as ß-

tubulinIII and NeuN (Memberg and Hall, 1995; Sarnat et al., 1998).  Neurogenesis occurs 

along the entire DV axis of the neural tube, and where a neuron is born along the DV axis 

determines what type of neuron it will become (reviewed in Jessell, 2000; Lee and 

Jessell, 1999). 

As terminally differentiated neurons begin to accumulate at the lateral edge of the 

neural tube, blood vessels of the PNVP invade the neuroepithelium (Fig. 3.2).  They enter 

the avian neural tube in two stereotypical locations: adjacent to the floor plate in the 

ventral neural tube, and medio-laterally, between the motor neurons and the dorsal root 

entry zone—where the axons of neurons comprising the dorsal root ganglia invade the 

neural tube.  Intriguingly, blood vessels in the PNVP wait for up to 24 hours before this 
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angiogenic sprouting occurs.  Once an angiogenic sprout enters the neural tube, it 

branches laterally as it interfaces the VZ—closely associating with the progenitor cells, 

but never invading this zone (Kurz et al., 1996).  

We previously showed that Vascular Endothelial Growth Factor-A (VEGF)- 

signaling from the neural tube is crucial for early blood vessel patterning events such as 

EC migration, PNVP formation (Ambler et al., 2003; Hogan et al., 2004), and more 

recently, that VEGF signaling is required for the first blood vessels to invade the 

neuroepithelium (James et al., 2009).  VEGF mRNA levels in the neural tube increase 

over time.  Additionally, VEGF is highly expressed around and within in the floor plate 

of the neural tube (Hogan et al., 2004; James et al., 2009; Nanka et al., 2006) (Fig. 3.1 C), 

suggesting that the time of ventral sprout ingression may be regulated by early and 

relatively high amounts of VEGF in this region.  Less VEGF mRNA is detected in the 

medial neural tube, leading us to hypothesize that delayed medio-lateral ingression may 

be caused, in part, by insufficient VEGF levels at earlier stages.  Furthermore, since 

medio-lateral blood vessel sprouts ingress only after the onset of neurogenesis, we were 

interested in understanding if the timing of neural cell differentiation also influenced the 

timing of blood vessel ingression.  Due to the highly stereotypical nature of the blood 

vessel ingression pattern, we also hypothesized that certain sub-populations of neurons 

might promote angiogenesis while others may be anti-angiogeneic and block vessel 

sprouting from the PNVP.  The data in this chapter addresses these hypotheses, and show 

that both the timing of neural tube differentiation and the spatial organization of the 

developing neural tube along the DV axis influence blood vessel ingression patterns. 
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Figure 3.1: Overview of neural development and VEGF expression in the neural tube. 

(A) Division of the developing neural tube into progenitor and differentiated 

neurons along its medio-lateral axis (left), and specification of neuronal subclasses along 

the DV axis of the neural tube (right).  Neuroepithelial cells (purple) form a pseudo-

stratified layer comprising the VZ of the neural tube.  Radial glial cells (blue) have 

processes spanning the entire width of the neural tube; however, their cell bodies remain 

in the VZ.  As neurons (green) differentiate, their cell bodies leave the VZ, and they 

begin to project axons toward target tissues.  Differentiated neurons are organized into 

subclasses along the DV axis of the neural tube before the onset of neurogenesis.  Their 

position on the DV axis as progenitor cells determines what type of neuron they will 

become.  Here, three broad neuronal subtypes are depicted: dorsal interneurons (red), 

ventral interneurons (blue), and motor neurons (green).  (B) Neuroepithelial cells can 

undergo a proliferative division to give rise to two new neuroepithelial cells (1), or 

asymmetrical and symmetrical divisions to give rise to one radial glial cell and one 

neuron (2) or two neurons (3).  Certain bHLH transcription factors, such as Neurogenin 1 

and 2, promote neuronal differentiation (3) over asymmetrical divisions (2) during 

neurogenesis.  (C) Quail VEGF ISH on a transverse, quail neural tube section at HH26.  

The ventral neural tube, including the floor plate, shows a stronger VEGF signal 

(arrowhead) than the medio-lateral neural tube.  FP, floor plate; VZ, ventricular zone; IZ, 

intermediate zone; MZ, marginal zone; DRG, dorsal root ganglia.  Scale bar: 100µm.   
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C. MATERIALS AND METHODS 

 

Expression constructs 

 The Sox2-IRES-eGFP vector was a gift from L. Pevny (Graham et al., 2003).  

Full length NeuroM cDNA (Roztocil et al., 1997) (a gift of J.M. Matter) was inserted into 

the EcoR1 site of the pCAGGS-IRES2-nucEGFP vector (pCIG) (Megason and 

McMahon, 2002) (gift of L. Pevny and A. McMahon), generating NeuroM-IRES-eGFP.  

The human VEGF165-IRES-eGFP was generated as previously described (James et al., 

2009).  Full length MNR2 cDNA (Tanabe et al., 1998) (a gift of T.M. Jessell) was 

inserted into the EcoR1 site of the pCIG vector, generating MNR2-IRES-eGFP.  

  

In ovo electroporation 

We performed quail, neural tube electroporations as previously described (James 

et al., 2009), with the following minor modifications:  The Sox2 and NeuroM expression 

vectors were injected into HH14 quail neural tubes at a final DNA concentration of 

2µg/µl.  Embryos were incubated for an additional 2.5 (Sox2) or 1.5 (NeuroM) days post-

electroporation before embryo dissection at HH25 or HH23, respectively.  For VEGF 

timing experiments, the VEGF165-IRES-eGFP construct was injected at a final DNA 

concentration of 0.1µg/µl on HH14.  Embryos were dissected approximately 1-1.5 days 

later at HH22-23.  The MNR2 expression construct was injected on HH16-17 at a final 

DNA concentration of 1.5µg/µl.  Embryos were incubated for 2 days before dissection at 

HH25. 
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Immunofluorescence  

Monoclonal mouse antibodies to Islet1 and Nkx2.2 were used at a concentration 

of 1:500 (obtained from the Developmental Studies Hybridoma Bank developmed under 

the auspices of the NICHD and maintained by The University of Iowa Department of 

Biological Sciences, Iowa City, IA 52242).  Antibody staining with QH1, Tuj1, and 

MNR2 was performed as previously described (James et al., 2009). 

 

Analysis of ingression patterns/ neural tube measurements 

We previously analyzed 14, QH1-stained sections per embryo and compiled the 

data from five embryos in our graphs (or 70 sections total) (James et al., 2009); however, 

we slightly modified our analysis method in this chapter.  Here we analyzed N number of 

total sections in X number of embryos per construct electroporated, added the number of 

ingression events per 10˚ of arc from all sections analyzed, and divided these numbers by 

25, to obtain the average number of sprouts per 25 sections.  These numbers were plotted 

on the graphs.  Other neural tube measurements, such as the upper and lower boundaries 

of the V3 interneuron domain, were obtained using the same method as the blood vessel 

sprouts.  Overlayed images are from adjacent sections within the same embryo. 

 

In situ hybridization 

Quail, VEGF ISH was performed as previously described (James et al., 2009) on 

Sox2 and NeuroM-electroporated neural tube cryosections (courtesy of the UNC-ISH 

core facility and Megumi Aita). 
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D. RESULTS 

 

The onset of neurogenesis correlates with the timing of neural tube angiogenesis  

Migratory angioblasts begin to form the PNVP as early as HH14 (Fig. 3.2 A, G; 

arrowhead).  We utilized the Tuj1 antibody, recognizing the neuron-specific microtubule 

component ß-tubulin III, to assess the progression of neurogenesis at key points in neural 

vessel development.  At HH14, a few neurons have begun to terminally differentiate and 

migrate laterally to the pial surface of the neural tube (Fig. 3.2 D; arrowheads).  Neurons 

continue to differentiate, migrate, and accumulate at the lateral edge of the neural tube 

until HH27, when developmental neurogenesis is largely complete in the spinal cord 

(reviewed in Gotz and Huttner, 2005) (data not shown).  Medio-lateral sprout initiation 

occurs midway through neurogenesis (Fig. 3.2 B; arrowhead), between HH23 and HH24, 

after a significant number of differentiated neurons have migrated to the pial surface of 

the neural tube (Fig. 3.2 E, H).  Ventral sprouts have already formed by this time (data 

not shown).  Medio-lateral sprouts are first seen as filopodial extensions that extend into 

the neural tube from the PNVP (Kurz et al., 1996) (Fig. 3.2 B; arrowhead).  As these 

angiogenic sprouts elongate within the neural tube, they stop and branch laterally within 

the intermediate zone (IZ) as they interface the VZ (Fig. 3.2 C, F, and I), but they never 

invade this region.  These observations suggest that progenitor cells comprising the VZ 

may block angiogenic sprouts, while differentiated neurons within the marginal zone 

positively regulate intraneural angiogenesis.  Therefore, it is possible that the temporally 

controlled generation of these neural sub-populations directs the timing of sprouting 

angiogenesis into the neural tube. 
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In order to understand how neural cell differentiation correlates with blood vessel 

patterning events within the neural tube, we developed a neuronal differentiation index to 

quantify the progression of neurogenesis at specific developmental time points.  Here, we 

focus specifically on neurogenesis in the medial neural tube, as well as the medio-lateral 

blood vessel sprouting event, although the time of ventral sprout formation is also noted.  

We measured the area of Tuj1-positive cells (blue) in the medial neural tube between the 

dorsal boundary of motor neuron region and the dorsal horn and then divided this 

measurement by the total area in the medial region of the neural tube, to find the percent 

Tuj1-positive area as depicted (Fig. 3.2, J).  These measurements were taken at various 

stages of quail neural tube development, ranging from HH22 through HH26, to create a 

neuronal differentiation index (Fig. 3.2 K).  Few medio-lateral sprouts initiate between 

HH23 and HH24 (Figure 3.2 B, arrowhead); at this time the medial neural tube is 

between 25% and 30% tuj1-positive.  Between HH24 and HH25 more sprouts enter the 

neural tube and existing sprouts elongate to reach the VZ, and medial sprouts begin to 

anastomose with ventral sprouts at this time (data not shown).  We show an increased rate 

of neurogenesis between HH24 and HH25. 

This data demonstrates that blood vessels begin to form the PNVP at HH14, and 

they wait for approximately 1.5 days before sprouting medio-laterally at HH23.  Why the 

delay?  We wanted to explore whether or not the normal program of neurogenesis 

influenced the timing of neural blood vessel ingression, or determine if the two are 

independent of one another.  To begin to answer these questions, we perturbed the timing 

of neurogenesis by electroporation of specific transcription factors that either delayed 
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neural progenitor cell differentiation or induced premature neuronal differentiation, and 

assessed whether or not the blood vessels followed suit.  

