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Abstract 

 
DOUGLAS R. BENNETT:  The Relationship Between Quadriceps/Hamstring Strength and 

Anterior Tibial Shear Force During a Jump Landing Task 
(Under the direction of Dr. J Troy Blackburn, PhD, ATC) 

 

Objective: To evaluate relationships between Anterior Tibial Shear Force (ATSF) and 

eccentric quadriceps strength (QuadEcc), concentric hamstring strength (HamCon), and the 

QuadEcc/HamCon ratio.  Design: Correlational.  Setting: Research laboratory.  Participants: 

Thirty-three healthy female recreational athletes.  Main Outcome Measure(s): ATSF was 

measured during a landing task via inverse dynamics.  QuadEcc and HamCon were assessed at 

60˚/s, 180˚/s, and 300˚/s using isokinetic dynamometry.  Results: QuadEcc and HamCon were 

not significantly related to ATSF at any testing velocity (p > 0.05).  QuadEcc/HamCon  was 

significantly related to ATSF at 60˚/s (r = 0.529, p = 0.005) and 180˚/s (r = 0.556, p = 0.003).  

Conclusion: QuadEcc and HamCon in isolation are not significantly related to ATSF.  

However, when considered as a functional ratio, these strength measures are predictors of 

ATSF.   This suggests that high QuadEcc/HamCon ratios may predispose female athletes to 

higher ATSF and ACL injury risk.  Key Words: knee injury, ACL, torque, strength ratios 
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Chapter 1 
 

Introduction 
 

With incidence rates ranging from 80,000 to 200,000 anterior cruciate ligament 

(ACL) injuries annually in the United States alone, ACL injury has become one of the most 

researched topics in the field of sports medicine (E. Arendt & Dick, 1995; Griffin et al., 

2000).  It is estimated that at least 1 out of every 3,000 Americans suffers an injury to his or 

her ACL (Lephart, Abt, & Ferris, 2002).  One major concern is that females are 2 to 8 times 

more likely to sustain an ACL tear than their male counterparts (E. Arendt & Dick, 1995; 

Lephart, Abt, & Ferris, 2002).  The causes behind these statistics are unclear.  Research has 

begun to determine what factors cause this debilitating injury, and more specifically, why 

females are more prone to ACL injury.  Studies have even gone as far as describing 

preventative strategies in order to minimize the number of injuries.  A set of intrinsic and 

extrinsic risk factors has been proposed throughout the Sports Medicine literature, and an 

emphasis placed specifically on the differences between males and females.  It is important 

for researchers and clinicians to address these risk factors and develop strategies to reduce 

the prevalence of ACL injury in females.  As female participation in athletics continues to 

grow in high schools, colleges, and recreationally, the issue of prevention becomes even 

more important (Huston, Greenfield, & Wojtys, 2000).   

The knee joint is stabilized by both static and dynamic structures.  When these 

structures do not sufficiently support the knee, excessive anterior tibial translation (ATT) can 
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occur.   The ACL provides as much as 86% of the static restraint to anterior tibial translation 

(ATT) on the femur (Butler, Noyes, & Grood, 1980).  When anterior tibial shear forces 

(ATSF) are great enough, the tibia will translate anteriorly, and ACL rupture can occur.  

During the dynamic activities of sports such as jumping, cutting, and landing, these forces 

can greatly exceed the loading capacity of the ACL (Baratta et al., 1988; Pflum, Shelburne, 

Torry, Decker, & Pandy, 2004; Simonsen et al., 2000; Withrow, Huston, Wojtys, & Ashton-

Miller, 2006).  Thus, there is a need for additional stability at the knee joint.  This additional 

stabilitity is derived via dynamic stabilizers (musculotendinous structures).   

Dynamic stability is primarily achieved by two major muscle groups acting at the 

knee, the quadriceps and hamstrings.  Cadaver studies have shown that an increase in 

quadriceps isometric force can significantly increase the anterior tibial shear force (ATSF) at 

the knee as well as ACL stress and strain, especially with the knee near full extension (G. Li 

et al., 1999; Markolf et al., 1995; Withrow, Huston, Wojtys, & Ashton-Miller, 2006).  On the 

other hand, the hamstrings provide a posterior shear force at the knee, and subsequently 

reduce the strain on the ACL (Draganich & Vahey, 1990; Renstrom, Arms, Stanwyck, 

Johnson, & Pope, 1986).  Research shows that as the knee progresses into flexion, the 

hamstrings have an increasing mechanical advantage for controlling anterior-posterior tibial 

translation (Markolf et al., 1995; Markolf, O'Neill, Jackson, & McAllister, 2004).  

Comparisons of the muscle activation strategies of the quadriceps and the hamstrings shows 

the quadriceps have an increased ability to produce anterior tibial shear forces at less than 

60˚of knee flexion, and that high quadriceps activations contribute to decreased antagonist 

hamstrings coactivation (Baratta et al., 1988).  Furthermore, a reciprocal relationship exists 

between the tibial shear forces provided by the quadriceps and hamstrings.  As the knee joint 
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approaches full extension, the ability of the quads to produce ATSF is increasingly enhanced, 

while the ability of the hamstrings to provide posterior tibial shear forces (PTSF) is 

compromised.  The reverse is true as the knee progresses into flexion.  Therefore, at angles of 

knee flexion less than 30˚, the quadriceps are placed at a mechanical advantage to provide an 

ATSF, and the hamstrings are mechanically unable to reduce the anterior shear and provide 

dynamic support.  Additionally, when the quadriceps are highly active, the hamstrings’ 

activation is also decreased (Wilk et al., 1996).  With the more dominant quadriceps 

activating prior to the hamstrings, and the inability of the hamstrings to counteract the 

quadriceps anteriorly directed pull, high anterior tibial shear forces would be expected 

(Anderson, Dome, Gautam, Awh, & Rennirt, 2001; Lephart, Ferris, Riemann, Myers, & Fu, 

2002; Withrow, Huston, Wojtys, & Ashton-Miller, 2006).  While muscle activation and knee 

joint position may be linked to an increase in ATSF, the relationship between the strength of 

the quadriceps and hamstring musculature and shear forces at the knee has received little 

attention.    

The most compelling of the factors to explain the increased risk of ACL injury in 

females may be their neuromuscular and biomechanical properties (Griffin et al., 2000).  

Research has shown that there are gender-specific neuromuscular and biomechanical 

differences (Colby et al., 2000; Malinzak, Colby, Kirkendall, Yu, & Garrett, 2001).  Females 

exhibit quadriceps dominant muscle activation patterns (Huston & Wojtys, 1996).  In a 

comparison of elite athletes, females demonstrated a preference to contract their quadriceps 

first, relative to their hamstrings, in response to an anterior tibial translation (Huston & 

Wojtys, 1996).  Peak torque of the quadriceps was attainted 5-7ms earlier than that of the 

hamstrings in female athletes (Huston & Wojtys, 1996).  Other research shows a quadriceps 
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dominance in gait, cutting, and landing activities (Malinzak, Colby, Kirkendall, Yu, & 

Garrett, 2001).  This combination of increased quadriceps activation and later onset of 

hamstring activation in females suggests that females may experience excessive anterior 

tibial shear forces at the knee (Huston & Wojtys, 1996).   

In addition to muscle activation differences, females demonstrate significantly less 

isometric, concentric, and eccentric muscle strength in the quadriceps and hamstrings 

compared with males (Hakkinen, Kraemer, & Newton, 1997; Huston & Wojtys, 1996; 

Lephart, Ferris, Riemann, Myers, & Fu, 2002).  Particularly, females demonstrate 

substantially weaker hamstring muscles when compared to their quadriceps (Kannus & 

Beynnon, 1993).  This holds true for the athletic population as well.  Anderson et al. (2001) 

have shown that hamstring muscles are relatively weaker than in male athletes when 

compared with the quadriceps muscles.  Combining our knowledge of the quadriceps’ and 

hamstrings’ abilities to produce shear forces and the fact that females have altered 

neuromuscular activation and muscular strength, we can hypothesize that when in positions 

of decreased knee flexion, females’ anterior tibial shear forces may be increased as compared 

to males. 

Strength differences across genders may provide a reasonable explanation why 

females have higher incidence rates of ACL injury than males.  In addition, strength 

imbalances have also been related to increased injury rates.  These imbalances may be due to 

differences between the right and left leg, or abnormal ratios between antagonistic muscle 

groups (Knapik, Bauman, Jones, Harris, & Vaughan, 1991). Strength imbalances of the hip 

extensors bilaterally have been linked to an increase in rates of lower extremity injury and 

low back pain (Nadler, Malanga, DePrince, Stitik, & Feinberg, 2000).  In regard specifically 
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to knee injury, The Hunt Valley Consensus Conference on ACL injuries concluded that 

strong quadriceps activation during eccentric contraction was considered to be a major factor 

in injury to the ACL (Griffin et al., 2000).  Strength imbalances between the quadriceps and 

hamstring muscles measured at 180˚/s have been related to an increased injury rate in female 

collegiate athletes (Knapik, Bauman, Jones, Harris, & Vaughan, 1991).  This higher velocity 

may be closer to those experienced during athletic events.  The same authors also 

demonstrated that if the knee flexion strength was less than 75% of the knee extension 

strength (at 180˚/s) athletes were 1.6 times more likely to get injured (Knapik, Bauman, 

Jones, Harris, & Vaughan, 1991).   

The literature suggests that 70% of ACL injuries involve a non-contact mechanism 

(EA Arendt, Agel, & Dick, 1999; E. Arendt & Dick, 1995; Boden, Dean, Feagin, & Garrett, 

2000).  Non contact ACL injuries, which involve foot-ground reaction and segmental forces 

but no other external contact forces, commonly occur during jump landings (Kirkendall & 

Garrett, 2000).  Jump landing is involved in many common athletic activities, such as hitting 

and blocking in volleyball, heading in soccer, and shooting and rebounding in basketball.  

Impact forces alone during a jump landing task can be up to four times the person’s body 

weight (Dufek & Bates, 1991).  In addition, the quadriceps muscles can provide an anteriorly 

directed eccentric force of 5,000 N (Arms et al., 1984).  The tensile strength of the ACL in 

young individuals (22-25 year old) has been estimated at 2,100 N (Woo, Hollis, Adams, 

Lyon, & Takai, 1991).  Therefore, dynamic stabilization of the knee joint is crucial in 

preventing ACL injury.   

Jump landing strategies in females differ significantly from their male counterparts.  

Females tend to land with the knee in a more extended position than males, thus predisposing 
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them to a greater quadriceps pull and decreased hamstring co-activation (Lephart, Ferris, 

Riemann, Myers, & Fu, 2002).  Females landed with an average of only 17˚ of knee flexion, 

while their male counterparts landed with an average 31˚ of flexion (Lephart, Ferris, 

Riemann, Myers, & Fu, 2002).  In addition to landing in a more extended position, females 

activate the quadriceps to a greater extent relative to their hamstrings (Colby et al., 2000).  

From a muscle action standpoint, the quadriceps are contracting eccentrically to decelerate 

knee flexion during a landing task.  The antagonist hamstrings are concentrically contracting 

to flex the knee and absorb the ground reaction forces of the landing.  It has been proposed 

that because of the prominent influence of quadriceps activity on ATT, it is important for the 

hamstrings to counter this movement, particularly in the presence of increased 

quadriceps/hamstrings strength ratios (Q/H) (Baratta et al., 1988).   

Quadriceps to hamstring strength ratios have been reported in the literature from both 

conventional and functional perspectives.  Conventionally, the ratio is measured as a 

maximal concentric isokinetic quadriceps contraction relative to a maximal concentric 

isokinetic hamstring contraction (Osternig, 1986).  Recently, Aagaard et al. (1998) proposed 

a new concept for the measurement of isokinetic Q/H ratios, the functional eccentric 

quadriceps/concentric hamstring comparison (QuadEcc/HamCon).  The development of the 

functional ratio allows for more in depth analysis of the types of forces the muscles 

stabilizing the knee joint create during dynamic activities.  Rosene et. Al (2001) calculated 

traditional Q/H ratios in intercollegiate athletes and found the averages to range between 

1.70-1.99 depending on testing velocity.  Functional QuadEcc/HamCon ratios are slightly 

higher than the conventional method, and range from 2.5-3.33 (Aagaard, Simonsen, 

Magnusson, Larsson, & Dyhre-Poulsen, 1998; Aagaard, Simonsen, Trolle, Bangsbo, & 
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Klausen, 1995).  A highly developed quadriceps muscle group contributes to decreased 

antagonist hamstring co-activation through reciprocal inhibition and thus allows for an 

increased anterior pull on the tibia (Baratta et al., 1988). These high quadriceps to hamstring 

ratios, both conventionally and functionally, suggest the quadriceps muscles may provide an 

anterior shear force on the tibia that is greater than the associated posterior shear force 

generated by the hamstrings.  Regardless of what the ratios may suggest, the relationship 

between shear forces at the knee and the strength of the quadriceps, strength of the 

hamstrings, and quadriceps to hamstrings ratios have yet to be identified.    

Understanding the factors that predispose the recreational female athlete to anterior 

cruciate ligament injury may help us develop strategies to prevent these injuries from 

occurring.  The comparison of quadriceps and hamstrings strength appears to be important in 

determining the dynamic stability of the knee joint during times of excessive loading.  

