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ABSTRACT
TRAVIS L. GAYDOS: Data Representation and Basis Selection to Understand

Variation of Function Valued Traits

(Under the direction of J. S. Marron )

Many fields, including evolutionary biology, collect data in which a curve corresponds

to each individual. Therefore a curve is the statistical atom of analysis, which is an area

in statistics known as Functional Data Analysis (FDA). A common goal in FDA is to

understand the variation of curves. Often Principal Components Analysis (PCA) is a

useful tool to do this. But PCA will often yield undesirable results if the amount of

variation explained by directions is not significantly different.

Directions of low variation do not often explain significantly differing amounts of

variation. Therefore in subspaces of low variation it is difficult to separate biological

signal from noise using variation measures. In this dissertation a way to separate bio-

logical signal from noise by quantifying the simplicity structure of curves in a subspace

of low variation is shown. Also asymptotic properties of subspaces of low variation and

subspaces of biological signal are developed.

The results of PCA are highly dependent on the representation of the data as well. In

this dissertation a representation of data curves similar to shape statistics is produced by

exploiting the developmental stages of insects. This representation allows for variation,

that is usually most efficiently modeled using non-linear methods when using typical

FDA grid based representations of the data, to be modeled using linear PCA.

Also in the dissertation is a method to simultaneously visualize multiple t-tests to

understand the slope structure of data sets.
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CHAPTER 1

Introduction

Evolutionary biologists study changes in populations from one generation to the next.

A common way to study populations is through phenotypes of individuals. A phenotype

is an observable characteristic of an individual, see Lynch and Walsh (1998) for a more

detailed discussion of quantitative genetics. Examples of a phenotype are growth rate of

a caterpillar or height of a plant. A common practice is to view the phenotypic value of

an individual over several environment levels. These environment levels could be different

temperatures or densities of plants.

Those traits with continuous phenotypic values with respect to the different environ-

ment levels, are called function valued traits (FVT), see Kingsolver et al. (2001) for an

introduction to function valued traits. Examples of FVT include Pieris rapae caterpil-

lars growth rate as a function of temperature, see Kingsolver et al. (2004), and mass as a

function of age for Manduca sexta hornworms, see Gilbert et al. (2000), Nijhout (1994),

Riddiford et al. (2003). The phenotypic values with respect to different environment

levels can now be thought of as functions, i.e. curves.

Statistical analysis on curves is an area in statistics known as Functional Data Analysis

(FDA). FDA is based on the curve being the statistical atom of analysis, i.e. each

individual is associated with a curve. In the the area of FDA, statistical analyses have

results based on the curves of the individuals. For this case each individual is associated

with a FVT and the statistical analyses treat the FVT as the statistical atom. For a



more detailed discussion of FDA, see Ramsay and Silverman (2005).

A common approach to Functional Data Analysis is to discretize the curves. Statisti-

cal analysis can be performed on vectors that contain the discretized values, see Ramsay

and Silverman (2002). The discretization, i.e. representation, of the curves can deter-

mine which statistical method is most efficient at answering a biological question, see

Sections 4.1 and 4.2. If the curve is discretized into d values, then the statistical analy-

sis is performed on points in the Euclidean space Rd. Although the analysis is done in

Rd, i.e. the point cloud space, the results are often more easily interpretable if they are

shown as curves, i.e. in the object space. A toy example in 2-d space may help in the

understanding of the point cloud and object space.

1.1 Introduction to Point Cloud and Object Space

Using A Toy Example

A toy example is provided to show a representation of the curves, as well as demon-

strating the important concepts of the object space and point cloud space. The left hand

side of Figure 1.1 shows the data in the object space. The curves, fi(E) i = 1, 2, ..., n, are

FVT, but each curve can be summarized by two numbers because of the curves’ special

simple structure.

Each curve has the same value for each environment level until it reaches the environ-

ment level denoted e1. Then the FVT changes linearly until the environment level named

e2 is reached. Once environment level e2 is reached each curve has the same attribute

value for the remaining environment levels. All of the curves follow the pattern of only

changing between environment levels e1 and e2. The curve, fi(E), can be summarized by

the trait value of the curve at environmental level e1, i.e. fi(e1) = ai, and the trait vale

at environmental level e2, i.e. fi(e2) = bi. If the curves are discretized using the trait

values at e1 and e2, then these curves can always be perfectly recovered in a piecewise

linear fashion. The curve fi(E) is recovered by plotting the trait value of the curve equal
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Figure 1.1: Object view is on the left while point cloud view is on the right. Each curve can be
represented by a point in the point cloud space and each point can be represented as a curve in
the object space.

to ai from the first environmental point to e1, then the curve is plotted as a piecewise

linear line with trait values from ai to bi in the region from e1 to e2, and finally the curve

is plotted as having trait value bi from e2 to the last environmental point. Since e1 and

e2 are common across curves, it follows that to compare curves, fi(E) i = 1, ..., n, only

the pairs {(ai, bi), ..., (an, bn)} need to be analyzed.

Now that the curves have been discretized and summarized by two trait values, each

curve can be represented as a point in R2. The curves represented in R2, i.e. the point

cloud space, are shown on the right hand side of Figure 1.1. To show exactly how a curve

is represented as a point in R2, a curve is highlighted in blue in the upper left hand panel.

The blue curve has a trait value of around 2 at e1 and a trait value of around -4 at e2.

The corresponding point is highlighted in blue in the upper right panel, i.e. point cloud

3



view, as well. This point has a value of 2 along the horizontal axis, i.e. e1, and a value of

-4 along the vertical axis, i.e. e2. Each curve can be represented in the point cloud view

in this same manner.

Also in the point cloud view is a yellow point. This yellow point is the arithmetic

mean of the horizontal axis and vertical axis, i.e. (a,b) = ( 1
n

∑
i ai,

1
n

∑
i bi). The yellow

dot is the arithmetic mean of the points in R2. But this point can also be shown as a

corresponding curve in the object space. The yellow curve is this corresponding mean

curve. Although this curve did not exist in the original data set, it can still be viewed in

the object space by the correspondence between the point cloud view and the object space.

So not only can any curve be represented by a point, but any point can be represented

by a curve. Usually calculations are best understood in the point cloud space, however

deeper understanding of the results can be gained by viewing the corresponding curves

in the object space.

The lower portion of the figure shows the data in the object space and point cloud

space with the mean removed. The yellow dot is now at (0,0) and the yellow curve is

now a straight line at trait value zero. The curves and points now represent how the

data differs from the mean. After removing the mean it is natural to focus the analysis

on variation. Variation can be summarized by a covariance matrix. The total variation

of all of the data is known in evolutionary biology as the phenotypic variance. A useful

decomposition of the variance, in terms of evolutionary biology, is into genetic variance

and environmental variance, see Chapters 2 and 3. This is a useful decomposition because

the genetic variation determines the evolutionary response, an important evolutionary

biological concept. Evolutionary response, ∆Z, is the change in mean phenotype from

one generation to the next.

A good way to understand variation is to find an orthonormal basis in the point cloud

space. This is the same as finding a set of orthogonal linear directions which can represent

all of the variation of the data points. In the point cloud space a linear direction can be

4



thought of as a line that passes through the origin. Two directions that are orthogonal

will be at right angles with respect to each other, i.e. the Euclidean inner product is 0.

Once this orthonormal basis is defined, the data can be projected onto the directions of

this basis to see how much variation each direction explains. These projections can also

be viewed in the object space to understand the variation in that direction.

One such othonormal basis is the identity matrix of size d. In our toy example a

2 × 2 identity matrix is an orthonormal basis for the data. That would correspond to

the horizontal and vertical axis passing through the origin. In Figure 1.1 these are the

horizontal and vertical black lines in the point cloud view. The projections onto these

directions would simply be the actual trait values at the corresponding environment

levels. The identity matrix is one orthonormal basis used to understand variation of the

data, but there are infinitely many orthonormal bases that could be used to understand

the data. The orthonormal basis used to understand variation is often selected such that

it optimizes some criterion.

One useful basis is that found by Principal Component Analysis (PCA). This basis is

such that the first direction is the one that explains the most variation. The next direction

is orthogonal to the first and explains the next most amount of variation, etc. The PCA

basis is such that it explains the most variation in the least number of directions, and

hence has been invaluable in many fields, including signal compression. See Section 4.1 as

well as Anderson (1984), Muirhead (1982), and Ramsay and Silverman (2005) for more

details about PCA.

The results of a PCA performed on the 2-d toy data set is shown in Figures 1.2 and

1.3. First the focus is on Figure 1.2, which displays the first direction of the PCA basis.

The upper left panel of Figure 1.2 shows the centered data curves in the object space,

the same as in the lower left panel of Figure 1.1. The panel in the upper right corner

is the point cloud view of the centered data. This panel is the same as the panel in the

bottom right of Figure 1.1, but now there is a green line that passes through the origin.

5
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Figure 1.2: Object view is on the left while point cloud view is on the right. Green line in point
cloud space is the PC 1 direction. Lower right shows projected data onto the PC 1 direction.
Projected points are along a line and quite spread out. Projected curves, in lower left panel, are
multiples of each other and represent, the data quite well.

This green line is the first PC direction. This line is equivalent in the point cloud view

to the direction where the points are most spread out, which can be seen in the figure.

