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ABSTRACT 
 

AMANDA LOUISE JACOB: The organization of proteins involved in synaptic 
plasticity 

(Under the direction of Richard J Weinberg) 

 

 The role that PSD organization plays in synaptic function and plasticity is only 

beginning to be understood. AMPARs play a well-established role in LTP; up-

regulation of AMPARs within the postsynaptic density (PSD) is generally accepted to 

be the primary mechanism of NMDAR-dependent LTP. The function that AIDA-1 

(Amyloid-β protein precursor intracellular domain-associated protein-1), a recently 

discovered component of the PSD, plays within synapses is less clear; however, in 

cultured hippocampal neurons, a portion of AIDA-1 translocates to the nucleus and 

increases downstream protein translation in response to NMDAR activation, Thus, 

experimental evidence suggests a role for AIDA-1 in synapse-to-nucleus signaling 

during NMDAR activation. My project uses electron microscopy and other 

histological techniques to determine the basal organization of AMPARs and AIDA-1 

within the PSD.  These data may provide better understanding of the roles these 

proteins play. 
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CHAPTER 1 

Understanding plasticity through synaptic structure

1.1. Introduction (Synaptic plasticity and structure) 

Synapses serve as sites of information exchange between presynaptic 

neurons and their postsynaptic targets. Excitatory glutamatergic synapses form 

between axonal boutons and dendritic spines, femtoliter-sized membrane 

protrusions that compartmentalize postsynaptic signaling (Bourne et al., 2008). The 

postsynaptic density (PSD), a protein-rich region within spines that directly opposes 

sites of neurotransmitter release, serves as a general coordinator of postsynaptic 

neurotransmission (Okabe, 2007; Sheng et al., 2007). Organizing glutamate 

receptors is a primary function of the PSD. The number of glutamate receptors 

within the PSD controls the strength of synaptic transmission; synapses with more 

glutamate receptors produce larger postsynaptic signals, while fewer receptors 

result in smaller response (Takumi et al., 1999). PSDs also contain scaffolding 

proteins, which can arrange proteins into signaling complexes to facilitate 

downstream signal transduction. Knockout of scaffolding proteins alters synaptic 

currents, indicating the functional importance of PSD organization (Béïque et al., 

2006; Weisenhaus et al., 2010).  In addition, several diseases including autism 

spectrum disorders, schizophrenia, mental retardation, and early stage Alzheimer’s 

disease have been linked to disruptions in synaptic function that might be due to 

abnormalities in PSD structure (Selkoe at al., 2002; Stephan et al., 2006; Knobloch 
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et al., 2008, Südhof, 2008; Schütt et al., 2009; Pfeiffer et al., 2009; van Spronsen et 

al., 2010).  

Changes in the strength of synaptic responses, otherwise known as synaptic 

plasticity, are widely believed to underlie memory storage in the brain (Malenka et 

al., 1999; Malinow et al., 2003). Long-term potentiation (LTP), one of the most 

studied and best understood forms of synaptic plasticity, is a long-lasting increase in 

synaptic response. LTP was first discovered in dentate gyrus, an area of the 

hippocampus, known to play an important role in learning and memory (Bliss et al., 

1973). The primary pathway through hippocampus has well-defined circuitry:  input 

enters hippocampus from the enthorinal cortex (EC), passes from granule cells in 

dentate gyrus to pyramidal cells in region CA3 to pyramidal cells in CA1 to the 

subiculum, and then leaves the hippocampus to reenter the EC. Synapses formed 

by CA3 pyramidal cells onto CA1 pyramidal cells form in a subregion in 

hippocampus called stratum radium (SR); these synapses are arguably the most 

studied in the brain. Within CA1 SR synapses, NMDA (N-methyl-D-aspartate 

receptor) receptor-dependent LTP (NMDAR-LTP) is the primary mechanism of 

synaptic potentiation. During this form of LTP, high frequency activation of synapses 

leads to activation of NMDARs, leading to persistent increases in synaptic strength. 

Similar NMDAR-LTP occurs in other areas of the brain, including cerebral cortex 

(Kirkwood et al., 1995).  

 LTP is a complex multistep process, which can be divided into several 

temporal periods: short-term plasticity, early LTP (E-LTP) and late LTP (L-LTP). 

Short-term plasticity, which last a few second or less, is beyond the scope of this 
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review.  E-LTP is transient, generally lasting less than 4 hours, mediated by changes 

in synaptic proteins. L-LTP is longer lasting and requires protein synthesis (Krug et 

al., 1984; Frey et al., 1989; Calixto et al., 2003). Protein synthesized during L-LTP 

can be translated from two different sources: preexisting mRNA and newly 

synthesized mRNA produced through nuclear communication. Translation of 

preexisting RNA plays an important role in the early phase of L-LTP expression 

(Sutton et al., 2005; Sutton et al., 2006).  However, long term maintenance of L-LTP 

( >8 hours ) requires  transcription; application of the transcription inhibitor 

actinomycin-D can block late-phase LTP in synapses in hippocampus (Nguyen et 

al., 1994; Frey et al., 1996; Calixto et al., 2003).  These studies indicate that gene 

expression and synapse-to-nucleus communication are required for long term 

maintenance of LTP.  

Structural remodeling of the PSD helps to make LTP-induced changes in 

synaptic strength permanent. Multiple studies have correlated PSD size and 

morphology to synaptic plasticity; synapses that have undergone potentiation 

contain larger, perforated PSDs, while PSDs of synapses where plasticity has not 

occurred are smaller (Geinisman et al., 1991; Muller et al., 2000; Toni et al., 2001; 

Urakubo et al., 2006). In addition, changes in PSD composition accompany and, in 

some forms of LTP, account for LTP expression (Malenka et al., 2004; Malinow et 

al., 2002; Sheng et al., 2002). Increased numbers of glutamate receptors have been 

shown to be the major expression mechanism of NMDAR-LTP (Shi et al., 1999). 

However, the changes in PSD morphology and composition are just beginning to be 

understood. 
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1.2. Synapse organization and plasticity 

A. PSD organization and biochemical composition 

PSDs were first identified in electron microscopy studies of synapses; a 

subpopulation of synapses, later identified as excitatory, was found to have an 

electron-dense thickening at the postsynaptic membrane (Gray, 1959; Gray, 1961). 

PSDs are found throughout the nervous system, with particularly high densities in 

forebrain and cerebellum (Harris et al., 1988; Harris et al., 1989; Chicurel et al., 

1992).  PSD shape and size varies considerably across different areas of brain and 

even within specific brain regions. Within hippocampal CA1 stratum radiatum, PSDs 

typically have diameters between 200-500 nm, thicknesses between 30-60 nm, and 

areas between 0.008 to 0.54 µm2 (Harris et al., 1992; Spacek et al., 1998; Harris et 

al., 1989). Smaller PSDs are typically circular discs, while larger PSD often have 

more complex and irregular shapes, and may contain perforations.  

 The PSD is estimated to contain up to a thousand different proteins (Jordan et 

al., 2004; Yoshimura et al., 2004; Peng et al., 2004). These PSD proteins carry out a 

variety of functions ranging from structural maintenance to signal transduction. 

Structural maintenance of synapses involves cytoskeletal elements, such as actin 

and actin binding proteins, which maintain synapse structure; and cell adhesions 

proteins, such as neuroligin, neurexin, and β-catenin, which stabilize the connection 

between presynaptic axon bouton and dendritic spine. Signal transduction proteins 

include glutamate receptors and other proteins that directly pass signals, receptor 

accessory proteins, and downstream signaling elements. Scaffolding proteins 

organize proteins within the PSD (Okabe, 2007; Sheng et al, 2007). Here, I focus on 
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describing proteins involved in signal transduction and the proteins that organize 

them within PSDs. Brain regions differ significantly in PSD protein composition; here, 

I focus on studies of CA1 SR synapses  

I. Glutamate receptors and accessory proteins 

PSDs within hippocampal CA1 stratum radium contain four types of glutamate 

receptors: AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), 

NMDARs, kainate receptors and mGluRs (metabotrophic glutamate receptors; 

Shinohara et al., 2011). AMPARs, NMDARs, and kainate receptors are ligand-gated 

ion channel that open to allow the flow of ions in response to glutamate (Traynelis et 

al., 2010). mGluR do not contain an ion channel; their activation initiates intracellular 

signaling cascades (Anwyl, 1999). Each receptor type plays a distinct role in 

synapse function. AMPARs pass the majority of synaptic current during basal 

synaptic transmission at excitatory synapses (Hollman et al. 1994). NMDARs play 

an important role in synaptic plasticity; under basal conditions, NMDARs are usually 

functionally silent due to a voltage-dependent Mg2+ block, and only open fully in 

plasticity-inducing conditions. Kainate receptors do not significantly contribute to 

current in CA1 SR; their role remains unknown (Huettner, 2003; Pinheiro et al., 

2006). mGluRs play a modulatory role in synapse function, performing a variety of 

actions that alter synaptic transmission and neuroexciability (Mannaloni et al., 2001). 

Within a single PSD in CA1 SR, there are estimated to be an average of 15 

AMPARs, 20 NMDARs, and 20 mGluRs (Sheng et al., 2007). mGluR expression 

levels have not been quantified; however an electron microscopy study indicates 

mGluRs are in a majority of synapse (Lujan et al., 1996).  There is a close 
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correlation between AMPAR number and PSD size, while NMDAR number is not 

related to PSD size (Takumi et al., 1999; Racca et al., 2000). Virtually all excitatory 

CA1 synapses contain NMDARs, while AMPARs were undetectable within ~12% of 

synapses (Racca et al., 2000).   

TARPs (transmembrane AMPA receptor regulatory proteins) are a family of 

auxiliary AMPAR subunits that modulate AMPAR trafficking and function (Tomita et 

al., 2003; Payne, 2008). There are 4 TARP isoforms: stargazin/ γ-2, γ-3, γ-4 and γ-8. 

Within hippocampus, stargazin and γ-8 are the most prevalent forms (Payne, 2008). 

Stargazin regulates synaptic retention; stargazin binds AMPARs to PSD-95, 

maintaining AMPARs in PSDs (Bats et al., 2007). The role of γ-8 is not as well 

understood; it has been shown to be important in synaptic transmission, but not in 

synaptic plasticity (Sumioka et al., 2011). TARPs alter electrophysiological 

properties of AMPARs; TARP overexpression increases AMPAR current, while 

TARP knock down decreases AMPAR current (Tomita et al., 2006). Cornichon, 

another auxiliary subunit, increases surface expression of AMPARs (Schwenk et al., 

2009). Cornichon has also been found to affect the assembly of AMPAR auxiliary 

subunits by limiting the number of TARPs within AMPAR complexes (Gill et al., 

2011). Both TARPs and cornichon modulate AMPAR gating dynamics (Kato et al., 

2010). 

II. Downstream signaling proteins 

 Several downstream signaling proteins have been found within the PSD. 

CaMKII (Calcium/calmodulin kinase II), a holoenzyme composed of 12-14 copies of 

α-CaMKII and β-CaMKII, plays an essential role in LTP, and will be discussed in 
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more detail later. SynGAP (synaptic GTPase-activating protein) plays multiple roles 

in the synapse: regulating enzymatic activity, playing a role in synaptic plasticity 

(knockdown mice have reduced LTP), and complexing with PSD-95 (Chen et al., 

1998; Kim et al., 1998; Komiyama et al., 2002). Interestingly, α−CaMKII, β−CaMKII, 

and SynGAP are three of the most prevalent proteins in the PSD, representing ~ 

7.4%, ~1.3% and ~1.0% mass of PSD respectively (Peng et al., 2004, Sheng et al., 

2007). The reason that these downstream signaling proteins are so abundant in the 

PSD remains unknown.  

III. Scaffolding proteins 

Scaffolding proteins organize receptors and other signaling molecules 

(Okabe, 2007; Sheng et al., 2007). One major group of scaffold proteins within the 

PSD are members of the membrane-associated guanylate kinase (MAGUK) protein 

family. These proteins include PSD-95 (postsynaptic density protein-95), PSD-93 

(postsynaptic density protein-93), SAP97 (synapse associated protein 97) and 

SAP102 (synapse associated protein 102). MAGUKS contain multiple binding 

domains that bind receptors, enzymes, and structural proteins, often creating 

signaling complexes. PSD-95, the most studied member of this protein family, is one 

of the most abundant PSD proteins; PSDs contain approximately 300 copies on 

average, which represents 2.3% of PSD mass (Peng et al., 2004.Chen et al., 2005).  

PSD-95 plays an essential role in organizing a variety of postsynaptic proteins. PSD-

95 interacts directly with NMDARs, facilitating the formation of NMDAR signaling 

complex within the PSD (Valtschanoff et al., 2001). AMPARs lack a PSD-95 binding 

site; however, AMPARs bind TARPs, and other AMPAR binding proteins, which link 
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AMPARs to PSD-95. Interestingly, overexpression of PSD-95 has been found to 

mimic and occlude LTP, suggesting the importance of scaffolding proteins in 

expression of LTP (Stein et al, 2003). 

Other scaffolding proteins not in the MAGUK family include Homer, Shank, 

SAPAP (synapse associated protein associated protein), and AKAP (A kinase 

anchoring protein). SAPAP directly binds PSD-95, but its function is not completely 

understood; however, a recent study of the SAPAP3 in striatum found that SAPAP3 

KO decreases AMPAR synaptic transmission (Wan et al., 2011). Shank does not 

directly bind receptors; rather, Shank connects different scaffold protein-bound 

receptor complexes, suggesting that it is a “master scaffold” that holds together 

AMPAR, NMDAR, and mGluR signaling complexes (Kreienkamp, 2008). Mutations 

in Shank have been identified in autism disorders, and disrupting Shank3 in mice 

shows normal basal transmission but deficits in LTP (Wang et al., 2011). Homer 

binds mGluRs, plays a role in regulating synapse size and AMPAR current (Sala et 

al., 2003), and helps to maintain AMPAR synaptic density (Lu et al., 2007). These 

proteins act together to bind mGluRs to PSDs; forming a chain that link mGluRs to 

PSD-95 (mGluRs bind Homer that binds Shank that binds SAPAP that binds PSD-

95) (Shinonara et al., 2011).  AKAP is another scaffolding protein that, like Shank, 

has been suggested to be a “master scaffold.” AKAP binds an array of enzymatic 

proteins important in downstream signaling, including the protein kinases PKC and 

PKA and the phosphatase calcineurin, to NMDARs and AMPARs through 

interactions with PSD-95. This interaction facilitates downstream signaling during 
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LTP (Sanderson et al., 2011), and mutations in AKAP lead to electrophysiological 

and behavioral abnormalities in mice (Weisenhaus et al, 2010). 

B. Basic properties of NMDAR-dependent LTP  

Multiple mechanisms have been shown to play a role in the induction, expression 

and maintenance of NMDAR-LTP. Here, we do not provide an exhaustive review of 

all these mechanism; rather we focus on the best understood mechanisms of both 

early and late phase NMDAR-LTP.  

I. Early phase LTP 

Up-regulation of AMPARs is the primary mechanism of NMDAR-dependent 

E-LTP expression; AMPAR current increases after LTP-inducing stimulation, (Kauer 

et al., 1988; Muller at al., 1988), and optical assays show AMPAR up-regulation 

occurs in conjunction with E-LTP expression (Shi et al.1999).  Induction of E- LTP 

begins when the concentration of postsynaptic Ca2+ increases pass a critical 

threshold. Under basal conditions, a voltage-sensitive Mg2+ block inhibits Ca2+ flow 

through NMDARs. LTP is initiated when repeated activation of AMPARs 

progressively depolarizes the postsynaptic apposition, removing the NMDAR Mg2+ 

block and allowing the influx of Ca2+ (Malenka et al., 1999). The magnitude and 

precise spatial targeting of Ca2+ required to induce NMDAR-dependent LTP remains 

unknown. 

 Increased Ca2+ affects multiple signaling cascades that play a role in LTP 

expression. Calcium/calmodulin kinase II (CaMKII), which is activated by increased 

Ca2+, is both necessary and sufficient for NMDAR-LTP (Hayashi et al., 2000; Lisman 

et al., 2002). CaMKII plays several roles in NMDAR-LTP. Phosphorylation of 



10 

 

AMPARs at serine 831 by CaMKII increases single channel conductance (Roche et 

al., 1996; Barria et al., 1997; Mammen et al., 1997; Derkach et al., 1999); however, 

this conductance increase only occurs in a weakly expressed subpopulation of 

AMPARS, and does not appear to play a major role in NMDAR-LTP. CaMKII 

activation is involved in up-regulation of AMPAR into the synapse (Appleby et al., 

2011). CaMKII-phosphylated AMPARs bind the adaptor protein Rab11, which 

attaches AMPARs to myosinVa, a transport protein that translocates vesicles 

containing AMPARs into the spine head (Correia et al., 2008). CaMKII also 

phosphorylates TARPs, leading to the interaction of PSD-95 and TARPs and binding 

AMPARs in the PSD (Opazo et al., 2010).  