Therefore, the purpose of this study is to determine if a relationship exists between the 

anterior tibial shear forces at the knee during a jump landing task and the functional 

isokinetic eccentric strength of quadriceps and concentric strength of the hamstrings 

musculature that accompany this task.   

Research Questions 

 
1.  Is there a relationship between QuadEcc strength at each velocity of testing (60˚/s, 180˚/s, 

and 300˚/s) and ATSF during a jump landing task? 

 

2.  Is there a relationship between HamCon strength at each velocity of testing (60˚/s, 180˚/s, 

and 300˚/s) and ATSF during a jump landing task? 
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3.  Is there a relationship between a functional QuadEcc/HamCon ratio at each velocity of 

testing (60˚/s, 180˚/s, and 300˚/s) and ATSF during a jump landing task? 

 

Null Hypotheses 

1.  H0 : There is no relationship between QuadEcc mean peak torque at each velocity of testing 

(60˚/s, 180˚/s, and 300˚/s) and ATSF. 

 

2.  H0 : There is no relationship between HamCon mean peak torque at each velocity of testing 

(60˚/s, 180˚/s, and 300˚/s) and ATSF. 

 

3.  H0 : There is no relationship between a functional QuadEcc/HamCon mean peak torque ratio 

at each velocity of testing (60˚/s, 180˚/s, and 300˚/s) and ATSF. 

 

Research Hypotheses 

1.  There will be a positive relationship between QuadEcc mean peak torque at each velocity 

of testing (60˚/s, 180˚/s, and 300˚/s) and ATSF. 

 

2.  There will be a negative relationship between HamCon mean peak torque at each velocity 

of testing (60˚/s, 180˚/s, and 300˚/s) and ATSF. 

 

3.  There will be a positive relationship between a functional QuadEcc/HamCon mean peak 

torque ratio at each velocity of testing (60˚/s, 180˚/s, and 300˚/s) and ATSF. 
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Operational Definitions 

Dominant Leg : The leg that the subject would use to kick a soccer ball for maximum 

distance. 

 

Jump Landing Task : Jumping off a 30 cm high platform with both legs from a horizontal 

distance equal to 50% of the subject’s height from the front edge of a forceplate.  After 

landing subjects were instructed to recoil and perform a rebound jump for maximal vertical 

height. 

 

Anterior Tibial Shear Force : The amount of force directed in an anterior direction at the 

tibiofemoral joint in the sagittal plane.   

 

Mean Peak Torque : The mean of 3 trials of the peak torque moment created around a 

stationary axis through the tibiofemoral joint. 

 

QuadEcc/HamCon ratio : a ratio calculated by dividing the mean peak torque of eccentric 

quadriceps contractions by the mean peak torque of concentric hamstring muscle 

contractions. 

 

Isokinetic Concentric Contraction : a shortening contraction of the muscle at a constant 

velocity (60˚/s, 180˚/s, and 300˚/s). 
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Isokinetic Eccentric Contraction : a lengthening contraction of the muscle at a constant 

velocity (60˚/s, 180˚/s, and 300˚/s). 

 

Assumptions 

1.  The subjects provided a maximal effort during strength testing. 

 

2.  The Flock of Birds and forceplate derivative of anterior tibial shear force were a reliable 

and valid measures. 

 

3.  The jump landing task accurately portrayed the manner in which athletes would land 

during a sport related jump.   

 

Delimitations 

1.  Subjects had no previous medical history of lower extremity injury within the past 6 

months and no previous anterior cruciate ligament injury or reconstruction. 

 

2.  All subjects were college aged, 18-25 years old, physically active recreational athletes. 

 

3.  All analyses were completed on the dominant leg.   

 

Limitations 

1.  Subjects were tested in a laboratory setting instead of a sport setting.  
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2.  Range of motion for isokinetic strength testing was set from 20˚ - 90˚ due to pilot testing 

revealing an inability of the subject to initiate movement on the dynamometer at angles less 

than 20˚ of knee flexion 

 

3.  Peak torque values may differ across these tasks (jump-landing, isokinetic dynamometry), 

as the length-tension characteristics of the knee and hip flexors and extensors likely differ 

 



Chapter 2 

Literature Review 

Introduction 

Injury to the anterior cruciate ligament (ACL) is a common and debilitating condition 

in the athletic population.  The Sports Medicine community works countless hours 

evaluating, rehabilitating, and attempting to prevent ACL injury.  Mechanisms of injury to 

the ACL can be a result of contact with another player, apparatus, or playing surface, as well 

as from a non-contact mechanism.  Risk factors for non-contact ACL injury include 

biomechanical, hormonal, anatomical, and environmental conditions.  One proposed 

biomechanical risk factor is the position of the knee joint when landing from a jump.  

Specifically, landing from a jump with the knee in an extended position can increase the 

Anterior Tibial Shear Forces (ATSF) at the knee and subsequently result in injury to the 

ACL.  Injury rates have demonstrated that muscle weakness, as well as muscular strength 

imbalance, can be associated with increased incidence of injury.  The quadriceps and 

hamstring musculature provide the major muscular forces acting on the tibiofemoral joint.  

Understanding what relationship the subsequent strength or imbalance of the muscles acting 

on the knee has with the ATSF may help in the development of strategies to reduce the 

likelihood of future injuries.  The objective of this literature review is to justify investigating 

the relationship between the strength of the musculature supporting the knee and the ATSF 

acting when landing from a jump.   
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Epidemiology of Anterior Cruciate Ligament Injuries 

 ACL injury is one of the most researched injuries in the Sports Medicine community.  

The prevalence of ACL injury in the United States exceeds 1 injury in every 3,000 persons 

(Lephart, Abt, & Ferris, 2002).  It is estimated that between 80,000 and 200,000 ACL 

injuries occur each year (E. Arendt & Dick, 1995; Griffin et al., 2000).  Approximately 

50,000 of these injuries are surgically reconstructed at an average cost of $17,000 per 

procedure, creating a financial impact of close to one billion dollars (Frank & Jackson, 

1997).  These statistics do not take into consideration the cost of the conservative treatment 

or lengthy rehabilitation associated with ACL injuries.    

Population 

 ACL injury is primarily an issue in the physically active population.  Young children, 

the elderly, and sedentary individuals are not as susceptible, and therefore do not sustain as 

many ACL injuries (Griffin et al., 2000).  Sports participation and physically active lifestyles 

are common between the ages of 15 and 45 years old.  Daniel and Fritschy (1994) tracked 

insurance statistics of the general United States population, and found that this group of 

individuals is at the greatest risk for ACL injury, and that 70% of the injuries that were 

tracked  involved sports activity (Daniel & Fritschy, 1994).   

 Recently it has been demonstrated that ACL injury rates are higher in women than 

men (EA Arendt, Agel, & Dick, 1999).  Females are two to eight times more likely to sustain 

an ACL injury when compared to their male counterparts (E. Arendt & Dick, 1995; Lephart, 

Abt, & Ferris, 2002).  The reasons behind these statistics are unclear.  Research has begun to 

determine a set of factors that may explain these gender differences.  Consideration has been 
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given to anatomical, environmental, biomechanical, and hormonal factors that may 

contribute to the gender differences in ACL injury rates.   

 In addition to age, gender, and activity level, there is also a correlation between the 

type of sport or activity and ACL injury.  Sports that involve cutting, pivoting, and jumping 

have a higher incidence of ACL injuries than sports that do not involve those tasks (Boden, 

Dean, Feagin, & Garrett, 2000).  Sports such as basketball, lacrosse, soccer, and volleyball 

all involve these types of movement patterns.  Researchers have studied these sports across 

time and gender to determine if these sports and activities place athletes at higher risk for 

ACL injuries (EA Arendt, Agel, & Dick, 1999; E. Arendt & Dick, 1995; Lephart, Ferris, & 

Fu, 2002). 

Gender Differences  

 The National Collegiate Athletic Association (NCAA) uses an Injury Surveillance 

System (ISS) to track data regarding injuries and injury patterns over time.  This system has 

been used to compare the rates of men’s and women’s soccer and basketball injuries (EA 

Arendt, Agel, & Dick, 1999).  The authors chose these two sports because of the consistency 

between the men’s and women’s rules and gameplay.  Results showed that college-age 

women involved in basketball or soccer injure their ACLs at significantly higher rates than 

college-age men involved in the same sports (EA Arendt, Agel, & Dick, 1999).  No 

investigator has found any evidence of systematic bias that might be responsible for this 

difference (Griffin et al., 2000).  Since the inception of Title IX in 1972, opportunities for 

female sport participation have grown significantly.  Both the NCAA and National 

Federation of State High School Associations have reported increases in women’s 

participation in sport over the last 15 years (EA Arendt, Agel, & Dick, 1999; , "National 
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Federation of High School (NFHS) Press Release: High school athletics participation 

continues to rise", 1998).  With increases in participation comes an increase in the level of 

competition for women.  One theory regarding the increased prevalence of injury in female 

athletes is that females have not received the proper training to compete at the level at which 

they are participating (Huston & Wojtys, 1996).  The current methods of strength training 

and conditioning of female athletes may not adequately prepare them for their activities.   

Anatomy 

 Understanding the anatomy of the knee and the complex structures involved in its 

function is important in researching the ACL.  The primary motions at the tibiofemoral joint 

are sagittal plane flexion and extension, both of which are accompanied by arthrokinematic 

motions of rolling, spinning, and gliding (Fu, Harner, Johnson, Miller, & Woo, 1994).  The 

boney anatomy of the knee provides limited support; it is the soft tissue structures that are 

primarily responsible for the static and dynamic support of the joint (Lephart, Abt, & Ferris, 

2002).  These soft-tissue structures include the joint capsule, surrounding ligaments, menisci, 

and muscle-tendon units (Fu, Harner, Johnson, Miller, & Woo, 1994).  The medial and lateral 

meniscus of the knee serve to cushion the joint, deepen the socket, distribute weight–bearing 

forces, lubricate the joint, and provide stability (Houglum, 2001).  The knee joint capsule 

merges with the collateral ligaments, and provides rotational stability about the knee 

(Houglum, 2001).  The medial collateral ligament (MCL) is a broad, fan-shaped ligament 

that joins the medial femoral condyle and the tibia (Hoppenfeld, 1976).  Its primary function 

is to restrict valgus motion at the knee as well as provide stability of the knee during external 

tibial rotation (Butler, Noyes, & Grood, 1980).  Laterally, the knee joint is supported by the 

lateral collateral ligament (LCL), which is a stout cord that joins the lateral femoral condyle 
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and the fibular head (Hoppenfeld, 1976).  The LCL acts to restrain varus motion at the knee.  

The posterior cruciate ligament (PCL) is one of two intracapsular knee ligaments that provide 

joint stability.  The PCL acts to prevent posterior tibial translation as well as rotational 

stability (Butler, Noyes, & Grood, 1980).  The ACL is responsible for resisting anterior 

translation of the tibia on the femur (Fu, Harner, Johnson, Miller, & Woo, 1994).  

Specifically, as much as 86% of the static restraint to anterior tibial translation (ATT) is 

provided by the ACL (Butler, Noyes, & Grood, 1980).  The ACL is composed of 2 bundles 

of fibers, both of which arise from the posterior medial femoral condyle and insert into the 

anterior medial aspect of the tibial plateau (Fu, Harner, Johnson, Miller, & Woo, 1994).  

Excessive anterior tibial shear forces (ATSF) result in rupture of the ACL (DeMorat, 

Weinhold, Blackburn, Chudik, & Garrett, 2004).   

Often, the activities of sports provide forces that can greatly exceed the loading 

capacity of the ACL alone (Baratta et al., 1988; Pflum, Shelburne, Torry, Decker, & Pandy, 

2004; Simonsen et al., 2000; Withrow, Huston, Wojtys, & Ashton-Miller, 2006).  Therefore, 

it is necessary for the muscles and tendons surrounding the knee to provide dynamic support.  

The quadriceps, hamstrings, and gastrocnemius muscles are the major muscle groups acting 

on the knee.   Dynamic stabilization of the knee joint by the muscles is largely dependent 

upon the angles of the knee and hip.  A larger knee valgus moment during loading has been 

shown prospectively to predict ACL injury risk in female athletes (Hewett et al., 2005).  

Increased hip internal rotation and/or flexion at initial contact of a jump landing task may 

compromise the ability of medial muscle groups to adequately resist knee valgus loads 

(McLean, Huang, & van den Bogert, 2005).   
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Cadaver studies have shown that an increase in quadriceps isometric force can 

significantly increase the ATSF at the knee, especially with the knee near full extension (G. 

Li et al., 1999; Markolf et al., 1995; Withrow, Huston, Wojtys, & Ashton-Miller, 2006).  The 

quadriceps can provide an excessive amount of anterior tibial shear force at the knee, 

especially at knee flexion angle angles between 0˚ and 45˚ (Markolf et al., 1995; Markolf, 

O'Neill, Jackson, & McAllister, 2004; Renstrom, Arms, Stanwyck, Johnson, & Pope, 1986).  