The lower right panel shows the projection of the points onto the PC 1 direction. The

projection of a point onto a direction corresponds to finding the point along the line

that is closest to the original data point. This is equivalent in the 2-d case to drawing a

perpendicular line from the data point to the PC 1 direction. Each of the curves has a

projection point associated with it. Although these are not points from the original data

set they can still be visualized in the object space. In the lower left hand corner are the

projected curves associated with the PC 1 direction. The projected points fall along a

line in the point cloud space, which corresponds to the lines being multiples of each other

in the object space, i.e. they are a one dimensional approximation of the original data.
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Notice that the curves in the lower left hand corner look similar to the curves in the

upper left corner. Also notice that the perpendicular lines that connect the projected data

points to the actual data points are small. These perpendicular lines are the residuals,

i.e. each data point minus its corresponding projected point.

Figure 1.3 shows the PC 2 direction. Again the upper left panel shows the centered

data curves. The red line in the upper right panel is the PC 2 direction. This direction

is at a right angle to the PC 1 direction. The PC 2 direction is thus orthogonal, which

implies that it explains a different mode of variation. In the lower right corner is the

projection of the data points onto the PC 2 direction. The projected points are much
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Figure 1.3: Object view is on the left while point cloud view is on the right. Red line in point
cloud space is the PC 2 direction. Lower right shows projected data onto the PC 2 direction.
Projected points are along a line and not spread out. Project curves, in lower left panel, are
multiples of each other and do poor job of representing the data.

closer together for this direction. That means that this direction explains less variation

than the PC 1 direction. The curves shown in the lower left panel are the projected

7



curves associated with the PC 2 direction. The curves do a worse job representing the

actual data curves than PC 1, i.e. the curves look less similar to the curves in the upper

left. The residuals are also larger for the PC 2 direction showing again that the PC 2

direction does a worse job of representing the data in only one dimension than does the

PC 1 direction. Since this is only 2 dimensional data the PC 1 direction and the PC 2

direction explain all of the variation of the data points.

Also, because PC 1 and 2 are orthogonal and explain all of the variation, if the

projections of PC1 and 2 are added together they will yield the actual data points. This

can be seen in the point cloud view in that the residuals for PC 1 are the same as the

projected points for PC 2. Also this can be seen in the object space, by the fact that if

the curves are added together they will yield the actual data curves.

The principal component basis provides directions with an evolutionary biological

interpretation. This interpretation is that the first PC direction calculated from genetic

variation is the direction that produces the most evolutionary response when selected

upon. Selecting upon a direction means to choose individuals with high absolute pro-

jection scores in that direction. Then each following principal component direction can

be thought of as producing less and less evolutionary response when selecting in that

direction. The lower principal components will eventually produce so little evolutionary

response when selected upon, that they can be considered genetic constraints. For a

more detailed discussion of genetic constraints see Section 3.1.

Other criteria, besides variation of the data can be used to construct an orthonormal

basis. For example, the selection process of the basis can ignore the variation of the data

completely and try to find directions which yield the smoothest possible projected curves

in the object space. One measure of smoothness can be defined in terms of minimizing

squared differences of adjacent points along the curves, standardized to have length 1. I.e.

one seeks the curve that has trait values changing the least between adjacent environment

levels. Figure 1.4 shows the results of this smooth basis.

8
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Figure 1.4: Object view is on the left while point cloud view is on the right. Green line in point
cloud space is Smooth basis direction 1. Lower right shows proejcted data onto smooth direction
1. Projected points are along a line. Project curves, in lower left panel, are multiples of each
other and never cross zero.

Figure 1.4 shows the first direction of the smooth basis, i.e. the direction that produces

the smoothest projected curves. The line in the upper right panel is smooth direction 1.

The lower right panel shows the projection of the data onto smooth direction 1 and the

lower left panel shows the projected curves. Each projected curve has the same trait value

for e1 and e2. Therefore the trait values of these curves have changed the least amount

as possible between environment levels e1 and e2. Notice that the direction explains

less variation than PC 1 and has larger residuals. This can be seen in the object space

in that the curves do a worse job of representing the actual data curves. But smooth

direction 1 explains more variation than PC 2, i.e. the projected curves do a better job

of representing the actual data curves.

Figure 1.5 shows smooth direction 2. Notice that smooth direction 2 is orthogonal
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to smooth direction 1. The lower right panel shows the projection of the data points

onto smooth direction 2. Notice that this direction explains less variation than the PC
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Figure 1.5: Object view is on the left while point cloud view is on the right. Red line in point
cloud space is smooth basis direction 2. Lower right shows projected data onto smooth direction
2. Projected points are along a line. Project curves, in lower left panel, are multiples of each
other and cross zero once. These are the least smooth curves.

1 direction, but more than the PC 2 direction. The residuals are also larger than PC

1 but smaller than the PC 2. This direction’s projected curves are shown in the lower

left panel. Each of these projected curves has fi(e1) = −fi(e2), i.e. the curves have trait

values changing the most between e1 and e2.

These are only two choices for orthonormal bases used to understand the variation

of the data. One could always look at a compromise between smoothness and amount

of variation explained, see Section 3.1. Also one could find a basis that optimizes a

completely different criterion.

In evolutionary biology a key goal is to find a basis that separates genetic variation
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from environmental variation. If it is possible to separate these different types of variation

into orthogonal subspaces, then each subspace can have a basis which maximizes different

criteria. Then the bases of these two subspaces can be viewed together to understand

the variation as a whole. This separation of genetic and environmental variation is not

always possible. So a simpler goal is to find a basis that explains the genetic variation

only. Then define the directions orthogonal to this basis as genetic constraints, and find

a basis to understand this genetic constraint space.

In chapter 2 of this dissertation will be a more detailed discussion of the estimation

of genetic and environmental variation. Chapter 3 covers genetic constraints and the

selection of a basis to view genetic variation. The basis chosen to view genetic variation

will be a compromise between the PCA basis and the basis which is chosen based on

smoothness of curves. Chapter 4 discusses curve representation in the context of principal

components. An analysis of the slope structure of the data set introduced in Chapter

4 is presented in Chapter 5. Chapter 6 builds some background mathematical material

used in Chapter 7. Some asymptotic properties of methods introduced in Chapter 3 are

stated and proven in Chapter 7.
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CHAPTER 2

Estimation of G and E

An important aspect of evolutionary biology is to model genetic and environmental

variation. Generally individuals in an evolutionary biological study are grouped by ge-

netic similarity. Genetic variation is then the variation between these groups while the

environmental variation is the variation of individuals within these groups. A straightfor-

ward potential approach to estimating genetic variation is to use the sample covariance

matrix based on sample group mean curves. This approach is heavily dependent on

the fact that the true mean of the individual curves in each group is 0. Often these

groups have a small number of individuals in each group, so the sample mean of the

individual curves is not 0. This leads to environmental variation being misclassified as

genetic variation. The procedure of estimating genetic variation via group means can be

viewed as fixed effects Analysis of Variance (ANOVA). Random effects ANOVA shrinks

the misclassification of environmental variation compared to fixed effects ANOVA. Ran-

dom effects ANOVA does this by accounting for the inaccuracy of sample mean estimates

to true means, due to the small number of individuals in each group. For a more detail

discussion of the definition and differences between fixed and random effects ANOVA,

see Searle et al. (1992).

In this chapter a toy example will be used to explore the difference between fixed

effects ANOVA and random effects ANOVA. In Section 2.1 is a description of the sim-

ulated data set. In Section 2.2 the results of a fixed effects ANOVA on this toy data



set are shown where the misclassification is evident. The results of the Random effects

ANOVA, which lessen this misclassification, are shown in Section 2.3.

2.1 Simulated Toy Data Set

A simulated toy data set is presented in this section, which is used to display the

differences between the fixed and random effects ANOVA methods. The random effects

ANOVA lessens the misclassification of environmental variation as genetic variation.

The toy data set is simulated to have 2500 curves of 11 dimensions, see Figure 2.1.

Each curve is the sum of a random group, i.e. genetic, curve and a random individual,

i.e. environmental, curve. Each group and individual curve has a normally distributed

random error, i.e. noise curve, added to them. Our data consists of 500 groups with

5 individuals in each group. In Figure 2.1 the first 100 curves are shown. Only these
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1.5

Raw Data (Toy Example)

Figure 2.1: Displayed are the first 100 data curves in the toy data set. Individuals in the same
group have the same color curve.
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100 curves are shown to avoid over-plotting. In future plots of the toy data set only 100

curves will be included for the same reason.

Each member of the same group has the same group curve, i.e. genetic curve. The

group curves are generated as the sum of normally distributed multiples of flat lines and

parabolic curves, see Figure 2.2. Thus each curve is a random parabola with a random

vertical shift. The curves appear in tight groups of 5 of the same color. This is because

1 2 3 4 5 6 7 8 9 10 11
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True Genetic Curves

Figure 2.2: The group curves of the first 100 individuals, as shown in Figure 2.1 using the same
colors. Notice that the curves are in groups of five which correspond to the five individuals in
each group. The curves are random parabolas with a random vertical shift.

each group has 5 individuals and each individual from the same group has the same

genetic curve, except for some small normally distributed random noise.

Each individual has its own distinct individual curve, i.e. members of the same group

have differing individual curves but the same group curves. The individual curves are

the sum of normally distributed multiples of linear and cubic curves, see Figure 2.3. The

14



1 2 3 4 5 6 7 8 9 10 11

−1

−0.5

0

0.5

1

True Environmental Curves

Figure 2.3: The individual curves of the first 100 individuals, as shown in Figure 2.1 using the
same colors. Notice that the curves are made up of a random combination of linear and cubic
terms. The curves are no longer in tight groups of 5 of the same color.

environmental curves are not in tight groups of 5 because each individual has its own

distinct individual curve.