Several other enzyme and enzyme pathways have been shown to play a role in 

E-LTP. PKC (protein kinase C) phosphorylates serines 816 and 818 on AMPAR, 

facilitating the binding of AMPARs to 4.1N. 4.1N is an actin-binding protein that links 

the actin cytoskeleton, stabilizes AMPAR surface expression and plays a role in 

activity dependent surface expression (Shen et al., 2000, Lin et al., 2009). PKA 

(cyclic adeonosine 3’,5’ –monophoshate (cAMP) – dependent kinase) 

phosphorylates AMPARs at serine 845, which up-regulates AMPAR synaptic 

insertion.(Hayashi et al., 2000); however, the role of PKA in E-LTP is still not 

completely understood. ERK/MAPK (extracellular signal regulated kinase/mitogen-

activated–protein-kinase), the pathway communicates membrane-bound receptor 

activation to the nucleus, and has been found to play a role in many cellular 

functions, including cell growth and apoptosis. RAS, a small GTPase that acts up 

stream of ERK/MAPK, increases AMPAR trafficking (Zhu et al., 2002; Patterson et 
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al., 2010). The tyrosine kinase Src has been suggested to phosphorylate NMDAR, 

enhancing NMDAR function during LTP induction (Salter al., 1998). 

II. Late Phase LTP 

Unlike E-LTP, the mechanisms underlying L- LTP are not well understood. L-

LTP induction has been linked to activation of ERK/MAPK and calcium/calmodulin 

kinase IV, which have been linked to gene expression (Miyamoto, 2006), and PKA; 

however the connection between these induction signals and subsequent protein 

translation remains unknown. Initially L-LTP does not require gene expression; 

however, lasting LTP requires gene expression. Here, I focus on describing 

mechanisms of synapse-to-nucleus communication, genes that activate in response 

to L-LTP, and up-regulated proteins that have been shown to be important in L-LTP. 

Many mechanisms have been shown to link synaptic activity to the nuclear 

response. Propagation of action potentials has been proposed to affect nuclear 

signaling by inducing transport of molecules found in the soma into the nucleus or by 

directly effecting gene transcription (Adams et al., 2005). Electrical activity is 

sufficient to activate MAPK/ERK (Dudek et al., 2002), and induces the transcription 

factor NF-ATc to enter the nucleus (Graef et al., 1999). In addition to action 

potentials, self-perpetuating waves of Ca2+ can travel down the dendrites and spread 

into the nucleus, directly activating transcription factors like DREAM (downstream 

regulatory element antagonist modulator, Osawa et al., 2001). Activity-induced 

upregulation of synaptic Ca2+ causes a variety of signals to translocate from the 

synapse to the nucleus (Deisseroth et al., 2003, West et al., 2002). Synaptic Ca2+ 

binding triggers nuclear translocation of calmodulin and other downstream signals 
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that activate CREB (cAMP response element binding; Deisseroth et al., 1996; 

Deisseroth et al., 1998; Dolmetch et al., 2001). Several transcription regulators, 

including  cAMP-responsive element binding protein-2 (Lai et al., 2008), NF-κB 

(Kaltcshmidt et al.,1995), Aplysia cell adhesion molecule-associated protein  

(Mayford et al., 1992) and Abelson interacting protein-1 (Proepper et al., 2007), 

travel from the synapse to the nucleus, where they can modulate gene expression 

(Ch’ng et al., 2011).  

Several genes activate in response to plasticity have been identified. These 

immediate early genes include Arc (activity-regulated cytoskeletal-associated gene), 

Egr-1 (early growth response gene, also known as zif268), and Narp (neuronal 

activity regulated pentraxin). The protein product of Arc is a cytosolic protein that 

acts on multiple signaling pathways. Arc protein affects trafficking of AMPARs 

through interacting with the endocytic machinery involved in AMPAR removal; Arc 

overexpression down-regulates AMPAR and speeds up endocytosis, while Arc KO 

mice have synapses with high levels of AMPAR and slower AMPAR removal 

(Chowdhury et al., 2006; Shepherd et al., 2011).  Egr-1 encodes a zinc finger 

transcription factor that has been found to upregulate Arc transcription (Penke et al., 

2011). Narp encodes a protein that has been found to cluster AMPAR at synapses 

and has been found to regulate homeostatic scaling (O'Brien et al., 1999; Chang et 

al., 2010).  

Other proteins up-regulated during L-LTP include PKMζ (protein kinase M ζ) 

and BDNF (brain-derived neurotrophic factor). PKMζ is a brain-specific, 

autonomously active isoform of PKC that plays an important role in maintaining late-
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LTP; inhibition of PKMζ in vivo prevents LTP maintenance, but not induction (Ling et 

al, 2002; Serreno et al, 2005). A recent study showed PKMζ acts though NSF (N-

ethylmaleimide-sensitive factor), a protein involved in AMPAR trafficking (Yao et al., 

2009; Migues et al, 2010).  In addition, PKMζ has been suggested to be a synaptic 

tag, marking previously potentiated synapses (Sajikumar et al., 2005; Sacktor, 

2011). BDNF (brain derived neurotrophic factor), a growth factor that acts on the 

tyrosine kinase receptor TrkB (tropomyosin-related kinase B), has also been 

implicated in L-LTP maintenance. BDNF translation is up-regulated in response to L-

LTP, and BDNF gets released at synapses in response to Ca2+ increases after high 

frequency synapse activation (Aicardi et al., 2004). BDNF is critical for the 

maintenance of L-LTP, although its role is not completely understood (Lu et al., 

2008).  

1.3. AMPARs 

A. AMPAR Properties 

I. Subunit properties 

AMPARs are composed of four subunits: GluA1-4 (Dingledine et al., 1999; 

Mansour et al., 2001).  AMPAR subunits have high structural similarity; each is 

composed of  ~900 amino acids, has a molecular weight of ~105 kDa, and contains 

an extracellular N-terminal domain (NTD), 4 hydrophobic domains (including the 

pore loop), and a carboxyl (C) terminal tail (Hollmann et al., 1994;Palmer et al., 

2005). The extracellular and transmembrane regions are very similar between 

subunits.  All four AMPAR subunits undergo alternative splicing in the NTD to 

produce the “flip” and “flop” variants. Flip desensitizes 4 times slower in respond to 
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glutamate than flop, and is more responsive to cyclothiazide, a drug used to block 

desensitization. Expression of flip and flop AMPAR variants vary throughout the 

central nervous system. Within hippocampal CA1 stratum radiatum, both flip and flop 

are expressed; however, flop is more abundant.(Sommer et al.1990).  

Subunit C terminals, the most diverse region of each subunit, contain PDZ 

binding domains and determine the majority of AMPAR protein interactions 

(Reference).  GluA1, GluA4, and an alternative splice form of GluA2 (GluA2L) have 

long C terminal tails with a type I PDZ domain, while GluA2, GluA3, and an 

alternative splice form of GluA4 (GluA4s) have short C terminal tails with a type II 

PDZ. GluA2L and GluA4s are less common than short-tailed GluA2 and long tailed 

GluA4 (Shepherd et al., 2007). Different PDZ domains bind different proteins, 

leading to different mechanisms of trafficking based on AMPAR subunit composition. 

Due to the importance of the C terminal in receptor trafficking, its structure will be 

further discussed in relation to AMPAR trafficking.  

II. Receptor composition 

 AMPARs are tetramers composed of two pairs of four subunits. AMPAR 

subunit composition varies depending on brain region (Petralia et al., 1992). Within 

mature hippocampus, GluA1, GluA2 and GluA3 are the subunits expressed, and two 

AMPAR subunit combinations dominate: heteromers of GluA1 and GluA2 (GluA1/2) 

and GluA2 and GluA3 (GluA2/3) (Wenthold et al., 1996). These heteromers are also 

the dominant combinations in adult nucleus accumbens, dorsal striatum, and 

prefrontal cortex (Reimer et al., 2011), and are thought to be the dominant 

combination in cerebral cortex, olfactory bulb, lateral septum, basal ganglia, and 
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amygdala (Palmer et al., 2005).  Heteromers of GluA1 and GluA3 have been shown 

to form in GluA2 KO mice; however, these heteromers rarely form in vivo synapse 

(Sans et al., 2003). GluA4 expression is generally low in the adult except in reticular 

thalamic nucleus, brain stem, and cerebellum.  

Homomers, whose formation is less energetically favorable than heteromers, 

are receptors composed entirely of a single subunit (Greger et al., 2007b).  

Homomeric GluA2, GluA3, and GluA4 are uncommon in vivo; however, homomers 

made of GluA1 subunits are more common. The role GluA1 homomers play in 

synaptic transmission is not understood, although GluA1 homomers have been 

found to be stabilized adjacent to the PSD (He et al., 2009). In addition, GluA1 

homomers potentially play an important role in induction of LTP (Plant et al., 2006), 

although this result is not universally accepted (Adenik et al., 2007). 

Although GluA1/2 and GluA2/3 are known to be the predominant AMPAR 

subunit combination within the PSD, the proportion of GluA1/2 versus GluA2/3 within 

synapses has remained contentious. Within CA1 stratum radiatum, GluA2/3 was 

initially thought to be the predominant AMPAR subunit combination (Wenthold et al., 

1996); however, GluA1/2 and GluA2/3 proportion were estimated by performing co-

immunopurification, on a mixed population of cells that did not distinguish between 

receptors within in the PSD, receptors found on extrasynaptic sites, and receptors 

from intracellular pools. A recent study performed electrophysiology on cells with 

knocked out AMPAR subunit types suggests that ~80% AMPAR expressed in CA1 

SR synapses are GluA1/2 heteromers and the remaining receptors are primarily 

GluA2/3 heteromers (Lu et al., 2009).  
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III. Receptor properties 

 AMPAR kinetic properties are highly dependent on subunit composition. The 

majority of AMPARs contain GluA2 (Greger et al., 2002; Wenthold et al., 1996; Lu et 

al., 2009), and the presence of GluA2 accounts for many of the defining properties of 

AMPARs (Isaac et al., 2007). A posttranslational modification within the GluA2 pore 

region (a glutamate-to-arginine edit) causes AMPARs to lack Ca2+ permeability, 

decreases channel conductance, and prevents polyamine blockage, leading to 

AMPARs being non-rectifying and having a linear relationship between membrane 

voltage and current (Verdoorn et al., 1998, Sommer et al., 1991; Hollmann et al., 

1991). With the exception of receptors lacking GluA2, receptors generally have very 

similar responses. AMPARs lacking GluA2 are inwardly rectifying and permeable to 

Ca2+, though much less Ca2+ permeable than NMDARs (Burnashev et al,.1992).    

IV. AMPAR organization within PSD 

The organization of receptors within the PSD plays an important role in 

synaptic function. During presynaptic vesicle release, glutamate concentration within 

the synaptic cleft peaks to 1-3 mM before rapidly decaying in 100 to 200 µs 

(Clements et al., 1992; Clements, 1996). Since AMPARs have a relatively low 

affinity for glutamate (Clements et al,. 1992) and multiple AMPAR sites must bind 

glutamate before the ion channel opens (Rosenmund et al., 1998), alignment 

between AMPAR and presynaptic sites of glutamate release is particularly important 

to ensure glutamate activates AMPARs. Indeed, modeling studies predict that 

precise alignment between presynaptic sites of glutamate release and postsynaptic 
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receptors increases synaptic efficiency (Xie et al., 1997; Raghavachari  et al., 2002; 

Franks et al., 2003).  

 AMPARs were initially thought to display a uniform lateral distribution over 

the PSD (Baude et al., 1995). However, current data from multiple EM studies 

suggests that the average tangential position of AMPARs across the synapse is 

closer to the PSD edge.  Using immunogold electron microscopy, higher  labeling 

density was found towards the PSD edge rather than the PSD center in multiple 

brain regions, including organ of Corti (Matsubara et al., 1996; Ottersen et al., 1998), 

neostriatum (Bernard et al., 1997), cerebral cortex (Kharazia et al., 1997), and 

olfactory bulb (Sassoe-Poenetto et al., 2000). Similar results were found using 

electron tomography; structures whose extracellular domains matched the expected 

dimensions of AMPARs were found be arrayed around the PSD periphery (Chen et 

al., 2005). Imagining of AMPARs within main and accessory olfactory bulb  PSD 

using the super-resolution light microscopy technique STORM (stochastic optical 

reconstruction microscopy) indicated a high level of variability in AMPAR distribution 

across PSDs (Dani et al., 2010). Other types of glutamate receptors organize within 

the PSD; NMDAR concentrate in the center of the PSD (Kharazia et al., 1997; 

Racca et al., 2000) and metabotropic glutamate receptors (mGluRs) lie at the PSD 

edge (Baude et al., 1993; Nusser et al., 1994); however, the functional 

consequences of this organization remain unknown. 

The 2- dimensional distribution over the PSD has been studied using SDS-

digested freeze fracture replica labeling, a technique that achieves higher 

immunogold labeling density than typical immunogold electron microscopy. AMPARs 



18 

 

are found to collect into microclusters on the PSDs in synapses between parallel 

fibers -Purkinje cell within cerebellum (Masugi-Tokita et al., 2007) and in synapses 

on relay cells from the retina (retinogeniculate) and visual cortex (corticogeniculate) 

in dorsal lateral geniculate nucleus (Tarusawa et al., 2009). Interestingly, the 

corticogeniculate synapses are twice as large as the retinogeniculate synapses, thus 

more area within the CG synapses lack AMPAR distribution. However, AMPAR 

microclustering has not been found to occur at all synapses; AMPAR distribution is 

homogenous over PSDs between synapses at climbing fiber- Purkinje cell synapses 

(Masugi-Tokita et al., 2007).  

B. AMPAR synaptic insertion. 

Synaptic insertion of AMPARs is multistep process that occurs in both an activity-

dependent and constitutive manner. Activity-dependent trafficking changes the 

amplitude of synaptic response and occurs after LTP induction, while constitutive 

trafficking continuously replaces receptors and does not change the magnitude of 

synaptic response (Shi et al., 2001). Early research on AMPAR trafficking 

determined that different mechanisms exist for activity-dependent and constitutive 

insertion. These differences in AMPAR trafficking are subunit-dependent; in 

hippocampus, GluA1-containing receptors insert into the PSD in response to LTP, 

leading to NMDAR activation (Hayashi et al., 2000), while continued exchange of 

receptors at the synapse happens for receptors only containing GluA2 and GluA3 

(Passafaro et al., 2001, Shi et al., 2001). These observations have led to a model 

where synaptic insertion of GluA1/2 is activity-dependent and GluA2/3 is 

constitutive.   
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I. Differences in C terminal tails 

AMPAR trafficking routes depend on differences in AMPAR subunit C terminals. 

GluA1, GluA2, and GluA3 contain different phosphorylation sites, which affect 

properties such as channel kinetics and AMPAR trafficking, and protein binding 

sites, leading to activity-dependent trafficking of GluA1/2 and constitutive trafficking 

of GluA2/3; these differences account for the different trafficking routes (Malinow et 

al., 2003). Overexpression of the C tails of GluA1 and GluA2 has been shown to 

block or reduce both activity-dependent and constitutive trafficking (Passafaro et al., 

2001; Shi et al., 2001).  

 Many of the regions in the C terminal of GluA1 are involved in AMPAR 

trafficking.  Synapse-associated protein97 (SAP97), a member of the PSD-95-like 

membrane-associated guanylate kinase (PSD-MAGUK) protein family, is the only 

protein known to interact with the GluA1 C terminal PDZ domain, but its role in 

AMPAR trafficking and LTP remains unknown.  Early studies indicated that SAP97 

interacts with AMPARs contained in the ER (Sans et al., 2001; Klöcker et al., 2002). 

However, a recent study showed that overexpression of SAP97 in immature neurons 

increases synaptic AMPAR expression, and that mature neurons with increased 

levels of SAP97 through development have enhanced AMPAR currents (Howard et 

al., 2010). In addition, overexpression of SAP97 increases both size and complexity 

of PSDs (Poglia et al., 2011). Other important C terminal sites, such as 

phosphorylation sites serine 816, 818, 831, and 845 and binding site for 4.1N, have 

previously been discussed in reference to LTP.   
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The C termini of GluA2 and GluA3 are very similar, and contain many of the 

same phosphorylation and protein binding sites. Both GluA2 and GluA3 contain 

binding sites for GRIP1 (Glutamate-receptor-interacting-protein1), GRIP2 (also 

known as AMPA receptor-binding protein) and PICK (protein interacting with C-

kinase ). GRIP1 has been suggested to be important for intracellular transport of 

AMPAR; GRIP1 binds kinesin5, a microtubule-based motor protein that is important 

for the vesicular transport (Setou et al., 2002). In addition, both GRIP1 and GRIP2 

have been suggested to play a role in activity-dependent AMPAR recycling (Mao et 

al., 2010). The role of PICK1 (protein interacting with C kinase) in AMPAR trafficking 

is less direct; PICK1 has been shown to maintain AMPAR internalization, which 

potentially provides a pool of AMPAR available to synaptic insertion (Perez et al., 

2001; Citri et al., 2010). GluA2, but not GluA3, contains a binding site for NSF, an 

ATPase that plays an essential function in membrane fusion in intracellular 

trafficking and presynaptic vesicle fusion (Rothman, 1994; Nishimune et al., 1998; 

Araki et al., 2010) Expression of a peptide that interferes with NSF leads to a 

decrease in AMPAR surface density (Noel at al., 1999). 