 

The timing of neurogenesis influences the timing of blood vessel ingression 

If neurogenesis directs the timing of neural tube angiogenesis, we expect to see a 

delay in medio-lateral blood vessel sprout formation in neural tubes where neurogenesis 

is delayed.  To test this, we electroporated a Sox2-cDNA construct (Graham et al., 2003) 

into the neural tubes of HH14 (Day2.5) quail embryos and allowed them to develop until 

HH25 (Day 5)—a stage when medio-lateral sprouting has occurred in unperturbed 

embryos.  Sox2 is expressed in neural progenitor cells, and it is normally down-regulated 

before the onset of neurogenesis (Bylund et al., 2003).  Sox2 maintains neural progenitor 

identity when constitutively expressed in neural progenitor cells within chick neural 

tubes, essentially blocking neuronal differentiation (Graham et al., 2003).  We utilized 

this gene as a tool to prevent neuronal differentiation in quail neural tubes.  The stages 

chosen for electroporation and embryo dissection are significant because we wanted to 

electroporate the embryos early enough to maximize the number of progenitor cells 

receiving the construct, thereby reducing the number of differentiated cells migrating to 

the lateral edge, and dissect late enough to assess defects in medio-lateral blood vessel 

sprouting by ending the experiment at a stage when medio-lateral sprouts would normally 

be present in unperturbed embryos. 

Sox2 electroporation delayed neuronal differentiation in quail neural tubes and 

this perturbation significantly reduced the number of medio-lateral angiogenic sprouts 

invading the neuroepithelum (Fig. 3.3).  Qh1 immunostaining of Sox2-electroporated 
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embryos showed normal blood vessel ingression on the control side of the embryo (Fig. 

3.3 C; arrow), whereas no vessel sprouting occurred on the electroporated side.  Though 

angiogenic sprouting is blocked on the Sox2-electroporated side, angioblast immigration 

still occurred (Fig. 3.3 C; arrowheads).  Furthermore, the PNVP is unperturbed in these 

embryos, indicating that a delay in neuronal differentiation does not influence PNVP 

formation.  Analysis of blood vessel ingression in Sox2-electroporated embryos revealed 

a reduction in blood vessel sprouts on the electroporated side of embryo when compared 

to the contralateral control analysis (Fig. 3.3 D).  Tuj1 immunostaining confirms that 

Sox2 electroporation restricts neuronal differentiation in quail (Fig. 3.3 E-G).  We see a 

significantly reduced Tuj1-positive area on the Sox2-electroporated side of the neural 

tube when compared to the contralateral control side and unperturbed HH25 control 

neural tubes (Fig. 3.3 H).  We compared the left and right sides of an unperturbed HH25 

embro to show that no significant differences normally exist between each half of the 

neural tube (Fig. 3.3 H; grey bars).  Tuj1 analysis indicates that Sox2-electroporated 

embryos are developmentally delayed and fall between HH22 and HH23 on the neuronal 

differentiation index (Fig 3.2 K).  Blood vessels do not normally invade the medio-lateral 

neural tube at these stages.  These data strongly suggest that while proliferating 

progenitor cells positively direct PNVP formation, they negatively regulate angiogenic 

sprouting into the neural tube. 

 

Since delayed neuronal differentiation blocked neural tube angiogenesis, it 

seemed feasible that premature neuronal differentiation might induce premature 

angiogenic sprouting.  To test this, we electroporated a NeuroM-cDNA construct 
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(Roztocil et al., 1997) into HH14 neural tubes and allowed them to develop until HH23-

HH24 (Day 4).  NeuroM is a bHLH transcription factor expressed during a transitional 

stage in neurogenesis when neurons become post-mitotic but have not yet begun to 

migrate laterally to the pial surface of the neural tube.  NeuroM is expressed within the 

intermediate zone, along the entire DV axis of the neural tube as early as HH10 (E1.5).  

Studies have indirectly shown that NeuroM, and its mouse homolog Math3, can induce 

premature neurogenesis, though not as robustly as Neurogenin-1 or Neurogenin-2 

(Bylund et al., 2003; Lee and Pfaff, 2003).  We used NeuroM as a tool to subtly promote 

premature neuronal differentiation in the medial neural tube.  We electroporated at HH14 

to maximize the number of progenitor cells receiving the construct, thereby maximally 

increasing the potential for more cells to differentiate and migrate to the lateral edge of 

the neural tube.  The electroporated embryos were dissected between HH23-HH24, a 

developmental time point when medio-lateral sprouting is just commencing, in order to 

assess whether or not premature vessel sprouts formed.   

NeuroM electroporation induced premature neuronal differentiation, and this 

perturbation resulted in premature and (or) supernumerary angiogenic sprout ingression 

(Fig. 3.4).  QH1 immunostaining on NeuroM-electroporated neural tube sections showed 

that medio-lateral blood vessel sprouts formed on the NeuroM-electroporated side of the 

neural tube (Fig. 3.4 C; arrowhead) while no medio-lateral sprouts were seen on the 

contralateral control side at this stage.  Analysis of blood vessel ingression reveals that 

medio-lateral sprouting occurred on both the NeuroM-electroporated and contralateral 

control sides of the neural tube; however, fewer medio-lateral sprouts have formed on the 

control side of the embryo (Fig. 3.4, D).  Based on these results, it is likely that additional 
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sprouts entering the neural tube at slightly later stages (between HH24 and HH25) may 

be entering prematurely, thus accounting for the supernumerary ingression at earlier 

stages of development.  Furthermore, medio-lateral sprouts forming on the control side of 

the embryo appear to be less mature than sprouts on the NeuroM-electroprated side and 

consist mainly of filopodial extenstions (Fig. 3.4, E and G); these sprouts were included 

in the ingression analysis.  More mature sprouts on the NeuroM-electroporated side of the 

embryo ingressed farther (Fig. 3.4, F), and are beginning to anastomose with ventral 

sprouts (Fig. 3.4 H; arrow).  This suggests that angiogenic sprouts began to form on the 

NeuroM-electroporated side of the neural tube before they formed on the contralateral 

control side. 

Tuj1 immunostaining confirmed that the NeuroM perturbation increases the Tuj1-

positive area in the medial neural tube, with a concomitant reduction in VZ area when 

compared to the contralateral control side (Fig. 3.4, I-L).  Tuj1 analysis indicates that 

NeuroM-electroporated embryos are developmentally advanced and are similar to HH24-

HH25-stage embryos (41% Tuj1-positive area) on the neuronal differentiation index—a 

time frame when medio-lateral neural tube angiogenesis occurs, while the control side is 

more comparable to HH24-stage embryo (29% Tuj1-positive area).  These results 

strongly suggest that the timing of blood vessel ingression is influenced by the 

progression of neurogenesis.    

 

We previously showed that VEGF regulates angiogenic sprouting into the neural 

tube (James et al., 2009).  Levels of VEGF increase within the neural tube over time, 

indicating that developmentally delayed Sox2-electroporated neural tubes may have a 
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reduction in VEGF expression at HH25.  Reduced VEGF levels could account for the 

delay in blood vessel ingression.  Conversely, NeuroM electroporated neural tubes may 

display increased VEGF expression at a younger age, leading to premature blood vessel 

ingression.  To test this, we performed quail VEGF (qVEGF) in situ hybridizations (ISH) 

on Sox2 and NeuroM-electroporated neural tubes.  We found that there were no 

detectable changes in VEGF expression on the electroporated side of either the Sox2 or 

NeuroM-electroporated embryos when compared to the contralateral control side (Fig. 

3.5, A and B) or unperturbed control embryos (Fig. 3.1, C).  These results indicate that 

the amount of VEGF present at HH24 is sufficient to allow heightened angiogenesis if 

more differentiated neurons form prematurely at the lateral edge of the neural tube.  

Conversely, although VEGF is present in Sox2-electroporated embryos, it is not 

sufficient to overcome the angiogenic block accompanying delayed neurogenesis.   

 

We showed VEGF overexpression in the neural tube induces ectopic and 

supernumerary blood vessel sprouting by HH25 (James et al., 2009); however, we did not 

know if earlier VEGF overexpression could induce premature vessel ingression in 

younger neural tubes.  To test this, we electroporated HH14 (Day 2.5) neural tubes with 

VEGF165 and let them incubate for one day, before dissecting between HH22 and HH23 

(Day 3.5-4).  QH1 immunostaining of embryo sections showed that early VEGF165 

overexpression induced premature blood vessel ingression (Fig. 3.6 A-C). VEGF 

overexpression in the ventral neural tube induced premature sprouting; however, this was 

not the case for VEGF overexpression in the dorsal and medial neural tube.  VEGF 

overexpression in these areas did not result in premature vessel sprouts.  Instead, ectopic 
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vessels with large lumens formed outside of the dorsal and medio-lateral neural tube (Fig. 

3.6, D and E; arrowhead).  Blood vessel analysis of VEGF-electroporated embryos 

confirmed these observations.  No medio-lateral sprouts ingressed on the control side of 

the embryo, while sprouts were found on the VEGF-electroporated side (Fig. 3.6, F).  

Ventral sprouts formed on both sides of the neural tube at this stage. 

Intriguingly, premature sprouts were also ectopic.  Blood vessels do not initially 

sprout into the region of the ventral neural tube where motor neurons develop (Fig. 3.7); 

however, when VEGF was overexpressed early in this region of the neural tube, sprouts 

were able to ingress.  Premature vessels invaded the neural tube in the region where the 

motor neuron marker, MNR2, was expressed (Fig. 3.6, G and H).  The motor neurons 

normally differentiate earlier, in greater numbers than other neuronal subtypes (Ericson et 

al., 1992; Hollyday and Hamburger, 1977), as evidenced by the thickened Tuj1-positive 

area in the ventral neural tube (Fig. 3.6 I; bracket).  When VEGF-electroporated neural 

tubes were allowed to develop until HH24, the vascular phenotype became reminiscent of 

later-stage VEGF perturbations, exhibiting ectopic and supernumerary ingression into the 

dorsal and medio-lateral neural tube (Fig. 3.6, J and K; arrowhead).  These results 

indicate that early VEGF overexpression can induce premature vessel ingression, but 

only if a sufficient number of differentiated neurons are also present in the area.  This 

suggests a requirement for both sufficient VEGF and differentiated neurons to be present 

at the lateral edge of normally developing neural tubes before sprouts can invade the 

neuroepithelium. 
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Blood vessels ingress at stereotypical locations along the DV axis of the neural tube 

Differentiated neurons form along the entire DV axis of the neural tube, and 

VEGF mRNA is distributed evenly throughout, so why don’t vessel sprouts invade all 

regions of the neural tube?  We hypothesized that neuronal subclasses forming in specific 

locations along the DV axis may either positively or negatively regulate angiogenesis into 

the regions of the neural tube where they differentiate.  To begin to address this 

hypothesis, we first needed to quantify exactly where blood vessels ingress relative to 

specific sub-populations of neural cells along the DV axis of the neural tube.  