These components have been carefully chosen to be orthogonal, and all explain dif-

fering amounts of the total variation.

The phenotypic variation is reflected by all of these curves. The linear component

explains 36.8% of the phenotypic variation. While the cubic component explains 13.2%

of the phenotypic variation. The flat line component explains 36.8% of the phenotypic

variation and the parabolic component explains 13.2% of the variation.

The genetic variation is reflected by only the group curves, i.e. flat line and parabolic

modes of variation. The genetic variation is 50% (36.8% + 13.2%) of the total phenotypic

variation. The flat line mode explains 73.5% of the genetic variation and the parabolic
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mode explains 26.5% of the genetic variation.

The environmental variation is reflected by only the individual curves, i.e. the linear

and cubic modes of variation. The environmental variation is 50% (36.8% + 13.2%) of

the total phenotypic variation. The linear mode accounts for 73.5% of the environmental

variation and the cubic mode accounts for 26.5% of the environmental variation.

The raw data curves, which are a mixture of genetic and environmental curves, are

the only curves which will be explicitly viewed. We want to find a procedure which will

partition the phenotypic variance into the genetic variance and environmental variance,

i.e we hope to recover the curves from Figure 2.2 and Figure 2.3.

2.2 Fixed Effects ANOVA on the Toy Data Set

2.2.1 Estimation of Phenotypic Variance

This section focuses on how to use fixed effects ANOVA to estimate the phenotypic

variation from the observed curves. The P matrix is a summary of phenotypic variation,

so the above goal is the same as estimating the P matrix. The first step in estimating

the P matrix, in the case of the fixed effects approach, is to subtract the mean for all

11 dimensions of the curves, see Figure 2.4. The centered curves are arranged into an 11

by 2500 matrix, Xc = (X − X). Outer product multiplication, XcX
T
c , is performed on

the centered curve matrix and each entry of the matrix produced is divided by (n− 1).

These operations produce an 11× 11 empirical covariance matrix,

P̃ =
(X −X)(X −X)T

n− 1

which is the estimated P matrix.

Now that P has been estimated by P̃ , the next question is how accurate the estimate

is. A good way to visualize the variation summarized by matrices is through PCA. To

compare the two matrices, P and P̃ , we will look at side by side PCAs, see Figure 2.5.
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Centered Data

Figure 2.4: The first 100 centered data curves with the mean for each point on the x-axis
subtracted. Individuals in the same group have the same color curve. One color corresponds to
more than one group.

In Figure 2.5 the first column shows the first six PC directions of P̃ , viewed as the

corresponding unit length curves in the object space. The second column shows the first

six principal component directions of the theoretical P matrix for this simulation if there

were no errors, viewed as the corresponding unit length curves in the object space. The

thick blue line and number at the top of each panel represents the percentage of variation

of the matrix explained by each curve, i.e. each direction. The number in parentheses

represents the sum of squares of the data that the direction explains. The similarity of

the two columns indicates the accuracy of P̃ as an estimate of P .

The first panel of the first column is the PC 1 direction of P̃ , which explains 38.6% of

the variation. The PC 1 direction is a linear curve, which corresponds to an environmental

mode of variation. In the second panel of the first column is the PC 2 direction of P̃ ,
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which explains 34.8% of the variation. This is a flat line which corresponds to a genetic

mode of variation. The line is not exactly flat because there is some mixing with the
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Figure 2.5: Left hand side panels are empirical principal components of P̃ . Right hand side
panels are theoretical principal components of P. Bars and numbers at top of panels represent
amount of variation of P matrix explained. The columns are similar indicating P̃ is a good
estimate of P.

linear mode of variation, due to the fact that they explain a similar amount of phenotypic

variation. This is a weakness of PCA. If the amount of variation explained by modes of

variation is similar, then the PCA results in a linear mixing of these modes of variation.

The third panel is a cubic curve which is an environmental mode of variation while the

fourth column is a parabolic curve which is a genetic mode of variation.
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It can be seen from this figure that P is a mixture of genetic modes of variation,

summarized by the matrix G, and environmental modes of variation, summarized by the

matrix E. Recall that the first and third principal component directions explain varia-

tion summarized by E, i.e environmental variation, and the second and fourth principal

component directions explain variation summarized by G, i.e. genetic variation. For

both columns the shape of the curves and amount of variation explained are similar.

The first column appears to differ from the second column in the last two panels.

For the theoretical case, i.e. column 2, the curves are flat lines at zero. This is because

the P matrix is of rank 4, so the first 4 PC directions explain all of the variation of P .

For the empirical case, i.e. column 1, the last two panels are random error directions.

Notice that the amount of variation explained by these directions is nearly zero. Similarly

the principal component directions 7-11 are just directions of random error and explain

nearly zero variation. These directions are not included in the figure. Because the left

hand column is for the theoretic non-error case, the columns are similar except for the

error components.

This figure indicates that the estimate of the P matrix is quite good. This can be

seen from the fact that the two columns are so similar. The P matrix was estimated

the same way for both fixed and random effects ANOVA, so the principal component

decomposition looks the same for both methods. Therefore this figure will only appear

in this section of the chapter.

2.2.2 Estimation of Genetic Variance

The estimation of genetic variation using fixed effects ANOVA is presented in this

section. Also the results of using this approach to estimate the genetic variation of the

toy data set will be shown. Similar to the phenotypic variation case, there is a matrix G

which summarizes the genetic variation. Our goal is to estimate this G matrix accurately.

The fixed effects ANOVA estimate of G depends on sample group means being used
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as estimates of the true genetic curves. Often these estimates are not accurate, due to

the small number of individuals in each group. The empirical covariance matrix, G̃,

summarizing the variation of these curves is the fixed effects ANOVA estimate of G. If

Xg is an 11×ng matrix of the sample group means and ng, i.e. 500 for this toy example,

is the number of groups then

G̃ =
(Xg −X)(Xg −X)T

ng − 1

is the fixed effects ANOVA estimate of G.

The sample group mean curves for the toy example are shown in Figure 2.6. The

sample group mean curves should look like the true genetic curves, shown in Figure 2.2,

since they are estimates of the true genetic curves. But the sample group mean curves

also include some linear and cubic modes of variation, i.e. environmental modes, along

with vertically shifted parabolas, i.e. genetic modes. Also they do not appear to be in

groups of 5, because each group member is estimated to have the same group mean curve.

Therefore the curves are overlayed directly on top of each other. The sample group mean

curves are not accurate estimates of the true genetic curves, which leads to an inaccurate

estimate of G.

To view the inaccuracy of G̃ as an estimate of G, side by side PCAs are shown in

Figure 2.7. The first column of Figure 2.7 shows the first four PC directions of G̃, viewed

as the corresponding unit length curves in the object space. The second column shows

the PC directions of the theoretical G matrix, viewed as the corresponding unit length

curves in the object space.

Fixed effects ANOVA does not do a good job of estimating G, which can be seen by

Column 1 and Column 2 being different. For this method the linear curve, appearing in

row 3 of column 1, and cubic curve, appearing in row 4 of column 1, are showing up as

PC directions of G̃, when these curves are actually directions of environmental variation.
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Figure 2.6: The first 100 group mean curves. Notice that the cubic and linear part can still be
seen, which leads to incorrect estimates of G. These curves do not look like the group curves
from Figure 2.2

These two modes of variation explain about 18% of the genetic variation, when they

should theoretically explain almost 0% of the variation. Indicated by the fact that PC

directions 3 and 4 are flat lines of height 0 in column 2 since all the variation is explained

by the first two principal components in the non-error theoretical case. Fixed effects

ANOVA produces estimates of G with more variation than just genetic variation. This

over estimation of genetic variation causes the percentage of variation of the flat line and

parabolic modes of variation to be less than in the theoretic case.

Again for this figure the last several PC directions are not pictured since they are ran-

dom error directions that explain nearly zero amount of the variation, and are therefore

accurate estimates of the true genetic variation.
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Figure 2.7: Left hand side panels are empirical principal components of G̃. Right hand side
panels are theoretical principal components of G. Bars and numbers at top of panels represent
amount of variation of G matrix explained. Notice that environmental modes(linear and cubic)of
variation are being classified as genetic variation.

2.2.3 Estimation of Environmental Variance

This section describes the estimation of environmental variation using fixed effects

ANOVA. This is done by finding an estimate of the E matrix. The fixed effects ANOVA

estimate of E involves the same sample group means, calculated in the case of G̃. In

this case the sample group means are subtracted from the original curves, which yield

an estimate of the environmental curves. These estimated environmental curves can be
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used to form an empirical environmental covariance matrix,

Ẽ =
(X −Xg)(X −Xg)

T

ng(ne − 1)

which is an estimate of E. Where all of the notation is the same as used in earlier sections

and ne is the number of individuals in each group, i.e. 5 for this toy example.

For the toy data set these estimated environmental curves are shown in Figure 2.8.

The estimated environmental curves are similar to the true environmental curves, shown

in Figure 2.3. The estimated curves reflect the linear and cubic components but none of
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Figure 2.8: The curves are the centered data with the group means subtracted out, the first 100
are shown. Notice that this figure is similar to the individual curves in Figure 2.3 so the curves
will produce a good estimate of E.

the flat line or parabolic components. Their accuracy yields a good estimate of E.