II. AMPAR trafficking pathways 

AMPAR trafficking begins with subunit synthesis in the endoplasmic reticulum 

(ER) (Palmer et al., 2005, Greger et al., 2007a). After subunit translation, subunits 

first associate into dimers, and subsequently form tetramers (Ayalon et al., 2001; 

Mansour et al., 2001). The newly synthesized AMPAR undergoes several 

postranslation modifications, such as the previously discussed glutamine-to-arginine 

pore loop edit, and associate with TARPs before being trafficked to the Golgi 
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(Vandenberghe et al., 2005).  Interestingly, GluA2 impedes trafficking out of the ER. 

This potentially maintains a large pool of GluA2 for binding with other subunits, and 

may partially explain why most AMPARs contain GluA2 (Greger et al., 2003).  

Within the Golgi, AMPARs undergo several other modifications, such as 

modification of high-mannose sugar into more complex carbohydrates (Shepherd et 

al., 2007). nPIST (neuronal isoform of protein-interacting specifically with TC10), a 

Golgi apparatus resident protein, interacts with TARP, helping to target AMPARs to 

the synapse (Cuadra et al., 2004). After AMPARs are packaged on trafficking 

vesicles, these vesicles attach to motor proteins, such as myosin (Lisé et al., 2005; 

Correia et al., 2008), dynein and kinesin (Setou et al., 2002) and undergo active 

transport down actin or microtububles. There is evidence that intracellular transport 

of GluA1-containing AMPAR sis LTP-dependent, suggesting that different 

intracellular pathways may account for differences in AMPAR trafficking. 

     AMPAR synaptic delivery begins with exocytosis of AMPAR-containing vesicles.  

Although a few studies have indicated that AMPARs may be inserted directly into the 

PSD or at the soma (Gerges et al., 2006; Adenik et al., 2007), the majority of 

evidence suggests that AMPARs are inserted into the dendritic spine away from the 

synapse (Kopec et al., 2006; Park et al., 2006; Yang et al., 2008; Kennedy et al., 

2010; Tao-Cheng et al., 2011), or on the dendritic shaft (Yudowski et al., 2007; 

Makino et al., 2009). After exocytosis, receptors inserted outside the PSD undergo 

lateral diffusion to enter synapses, and become trapped in PSDs (Borgdorff et al., 

2002; Choquet et al., 2003, Choquet, 2010).  It remains unknown if GluA1/2 and 

GluA2/3 are inserted at different location.   
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1.4. AIDA-1       

A. AIDA-1 properties                                                                                                                             

 AIDA-1 is a recently discovered protein whose function remains unclear.  

AIDA-1 was identified in a yeast-two hybrid screen using a cleavage product of 

amyloid-β protein precursor (AβPP) as bait (Ghersi et al., 2002; Ghersi et al., 2004). 

Two subsequent cleavages of AβPP, first by β-secretase and then γ-secretase, 

produces β−amyloid, a major component of the amyloid plaques often found in 

Alzheimer’s disease (Duyckaerts et al., 2009). AβPP intracellular domain (AID, or 

AICD), the other AβPP product produced during the cleavage that produces Aβ and 

the yeast-2 hybrid bait, may play a role in apoptosis, calcium homeostasis, and 

transcriptional regulation (Hamid et al., 2007; Müller et al., 2008; Slomnicki et al., 

2008); however, whether AID plays a role in Alzheimer disease remains 

controversial.   

Alternative splicing of AIDA-1 produces several isoforms. Currently, four 

isoforms of AIDA-1 have been characterized, although many other isoforms are 

known to exist (Jordan, BA, unpublished data). All published AIDA-1 isoforms 

contain a phospho-tyrosine binding domain (PTB) and one or two sterile α motifs 

(SAM) domains; these domains mediate protein-protein interaction (Ghersi et al., 

2002; Ghersi et al., 2004; Xu et al., 2005; Jordan et al., 2007). Interestingly, some 

AIDA-1 isoform, like AIDA-1b, are not capable of binding AβPP. AIDA-1 isoforms 

appear to have different functions. AIDA-1a has a modulatory effect on AβPP 

processing; binding of AIDA-1a to AβPP blocks the ability of γ-secretase to cleave 

AβPP, diminishing Aβ secretion. AIDA-1c, another AIDA-1 isoform, is a binding 
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partner of coilin, a marker protein of Cajal bodies.  Cajal bodies are nuclear 

suborganelles that contain the highest nuclear proportion of small nuclear 

ribonucleoproteins (snRNPs), which play a role in pre-mRNA processing.  Knock 

down of AIDA-1c with siRNA disrupts Cajal bodies and lead to increased cell death 

(Xu et al., 2005).  

B. AIDA-1 and L-LTP 

Recent evidence suggests that AIDA-1 may play a role in synapse-to nucleus 

signaling during NMDAR-dependent LTP.  Using biochemical methods, AIDA-1d, a 

previously unrecognized isoform of AIDA-1, was identified and found to be a 

prevalent component of the PSD, having an estimated relative abundance of 50-

190% that of PSD-95 (Jordan et al., 2004; Peng et al., 2004; Yoshimura et al., 

2004). Intriguingly, AIDA-1d contains a nuclear localization sequence (Kurabi et al., 

2009). AIDA-1 appears to have a unique synapse-to-nucleus signaling mechanism. 

After synaptic NMDAR activation, AIDA-1 is cleaved at the PSD and an AIDA-1 

fragment translocates to the nucleus (Jordan et al., 2007).  After entering the 

nucleus, AIDA-1 stabilizes the interaction between Cajal bodies and nucleoli, leading 

to downstream increases in protein translation (Jordan et al., 2007). Together, this 

evidence suggests that AIDA-1 might link synaptic activity to a nuclear response. 

However, AIDA-1 only has been studied in culture systems and little is known about 

its distribution in vivo.  

1.5. Conclusion 

Here, we study the basal organization of AMPAR and AIDA-1. For AMPARs, 

whose organization throughout the brain has been thoroughly studied, we 
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determined the lateral position of different subunit-containing AMPAR within the 

PSD. For AIDA-1, we determined the distribution throughout rat brain and 

determined the cellular and subcellular and PSD distribution.  Together, these 

studies not only describe the position of AMPARs and AIDA-1, but also provide 

suggestions of potential functions based on their organization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 2 

The organization of AMPA-type glutamate receptors in rat hippocampus 

 

2.1  Introduction 

The postsynaptic density (PSD) serves as the primary postsynaptic site of signal 

transduction. A primary function of the PSD is to organize ionotropic glutamate 

receptors in the synapse, though it also contains downstream signaling molecules, 

scaffold proteins, and cytoskeletal elements (Okabe et al., 2007; Sheng et al., 2007); 

Computational studies suggest that the arrangement of receptors within the PSD 

influences the efficiency and specificity of synaptic transmission (Xie et al., 1997; 

Franks et al., 2003; Raghavachari et al., 2004). 

The AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) subtype of 

glutamate receptor (AMPAR) plays a major role in mediating fast excitatory 

neurotransmission within the CNS (Dingledine et al., 1999; Palmer et al., 2005). 

AMPARs are tetrameric heteromers comprising combinations of the four subunits, 

GluA1-4 (Hollmann et al., 1994; Rosenmund et al., 1998; Mansour et al., 2001). At 

synapses in adult hippocampus, the most common subunit combinations are GluA1 

and GluA2 (GluA1/2 receptors) and GluA2 and GluA3 (GluA2/3 receptors; Wenthold 

et al., 1996; Lu et al., 2009). AMPARs appear to be highly mobile, at least in cultured 

neurons (Borgdorff et al., 2002; Groc et al., 2007), and can cycle into the 

postsynaptic membrane through both activity-dependent and constitutive insertion 
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(Shepherd et al., 2007). Synaptic insertion seems to be subunit-dependent: GluA1-

containing AMPARs are thought to traffic into the synapse in response to synaptic 

activity (Shi et al., 1999; Hayashi et al., 2000), whereas GluA2/3 receptors undergo 

constitutive recycling (Passafaro et al., 2001; Malinow et al., 2003; Kessels et al., 

2009). 

Considerable evidence suggests that AMPARs are removed from the 

postsynaptic membrane at a specialized zone lateral to the PSD (Blanpied et al., 

2002; Racz et al., 2004).  However, the site(s) of AMPAR insertion remain more 

contentious. Work in reduced systems has demonstrated AMPAR insertion at a 

variety of locations including the postsynaptic soma (Adenik et al 2007; Tao-Cheng 

et al., 2011), dendritic shaft (Yudowski et al., 2007) and spine (Kopec et al., 2006; 

Yang et al., 2008; Makino et al., 2009; Kennedy et al., 2010; Tao-Cheng et al., 

2011), as well as the postsynaptic membrane itself (Gerges et al., 2006).  However, 

it remains unknown if GluA1/2 and GluA2/3 receptors are inserted in different 

subcellular locations. 

 Here, we use postembedding immunogold electron microscopy to study the 

organization of these three AMPAR subunits in axospinous synapses within CA1 

stratum radiatum of the rodent hippocampus. We find that GluA1 distributes 

uniformly along the PSD, extending into extrasynaptic membrane, while GluA3 lies 

more centrally within the PSD. These findings point to a hitherto-unrecognized 

organizational complexity tangentially along the synaptic apposition. They raise the 

possibility that GluA3-containing AMPARs may play a specific role within the center 

of the synapse, and support previous suggestions that GluA1/2 traffics into and out 
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of the synapse via lateral diffusion, while GluA2/3 receptors traffic from postsynaptic 

cytoplasm directly into the PSD. 
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2.2  Experimental procedures 

Tissue Preparation  

All procedures related to the care and treatment of animals were conducted 

according to institutional and NIH guidelines. For this study, we used six male 

Sprague-Dawley rats, ages 2 - 4.5 months old; to assess whether synaptic 

organization might differ in the juvenile, we also sacrificed one 40 day-old rat 

(Charles River Laboratories; Raleigh, NC, USA). To control for antibody specificity 

and to examine effects of subunit deletion on the location of AMPARs within the 

synapse, we used two GluA1 KO mice (seven weeks old), two GluA2 KO mice (eight 

weeks old), and one C57BL/6 WT mouse (one month old). GluA1 KO and Glu2 KO 

mice were generated as previously described (Zamanillo et al., 1999, Jia et al., 

1996) and were initially maintained on a C57BL/6 background. After anesthetizing 

rats with sodium pentobarbital (60 mg/kg), and mice with a mixture of ketamine (100 

mg/kg) and xylazine (10 mg/kg), animals were intracardially perfused with saline, 

followed by ~ 500 ml (for rats) and ~50 ml (for mice) of a mixture of 2% 

paraformaldehyde and 2% glutaraldehyde in phosphate buffer (PB). Brains were 

removed and postfixed 12-48 hours in the same fixative at 4°C. Coronal sections 

were cut on a Vibratome at 200-250 µm and collected in cold PB. 

  Sections pretreated with 0.1% CaCl2 in sodium acetate were cryoprotected in 

30% glycerol overnight.  Small blocks CA1 stratum radiatum were cut from sections 

and frozen in isopentane chilled with dry ice. Frozen blocks were immersed in 1.5% 

uranyl acetate in methanol at -90°C for 48 hours wit hin a freeze-substitution 
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instrument (AFS, Leica). Blocks were gradually warmed to -45°C, then infiltrated with 

Lowicryl (HM-20, Electron Microscopy Science) and polymerized under UV light.  

 Antibodies 

 Primary antibodies included affinity-purified rabbit polyclonal antibodies 

against AMPA receptor subunit 1(GluA1; 0.8 – 2.0 µg/ ml; Chemicon, Temecula, CA; 

AB1504) and AMPA receptor subunits 2 and 3 (GluA2-3; 0.4 - 0.8 µg/ ml; Chemicon; 

AB1506), and a mouse monoclonal antibody raised against AMPA receptor subunit 

3 (GluA3; 0.5 – 1.0 µg/ ml; Chemicon; MAB5416). 

The GluA1 antibody was raised against a peptide (SHSSGNPLGATGL) 

corresponding to the carboxyl terminus of human GluA1, conjugated to keyhole 

limpet hemocyanin. In Western blot on homogenized cells that were transfected with 

GluA1 cDNA, the GluA1 antibody recognized a single band at ~108 kDa 

corresponding to GluA1, while antibodies against GluA2, GluA3,or GluA4 produced 

no staining (Wenthold et al., 1992).The GluA2-3 antibody was raised against a 

peptide (EGYNVYGIESVKI) corresponding to the carboxyl terminus of rat GluR2, 

conjugated to BSA. On immunoblots of protein extract from heterologous expression 

systems, it recognizes both GluA2 and GluA3 (whose C-terminal is nearly identical 

to GluA2) with equal efficacy, but does not recognize GluA1 (Wenthold et al., 1992). 

The GluA3 antibody was raised against a fusion protein containing amino acids 245-

451 of GluA3. The specificity of the GluA3 antibody was demonstrated in Western 

blots of HEK cell lysates transfected with various AMPAR cDNAs; the antibody 

reacted with lysate containing GluA3, but not lysate from cells expressing GluA1, 

GluA2, or GluA4 (Moga et al. 2003). 
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 Postembedding Electron Microscopy 

For postembedding immunogold labeling, 60 nm sections were cut from the 

polymerized tissue blocks and collected on nickel grids. For serial section electron 

microscopy, 50 nm sections were collected on Formvar-coated nickel slot grids to 

preserve cutting order.  

Grids were pretreated with 4% p-phenylenediamine in TRIS-buffered saline with 

0.005% Tergitol NP-10 (TBSN), pH 7.6 before treatment with 1% bovine serum 

albumin in TBSN, pH 7.6, followed by overnight treatment with the primary antibody. 

Grids were subsequently treated with 1% normal goat serum in TBSN pH 8.2, after 

which a gold-conjugated secondary was applied (10 nm, Jackson 

ImmunoResearch). The sections were post-stained using uranyl acetate and Sato’s 

lead salts. Grids were examined on a Philips Tecnai electron microscope at 80 kV; 

images were collected with a Gatan 12 bit 1024 X 1024 cooled CCD camera. 

Image Processing 

 Figures were composed, and contrast and brightness adjusted, with Adobe 

Photoshop CS (v 9.0.2, Adobe Systems, Mountain View, CA USA). All processing 

procedures were applied uniformly across the entire image. 

Analysis of Synaptic Immunogold Labeling 

 To determine the percentage of synapses immunopositive for GluA1, GluA2-3 

and GluA3, synapses within random fields in grids from CA1 stratum radiatum were 

counted. Synapses containing at least one gold particle within 100 nm of the PSD 

were counted as positive; all other synapses were negative. To assure synapses 

were chosen at random, the first 100 synapses encountered in a grid square were 
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counted.  We examined 500 synapses for each antibody on WT, GluA1 KO, and 

GluA2 KO tissue. These data were used to calculate the fraction of synapses 

immunopositive for each antibody.  When calculating the fraction of immunopositive 

synapse for each antibody, each grid square was taken as a single sample 

To determine AMPAR position within the PSD, we collected electron micrographs 

of randomly-selected synapses from CA1 stratum radiatum that contained gold 

particles within 100 nm of the PSD and that had a clearly-defined postsynaptic 

membrane. Using ImageJ, we measured "axo-dendritic" position, the distance from 

the center of each gold particle to the postsynaptic plasma membrane, and “lateral" 

position, the distance (measured tangentially along the plasma membrane) from the 

particle to each edge of the postsynaptic density (Fig. 1).  From the lateral position 

data, we calculated a “normalized lateral" (NL) position using the following formula: 
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such that an NL position of 0 corresponds to a particle lying at the middle of the 

synapse, and an NL position of 1.0 to a particle lying at its lateral edge. For further 

details, see Kharazia et al (1997); Valtschanoff et al (2001). 
 

We compared axo dendritic and NL position from the 40 day old animal (weight 

125g) against data from the six other rats. Data from the 40 day old rat was not 

significantly different from the rest of the data, thus we grouped all data together.  

For axo-dendritic position, the postsynaptic direction was denoted by positive 

numbers; negative numbers denoted the presynaptic direction. When assessing 

axo-dendritic position, we limited our analysis to gold particles whose NL position 
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was less than 1.5 and did not lie more than 60 nm away from the edge of the PSD, 

to limit consideration to gold particles associated with the synapse. Likewise, when 

calculating the mean axo-dendritic position, our goal was to estimate positions of 

receptors inserted into the plasma membrane. Therefore, for this computation we 

considered only particles lying in the range from -50 to 50 nm in the axo-dendritic 

axis. When graphing axo-dendritic position, we divided the data into 5 nm bins, 

smoothing with a three-point weighted running average:  

���������� ! 
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Data analysis was performed in Excel (Microsoft); graphs were prepared with 

KaleidaGraph (Synergy Software, Reading, Pa, USA). Values are reported as 

means and standard errors. These were calculated either by treating each gold 

particle as a sample (to provide an optimal estimate of the population mean, in the 

face of random measurement noise), or by calculating averages for each animal and 

treating these average values as single samples (to permit robust testing of possible 

differences between data sets, using 2-sided paired t tests. 