During squatting activities, when hip flexion angle increases quadriceps activity decreases 

(Wilk et al., 1996).  Within this range (0-45˚) of knee flexion eccentric muscle loads on the 

anterior tibia have been estimated at 5,000 N (Arms et al., 1984).  Research by Woo et al. 

(1991) indicates that the tensile strength of the ACL in young individuals (22-25 years old) is 

only 2,100N.  As such, it appears as though quadriceps force alone is capable of inducing 

ACL injury (DeMorat, Weinhold, Blackburn, Chudik, & Garrett, 2004).   

The hamstring muscles also provide dynamic stability to the knee joint that opposes 

the quadriceps.  Research has shown that the hamstrings are most influential in achieving a 

posterior shear force on the tibia between 15˚-30˚ of knee flexion (Baratta et al., 1988).  This 

posterior shear on the tibia is able to resist the quadriceps’ anteriorly-directed pull, and 

decrease the strain placed upon the ACL (Markolf, O'Neill, Jackson, & McAllister, 2004; 

Renstrom, Arms, Stanwyck, Johnson, & Pope, 1986).  This supports the theory that at 

specific knee flexion angles, an antagonist hamstring contraction is essential in protecting the 

ACL from excessive loads placed upon it by quadriceps contractions.  In addition, it has been 

demonstrated that the gastrocnemius muscle also provides dynamic support to resist anterior 

tibial translation (Sherbondy, Queale, McFarland, Mizuno, & Cosgarea, 2003). 
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ACL Injury Risk Factors 

 In June of 1999, members from the American Orthopaedic Society for Sports 

Medicine, the Orthopaedic Research and Education Foundation, the National Athletic 

Trainers Association Research and Education Foundation, and the National Collegiate 

Athletic Association met for the Hunt Valley Consensus Conference to discuss the non-

contact risk factors and prevention strategies associated with ACL injuries (Griffin et al., 

2000).  Potential risk factors that were identified as being associated with non-contact ACL 

injuries included anatomical, hormonal, biomechanical, and environmental (Griffin et al., 

2000).   

Hormonal 

 The potential role hormones play in predisposing female athletes to ACL injury 

gained attention after estrogen and progesterone receptor sites were found in human ACL 

cells (Liu et al., 1996).  Research also indicated that the tensile properties of the ACL in 

rabbits were reduced upon administration of estrogen (J. Slauterbeck, Clevenger, Lundberg, 

& Burchfield, 1999).  Along with these findings came attempts to link ACL injury to the 

female menstrual cycle, with day 1 of the cycle being the first day of menses.  Some research 

points to an increase in ACL injury during the ovulatory phase (days 10-14 , when estrogen 

levels peak) (Wojtys, Huston, Lindenfeld, Hewett, & Greenfield, 1998), while other research 

has shown an increase in ACL injury during days 1 and 2 of the menstrual cycle (J. R. 

Slauterbeck et al., 2002).  Current research has attempted to link oral contraceptive use to 

ACL injury rate with no significant findings.  Also, females tend to have increased joint 

laxity than males.  In recreational soccer players, it was concluded that girls, after menarche, 

have increased joint laxity when compared to boys of the same physical maturity (Ahmad et 
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al., 2006).  While the hormonal considerations remain an interesting topic, no conclusive data 

have established any pattern of menstrual cycle involvement in ACL injuries.   

Anatomical 

 There are several theories regarding anatomical structures that may predispose female 

athletes to ACL injury.  Considerations including increased Quadriceps angle (Q angle), 

decreased femoral notch width, and general increased joint laxity have all been theorized.  

The Q angle is the angle formed between a line connecting the ASIS to the midpoint of the 

patella and a line connecting the tibial tubercle and the mid point of the patella.  A Q-angle of 

20˚ or more is considered excessive in both males and females.  The Q-angle can be affected 

by bony alignments such as femoral anteversion, a wider pelvis, or knee valgus.  Women 

tend to have a relatively wider pelvis that may lead to an increased Q angle (Hewett, Myer, & 

Ford, 2006).  However, little research has been completed attempting to link an increased Q 

angle to an increase in ACL injury rates in females.   

The Hunt Valley conference outlined 6 established trends in femoral notch width 

measurements.  They concluded that, on average, the width of the notch is less in females 

than males, and less in ACL injured patients than a control group (Griffin et al., 2000).  

Nonetheless, no relationship between the femoral notch and ACL injury could be established 

partially as the result of the variability in measurement techniques of femoral notch width 

(Griffin et al., 2000).   

Environmental 

 Environmental risk factors associated with ACL injury are factors that are extrinsic to 

the body, and in some cases modifiable.  The use of prophylactic knee braces has often been 

associated with a decrease in the risk of knee injury.  Research into knee braces shows 
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limited results supporting or refuting this claim.  However, functional knee braces have been 

shown to modify proprioception, electromyographic activity, and muscle activation timing 

(Nemeth, Lamontagne, Tho, & Eriksson, 1997; Ramsey, Wretenberg, Lamontagne, & 

Nemeth, 2003).  Joint proprioception and activity of the musculature surrounding knee and 

its effect on ACL injury risk will be discussed later in this review.  Another environmental 

risk factor believed to play a role in ACL injury is the shoe-to-surface interface.  Previous 

research suggests that the relationship between the shoe and surface is highly variable and 

inconsistent (Dixon, Batt, & Collop, 1999).  Many factors such as type of shoe, type of 

surface, weather conditions, and athletic task may influence this relationship.    

Biomechanical  

The Hunt Valley Conference concluded that gender differences in neuromuscular 

control and biomechanical function are the most likely risk factors to explain the different 

rates in men and women (Griffin et al., 2000).  Video analysis of ACL injury during 

competitive sports indicates a common body position that is associated with non-contact 

ACL injury.  This body position is indicated by the knee close to full extension and the foot 

planted when decelerating, which leads to a valgus collapse at the knee (Boden, Dean, 

Feagin, & Garrett, 2000).  

Recent research has also shown that gender differences exist between quadriceps and 

hamstring activation during dynamic movement involving the knee joint (Colby et al., 2000; 

Malinzak, Colby, Kirkendall, Yu, & Garrett, 2001).  In a comparison of elite athletes, 

females demonstrated a preference to contract their quadriceps first in response to an anterior 

tibial translation (Huston & Wojtys, 1996).  The hamstrings reached peak torque 5-7 

milliseconds after that of the quadriceps in the elite female athletes (Huston & Wojtys, 1996).  
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This combination of quadriceps activation before hamstring activation in females suggests 

that females may experience excessive anterior tibial shear forces at the knee.   

In addition to muscle activation differences, females demonstrate significantly less 

muscle strength as normalized to body weight in the quadriceps and hamstrings compared 

with males (Hakkinen, Kraemer, & Newton, 1997; Huston & Wojtys, 1996; Lephart, Ferris, 

Riemann, Myers, & Fu, 2002).  More importantly females tend to demonstrate a quadriceps 

dominance, or higher quadriceps strength relative to hamstring strength.  Research has 

demonstrated that female athlete’s hamstring muscles are relatively weaker than in male 

athletes when compared with the quadriceps muscles (Anderson, Dome, Gautam, Awh, & 

Rennirt, 2001).  A standard assessment of strength is the quadriceps to hamstrings ratio 

(Q/H).  Conventionally, the ratio is measured as a maximal concentric isokinetic quadriceps 

contraction relative to a maximal concentric isokinetic hamstring contraction (Osternig, 

1986).  Recently, a new concept in isokinetic Q/H ratios has been proposed, the functional 

eccentric quadriceps/concentric hamstring comparison (QuadEcc/HamCon) (Aagaard, 

Simonsen, Magnusson, Larsson, & Dyhre-Poulsen, 1998).  The development of the 

functional ratio allows us to look more in depth at the types of forces the muscles stabilizing 

the knee joint produce during dynamic activities.  

 In the conventional testing, Q/H ratios range from 1.25-2.00 depending on the 

velocity at which the testing was tested (Aagaard, Simonsen, Magnusson, Larsson, & Dyhre-

Poulsen, 1998; Ahmad et al., 2006; Hiemstra, Webber, MacDonald, & Kriellaars, 2004; 

Rosene, Fogarty, & Mahaffey, 2001).  Q/H ratios in intercollegiate athletes ranged between 

1.70 and 1.99 (Rosene, Fogarty, & Mahaffey, 2001).  However, skeletally mature female 
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recreational soccer players have shown a significantly higher Q/H ratio (2.06) than matched 

male counterparts (1.48) (Ahmad et al., 2006).  

 However, eccentric contraction involves higher forces than a concentric contraction, 

so we would expect functional QuadEcc/HamCon ratios to be higher than conventional values.  

Functional QuadEcc/HamCon ratios have been reported between 2.50 and 3.33 (Aagaard, 

Simonsen, Magnusson, Larsson, & Dyhre-Poulsen, 1998) in elite track and field athletes.  No 

current data have established a functional QuadEcc/HamCon ratio in recreational athletes.  

Even though the exact magnitude of the influence of given hamstring or quadriceps muscle 

moments on the amount of ATSF  is unknown, the QuadEcc/HamCon ratio may represent an 

estimate of the ability of the hamstrings to counteract anteriorly directed shear forces of the 

tibia (Aagaard, Simonsen, Magnusson, Larsson, & Dyhre-Poulsen, 1998).  It is hypothesized 

that females are at increased risk for ACL injury because this quadriceps dominance may 

lead to an increase in ATSF.  Also, their quadriceps dominance is more pronounced in angles 

of decreased knee flexion.  Females landing in a position of extension may not have 

sufficient strength available to decelerate the body by the eccentric quadriceps contraction 

(Lephart, Ferris, Riemann, Myers, & Fu, 2002).  Thus, females must activate their quadriceps 

to a greater extent due to their decreased quadriceps strength. 

Strength Imbalances 

Strength imbalances have been suggested as possible predisposing factors to injury. 

For example, female athletes with one hamstring more than 15% weaker than the other were 

2.6 times more likely to sustain a lower extremity injury (Knapik, Bauman, Jones, Harris, & 

Vaughan, 1991).  Also, it has been reported that such left-right imbalances occurred in 20% 

to 30% of female athletes (Knapik, Bauman, Jones, Harris, & Vaughan, 1991).  Additionally, 
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athletes with a Q/H ratio of greater than 1.33 were 1.6 times more likely to be injured 

(Knapik, Bauman, Jones, Harris, & Vaughan, 1991).  As for velocity of testing, it has been 

found that Q/H strength ratios of females were significantly lower than those of males at 

60˚/s, 180˚/s, and 300˚/s (Moore & Wade, 1989).  Females have been reported to have Q/H 

ratios in the 40% range (Wojtys, Huston, Taylor, & Bastian, 1996).   

Research has investigated differences in selected predictors of ACL injury between 

male and female NCAA Division I collegiate basketball players from the same institution 

participating in identical conditioning programs. Sex differences in quadriceps and hamstring 

strength were examined isokinetically.  Male athletes demonstrated significantly higher 

eccentric hamstrings-to-eccentric quadriceps ratio bilaterally than female athletes (Moul, 

1998).  The author concluded that a deficit in eccentric hamstring strength relative to 

eccentric quadriceps strength could predispose an athlete to an ACL injury during stressful 

athletic activities, particularly deceleration or landing maneuvers (Moul, 1998).  During these 

activities, flexion moments are occurring at the knee and hip.  Another theory involving the 

contraction of the hamstring and quadriceps muscles is that eccentric contraction of the 

hamstrings promotes hip stabilization, while eccentric contraction of the quadriceps promotes 

knee stabilization (Palmitier, An, Scott, & Chao, 1991).  In closed chain conditions, the 

hamstrings act as a powerful hip extensor.  Thus forceful hamstring contraction that stabilizes 

the hip flexor moment helps to neutralize the tendency of the quadriceps to cause anterior 

translation of the tibia on the femur (Moul, 1998; Palmitier, An, Scott, & Chao, 1991). 
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Mechanisms of ACL Injury 

Contact 

 Contact ACL injuries account for 28%-30% of all ACL injuries (E. Arendt & Dick, 

1995; Boden, Dean, Feagin, & Garrett, 2000) .  Injury mechanisms to the ACL that involve 

direct contact are typically a result of a valgus collapse at the knee (Boden, Dean, Feagin, & 

Garrett, 2000).  In these cases, a contact blow to the lateral aspect of the knee joint places a 

valgus stress at the knee.   

Non-Contact 

 Approximately 70% of all ACL injuries are the result of non-contact mechanisms that 

occur while the body is decelerating during gait and landing activities (EA Arendt, Agel, & 

Dick, 1999; E. Arendt & Dick, 1995; Boden, Dean, Feagin, & Garrett, 2000).  The main non-

contact mechanisms of ACL injury are planting and cutting, landing from a jump on a 

straight/extended knee, and one-step landing with a hyper-extended knee (EA Arendt, Agel, 

& Dick, 1999; Boden, Dean, Feagin, & Garrett, 2000).  Similar to contact ACL injuries, the 

non-contact injuries often involve a valgus collapse at the knee.  Other commonly noted 

motions associated with ACL injury are excessive anterior tibial translation, knee hyper-

extension, and excessive tibial rotation.  The ACL functions to control anterior tibial 

translation, and assists other static and dynamic structures of the knee in preventing knee 

valgus, knee varus, tibial internal rotation, and femoral external rotation. Any excessive or 

uncontrolled amounts of these motions can lead to ACL strain or rupture. 