  

We observed that initial blood vessel sprouts do not ingress into the somatic 

motor neuron (sMN) domain, the area within the ventral neural tube where differentiated 

motor neurons reside.  The neurons in this region can be identified with the MNR2 

antibody, which labels motor neuron progenitors in their last mitotic cycle in early neural 

tubes, and also cross-reacts with the HB9 protein (a transcription factor expressed by a 

sub-type of differentiated motor neurons) in older neural tubes (HH24-25) (Fig. 3.7 A).  

Instead, blood vessels enter the neural tube both dorsal and ventral to this region (Fig. 3.7 

B and C; overlay).  Ventrally, blood vessels ingress between the floor plate and the sMN 

domain.  The neurons in this region comprise the V3 interneuron subclass and can be 

identified with an antibody against the homeodomain transcription factor Nkx2.2 (Fig. 

3.7, D).  Adjacent, Nkx2.2 and Qh1-stained sections show that blood vessels positively 

associate with Nkk2.2-labeled cells (Fig. 3.7, E and F; overlay).  Blood vessels ingressing 

into the medio-lateral neural tube do so between the dorsal boundary of the sMN domain 

and the dorsal root entry zone—where DRG axons invade the neural tube (Fig. 3.7, C; 
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arrow).  The medio-lateral region of the neural tube contains many different types of 

differentiated neurons, including the ventral interneuron subclasses V2, V1, and V0 

(Briscoe and Ericson, 2001), as well as the dorsal interneuron domains dI4, dI5 and dI6 

(Helms and Johnson, 2003).  Specific marker genes, usually bHLH transcription factors, 

are used to identify differentiated neuronal subclasses in the medio-lateral region of the 

neural tube.  For example, the V0 interneurons express Evx1, while the V1 neurons 

express En-1 (Engrailed-1) (Diez del Corral and Storey, 2001).  We used antibodies 

directed against some of these markers on neural tube sections and superimposed Qh1-

labeled, adjacent sections to determine whether or not blood vessels invaded the neural 

tube where specific neuronal subclasses were found within the medio-lateral neural tube; 

however, we were unable to establish a pattern.  We saw blood vessels associating with 

all of the neuronal subclasses we labeled in this region (data not shown).  These findings 

suggested that the medio-lateral neural tube was generally pro-angiogenic, or permissive 

to angiogenic sprouts. 

In order to quantify these observations, we labeled HH25 neural tube sections 

with Nkx2.2, MNR2/HB9, or Qh1, then took a series of measurements on adjacent 

sections to determine where blood vessels enter the neural tube relative to the specific 

regions labeled (Fig. 3.7 G).  We first analyzed the angle of blood vessel ingression for 

25 medio-lateral sprouts and 25 ventral sprouts from HH25 neural tubes.  For each 

ventral sprout we measured the angle from zero degrees to the lateral boundary of the 

floor plate (violet), the upper and lower boundary of the Nkx2.2-positive region (blue), 

and the lower boundary of the MNR2/HB9-positive sMN domain (green) on sections 

adjacent to the sprouting event.  For each medio-lateral sprout, we measured the upper 
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and lower boundary of the dorsal root entry zone (orange) on the same section as the 

sprout, in addition to the upper boundary of the MNR2/HB9-positive sMN domain 

(green) on adjacent sections.  Areas falling between the upper boundary of the sMN 

domain and the lower boundary of the dorsal root entry zone are considered the medial 

neural tube (yellow).  The dorsal region of the neural tube falls between the upper 

boundary of the dorsal root entry zone and 180 degrees (red).   

We plotted all of the measurements on a graph (Fig. 3.7 H).  We found that 100% 

of the ventral sprouts entered the Nkx2.2-positive, V3 interneuron domain (blue), and 

96% of the medio-lateral sprouts entered the medial neural tube (yellow).  Only one 

medial sprout entered the sMN domain, close to the upper boundary of MNR2/HB9 

expression (medial sprout #2).  In total, 98% of the sprouts analyzed completely avoided 

the motor neurons.  This suggests that motor neurons may be anti-angiogenic, while other 

neuronal subtypes, such as the V3 interneurons, are pro-angiogenic. 

   

Ectopic motor neurons block medio-lateral angiogenic sprouting into the neural tube 

To begin to test the hypothesis that motor neurons negatively regulate 

angiogenesis, we electroporated an MNR2-cDNA expression construct into HH16-17 

(Day2.5-3) quail neural tubes (Fig. 3.8 A-C).  Ectopic MNR2 expression in neural 

progenitor cells is sufficient to drive the acquisition of motor neuron properties in post-

mitotic neural progenitor cells (Tanabe et al., 1998).  We utilized MNR2 as a tool to 

generate ectopic motor neurons in the medio-lateral neural tube—and then asked whether 

or not ectopic motor neurons could confer an angiogenic block to this normally 

permissive region of the neural tube.  
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MNR2 electroporation blocked medio-lateral angiogenic sprout formation.  QH1-

staining of MNR2-electroporated neural tube sections showed that blood vessels ingress 

normally on the contralateral control side of the embryo, while no medio-lateral sprouts 

are seen on the electroporated side (Fig. 3.8 D-F).  Blood vessel analysis of MNR2-

electroporated embryos reveals almost a complete block in medio-lateral angiogenesis 

when compared to the contralateral controls (Fig. 3.8 G).   

We were unable to assess motor neuron differentiation utilizing the MNR2 

antibody because it labels both motor neuron progenitor cells and HB9-positive, 

differentiated motor neurons.  Additionally, MNR2 was present in all electroporated 

cells, making it impossible to distinguish progenitor cells from differentiated neurons.  

Instead, we utilized another marker for differentiated motor neurons, Islet1.  Islet1 is a 

homeobox transcription factor expressed by differentiated motor neurons (Ericson et al., 

1992).  A monoclonal antibody directed against this protein labels motor neurons, dorsal 

root ganglia, as well as medio-lateral and dorsal populations of interneurons within the 

neural tube.  We stained MNR2-electroporated neural tube sections with the Islet1 

antibody (Fig. 3.8 H-J) and counted positive cells in both the medio-lateral and dorsal 

regions of the neural tube (Fig. 3.8 K).  We saw a significant increase in Islet1-positve 

cells in the medio-lateral region on the MNR2-electroporated side of the neural tube 

when compared to the contralateral control side.  There was only a slight difference 

between dorsal populations.  This shows that MNR2 electroporation is able to induce 

ectopic motor neuron generation in the medio-lateral neural tube, resulting in a block to 

vessel ingression in that area.  This suggests that the motor neurons negatively regulate 

angiogenesis into the neural tube.  Furthermore, this work demonstrates that the normal 



 82 

process of neuronal subclass specification along the DV axis of the neural tube is 

important for proper blood vessel ingression and intraneural blood vessel patterning. 
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E. DISCUSSION 

 

Blood vessels entering the neural tube do so at a specific time, and at highly 

stereotypical locations.  These observations prompted us to explore the relationship 

between blood vessel ingression patterns and the mechanisms that pattern the neural tube.  

The work presented in this chapter demonstrates that two major processes of neural 

development, programmed neurogenesis and neuronal cell fate specification, direct 

intraneural blood vessel patterning.  

 

Programmed neurogenesis 

 Blood vessels begin to form the PNVP at HH14 (Day 2.5), which coincides with 

the onset of neurogenesis and the appearance of Tuj1 positive neurons within the neural 

tube; however, medio-lateral blood vessel sprouts do not initiate until HH23-HH24 (Day 

3.5-4), after neurogenesis is well underway.  We did not know if the neuroepithelium, 

which is known to positively interact with angioblasts and ECs during PNVP formation, 

could actually negatively regulate angiogenic sprouting into the neural tube.  Or, 

conversely, it was possible that blood vessels forming the PNVP were not competent to 

ingress until a particular developmental stage.  To begin to address these hypotheses, we 

manipulated the timing of neurogenesis by altering the expression of genes known to 

either prevent neural progentitor differentiation or induce premature neurogenesis.   

 Intriguingly, we found that both manipulations predictably perturbed neural tube 

angiogenesis.  Constitutive Sox2 expression prevented neuronal differentiation and 

blocked blood vessel ingression, while NeuroM expression increased Tuj1-positive 
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neurons at the lateral surface of the neural tube in younger embryos—a perturbation 

resulting in premature blood vessel ingression.  These experiments suggest that blood 

vessels are competent to enter the neural tube earlier than they actually do.  These results 

also indicate that the early neuroepithelium negatively regulates blood vessel ingression, 

while differentiated neurons allow vessels to enter the neural tube. 

 It is unclear whether differentiated neurons or radial glial cells are positively 

regulating intraneural angiogenesis.  It is unlikely that these cell types are instructive to 

the blood vessels, but rather they may break down the barrier established by the 

progenitor cells—making the neural tube permissive to angiogenic invasion.  Blood 

vessels positively associate with radial glial cell processes in the brain (Virgintino et al., 

1998).  Just as neurons utilize radial glial cells as a scaffold for migration, blood vessels 

entering the neural tube may also require these cells for support; however, the role of 

radial glial cells in the neural tube during neurogenesis is poorly understood.  Studies 

show that neural progenitors within the neural tube begin to acquire radial glial properties 

after neurogenesis is largely complete, and instead maintained neuroepithelial 

characteristics during the time blood vessels ingress (reviewed in, (Gotz and Huttner, 

2005)).  Electroporation of a Neurogenenin-1 or Neurogenin-2 expression construct into 

early neural tubes may begin to address these questions.  Neurogenin expression directly 

induces progenitor cell cycle exit and promotes neuronal differentiation at the expense of 

radial glial cell formation (Mizuguchi et al., 2001; Sun et al., 2001).  Would blood vessels 

ingress in a situation where radial glial processes were largely absent while differentiated 

neurons still formed?  
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Refining the role of VEGF in intraneural angiogenesis 

 In addition to adequate support, blood vessels must also receive the right signals 

to promote angiogenesis.  We know the early neural tube expresses VEGF, and that this 

VEGF is required for PNVP formation; however, it was possible that levels of VEGF 

present at early stages of neural tube development were insufficient to direct blood vessel 

ingression.  As a result, the immature neural tube could not support angiogenic sprouting 

until VEGF expression increased over time.  We found that this was unlikely to be the 

case.  First of all, VEGF levels were not perturbed in Sox2 or NeuroM-electroporated 

embryos, even though the timing of vessel ingression was altered.  This suggested that 

the timing of blood vessel ingression was partially independent of VEGF-signaling.  

Secondly, VEGF165 overexpression was unable to induce premature medio-lateral 

sprouts at early stages of neural tube development.  Premature sprouts formed only when 

VEGF was expressed in areas where the most differentiated neurons were found—the 

region of motor neuron development in the ventral neural tube.  In Chapter II, we showed 

that regional depletion of VEGF in the neural tube, via ectopic S-Flt expression, prevents 

blood vessel ingression—even though neurons differentiated normally in these embryos 

(Fig. 2.6 G).  Taken together, these results indicate that both sufficient levels of VEGF 

and the proper number of differentiated neurons must be present at the lateral edge of the 

neural tube before vessel ingression can occur.   