Serial Section Analysis 

 In our hands, immunoreaction is impaired when serial sections are used (at 

least in part because only one side of the thin section is exposed to antibody). To 

assess whether this might have led us to misleading conclusions, we performed a 

pilot serial section analysis, collecting several series of electron micrographs of the 

same area from grids containing ~ 50 nm thick serial sections, stained against either 

GluA1 or GluA3.  We chose areas containing landmarks that would simplify tracking 

the same synapse.  For analysis, stained synapses were examined across multiple 
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sections until no longer visible; PSD length and gold particle position(s) were 

measured.  
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2.3  Results 

Immunolabeling for AMPAR subunits in rat hippocampus 

Tissue processed by freeze substitution exhibited satisfactory ultrastructural 

preservation, while retaining immunoreactivity against all three AMPAR antibodies. 

Immunogold label for all three antibodies showed a clear association with 

asymmetric synapses, concentrating in the vicinity of the postsynaptic membrane 

(Fig. 2).  Labeling for GluA2-3 seemed most abundant, whereas labeling for GluA3 

seemed noisier with less prominent synaptic label. Our visual impression was that 

labeling for GluA1 often lay near the lateral edge of synapses, GluA2-3 seemed 

more uniformly spread over synapses, and GluA3 generally seemed to lie closer to 

the center of synapses.  

Immunolabeling in knockout material. 

To assess antibody specificity, we performed immunogold staining in GluA1 KO 

and GluA2 KO mice, focusing on CA1 stratum radiatum. In grids prepared from a 

WT mouse, the GluA1 antibody labeled 47 ± 3% of synapses, but only 6.4 ± 0.2% of 

synapses were labeled in the GluA1 KO, implying that at least 85% ((1 - 6.4/47) x 

100%) of label in the WT mouse reflected authentic GluA1 (Table 1). Likewise, the 

GluA2-3 antibody (expected to recognize both GluA2 and GluA3) labeled 54 ± 2% of 

WT synapses versus 11 ± 2%of GluA2 KO synapses. This five-fold reduction in 

labeling also supports the specificity of the immunogold signal, especially 

considering that much of the signal remaining in the GluA2 KO likely reflects GluA3. 

Because of the limited sensitivity of postembedding methods and the fact that these 
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data were from single sections, the observed fraction of immunopositive synapses in 

the WT may underestimate their true frequency. The 44% reduction in GluA1-

positive synapses in the GluA2 KO presumably reflects the predominance of 

GluA1/GluA2 heteromeric receptors in the intact animal (c.f. Petralia et al., 2004), 

and the synaptic GluA3 remaining in the GluA2 KO animal might reflect aberrant 

presence of GluA1/GluA3 receptors after deletion of GluA2 (Table 1). However, the 

37% reduction of synaptic GluA3 in the GluA1 KO mouse raises the possibility that 

GluA1/GluA3 receptors are present in the hippocampus even in the normal animal. 

We were unable to obtain GluA3 KO mice; to assess specificity of the GluA3 

antibody, we instead compared immunogold labeling for GluA2-3 and GluA3 in 

cerebellar cortex, whose layers (which are easily recognized at the electron 

microscope) express message for different AMPAR subunits at markedly different 

levels. Thus, in situ hybridization indicates high levels of gene expression for both 

GluA2 and GluA3 in the molecular layer; in contrast, GluA3 expression is 

substantially reduced in the granule cell layer, while message for GluA2 remains 

high (Lein et al., 2007). Therefore, one would predict that a greater fraction of 

synapses would label for GluA3 in the molecular layer than in the granule cell layer, 

while comparable fractions would label for GluA2 in both layers. Consistent with this 

expectation, 53 ± 2% of synapses labeled for GluA3 in the molecular layer, whereas 

only 22 ± 2% of synapses labeled for GluA3 in the granule cell layer. In contrast, 

there was no difference in GluA2-3 labeling between the molecular and the granule 

cell layers.  
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In summary, these data, along with the extensive previous work using these 

antibodies, lead us to conclude with high confidence that the observed labeling 

identifies authentic subunit protein. 

Position of AMPAR subunits within the synapse 

Using quantitative immunogold labeling on grids prepared from rat CA1, we 

measured the “axo-dendritic” position of gold particles coding for GluA1, GluA2-3, 

and GluA3 subunits in synapses within stratum radiatum (Fig. 3). When determining 

average axo-dendritic position, we limited our data set to particles between -50 to 50 

nm from the postsynaptic membrane to get the average axo-dendritic position of 

AMPAR closely associated with the postsynaptic membrane. Mean positions for 

both GluA1 and GluA2-3 were postsynaptic; GluA1 and GluA2-3 averaged 4.2 ± 0.6 

nm and 3.3 ± 0.6 nm inside the postsynaptic membrane, respectively. Both 

antibodies displayed similar axo-dendritic distributions. The distribution of GluA3 

also had a similar shape, but its mean value was within the synaptic cleft, -4.3 ± 0.8 

nm from the postsynaptic membrane. The shapes of all three curves resembled 

Gaussian curves with standard deviation of ~15 nm, and each had a tail extending 

into the postsynaptic cytoplasm (Fig. 3). The GluA3 distribution was statistically 

different from both GluA1 and GluA2-3, as verified by comparing average values on 

a per-animal basis (p < 0.001, 2-sided t-test; N = 7 animals), whereas GluA1 was not 

significantly different from GluA2-3. The different axo-dendritic positions likely reflect 

the different location of the epitopes recognized by the three antibodies: the GluA1 

and GluA2-3 antibodies were raised against peptides corresponding to the C 

terminals (which should lie within the postsynaptic cytoplasm when the receptor is 
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inserted into the plasma membrane), while the GluA3 antibody was raised against a 

peptide corresponding to an extracellular region near the N terminal (see Methods). 

These results suggest that the large majority of immunogold-detected AMPARs lying 

within 50 nm of the postsynaptic plasma membrane are embedded within the 

plasma membrane. 

 Next, we examined the organization of different AMPAR subunits tangentially 

along the synapse. Because our interest was specifically in AMPARs inserted into 

the postsynaptic plasma membrane, we restricted the data set accordingly: For 

GluA1 and GluA2-3 antibodies (both targeted against the cytoplasmic C terminus) 

we considered only particles in a 50 nm window lying between -20 nm and 30 nm 

from the postsynaptic membrane (i.e., within ~25 nm of the likely position of the 

relevant epitope). Likewise, for the GluA3 antibody (targeted against an extracellular 

N-terminal region), we considered only particles lying between -30 nm and 20 nm. 

To compare lateral position across PSDs of different lengths, we calculated 

normalized lateral (NL) position, such that a value of 0 corresponds to a particle 

centered in the synapse, and a value of 1.0 corresponds to a particle at the PSD 

edge (See Methods and Figure 1). GluA1 had a mean NL position of 0.64 ± 0.01, 

while GluA3 concentrated closer to the PSD center, with a mean NL position of 0.51 

± 0.03; GluA2/3 lay between GluA1 and GluA3, with an average NL position of 0.59 

± 0.02. We also measured NL position of the AMPAR subunits in KO animals. For 

the GluA2 KO, the average NL position of GluA1, GluA2-3 and GluA3 were 0.62 ± 

0.02, 0.55 ± 0.02, and 0.52 ± 0.02 respectively (close to the values for WT animals). 

In contrast, in the GluA1 KO animal, the NL position of GluA2-3 was 0.47 ± 0.01 and 
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of GluA3 was 0.46 ± 0.02 (Table 3). Thus, labeling for GluA3 and especially for 

GluA2-3 was more centrally localized than in WT animals, suggesting that the 

presence of GluA1 protein allows AMPA receptors to spread out tangentially along 

the synapse. 

The GluA2-3 antibody can bind to AMPARs containing either GluA1/2 or GluA2/3 

subunits. Since the GluA1 antibody is expected to label GluA1/2 receptors, but not 

GluA2/3 receptors, while the GluA3 antibody should label GluA2/3 receptors, but not 

GluA1/2 receptors, we restricted our attention to these two antibodies. Quantitative 

analysis showed that labeling for GluA1 was rather uniformly distributed tangentially 

along the synapse, extending beyond the limits of the PSD; in contrast, labeling for 

GluA3 concentrated at the center of the synapse, with very little labeling beyond its 

lateral edge (Fig. 4A). Labeling for GluA2-3 was intermediate between GluA1 and 

GluA3 (data not shown). This difference was significant, as demonstrated by 

examining data from N = 7 animals (mean NL position for GluA1, 0.64 ± 0.01; mean 

position for GluA3, 0.51 ± 0.03; p < 0.05).  

To quantify the difference in normalized position, we calculated the ratio of the 

number of gold particles that were greater than a NL position of 0.5 over the number 

of gold particles that were less than a NL position of 0.5 for GluA1 and GluA3. The 

ratio for GluA1 displayed an approximately twofold increase over the ratio for GluA3, 

indicating that GluA1 localizes closer to the PSD edge than GluA3 (Fig. 4). We used 

normalized lateral positions to facilitate comparisons among synapses of different 

sizes. However, it is conceivable that at least part of the observed effect might 

represent an artifact arising from a systematic difference in size between synapses 
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immunopositive for GluA1 and those positive for GluA3.To exclude such 

possibilities, we directly compared the number of immunogold particles lying just 

beyond the edge of the synapse with the number in the center of the PSD, for both 

antigens. Accordingly, we computed the ratio of the total number of particles lying 0-

25 nm beyond each side of the synaptic border with the number of particles lying 

within a 50 nm strip at the very center of the PSD. As with the NL position ratio, 

there was an approximately twofold increase in ratio in GluA1 compared with GluA3, 

confirming that more GluA1 lies beyond the edge of the synapse (Fig 4C). 

The relative levels of expression of GluA1/2 and GluA2/3 receptors in adult 

hippocampal synapses remain somewhat controversial (Wenthold et al., 1996; Lu et 

al., 2009). Our data on the lateral distribution of subunits provides a novel way to 

estimate the proportion of synaptic AMPARs that contain GluA1/2 versus GluA2/3. 

Assuming that AMPAR in the postsynaptic membrane of CA1 pyramidal cells are 

either GluA1/2 or GluA2/3 heteromers, the antibody against GluA1 would label only 

GluA1/2 receptors, while the antibody against GluA3 would label only GluA2/3 

receptors; thus, the NL position for GluA1 (0.64) should provide an unbiased 

estimate of the mean position of GluA1/2 receptors in the synapse, whereas the NL 

position of GluA3 (0.51) estimates the mean position of GluA2/3 receptors. The NL 

position of the GluA2-3 antibody (0.59) includes information from both GluA1/2 and 

GluA2/3 receptors. Combining these data, we can estimate what percentage of 

synaptic AMPARs is GluA1/2 versus GluA2/3.  

The GluA2-3 antibody recognizes a C-terminal epitope shared by GluA2 and 

GluA3, and would therefore be expected to bind to each with comparable efficiency. 
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However, considering AMPA receptor stoichiometry ((2*GluA1 + 2*GluA2), or 

(2*GluA2 + 2*GluA3 (Wenthold et al., 1996), one would expect twice as many gold 

particles coding for the GluA2-3 antibody to bind to GluA2/3 receptors as to GluA1/2 

receptors. Thus, 

NLP-./01#2 

�NLP-./0$  %  2 3 NLP-./02!

�fraction of AMPARs containing GluA1! %  2 3 �fraction of AMPARs containing GluA3!
  

Using this method, we estimate that 74% of AMPARs contain GluA1, while 26% are 

GluA2/3. 

AMPAR subunit lateral position and PSD size. 

Serial-section electron microscopy reveals variability within the seemingly 

homogeneous population of axospinous synapses in stratum radiatum of CA1 in the 

adult rat (Harris et al., 1989). The surface area of the synaptic contact varies by 

more than an order of magnitude; this variation is closely correlated both with other 

anatomical features (e.g. spine volume) and with parameters of direct functional 

significance, including the number of AMPARs (Kharazia et al., 1999, Takumi et al., 

1999. Moreover, accumulating recent evidence suggests that large spines (which 

receive large synaptic contacts) are highly stable, whereas small spines (with small 

synapses) may be quite plastic (Kasai et al., 2010). For these reasons, we wondered 

whether the organization of AMPARs might vary with the size of the synapse, as 

estimated by PSD length. To address this question, we compared the lateral position 

of AMPAR subunits in large synapses with those in small synapses, examining gold 

particles coding for GluA1 and GluA3. To simplify data analysis, we bifurcated the 
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data for each receptor into equal halves, comparing positions of gold particles from 

“short PSD” and “long PSD” data sets.  

 Viewed from this binary perspective, we found that PSD size had little or no 

effect on AMPAR lateral distribution for GluA3, but had a marked effect on GluA1 

lateral position. GluA1 in short PSDs (ranging from 75 to 237 nm) spread over the 

PSD, with a considerable number of extrasynaptic particles, whereas GluA1 in long 

PSDs (ranging from 237 to 501 nm) exhibited a distribution more like that of GluA3, 

concentrating in the PSD center, with few extrasynaptic particles (Fig 5).  Thus, 

GluA1 lateral position varies with PSD size, while GluA3 remains centrally localized 

regardless of PSD size.  

For technical reasons, we find postembedding immunogold label is optimal when 

sections are collected on fine mesh grids, but it is unfeasible to study serial sections 

on mesh grids. However, when examining single thin sections, it is impossible to 

know whether short PSD profiles represent slices from PSDs with small areas, or 

instead slices near the edges of larger PSDs. To explore whether this error might 

have affected our conclusions, we performed serial section electron ( Fig 6). We 

found that the distribution of normalized lateral position is quite similar to that from 

EM of single sections: GluA1 lateral position extends to the PSD edge, while GluA3 

concentrates in the center of the PSD (Fig. 7). When performing analysis on serial 

sections, edge sections are the first and last sections identified before the PSD is no 

longer visible. To assess whether data taken at the PSD edge significantly affects 

lateral position, we calculated average NL position for the complete data set, and 

compared this to the average NL position calculated after excluding data from 
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micrographs of thin sections collected at the edge of the synapse. The NL position of 

GluA1 and GluA3 for all data closely resembled that computed only from data 

without the edge (Table 3). In summary, we conclude that possible errors introduced 

by analysis of single sections had no significant impact on our results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

2.4  Discussion 

Here, we used immunogold electron microscopy to study the organization of 

AMPAR subunits in synapses of CA1 stratum radiatum. Although unsuitable for 

studying the dynamic properties of receptors, this technique provides an unbiased 

view of protein at a high spatial resolution in adult tissue. Labeling for all AMPAR 

subunits examined concentrated at the postsynaptic membrane of asymmetric 

synapses. On average, GluA1 was closer to the lateral edge of the PSD than GluA3 

(especially in small synapses), suggesting a differential synaptic organization of 

GluA1/2 and GluA2/3 receptors.  

Previous studies have reported higher immunogold labeling for AMPARs towards 

the edge of the PSD in multiple brain regions, including organ of Corti, neostriatum, 

cerebral cortex, and olfactory bulb (Matsubara et al., 1996; Bernard et al., 1997; 

Kharazia et al., 1997; Ottersen et al., 1998; Sassoe-Poenetto et al., 2000).  This 

result was confirmed using electron tomography (Chen et al., 2005). While our 

results are generally consistent with these studies, we find that GluA3 is more 

centrally localized. The significance of the position of GluA3- containing receptors in 

the synapse center is unclear, though N-methyl-D-aspartate receptors (NMDARs) 

also concentrates in the synapse center (Kharazia et al., 1997), raising the 

possibility of a local interaction between NMDARs and GluA2/3receptors. 

Computational studies predict that precise alignment between presynaptic sites 

of glutamate release and postsynaptic receptors increases synaptic efficiency (Xie et 

al., 1997; Raghavachari et al., 2002; Franks et al., 2003). Immediately after its 
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release from a presynaptic vesicle, glutamate concentration within the synaptic cleft 

is thought to reach a peak concentration of ~1-3 mM, decaying within 100-200 µs. 

Since AMPAR have a rather low affinity for glutamate, the precise alignment 

between presynaptic release sites and postsynaptic receptors is likely to modulate 

efficacy of neurotransmission (Clements et al., 1992; Clements et al, 1996). 

Intriguingly, overexpression of the presynaptic cell adhesion protein neurexin and its 

postsynaptic partner neuroligin decreases the surface diffusion of AMPAR, 

apparently through the interaction of neuroligin with PSD-95 (Mondin et al., 2001), 

pointing to a mechanism by which presynaptic release machinery could be coupled 

to postsynaptic receptors. Such coupling has been supported by (very limited) 

previous ultrastructural evidence (Kharazia et al., 1999) 

Several mechanisms have been proposed to control the lateral distribution of 

AMPARs. Protein-protein interactions between AMPARs and synaptic scaffolds can 

limit AMPAR diffusion (MacGillavry et al., 2011). PSD-95 and SAP97 are both strong 

candidates to serve this role. PSD-95, which distributes fairly uniformly across the 

PSD (Valtschanoff et al., 2001; Sassoe-Pognetto et al., 2003), overexpression 

increases and knockdown decreases AMPAR synaptic expression (El-Husseini et 

al., 2000; Elias et al., 2006;Ehrlich et al., 2007). However, there is no evidence of 

PSD-95 increasing in response to LTP. SAP97, the only protein known to interact 

with the PDZ domain of GluA1, distributes over the PSD, concentrating at its edge, 

similar to our finding for GluA1 (Valtschanoff et al., 2000; DeGiorgis et al., 2006). 