 Excessive anterior tibial translation is often the primary mechanism involved in ACL 

injury (Kirkendall & Garrett, 2000).  A maximal quadriceps contraction combined with a 

decreased knee flexion angle, less than 45˚, can create ATSF at the knee (Markolf et al., 
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1995; Withrow, Huston, Wojtys, & Ashton-Miller, 2006).  This ATSF produces excessive 

anterior tibial translation on the femur, thus stressing the ACL (Durselen, Claes, & Kiefer, 

1995; Shelburne & Pandy, 1997).  The quadriceps and hamstring muscle groups play an 

antagonistic role to each other in determining the shear forces placed upon the knee joint.  

The hamstring muscles are able to help resist the quadriceps’ anteriorly-directed pull when 

the knee is flexed 30˚ or greater (Markolf, O'Neill, Jackson, & McAllister, 2004; Renstrom, 

Arms, Stanwyck, Johnson, & Pope, 1986).  Functional sport related tasks, such as a landing 

from a jump, often involve simultaneous quadriceps and hamstring contractions in varying 

angles of knee flexion.   

Jump Landing Task 

 Jump landing is a common functional activity used in many sports, especially 

basketball, soccer, and volleyball.  Landing from a jump has been identified throughout the 

literature as a common mechanism of non-contact ACL injury (EA Arendt, Agel, & Dick, 

1999; Boden, Dean, Feagin, & Garrett, 2000).  An athlete is at risk for ACL injury during a 

jump landing task due to the excessive ATSF placed upon the ligament.  To decelerate the 

body and absorb the landing forces, the quadriceps contract eccentrically, and thus pull the 

tibia anteriorly.  The hamstring muscles concentrically contract in an attempt to flex the knee 

and absorb the forces transferred to the tibia during landing.  If the ATSF applied by the 

eccentric quadriceps contraction is great enough, and the hamstring muscles cannot provide 

an adequate posterior shear force, the ACL is at risk for strain or rupture (Pflum, Shelburne, 

Torry, Decker, & Pandy, 2004; Withrow, Huston, Wojtys, & Ashton-Miller, 2006).   

 In simulated computer modeling of a jump landing task, the ACL was loaded during 

the first 25% of the landing phase as the knee flexed (Pflum, Shelburne, Torry, Decker, & 



 26

Pandy, 2004).  The peak shear force acting on the knee occurred in the first 70 milliseconds, 

and was directed in the anteriorly (Pflum, Shelburne, Torry, Decker, & Pandy, 2004).  

Immediately after initial impact, the ground reaction forces applied a large posterior shear 

force to the lower leg (Pflum, Shelburne, Torry, Decker, & Pandy, 2004).  It appears as the 

foot impacts the ground the subsequent action on the knee is an anterior shear.  However, the 

remainder of the landing involves a posteriorly directed shear force.  This is a result of a 

quadriceps muscle contraction acting to decelerate the flexing knee by pulling the tibia 

anteriorly through the patellar tendon (Pflum, Shelburne, Torry, Decker, & Pandy, 2004).  

However, the soft-style landing in this study may not accurately represent the ground 

reaction forces being dissipated through the body during a more functional or hard landing 

condition.  Ground reaction forces ranging from 3 to 14 times body weight have been 

measured for landing activities, suggesting that tremendous loads normally are absorbed by 

the body during these activities (Dufek & Bates, 1991; Ozguven & Berme, 1988).  Also, 

smaller degrees of knee flexion may be associated with increased peak vertical ground 

reaction forces (Dufek & Bates, 1991).  Research using cadavers has concluded similar 

findings regarding the quadriceps’ and hamstrings’ abilities to produce shear forces at the 

knee.  Recent cadaver research simulating a jump landing task showed that the change in 

ACL strain was highly correlated with the change in quadriceps force and the change in knee 

flexion induced by the impact force (Withrow, Huston, Wojtys, & Ashton-Miller, 2006).   

 When comparing jump landing strategies in males and females, researchers have 

found significant differences (Colby et al., 2000; Griffin et al., 2000; Lephart, Ferris, 

Riemann, Myers, & Fu, 2002; Malinzak, Colby, Kirkendall, Yu, & Garrett, 2001).  As 

previously mentioned, higher ground reaction forces have been linked with an increase in 
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ATSF.  It has also been shown that females produce higher ground reaction forces during 

landing tasks when normalized to body weight (Hewett, Stroupe, Nance, & Noyes, 1996).  In 

addition to the ground reaction forces, females have been linked with landing with less knee 

flexion than males (Colby et al., 2000; Lephart, Ferris, Riemann, Myers, & Fu, 2002; 

Malinzak, Colby, Kirkendall, Yu, & Garrett, 2001).  Females landed with an average of only 

17˚ of knee flexion while their male counterparts displayed an average of 31˚ (Lephart, 

Ferris, Riemann, Myers, & Fu, 2002).  In addition to landing in a more extended position, 

females activate their quadriceps musculature to a greater extent than their hamstrings (Colby 

et al., 2000).  Combined with the previously mentioned research concerning the quadriceps’ 

and hamstrings’ abilities to provide shear forces at the knee joint, it could be hypothesized 

that females would be prone to increased ATSF when landing from a jump.   

Summary 

 Non-contact anterior cruciate ligament injury is common in athletics.  Female athletes 

are more susceptible to ACL injury than their male counterparts.  One common mechanism 

of non-contact ACL injury is landing from a jump.  Females tend to land from a jump with 

their knee in a more extended position than males do.  Females also demonstrate a quadriceps 

dominance from both a muscle activation and muscle strength perspective.  Moreover, this 

quadriceps dominance is more pronounced in positions of decreased knee flexion.  Knowing 

females land in positions of knee extension where their quadriceps are exhibiting an increase 

anterior pull on the tibia, it could be hypothesized that this predisposes them to ACL injury.  

However, more research needs to be completed to establish a link between increased 

quadriceps-to-hamstrings strength and the subsequent ATSF placed upon the knee.   

 
 



Chapter 3 

Methodology 

Subjects 

 Thirty-three recreational athletes were recruited from the University of North 

Carolina at Chapel Hill (UNC-CH) student population.  Each subject was required to have 2 

years of varsity, club, or intramural experience in a sport that implements a jump landing task 

such as basketball, volleyball, or soccer without having followed a professionally designed 

training or ACL injury prevention program.  To be eligible for participation, all subjects met 

the following criteria:  1) between the ages of 18 and 25 years old, 2) participate in sporting 

activity 2-3 times per week for at least 30 minutes per session, 3) no current lower extremity 

injury, and 4) no prior history of ACL injury, ligamentous reconstruction, or any knee 

surgery with the past 2 years.  In addition, to avoid possible fatigue, no testing took place 

within one hour of physical activity or other strenuous activity.   

 Prior to participation, all subjects read and signed an approved informed consent 

agreement in accordance with the standards set forth by the University of North Carolina 

Biomedical Institutional Review Board outlining the procedures of the study.  All subjects 

were recruited verbally through the Physical Education Activity courses at UNC-CH, and by 

informational flyers that were posted around the UNC-CH campus.     

 During the testing session, subjects completed 2 separate tasks;  1) a jump landing 

task, and 2) an isokinetic strength task.  The jump landing task was used to calculate the 

subject’s peak ATSF when landing.  Strength testing was used to measure QuadEcc and 
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HamCon mean peak torque.  Analyses were conducted to determine if relationships exist 

between ATSF during the jump landing task and quadriceps and hamstring strength. 

Measurement and Instrumentation 

Isokinetic Dynamometer  

 An isokinetic dynamometer (Biodex Medical Systems, Inc.; Shirley, NY) was used to 

measure quadriceps and hamstrings strength as normalized to the product of body weight (N) 

and height (m).  Both HamCon strength and QuadEcc strength were measured using 2 separate 

protocols; 1 for knee flexion, and 1 for knee extension.  Starting at 90˚ of knee flexion, 

quadriceps strength (i.e. knee extension) was measured using a concentric\eccentric protocol 

where the eccentric data were used for statistical analysis.  Starting at 90˚of knee flexion, 

hamstrings strength (i.e. knee flexion) was measured using an eccentric\concentric protocol 

where the concentric data were used for statistical analysis.  Five repetitions of each protocol 

were completed at 3 testing velocities (60º/s, 180º/s, and 300º/s) for which the peak torque 

was determined.  Peak torque was standardized to the product of body weight and height and 

averaged across the middle three trials.  The orders in which the 2 protocols and 3 velocities 

were assessed were counterbalanced. 

Flock of Birds/Forceplate 

 The Flock of Birds Electromagnetic Motion Analysis System (Ascension 

Technologies, Inc., Burlington, VT) was used in conjunction with the Motion Monitor 

Software System (Innovative Sports Training Inc., Chicago, IL) and a non-conductive 

forceplate (Bertec Corporation, Columbus, OH) to calculate peak anterior tibial shear force 

(ATSF).  Kinematic data was sampled at 144Hz and kinetic data were sampled at 1,440Hz.  

The 3-dimensional coordinate system for testing was a right handed system so that the 
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participants faced the positive X direction, the positive Y direction was to their left, and the 

positive Z axis was directed superiorly.     

Procedures 

Setting 

 Subjects reported to the Sports Medicine Research Laboratory at the University of 

North Carolina at Chapel Hill.  All testing was performed in one session per subject, lasting 

approximately 60 minutes.   

Subject Preparation 

 Each subject completed a health questionnaire, and anthropomorphic data were 

collected prior to the start of the testing session including age, height, weight, and leg 

dominance.  The subjects were required to wear athletic shoes, athletic shorts, and a t-shirt 

for their testing session.  The dominant lower extremity of each subject was used as the test 

limb, and defined as the leg used to kick a ball for maximum distance.  Subjects rode a 

stationary bicycle at moderate intensity for 5 minutes in order to simulate pre-activity warm-

up.  The order in which the 2 tasks were performed (jump landing and isokinetic strength) 

was counterbalanced and 10 minutes of rest was provided between the 2 tasks to minimize 

the risks of fatigue.   

Jump Landing Task 

 First, the examiner demonstrated the jump landing task and the subjects were allowed 

to practice this task a maximum of 5 times.  Electromagnetic tracking sensors were then 

placed on each subject at the apex of the sacrum, midpoint of the lateral thigh, and 

anteromedial shank. The sensors placed over the thigh and shank were placed over areas of 

least muscle mass to minimize potential motion artifact.  The sensors were affixed to the skin 
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by pre-wrap, athletic tape, and double-sided tape.  Once the electromagnetic sensors were 

attached, the subjects were asked to stand in a neutral posture with their arms relaxed at their 

sides.  The following bony landmarks were then digitized, in the following order, using a 

mobile electromagnetic sensor attached to a stylus: 1) T12 spinous process, 2) xyphoid 

process, 3) medial femoral condyle, 4) lateral femoral condyle, 5) medial malleolus, 6) lateral 

malleolus, 7) left ASIS, and 8) right ASIS. Digitization of bony landmarks served to define 

the segment end-points and joint centers of the lower extremity segments.  The knee joint 

center was defined as the midpoint between the medial and lateral femoral condyles, and the 

ankle joint center was defined as the midpoint between the medial and lateral malleolus. 

 During the jump-landing task, subjects jumped from a 30 cm high platform and 

landed on a force plate with the dominant foot, and with the non-dominant foot off to the side 

of the force plate. The platform was set at a horizontal distance equal to 50% of the subject’s 

body height from the front edge of the force plate.  Each subject was instructed to jump 

straight forward off the 30 cm platform, and land on the forceplate, and then vertically jump 

for maximum height.  During testing, the subjects performed 10 trials with 30 seconds of rest 

between trials to minimize the risk of fatigue. Trials in which the subject failed to land with 

the foot of the dominant leg on the force plate were deleted, and a new trial was performed.   

Isokinetic Strength 

 The Biodex 3 Isokinetic dynamometer (Biodex Medical System, Inc., Shirley, NY) 

was used to measure quadriceps and hamstrings peak torque in Newton · meters. Velocity 

was set at 60˚/s, 180˚/s, or 300˚/s and knee motion was set from 20˚ to 90˚ of knee flexion.  A 

magnetic level attached to the dynamometer arm was used to assure the accuracy of the range 

of motion.  Five repetitions were performed at each velocity, and the order of testing 
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velocities was counterbalanced.  The weight of the limb was calculated using the Biodex 

software to assure that gravity was accounted for during the measurements.  The isokinetic 

dynamometer was calibrated prior to data collection.   

The isokinetic dynamometer was used to measure knee extension concentric/eccentric 

peak torque and knee flexion eccentric/concentric peak torque for the quadriceps and 

hamstrings strength, respectively. Each test consisted of one set of five repetitions at 

maximal effort with data taken from the middle three trials. The first repetition was 

eliminated for to account for a potential learning effect, and the fifth repetition was 

eliminated for possible fatigue.  The order in which the quadriceps and hamstrings were 

tested was counterbalanced.     