Additionally, matrix-binding VEGF must be present in order for angiogenic 

sprouts to invade the neural tube at the proper time.  Analysis of mouse neural tubes only 

expressing the non-matrix-binding VEGF120 isoform displayed a delay in neural tube 

angiogenesis (data not shown).  These data further refine the role of VEGF in regulating 



 86 

neural tube angiogenesis.  Matrix-binding VEGF must work in coordination with 

differentiated neurons to promote proper neural tube angiogenesis.  Perhaps matrix-

binding VEGF becomes localized to the extracellular matrix secreted by differentiated 

neurons, creating depots in the marginal zone that guide angiogenic sprouts.  Perhaps 

progenitor cells do not produce the proper matrix to trap VEGF, and at younger neural 

tube stages, most of the VEGF produced in the neural tube escapes to the surrounding 

mesodermal tissue.  Unfortunately, it is difficult (if not impossible) to visualize where 

this small protein is localized in the extracellular spaces of the neural tube. 

 

Neuronal cell fate specification along the DV axis of the neural tube 

 The coordinated activity of VEGF and differentiated neurons is not sufficient to 

explain the intricacies of the blood vessel pattern.  Though both are required for 

regulation of the timing of blood vessel ingression, they do little to explain why blood 

vessels enter the neural tube in such highly stereotypical locations along the DV axis.  

We hypothesized that certain neuronal subtypes positively associated with blood vessel 

sprouts (or were permissive to angiogenesis), while others negatively regulated 

angiogenesis. 

 In order to determine if neural patterning along the DV axis of the neural tube 

could influence the blood vessel pattern, we manipulated the range of motor neuron 

differentiation via MNR2 expression.  Essentially, we extended the domain of motor 

neuron differentiation to the medio-lateral neural tube—an area normally permissive to 

blood vessel ingression.  Intriguingly, ectopic motor neurons were able to confer the 

angiogenic block in this region.  This data provides strong evidence that regional 
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specification of neuronal subtypes does influence the pattern of vessel ingression.  

Exactly how the motor neurons negatively regulate angiogenesis remains unclear.  

Fortunately, mechanisms regulating motor neuron cell fate determination are among the 

most well-characterized processes in neural tube development.  In Chapter IV, we begin 

to explore how the motor neurons may negatively regulate angiogenesis, and where in the 

motor neuron differentiation process the block actually occurs.  We also identified a 

population of cells that may positively regulate neural tube angiogenesis: the Nkx2.2-

positve, V3 interneurons.  100% of ventral sprouts enter the V3 interneuron domain.  

Based on this data, we predict that ectopic V3 interneurons would induce ectopic or 

supernumerary vessel sprouts.  

The work in this chapter demonstrates that normal processes of neural 

development regulate neural tube angiogenesis.  We have demonstrated that different 

regions of the neural tube interact differently with developing vessels.  Only when we 

understand the relationship between each neural cell type—progenitor cell, differentiated 

cell, dorsal interneuron, ventral interneuron, or motor neuron—and the vasculature, can 

we get a complete picture of how vessel patterning is regulated by the neural tube.  
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Figure 3.2: The onset of neurogenesis correlates with the timing of blood vessel 
ingression. 
 
 (A-I) Comparison of blood vessel development and the progression of 

neurogenesis at early stages of neural tube development in quail.  (A-C) QH1-stained 

neural tube sections at HH14, HH23, and HH25.  PNVP formation initiates at HH14 

when the first ECs are seen adjacent to the neural tube (A; arrowhead).  Sprout initiation 

occurs at HH23 (B; arrowhead), and ingressing vessels branch laterally as they interface 

the VZ (C).  (D-F) Tuj1-stained neural tube sections at HH14, HH23, and HH25.  At 

HH14, few Tuj1 positive cells are beginning to migrate to the pial surface of the neural 

tube (D; arrowheads).  The Tuj1-positive area at the lateral edge of the neural tube 

increases during later stages of development (E, F).  (G-I) Models depicting blood vessel 

patterning events and the progression of neurogenesis at HH14, HH23, and HH25.  

Progenitor cells in the VZ (purple) become increasingly restricted over time as neurons 

(blue) differentiate and migrate to the lateral edge of the neural tube.  Blood vessels enter 

the neural tube only after neurons differentiate.  (J) % Tuj1-area analysis scheme.  The 

Tuj1-positive area (blue) is divided by the total, medial area on one side of the neural 

tube to obtain the % Tuj1-positive region in the medio-lateral neural tube.  (K) Neuronal 

differentiation index.  % Tuj1-positive area measurements from HH22, 23, 24, 25, and 

26-stage embryos were plotted on a graph to illustrate the progression of neurogenesis 

over time.  Asterisk: developmental stage when medio-lateral ingression occurs. 
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Figure 3.3:  Delayed neuronal differentiation blocks neural tube angiogenesis. 
 

Quail neural tubes were electroporated with a Sox2-IRES-eGFP construct at 

HH14 (Day 2.5) and harvested approximately two days later at HH25 (Day 4.5-5).  (A-C) 

QH1 immunostaining shows a blood vessel sprout ingressing into the medio-lateral 

region of the neural tube on the control side (C; arrow), while no sprouts are seen on the 

Sox2-electroporated side.  Migratory angioblasts are able to invade the neuroepithelium 

on the Sox2-electroporated side (C; arrowheads).  (D) Analysis of blood vessel ingression 

on the Sox2 (green) or contralateral control (black) sides of electroporated embryos 

(n=103 sections).  (E-G) Sox2 expression prevents neuronal differentiation in quail.  

Tuj1 immunostaining is drastically reduced within the medio-lateral region of the neural 

tube on the Sox2-electroporated side when compared to the control side and unperturbed.  

These observations are quantified in the Tuj1 area analysis (n=17 electroporated sections) 

(H).  Bars indicate that Tuj1 area is significantly reduced on the Sox2-electroporated side 

of the neural tube (green) when compared to the contralateral control side (black) and 

unperturbed, HH25 control neural tubes (grey).  
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Figure 3.4:  Premature neural tube differentiation promotes early vessel ingression. 
 

Quail neural tubes were electroporated with a NeuroM-eGFP construct at HH14 

(Day 2.5) and harvested approximately 1-1.5 days later at HH23.  (A-C) QH1 

immunostaining shows that a premature blood vessel sprout ingressed into the medio-

lateral region of the neural tube (C, arrowhead) and is beginning to anastomose with a 

ventral sprout.  (D) Analysis of blood vessel ingression on the electroporated (green) and 

control sides (black) of NeuroM-electroporated neural tubes.  More sprouts have formed 

on the NeuroM-electroporated side; however, vessel sprout distribution along the DV 

axis is not perturbed in these embryos (n=85 sections).  (E-H) QH1 staining of vessel 

sprouts on control and electroporated sides of NeuroM-electroporated neural tubes 

depicts emerging sprouts on the control side of the neural tube that are either small (E) or 

consist of mainly filopodial extensions (G), while sprouts on the NeuroM-electroporated 

have ingressed farther (F), or are beginning to anastomose with ventrally ingressing 

vessels (H, arrow).  (I-K) Tuj1 immunostaining shows increased thickness of 

differentiated neurons on the NeuroM-electroporated side of the neural tube when 

compared to the contralateral control side.  (L) % Tuj1 area analysis shows a significant 

difference between NeuroM and contralateral control sides of the neural tube (n=25 

electroporated sections).  
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Figure 3.5: Altered temporal regulation of neurogenesis does not perturb VEGF 
expression in the neural tube. 
 

In situ hybridization of Sox2 and NeuroM-electroporated quail neural tubes with 

an anti-sense probe to quail VEGF-A.  (A) Sox2-electroporated neural tubes show 

equivalent VEGF-A reactivity on the Sox2-electroporated and contralateral control sides 

of the neural tube at HH25.  (B) NeuroM-electroporated neural tubes display no 

differences in VEGF-A expression between the electroporated and control sides of the 

neural tube at HH23.  Green bars indicate electroporated side of each neural tube section.  

Scale bar: 100µM. 
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Figure 3.6: Early VEGF overexpression induces premature, ectopic blood vessel 
ingression into the neural tube. 
 

Quail neural tubes were electroporated with the hVEGF165-eGFP construct at 

HH14 (Day 2.5) and harvested 24 hours later, between HH22-23.  (A-C) QH1 

immunostaining shows that a premature blood vessel sprout ingressed into the ventro-

lateral region of the neural tube (C; arrow) in the vicinity of VEGF over-expression.  (D, 

E) VEGF165 overexpression in the medio-lateral and dorsal neural tube did not result in 

premature blood vessel sprouts.  Instead, vessels with large lumens sometimes formed 

outside of the neural tube, adjacent to regions of VEGF165 overexpression (E; 

arrowhead).  (F) Vessel ingression analysis on VEGF-electroporated (green), or 

contralateral control (black) sides of the neural tube (n=45 sections).  (G, H) Premature 

blood vessel sprouts ingress into the motor neuron domain in the ventral neural tube.  

Adjacent neural tube sections were stained with either QH1 (red) or MNR2 (yellow) to 

label blood vessels or motor neurons.  These images were superimposed to show that 

blood vessel sprouts co-localize with motor neurons in the ventral neural tube (G and H; 

arrowheads).  Green bars indicate the VEGF165-electroporated side of the neural tube.  

(I) Tuj1 immuno-staining shows that more differentiated neurons have formed in the 

ventral neural tube than in the medio-lateral or dorsal areas at HH22-23 (bracket).  (J, K)  

At HH24, VEGF165 overexpression in the dorsal and medio-lateral neural tube initiates 

ectopic and supernumerary blood vessel sprouts (K; arrowhead).   
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Figure 3.7: Blood vessels ingress into stereotypical regions of the neural tube. 

 (A-C) Vessel ingression relative to MNR2/HB9 expression at HH25.   

MNR2/HB9 (A) and QH1-immunostained (B) sections were superimposed to show that 

ingressing vessels (C; arrow) avoid the sMN domain (green) in the ventral neural tube.  

(D-F) Vessel ingression relative to Nkx2.2 expression at HH25.  Nkx2.2 expression in 

the ventral neural tube marks the V3 interneuron domain (D).  Ventral blood vessel 

sprouts (E) appear to ingress into this region in the QH1/Nkx2.2 overlay (F).  Scale bar: 

100µm.  (G) Analysis of vessel ingression relative to DV neuronal patterning.  

Measurements (arrows) were taken at the lateral boundary of the floor plate (purple), the 

Nkx2.2 boundaries (blue), the ventral and dorsal boundary of the sMN domain (green) 

and at the ventral and dorsal boundary of the dorsal root entry zone (DREZ) (orange).  

The medial neural tube (yellow) is defined by the dorsal boundary of the sMN domain 

and the ventral boundary of the DREZ.  The dorsal neural tube (red) is defined by the 

dorsal boundary of the DREZ and 180°.  (H) Ingression analysis by neural tube region.  