While the function of SAP97 remains unclear, neurons with increased levels of 
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SAP97 through development have enhanced AMPAR currents (Howard et al., 

2010).  

The organization of different AMPAR subunits may suggest possible differences 

in trafficking of GluA1/2 and GluA2/3. GluA1/2 receptor insertion is activity-

dependent while GluA2/3 receptor trafficking is constitutive, but it remains unknown 

if GluA1/2 and GluA2/3 receptor insertion follows the same route into the synapse. 

Multiple studies suggest that AMPAR insertion mainly occurs outside of the PSD 

(Kopec et al., 2006; Park et al., 2006; Yudowski et al., 2007; Yang et al., 2008; 

Makino et al., 2009;Kennedy et al., 2010), and then diffuses laterally through the 

postsynaptic membrane to enter the PSD (Borgdorff et al., 2002; Choquet et al., 

2003). However, components of the exocyst, a collection of proteins important for 

membrane insertion, have been found associated with the PSD, suggesting that 

AMPARs might also be directly inserted into the PSD (Gerges et al., 2006). We find 

that GluA1- containing receptors are closer to the PSD periphery while GluA3-

containing receptors are in the PSD center. This difference in lateral position 

suggests that to GluA1-containing receptors entering the sides of the PSD, while 

GluA3-containg receptors enter in the center. 

We established a link between AMPAR organization and size, finding that GluA1 

distributes over the PSD in short PSD, whereas GluA1 concentrates near the center 

in longer PSD. Differences in subunit position due to PSD length were not displayed 

by GluA2/3 and GluA3.  The reason for this PSD-size variation in GluA1 position is 

unclear, but we speculate that short PSDs, which are likely to represent smaller 
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PSDs, are more likely to be in the process of undergoing LTP and thus have more 

GluA1/2 receptors moving into them at any given time. 
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2.5  Tables and Figures 

Table 1. Genetic deletion of GluA1 or GluA2 and labeling with AMPAR antibodies. 

 
 
Antibody     WT      GluA1KO     GluA2KO 
 
   GluA1 47.2 ± 3.2%   6.4 ± 0.2% (-86%) 26 ± 1.7% (-44%)  

 
GluA2-3 54.0 ± 2.2% 45.0 ± 1.9% (-17%) 11.4 ± 1.8% (-79%) 
 
    GluA3 42.4 ± 1.2% 26.8 ± 2.2% (-37%) 22.6 ± 2.7% (-47%) 
 
 

Percentage of immunopositive synapses ± SEM (500 synapses, 
where equal 100 is assume to be a single sample). Percent reduction 
is in parentheses. 
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Table 2. Normalized lateral positions (means ± SEM) for three antibodies 
 
 
 
Antibody     Rats (WT)     GluA1KO     GluA2KO 
 
   GluA1 0.64 ± 0.01 (N = 866)       --- 0.62 ± 0.02 (314)  

 
GluA2-3 0.59 ± 0.01 (N = 822) 0.47 ± 0.01 (488) 0.55 ± 0.02 (200) 
 
    GluA3 0.50 ± 0.01 (N = 510) 0.46 ± 0.02 (336) 0.52 ± 0.02 (190) 
 
 

Numbers in parenthesis are number of particles used to calculate each average 
value.  For rats, particles were divided by animal (N=7) and the average value 
was calculated from the average value for each animal. Few knockout mice 
were available, thus we calculated average values by pooling all particles.  
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Table 3: Normalized Lateral Position for Serial Sections with and without edge data 

removed 

 

Antibody used Sections included NL position 

GluA1 All 0.61 ± 0.04 (137) 

No Edge 0.59 ± 0.04 (81) 

GluA3 All 0.46 ± 0.04 (89) 

No Edge 0.44 ± 0.04 (54) 

 

NL position calculated for all sections, and after excluding sections at the PSD edge. 
The number of particles measured is listed 
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Fig. 1. Diagram illustrates measurements for positions of gold particles.  
 
(A) Schematic red arrow illustrates the axis, zero-point, and sign for measurements 
of "axo-dendritic" position. (B) Schematic red arrow illustrates the axis for 
measurement of "lateral" position; 0 and 1 define corresponding normalized lateral 
positions. C. Red arrows on micrograph illustrate the measurements made for a 
single gold particle on a real micrograph. 
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Fig. 2. Postembedding immunogold.  

Micrographs illustrate the material used in this study. All images are from stratum 
radiatum of CA1 hippocampus, from adult rat. Gold particles (black dots) are 10 nm 
in diameter. Material in top panel was reacted with an antibody to GluA1 (A-C); 
middle panel, with antibody to GluA2-3 (D-F); and bottom panel, with antibody to 
GluA3 (G-I; see Methods for details). Most of the labeling is clearly associated with 
asymmetric synapses. (A) Axospinous synapse strongly labeled for GluA1 
(presynaptic terminal at top). (B) Large axospinous synapse; labeling lies near the 
edge of the synaptic specialization. (C) A small dendritic shaft (identified by 
microtubules (cut en face) and by mitochondrial profile at bottom right of image) 
receives two immunopositive synaptic contacts. We excluded such synapses from 
analysis, focusing exclusively on axospinous synapses. (D, E): Each panel shows 
two axospinous synapses, both immunopositive for GluA2-3. (F) Axospinous 
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synapse cut in favorable section to allow clear visualization of the entire plasma 
membrane of the spine. While gold particles clearly associate with the postsynaptic 
specialization, a few particles are also visible within the spine cytoplasm. Synapses 
in F and at bottom left in D exhibit incomplete perforation; we excluded synapses 
with complete perforation from analysis of "lateral" position. (G-I) labeling for GluA3 
is typically weaker than for the other antibodies. Note that synaptic labeling often lies 
outside the spine. Scale bars = 200 nm 
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Fig. 3:  Axo-dendritic distribution of labeling for three AMPAR antibodies. 

 

0 on the x-axis corresponds to the postsynaptic membrane; positive numbers are in 
the postsynaptic direction; negative numbers are in the presynaptic direction (see 
Fig. 1 for details). To reduce noise, the curve is smoothed with a three-point 
weighted moving average (see Methods for details). Labeling for both GluA1 and 
GluA2-3 is predominantly postsynaptic (4.1 ± 1.1 nm and 2.9 ± 1.0 nm, respectively), 
while GluA3 label concentrates in the synaptic cleft (-3.9 ± 1.3 nm from the 
postsynaptic membrane, n=7 animals). The mean axo-dendritic position of GluA3 
was significantly different from that of both GluA1 and GluA2-3 (p < 0.001).  
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Fig. 4: Lateral position of GluA1 and GluA3 at the synapse.  

(A) Graph of normalized lateral position (computed for five bins). 0 corresponds to 
the center of the PSD, and 1 corresponds to its edge. Labeling for GluA1 remains at 
high levels all along the PSD, extending beyond the edge of the PSD, whereas 
GluA3 concentrates at the center of the synapse. The fraction of synapses labeled 
for GluA3 was significantly greater than GluA1 in the 0 to 0.4 bin (p < 0.01) and 
significantly less than GluA1 in the 0.8 to 1.2 bin (p < 0.001; N = 7 animals). (B) Bar 
chart shows the ratio of labeling associated with the postsynaptic membrane 
extending from a NL position of 0.5, divided by labeling within the central 0.5 NL 
position of the synapse for GluA1 and GluA3. GluA1 has a twofold increase 
compared against GluA3.  (C) Bar chart showing the ratio of the number of particles 
25 nm extrasynaptic over the central 50 nm of the PSD. A much greater proportion 
of GluA1 than GluA3 lies beyond the edge of the synapse 
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Fig. 5: AMPAR subunit position versus PSD size. 
 

We divided the normalized lateral position data for each antibody in half based on 
PSD size, creating a short and long PSD data set. (A) The lateral position of GluA1 
varies with PSD size: the NL position of shorter PSDs is displaced toward the edge 
of the synapses, compared to longer PSDs. (B) In contrast, little evidence for a size 
effect is seen for GluA3. (C) This difference is especially marked for the “edge-to-
center” ratio (the raio of the number of gold particles outside the central half of the 
synapse to the number within the central half).  
 
 



57 

 

 

Fig. 6: Serial sections, immunoreacted for GluA1. 

In section A, a true synapse is undetectable, though a poorly-defined area of 
electron density near the postsynaptic membrane is visible, presumably associated 
with the edge of the PSD.  PSDs in sections B and C label for GluA1; note that gold 
particles in section B seem to lie in the middle of the PSD, but are actually closer to 
the PSD edge. Scale bar = 200 nm 
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Fig. 7:  Normalized lateral position of GluA1 vs.GluA3 in serial sections.  

Graph shows normalized lateral distribution of GluA1 and GluA3. These distributions 
are similar to the distribution of AMPAR subunits we found using single section EM 
(A). Our data suggest that AMPARs in small PSD have a different organization than 
longer PSDs. However, in single section EM, it is not possible to know if short PSDs 
are sections through the center of small PSDs or if they are sections from the edges 
of larger PSDs.  To study this effect, we compared average NL position for the 
complete data set  to the average NL position calculated without data from the PSD 
edge.  These average values were not significantly different. 
 

 

 

 

 

 

 

 

 



 

CHAPTER 3 

The organization of amyloid-ββββ protein precursor intracellular domain-
associated protein-1 in the rat forebrain. 

3.1. Introduction 

The intercellular appositions at synapses are specialized sites of 

communication between neurons. Transmitter receptors concentrate in the 

postsynaptic density (PSD), a protein-rich zone that acts as a general organizer of 

signal transduction, including pathways associated with synaptic plasticity (Ziff, 

1997; Okabe, 2007; Sheng et al., 2007).  Available data suggest that long-term 

plasticity requires synthesis of new protein to be sustained (Krug et al., 1984; 

Nguyen et al., 1994; Abraham et al., 2008). While the precise balance between local 

dendritic versus remote somatic protein translation is a topic of continued study 

(Schuman et al., 2006; Skup, 2008), nuclear transcription leading to subsequent 

protein translation is required for sustained expression of several types of long-term 

synaptic plasticity (Frey et al., 1989; Calixto et al., 2003; Reymann et al., 2007). 

β-amyloid, a cleavage product of amyloid-β protein precursor (APP), is a 

major component of amyloid plaques, a hallmark of the Alzheimer’s disease 

(Duyckaerts et al., 2009).  Another cleavage product, APP intracellular domain (AID, 

or AICD), may play a role in apoptosis, calcium homeostasis, and transcriptional 

regulation (Hamid et al., 2007; Müller et al., 2008; Slomnicki et al., 2008); however, 

whether AID plays a role in Alzheimer disease remains controversial. AID-
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associated protein-1 (AIDA-1) is a recently discovered protein that binds AID 

(Ghersi, Noviello et al., 2004; Ghersi, Vito et al., 2004). Proteomic studies suggest 

that AIDA-1 is a major component of the biochemically-isolated PSD fraction (Jordan 

et al., 2004; Peng et al., 2004; Yoshimura et al., 2004). Its function remains rather 

mysterious, but recent evidence suggests that AIDA-1 provides a novel route of 

communication between synapses and nuclei. In cultured hippocampal neurons, 

AIDA-1 translocates to the nucleus in an NMDAR-dependent manner, leading to 

downstream increases in protein translation (Jordan et al., 2007). A recent study 

confirmed that AIDA-1 contains a nuclear localization signal (Kurabi et al., 2009). 

Together, this evidence suggests that AIDA-1 might link synaptic activity to a nuclear 

response. 

 AIDA-1 has been studied in culture systems, but little is known about its 

distribution in vivo. Here, we use immunocytochemistry to study the organization of 

AIDA-1 in adult rat brain. Our results show both nuclear and synaptic localization, 

providing new clues concerning possible functions of AIDA-1 in neurons. 
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3.2. Experimental procedures  

Tissue Preparation  

 Experiments were carried out on 13 adult male Sprague-Dawley rats ranging 

from 3 to 10 months old, from Charles River Laboratories (Raleigh, NC, USA). Four 

were used for DAB staining, 4 were used for confocal microscopy, 2 were used for 

preembedding electron microscopy, and 3 were used for postembedding electron 

microscopy. All procedures related to the care and treatment of animals were 

conducted according to institutional and NIH guidelines. Animals were deeply 

anesthetized with sodium pentobarbital (60 mg/kg) and intracardially perfused with 

saline followed by ~ 500 mL of fixative. For light microscopy, fixation was with 4% 

depolymerized paraformaldehyde (PFA) in 0.1 M phosphate buffer, pH 7.4 (PB); for 

electron microscopy, fixation was with either a mixture of 2% PFA and 2% 

glutaraldehyde (GA) in PB or 4% PFA and 0.5% GA in PB. The brains were 

removed and postfixed for 2 hours in the same fixative at 4°C. Coronal sections 

containing hippocampus and cerebral cortex were cut on a Vibratome at 40-60 µm 

(for light and electron microscopy) or 200-250 µm (for freeze substitution electron 

microscopy) and collected in cold PB. 

Antibodies 

 Primary antibodies used were affinity-purified polyclonal antibodies against 

AIDA-1 raised in rabbit (2.5 – 6.3 µg/mL, Zymed, San Francisco, CA; 36-7000); 

against vesicular glutamate transporter 1 in guinea pig (VGLUT1, 0.2 µg/mL, 

Chemicon, Temecula, CA;  AB5905); against glutamate decarboxylase-65 in mouse 

(GAD-65, 8 µg/mL, Chemicon;  AB5082), and a mouse monoclonal antibody raised 
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against nuclear pore complex proteins (NPC; 1 µg/mL, Covance, Princeton, NJ; 

MAb414).  

To prepare the AIDA-1 antibody, rabbits were injected repeatedly with a 

peptide conjugate corresponding to the sequence RLHDDPPQKPPRSIT starting at 

position 172 on AIDA-1d. This antibody recognizes both cleaved and uncleaved 

AIDA-1. (See Results for further details on antibody characterization.) 

The VGLUT1 antibody was raised against a 19-residue peptide sequence 

(GATHSTVQPPRPPPPVRDY) found at the C terminus of rat VGLUT1. The 

specificity of this antibody has been confirmed by Western blot; the VGLUT1 

antibody recognized a single ~60 kDa band (Melone et al., 2005).  

The GAD-65 antibody, raised against human GAD-65 from baculovirus-

infected cells, recognized two bands on Western blot. A 65 kDa band corresponded 

to GAD-65, and a 62kDa corresponding to a protease fragment. Results from this 

antibody have been reported in numerous publications, and it yields a pattern of 

staining in many brain regions characteristic of GABAergic innervation (Mi et al., 

2002; Swanwick et al., 2006; Belichenko et al., 2009).  

The widely-used NPC antibody, raised against a nuclear pore complex 

mixture and purified via protein-G chromatography, recognizes the conserved 

domain FXFG repeats in nucleoporins.  In Western blot, the antibody recognized a 

single band at 62 kD.  Immunofluorescence staining revealed punctate staining 

along the nuclear border.  Immunoelectron microscopy confirmed this finding (Davis 

et al., 1986).  
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Immunocytochemistry for Light Microscopy 

 All incubations were carried out on a shaker at room temperature. Fixed 

sections were treated with 3% H2O2 in 0.01M phosphate-buffered saline, pH 7.2 

(PBS) to suppress endogenous peroxidases, and 10% normal donkey serum (NDS; 

Jackson ImmunoResearch, West Grove PA, USA) in PBS to mask secondary 

antibody binding sites. Sections were then incubated overnight with primary 

antibodies in various combinations. For immunoperoxidase staining, sections were 

rinsed in PBS and blocked with 2% NDS before treatment with biotin-conjugated 

donkey anti-rabbit antibody (5 µg/mL; Jackson ImmunoResearch) in PBS. After 

rinsing in PBS, sections were treated with Extravidin-peroxidase (0.4-0.5 µg/mL ; 

Sigma, St Louis, MO, USA) and processed with nickel-intensified 3,3'– 

diaminobenzidine tetrahydrochloride (Ni-DAB). Sections were then mounted on 

gelatin-coated slides, air-dried, cleared with xylene, and coverslipped with DPX 

(BDH Laboratory Supplies, Poole, UK). For immunofluorescence, sections were 

washed in PBS, incubated in a fluorochrome-conjugated secondary antibody (Cy3, 

FITC, or Cy5, 7.5 µg/mL in PBS; Jackson Immunoresearch), rinsed, mounted on 

slides, and coverslipped with Vectashield mounting medium (Vector, Burlingame, 

CA, USA). To counterstain nuclei, 4',6-diamidino-2-phenylindole dihydrochloride 

(DAPI, 0.5 µg/mL in PBS; Molecular Probes, Eugene, OR) was applied after the 

secondary antibody. Sections were then mounted on gelatin-coated slides and 

coverslipped. DAB sections were examined with a Leitz DMR microscope (Lecia, 

Wetzlar, Germany), and images were collected using a 12-bit cooled charge-coupled 

device camera(Retiga EX, QImaging, Canada) coupled to a Macintosh computer 
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(Apple Inc., Cupertino, CA, USA). Confocal images were collected with a Zeiss 510-

LSM confocal microscope. 