Subjects were positioned sitting upright, and were secured using torso, pelvic, thigh, 

and shin stabilization straps. The input shaft of the dynamometer was aligned with the axis of 

rotation of the subject’s knee, considered to be the point at the center of a line that passes 

transversely through the femoral condyles. The shin pad attachment was placed 1-2 cm 

proximal to the subject’s lateral malleolus. 

 The strength testing began with familiarization (warm-up) repetitions. Each subject 

performed three sub-maximal attempts (50% capacity) that were not included in data 

analysis. Then the subject completed five maximal contractions of either the 

concentric/eccentric knee extension or eccentric/concentric knee flexion that were used for 

data analysis.  One minute of rest was provided between each velocity of testing, and 5 

minutes of rest between the quadriceps and hamstrings protocols.  Instructions and verbal 

encouragement were the same for all subjects during the maximum strength testing. For the 

concentric/eccentric quadriceps test, subjects were instructed to “kick as hard as they can 
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against the resistance as far as the machine will let them, and then resist the machine as it 

pulls their leg back as hard as possible.”  During the test, subjects received constant verbal 

encouragement to “kick out” during the concentric phase and “resist” during the eccentric 

phase.  For the eccentric/concentric hamstring test, subjects were instructed to “resist the 

machine as it pulls their heel away and then pull their heel toward them as hard as possible.” 

During the test they received verbal encouragement to “resist” during the eccentric phase and 

“pull back” during the concentric phase. 

Data Reduction and Statistical Analysis 

Strength was defined as the average of the peak torque of the middle 3 trials at each 

testing velocity.  Peak ATSF was measured between the time of initial ground contact to the 

first local minimum following the peak in vertical ground reaction forces (Figure 1).  Initial 

ground contact was defined as the instant that the vertical ground reaction force exceeds 10 

N.  Peak ATSF as normalized to body weight was then calculated as the average of the peaks 

of each of the 10 trials.  Peak isokinetic torque normalized to the product of body weight and 

height was averaged across the middle 3 trials.  Simple linear regression analyses were 

performed on the data to evaluate the relationship between 1.) QuadEcc and ATSF, 2.) HamCon 

and ATSF, and 3.) The QuadEcc/HamCon ratio and ATSF.  An a priori statistical power 

analysis for regression models was performed on pilot test data , and it was determined that 

to obtain a statistical power of 0.80, 26 subjects would be needed (Yu, Lin, & Garrett, 2006).  

Statistical significance was set with an alpha level of α <0.05.  Data conversion/reduction 

was performed by the Biodex Advantage Software version 3.2 and Matlab 12 (The Math 

Works, Inc.).  Statistical analyses were performed using SPSS software version 13.0 

(Chicago, IL). 
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Research Questions  

RQ Description Data Source Hypothesis Method 

1 Is there a relationship 
b/w QuadEcc and 
ATSF? 

DV: ATSF 
IV: QuadEcc 

(+) relationship Simple linear 
regression 

2 Is there a relationship 
b/w HamCon and 
ATSF? 

DV: ATSF 
IV: HamCon 

(-) relationship Simple linear 
regression 

3 Is there a relationship 
b/w QuadEcc/HamCon 
and ATSF? 

DV: ATSF 
IV: QuadEcc/HamCon 

(+) relationship Simple linear 
regression 

 
 
 
 
 
 



 
 

 

Chapter 4 

Results 

Anthropomorphic Data 

Thirty-three female recreational athletes between the ages of 18 and 25 participated in 

this study.  Six subjects were eliminated from data analyses due to instrumentation error.  

Specifically, the forceplate measuring ground reaction forces was unable to maintain a 

correct calibration.  Descriptive statistics for the 27 subjects included in data analyses are 

presented in Table 1.  Means and standard deviations for all assessment variables are 

presented in Table 2. 

Regression Analyses  

Regression analyses indicated that neither QuadEcc nor HamCon strength were 

significant predictors of peak ATSF when considered in isolation.  Simple linear regressions 

between each strength measure and ATSF for each muscle at each velocity were non-

significant (p > 0.05).  However, when considered in combination in the form of a functional 

ratio (i.e. QuadEcc/HamCon), these strength measures were significantly and positively related 

to peak ATSF at both 60°/s (r = 0.529, p = 0.005) and 180°/s (r = 0.556, p = 0.003).  No other 

correlations were statistically significant.  Correlation coefficients and associated probability 

statistics are presented in Table 3.  Simple linear regression models and R-squared values for 

each of the significant findings are presented in Figures 2 (60°/s) and 3 (180°/s). 



 

 

 

Chapter 5 

Discussion 
 

The primary findings of this study were that eccentric quadriceps strength and 

concentric hamstring strength alone are not significant predictors of anterior tibial shear 

force.  However, when considered in combination as a functional QuadEcc/HamCon ratio, these 

strength measures are significantly and positively related to ATSF.   This suggests that in the 

presence of high functional QuadEcc/HamCon ratios, female recreational athletes may be 

predisposed to high ATSF.   

Comparison of our data to previous literature is limited because we are unaware of 

any previous attempts to directly correlate strength measures and ATSF.  Conventionally, the 

Q/H ratio is measured as a maximal concentric isokinetic quadriceps contraction relative to a 

maximal concentric isokinetic hamstring contraction (Osternig, 1986).  Another method has 

been proposed for the measurement of isokinetic Q/H ratios, the functional eccentric 

quadriceps/concentric hamstring ratio (Aagaard, Simonsen, Magnusson, Larsson, & Dyhre-

Poulsen, 1998).  Functional QuadEcc/HamCon ratios are slightly higher than the conventional 

method, and range from 2.5-3.33 in elite athletes (Aagaard, Simonsen, Magnusson, Larsson, 

& Dyhre-Poulsen, 1998; Aagaard, Simonsen, Trolle, Bangsbo, & Klausen, 1995).  Our data 

shows slightly lower QuadEcc/HamCon ratios ranging from 1.80 (60˚/s) to 1.64 (300˚/s) in 

female recreational athletes.  The greater ratio values reported by these authors may be 

attributable to differences in the samples, as these previous investigations included elite 

athletes, while our sample consisted of recreational athletes.  Our data are also consistent 
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with previous research involving isokinetic strength assessment in that as the velocity of the 

test increases, the quadriceps to hamstring ratio decreases (Aagaard, Simonsen, Trolle, 

Bangsbo, & Klausen, 1995; Kannus & Beynnon, 1993; Rosene, Fogarty, & Mahaffey, 2001).   

Conventional quadriceps to hamstring ratios tested at 60˚/s have been found to be 

higher than the functional QuadEcc/HamCon ratios found in our data.  Previous research found 

conventional Q/H ratios in female collegiate athletes to be 1.99 and 1.70 at 60˚/s and 180˚/s, 

respectively (Rosene, Fogarty, & Mahaffey, 2001).  Our functional ratios at 60˚/s and 180˚/s 

were 1.80 and 1.76 respectively.  Since eccentric muscle force is greater than concentric 

force production (Aagaard, Simonsen, Magnusson, Larsson, & Dyhre-Poulsen, 1998; Drury, 

Stuempfle, Mason, & Girman, 2006; Gleeson & Mercer, 1996), our functional ratios would 

be expected to be greater than those of Rosene et. Al. (2001).  This may suggest that female 

collegiate athletes have more developed quadriceps muscles in relation to their hamstrings 

when compared to recreational athletes, a notion supported by Bennell et. Al (1998) who 

suggested that differences in Q/H between groups ratios may be due to differences in the 

level of competition.  Normal Q/H ratios range from 1.25 to 2.00 averaged over the entire 

range of motion, with higher ratios at faster velocities (Aagaard, Simonsen, Trolle, Bangsbo, 

& Klausen, 1995; Grace, Sweetser, Nelson, Ydens, & Skipper, 1984; Rosene, Fogarty, & 

Mahaffey, 2001).  As the ratio approaches 1.00, the hamstrings have an increased functional 

capacity for providing stability at the knee joint (Harter, Osternig, & Standifer, 1990).  This 

increased knee stability may reduce the anteriorly directed shear of the tibia on the femur (R. 

C. Li, Maffulli, Hsu, & Chan, 1996).     

Injury patterns in female athletes have been demonstrated to be related to muscular 

imbalances (Hewett, Lindenfeld, Riccobene, & Noyes, 1999; Knapik, Bauman, Jones, Harris, 
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& Vaughan, 1991).  In a study by Hewett et al. (1999), it was demonstrated that untrained 

females were 4.8 to 5.8 times more likely to sustain a knee injury than males, while 

neuromuscularly trained female athletes were only 1.3 to 2.4 times more likely to sustain a 

knee injury than males.  Knapik et al. (1991) demonstrated that female athletes were 1.6 

times more likely to sustain a lower extremity injury if they had a Q/H ratio greater than 1.33 

at 180˚/s.  In ACL deficient patients Li et al. (1996) found a significant relationship between 

Q/H ratios and recreational athletes score on a functional ability rating system.  Therefore, 

the application of our data regarding functional QuadEcc/HamCon ratios may provide a reason 

behind the increased injury rates.  

Similar investigations have attempted to reproduce functional loading of the 

quadriceps and hamstrings by applying external forces to cadaveric musculature (DeMorat, 

Weinhold, Blackburn, Chudik, & Garrett, 2004; Markolf et al., 1995; Markolf, O'Neill, 

Jackson, & McAllister, 2004; Renstrom, Arms, Stanwyck, Johnson, & Pope, 1986; Withrow, 

Huston, Wojtys, & Ashton-Miller, 2006).  Numerous studies have demonstrated that 

quadriceps activation causes ACL strain by producing ATSF  (Beynnon et al., 1995; 

Durselen, Claes, & Kiefer, 1995; G. Li et al., 1999; Pandy & Shelburne, 1997).  DeMorat et 

al. (2004) demonstrated that quadriceps loading alone is capable of producing enough force 

to strain and rupture the ACL.  Withrow et al. (2006) concluded that an increase in applied 

quadriceps force correlated with an increase in ACL strain in cadaveric knees during a 

simulated one-legged landing task.  Research has also shown that the hamstrings have the 

ability to provide a posterior tibial shear force that counteracts the ATSF provided by the 

quadriceps (Baratta et al., 1988; Durselen, Claes, & Kiefer, 1995; G. Li et al., 1999; Markolf, 

O'Neill, Jackson, & McAllister, 2004).  Our data would suggest that the presence of strong 
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hamstring musculature in relation to its antagonist quadriceps musculature would indeed lead 

to decreased ATSF’s at the knee.   

Clinical Application 

 The development of the functional strength ratio allows us to look more in depth at 

what types of forces the muscles stabilizing the knee joint are creating during dynamic 

activities.  The functional QuadEcc/HamCon ratio used in our study is representative of the 

eccentric muscle function of the quadriceps that is absorbing the force of the landing task and 

the concentric muscle function of the hamstrings that are acting to stabilize the knee joint.  

As research continues to link abnormal Q/H ratios to increased risk of injury (Hewett, 

Lindenfeld, Riccobene, & Noyes, 1999; Hiemstra, Webber, MacDonald, & Kriellaars, 2004; 

Knapik, Bauman, Jones, Harris, & Vaughan, 1991), alternative isokinetic strength measures 

may prove more important when implementing clinical practice.  Isokinetic testing has long 

been used in clinical practice as a return to function gauge following ACL reconstruction 

rehabilitation.  By testing the affected side in relation to the unaffected side clinicians are 

able to attempt to increase the strength of the affected side to be similar to the unaffected 

side. 

This functional ratio may provide a better return-to-function criterion, as it is linearly 

related to ATSF.  Other researchers have proposed the use of Q/H ratios as a screening tool 

for susceptibility to injury (Bennell et al., 1998).  As the functional QuadEcc/HamCon strength 

ratio predicts ATSF, this measure may also be useful from an injury prevention perspective.  

Recently, neuromuscular and strength training programs have been designed to reduce the 

risk of ACL injuries (Heidt, Sweeterman, Carlonas, Traub, & Tekulve, 2000; Hewett, 

Lindenfeld, Riccobene, & Noyes, 1999; Soderman, Werner, Pietila, Engstrom, & Alfredson, 
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2000).  Strategies to decrease ATSF have been shown to decrease the load placed on the 

ACL (Lephart, Ferris, Riemann, Myers, & Fu, 2002; Yu, Lin, & Garrett, 2006).  Therefore, it 

is important, as clinicians, to recognize the relationship between functional QuadEcc/HamCon 

ratios and ATSF, and begin to develop strategies in our athletes to decrease abnormal 

QuadEcc/HamCon ratios.   

Future Research 

 Future research needs to be conducted using the functional QuadEcc/HamCon ratios 

used in this study and proposed by Aagaard et. Al (1998).  Research should concentrate on 

establishing the relationship between ATSF and QuadEcc/HamCon ratios in wider populations, 

such as male recreational athletes, collegiate athletes, and athletes with a history of ACL 

injury.  In addition, evaluating conventional Q/H ratios may provide some insight into their 

relationship with ATSF.  Future research should also concentrate on comparing the 

functional QuadEcc/HamCon ratios at specific ranges of motion.  Kannus et al. demonstrated 

that peak torque values vary with the velocity of testing (Kannus & Beynnon, 1993).  While 

our investigation evaluated the relationship between ATSF and peak torque values, torque 

assessment at the angle of knee flexion at which peak ATSF occurred may provide a more 

powerful estimate.  Similarly, the relative abilities of various Q/H ratios (e.g. functional vs. 

conventional) to predict ATSF should be evaluated. 