25 ventral and 25 medio-lateral sprouts were analyzed on HH25 neural tube sections, and 

each point was plotted on a graph relative to measurements taken on adjacent sections for 

each sprout.  Black dots indicate vessel spouts.  100% of ventral sprouts analyzed 

ingressed ino the Nkx2.2, V3 interneuron domain, while 96% of medio-lateral sprouts 

ingressed into the medial neural tube.  
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Figure 3.8: Motor neurons negatively regulate neural tube angiogenesis. 

 Quail neural tubes were electroporated with an MNR2-IRES-eGFP construct at 

HH16-17 and were dissected at HH25.  (A-C) MNR2 expression in electroporated neural 

tubes.  (D-F) QH1 immunostaining on neural tube sections depicts blood vessel 

ingression on the control, but not MNR2-electroporated, side of the neural tube.  (G) 

Blood vessel ingression analysis shows that blood vessel ingression is stereotypical on 

the control side of the neural tube (black) and drastically decreased on the MNR2-

electroporated side (green) (n=119 sections).  (H-J) Islet1 expression in MNR2-

electroporated neural tubes shows that Islet1 cells are increased on the electroporated side 

of the neural tube.  (K) Islet1 cell counts in the dorsal and medial neural tube shows that 

medial Islet1 cells are significantly higher on the MNR2-electroporated side (green) 

when compared to the contralateral control side (black) indicating that ectopic motor 

neurons form in MNR2-electroporated embryos.  Dorsal Islet1 cell numbers do not 

drastically change (n=25 sections).      
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CHAPTER IV 

 
 
 
 

DIFFERENTIATED MOTOR NEURONS, BUT NOT MOTOR  
NEURON PROGENITORS, NEGATIVELY  

REGULATE ANGIOGENESIS. 
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A. INTRODUCTION 

 

Blood vessels invade the developing avian neural tube in highly stereotypical 

locations along its DV axis (Feeney and Watterson, 1946; James et al., 2009; Kurz et al., 

1996).  Perhaps as striking as the regions where vessels invade the neural tube, are the 

places where they don’t.  We show in Chapter III that ingressing blood vessels initially 

avoid the region of the ventral neural tube where motor neurons differentiate.  We also 

show that ectopically generated motor neurons block blood vessel ingression.  Our work 

demonstrates that this neuronal sub-type is anti-angiogenic.  We are interested in 

understanding how the motor neurons block blood vessel ingression, and at which stage 

of motor neuron development the block occurs.  In order to do this, it is important to 

understand which genes regulate motor neuron development, and when they are 

expressed relative to the timing of blood vessel ingression. 

The first step in motor neuron development occurs at Hamburger and Hamilton 

(HH) stage 9-10 (Hamburger and Hamilton, 1992), as opposing gradients of Sonic 

Hedgehog (Shh) from the notocord and floor plate and Transforming Growth Factor-ß 

(TGF-ß) and Bone Morphogenic Proteins (BMPs) from the roof plate of the neural tube 

are established along its dorsoventral (DV) axis (Fig. 4.1 A).  Graded Shh signaling is 

critical for specifying five neuronal progenitor domains in the ventral neural tube—p3, 

pMN, p2, p1, and p0 (reviewed in (Briscoe and Ericson, 2001)) (Fig. 4.1 B).  The pMN 

domain contains motor neuron progenitors (Fig. 4.1 B, asterisk) that differentiate to form 

the somatic motor neurons (sMNs).  Additionally, FGF and Retinoic Acid-signaling 
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contribute to the specification of ventral neuronal progenitor domains (Diez del Corral et 

al., 2003; Diez del Corral and Storey, 2004). 

Each of the five ventral progenitor domains is specified by a subset of 

homeodomain transcription factors, regulated by Shh signaling, that direct neuronal sub-

type identity at the onset of neurogenesis (Briscoe and Ericson, 2001; Briscoe et al., 

2000).  There are three key homeodomain transcription factors expressed by cells in the 

pMN domain, regulating motor neuron specification in the chick neural tube: Pax6, 

Nkx6.1, and Nkx6.2 ((Ericson et al., 1997; Sander et al., 2000; Vallstedt et al., 2001).  

Nkx6.1 and Nkx6.2 (Nkx6) are upregulated by intermediate and high levels of Shh, while 

Pax6 is repressed by the highest levels of Shh in the ventral-most neural tube.  Essential 

genes specifying motor neuron identity are depicted in Figure 4.1 C (reviewed by 

(Briscoe and Novitch, 2008)).  As these events are taking place, blood vessels have not 

yet begun to form the PNVP. 

Once the progenitor cells in the pMN domain have been regionally restricted by 

homeodomain transcription factors, they begin to coordinate their exit from the cell cycle 

by upregulating the basic Helix-Loop-Helix (bHLH) transcription factor Olig2 at HH10 

(Novitch et al., 2001).  Olig2 expression expands in the ventral neural tube until HH15, 

the developmental stage when motor neuron differentiation occurs (Ericson et al., 1992; 

Hollyday and Hamburger, 1977), and becomes downregulated in post-mitotic motor 

neurons.  The first ECs begin to form the PNVP just prior to this stage, at HH14.  Olig2 

expression persists in motor neuron progenitor cells until HH25, when motor neuron 

generation is largely complete (Novitch et al., 2001).  The unique role of Olig2 is to 

synchronize the acquisition of motor neuron sub-type identity by upregulating MNR2, 
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with cell cycle exit (i.e. motor neuron differentiation) by regulating Neurogenin2 (Ngn2) 

expression (Fig. 4.1 C).  MNR2 is a homeodomain transcription factor expressed by 

motor neuron progenitors as they enter their last mitotic cycle, and its expression is 

sufficient to drive specific aspects of post-mitotic motor neuron differentiation; however 

this gene, like other homeodomain transcription factors, cannot induce motor neuron exit 

from the cell cycle (Tanabe et al., 1998).  Ngn2 is a bHLH transcription factor that 

promotes neuronal differentiation at the expense of radial glial cell formation (Sun et al., 

2001).  Furthermore, bHLH proteins have been shown to induce upregulation of pan-

neuronal markers such as B-tubIII and neurofilament (Lee et al., 1995).  Coordinated 

expression of these transcription factors ensures that motor neuron progenitors 

differentiate into motor neurons at a specific time and in a certain place within the 

developing neural tube.  As motor neurons begin to differentiate, they express another 

cascade of transcription factors, largely coordinated by MNR2 expression (Fig. 4.1 C, D).  

MNR2 becomes down-regulated in post-mitotic motor neurons which initiates an 

upregulation in Islet1 expression.  Islet1, in part, drives the expression of Islet2 and HB9, 

transcription factors specifying motor neuron sub-type identity (Lee and Pfaff, 2003; 

Tanabe et al., 1998).  Islet1 expression persists until later stages of development (Ericson 

et al., 1992).  Blood vessels eventually do enter the sMN domain (Feeney and Watterson, 

1946); however, they do so at HH27-HH28, after motor neuron differentiation is largely 

complete.   

Establishing sub-type identity is only the first step in neuronal organization.  

Differentiated neurons project axons that must reach their correct targets in order for the 

central and peripheral nervous systems to function properly.  The axonal growth cone is 
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an extremely tactile structure, sending out filopodia to interact with multiple signals in its 

environment.  Signals are used to determine which way to migrate, based on a fine 

balance of positive and negative axonal guidance cues.  Numerous studies show that 

molecules regulating axonal guidance and patterning also regulate blood vessel 

patterning, and the tip cell of a growing vessel acts much like an axonal growth cone.  

There are four main classes of guidance molecules that have roles in both axonal and 

blood vessel patterning: Semaphorins, Slits, Netrins, and Ephrins (reviewed by Carmeliet 

and Tessier-Lavigne, 2005).  The Semaphorins and Slits are of particular interest to us 

because of their motor neuron-restricted patterns (Holmes and Niswander, 2001; Luo et 

al., 1995).  A family of Semaphorin molecules, the Semaphorin III’s (Sema3), negatively 

patterns axons when expressed outside of the neural tube, placing motor axons on the 

correct trajectory toward muscle targets, while Sema3-sigaling within the neural tube sets 

axon sensitivity to this peripheral Sema expression by regulating Nrp1 expression (Moret 

et al., 2007).  Certain Sema3 family members also negatively regulate angiogenesis and 

EC migration (Gu et al., 2005; Serini et al., 2003; Torres-Vazquez et al., 2004).  Studies 

suggest that Slit2-signaling through the Robo4 receptor on ECs, also negatively regulates 

EC migration (Jones et al., 2008; Park et al., 2003).  Slit2 is highly expressed in the motor 

neurons, and presumably Robo4 is expressed on neural vessels; however, this has not 

been explored.  These studies highlight possible mechanisms for the negative regulation 

of blood vessel ingression by the motor neurons demonstrated in Chapter III.  

There is little known regarding the role of motor neuron (or motor neuron 

progenitor)-blood vessel interactions within the walls of the neural tube during early 

embryonic stages.  We have shown that intraneural blood vessel patterning is influenced 
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by motor neuron development.  Although blood vessels do not initially enter the sMN 

domain, the close association of blood vessels with motor neuron cell bodies is likely to 

be important for motor neuron survival.  Studies of motor neuron development comprise 

the most complete story of how sub-populations of neural cells become specified in the 

early neural tube.  Unlike most neuronal subclasses, transcription factors and signaling 

pathways required to make a motor neuron are now known.  We have a unique 

opportunity to use this information to begin to answer questions about intraneural blood 

vessel patterning.  Specifically, we want to understand at which stage of development 

motor neurons acquire/lose their anti-angiogenic properties.  We also seek to identify 

negative signals that make this region anti-angiogenic.  We begin to answer these 

questions in this chapter; this work is ongoing. 
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Figure 4.1: Motor neuron specification in the ventral neural tube. 