Immunocytochemistry for Electron Microscopy 

 For pre-embedding electron microscopy, sections were treated sequentially 

for 30 minutes in 1% sodium borohydride in PB, in 3% H2O2 in 0.01M PBS, and in 

10% NDS, and then incubated overnight with the primary antibody. Following rinses 

in PBS, sections were either treated with Extravidin-peroxidase (0.4-0.5 µg/mL) 

followed by Ni-DAB (for immunoperoxidase staining), or incubated in streptavidin 

coupled to 1.4 nm gold particles (1:100, Nanoprobes Inc., Yaphank, NY, USA) for 2 

hrs at room temperature (for immunogold detection). Gold-treated sections were 

rinsed in 0.1 M sodium acetate (to remove phosphate and chloride ions) and 

underwent silver enhancement with an Amersham IntenSETM M kit (GE Healthcare, 

Buckinghamshire, UK). Immunoreacted sections were postfixed in 0.5-1% osmium 

tetroxide in 0.1 PB for 45 min, and then stained en bloc with 1% uranyl acetate for 

45 mins. After dehydration in ascending ethanol series and propylene oxide, 

sections were infiltrated with Epon/Spurr resin (Electron Microscopy Science, 

Hatfield, PA, USA) and mounted between sheets of Aclar within glass slides. 

Sections were cut at ~100 nm, mounted on 200 mesh copper grids, and contrasted 

with uranyl acetate and Sato's lead.  

 Postembedding immunogold staining was performed on sections according to 

a freeze-substitution protocol: sections, some pretreated with 0.1% 0.1 M CaCl2 in 

sodium acetate, were cryoprotected in 30% glycerol overnight. Areas of interest 

were removed and frozen in isopentane chilled with dry ice. Frozen tissue blocks 
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were immersed in 4% uranyl acetate in methanol at -90°C for 48 hours in a freeze-

substitution instrument (AFS, Lecia). Following gradual warming, blocks were 

infiltrated with Lowicryl (HM-20, Electron Microscopy Science) at -45°C and 

polymerized under UV light. Sixty nm sections were cut from the polymerized blocks 

and collected on nickel grids for post-embedding staining. Grids were treated with 

1% bovine serum albumin in TRIS-buffered saline with 0.005% Tergitol NP-10 

(TBSN), pH 7.6, followed by overnight treatment with the primary antibody. Section 

then underwent treatment with 1% normal goat serum in TBSN pH 8.2 before 

application of gold-conjugated secondary (10 or 18 nm, Jackson ImmunoResearch). 

The sections were post-stained using uranyl acetate and Sato’s lead salts. Grids 

were examined on a Philips Tecnai electron microscope (Hillsboro, OR) at 80 kV; 

images were collected with a Gatan 12 bit 1024 X 1024 cooled CCD camera 

(Pleasanton, CA).  

Image Processing 

 Figures were composed and contrast and brightness were adjusted with 

Adobe Photoshop CS (v 9.0.2, Adobe Systems, Mountain View, CA USA). Color 

tools were used to enhance visibility in double-labeling images, and many images 

were sharpened using the Photoshop “unsharp filter” tool. All processing procedures 

were applied uniformly across the entire image. 

Analysis of AIDA-1 Nuclear and Nuclear Pore Association 

 Data was taken from confocal images collected using a 63x oil objective 

(numerical aperture1.4) of material immunostained for both AIDA-1 and NPC. To 

determine nuclear association, puncta contained entirely within the border of nuclei 
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were counted and recorded. To determine NPC association, AIDA-1 puncta 

colocalizing with NPC were counted.  Puncta were defined by both size and 

brightness; in 300 dpi images, “large” puncta contained a minimum of 25 pixels at an 

intensity of 100 out of 256 and 7 pixels at an intensity of 200 out of 256. Data was 

taken in Adobe Photoshop CS and analyzed and graphed in Excel (Microsoft, 

Redmond, WA, USA). 

Analysis of Presynaptic Immunogold Labeling 

 Electron micrographs containing presynaptic vesicle pools were collected 

from both CA1 stratum radiatum and CA3 stratum lucidum. The area of the 

presynaptic vesicle pool was measured, and the number of gold particles contained 

in the vesicle pool was counted in NIH ImageJ (v1.42; see http://rsb.info.nih.gov/ij) 

permitting us to calculate particle densities in Excel.  

Analysis of Synaptic Immunogold Labeling 

 To determine the percentage of synapses containing AIDA-1, all synapses 

within randomly observed fields in AIDA-1-stained grids of stratum radiatum in 

hippocampus, cerebral cortex, and cerebellum were counted. Synapses containing 

gold particles within 50 nm of the PSD were counted as AIDA-1-positive; all other 

synapses were negative.  Percentage of synapse expression was calculated from 

this data.   

 Electron micrographs of randomly-selected fields containing gold particles 

within 100 nm of the PSD were taken from CA1 stratum radiatum. For clearly-

defined synapses, the distance of gold particles from the postsynaptic membrane 

(“axo-dendritic position”) and tangentially away from the edge of the postsynaptic 
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density (“lateral position”) were measured. When computing the axo-dendritic 

position, particles that were >25 nm away from the lateral ends of the PSD were 

ignored, and when computing lateral position, particles far from the postsynaptic 

membrane (< -50 or > 75 nm away) were ignored, since these particles were unlikely 

to be related to the PSD.  When graphing axo-dendritic position, the data was 

smoothed using a three-point weight running average.  For all but the end points, 

yj(smoothed) = [y(j-1) + 2yj +y(j+1)]/4.  For the end points, y1(smoothed) = (2y1+ y2)/3 and 

yn(smoothed) = [y(n-1)+ 2yn]/3. 

The lateral position was normalized, to estimate the position of the particles along 

the PSD. This was computed using the following formula: 

Normalized value= Gold particle distance from PSD center
Distance from PSD edge tocenter  

Thus, a value of 0 corresponds to a particle centered in the synapse; a value of 1.0 

corresponds to a particle at the PSD edge. (For further details, see Kharazia et al, 

1997 and Valtschanoff et al, 2001.) Data were collected in an Excel spreadsheet 

(Microsoft) for further analysis. DataDesk (Data Description, Ithaca, NY) and 

KaleidaGraph (Synergy Software, Reading, PA, USA) were used to compute 

statistics. CricketGraph (Computer Associates, Islandia, NY) was used to generate 

graphs and perform data smoothing.   
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3.3. Results 

AIDA antibody characterization and biochemical distribution 

To confirm the specificity of this antibody, 10 µg of nuclear fraction, total 

lysate, synaptosomes, and postsynaptic densities were isolated from rat brains 

(Jordan et al., 2007) and subjected to SDS-PAGE (Fig 1A). Western blots showed 

staining for at least 4 different bands corresponding to different isoforms: AIDA-1d 

(~60 kDa and ~28 kDa), AIDA-1e (~49 kDa) and EB-1 (~72 kDa). The identities of 

these bands were confirmed by comparing the immunoreactivity in brain lysates to 

that observed in extracts from HeLa cells transfected with specific AIDA-1 isoforms. 

For further confirmation, we generated lentiviruses expressing AIDA-1-specific 

shRNAs, using the pTRIP vector system as described elsewhere (Janas et al., 

2006). We generated 19 basepair shRNAs against sequences starting at bp 138, 

207, and 384. Cultured hippocampal neurons (Jordan et al., 2007) infected at DIV 

10, incubated for 7 days and then lysed, showed a nearly complete downregulation 

of most isoforms using shRNAs targeting bp 138 and 207 on AIDA-1d, and all 

isoforms with shRNAs targeting bp 384 (Fig 1B). The average downregulation 

observed by shRNA 384 was 74.5% ± 2.6 (Fig 1C). HEK-293T cells transfected with 

AIDA-1d and stained with the Zymed Ab showed no staining when co-tranfected with 

AIDA-1 specific siRNAs (Ambion; Austin, Texas; s232460), while HEK-293T cells 

co-transfected with AIDA-1d and control siRNAs stained prominently (Fig 1D-F).  

Primary hippocampal neurons infected with AIDA-1 specific shRNA 384 showed a 

marked reduction in AIDA-1 staining (Fig 1G-I). To confirm method specificity, we 

performed immunoperoxidase staining on brain sections without including the AIDA-
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1 antibody.  Sections lacking this antibody showed very weak nonspecific staining 

(Fig 1J), while sections stained with the AIDA-1 antibody had high levels of staining 

(Fig 1K). 

Light Microscopic Immunohistochemistry  

 We performed immunoperoxidase staining to assess the general organization 

of AIDA-1. Immunoreactivity was found throughout the brain, generally concentrating 

in gray matter and much weaker in white matter. Immunopositive neurons were 

scattered throughout the brain, standing out from diffusely stained neuropil. Staining 

was strong in forebrain, including hippocampus, cerebral cortex, and striatum, and in 

cerebellum; and weaker in brain stem and spinal cord.   

 The olfactory bulb had moderate overall levels of staining. The external 

plexiform layer and mitral cell layer had the strongest staining; some mitral cells 

contained prominently stained nuclei (Fig 2).  The internal plexiform layer and the 

internal granule cell layer had modest staining, while glomeruli were more weakly 

stained than the matrix. 

 AIDA-1 staining extended throughout the layers of cerebral cortex, somewhat 

weaker in layer IV; no obvious differences in staining intensity were detected 

tangentially along the cortex (Fig 3A). Staining of somata seemed evenly distributed 

through the cell layers; the weaker staining in layer IV reflected a decrease in 

neuropil staining. AIDA-1 labeled some nuclei, but not all of them (Fig 3B). Staining 

often concentrated around the perimeter of nuclei (black arrowhead).  

Striatum exhibited strong neuropil staining, which was largely excluded from 

the fascicles of myelinated fibers. Staining was stronger in caudate-putamen than 
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globus pallidus. Much of this staining was organized into small puncta, perhaps 

related to the spines of medium spiny cells in the caudate-putamen (Fig 3C-D).   

 In the hippocampus, staining for AIDA-1 was strong in areas with high 

concentrations of cell bodies, especially the pyramidal cell layer of Ammon’s horn, 

with weaker staining throughout the hippocampal formation (Fig 4A-B). Staining was 

especially prominent in large puncta in stratum lucidum of CA3, likely to correspond 

to the boutons of mossy fibers (Fig 4C).  

 Staining was moderate in the thalamus, with little obvious distinction among 

thalamic nuclei (Fig 5A). Within cerebellum, Purkinje cells stained strongly for AIDA-

1, with staining extending into the proximal dendritic arbor. Unlike most brain areas, 

the large majority of Purkinje cell nuclei were immunonegative (Fig 5B). Granule 

cells displayed low levels of staining, while moderate diffuse staining was seen in the 

molecular layer.   

 Overall, the brain stem stained more weakly than forebrain and cerebellum 

(Fig. 6). Superior and inferior colliculus, pons, and medulla generally exhibited 

relatively weak diffuse staining, although some areas stained more strongly. Strongly 

stained neurons were present in a number of regions. Prominent staining was 

observed in the red nucleus, pontine nucleus, and the ventral cochlear nucleus (not 

shown), in motoneurons of the motor trigeminal nucleus (Fig 6A1), neurons in the 

superior olivary complex (Fig 6B), and large neurons in the gigantocellular reticular 

nucleus (Fig 6C1). The nuclei of many, but not all, of the strongly-stained neurons 

were immunopositive.  
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 The spinal cord displayed generally low levels of staining (Fig 7).  

Motoneurons in the ventral horn stained for AIDA-1, and many of these contained 

AIDA-1 positive nuclei.  Pronounced diffuse staining was detected in the superficial 

dorsal horn. 

 To assess the locus of staining at higher resolution, we performed high-

resolution confocal microscopy on AIDA-1-stained sections, focusing on the cerebral 

cortex and hippocampus. In both cortex and hippocampus, immunofluorescent 

staining was organized into puncta of different sizes and subcellular locations, 

presumably representing distinct pools of AIDA-1. The pattern of staining varied with 

depth, presumably due to variable antibody penetration (Fig 8). At the section 

surface, the most prominent staining was diffuse or organized into numerous small 

puncta in the neuropil; this pattern dissipated rapidly with depth.  A few µm beneath 

the surface, staining was largely confined to large puncta associated with cell 

bodies.   

The most prominent staining was in stratum lucidum of CA3, which contained 

numerous very large puncta. To clarify the nature of these puncta, sections were 

stained with AIDA-1 and either VGLUT1 (a presynaptic excitatory marker) or GAD-

65 (a presynaptic inhibitory marker). AIDA-1 colocalized with VGLUT1 in large 

puncta, but showed little colocalization with GAD-65 (Fig 9), suggesting that AIDA-1 

concentrates in the excitatory terminations of mossy fibers onto the thorny 

excrescences of CA3 neurons.  

 Another population of AIDA-1 puncta (best defined 3-5 µm beneath the 

surface of the section) lay within nuclei of neurons. Z series confocal stacks were 
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acquired to ensure that staining was within the nucleus, and not restricted to the 

nuclear border. Nuclei generally were either essentially devoid of AIDA-1 staining, or 

contained many large puncta throughout each optical section (Fig 10). These were 

present in both excitatory and inhibitory cells. This staining was usually excluded 

from nucleoli, although AIDA-1 puncta occasionally lay adjacent to nucleoli.  

 In both cerebral cortex and hippocampus, nuclei generally contained either 

ten or more of these large puncta, or none (Fig 10C-D). We therefore dichotomized 

nuclei into “positive” and “negative” populations, defining immunopositive nuclei as 

those containing ≥5 large puncta in the nucleus in a given optical section. In cerebral 

cortex, 55% of nuclei (78/142) were immunopositive. The prevalence of nuclear 

staining was relatively constant through the layers of cortex; 57% of nuclei (36/63) in 

layer 2/3 were immunopositive, and 54% (45/82) in layer 4/5. The prevalence of 

nuclear staining in hippocampus was similar: 61% of nuclei (45/73) in CA1 and 56% 

in CA3 (37/66) were immunopositive. We conclude that AIDA-1 is expressed at 

substantial levels in ~ 60% of the nuclei of neurons throughout cerebral cortex and 

Ammon’s horn. Due to tight packing of cells, we were unable to perform quantitative 

analysis of nuclei within dentate gyrus, but it was apparent that both positive and 

negative nuclei were common.   

 AIDA-1 puncta could also be seen in the cytoplasm, especially near the 

nuclear border. Confocal microscopic analysis of double staining with AIDA-1 and 

NPC (a core protein of the nuclear pore complex) showed large AIDA-1 puncta 

associated with the nuclear membrane, with immunopositive nuclei exhibiting more 

nuclear envelope-associated puncta (Fig 11). Assessing staining 3-6 µm beneath 
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the section surface, AIDA-1-positive nuclei in the hippocampus had 2.8 ± 0.2 nuclear 

envelope-associated puncta (n=82), while nuclei lacking AIDA-1 had 2.0 ± 0.2 

puncta (n=55). Cerebral cortex exhibited a similar relationship, with positive nuclei 

having 1.9 ± 0.2 puncta (n=81) and nuclei lacking AIDA-1 having 1.3 ± 0.2 nuclear 

envelope-associated puncta (n=64).  

Ultrastructural Observations 

 To gain a clearer understanding of its subcellular organization, we performed 

immuno-electron microscopy for AIDA-1 in hippocampus. Pre-embedding 

immunogold staining revealed silver-enhanced gold particles associated with the 

nuclear envelope and nuclear pores, on both cytoplasmic and nuclear surfaces (Fig 

12A-C). Cytoplasmic staining was also observed, often associated with intracellular 

membranes (Fig 12D).  

 Pre-embedding immunoperoxidase showed AIDA-1 staining in mossy fiber 

terminals (Fig 12E); staining concentrated at the center of vesicle pools and was 

seldom seen close to the plasma membrane.  A similar pattern of staining in mossy 

fibers was seen with immunogold in postembedded material (data not shown). In 

contrast, presynaptic terminals in CA1 did not share this high level of expression. 

However, mossy fibers terminals are exceptionally large. To explore whether the 

difference in size could explain the observed difference in presynaptic label, we 

computed staining density over vesicle pools in both CA1 and CA3. Staining in CA3 

synapses proved to be 4 times denser than in CA1 synapses, confirming our 

qualitative impression that the difference is not merely an artifact arising from the 

size of mossy fibers. 
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 We seldom observed labeling associated with the postsynaptic specialization 

in pre-embedding material, but pre-embedding techniques often fail to detect 

antigens in the PSD, presumably due to the poor penetration of antibodies into this 

protein-dense compartment. Therefore, we performed postembedding immunogold 

labeling on tissue processed with freeze-substitution techniques. As with pre-

embedding, staining was prominent along the nuclear envelope and within mossy 

fiber terminals was prominent, but synaptic staining was especially conspicuous, 

concentrating at the PSD (Fig 13A-C). Approximately 37% of asymmetric excitatory 

synapses (174/467) in the CA1 region of the hippocampus and 26% of excitatory 

synapses within cerebral cortex (40/150) displayed immunogold labeling.  In 

contrast, labeling was uncommon in the molecular layer of cerebellar cortex, where 

only 6% (15/235) of synapses labeled.  