Limitations 

There were limitations in this study that warrant discussion.  Firstly, our study was 

completed in a research laboratory which differs significantly from the playing fields and 

courts of our research participants.  Furthermore, tethering of the subject to the data 

collection apparatus may alter landing patterns in the research setting.  In addition, the 
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strength testing protocol required the subject to be sitting upright, while ATSF it was 

compared to came from a landing task.  Peak torque values may differ across these tasks, as 

the length-tension characteristics of the knee and hip flexors and extensors likely differ.  

Also, our study was limited in the fact that the range of motion for isokinetic strength testing 

was set from 20˚-90˚ due to pilot testing revealing an inability of the subject to initiate 

movement on the dynamometer at angles less than 20˚ of knee flexion.  Peak torque values 

for the tested muscles may very well occur in that specific range of motion, however we 

cannot conclude this from our data.   
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Table 1:  Descriptive Statistics  
  
 
Measures Mean SD 
Age (years) 
 
Height (cm) 
 
Weight (kg) 

19.48 
 

165.52 
 

61.84 

1.83 
 

6.45 
 

9.75 
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Table 2:  Assessment Variable Means and Standard Deviations  
  
 
Variable Mean SD 
ATSF 
 
Peak QuadEcc Torque @ 60°/s 
 
Peak QuadEcc Torque @ 180°/s 
 
Peak QuadEcc Torque @ 300°/s 
 
Peak HamCon Torque @ 60°/s 
 
Peak HamCon Torque @ 180°/s 
 
Peak HamCon Torque @ 300°/s 
 
QuadEcc/ HamCon @ 60°/s 
 
QuadEcc/ HamCon @ 180°/s 
 
QuadEcc/ HamCon @ 300°/s 

0.473 
 

0.136 
 

0.139 
 

0.148 
 

0.084 
 

0.084 
 

0.092 
 

1.798 
 

1.763 
 

1.641 

0.378 
 

0.030 
 

0.024 
 

0.031 
 

0.027 
 

0.022 
 

0.015 
 

0.807 
 

0.569 
 

0.360 

 
 
--ATSF value reported as normalized to body weight 
--Torque values reported as normalized to body weight and height 
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Table 3: The Relationship Between Strength Measures and Anterior Tibial Shear Force 
at Each testing Velocity 
                                
 

Strength Measure 60˚/s 180˚/s 300°/s 
RQ1: QuadEcc 
 
 
RQ 2: HamCon 
 
 
RQ 3: QuadEcc/ HamCon Ratio 

r = 0.179 
p = 0.371 
 
r = -0.262 
p = 0.186 
 
r = 0.529 
p = 0.005* 

r = 0.335 
p = 0.088 
 
r = -0.228 
p = 0.253 
 
r = 0.556 
p = 0.003* 

r = 0.264 
p = 0.183 
 
r = 0.233 
p = 0.243 
 
r = 0.105 
p = 0.602 

 

*indicates significant relationship (p < 0.05) 
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Figure 1 
 

Vertical Ground Reaction Force vs. Time 
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-Time 0 represents initial ground contact 
-Vertical dashed line represents local minimum used in determining interval over which peak 
ATSF was defined (i.e. initial ground contact to local minimum)
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Figure 2 
 

ATSF vs. QuadEcc/HamCon @ 60˚/s 
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Figure 3 
 

ATSF vs. QuadEcc/HamCon @ 180˚/s 
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Appendix A 

Manuscript 

Abstract 

Objective: To determine if a relationship exists between Anterior Tibial Shear Force (ATSF) 

and eccentric quadriceps strength (QuadEcc), concentric hamstring strength (HamCon), and a 

functional QuadEcc/HamCon strength ratio.   

Design: Correlational analyses were conducted to determine the relationships between the 

measures of lower extremity strength and ATSF. 

Setting: Sports Medicine Research Laboratory.   

Participants: Twenty-seven female recreational athletes with no prior history of ACL injury, 

ligamentous reconstruction, or any knee surgery in the past 2 years.   

Main Outcome Measure(s): ATSF was measured during a jump landing task via inverse 

dynamics.  QuadEcc strength, HamCon strength , a functional QuadEcc/HamCon ratio were 

assessed at 3 testing velocities (60˚/s, 180˚/s,and 300˚/s) using an isokinetic dynamometer.   

Results: In isolation, QuadEcc or HamCon were not significant predictors of ATSF at any of 

the testing velocities.  However, significant positive correlations were found between ATSF 

and the functional QuadEcc/ HamCon ratio at both 60˚/s (r = 0.529, p = 0.005) and 180˚/s (r 

=0.556, p =0.003).  At 300˚/s the QuadEcc/ HamCon ratio was not significantly related to 

ATSF.   

Conclusion: QuadEcc strength and HamCon strength alone are not significant predictors of 

ATSF.  However, when considered in combination as a functional QuadEcc/ HamCon ratio, 

these strength measures are significantly and positively related to ATSF.   This suggests that 

in the presence of high functional QuadEcc/HamCon ratios, female recreational athletes may be 
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predisposed to higher anterior tibial shear forces and, therefore, at a greater risk of ACL 

injury.  Key Words: Anterior tibial shear force, torque, quadriceps to hamstring strength 

ratios 
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Introduction 

 

 Incidence rates of Anterior Cruciate Ligament (ACL) injuries range from 80,000 to 

200,000 yearly.1, 2  It is estimated that at least 1 out of every 3,000 Americans suffers an ACL 

injury.3  One major concern is that females are 2 to 8 times more likely to sustain an ACL 

injury than their male counterparts.1, 3  However, the factors that cause this debilitating 

injury, and more specifically, why females are more prone to ACL injury are not clear.   

 Jump landing is a common functional activity used in many sports, especially 

basketball, soccer, and volleyball.  Landing from a jump has been identified throughout the 

literature as a common mechanism of non-contact ACL injury.4, 5  Dynamic activities of 

sports such as jumping, cutting, and landing, anterior tibial shear forces can greatly exceed 

the loading capacity of the ACL.6-9   To prevent injury to the ACL, dynamic structures 

surrounding the knee must help in providing stability.  This is primarily achieved by two 

major muscle groups acting at the knee, the quadriceps and hamstrings.  Cadaver studies 

have shown that an increase in quadriceps isometric force can significantly increase the 

anterior tibial shear force (ATSF) at the knee, especially with the knee near full extension.9-11  

On the other hand, the hamstrings provide a posterior shear force at the knee, and 

subsequently reduce the strain on the ACL.12, 13 

If the ATSF applied by the eccentric quadriceps contraction is great enough, and the 

hamstring muscles cannot provide an adequate posterior shear force, the ACL is at risk for 

strain or rupture.7, 9   When comparing jump landing strategies in males and females, 

researchers have reported that females activate a greater percentage of their quadriceps 
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musculature than their hamstrings musculature.2, 14-16  In addition, females contract their 

quadriceps first in response to anterior tibial translation.17   

 In addition to the quadriceps dominant activation patterns, females demonstrate 

significantly less isometric, concentric, and eccentric muscle strength in the quadriceps and 

hamstrings compared with males.15, 17, 18  Particularly, females demonstrate substantially 

weaker hamstring muscles when compared to their quadriceps.19, 20  Given the stability 

demands placed on these muscles during jump landing, these findings suggest that females 

may be exposed to excessive ATSF during jump landing tasks.  17 

Strength differences across genders may provide a reasonable explanation why 

females have higher incidence rates of ACL injury than males.  These imbalances may be 

due to differences between the right and left leg, or abnormal ratios between antagonistic 

muscle groups.21  In regard specifically to knee injury, The Hunt Valley Consensus 

Conference on ACL injuries concluded that large magnitude eccentric quadriceps activation 

was considered to be a major risk factor for injury to the ACL.2  Strength imbalances 

between the quadriceps and hamstrings have been related to an increased lower extremity 

injury rate in females, and athletes who demonstrate hamstring strength less than 75% of the 

quadriceps were 1.6 times more likely to sustain a lower extremity injury.  It has been 

proposed that because of the prominent influence of quadriceps activity on ATSF, it is 

important for the hamstrings to counter this force, particularly in the presence of increased 

quadriceps : hamstrings strength ratios (Q/H).6   

Understanding the factors that predispose the female recreational athlete to ACL 

injury may help us to develop strategies to prevent these injuries from occurring.  The 

comparison of quadriceps and hamstrings strength appears to be important in determining the 
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dynamic stability of the knee joint during times of excessive loading.  Therefore, the purpose 

of this study was to determine if a relationship exists between the ATSF during a jump 

landing task and the strength of the quadriceps and hamstrings musculature.   
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Methods 

 

 Twenty-seven female recreational athletes (age = 19.48 ± 1.83 years, height = 165.62 

± 6.45 cm, mass = 61.84 ± 9.75 kg) participated in this study.   Each subject was required to 

have at least 2 years of varsity, club, or intramural experience in a sport that implements a 

jump landing task (e.g basketball, volleyball, or soccer) without having followed a 

professionally designed training or ACL injury prevention program.  To be eligible for 

participation, all subjects met the following criteria:  1) between the ages of 18 and 25 years, 

2) participate in sporting activity 2-3 times per week for at least 30 minutes per session, 3) no 

current lower extremity injury, and 4) no prior history of ACL injury, ligamentous 

reconstruction, or any knee surgery within the past 2 years.  In addition, to reduce the 

likelihood of fatigue, no testing took place within one hour of physical activity or other 

strenuous activity.  Prior to participation, all subjects read and signed an approved informed 

consent agreement. During the testing session, subjects completed 2 separate tasks:  1) a 

jump landing task, and 2) isokinetic strength testing.  The jump landing task was used to 

calculate the subject’s ATSF.  Isokinetic strength testing was used to assess eccentric 

quadriceps and concentric hamstrings isokinetic strength.   

Procedures 

 All testing was performed in a single testing session, lasting approximately 60 

minutes.  The dominant lower extremity of each subject was used as the test limb, defined as 

the leg used to kick a ball for maximum distance.  Subjects rode a stationary bicycle at 

moderate intensity for 5 minutes prior to testing in order to simulate pre-activity warm-up.  

The order in which the two tasks (jump landing and isokinetic strength) were conducted was 
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counterbalanced, and 10 minutes of rest were provided between tasks to minimize the 

likelihood of fatigue.   

Jump Landing Task 

The Flock of Birds electromagnetic motion analysis system (Ascension Technologies, 

Inc., Burlington, VT) was used in conjunction with the Motion Monitor Software System 

(Innovative Sports Training Inc., Chicago, IL) and a non-conductive forceplate (Bertec 

Corporation, Columbus, OH) to calculate peak ATSF.  Kinematic data were sampled at 

144Hz.  The 3-dimensional coordinate system for testing was a right handed system so that 

the participants faced the positive X axis, the positive Y axis was to their left, and the 

positive Z axis was directed superiorly.  Thee forceplate measured the ground reaction forces 

during the jump landing task at a rate of 1440 Hz.  Peak ATSF was measured between the 

time of initial ground contact to the first local minimum following the peak in vertical ground 

reaction forces (Figure 1).  Initial ground contact was defined as the instant that the vertical 

ground reaction force exceeds 10 N.   Peak ATSF as normalized to body weight was then 

calculated as the average of the peaks of each of the 10 trials.   

The examiner demonstrated the jump landing task, and the subjects were allowed to 

practice this task a maximum of 5 times.  Electromagnetic tracking sensors were then placed 

on each subject at the apex of the sacrum, midpoint of the lateral thigh, and the anteromedial 

shank. The sensors on the thigh and shank were placed over areas of least muscle mass to 

minimize the potential for motion artifact.  The sensors were affixed to the body by pre-wrap, 

athletic tape, and double-sided tape.  Once the electromagnetic sensors were attached, the 

subjects were asked to stand in a neutral posture with their arms relaxed at their sides.  The 

following bony landmarks were then digitized, in the following order, using a mobile 
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electromagnetic sensor attached to a stylus: T12 spinous process, xyphoid process, medial 

and lateral femoral condyles, medial and lateral malleoli, and the left and right ASIS. 

Digitization of bony landmarks served to define the segment end-points and joint centers to 

create a segment linkage model.  The knee joint center was defined as the midpoint between 

the medial and lateral femoral condyles, and the ankle joint center was defined as the 

midpoint between the medial and lateral malleolus. 

 During the jump-landing task, subjects jumped from a 30 cm high platform and 

landed on the forceplate with the dominant foot, and with the non-dominant foot off to the 

side of the forceplate. The platform was set at a horizontal distance equal to 50% of the 

subject’s body height from the front edge of the forceplate.  Each subject was instructed to 

jump straight forward off the 30 cm platform, and to land on the forceplate, and then 

vertically jump for maximum height.  During testing, the subjects performed 10 trials with 30 

seconds of rest between trials to minimize the risk of fatigue. Trials in which the subject 

failed to land with the foot of the dominant leg on the forceplate were deleted, and a new trial 

was performed.   