The accuracy of Ẽ as an estimate of E is shown through side by side PCAs. In Figure

2.9 the panels of the first column are the PC directions of Ẽ, viewed as the corresponding
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unit length curves in the object space. While the panels of the second column are the

PC directions of the theoretical E, viewed as the corresponding unit length curves in the

object space. In this figure the first and second columns look similar, which indicates Ẽ

is a good estimate. The first and second rows of column 1 are linear and cubic modes of
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Figure 2.9: Left hand side panels are empirical principal components of E estimated by group
means. Right hand side panels are theoretical principal components of E. Bars and numbers at
top of panels represent amount of variation of E matrix explained

variation, which are the same modes of variation as the theoretical environmental modes.

The third and fourth principal component directions do look different. This is just due

to random error since the theoretical E is of rank two, i.e. has only two directions that

explain all of the variation. The other PC directions were not included since they are

24



directions of random error and explain nearly no amount of the environmental variation.

2.3 Random Effects ANOVA on the Toy Data Set

Section 2.2 showed the fixed effects ANOVA method, while the details of the random

effects ANOVA are given in this section. Only the estimation of G is discussed. The

estimation of P and E is not covered, since both the P and E matrices are estimated in

the same way as the fixed effects approach.

2.3.1 Estimation of Genetic Variance

In Section 2.2, it is shown that fixed effects ANOVA yields an estimate of the genetic

covariance matrix that actually has environmental variation as well as genetic variation,

see Figure 2.7. Random effects ANOVA is a method that finds an estimate of G, Ĝ,

which lessens the amount of environmental variation that is summarized by G̃, the fixed

effects estimate of G. The case where all groups have the same number of individuals

is described in this section to help in the understanding of how random effects ANOVA

lessens the misclassification.

As can be seen from Figure 2.9, Ẽ provides a good estimate of E. The matrix Ẽ is an

unbiased estimator of E, which provides theoretical evidence to accompany the empirical

evidence. So random effect ANOVA tries to remove the environmental variation from G̃

by subtracting cne*Ẽ, where cne is a constant that depends on the number of individuals

in each group.

The exact method of random effects ANOVA, when all groups have the same number

of individuals, is to let

Ĝ = G̃− (
1

ne
)Ẽ

be the estimate of G. This is because ( 1
ne

)Ẽ is the expected amount of environmental

variation that is misclassified as genetic variation based on expected values of the covari-

ance matrices estimated by fixed effects ANOVA. Notice that as ne → ∞, the random
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effects estimate converges to the fixed effects estimate. So the random effects estimate is

correcting for the bias of the sample group means due to a small sample size, and as the

sample size becomes larger less of a correction is needed.

The accuracy of Ĝ as an estimate of G is shown through side by side PCAs in Figure

2.10. Shown in the first column of Figure 2.10 are the PC directions of Ĝ, viewed as

2 4 6 8 10

−0.5

0

0.5
73.8166%’(0.33824)

Calculated Principal Component 1

2 4 6 8 10

−0.5

0

0.5
73.6%(0.33744)

Thoerectical Principal Component 1

2 4 6 8 10

−0.5

0

0.5
25.6364%’(0.11747)

Calculated Principal Component 2

2 4 6 8 10

−0.5

0

0.5
26.4%(0.11765)

Thoerectical Principal Component 2

2 4 6 8 10

−0.5

0

0.5
0.66251%’(0.0030357)

Calculated Principal Component 3

2 4 6 8 10

−0.5

0

0.5
0%(0)

Thoerectical Principal Component 3

2 4 6 8 10

−0.5

0

0.5
−0.4127%’(−0.0018911)

Calculated Principal Component 4

2 4 6 8 10

−0.5

0

0.5
0%(0)

Thoerectical Principal Component 4

Figure 2.10: Left hand side panels are empirical principal components of G estimated by random
ANOVA. Right hand side panels are theoretical principal components of G. Bars and numbers
at top of panels represent amount of variation of G matrix explained

the corresponding unit length curves in the object space. In the second column is the

PC directions of the theoretical G, viewed as the corresponding unit length curves in the

object space.
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Random effects ANOVA provides a much better estimate of G then fixed effects

ANOVA, which can be seen by the fact that although there still seems to be some

misclassification of environmental variation as genetic it is to a much lesser degree. Notice

that the curves in rows 3 and 4 of column 1 are linear and cubic but the percentage of

variation explained is less than 1%. But one problem that does arise from random effects

ANOVA is that it can produce a covariance matrix that is not positive definite, even

though covariance matrices should always be positive definite. This can be seen by

the fact that the fourth direction is supposedly explaining a negative portion of genetic

variation.

For the case when groups do not all have the same number of individuals the random

effects estimates can found by Restricted Maximum Likelihood estimation (REML), see

Searle et al. (1992). The REML method gets its name because it restricts the maxi-

mization to the part of the likelihood which is invariant to the mean parameters of the

model. For the case when all groups have the same number of individuals the REML

estimates are exactly the same as the random effects estimates described in this section.

The REML estimates are unbiased but again can produce estimates that are not positive

definite. Also the asymptotic distributions of the estimators can be difficult to calculate.

A software package known as DFREML, see Meyer (1988), Meyer (1989), and Meyer

(1998), has been used to successfully find REML estimates for many biological studies.

Also random effects estimates can be found by maximum likelihood (ML). For the case

of the groups all having the same number of individuals the ML estimates are not always

equal to the estimate described above. Also the estimates are not always unbiased, i.e.

environmental variation can be misclassified. But the ML estimates are always positive

definite and have well defined asymptotic distributions, see Searle et al. (1992).
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CHAPTER 3

Finding Genetic Constraints: A Simple Curve Basis
Of A Nearly Null Space

This chapter discusses a method to find genetic constraints of biological interest. This

is done by not only measuring the amount of variation that a direction explains, but also

measuring the simplicity of the corresponding curves in the object space. A genetic

constraint of biological interest is a direction with low variation that is also associated

with simple curves, i.e. a high simplicity score.

An introduction to the nearly null space and a basis based on simplicity of directions

is provided in Section 3.1. The next section, Section 3.2, details how we will measure the

simplicity of the curves associated with a direction, i.e calculate the direction’s simplicity

score. A way to derive the simple curve basis, mentioned in Section 3.1, using an eigende-

compostion of a simplicity matrix is described in Section 3.3. Section 3.4 details how to

modify this method when environment levels are not evenly spaced. How to use the idea

of simplicity and amount of variation to determine if a basis yields genetic constraints of

biological interest is described in Section 3.5. A way to visualize the simplicity score and

amount of variation explained is shown in Section 3.6.



3.1 Introduction to the Simple Curve Basis of the

Nearly Null Space

Variation of an observed characteristic of an individual is referred to as Phenotypic

variation. The Phenotypic variation is modeled as lying in a vector subspace SP ⊆ Rd.

The variation in SP is summarized by a covariance matrix P . Useful insight about pheno-

typic variation comes from viewing it as a mixture of genetic variation and environmental

variation. The genetic variation is modeled as lying in a subspace SG ⊆ SP . The vari-

ance in SG is summarized by a covariance matrix G. Directions of SP which explain little

genetic variation, will also produce little genetic response when selected upon. These

directions are considered to be genetic constraints.

A straight forward way to define genetic constraints is via the subspace, SN ⊆ SP ,

orthogonal to SG. This orthogonal subspace SN is defined to be the nearly null space. All

genetic variation lies in SG, so any direction in SN explains no genetic variation because

SN is orthogonal to SG. Therefore any direction in SN is a genetic constraint.

The estimate of a basis of SG is calculated from the estimated genetic covariance

matrix Ĝ, see Chapter 2 for details on estimating the genetic covariance matrix. Then

the subspace ŜG generated by this basis is the estimate of SG. Once SG is estimated, a

nearly null space estimate, ŜN , can be found.

The basis of ŜG should be as small as possible, i.e. having the least number of

directions to explain genetic variation, in order to produce a rich orthogonal subspace of

genetic constraints. A natural way to find the least number of directions that generates

ŜG is to perform Principal Component Analysis(PCA) on Ĝ, as follows.

The numerical calculations that drive PCA of the genetic space ŜG is the eigende-

composition of Ĝ. The eigenvector corresponding to the the largest eigenvalue of Ĝ is the

first PC direction. The eigenvector corresponding to the second largest eigenvalue is the

second PC direction, etc. The first PC direction explains the most genetic variation. The
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second PC direction explains the most genetic variation not explained by the first PC

direction, in the sense that the directions are orthogonal. The eigenvectors are ordered in

this manner to define the remaining PC directions. All eigenvectors being orthogonal is

a property of the eigendecomposition, so all of the directions will explain different modes

of genetic variation.

If PCA is performed on Ĝ then the first PC direction is viewed as the direction of

greatest evolutionary response, i.e. least evolutionary resistance. As the PC directions

explain less of the genetic variation they are viewed to have more evolutionary resistance

until they can be considered genetic constraints. There are several ways to define the

boundary between response and constraint. One way is to consider the set of lower

PC directions, whose combined percentage of genetic variation explained is less than

constraint threshold cprop, to be the basis for ŜN .

The initial basis of the nearly null space, i.e. the lower PC directions, often provide

directions that are hard to interpret. This is because the biological signal is weak, i.e. ex-

plains little variation, so the lower PCs are a mixture of the biological signal and random

noise. As suggested by Nancy Heckman and Mark Kirkpatrick, deeper understanding of

the nearly null space can be gained through another basis comprised of directions that

are more interpretable.