 (A) Opposing gradients of Shh-signaling (red) from the floor plate, BMP-

signaling (blue) from the roof plate, and Retinoic Acid-signaling from the somites (green) 

patterns the early neural tube before the onset of neurogenesis.  This is the first step in 

motor neuron specification in the ventral neural tube.  (B) Graded Shh from the floor 

plate is required for the specification of the five ventral progenitor domains (p3-p0), 

including the motor neuron progenitors in the pMN domain (asterisk).  Motor neuron 

progenitors within the pMN domain differentiate and form the sMN domain where the 

somatic motor neurons reside.  (C) Major genes in motor neuron specification.  The pMN 

domain is first specified by combinatorial expression of three homeodomain transcription 

factors: Nkx6.1, Nkx6.2, and Pax6.  These genes coordinate the expression of Olig2, 

which then upregulates MNR2 and Ngn2 to coordinate motor neuron identity and cell 

cycle exit (or differentiation) by HH15.  Isl1, in part, coordinates the expression of Isl2 

and HB9, while Ngn2 expression upregulates NeuroM expression in post-mitotic 

neurons.  Asterisk: stage in motor neuron development where blood vessels enter the 

neural tube in stereotypical locations, avoiding the sMN domain.  (D) Schematic 

representation of motor neuron specification in the ventral neural tube depicting when 

and where important genes are expressed.  MNR2 labels progenior cells, while Isl1, Isl2, 

and HB9 label differentiated motor neurons.  V2 neurons, but not motor neurons, express 

Lim3, and a dorsal population of interneurons (D2 interneurons) also expresses Isl1.   
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B. MATERIALS AND METHODS 

 

Expression constructs 

The MNR2-IRES-eGFP construct was generated as previously described in 

Chapter III.  The Sox2-ER-IRES-eGFP vector was a gift from L. Pevny (Graham et al., 

2003).  The S-Flt1 expression vector was generated by inserting full-length mouse s-Flt 

cDNA (Kappas et al., 2008) into the EcoR1 sites within the pCAGGS-IRES-Tomato 

(pCIT) vector (a gift from T. Maynard).  Sema3a-IRES-eGFP and Sema3c-IRES-eGFP 

vectors were gifts of V. Castellani (Moret et al., 2007). 

 

In ovo electroporation 

We performed quail, neural tube electroporations as previously described (James 

et al., 2009), with the following minor modifications:  The Sox2-ER and MNR2 

expression vectors were injected into HH16-17 quail neural tubes at a final DNA 

concentration of 2µg/µl.  Sema3a and Sema3c expression vectors were injected into 

HH16-17 quail neural tubes at a final DNA concentration of 1.5µg/µl.   All embryos were 

incubated for an additional 2 days post-electroporation before embryo dissection at 

HH25. 

 

Immunofluorescence  

Antibody staining with QH1, Tuj1, and MNR2, Pax6, Pax7, and Islet1 was 

performed as previously described ((James et al., 2009) and Chapter III). 
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Analysis of ingression patterns/ neural tube measurements 

Blood vessel ingression analyses, image overlays, and Islet1 cell counts were 

performed as described in Chapter III.  

 

In situ hybridization 

Quail, VEGF ISH was performed as previously described (James et al., 2009) on 

MNR2 over-expressing neural tube cryosections (courtesy of the UNC-ISH core facility 

and Yonquin Wu). 
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C. RESULTS 

 

Motor neuron progenitors are pro-angiogenic 

We show in Chapter III that blood vessels avoid the ventral neural tube where 

motor neurons develop (Fig. 3.7).  Ectopic motor neurons generated in the medio-lateral 

neural tube via MNR2 electroporation were also anti-angiogenic (Fig. 3.8).  This 

experiment was performed by “mis-expressing” MNR2 along the DV axis of the neural 

tube in order to achieve motor neuron differentiation—as evidenced by increased Islet1 

expression in the medio-lateral neural tube (Fig. 3.8).  We performed a related 

experiment where we electroporated a higher concentration of MNR2 (Fig. 4.2 A-C) into 

quail neural tubes in an attempt to generate more ectopic motor neurons; however, we did 

not achieve the desired result with this manipulation.  MNR2 “over-expression” along the 

DV axis of the neural tube results in ectopic angiogenic sprouts that closely associate 

with MNR2-positive cells (Fig. 4.2 D-I).  The blood vessel ingression analysis shows that 

ectopic sprouts ingress along the entire length of the DV axis of the neural tube in MNR2 

over-expressing embryos (Fig. 4.2 F and I; arrowheads), while the contralateral control 

side of the neural tube maintained a stereotypical ingression pattern (Fig. 4.2 J). 

These results contrasted the MNR2 mis-expression phenotype in chapter III, 

prompting us to examine whether or not highly MNR2-positive cells differentiate 

properly and migrate to the lateral edge of the neural tube as motor neurons.  Islet1 

immunostaining shows that high MNR2 expression does not result in ectopic motor 

neuron differentiation (Fig. 4.3 A-C) and that Islet1 cell populations are reduced on the 

electroporated side of the neural tube in both the medial and dorsal regions (Fig. 4.3 B; 
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arrows).  Islet1 cell counts in the medial and dorsal neural tube confirmed these 

observations (Fig. 4.3 D).   There was a drastic decrease in dorsal Islet1 cell populations 

on the electroporated side of the neural tube when compared to the contralateral control 

side; however, the medial population of Islet1-positive cells remained more stable, with 

only a slight decrease in cell number on the MNR2-electroporated side.  

In addition to electroporating high concentrations of MNR2, we were able to 

induce MNR2 over-expressing cells via Sox2-ER electroporation.  The Sox2-ER 

construct consists of the Sox2 gene fused to the Engrailed Repressor (ER) domain 

(Graham et al., 2003).  Sox2 normally acts as a transcriptional activator; however, when 

fused to the ER domain, it acts as a transcriptional repressor—or, essentially, a dominant 

negative form of Sox2.  We initially electroporated this gene to induce premature 

neuronal differentiation in quail neural tubes; however, Sox2-ER-expressing cells did not 

prematurely differentiate.  Instead, Sox2-ER-expressing cells induced both a 

differentiation and DV patterning defect where clumps of motor neuron progenitor cells 

(highly MNR2-positive cells) formed all along the DV axis of the neural tube but never 

fully differentiated (Fig. 4.4).  This perturbation resulted in ectopic blood vessel sprouts 

(Fig. 4.4 A-C and J).  GFP-positive, Sox2-ER-expressing cells only co-localized with 

MNR2 (Fig. 4.4 D-F), and not other neural progenitor markers such as Pax6 or Pax7, no 

matter where these cells were found along the DV axis of the neural tube (Fig. 4.4 G and 

H).  Furthermore, Sox2-ER-expressing cells did not co-localize with Tuj1, indicating that 

they do not terminally differentiate (Fig. 4.4 I).  These experiments suggest that motor 

neuron progenitor cells are highly pro-angiogenic.  These results may also explain why 
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ventral sprouts are able to pass through MNR2-postive cells as they migrate dorsally 

along the VZ in unperturbed embryos (Fig. 4.4 K; arrowhead).  

 

VEGF-signaling from ectopic motor neuron progenitors induces ectopic angiogenic 

sprouts   

Ectopic sprouting events occurring within MNR2-overexpressing neural tubes 

were reminiscent of matrix-binding VEGF perturbations, where localized matrix-binding 

VEGF expression induced blood vessel ingression into the dorsal neural tube (Fig. 2.3).  

We were interested in understanding if VEGF-signaling was mediating ectopic ingression 

events in MNR2 over-expressing neural tubes.  To test this, we performed quail VEGF in 

situ hybridizations on tissue sections from MNR2-electroporated embryos displaying 

ectopic angiogenesis.  We found that cells highly expressing GFP co-localized with 

regions of increased VEGF expression on adjacent neural tube sections (Fig. 4.5 A-C).  

Ectopic angiogenesis in MNR2 overexpressing embryos could be rescued by co-

electroporation with s-Flt1 (Fig. 4.5 D-G).  Ingression analysis of high MNR2/s-Flt1 co-

electroporated embryos revealed reduced medio-lateral sprouting and a complete rescue 

of ectopic, dorsal sprouts on the electroporated side of the embryo when compared to the 

contralateral control side (Fig. 4.5 I) and neural tubes electroporated with high MNR2 

alone (Fig. 4.5 H).  These results show that ectopic, highly MNR2-positive cells induce 

angiogenesis by upregulating VEGF.  Furthermore, these results, in combination with the 

results in the previous sections, demonstrate that motor neurons become anti-angiogenic 

as they differentiate—or they acquire anti-angiogenic properties over time. 
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Semaphorin III ligands negatively regulate neural tube angiogenesis.   

Since MNR2-positive progenitor cells positively interact with blood vessels, 

perhaps via VEGF high VEGF expression, we now want to understand how differentiated 

motor neurons negatively regulate angiogenesis.  One possibility is that differentiated 

motor neurons secrete anti-angiogenic signals that prevent blood vessel ingression.  Three 

secreted Sema3 ligands: Sema3A, Sema3C, and Sema3E, are highly expressed in motor 

neurons (Cohen et al., 2005; Moret et al., 2007).  These molecules have been shown to 

negatively regulate angiogenesis; however, their role in shaping the intraneural blood 

vessel pattern has not been characterized.   

We electroporated Sema3A and Sema3C expression constructs into HH16-17 

quail neural tubes and dissected the embryos at HH25.  Ectopic Sema3A and Sema3C 

expression in neural tubes blocked angiogenesis (Fig. 4.6).  QH1 immunostaining showed 

in Sema3A-electroporated sections showed that that blood vessel sprouts did not form in 

the medio-lateral region of the neural tube (Fig. 4.6 A-C), and regions of the PNVP were 

decimated (Fig. 4.6 C; arrowheads).  The ingression analysis showed that Sema3A 

expression almost completely blocked medio-lateral sprouting (Fig. 4.6 D).  QH1 

immunostaining showed that ectopic Sema3C also negatively regulated vessel ingression; 

however, the results produced a less severe phenotype than the Sema3A perturbation.  

The PNVP was not interrupted in these embryos (Fig. 4.6 E-G).  Blood vessel ingression 

analysis in Sema3C-electroporated embryos revealed a reduction in medio-lateral sprouts 

(Fig. 4.6 H); however, blood vessels did enter the neural tube more frequently where 

Sema3C was ectopically expressed than in regions where Sema3A was ectopically 

expressed (compare to Fig. 4.6 D).  These results suggest that molecules expressed by the 
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motor neurons have the ability to negatively regulate neural tube angiogenesis when 

ectopically expressed in the medio-lateral neural tube.  While not conclusive, these 

results suggest that Semaphorin signaling in the motor neuron region may contribute to 

the block to angiogenesis we see there.  We have not yet looked at the effects of Sema3E 

on blood vessel ingression.  We predict that ectopic Sema3E expression will also block 

medio-lateral blood vessel ingression, as it has recently been shown to have drastic, 

negative effects on angiogenesis when ectopically overexpressed outside of the neural 

tube (Gu et al., 2005). 
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D. DISCUSSION 

 

 The beauty of science is that mistakes can sometimes be more telling than a 

perfectly planned and executed experiment.  This statement lends itself well to the in ovo 

electroporation technique.  In an attempt to generate more ectopic motor neurons in the 

medio-lateral neural tube we found that motor neurons aren’t always anti-angiogenic.  

We show in this chapter that neural cells highly expressing MNR2 not only fail to 

differentiate, but they upregulate VEGF and induce ectopic and supernumerary blood 

vessel sprouts.  This is in stark contrast to what we show in Chapter III, where neural 

cells moderately expressing MNR2 upregulate Islet1 as they form ectopic motor neurons 

in the medio-lateral neural tube—conferring a block to angiogenesis there.  Intriguingly, 

these data suggest that there is something about the motor neuron differentiation process 

that makes these cells anti-angiogenic, while motor neuron progenitors maintain pro-

angiogenic properties. 