Isokinetic Strength 

The Biodex 3 Isokinetic dynamometer (Biodex Medical System, Inc., Shirley, NY) 

was used to measure quadriceps and hamstrings peak torque in Newton · meters.  Both 

concentric hamstring strength and eccentric quadriceps strength were measured using 2 

separate protocols; 1 for knee flexion, and 1 for knee extension.  Subjects were positioned 

sitting upright, and were secured using torso, pelvic, thigh, and shin stabilization straps. The 

input shaft of the dynamometer was aligned with the axis of rotation of the subject’s knee, 

considered to be the point at the center of a line that passes transversely through the femoral 
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condyles. The shin pad attachment was placed 1-2 cm proximal to the subject’s lateral 

malleolus.  Starting at 90˚ of knee flexion, quadriceps strength was measured using a 

concentric/eccentric protocol where the eccentric data were used for statistical analysis 

(QuadEcc).  Starting at 90˚ of knee flexion, hamstrings strength was measured using an 

eccentric/concentric protocol where the concentric data were used for statistical analysis 

(HamCon).  Pilot testing indicated that a number of subjects were unable to produce a large 

enough knee moment to engage the dynamometer at knee flexion angles less than 20°. 

Therefore, the range of motion was set from 20˚ to 90˚ of knee flexion to ensure strength 

testing across a consistent range in all subjects. Five repetitions were completed at each 

speed of testing (60˚/s, 180˚/s and 300˚/s), and peak torque was averaged across the middle 3 

repetitions.  The order of the speed of testing, as well as the order in which the quadriceps 

and hamstrings were tested, were counterbalanced.  Torque data were gravity corrected via 

the Biodex software. 

 The strength testing began with familiarization (warm-up) repetitions for both 

protocols. Subjects completed five maximal contractions of either the concentric/eccentric 

knee extension or eccentric/concentric knee flexion.  One minute of rest was provided 

between each speed of testing, and 5 minutes of rest between the quadriceps and hamstrings 

protocols.  Instructions and verbal encouragement were the same for all subjects during the 

maximum strength testing.  

Data Reduction and Statistical Analysis 

 Data reduction was performed by the Biodex Advantage Software version 3.2 and 

Matlab 12 (The Math Works, Inc.).  Peak ATSF data was normalized to body weight, and 

peak torque values were normalized to the product of body weight and height.  Simple linear 
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regression analyses were performed on the data to evaluate the relationship between 1) 

QuadEcc and ATSF, 2) HamCon and ATSF, and 3) The functional QuadEcc/HamCon ratio and 

ATSF.  We chose to use this ratio rather than conventional assessment strategies due to the 

fact that it is likely a better representation of the contractile status of the quadriceps 

(eccentric) and hamstrings (concentric) during the loading phase of landing.  An a priori 

statistical power analysis for regression models was performed on pilot test data, and it was 

determined that to obtain a statistical power of 0.80, 26 subjects would be needed.  Statistical 

significance was set at α <0.05.  Statistical analyses were performed using SPSS software 

version 13.0 (Chicago, IL). 

 



58 
 

Results 

 

Regression Analyses  

Regression analyses indicated that neither QuadEcc nor HamCon strength were 

significant predictors of peak ATSF when considered in isolation.  Simple correlations 

between each strength measure and ATSF for each muscle at each velocity were non-

significant (p > 0.05).  However, when considered in combination in the form of a functional 

ratio (i.e. QuadEcc/HamCon), these strength measures were significantly and positively related 

to peak ATSF at both 60°/s (r = 0.529, p = 0.005) and 180°/s (r = 0.556, p = 0.003).  No other 

correlations were statistically significant.  Means and standard deviations for all assessment 

variables are presented in Table 1.  Correlation coefficients and associated probability 

statistics are presented in Table 2.  Simple linear regression models and R-squared values for 

each of the significant findings are presented in Figures 2 (60°/s) and 3 (180°/s). 
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Table 1:  Assessment Variable Descriptive Statistics  
  
 
Variable  Mean SD 
ATSF 
 
Peak QuadEcc Torque @ 60°/s 
 
Peak QuadEcc Torque @ 180°/s  
 
Peak QuadEcc Torque @ 300°/s  
 
Peak HamCon Torque @ 60°/s  
 
Peak HamCon Torque @ 180°/s  
 
Peak HamCon Torque @ 300°/s  
 
QuadEcc/ HamCon @ 60°/s 
 
QuadEcc/ HamCon @ 180°/s 
 
QuadEcc/ HamCon @ 300°/s 

0.473 
 

0.136 
 

0.139 
 

0.148 
 

0.084 
 

0.084 
 

0.092 
 

1.798 
 

1.763 
 

1.641 

0.378 
 

0.030 
 

0.024 
 

0.031 
 

0.027 
 

0.022 
 

0.015 
 

0.807 
 

0.569 
 

0.360 

 
 
--ATSF value reported as normalized to body weight 
--Torque values reported as normalized to body weight and height 
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Table 2: The Relationship Between Strength Measures and Anterior Tibial Shear Force 
at Each testing Velocity 
                                
 

Strength Measure 60˚/sec 180˚/sec 300°/sec 
QuadEcc 
 
 
HamCon 
 
 
QuadEcc/ HamCon Ratio 

p = 0.371 
r = 0.179 
 
p = 0.186 
r = -0.262 
 
p = 0.005* 
r = 0.529 

p = 0.088 
r = 0.335 
 
p = 0.253 
r = -0.228 
 
p = 0.003* 
r = 0.556 

p = 0.183 
r = 0.264 
 
p = 0.243 
r = 0.233 
 
p = 0.602 
r = 0.105 

 

* indicates significant relationship (p <  0.05) 
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Figure 1 

 
Vertical Ground Reaction Force vs. Time 
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-Time 0 represents initial ground contact 
-Vertical dashed line represents local minimum used in determining interval over which peak 
ATSF was defined (i.e. initial ground contact to local minimum)
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Figure 2 
 

ATSF vs. QuadEcc/HamCon @ 60˚/s 
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Figure 3 
 

ATSF vs. QuadEcc/HamCon @ 180˚/s 
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Discussion 

 

The primary findings of this study were that QuadEcc strength and HamCon strength 

alone are not significant predictors of ATSF.  However, when considered in combination 

as a functional QuadEcc/HamCon ratio, these strength measures are significantly and 

positively related to ATSF.   This suggests that in the presence of high functional 

QuadEcc/HamCon ratios, female recreational athletes may be predisposed to higher ATSF.   

Comparison of our data to previous literature is limited because we are unaware 

of any previous attempts to directly correlate strength measures and ATSF.  

Conventionally, the Q/H ratio is measured as a maximal concentric isokinetic quadriceps 

contraction relative to a maximal concentric isokinetic hamstring contraction.22  Aagaard 

et al.23 proposed a new concept for the measurement of isokinetic Q/H ratios, the 

functional eccentric quadriceps/ concentric hamstring comparison.  Functional 

QuadEcc/HamCon ratios are slightly higher than the conventional method, and range from 

2.5-3.33 in elite athletes.23, 24  Our data found slightly lower QuadEcc/HamCon ratios, 

ranging from 1.80 (60˚/s) to 1.64 (300˚/s) in female recreational athletes.  The greater 

ratio values reported by previous authors may be attributed to differences in the samples, 

as these previous investigations included elite athletes, while our sample consisted of 

recreational athletes.  Our data are also consistent with previous research involving 

isokinetic strength assessment in that as the velocity of the test increases, the Q/H ratio 

decreases.20, 24, 25 

Conventional Q/H ratios tested at 60˚/s have been found to be higher than the 

functional QuadEcc/HamCon ratios found in our data.  Rosene et al.25 found conventional 
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Q/H ratios in female collegiate athletes to be 1.99 and 1.70 at 60˚/s and 180˚/s, 

respectively.  Our functional ratios at 60˚/sec and 180˚/sec were 1.80 and 1.76 

respectively.  Since eccentric muscle force is greater than concentric force production it 

would be expected to see our values higher than those of Rosene et. al.23, 26, 27  This may 

suggest that female collegiate athletes have more developed quadriceps muscles in 

relation to their hamstrings when compared to recreational athletes, a notion supported by 

Bennell et al.28 who suggested that differences in Q/H ratios may be functions of the level 

of competition.  Ratios greater than 1.00 indicate greater quadriceps strength relative to 

hamstrings strength.  As the ratio approaches 1.00, the hamstrings have an increased 

functional capacity for providing stability at the knee joint.29  This increased knee 

stability may reduce the anteriorly directed shear of the tibia on the femur and the 

subsequent load placed on the ACL.30     

Injury patterns in female athletes have been shown to be affected by muscular 

imbalances.21, 31  In a study by Hewett et al.,31 it was demonstrated that untrained females 

were 4.8 to 5.8 times more likely to sustain a knee injury than males, while 

neuromuscularly trained female athletes were only 1.3 to 2.4 times more likely to sustain 

a knee injury than males.  Knapik et al.21 demonstrated female athletes were 1.6 times 

more likely to sustain a lower extremity injury if they had a Q/H ratio greater than 1.33 at 

180˚/s.  In ACL deficient patients, Li et al.30 found a significant relationship between Q/H 

ratios and recreational athletes’ scores on a functional ability rating system.   

Similar investigations have mimicked quadriceps and hamstring torque by 

applying external forces to cadaveric musculature.9, 11, 13, 32, 33  Numerous studies have 

demonstrated that greater quadriceps activation causes ACL strain by producing anterior 
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tibial shear forces.10, 34-36  DeMorat et. al demonstrated that quadriceps loading alone is 

capable of producing enough force to strain and rupture the ACL.32  Withrow et. al 

concluded that an increase in applied quadriceps force correlated with an increase in ACL 

strain in cadaveric knees during a simulated one-legged landing task.9  Research has also 

shown that the hamstrings have the ability to provide a posterior tibial shear force that 

counteracts the ATSF provided by the quadriceps.6, 10, 33, 35  Our data would suggest that 

the presence of strong hamstring musculature in relation to its antagonist quadriceps 

musculature would indeed lead to decreased ATSF at the knee.   

Clinical Application 

 The development of the functional QuadEcc/HamCon strength ratio allows us to 

look more in depth at what types of forces the muscles stabilizing the knee joint produce 

during dynamic activities.  The functional QuadEcc/HamCon used in our study is 

representative of the eccentric muscle function of the quadriceps that absorbs the force of 

the landing task and the concentric muscle function of the hamstrings that acts to stabilize 

the knee joint.  As research continues to link abnormal Q/H ratios to increased risk of 

injury,21, 31, 37 alternative isokinetic strength measures may prove more important when 

implementing clinical practice.  Isokinetic testing has long been used in clinical practice 

as a return to function gauge following ACL reconstruction rehabilitation.  By testing the 

affected side in relation to the unaffected side, clinicians are able to attempt to increase 

the strength of the affected side to be similar to the unaffected side. 

This functional ratio may provide a better return-to-function criterion, as it is 

linearly related to ATSF.  Bennell et al.28 have proposed the use of Q/H ratios as a 

screening tool for susceptibility to injury.  As the functional QuadEcc/HamCon strength 
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ratio predicts ATSF, this measure may also be useful from an injury prevention 

perspective.  Recently, neuromuscular and strength training programs have been designed 

to reduce the risk of ACL injuries,31, 38, 39 and strategies to decrease ATSF have been 

shown to decrease the load placed on the ACL.15, 40  Therefore, it is important as 

clinicians to recognize the relationship between functional QuadEcc/HamCon ratios and 

ATSF, and begin to develop strategies in our athletes to decrease abnormal 

QuadEcc/HamCon ratios.   

Future Research 

 Future research needs to be conducted using the functional QuadEcc/HamCon ratios 

used in this study and proposed by Aagaard et. al 23  Research should concentrate on 

establishing the relationship between ATSF and QuadEcc/HamCon ratios in wider 

populations, such as male recreational athletes, collegiate athletes, and athletes with a 

history of ACL injury.  In addition, evaluating conventional Q/H ratios may provide 

some insight into their relationship with ATSF.  Future research should concentrate on 

comparing the functional QuadEcc/HamCon ratios at specific ranges of motion.  Kannus et 

al. demonstrated that peak torque values vary with the speed of testing.20  Evaluating the 

relationship between ATSF and the functional QuadEcc/HamCon ratio at specific values of 

knee flexion (e.g. knee flexion angle at peak ATSF) may improve the productive power.  

Similarly, the relative abilities of various Q/H ratios (e.g. functional vs. conventional) to 

predict shear forces should be evaluated. 

Limitations 

There were limitations in this study that warrant discussion.  Firstly, our study 

was completed in a research laboratory which differs significantly from the playing fields 
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and courts of our research participants.  Furthermore, tethering of the subject to the data 

collection apparatus may alter landing patterns in the research setting.  In addition, the 

strength testing protocol required the subject to be sitting upright, while ATSF it was 

compared to came from a landing task.  Peak torque values may differ across these tasks, 

as the length-tension characteristics of the knee and hip flexors and extensors likely 

differ.  Also, our study was limited in the fact that the range of motion for isokinetic 

strength testing was set from 20˚-90˚ due to pilot testing revealing an inability of the 

subject to initiate movement on the dynamometer at angles less than 20˚ of knee flexion.  