Smooth orthogonal directions, i.e. simple curves, are often easily interpretable. A

rotation of the initial basis to another orthonormal basis, that tries to find the simplest

curves, yields an appealing opportunity to find insightful genetic constraints. Where the

simplicity of a curve is measured by the squared vertical difference of given adjacent

points along a curve in the object space. The number of simple orthogonal curves will

be equal to the number of PC directions in the nearly null space, i.e. the dimensions

are equal. This simple curve basis of the nearly null space is more interpretable but

still explains the same amount of variation as the initial basis. Any single direction will

explain less genetic variation than the largest PC direction in the nearly null space as
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well.

This measure of simplicity provides a way to find a basis of interpretable biological

directions. Viewing the measure of simplicity of directions of a basis has statistical

advantages as well.

One such statistical advantage is when we would like to partition the nearly null

space into a subspace of biological interest, i.e. interesting genetic constraint space, and

one of random noise. The interesting genetic constraint space is generated by particular

directions of the nearly null space.

The directions of the nearly null space can be distinguished from directions not in

the nearly null space based on their percentage of variation explained. This is because

the gap between the other directions percentages of variation explained and the nearly

null space directions percentage of variation explained is larger than the random error.

But for directions within the nearly null space the gap between percentage of variation

explained is not larger than random error. Therefore it is almost impossible to differ-

entiate between directions which generate the interesting genetic constraint space and

random error directions based on amount of genetic variation. But by viewing the direc-

tions measure of simplicity there is a large enough gap to distinguish between directions

within the nearly null space.

Because of this statistical advantage the directions of the simple curve basis of the

nearly null space are more stable, from sample to sample, than that of the PCA basis of

the nearly null space. One way to generate the interesting genetic constraint space is by

choosing directions of an estimated basis. So if the estimated basis is more stable from

sample to sample then the estimation of the subspace is also more stable.

Further intuition into the stability of the basis, is gained by thinking of estimating

the same subspace for multiple samples. If the same subspace is estimated for multiple

samples, the PCA basis can be different for each sample, even if the directions all ex-

plain differing theoretical amounts of variation. Because although the same subspace is
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estimated for each sample, this does not imply that the subspace has the same estimated

covariance structure for each sample, i.e estimated covariance matrix. Since the direc-

tions are explaining very similar amounts of theoretical variation, due to random error

it is quite easy to have a random reordering of the directions.

But if the same subspace is estimated for multiple samples then the simple curve basis

is always the same, given the directions have different simplicity scores. Because if the

same subspace is estimated for each sample, then the simplicity structure is always the

same, see Section 3.3.1. The simplicity structure is the same because a direction always

has the same simplicity score.

3.2 Measure of Simplicity

Once the nearly null space is estimated, we would like to separate it into a subspace

of biological interest and a subspace of random noise. This is accomplished by finding

the simple curve basis of the nearly null space. Those directions of the simple curve basis

which are considered to be simple enough will generate the interesting genetic constraint

space. Therefore a method to calculate the simple curve basis is needed. But before

describing this method, see Section 3.3, the measure of simplicity needs to be better

understood, as well as characterized in vector and matrix notation.

The measure of simplicity that is being used is the sum of the differences squared of

trait values of adjacent environmental levels along a unit length curve. This is analogous

to minimizing
∫
f ′2 in the continuous case. An example of how to calculate this simplicity

measure for a given direction will aid in the understanding of this measure. Assume that

all environment levels are equally spaced, i.e (e1−e2) = (e2−e3) = . . . = (ed−1−ed) where

e1 . . . ed are the ordered environment levels. Let β be the d× 1 vector which contains the

discretized values of a unit length curve, i.e. ‖β‖ = 1.

One particular unit length curve of a direction, β, is represented in the object space

by the black line in Figure 3.1. The measure of simplicity is then the sum of the squared
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Figure 3.1: The unit length curve of a chosen direction (β), black line, is shown in the figure.
The lengths of the cyan, green, yellow, and magenta line segments are the absolute difference
between trait values of adjacent environmental levels. The sum of the squared lengths of these
lines is our measure of simplicity.

differences of trait values between adjacent environment levels. For this particular β,

the absolute difference between the trait values at the first and second environment level

is the length of the cyan line. The absolute difference between the second environment

level and third environment level trait values is the length of the green line, etc. So

our simplicity measure is the sum of the squared lengths of the cyan, green, yellow, and

magenta line segments. This is the interpretation of the simplicity measure in terms of

the object space. But we would like a way to calculate this simplicity measure in the

point cloud space, i.e. by vector and matrix multiplication.

The differences between the trait values of adjacent environment levels is calculated

by taking the transpose of β and post multiplying it by a difference matrix D, i.e. βTD.
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Where D is the d× d− 1 matrix

D =



−1 0 0 · · · 0

1 −1 0 · · · 0

0 1
. . .

...

0 · · · 0 −1 0

0 · · · 0 1 −1

0 · · · 0 0 1


.

But for the simplicity measure, the squares of these differences are considered. Therefore

the simplicity measure, mβ, is

mβ = (βTD)(βTD)T .

This simplicity measure has a low score for the simplest directions. However for interpre-

tation purposes, we would like to have a simplicity score which is high for the simplest

directions. To achieve this the simplicity measure mβ is subtracted from a constant.

In this case the constant is 4, since mβ is always less than 4, see Schatzman (2002).

Therefore the simplicity score being used is

sβ = 4− (βTD)(βTD)T . (3.1)

Now that the simplicity score is defined, the directions of the nearly null space can be

ordered by their simplicity score. This allows for the simple curve basis to be found. An

algorithm for finding the simple curve basis by an eigendecompostion of an appropriate

matrix is shown in Section 3.3.
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3.3 Method To Derive Simple Curve Basis

3.3.1 Methods Relation to PCA

Some intuition into the method to derive the simple curve basis is gained by studying

its relationship to PCA. PCA orders orthogonal directions by the amount of variation ex-

plained. The directions are found by performing an eigendecompostion of the covariance

matrix, Σ̂PN
. The matrix Σ̂PN

summarizes the covariance structure of the subspace. For

the simple curve basis analysis we are ordering orthogonal directions by their simplicity

scores. The directions are found by performing an eigendecompostion on the simplicity

matrix, F̂PN
. The matrix F̂PN

summarizes the simplicity structure of the subspace.

Before describing the methods to finding the PCA basis and simple curve basis of a

subspace, we first have to define the covariance matrix and simplicity matrix of the full

space because the methods are highly dependent upon these. The covariance matrix of

the full space is the empirical covariance matrix of the data

Σ̂ =
1

n− 1
(X −X)(X −X),

where X is a d × n data matrix and X is a d × n matrix with each column being the

mean of the rows of X.

The simplicity matrix of the full space is

F̂ full = 4Id −DDT ,

where D is the difference matrix introduced in Section 3.2 and Id is the identity matrix

of size d × d. Some intuition for why F full has this from is gained by extending the

definition of the simplicity score for multiple directions of a basis.

The analogous quantity of mβ for the case of a basis is to replace β with Id, which
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is a basis of the full space. This leaves the simplicity measure for multiple directions of

the full space as DDT . But for interpretability purposes we would like simple directions

to be associated with high simplicity score. The analogous calculation of subtracting mβ

from 4 is to subtract DDT from 4Id. Therefore these steps produce the simplicity matrix

F̂ full which is analogous to the simplicity score for multiple directions.

In order to find the PCA basis of the full space an eigendecompostion of Σ̂ is per-

formed. In order to find the simple curve basis of the full space an eigendecompostion

of F̂ full is performed. But we would also like to find the PCA basis and simple curve

basis of a subspace as well. The PCA basis and simple curve basis are found by an

eigendecompostion of

Σ̂PN
= P̂N Σ̂P̂N

and

F̂PN
= P̂NF

fullP̂N

respectively.

Insight into the form of Σ̂PN
is gained by thinking of PCA of projected data. Let

PN be the projection matrix of the nearly null space. The centered data, i.e. X − X,

projected onto the nearly null space is then PN(X −X). PCA of the nearly null space is

then PCA using this projected data. The covariance matrix of the projected data is

ΣPN
=

1

n− 1
PN(X −X)[PN(X −X)]T = PN Σ̂PN ,

which is the covariance matrix of the full space pre and post multiplied by the projection

matrix of the nearly null space. Since the nearly null space is not usually known the PCA

basis of the estimated nearly null space is found. To do this PN is replaced by the projec-

tion matrix of the estimated nearly null space. This implies that an eigendecomposition

of

Σ̂PN
= P̂N Σ̂P̂N
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yields the PCA basis of the estimated nearly null space. The PCA basis of the estimated

nearly null space is the eigendirections of Σ̂PN
which correspond to the dN smallest

eigenvalues, where dN is the dimension of P̂N .

To find the simple curve basis an eigendecompostion of

FPN
= PNF

fullPN ,

which is the simplicity matrix of the full space pre and post multiplied by the projection

matrix of the nearly null space. To find the simple curve basis of the estimated nearly

null space the eigendecompostion of

F̂PN
= P̂NF

fullP̂N

is performed. The simple curve basis of the estimated nearly null space is the eigendirec-

tions of F̂PN
which correspond to the dN largest eigenvalues, where dN is the dimension

of P̂N . For a more mathematical derivation of FPN
see Section 3.3.2.