 

When do motor neurons become anti-angiogenic? 

Many of the steps in motor neuron differentiation are now known.  We illustrate 

the major players needed to drive motor neuron development in the neural tube in Figure 

4.1.  Under normal physiological conditions, MNR2 is upregulated in motor neuron 

progenitors as they undergo their final mitotic cycle, and then MNR2 becomes rapidly 

downregulated at the onset of neurogenesis (Tanabe et al., 1998).  Though not tested in 

the context of neural development, it is possible that constitutively high levels of MNR2 

prohibit neuronal differentiation, maintaining a progenitor-like state.  Only a down-
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regulation in MNR2 expression (or perhaps moderate to low MNR2 expression in 

electroporated cells) triggers differentiation and upregulation of the Islet1 transcription 

factor.  This seems to be the case for an upstream modulator of MNR2 expression as 

well, the homeodomain transcription factor Olig2.  Constitutive overexpression of Olig2 

also prevents motor neuron differentiation, whereas physiological Olig2 results in motor 

neuron generation (Briscoe and Novitch, 2008). These results may explain why MNR2 

overexpressing cells do not differentiate, allowing us to determine that motor neuron 

progenitors are pro-angiogenic. 

If motor neuron progenitors are pro-angiogenic, then why don’t vessels normally 

enter this region of the ventral neural tube during early stages of neural tube 

development?  We showed in Chapter III that differentiated neurons are important for 

regulating the timing of blood vessel ingression.  Perhaps blood vessels would enter the 

motor neuron progenitor region if there were sufficient Tuj1-positive neurons present at 

very early stages.  Motor neurons form in one major wave of differentiation (Novitch et 

al., 2001), meaning that there are many progenitors (and relatively few differentiated 

cells) until the time when they all differentiate.  It is possible that blood vessels cannot 

enter the pMN domain due to insufficient Tuj1-positive neurons at the lateral edge of the 

neural tube, and they cannot enter the sMN domain upon neurogenesis because negative 

regulators of angiogenesis are expressed at that time. 

Perhaps the block occurs at the first stage of motor neuron differentiation, when 

Islet1 is upregulated in differentiating motor neurons.  We are interested in Islet1 due to 

the correlation of increased Islet1 expression in neural tubes mis-expressing MNR2 and 

the vessel ingression block in these embryos.  Furthermore, Islet1 is expressed in the 
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dorsal root ganglia and in a group of dorsal interneurons, both regions are also initially 

devoid of angiogenic sprouts.  It is possible that the stage of motor neuron development 

when Islet1 is expressed marks the time when motor neurons become anti-angiogenic. 

Based on our experiments with MNR2, showing that VEGF expression is 

drastically increased in highly MNR2-positive cells, it is reasonable to assume that other 

transcription factors may regulate expression of signaling molecules (such as Sema3) that 

pattern blood vessels and axons.  We do not know what regulates Sema3 expression in 

the neural tube; however, it is likely that factors promoting motor neuron specification 

also regulate Sema3 expression in these cells.   

We have shown that ectopic Sema3 expression can block blood vessel ingression 

in the medial neural tube—a region normally permissive to angiogenic sprouts.  This 

highlights a possible mechanism for how motor neurons block ingressing vessels.  It is 

imperative to understand if ectopic motor neurons express Sema3’s.  We are currently 

trying to address this issue.  This work is ongoing. 
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Figure 4.2:  MNR2 over-expression results in ectopic blood vessel ingression. 
 

Quail neural tubes were electroporated with an MNR2-IRES-eGFP construct at 

HH16-17 and were dissected at HH25.  (A-C) MNR2 immunostaining in quail neural 

tube sections shows that MNR2 in electroporated cells is higher than endogenous MNR2 

expression (B; arrow).  (D-I) QH1 immunostaining on MNR2-electroporated neural tube 

sections depicts ectopic blood vessel ingression in both the dorsal (F; arrowhead) and 

ventral (I; arrowhead) regions of the neural tube.  (J) Blood vessel ingression analysis 

shows that blood vessel patterning is stereotypical on the control side of the neural tube 

(black) and randomized on the MNR2-electroporated side (green) (n=70 sections).  
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Figure 4.3:  MNR2 over-expression prevents motor neuron differentiation. 
 

Quail neural tubes were electroporated with an MNR2-IRES-eGFP construct at 

HH16-17 and were dissected at HH25.  (A-C) Islet1 immunostaining on MNR2-

electroporated neural tube sections.  Dorsal and medial Islet1-positive cells are reduced in 

number when compared to the contralateral control populations (Fig. 4.3 B; arrows).  (D) 

Quantification of Islet1-positive cells in the dorsal and medial neural tube on the control 

(black) and MNR2-electroporated (green) sides of MNR2-electroporated neural tube 

sections (n=23 sections). 
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Figure 4.4: Sox2-ER electroporation induces ectopic blood vessel ingression. 

Quail neural tubes were electroporated with a Sox2ER-IRES-eGFP construct at 

HH16-17 and were dissected at HH25.  (A-C) QH1 immunostaining of Sox2ER- 

electroporated quail neural tube sections shows that ectopic and supernumerary blood 

vessel sprouts form in close proximity to GFP-positive cells.  The vessel ingression 

pattern is analyzed in J.  Blood vessel ingression is randomized on the Sox2ER- 

electroporated side of the neural tube (green) when compared to the contralateral control 

side (black) (n=28 sections).  (D-F) MNR2 immunostaining shows that GFP-positive 

cells are also highly expressing MNR2, while Pax6 (G) and Pax7 (H) expression does not 

co-localize with GFP, even though Sox2ER-expressing cells are found along the entire 

DV axis of the electroporated neural tube.  (I) Sox2ER-expressing cells do not co-

localize with regions of Tuj1 expression.  (K) MNR2/QH1 overlay of an adjacent, 

unperturbed HH25 neural tube section depicting the association of MNR2-positive motor 

neuron progenitors with a ventral sprout (arrowhead).   
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Figure 4.5: MNR2-overexpressing cells induce ectopic ingression via VEGF 
upregulation. 
 

Quail neural tubes were electroporated with an MNR2-IRES-eGFP construct or 

co-electroporated with MNR2-IRES-eGFP and s-Flt1-IRES-Tomato constructs at HH16-

17, and were dissected at HH25.  (A-C) In situ hybridization using a quail VEGF probe 

was performed on MNR2-electroporated quail neural tube sections (B), revealing 

increased VEGF signal in regions corresponding to the highest levels of GFP-expression 

on adjacent sections (C, overlay).  (D-I) MNR2/s-Flt coexpression rescues ectopic vessel 

sprouting.  (D) MNR2 (GFP) expression; (E) s-Flt1 (Tomato) expression; (F) QH1 

expression in co-electroporated neural tubes.  There are no ectopic sprouts in these 

sections (F and G; overlay).  (H) Electroporation of high MNR2 alone induces ectopic 

blood vessel ingression (n=28 sections); however, co-electroporation of high VEGF and 

s-Flt1 (I) rescues these effects, and also reduces sprout number in the medio-lateral neural 

tube on the electroporated side (green) when compared to contralateral controls (black) 

(n=56 sections). 
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Figure 4.6: Sema3 expression in the medio-lateral neural tube blocks blood vessel 
ingression. 
 

Quail neural tubes were electroporated with either Sema3A-IRES-eGFP or 

Sema3C-IRES-eGFP constructs at HH16-17 and were dissected at HH25.  (A-C) QH1 

immunostaining of Sema3A-electroporated sections depicts normal ingression on the 

control side of the embryo, while no sprouts are apparent on the electroporated side.  

PNVP formation is perturbed in these embryos.  Arrows indicate sections of the PNVP 

that are missing (C).  (D) Blood vessel ingression analysis shows that sprouting is almost 

completely blocked on the Sema3A-electroporated side of the neural tube (green) while 

ingression is normal on the contralateral control side (black) (n=51 sections).  (E-G) QH1 

immunostaining on Sema3C-electroporated sections depicts normal ingression on the 

control side of the embryo while no sprouts are apparent on the electroporated side.  

PNVP formation is not perturbed in these embryos.  (D) Blood vessel ingression analysis 

shows that sprouting is partially blocked on the Sema3C-electroporated side of the neural 

tube (green) while ingression is normal on the contralateral control side (black) (n=122 

sections).  
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CHAPTER V 
 
 
 
 

GENERAL DISCUSSION 
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The CNS requires more metabolic support than any other organ system in our 

bodies (Tracey and Metz, 2007).  A constant supply of nutrients and oxygen are required 

for neuronal survival, and blood vessels are responsible for delivering this support.  It is 

therefore imperative that the developing CNS establishes contact with the blood vessels 

early in development to ensure that neural cells receive adequate nourishment— and to 

allow for further CNS growth and development.  In the present study, we are interested in 

understanding how a specific region of the CNS, the neural tube, establishes contact with 

the blood vessels, resulting in the formation of a reproducible vessel pattern.   

Intriguingly, blood vessels entering the neural tube do so at a precise time and in 

highly stereotypical locations—suggesting that the neural tube orchestrates key blood 

vessel patterning events.  Previous studies have shown that the neural tube produces 

signals that are required for the formation of the PNVP (Ambler et al., 2003; Hogan et al., 

2004), a ring of vessels that surrounds the early neural tube; however, much less is 

known about how the neural tube directs the next step of CNS vascularization, as 

angiogenic sprouts from the PNVP invade the neuroepithelium.   In this thesis, we 

present three novel findings that begin to address this important question: 1) Neural tube-

derived VEGF is required for blood vessel ingression.  2) Programmed neurogenesis 

regulates the timing of blood vessel ingression, and 3) Specific subclasses of 

differentiated neurons play distinct roles in patterning blood vessels along the DV axis of 

the neural tube. 
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Neural tube-derived VEGF is required for blood vessel ingression. 

 In Chapter II, we show that regional depletion of VEGF in the neural tube locally 

blocks blood vessel ingression.  This finding demonstrates not only that VEGF is 

absolutely necessary for blood vessel ingression, but also that local VEGF present at the 

ingression site is needed to induce sprout formation.  Ectopic expression of matrix-

binding and non-matrix-binding VEGF isoforms supports this model.  Matrix-binding 

VEGF isofoms have the ability to induce ectopic sprouts while non-matrix-binding 

isoforms do not.  By virtue of their ability to become localized, or stuck in the 

extracellular spaces, matrix-binding VEGF isoforms relay stable patterning information 

to the blood vessels and act as guideposts for ingressing sprouts.  We also demonstrate 

that soluble VEGF cannot provide this information to PNVP vessels. 