Peak torque values for the tested muscles may very well occur in that specific range of 

motion, however we cannot conclude this from our data.   
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Statistical Output 
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Correlations 
 
 
 
 

Descriptive Statistics
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University of North Carolina-Chapel Hill 
Consent to Participate in a Research Study  
Adult Participants Female Recreational Athletes ages 18-25 
Social Behavioral Form 
______________________________________________________________
__________ 
 
IRB Study # 06-0543   
Consent Form Version Date: Version 2 – 11/29/2006  
 
Title of Study: The Relationship between Anterior Tibial Shear Force and 
Quadriceps\Hamstring Strength, Knee Flexion Angle, Hip Flexion Angle, and Trunk Flexion 
Angle during a Jump Landing Task 
 
Principal Investigator: Douglas R. Bennett LAT, ATC  
UNC-Chapel Hill Department: Exercise and Sport Science 
UNC-Chapel Hill Phone number: 919-962-2067 
Email Address: drb215@email.unc.edu   
Co-Investigators: Hollie J. Walusz LAT, ATC; Darin Padua, PhD, ATC; Troy Blackburn, 
PhD, ATC; Michelle Boling, MS, ATC; Melanie McGrath, MS, ATC; Chris Hirth MS, PT, 
ATC 
Faculty Advisor:  Darin Padua, PhD, ATC 
Funding Source:            
 
Study Contact telephone number:  919-962-2067 
Study Contact email:   drb215@email.unc.edu 
_________________________________________________________________ 
  
What are some general things you should know about research studies? 
 
You are being asked to take part in a research study.  To join the study is voluntary.  
You may refuse to join, or you may withdraw your consent to be in the study, for any reason. 
 
Research studies are designed to obtain new knowledge that may help other people in the 
future.  You may not receive any direct benefit from being in the research study. There also 
may be risks to being in research studies. 
 
Deciding not to be in the study or leaving the study before it is done will not affect your 
relationship with the researcher, your health care provider, or the University of North 
Carolina-Chapel Hill.  If you are a patient with an illness, you do not have to be in the 
research study in order to receive health care.  
 
Details about this study are discussed below.  It is important that you understand this 
information so that you can make an informed choice about being in this research study.  
You will be given a copy of this consent form.  You should ask the researchers named above, 
or staff members who may assist them, any questions you have about this study at any time. 
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What is the purpose of this study?  
The purpose of this study is to determine if a relationship exists between lower extremity 
motion and strength with forces at the knee during a jump landing task.  The ACL provides 
as much as 86% of the static restraint to anterior tibial translation (ATT) on the femur.  When 
anterior tibial shear forces are great enough, the tibia will translate anteriorly, and ACL 
rupture can occur.  During the dynamic activities of sports such as jumping, cutting, and 
landing, these forces can greatly exceed the loading capacity of the ACL.  Thus, there is a 
need for additional stability at the knee joint.  This additional stability is derived via dynamic 
stabilizers (musculotendinous structures).  Also, more erect sagittal plane postures have been 
found to increase strain on the ACL.  Therefore, determining if such relationships exist may 
aid us in preventing ACL injury. 
     
You are being asked to participate in the study because you are a female recreational athlete 
between the ages of 18 and 25 who may participate in sporting activities that involve a jump-
landing. 

 
Are there any reasons you should not be in this study? 
You should not participate in this study if any of the following apply to you:  

• You have a previous history of an anterior cruciate ligament (ACL) injury 
• You have had ligamentous reconstruction or any knee surgery within the past two 

years 
• You have had a current lower extremity injury that would affect your performance of 

a jumping task. 

 
How many people will take part in this study? 
If you decide to participate in this study, you will be one of approximately 40 females in this 
research study. 
 
How long will your part in this study last?  
All testing will be performed in one session lasting approximately 60 minutes  
  
What will happen if you take part in the study? 
During the course of this study, the following will occur: 
 

• You will report to the Sports Medicine Research Laboratory in Fetzer Gymnasium for 
one 60-minute testing session.  You will be asked to wear athletic shorts, a t-shirt, and 
your athletic shoes.  You will then complete a health questionnaire, and data will be 
collected from you including your age(years), height(cm), mass(kg), and leg 
dominance prior to the start of the testing session.  Next you will ride a stationary 
bicycle at moderate intensity for 5 minutes as part of a warm-up prior to the jumping 
activity.  Demonstration of the jumping task will be shown to you and you will be 
able to practice prior to data collection. 
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• You will have electromagnetic motion-tracking sensors placed on your upper back, 
low back, thigh, and shin that are designed to measure the movement patterns of the 
lower extremity and trunk.  A female examiner (Hollie Walusz) will perform all 
sensor placements.  Once the electromagnetic sensors are attached, you will be asked 
to stand in a neutral position with your arms relaxed at your sides. We will then 
define the following bony landmarks for the motion tracking software: T12 spinous 
process (middle of back), xyphoid process (lower end of breast bone), medial femoral 
condyle (inside of knee), lateral femoral condyle (outside of knee), distal end of 
medial malleolus (inside of ankle), distal end of lateral malleolus (outside of ankle), 
left Anterior Superior Iliac Spine (ASIS) (hip bone at the top of your thigh) and right 
ASIS (hip bone at the top of your thigh). 

• You will then be asked to perform a jump-landing task that involves jumping down 
from a 30-cm high box and landing with one foot on a force plate and the other off to 
the side on a carpeted surface. You will perform 10 trials with at least 30 seconds of 
rest between each trial.  

• Next you will be set up on a dynamometer (measures force production) in order to 
test muscular strength. You will be positioned sitting upright and the female 
investigator (Hollie Walusz) will secure you using torso, hip, thigh, and shin 
stabilization straps. After an explanation of the strength testing task, you will be 
allowed to practice each task sub-maximally. You will then perform five maximal 
contractions of two different strength protocols, consisting of three different testing 
speeds, targeting your quadriceps and hamstring musculature.   

 
What are the possible benefits from being in this study? 
Research is designed to benefit society by gaining new knowledge.  You will not benefit 
personally from being in this research study, however the benefits to society include gaining 
information that researchers can analyze to better understand how body movement and 
strength differences in females affect ACL injury.  This may help to prevent ACL injury in 
the future. 

 

What are the possible risks or discomforts involved from being in this study?  
As with any physical activity, participation in this study carries the risk of injury. The 
motions that you will be asked to perform are performed regularly during sporting activities, 
therefore, you will be familiar with them and should be able to perform the tasks with 
minimal injury risk. Demonstration of jump-landing task will be shown to you prior to 
completing the task.  Also, practice repetitions of both the jump landing task and strength 
testing procedures will be allowed for familiarization. In case of injury, medical personnel 
(certified athletic trainers) will be located in the same building as where the testing will take 
place, and ice will be available if needed. You will be free to cease participation at any time.  
In addition, there may be uncommon or previously unknown risks that might occur.  You 
should report any problems to the researchers. 
 
How will your privacy be protected?   
No participants will be identified in any report or publication about this study.  You will be 
assigned an identification number (ID) for data collection that will be matched to the 
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identifiers listed above in an excel document.  This document will be stored on a separate CD 
apart from all other data that will be collected.  These CDs will be stored in a locked cabinet 
with access only to members of the research team.  Once all participants have completed the 
testing, identifiers will be deleted from the excel document.  All data will be stored on CDs 
which will be kept in the Sports Medicine Research Laboratory.  All data analysis will be 
performed on computers in the Sports Medicine Research Laboratory where a password is 
necessary for access to the computers.  Only members performing research have access to 
these computers, therefore identification of any participants or data is very unlikely.  If 
disclosure is ever required, UNC-CH will take all steps allowable by law to protect the 
privacy of personal information. 
 
Personal privacy during testing sessions will be maintained by limiting the people within the 
research lab to current employees of the lab and the testers themselves.  The only door to 
enter the lab is locked with key card access to ensure privacy.  Although every effort will be 
made to keep research records private, there may be times when federal or state law requires 
the disclosure of such records, including personal information.  This is very unlikely, but if 
disclosure is ever required, UNC-Chapel Hill will take steps allowable by law to protect the 
privacy of personal information.  In some cases, your information in this research study could 
be reviewed by representatives of the University, research sponsors, or government agencies 
for purposes such as quality control or safety.    

 
What will happen if you are injured by this research? 
All research involves a chance that something bad might happen to you.  This may include 
the risk of personal injury. In spite of all safety measures, you might develop a reaction or 
injury from being in this study. If such problems occur, the researchers will help you get 
medical care, but any costs for the medical care will be billed to you and/or your insurance 
company. The University of North Carolina at Chapel Hill has not set aside funds to pay you 
for any such reactions or injuries, or for the related medical care. However, by signing this 
form, you do not give up any of your legal rights.  Certified Athletic Trainers will be present 
during all testing sessions in the rare possibility that an injury occurs.   
 
Will you receive anything for being in this study? 
You will not receive anything for taking part in this study. 
 
Will it cost you anything to be in this study? 
It will not cost you anything to be in this study.  Each participant is only responsible for her 
own transportation to the Sports Medicine Research Laboratory for their one-hour testing 
session. 
 
What if you are a UNC student? 
You may choose not to be in the study or to stop being in the study before it is over at any 
time.  This will not affect your class standing or grades at UNC-Chapel Hill.  You will not be 
offered or receive any special consideration if you take part in this research. 
 
What if you are a UNC employee? 
Taking part in this research is not a part of your University duties, and refusing will not affect 
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your job.  You will not be offered or receive any special job-related consideration if you take 
part in this research.   
 
What if you have questions about this study? 
You have the right to ask, and have answered, any questions you may have about this 
research. If you have questions, or if a research-related injury occurs, you should contact the 
researchers listed on the first page of this form. 
 
 
What if you have questions about your rights as a research participant? 
All research on human volunteers is reviewed by a committee that works to protect your 
rights and welfare.  If you have questions or concerns about your rights as a research subject 
you may contact, anonymously if you wish, the Institutional Review Board at 919-966-3113 
or by email to IRB_subjects@unc.edu. 
 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Title of Study: The Relationship between Anterior Tibial Shear Force and 
Quadriceps\Hamstring Strength, Knee Flexion Angle, Hip Flexion Angle, and Trunk Flexion 
Angle during a Jump Landing Task 
Study # : 06-0543 
 
Participant’s Agreement:  
 
I have read the information provided above.  I have asked all the questions I have at this time.  
I voluntarily agree to participate in this research study. 
 
_________________________________________   _________________ 
Signature of Research Participant     Date 
 
_________________________________________ 
Printed Name of Research Participant 
 
_________________________________________  _________________ 
Signature of Person Obtaining Consent   Date 
 
_________________________________________ 
Printed Name of Person Obtaining Consent 
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University of North Carolina – Chapel Hill 
Research Study Questionnaire 
Adult Participants 
             
 
Behavioral IRB Study # 06-0543 
 
Title of Study: The Relationship Between Anterior Tibial Shear Force and Quadriceps\Hamstring 
Strength, Knee Flexion Angle, Hip Flexion Angle, and Trunk Flexion Angle during a Jump Landing 
Task 
Principal Investigator: Douglas R. Bennett, LAT, ATC 
UNC-CH Department: EXSS 
Phone Number: 919-962-7187 
Co-Investigators: Hollie J. Walusz LAT, ATC; Darin Padua, PhD, ATC; Troy Blackburn, PhD, 
ATC; Michelle Boling, MS, ATC; Melanie McGrath, MS, ATC; Chris Hirth MS, PT, ATC 
Sponsor: None 
             
 
Name_________________________   Age__________________________ 
 
Height (cm) ____________________   Weight (kg)____________________ 
 
1. Are you currently in good general health? 
 
 YES / NO 
 
2. Do you currently have a lower extremity injury that has required days missed from physical 
activity? 
 
 YES / NO 
 
3.  Do you have a prior history of ACL injury, ligamentous reconstruction, or any knee surgery 
within the past two years? 
 
 YES / NO 
 
4. Do you have any current symptoms of injury? 
 
 YES / NO 
 
5. How often do you exercise per week?     Days 
 
6. Approximately how many minutes do you exercise on those days?  Minutes 
 
7. What type of exercise activity do you most often participate in (soccer, volleyball, basketball, 
etc.)? 
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VOLUNTEERS NEEDED FOR 
RESEARCH STUDY 

 
Female volunteers who participate in recreational 

sporting activity  
are needed to participate in a research study  

 
You should not volunteer in the study if you have... 

* prior history of knee surgery within the past 2 years 
* prior history of ACL injury 
* presence of other lower extremity injury   

 
If you volunteer for this study, you will... 

* report to the Sports Medicine Research Laboratory in Fetzer 
Gymnasium for one testing session lasting approximately 60 
minutes 

* perform10 trials of a jump landing task while motion analysis 
data is collected 

* perform 4 strength tests (concentric knee extension, eccentric 
knee extension, concentric knee flexion, eccentric knee flexion) 

* participate in research that may help prevent ACL injury!! 
 
Contact Doug Bennett or Hollie Walusz if you are interested in 
volunteering for this study. 
 
Doug Bennett, LAT, ATC        
 Hollie Walusz, LAT, ATC 
Phone number: 814-244-2803       
 Phone number: 319-830-0796 
Email: drb215@email.unc.edu       
 Email: walusz@email.unc.edu 
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