A further investigation of Σ̂P̂N
and F̂ shows an interesting property of the simplicity

matrix for different samples. If the same nearly null space is estimated for multiple

samples, then P̂N is the same for each of the samples. This implies that F̂ is the exact

same for those samples, since F full is the same for every sample. F full is the same for

every sample because the projection matrix of the full space is always Id. Thus the

simple curve basis is the same. But for PCA, the matrix Σ̂P̂N
is not necessarily the same,

because Σ̂ could be different for each sample. Thus the PCA basis of the nearly null

space could be different for each sample, even though the estimated nearly null space is

the same.
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3.3.2 Mathematical Derivation of FPN

How to derive the simple curve basis of the nearly null space is defined in Section 3.3

using its relation to PCA for an intuitive understanding of the procedure. This Section

provides a more mathematical derivation of the method.

To derive the simplicity matrix a calculation similar to Equation 3.1 is performed.

Ideally we would wish to replace β by the basis matrix B. But more careful consideration

must be taken when subtracting the simplicity score from 4. Before the simplicity matrix

is defined another characterization of sβ is needed. In order for the characterization to

be given, first note that

sβ = 4− (βTD)(βTD)T = 4− βTDDTβ.

Next we would like to replace DDT by another matrix which will produce the simplicity

score, with out having to subtract from 4. This is done by using the characterization

sβ = 4− βTDDTβ = βT (4Id −DDT )β,

where Id is the identity matrix of size d× d.

Based on this characterization of sβ, the simplicity matrix can be defined by simply

replacing β by the basis matrix B. Therefore the simplicity matrix is

FB = BT (4Id −DDT )B,

where B = [b1, b2, . . . , bdN
] is any d×dN basis matrix. Notice that along the diagonal are

the simplicity scores of each direction of the basis. Also notice that this matrix is dN×dN .

Therefore an eigendecompostion of this matrix leads to eigenvectors of size dN × 1. The

eigenvector which corresponds to the largest eigenvalue, is the linear combination of the

basis directions with the highest simplicity score. This result is best understood in the
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object space, but a vector of size d×1 is needed. This vector is found by post multiplying

B by this eigenvector of FB. The eigenvector which corresponds to the second largest

eigenvalue, is the linear combination of the basis directions orthogonal to the first with

the next highest simplicity score, etc.

The eigendecompostion of this FB leads to the results of ordering orthogonal directions

of the nearly null space by their simplicity score. But the basis B must be multiplied by

the eigenvectors of FB to get interpretable results. But the results of this come directly

from an eigendecomposition of FB pre-multiplied by B and post-multiplied by BT , i.e.

FPN
= BFdN

BT = BBT (4Id −DDT )BBT = PN(4Id −DDT )PN ,

where PN is the projection matrix onto the nearly null space. The simplest direction of the

nearly null space is the eigenvector of F which corresponds to the largest eigenvalue. The

direction orthogonal to the first which is next simplest is the eigenvector corresponding

to the second largest eigenvalue of FPN
, etc. The matrix FPN

has dN eigenvalues larger

than 0. The simple curve basis is the eigenvectors which correspond to eigenvalues larger

than 0.

Since the nearly null space is not usually known, the analysis will consist of an eigen-

decomposition of an estimate of FPN
. The matrix FPN

is estimated by

F̂PN
= P̂N(4Id −DDT )P̂N ,

where P̂N is the projection matrix of the estimated nearly null space, ŜN .

Also notice that Fβ is dependent upon the basis, but FPN
depends on the projection

matrix. Therefore if different bases are used to define a subspace then Fβ will be different

for each basis. But PN is always the same for a subspace so therefore FPN
is always the

same. It will then have mathematical advantages to use FPN
as the definition of the

simplicity matrix as well, see Chapter 7.
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3.4 Simple Curve Basis for Unevenly Spaced Envi-

ronment Levels

A method to calculate the simple curve basis by performing an eigendecompostion of a

simplicity matrix is shown in Section 3.3. But the method assumed that the environment

levels are all evenly spaced. But cases exist when environment levels are unevenly spaced,

as in Kingsolver et al. (2004). For these cases a diagonal weight matrix, W , is added to

the analysis. Let e be the vector that contains the ordered values of the environment

levels. Then the diagonal weight matrix is

W =



√
minj(ej+1−ej)

(e2−e1)
0 0 0 · · · 0

0
√

minj(ej+1−ej)

(e3−e2)
0 0 · · · 0

...
. . .

...

0 · · · 0 0 0
√

minj(ej+1−ej)

(ed−ed−1)


.

Now define

Fw = PN(4Id −DWW TDT )PN ,

which is similar to F from Section 3.3 only with a weight matrix included. The same

analysis as in Section 3.3 is now performed except with F replaced by Fw. Notice that

in the case of evenly spaced points W is equal to the identity matrix and the definition

of Fw is the same as F .

A toy example of unevenly spaced environment levels, both with the W matrix in-

cluded in the analysis and without the W matrix included, is shown to illustrate the

purpose and effects of the W matrix. For the toy example, measurements were assumed

to be taken at 10, 17, 23, 27, 30, 33, 37, 43, and 50 which corresponds to intervals of 7,

6, 4, 3, 3, 4, 6, and 7. For this toy example, the initial basis is a 9 × 9 identity matrix.

First the above analysis is performed with the F matrix, i.e. all environment levels are
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considered to have the same horizontal distance between them, and second with the Fw

matrix. The results of the two analyses are shown in Figure 3.2.

In Figure 3.2, the simple curves found when W is not included in the simple curve

basis analysis are shown in red. The simple curves found when W is included in the

analysis are shown in blue. The curves’ simplicities decrease from left to right and top

to bottom. The simplest curves for both analyses are the same, a flat line. The second

simple curves differ though. The blue curve is more linear than the red. The red curve is

steeper in the middle while the blue curve is more uniform throughout. The red curve,
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Figure 3.2: Blue curves are the simple curves with uneven environment levels intervals adjust-
ment. Red curves are the simple curves with out uneven environment levels interval adjustment.
Both set of curves plotted on unevenly spaced environment levels. Blue curves are closer to ap-
proximate polynomials expected if environmental levels were evenly spaced.

i.e. when W is not included, treats the environment level intervals as the same and

therefore the points along the curve are the same vertical distance apart. But once these

vertical points are plotted at the actual environment levels, those environment levels in
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the middle are closer together horizontally causing the slope to be larger than at the

ends. This is because slope is the vertical distance divided by the horizontal distance.

So the differing slopes between intervals is a consequence of the vertical intervals being

the same but the horizontal intervals differing. When the W matrix is included in the

analysis, it causes smaller horizontal environment level intervals to also have smaller

vertical intervals. This makes the blue curves have a more uniform slope, since those

with smaller vertical intervals are divided by smaller horizontal intervals. Also notice

that the blue parabola in the lower right panel is smoother than the red parabola. This

is especially noticable at the peak where the blue parabola is less pointed than the red.

Less simple blue curves may appear rougher than the red curves because of corrections

to the earlier simpler curves, and the fact that both are bases of the same subspace.

3.5 Variance-Simplicity View of a Direction

A natural way to gain information about data using a basis is by viewing the amount

of variation that each direction of the basis explains. This is done by projecting the

data points onto a direction and finding the variance of these projected points. If the

basis is orthonormal then the directions will explain 100% of the variation with each

direction explaining a different mode of variation. So it is often useful to look at what

percentage of the variation each direction explains. For the case of genetic constraints

we are interested in directions that explain a small percentage of the variation.

But we are also interested in interpretability of directions, i.e. the simplicity of the

curve in the object space which corresponds to a given direction. For the case of genetic

constraints we are interested in directions which correspond to simple curves. Thus the

simplicity score described in Section 3.2 is useful in determining the interpretability of a

direction.

For the case of genetic constraints it is not only useful to look at the amount of

variation that a direction explains but also the simplicity of the corresponding curves.
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Each direction has a percentage of variation explained, as well as a simplicity score

associated with it. Interesting genetic constraints are directions that explain a small

percentage of variation but also have a large simplicity score. Therefore if we view either

only the simplicity score or percentage of variation, we can not determine if the direction

is an interesting genetic constraint. A natural way to see if a direction is an interesting

genetic constraints is to plot its simplicity score vs the percentage of variation that it

explains. A way to visualize these simplicity scores and variation of a basis, along with

the unit length curves in object space associated with the directions of the basis, is shown

in the next section.

3.6 Example: Caterpillar Growth Rate

This example consists of data of the relative growth rate of Pieris rapae caterpillars

measured at 6 different temperatures, see Kingsolver et al. (2004). The temperatures

were 11, 17, 23, 29, 35, and 40◦C. Notice that all environment levels are six degrees apart

except for the last two which are 5◦C apart. So the case of unevenly spaced environment

levels will be applied to this data set for the nearly null space analysis.

Three bases will be looked at in the variance-simplicity view to find genetic con-

straints. The first basis considered is the simple curve basis of R6, see Figure 3.2 for an

example of the simple curve basis of R9. This basis naturally yields simple directions, so

we will see if one of the simple directions explains a small percentage of the variation,

i.e is an interesting genetic constraint. The next basis considered will be the PC basis.

This basis can produce directions that explain a small percentage of the variation, which

are natural genetic constraints. We will then see if one of the directions which explains

a small percentage of the variation is simple. The third basis will be a compromise be-

tween these two bases. We will consider a subspace generated by the directions of the

PCA basis which explain the least amount of variation. Then the simple curve basis of

this subspace will be found. This way any direction in the subspace will explain a small
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amount of variation, and also the simplest directions in this subspace are found. This

simple curve basis of the nearly null space can be combined with a basis of the model

space to be a basis of the full space. In this case we will use the the 4 directions of the

PCA basis explaining the most variation to be the basis of the model space.