These results also show that the blood vessel pattern is not intrinsic to the vessels 

themselves.  Instead, vessels respond to cues generated by the neural tube to guide them 

to appropriate ingression locations.  This indicates that even though blood vessels are 

competent to enter specific regions of the neural tube (such as the dorsal region), they do 

not receive the appropriate signals to do so.  Unfortunately, we are limited by our 

inability to visualize VEGF protein localized at the sites of blood vessel ingression, and 

instead have to rely on VEGF mRNA distribution to get a general sense of where VEGF 

protein is expressed in the neural tube.  Quail VEGF in situ hybridization revealed a 

higher signal in the ventral neural tube within, and just lateral to, the floor plate.  This 

expression maps to the ventral blood vessel ingression point—the earliest and most 

frequent vessel to invade the neural tube.  This is strong correlative evidence that local 

deposits of VEGF determine where vessels ingress.   
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With the exception of the ventral-most region, VEGF mRNA is uniformly 

distributed throughout the rest of neural tube—lending little insight into why medio-

lateral sprouts enter in such highly stereotypical locations.  It is possible that VEGF 

protein is not uniformly distributed in the neural tube.  Perhaps the medio-lateral neural 

tube traps VEGF in some way, concentrating it to promote blood vessel ingression in 

specific locations.  If this is true, it may be interesting to drive expression of a quail 

VEGF siRNA construct in different regions of the neural tube to see if the effects mimic 

the s-Flt1 electroporation experiments.  Our results indicate that s-Flt1 binds local VEGF, 

no matter where the VEGF originated.  Regional VEGF mRNA knockdown would allow 

us to determine if VEGF required for medio-lateral or ventral sprouting is expressed by 

cells at those locations or if VEGF is upregulated in other locations and becomes 

localized to sites of ingression.  This type of experiment is possible in the avian system 

by controlling the electroporated gene from murine enhancer elements, localizing the 

knockdown to a specifc region of the neural tube (Timmer et al., 2001). 

Levels of VEGF are also important for proper blood vessel patterning in the CNS 

(Haigh et al., 2003) and may influence the timing of vessel ingression.  Low levels of 

VEGF are expressed in the early neural tube and are sufficient to induce PNVP formation 

(Aitkenhead et al., 1998; Miquerol et al., 2000); however, it is entirely possible that not 

enough VEGF is produced in the medio-lateral neural tube to induce ingression there, 

until a later developmental time point.  In Chapter III we overexpressed VEGF earlier in 

development to see if we could induce pre-mature ingression.  We found that high VEGF 

could induce pre-mature ingression, but only when the VEGF overexpression occurred in 

regions of the neural tube where differentiated neurons were also present.  This 
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experiment suggests that VEGF levels are not the only regulator of blood vessel 

ingression, and that the timing of neurogenesis and the formation of differentiated 

neurons may also play a role in regulating the timing of angiogenic sprouting into the 

neural tube.  These results are discussed further in the next section.   

 

Programmed neurogenesis regulates the timing of blood vessel ingression. 

 Even though VEGF is expressed early in neural tube development and is 

sufficient to direct PNVP formation by HH14 (Day 2), medio-lateral sprouts do not enter 

the neural tube until much later (Day 4-4.5).  We observed that vessel sprouts were only 

seen in the neural tube after differentiated neurons migrated to the pial side of the neural 

tube, prompting us to explore whether or not the timing of neurogenesis played a role in 

the timing of medio-lateral sprout ingression.  In Chapter III we demonstrate that 

angiogenic sprouting is blocked by neural progenitor cells in the VZ and positively 

regulated by differentiated motor neurons (and perhaps radial glia) in the marginal zone.  

These results demonstrate that blood vessels are competent to invade the neuroepithelium 

earlier than they actually do, providing evidence that the neural tube actively blocks 

blood vessel ingression until an appropriate developmental stage—or that the timing of 

neurogenesis does influence the timing of blood vessel ingression. 

 Preliminarily, we show that the block to ingression conferred by progenitor cells 

cannot be overcome by increased VEGF at early stages.  Early VEGF overexpression 

induced premature blood vessel ingression, but only in regions of the neural tube where 

differentiated neurons were present, such as the sMN domain in the ventral neural tube.  
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This suggested that both VEGF and differentiated neurons must be present in order for 

ingression to occur. 

 How do blood vessels interact with differentiated neurons and radial glial cells in 

comparison to neuroepithelial cells?  Extremely limited information is available for blood 

vessel interaction with spinal neurons and radial glial cells in embryos.  Most information 

comes from studies of the brain.  In the brain, radial glial cells form as neurogenesis 

commences, and they act as scaffolds for neuronal migration to outer cortical layers 

(Rakic, 1972).  The brain is structured differently than the spinal cord.  As neurogenesis 

proceeds in the brain, new neurons migrate past older neuronal layers toward the outer 

surface of the cortex, forming an “inside out” configuration.  Radial glial cells are an 

integral part of this process, maintaining contacts with the pial surface of the brain 

throughout neurogenesis.  Blood vessels in the brain have been shown to migrate along 

radial glial processes (Virgintino et al., 1998).  Brain and hindbrain vessels are radially 

oriented, branching laterally when they interface the VZ (Gerhardt et al., 2004).  The role 

of radial glial cell-blood vessel interactions in the spinal cord is less clear.  Unlike the 

brain, radial glial precursors are not seen in the mouse spinal cord until E11, after blood 

vessel ingression has occurred.  Spinal cord progenitor cells remain neuroepithelial-like 

throughout neurogenesis, and progenitor cells only take on radial glial properties after 

neurogenesis is largely complete (reviewed in, (Gotz and Huttner, 2005)).  This finding, 

in combination with our results, suggests that blood vessels are positively patterned by 

neurons and negatively patterned by neuroepithelial cells in the spinal cord at early 

stages; however, transitin staining in the quail neural tube indicates that radial glial 
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processes do exist at early stages.  Further studies are needed to assess the role of these 

cell types in neural tube angiogenesis. 

While the early neural tube blocks angiogenesis, it does not prevent migration of 

angioblasts and ECs.  This highlights the dualistic properties of the early avian neural 

tube: pro-migratory vs anti-angiogenic.  Interestingly, the early neural tube does not 

block angioblast and EC immigration into the neural tube (Kurz et al., 1996).  How, and 

why, do single angioblasts invade the neuroepithelium while vessel sprouts initially do 

not enter?  While VEGF plays a major role in both the formation of the PNVP and 

sprouting angiogenesis, it is unclear if VEGF also induces angioblast immigration or if 

other signals within the neural tube cause this effect.  Angioblast immigration does not 

occur in mouse, instead the neural tube is vascularized solely via angiogenic sprouting 

from PNVP vessels (Bar, 1980); Risau, 1993).  In any case, it is intriguing that the neural 

tube can produce signals to attract ECs and angioblasts, then keep these cells out (with 

the exception of the few that squeeze in), and then produce signals to let sprouts in.  

Perhaps the neural tube should be named Simon, as in Simon says, “migrate,” Simon 

says, “stop,” and Simon says, “go.”    

 

Specific subclasses of differentiated neurons play distinct roles in patterning blood 

vessels along the DV axis of the neural tube. 

If blood vessels are positively patterned by neurons, then why don’t they “go” 

into all regions of the neural tube where differentiated neurons are found?  In Chapter II, 

we proposed a model where positive signals produced in the neural tube were 

counteracted by negative signals in certain regions—blocking angiogenesis in those 
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places.  To test this model, we first mapped blood vessel ingression points to regions 

where particular neuronal subclasses are located along the DV axis of the neural tube.  

We found that 98% of medio-lateral and ventral vessels analyzed do not ingress into the 

sMN domain—the region of the ventral neural tube where motor neurons develop.  To 

test whether or not these cells actively block angiogenesis, we generated ectopic motor 

neurons in the medio-lateral neural tube.  Ectopic motor neurons also block angiogenesis.  

This work demonstrated, for the first time, that the process of neuronal cell fate 

specification along the DV axis of the neural tube played a role in intraneural blood 

vessel patterning. 

What do the motor neurons express that make them anti-angiogenic?  Recent 

studies suggest that signals, such as Sema3, patterning motor neuron axons may also 

negatively pattern the vessels (reviewed by, (Carmeliet and Tessier-Lavigne, 2005)) (V. 

Castellani, personal communication).  We demonstrate that ectopic Sema3 expression is 

sufficient to block medio-lateral blood vessel ingression; however, is endogenous Sema3 

responsible for making motor neurons anti-angiogenic?  This is a complex question.  

There are three Sema3 family members expressed in the sMN domain that have been 

independently shown to have anti-angiogenic effects on vessels (Gu et al., 2005).  

Perhaps the combinatorial effects of all three Sema3’s convey a strong anti-angiogenic 

message.  No studies have been conducted to specifically address this possibility, and we 

provide the first data that ectopic Sema3 expression can block neural tube angiogenesis.  

We are currently trying to determine whether or not ectopic motor neurons express 

Semaphorins, as well as determine if knockdown of Sema3’s in the sMN domain will 

remove the block to vessel ingression.  There will be caveats to these experiments: 
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Sema3s induce motor axon fasciculation (or bundling) and promote axon egression from 

the neural tube—knockdown of Sema3s have been shown to affect these aspects of 

neural patterning in the avian system (Moret et al., 2007).  The inability to segregate 

neuronal and vascular defects may complicate results.   

All four of the major axonal guidance pathways (Semas, Netrins, Ephrins, and 

Slits) have distinct intraneural expression patterns, ensuring axons within the neural tube 

make appropriate connections; however, virtually no studies have been conducted to 

show how these genes are regulated.  We know that VEGF is regulated (at least in part) 

by hypoxia; however, upregulation of VEGF by motor neuron progenitors suggests that 

other mechanisms may regulate VEGF expression.  Some VEGF may be induced via 

transcription factors directing neuronal cell fate specification (high MNR2).  Are 

transcription factors driving motor neuron differentiation also regulating Sema3 

expression in the neural tube?  It may take years of research just to answer this one 

question. 

 

Conclusions. 

 Taken together, the work in this thesis demonstrates that neurovascular 

communication is complex.  Blood vessels, like axons, receive multiple patterning signals 

that they must simultaneously interpret in order to make the appropriate connections with 

target tissues.  In the neural tube, blood vessels are patterned by signals secreted by 

neural cells that are utilizing the same signals to pattern themselves, yet the vessel pattern 

is not a by-product of neural development.  Our central nervous system exists because 

blood vessels acquired the ability to respond to neural patterning signals through 
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evolution.  These changes allowed vessels to coordinate with the CNS—allowing the 

CNS to expand because it now had a means of metabolic support. 

Here we show that normal processes of neural development are linked to the 

intraneural blood vessel pattern.  Manipulations in the timing of neurogenesis result in 

temporal blood vessel ingression defects.  Perturbations in DV neuronal patterning 

predictably perturb vessel ingression patterns.  We also provide novel insight into the role 

of VEGF in neurovascular communication.     

The work in this thesis demonstrates that the quail neural tube is a beautiful model 

system in which to study neurovascular interactions.  Extensive studies of neural 

development have been performed in chick, while studies of vascular development have 

been performed in quail; however, this is the first time that the two have been combined 

within the quail neural tube. 
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