 We performed quantitative analysis of postembedding immunogold material in 

hippocampus, to determine the position of gold particles in relation to the synaptic 

cleft, and found that AIDA-1 was closely associated with the PSD. To analyze 

antigen position in relation to the PSD, gold particles more than 25 nm beyond the 

lateral ends of the PSD were ignored. For this subgroup, particles coding for AIDA-1 

lay at a mean distance of 13 ± 2 nm from the postsynaptic plasma membrane (n = 

334). Particles clustered into a peak -20 to 50 nm from the membrane, resembling a 

Gaussian distribution with an added cytoplasmic tail (Fig 13D). In the tangential axis, 

particles far from the postsynaptic membrane (< -50 or > 75 nm away) were ignored, 

since these particles were unlikely to be related to the PSD.  Labeling distributed 

fairly uniformly along the PSD, rapidly dropping off at its edge (Fig 13E). 
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3.4. Discussion 

  Synaptic activity is linked to transcription via a variety of signals that 

translocate from the synapse to the nucleus (Deisseroth et al., 2003; West et al., 

2002). Ca2+ from the synapse can spread into to the nucleus and directly activate 

the transcription factor DREAM (downstream regulatory element antagonist 

modulator, Osawa et al., 2001). Alternatively, Ca2+ can bind to calmodulin at 

synapses to trigger nuclear translocation of calmodulin and other downstream 

signals that activate CREB (cAMP response element binding; Deisseroth et al., 

1996; Deisseroth et al., 1998; Dolmetch et al., 2001). Several transcription factors 

have been shown to travel from the synapse to the nucleus, where they can 

modulate gene expression (Graef et al., 1999; Kaltcshmidt et al., 1995; Lai et al., 

2008). AIDA-1 uses a different strategy: after being cleaved at the PSD, the AIDA-1 

fragment containing a nuclear localization sequence translocates to the nucleus 

(Jordan et al., 2007). 

 High levels of AIDA-1 have been reported in biochemically-isolated PSD 

fractions (Yoshimura et al., 2004, Peng et al., 2004, Jordan et al., 2004), but little 

information is available concerning its anatomical localization. Our study in adult rat 

brain reveals strong staining in forebrain regions rich in spiny dendrites containing 

excitatory synapses. Staining difference in striatum are noteworthy; caudate-

putamen, which contains many excitatory synaptic connections on spiny neurons, 

exhibits stronger staining than globus pallidus, which contains inhibitory connections 

from the caudate-putamen (Gerfen,1988; Difiglia et al., 1988).   
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Purkinje cells stained prominently for AIDA-1. This was unexpected, since 

Western blot failed to detect AIDA-1 in biochemically-isolated PSDs from cerebellum 

(Jordan et al., 2007). Likewise, in the present study we found that synapses in 

cerebellar cortex were only seldom immunopositive for AIDA-1.  Multiple splice 

variants of AIDA-1 have been identified (Ghersi, Noviello et al., 2004;.Ghersi, Vito, et 

al., 2004; Xu et al., 2005), and these may exhibit different staining patterns. For 

example, AIDA-1a, but not AIDA1b, is found in nuclei of transfected HeLa cells 

(Ghersi, Noviello et al., 2004). Likewise, our biochemical data (Fig. 1) suggest 

differential subcellular expression patterns for different splice variants. We speculate 

that different splice variants may play distinct functional roles. Synapses of Purkinje 

cells were seldom labeled, and their nuclei were seldom immunostained, leading us 

to suggest that AIDA-1 staining in cerebellum represents some isoform not involved 

in synapse-to-nucleus signaling. 

 In hippocampus, AIDA-1 was found in a large fraction of excitatory synapses. 

Within CA1 synapses, AIDA-1 concentrated centrally within PSDs, the same general 

location previously reported for both PSD-95 and NR2A/B (Valtschanoff et al., 2001). 

Co-immunoprecipitation experiments have shown that AIDA-1 binds to PSD-95 and 

associates with NMDARs (Jordan et al., 2007). The present data suggest that AIDA-

1 forms similar signaling complexes in vivo.  Mossy fiber synapses within CA3 

display a strikingly different pattern; AIDA-1 in these synapses associated with 

vesicle pools. Thus, the pattern of AIDA-1 staining within distinct areas of 

hippocampus correlates with the locus of LTP expression: AIDA-1 is postsynaptic 

within synapses that exhibit NMDAR-dependent postsynaptic LTP, and presynaptic 
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in synapses expressing NMDAR-independent presynaptic LTP (Malenka et al., 

1999; Nicoll et al., 2005; McBain et al., 2008). We suggest that AIDA-1 may serve as 

a link between synapses and nuclei in both these areas, despite the functional 

difference in LTP induction and expression. 

  In our study, more than half of nuclei contained large AIDA-1 puncta in 

cerebral cortex and hippocampus, in contrast to dissociated hippocampal neuron 

cultures, where only 15%-20% of nuclei were AIDA-1 positive under basal 

conditions. This quantitative discrepancy may reflect higher levels of neuronal 

activity in vivo, since NMDAR activation greatly increased the fraction of cultured 

neurons with AIDA-1 positive nuclei. Previous in vitro work showed that NMDAR 

activation caused AIDA-1 to enter the nucleus and stabilize connections between 

Cajal bodies and nucleoli. This connection may promote mRNA synthesis, leading to 

increased protein translation (Jordan et al., 2007). In our study, nucleolar AIDA-1 

staining was infrequent, but our data do not directly question the hypothesis that 

AIDA-1 promotes Cajal body/nucleolar interactions; AIDA-1 staining was seen at 

nucleolar borders in our material.  However, the more obvious staining we detected 

at the nuclear membrane, often in association with the nuclear pore complex (NPC), 

suggests another mechanism of action. The NPC, a large multimeric assembly of 

proteins, serves as “gatekeeper” that mediates signals into the nucleus (Schwartz, 

2005; D'Angelo et al., 2008). Staining of AIDA-1 at nuclear pores could indicate 

trafficking of AIDA-1 into the nucleus; however, even in the absence of nuclear 

AIDA-1 staining, AIDA-1 puncta were found along the nuclear border. We speculate 

that AIDA-binding at NPC may help to regulate nuclear/cytoplasmic trafficking. 
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3.5. Figures 
 

 
Fig. 1. Characterization of AIDA-1 antibody.  
 
The AIDA-1 antibody (Zymed, Invitrogen) was raised against a peptide conjugate 
corresponding to the sequence RLHDDPPQKPPRSIT at position 172 on AIDA-1. A:  
Western blot; the AIDA-1 antibody detected for at least 4 different bands 
corresponding to different AIDA-1 isoforms: 1d (~60 kDa and ~28 kDa), 1e (~49 
kDa) and EB-1 (~72 kDa). Nuclei (Nuc) contained prominent bands corresponding to 
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AIDA-1d and AIDA-1e; total lysate (Tot) contained prominent bands corresponding 
to EB-1, AIDA-1d, and AIDA-1e;  and synaptosomes (Syn) and postsynaptic 
densities (PSD) contained prominent bands corresponding to AIDA-1d, AIDA-1e, 
and the AIDA-1d fragment. HeLa cells transfected with specific AIDA-1 isoforms 
confirmed identities of these bands. B: Lentivirus transfection with AIDA-1-specific 
shRNAs downregulated AIDA expression in cultured hippocampal neurons. ShRNAs 
targeting bp 138 and 207 on AIDA-1 downregulated 1d and 1e isoforms, while 
shRNA 384 downregulated all isoforms. C: shRNA 384 reduced expression by 
74.5% ± 2.6 (AIDA-1) vs nonspecific shRNA (SCR) (densitometry, N =8 gels, *** p-
value < 0.0001). No changes were observed for other markers (not shown). D: HEK-
293T cells transfected with AIDA-1d and stained with the Zymed Ab showed no 
staining when cotranfected with AIDA-1 specific shRNAs. E: Div 14 hippocampal 
neurons infected with AIDA-1 specific shRNA 384 showed a reduction in AIDA-1 
staining.  AIDA-1 immunoreactivityin the infected (green) neuron is reduced in both 
soma and dendrites.   
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Fig. 2. Immunoperoxidase staining for AIDA-1 in olfactory bulb. 
 
The external plexiform layer (EPL)  and mitral cell layer had the strongest staining; 
some mitral cells contained stained nuclei.  Staining was weaker in glomeruli (GL), 
internal plexiform layer (IPL), and internal granule cell layer (IGL) had modest 
staining.  Scale bar = 250 µm. 
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Fig. 3. Immunoperoxidase staining for AIDA-1 in cerebral cortex and striatum.  
 
A: Immunostaining for AIDA-1 in cerebral cortex.  Staining is found throughout 
cortical layers, somewhat weaker in layer IV.  No obvious differences in staining 
were detected tangentially.  B: Higher magnification micrograph of cortex illustrates 
various patterns of cellular staining. Some nuclei stain for AIDA-1 (black arrow), 
while others lack AIDA-1 staining, though cytoplasm is stained (white arrow). In 
many neurons, staining is especially prominent along the nuclear border (black 
arrowhead). C: In striatum, AIDA-1 is confined to the neuropil between fascicles of 
myelinated fibers. Staining is stronger in the caudate-putamen (CP) than the globus 
pallidus (GP)   C1: Higher magnification view of boxed area in C1; staining in neuropil 
appears punctate Scale bars:  A = 250 µm, B = 40 µm, C = 250 µm, C1 = 40 µm. 
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Fig. 4. Immunoperoxidase staining for AIDA-1 in hippocampus. 
 
 A: Low magnification view of the hippocampal formation. Pyramidal cells in 
Ammon’s horn stain for AIDA-1. Granule cell in dentate gyrus (DG) stain more 
weakly than pyramidal cells; note scattered darkly-stained interneurons. B: Higher 
magnification view of the boxed area in CA1 shows that AIDA-1 staining in both 
stratum oriens (SO) and stratum radiatum (SR) is organized into small puncta; note 
somatic staining within the pyramidal cell layer (PCL). C: Darkly-stained large puncta 
in stratum lucidum (SL) likely correspond to the mossy fiber connections between 
dentate gyrus and CA3.  In contrast, staining in SO is diffuse, with tiny puncta.  
Prominent staining is visible in the pyramidal cell layer. Scale bars A = 500 µm; B, C 
= 50 µm. 
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Fig. 5. Immunoperoxidase staining in thalamus and cerebellum  
 
A: Immunostaining within the thalamus. Moderate levels of staining were seen 
uniformly across most of the thalamus; the reticular thalamic (RT) nucleus and the 
lateral areas of the ventrobasal nucleus (VB) contained comparable staining levels. 
Slightly stronger staining is visible in the posterior nuclear complex (PO). A1: Higher 
magnification of the VPL revealed strongly stained cell bodies, whose nuclei were 
mostly devoid of staining.  Diffuse staining is also visible.  B: Immunostaining within 
cerebellum. Low magnification view of the cerebellum reveals strongly stained 
Purkinje neurons, a moderately stained molecular layer, and lightly stained granule 
cells.  B1 At higher magnification, nuclei of Purkinje cells usually lack staining, 
although staining is visible in a few scattered neurons.  Scale bars: A, B = 250 µm; 
A1, B1 = 50 µm. 
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Fig. 6. Staining in brain stem.  
 
Moderate levels of diffuse staining are present throughout brainstem.  A: Pontine 
reticular nucleus (PnO) and principle sensory trigeminal nucleus (Pr5) have similar 
levels of diffuse staining.  Neurons throughout these areas display somatic and 
nuclear staining.  A1 Higher magnification view of motor trigeminal nucleus (Mo5) 
show well-stained motor neurons, some containing immunopositive nuclei (black 
arrowhead) whereas other nuclei are negative (white arrowhead).  B: Field illustrates 
relatively strong immunostaining within the  superior olivary complex (LSO). C: 
Section through rostral medulla. Diffuse staining is generally weak. C1 Higher 
magnification view of well-stained gigantocellular neurons (Gi); some containing 
immunopositive nuclei (black arrowhead)  whereas other nuclei are negative (white 
arrowhead). D: Section through caudal medulla; note staining in spinal trigemial 
nucleus (Sp5c). Scale bars: A, B, C = 250 µm ; A1, C1 = 50 µm; D = 500 µm. 
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Fig. 7. Immunoperoxidase staining in spinal cord.  
 
A: Low power magnification of the lumbar enlargement of spinal cord (L5).  Diffuse 
staining is visible in the dorsal horn.  A1: A higher magnification view of the ventral 
horn shows staining in motoneurons. Some contain immunopositive nuclei (black 
arrowhead) whereas other nuclei are negative (white arrowhead).  Scale Bars A= 
250 µm; A1 = 50 µm. 
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Fig. 8.  Confocal images of AIDA-1 immunofluorescence in CA3 hippocampus 
 
Optical sections illustrate how immunolabel varies with depth. Gray scale has been 
inverted to improve visibility. A: At the surface, staining is present in large puncta in 
stratum lucidum (arrows), while staining in the pyramidal cell layer is very weak.  At 
2.5 µm (B) and 5 µm (C) below surface, mossy fiber staining is barely detectable, 
whereas somatic staining becomes more obvious (open box). Scale bar = 20 µm. 
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Fig. 9. Double-label immunofluorescence in hippocampal CA3.  
 
A: Double labeling for AIDA-1(left panel) and VGLUT1 (middle panel).  The right 
panel superimposes the AIDA-1 channel (red) and the VGLUT1 channel (green). 
Colocalization is apparent in large puncta in stratum lucidum.  B: Double labeling 
with AIDA-1 (left panel) and GAD-65 (middle panel). Little evidence of colocalization 
can be seen (right panel). Slight bleedthrough of GAD-65 in the left panel outlines 
the cell bodies.  These images were collected from the section surface: therefore, 
cytoplasmic/nuclear AIDA-1 is not clearly visible (compare Fig 4). Scale bar = 20 
µm. 
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Fig. 10. Expression of AIDA-1 in the nucleus.  
 
Confocal image of AIDA-1 staining (red) within  the pyramidal cell layer of CA1(A) 
and layer 5 of cerebral cortex (B); DAPI counterstain (blue) identifies nuclei.  In 
many cells, large AIDA-1 puncta distribute throughout the nucleus, but these are 
generally absent from nucleoli.  White arrowheads indicate nuclei containing 
prominent AIDA-1 puncta; white arrow points to nucleus containing little AIDA-1.  
Large AIDA-1 puncta outside nuclei are likely to lie within somatic cytoplasm. 
Smaller AIDA-1 puncta seen throughout the section may represent synaptic staining. 
Scale bar = 10 µm. C,D: Graphs showing the number of large puncta in nuclei in 
hippocampus (left) and cerebral cortex (right). Staining is bimodal; nuclei generally 
contain either very few or many large puncta. E: Confocal image of AIDA-1 staining 
(red) and granule cell nuclei (blue) in dentate gyrus.  Tight packing of cells did not 
allow for further analysis, but both AIDA-1 positive (white arrowhead) and negative 
(white arrow) nuclei are visible.  
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Fig. 11. Expression of AIDA-1 at the nuclear membrane.  
 
Confocal images of material double-stained for AIDA-1 (left panels) and the nuclear 
pore complex (NPC, middle panels). The right panels merge the AIDA-1 channel 
(red) and the NPC channel (green). Some AIDA-1 puncta lie adjacent to the nuclear 
membrane in hippocampus (A) and cerebral cortex (B). Note that AIDA-1-positive 
nuclei generally exhibit more NPC-associated puncta.  Small boxes in the right 
panels are enlargements, illustrating AIDA-1 puncta close to the nuclear membrane.  
Scale bar = 10 µm. 
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Fig. 12. Pre-embedding immunostaining for AIDA-1.  
 

A-C: AIDA-1 associated with nuclear pores and the nuclear membrane. Silver-
enhanced gold particles coding for AIDA-1 are at tne nuclear membrane (A); some 
lie directly outside (B) and inside (C) nuclear pores (arrows) . D: Immunogold 
particles in the cytoplasm, often associated with endomembranes. E: Electron-dense 
DAB reaction product shows staining of AIDA-1 in mossy fiber terminals. Staining 
typically concentrates in the middle of vesicle pools. Abbreviations: G, Golgi 
apparatus; NE, nuclear envelope; E, euchromatin; H, heterochromatin; PM, plasma 
membrane. Scale bars: A-C = 100 nm; D,E = 250 nm. 
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Fig. 13.  Postembedding  immunogold staining for AIDA-1.  
 
A-C: Electron micrographs show immunogold labeling for AIDA-1; note association 
of particles with the PSD.  Scale bars = 100 nm. D: Graph showing the “axo-
dendritic” position of AIDA-1 labeling.  Only particles within the width of the PSD 
were counted (see Methods for details).  AIDA-1 concentrates postsynaptically, 
centered over the external part of the PSD.  E: Graph showing the “lateral” 
distribution of AIDA-1. Only particles between -50 to +75 nm from the postsynaptic 
membrane were counted. To pool data, position was normalized: 0 corresponds to 
the PSD edge and 1 corresponds to the PSD center (see methods for details).    
AIDA-1 distributes fairly uniformly along the PSD, decreasing rapidly at its edge. 
Very little labeling is associated with the spine plasma membrane away from the 
synaptic specialization. 
 