3.6.1 Simple Curve Basis of R6

The simple curve basis of R6 is found by the eigendecompostion of F full. The basis

formed by the eigenvectors of this solution generate the full space. The large eigenvalues

correspond to directions with the simplest curves and the small eigenvalues correspond

to directions with less simple curves.

Figure 3.3 shows the simple curve basis of R6. On the left hand side of the graphic

are the unit length curves, shown in the object space, corresponding to the directions

of this basis. The curves are numbered with the simplest being number 1 and the least
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Figure 3.3: Simple curve basis of full space. Curves are simple but ignore percent of genetic vari-
ation explained. Left hand columns are curves in object space corresponding to basis directions.
Upper right box is variance-simplicity scatterplot of basis.

simple being number 6.
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One way to view these directions is as curves, but a second way to gain meaning of the

directions is to look at how simple they are as well as how much variation each direction

explains. The box in the upper right hand corner displays this in a variance-simplicity

scatterplot. It summarizes each direction as a data point in this particular 2-d space.

The vertical dimension is the directions simplicity score, while the horizontal dimension

is the percent of variation that the direction explains. Each data point corresponds to a

curve on the left and the numbers show this correspondence. The numbers decrease as

the vertical axis increases. This is because the directions are ordered by simplicity and

the vertical axis is the directions simplicity score. Those with larger simplicity scores are

the simplest. The percent of variation, represented by the position on the horizontal axis,

that each direction explains does not show an ordered pattern. For instance the simplest

direction explains the third most variation while the second explains the least amount

of variation. This random relationship will often be the case, since this basis ignores the

amount of variation explained. The simplicity scores of these directions will be marked

by dashed lines. These same dashed lines will be helpful on similar future plots for other

bases as a way to gauge simplicity of directions, in terms of this simple curve basis of R6.

To find an interesting genetic constraint, we are looking for a direction which explains

a small percentage of the variation but also has a large simplicity score, i.e. a point in the

top left of these axes. Using this basis the point labeled 2 is the best candidate to be an

interesting genetic constraint. This is the direction which corresponds to approximately

a linear curve in the object space. This point is quite simple but it explains too much

variation. It explains approximately 5 to 6% of the variation. But we defined a genetic

constraint as a direction that explains less than 1% of the variation. So this basis has

provided a simple curve but the direction explains too much variation to be a true genetic

constraint.
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3.6.2 PC basis

The PC basis is the eigendecompostion of Ĝ, i.e. the empirical genetic covariance

matrix. The basis formed by the eigenvectors of this solution generates the full space. The

large eigenvalues correspond to directions explaining a large percentage of the variation

and the small eigenvalues correspond to directions explaining a small percentage of the

variation.
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Figure 3.4: PCA basis for full data set. Directions depend on amount of variation explained
and ignore simplicity. Left hand columns are curves in object space corresponding to basis
directions. Upper right box is variance-simplicity scatterplot of basis. Bottom right rectangle is
amount of variation that model(blue) and null(red) spaces explain. Blue corresponds to model
space directions while red corresponds to null space directions.

Figure 3.4 has the same structure as Figure 3.3, except now we are viewing the PC

basis rather than the simple curve basis of R6. Also the curves are numbered such that 6

explains the most amount of variation while 1 and 2 explain the least amount of variation.

The last two PC directions generate the nearly null space. This subspace explains less
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than 1% of the variation. This can be seen by the bottom right rectangle which shows

the amount of genetic variation explained by those directions in the nearly null space

and in the model space. The whole line represents 100% of the genetic variation. The

red part of the line is the percent of genetic variation that the nearly null space explains,

which is also written in the bottom left corner. In this case the nearly null space explains

0.7% of the genetic variation. This red portion of the bar is difficult to see since it is such

a small percentage of the whole bar. The blue portion of the bar represents the amount

of genetic variation explained by the model space, which is 99.3% for this basis.

The null space directions are numbered according to simplicity score, with 1 being

the simplest, but the model space directions are still numbered by amount of variation

explained. The point marked 1 is the best candidate to be an interesting genetic con-

straint. It explains less than 1% of the variation and has a simplicity score that is about

half way between the second and third simplest curves of the simple curve basis of R6.

We can tell this by the fact that the point lies half way between the second and third

dashed lines from the top. Recall that these dashed lines mark the simplicity score of the

simple curve basis directions. Although this curve is simple there may be a simpler curve

that still explains less than 1% of the genetic variation, as derived in the next section.

3.6.3 Simple Curve Basis of the Nearly Null Space

The basis described in this section is a compromise between the bases shown in

Sections 3.6.1 and 3.6.2. This basis combines the simple curve basis of the nearly null

space with the PCA basis of the model space. A way to visualize the directions of this

basis, their simplicity scores, and percentages of variation explained is shown in Figure

3.5. This figure has the same structure as Figures 3.3 and 3.4.

The curves which correspond to this basis are shown on the left hand side. Notice

that curves 3-6 have not changed from Figure 3.4. This is because we are using the same

basis to generate the model space. The curves labeled 1 and 2 are different from Figure
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3.4. This is because the nearly null space basis is the simple curve basis instead of the

PCA basis. This simple curve basis still generates the same subspace as the last two PC

directions. So the subspace still explains less than 1% of the variation. This can be seen
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Figure 3.5: Simple curve basis of 2-d nearly null space. Basis yields best opportunity to find
interesting genetic constraints since finding simplest directions in subspace of small genetic vari-
ation. Left hand columns are curves in object space corresponding to basis directions. Upper
right box is variance-simplicity scatterplot of basis. Bottom right rectangle is amount of varia-
tion that model(blue) and null(red) spaces explain. Blue corresponds to model space directions
while red corresponds to null space directions.

in that the bottom right rectangle is still exactly the same as in Figure 3.4. But the

basis now has one direction that is simpler than either PC direction of the nearly null

space and one curve which is less simple than either PC direction. But the percentages of

variation explained by both curves will be between the percentage of variation explained

by the last two PC directions.

These facts can best be seen by the box in the upper right corner, i.e. the variance-

simplicity scatterplot. Again the points labeled 3-6 are exactly the same as Figure 3.4.
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The point labeled 1 is higher vertically than either point 1 or 2 of Figure 3.4. This shows

that the curve corresponding to the point labeled 1 is simpler than either PC direction.

Also the point labeled 2 is lower vertically than either point 1 or 2 of Figure 3.4. Also

points 1 and 2 are horizontally between points 1 and 2 of Figure 3.4. This is harder to see

since the points are so close together horizontally. But the sum of the horizontal values

is the same as the sum of the horizontal values of Figure 3.4, showing that the nullspace

generated by both bases explain the same amount of variation.

Point 1 is the best candidate to be an interesting genetic constraint. This point is

much closer to the second dashed line from the top, saying that it is approximately as

simple as the second simplest curve in the simple curve basis of R6. But it still explains

less than 1% of the variation. So we have found a simpler curve than the PC basis, which

still explains a small percentage of the variation.

To see variations of this type of null space analysis ranging over 0 to 6 lower PCA

directions generating the null space go to Gaydos (2007). At this website is a movie,

named CatNull in the folder NullSpace, in which each frame is similar to Figure 3.5 but

with different number of principal component directions generating the null space. Each

frame has one more principal component direction generating the null space than the

frame before it. Figure 3.5 is a snapshot from this movie, that was included because

the nearly null space generated by the last two PC directions is considered the most

reasonable estimate of the nearly null space.

The method for deciding the dimension of the nearly null space is to view the simple

curve basis of the nearly null space of dimension dN , i.e. the subspace generated by the

last dN PC directions, using the visualization tool of Figure 3.5. Then compare that

to the simple curve basis of the nearly null space of dimension dN + 1 using the same

visualization tool. If the proportion of variance of the nearly null space of dimension

dN + 1 is much larger than the nearly null space of dimension dN , then the nearly null

space is considered to be of dimension dN . If the proportion of variation of the dN + 1
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nearly null space is not much greater than that of dN then the nearly null space should

be of dimension dN + 1. If it is decided that the nearly null space is of dimension dN + 1,

then the subspace of dimension dN + 1 is compared to the subspace of dimension dN + 2,

etc.

For the example above the simple curve basis of the nearly null space of dimension 1

is shown in Figure 3.6. We will compare this to Figure 3.5 in order to determine if the

nearly null space should be of dimension 1 or 2. Notice that this is the same as the PC
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Figure 3.6: Simple curve basis of 1-d nearly null space. Basis yields directions of small vari-
ation but not a large enough space to give an opportunity to find simple directions. Left hand
columns are curves in object space corresponding to basis directions. Upper right box is variance-
simplicity scatterplot of basis. Bottom right rectangle is amount of variation that model(blue)
and null(red) spaces explain. Blue corresponds to model space directions while red corresponds
to null space directions.

basis, only with the last PC direction identified as the nearly null space, i.e. is colored

red. All of the curves are the exact same as the PC basis. This is because the nearly

null space is of dimension 1, i.e. has only one direction. Therefore the simplest direction
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of this one dimensional space is also the direction which explains the least amount of

variation. This nearly null space explains 0.0% of the genetic variation, see bottom right

rectangle. This is a small amount of variation and can be considered a genetic constraint

space. But there may be a larger space, in which all directions can still be considered to

be genetic constraints. Therefore let us compare this Figure to Figure 3.5.