 
 
 
 
 
 
 
 
 
 



 

CHAPTER 4 

Implications and Future Directions 

 

4.1. Summary of Results 

In this dissertation, I studied the basal organization of two proteins found 

within the PSD implicated in NMDAR-LTP: AMPAR and AIDA-1. For AMPAR, I 

studied the distribution of different AMPAR subunits within the PSD. When looking at 

axo-dendritic position within the PSD, I found that antibodies against GluA1 and 

GluA2/3 concentrated on the cytoplasmic side of the postsynaptic membrane, 

whereas GluA3 concentrated in the synaptic cleft. This difference reflects the 

different regions that the AMPAR subunits target; GluA1 and Glu2/3 antibody target 

the C terminal of AMPAR subunits, while GluA3 targets the N terminal. For lateral 

distribution, AMPARs have a subunit-dependent organization within the PSD; GluA1 

distributes uniformly over the PSD, with its average normalized lateral position lying 

closer to the PSD edge than GluA3. KO of GluA1 causes the average normalized 

lateral position of particles coding for GluA2/3 and GluA3 to move closer to the 

center of the PSD, while KO of GluA2 did not modify GluA1, GluA2/3, or GluA3 

subunit position. I also explored the relationship between lateral position and PSD 

size, finding GluA1 distributes over the PSD in small synapses, but near the center 

in longer PSD. Differences in subunit position due to PSD length were not displayed 

by GluA2/3 and GluA3. Serial section electron microscopy confirmed this result.  
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For AIDA-1, I studied the organization of AIDA-1 throughout the rat nervous 

system. A high level of AIDA-1 was seen in forebrain, including hippocampus, 

cerebral cortex, and striatum, and in cerebellum; moderate levels of AIDA-1 were 

found in olfactory bulb; and low level of staining in brain stem and in spinal cord. I 

investigated its subcellular distribution in hippocampus and in cerebral cortex, finding 

that AIDA-1 was organized into puncta throughout neurons. I next focused on 

staining in nuclei and synapses. In nuclei, AIDA-1 staining was variable; nuclei either 

stained heavily for AIDA-1(with 10 or more puncta) or lacked staining. To gain a 

detailed view of AIDA-1 interaction with nuclei, I used pre-embedding immunogold 

and detected AIDA-1 label at the nuclear pore complex, the entry way to the 

nucleus. AIDA-1 co-localize with a marker of excitatory, but not inhibitory synapses. 

Immunogold labeling against AIDA-1 in PSDs distributed fairly uniformly along the 

PSD, rapidly dropping off at its edge.   

4.2. Relationship to Prior Studies and Discussion 

A. AMPARs 

Organization of AMPARs within the PSD has been suggested to play an 

important role in synaptic efficiency. After release in the synaptic cleft, glutamate 

concentration rapidly peaks and then quickly disperses. AMPARs have a low affinity 

for glutamate, so alignment between presynaptic sites of release and postsynaptic 

receptors could have a strong effect on synapse function (Clements et al., 1992; 

Clements, 1996). The mechanisms that coordinate of presynaptic and postsynaptic 

organization remain unknown. However, LTP is accompanied by clustering of the 

presynaptic protein synaptophysin, which interacts with postsynaptic GluA1 
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(Antonova et al., 2001), and a recent study demonstrated that presynaptic cell 

adhesion protein neurexin and its postsynaptic partner neuroligin can limit surface 

diffusion of AMPARs (Mondin et al., 2001), providing a potential mechanism that 

may links presynaptic and postsynaptic protein organization.    

Using electron microscopy to evaluate the lateral distribution of AMPARs 

within the PSD, multiple studies have determined that AMPARs display higher 

immunogold labeling towards PSD edge in multiple brain regions (Matsubara et al., 

1996; Bernard et al., 1997; Kharazia et al., 1997; Ottersen et al., 1998; Sassoe-

Poenetto et al., 2000). These studies were performed using a GluA1 and/or GluA2/3 

antibody; no previous study has examined the distribution of GluA3 within the PSD. 

Since GluA1 should exclusively label GluA1/2 receptors and GluA3 should 

exclusively label GluA2/3, ours is the first study to investigate possible differences in 

organization of GluA1/2 and GluA2/3 receptors.  

The electrophysiological response of GluA1/2 and GluA2/3 receptors to 

glutamate is similar (Traynelis et al., 2010.), suggesting that the main differences 

between the functions of GluA1/2 and GluA2/3 receptors from differences in protein 

binding and trafficking of GluA1/2 and GluA2/3 receptors. GluA1 has many unique 

phosphorylation and binding sites that may be involved in activity-dependent 

insertion (Palmer et al., 2005). GluA2 and GluA3 share many of the same 

phosphorylation and binding sites; however, GluA2 interactions with other proteins, 

such as NSF and AP-2, are thought to play an important role in removal of synaptic 

receptors. A distinct function for GluA3 remains unknown.  
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We are only beginning to understand what interactions underlie AMPAR 

lateral position. Two general factors have been proposed to organize AMPARs 

within the PSD:  protein-protein interactions and diffusion trapping. In protein-protein 

interactions, AMPARs are positioned within the PSD by binding to scaffolding 

proteins. PSD-95 is a plausible candidate for this role (MacGillavry et al., 2011; 

Opazo et al., 2011). The distribution of PSD-95 over the PSD is similar to GluA1; 

however, unlike GluA1, PSD-95 does not concentrate at the PSD edge, indicating 

that lateral organization of GluA1 is not entirely explained by its interactions with 

PSD-95. The distribution of PSD-95 differs greatly from GluA3. However, NMDAR, 

which like GluA3 are found to the center of PSDs, bind and are thought to be 

organized by PSD-95 (Valtschanoff et al., 2001). This suggests that although PSD-

95 and GluA3 have different distribution across the PSD, PSD-95 may help localized 

GluA3 to the synapse center. SAP97 is a strong candidate to organize GluA1- 

containing receptors within the PSD. Overexpression of SAP97 increases AMPAR 

currents, suggesting that it has the ability to collect AMPAR within the PSD (Howard 

et al., 2011), and EM studies have determined that SAP97 has a lateral distribution 

over the PSD similar to GluA1 (DeGiorgis et al., 2000; Valtschanoff et al., 2000). 

Diffusional trapping of AMPARs makes use of protein barriers, which prevent 

unrestricted lateral diffusion of AMPAR without binding them directly. Although 

computational studies have predicted that receptor movement in PSD is limited by 

obstacles, the protein(s) involved remains unknown (Holcman et al., 2006). 

Here, we suggest a dynamic mechanism to organize AMPARs in the PSD. 

Current work suggests that GluA1/2 and GluA2/3 receptors may take different routes 
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into the synapse; however no direct evidence has shown that different types of 

receptors are inserted into different locations. Our finding that GluA1/2 and GluA2/3 

receptors have different lateral distributions across the PSD could indicate that 

GluA1/2 and GluA2/3 receptors have different sites of AMPAR insertion. Multiple 

studies have shown that AMPARs are inserted outside the PSD and undergo lateral 

diffusion into the synapse (Kopec et al., 2006; Park et al., 2006; Yudowski et al., 

2007; Yang et al., 2008; Makino et al., 2009; Kennedy et al., 2010). However, these 

studies were all performed using tracking of GluA1 or GluA2, so no previous study 

has exclusively tracked GluA2/3 receptors. Evidence suggests that can be directly 

inserted into the PSD; components of the exocyst, a collection of proteins important 

for membrane insertion, have been found associated with the PSD (Gerges et al., 

2006).  Our finding suggests that GluA1/2 receptors, which distribute uniformly over 

the PSD, may enter synapses through lateral diffusion, whereas GluA2/3 receptors, 

which are found in the PSD center, may be directly inserted into the PSD.   

B. AIDA-1 

In contrast to AMPARs, few studies have investigated AIDA-1, and its 

functions remain mysterious. Within different areas of the brain that prominently 

stained for AIDA-1, subcellular distribution varied; within hippocampus and cerebral 

cortex, AIDA-1 was found in both nuclei and synapses, while in cerebellum, AIDA-1 

was predominantly located in Purkinje cells and was not found to localize in 

cerebellar synapse. Work in cultured hippocampal cells found that AIDA-1 might 

serve as a synapse-to-nucleus signaling mechanism. However, the lack of synaptic 
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staining in cerebellum suggests that AIDA-1 may serve another function in this 

region. 

Within pyramidal cells in CA1 and cerebral cortex, approximately half of nuclei 

contain 10 or more AIDA-1 puncta; the other half lack staining. In nuclei, AIDA-1 

promotes interactions between Cajal bodies and nucleoli, which lead to increased 

downstream protein translation. We found that AIDA-1 often associates with the 

nuclear pore complex (NPC), a collection of proteins found at nuclear pores. 

Although labeling at NPC could be against AIDA-1 in the process of undergoing 

transport into the nucleus, labeling could also indicate that AIDA-1 interacts with 

NPC and plays some sort of function in nuclear transport. 

AIDA-1 was highly concentrated the PSD, and concentrated in excitatory, but 

not inhibitory synapses. Within CA1 SR synapses, AIDA-1 distributes fairly uniformly 

over the PSD. This distribution is likely due to its interaction with PSD-95; co-

immunoprecipitation experiments have shown that AIDA-1 binds to PSD-95, and 

PSD-95 distributes uniformly across the PSD (Valtschanoff et al., 2001; Jordan et 

al., 2007). Interestingly, NMDAR-induced AIDA-1 cleavage and subsequent 

translocation do not require Ca2+ rises. Since Ca2+ is a diffusible signal, this 

suggests that AIDA-1 may require physical contact with NMDARs to activate. Within 

CA3 mossy fibre synapses, AIDA-1 showed a different in organization, colocalizing 

with both pre- and postsynaptic markers. Unlike NMDAR-dependent LTP, LTP in 

mossy fibers leads to increased presynaptic release probability (Nicoll et al., 2005; 

McBain, 2008), suggesting that AIDA-1 may play a role in the presynaptic 

expression of LTP.   
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One of the most intriguing features of AIDA-1 is its method of translocation to 

the nucleus. NMDAR activation induces cleavage of AIDA-1; one fragment 

undergoes translocation to the nucleus, while the other AIDA-1 fragment remains 

bound to the PSD (Jordan et al., 2007). No other proposed signal that translocates 

from synapses to nuclei leaves a portion of itself behind in the PSD (Deisseroth et 

al., 2003; Ch’ng et al., 2011). This provides the intriguing suggesting that AIDA-1 

might serve as a “synaptic tag”, indicating previously potentiated synapses and 

playing some role in the capture of plasticity related particles (Reymann et al., 2007).   

4.3. Potential future dirrections 

Here, I briefly pose a few questions that follow from my work on AMPARs and 

AIDA-1, and propose methods to experimentally address these issues. Unlike 

AMPARs, the function of AIDA-1 is just beginning to be understood, and extensive 

work will be required to elucidate its function. I therefore limit my focus to issues that 

elaborate the role of AIDA-1 in synaptic plasticity or directly follow from my findings 

in Jacob et al., 2010. 

A. AMPAR studies 

I. Do AMPAR subunits colocalize with other proteins within the 

PSD? 

My work established that AMPAR subunits organize in different regions of the 

PSD: on average, GluA1 is found close to the PSD edge, while GluA3 is found in the 

PSD center.  However, studying multiple proteins within the same sample is 

daunting in electron microscopy; double labeling of EM samples is difficult.  Recent 

advances in light microscopy have increased resolution, allowing PSD organization 
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to be visualized (Dani et al., 2009). In the previous section, I suggested PSD-95 and 

SAP97 may serve as protein binding partners underlying AMPAR lateral position 

within PSDs. To determine if protein interactions between AMPARs and either PSD-

95 and/or SAP97 underlie AMPAR organization, I propose using, STORM 

( stochastic optical reconstruction microscopy), a superresolution light microscopy 

technique, to study the potential interaction of AMPAR subunits and several 

scaffolding proteins that are likely candidates to organize AMPAR within the PSD.  

In addition, I propose studying how AMPAR lateral distribution alters in 

response to changes (overexpression, knock down, or knock out) in these scaffold 

proteins. For PSD-95, a knockout mouse is available, so I propose performing 

STORM microscopy to determine if lateral distribution of AMPAR subunits, 

particularly GluA1 and GluA3, is altered. KO of SAP97 is lethal, so a different 

strategy for determining the role of SAP97in AMPAR lateral distribution must be 

used. For these experiments, I suggest studying AMPAR lateral distribution in 

cultured neurons where SAP97 is knocked down using siRNA and in cultured 

neurons where SAP97 is overexpressed. These studies may be complicated by 

redundancy of MAGUK proteins. PSD-93 has been shown to take over many of the 

functions of PSD-95 in PSD-95 mice, and in neurons with both PSD-93 and PSD-95 

knocked out, SAP102, another MAGUK, is up-regulated. 

II. How is AMPAR subunits organized in live tissue? 

For my current work using electron microscopy, I studied the organization of 

AMPAR within the PSD within fixed tissue. However, AMPAR are highly dynamic, 

thus studying AMPAR in living cell is essential to understanding their organization 
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within the PSD. The Blanpied lab has studied AMPAR within PSD of cultured 

hippocampal neurons using confocal microscopy (Kerr et al., 2012). Although the 

resolution of this technique is limited, I propose imagining dissociated neuronal 

cultures to see if differences in GluA1 and GluA3 organization can be detected.  

III. How do GluA3 containing AMPARs traffic into the synapse? 

Little information is known about the trafficking of GluA3-containing receptors. 

Daniel Choquet and colleagues have tagged single AMPAR and tracked them as 

they move along the postsynaptic membrane and into synapse (Borgdorff et al., 

2002; Groc et al., 2007).  However, these studies have tracked either GluA1 or 

GluA2, thus no definitive trafficking of GluA3 containing AMPAR has occurred. I 

propose using single particle trafficking to study the dynamics of GluA3 containing 

AMPAR within both the synaptic membrane and PSD. 

IV. Does LTP alter AMPAR organization? 

Upregulation of AMPARs serves as the expression mechanism of NMDAR-

LTP. However, it remains unknown if lateral organization of AMPAR subunits alters 

in response to NMDAR-LTP. Several experiments could be used to address this 

issue.  Using confocal microscopy on cultured neurons, chemical LTP could be 

applied and the synapse organization could be monitored to see if changes occur 

between. However, AMPAR trafficking within dissociated neurons might operate 

differently than in vivo.  Thus, I suggest performing EM on tissue that had undergone 

LTP, using methods similar to my past experiments to determine AMPAR subunit 

distribution. To induce LTP, I propose performing chemLTP on slice cultures, since a 
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high percentage of synapses in this model system will undergo LTP.  Another 

potential method is to induce LTP through behavioral methods 

V. How does KO of different AMPAR subunits change AMPAR 

organization? 

I think one of my most intriguing finding was that lateral distribution of AMPAR 

differs in GluA1 animals. Within GluA1 KO animals, GluA2 and GluA3 position 

became more centrally localized, suggesting that GluA1 interactions may account for 

ability of AMPAR to spread over the PSD. To study this effect, I propose a full scale 

EM study analogue to the one carried out in chapter 2.  In addition, both STORM 

microscopy on fixed tissue, where I could evaluate multiple proteins at the same 

time, and confocal microscopy on living cultures, where I could perturb the system in 

multiple ways, could be used to study AMPAR organization in Kos.  

B. AIDA-1 studies 

I. Does AIDA-1 play a role in late phase LTP?  

Although NMDAR activation leads to AIDA-1 translocation to the nucleus, 

leading to increase in protein translation (Jordan et al., 2007), it remains unknown if 

AIDA-1 plays a role late phase LTP.  Here I suggest several experiments to 

determine the role(s) that AIDA-1 plays in NMDAR-LTP.  

One strategy would be to perform slice electrophysiology to measure if 

perfuse the cleaved (thus the active) form of AIDA-1 postsynaptically to see if 

increased l-LTP results. If increasing AIDA-1 does not increase l-LTP, thus does not 

indicate AIDA-1 plays no role in l-LTP; AIDA-1 addition might not be sufficient to 

induce increased l-LTP.  By inhibiting AIDA-1 cleavage, l-LTP in slice 
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electrophysiology may be perturbed. Another strategy would be to create an AIDA-1 

knockout, or conditional KO, mouse, and perform slice electrophysiology on it to see 

if late phase LTP is perturbed.  If a KO mouse is lethal, molecular biology could 

potentially be used to alter AIDA-1 so it could no longer be cleaved; however, this 

assumes that translocation of the AIDA-1 portion to the nucleus is what would 

account of the role of AIDA-1 in l-LTP.  In addition, I suggest that AIDA-1 subcellular 

organization be evaluated in slice cultures that undergone chemical LTP to see 

whether its distribution alters in response to LTP. 

II. How does AIDA-1 in organize in cerebellum? 

 The organization of AIDA-1 within cerebellum displayed a striking difference 

from that seen in hippocampus and cerebral cortex; AIDA-1 is absent from synapses 

and was restricted mainly to the Purkinje cells. However, details of this organization 

remain unknown. To aid in understanding the function of AIDA-1 in cerebellum, I 

propose a study of cerebellar distribution to gain a better understanding of the sites 

where AIDA-1 may function. For this study, I would focus on the subcellular 

distribution of AIDA-1 within Purkinje cells, performing electron microscopy to 

identify subcellular components that AIDA-1 binds. Organization of AIDA-1 may 

differ between forebrain and cerebellum because different isoforms of AIDA-1 are 

expressed in these areas. Some isoform specific antibodies are available, and I 

would propose using those in addition to the pan-AIDA-1 antibody. 
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