Figure 3.5 shows the simple curve basis of the nearly null space of dimension 2. It can

be seen from the bottom right rectangle that this nearly null space explains 0.7% of the

genetic variation. Therefore it is reasonable to assume every direction of this subspace

is a genetic constraint. This subspace is larger than the subspace generated by only 1

PC direction and therefore gives a better chance of finding a set of interesting genetic

constraints, i.e. directions of high simplicity and low variation.

Next we will investigate the subspace generated by the last 3 PC directions. Figure

3.7 shows the simple curve basis of this space. This space explains 6.6% of the genetic

variation. This is a large amount of genetic variation. Since this space is larger than

the subspace generated by the last 2 PC directions we are more likely to find directions

of high simplicity. But since this subspace explains such a large amount of genetic

variation it is also more likely that the directions of the simple curve basis are not

genetic constraints, i.e. will explain too much genetic variation. So therefore the nearly

null space of dimension 2 gives us the best chance of finding a set of interesting genetic

constraint.

Also 2 movies, named JWNullshade and JWNullSun at the website Gaydos (2007),

are the same simple curve basis analysis for 2 different 6 dimensional data sets. These

data set consist of height measurements of a group of Jewel Weed plants. The height was

measured at 18, 26, 33, 39, 47, and 57 days. The jewel weed plants were separated into

two groups, with one group growing in the sun and the other in the shade. The shade

jewel data has a nearly null space of 5 dimensions, while the sun jewel data has a nearly

null space of 4 dimensions. Although sun jewel weed data could also be considered to
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Figure 3.7: Simple curve basis of 3-d nearly null space. Larger subspace to find simple direc-
tions but directions likely to explain too much genetic variation. Left hand columns are curves
in object space corresponding to basis directions. Upper right box is variance-simplicity scat-
terplot of basis. Bottom right rectangle is amount of variation that model(blue) and null(red)
spaces explain. Blue corresponds to model space directions while red corresponds to null space
directions.

have a 5 dimensional nearly null space.
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CHAPTER 4

Principal Components For Developmental Stage Data

In this chapter the biological notion of developmental stages is used to motivate a

new representation of functional data, similar to classical shape statistics. The new data

representation transforms conventional non-linear variation into easily analyzed linear

modes of variation.

Section 4.1 provides an introduction of Developmental Stage Landmark Data. Section

4.2 will give an overview of how PCA is performed on a grid based representation of

the curves and then how PCA is performed on the representation of the curves using

developmental stage landmarks. We will assume that all individuals have the same

number of developmental stages for simplicity in explanation. Since the developmental

stage landmarks represent horizontal variation as linear modes of variation, PCA a tool

to understand linear modes of variation will provide easier to interpret results for the

developmental stage landmark representation. Section 4.3 will describe how to handle

the situation when some developmental stage landmarks do not correspond between some

individuals in the population with a focus on the Manduca sexta data set, described in

Section 4.1. In Section 4.4 the results of landmark PCA will be shown for the Manduca

sexta data set.



4.1 Introduction to Developmental Stage Landmark

Data

For data sets that have an attribute as a function of time the common Functional

Data Analysis practice is to measure the attribute at a set of given, usually evenly spaced,

time points. But for some data sets it is more natural to have the time points be variable

as well. One such example is the growth trajectories of the tobacco hornworm, Manduca

sexta. These Manduca sexta go through the process of molting and metamorphosis, i.e.

developmental stages, see Gilbert et al. (2000), Nijhout (1994), Riddiford et al. (2003). It

is natural to measure the mass of the individual as well as the time of these developmental

stages. The Manduca sextas’ growth trajectories are shown in Figure 4.1. The log of
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Figure 4.1: Manduca sexta growth trajectories. Blue curves are lab caterpillars with 6 stages,
cyan are field caterpillars with 6 stages, and red are field caterpillars with 7 stages. Asterisks
represent developmental stages. Notice that the curves have horizontal, i.e time, modes of
variation.
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mass is on the vertical axis and time is on the horizontal axis. The individuals in this

data set either come from a lab population or a field population. The lab individuals will

be colored blue and always have 6 stages. The developmental stages for all individuals

are shown as asterisks. For the field population some individuals have 6 stages while

others have 7 stages. Those field individuals with 6 stages will be colored cyan while the

field individuals with 7 stages will be colored red. For this data set the time points are

variable, i.e. the asterisks for each developmental stage are not in a straight vertical line.

The conventional approach to varying time points involves interpolation, see Ramsay

and Silverman (2002) for a more detailed discussion on this topic. Information can be

lost using this conventional interpolation approach, when there are interesting modes of

variation in the time direction. The Manduca sextas’ growth trajectories shown in Figure

4.1 have interesting modes of time variation, such as an overall horizontal shift of the

curves. Using the conventional approach the horizontal, i.e time, modes of variation have

been successfully modeled using nonlinear methods, see Izem and Kingsolver (2005).

Here we account for the time variation by using developmental stage landmarks.

This developmental stage representation of the data has an advantage of representing

interesting modes of variation, that were previously modeled in a nonlinear way, in a

linear fashion. These developmental stage landmarks have a connection to classical shape

statistics.

Landmarks form the basis of a large, and well developed, theory of statistical shape

analysis. See Kendall (1999), Bookstein (1978), and see Dryden and Mardia (1998) for

a particularly accessible introduction. In this approach to shape statistics, landmarks

are points of correspondence on an object, i.e. a curve, that match between and within

populations. The developmental stages along the curve are analogous to anatomical

landmarks in shape statistics. In many biological applications anatomical landmarks are

points assigned by an expert which correspond between organisms in some biologically

meaningful way, see Dryden and Mardia (1998). In shape statistics, landmarks allow a
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statistician to analyze how an object changes shape horizontally and vertically. In this

same manner, the developmental stages allow for a statistician to see how the curves

change with respect to both the attribute and time.

Because of this developmental stage representation linear methods, such as PCA, can

be used to understand horizontal variation. The next section shows how to use PCA

to understand the variation of the curves using the grid based and developmental stage

representations.

4.2 PCA for Developmental Stage Landmark Data

The common practice, for functional data sets that involve an attribute value as a

function of time, is for the experimental design to be such that the attribute is measured

at a set of d given time points. A conceptual advantage of this grid based experimental

design is that each curve can be thought of as a point in Rd. See Section 1.1 for an

introduction to this correspondence of the curves, i.e. object space, and Rd, i.e. the

point cloud space. The attribute value at each given time point is a coordinate value in

Rd. If one wants to reconstruct the curve from the data point it is important to keep

track of the order along the curve from where the attribute measurement is associated.

Only the order is important since the time points are common for all individuals. Vector

notation allows us to do this easily. A point in Rd corresponds to a d × 1 vector. Each

individual correpsonds to a vector, xi, which is thought of as a discretization of an

individual curve. The first entry in the vector is the measurement that was taken at the

first time point along the curve. The second entry is the attribute value taken at the

second time point along the curve, etc. The data vectors are usefully grouped together

into a d× n data matrix, X. The data matrix X corresponds to n points in Rd.

A good way to understand the variation of these points is through PCA. Traditional

PCA has a requirement that the data vectors have the same length, which is guaranteed

by this design. This is why it is common to use the grid based experimental design when
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planning to use PCA to understand variation, even if interpolation must be used, e.g.

for varying time points.

A limitation of this experimental design is that only vertical variation is explicitly

modeled. But for Figure 4.1 it is clear that horizontal, i.e. time, variation is also of

interest. But PCA is heavily dependent on the input vectors, i.e. data representation.

If different representations of the data are used then PCA will give different modes of

variation. For the grid based representation, if there is time variation in the curves then

PCA will try to model the time variation in terms of mass variation. This is since the

PCA input vectors only have mass values. So if the input vectors do not have time values

which vary, then PCA can not explicitly model time variation.

When the data consists of developmental stage landmarks, each curve has a measure-

ment of time and mass at d developmental stages. Each curve can be represented as a

point in R2d. The dimension of the space is twice the number of landmarks, because not

only is there an attribute measurement but also a time measurement. Each attribute

value is again a coordinate value but also each time point is a coordinate value as well.

No longer are all individuals associated with the same given time points, therefore the

time measurements also have variation. Now PCA can be used to understand both ver-

tical and horizontal variation explicitly, since both the variation of mass and time are

reflected directly by the data vectors. A major advantage of this data representation is

that biologically important modes of variation, that were nonlinear using the classical

grid based representation, now become linear.

To reconstruct the curves from the data points in R2d, it is important to know which

landmark each attribute and time measurement is associated with. Again the vector

notation allows us to do this easily. Each individual corresponds to a 2d × 1 vector,

xLi , which is a discretization of it’s curve. By design, the first entry corresponds to the

attribute value of the first landmark and the d+1 entry is the time point associated with

the first landmark. The second entry is the attribute value associated with the second
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landmark and the d+2 entry is the time point associated with the second landmark, etc.

These vectors can be grouped together into a 2d×n data matrix, XL, which corresponds

to the n points in R2d.

A toy example is given to highlight the important point about a landmark representa-

tion turning nonlinear modes of variation into linear modes of variation. In this example

it is assumed that the curves have 7 developmental stage landmarks. The toy example

consists of parabolas that are shifted along the horizontal axis. The curves are rainbow

colored with curves having early peaks being colored blue to the curves with later peaks

being colored red. The actual data curves are shown in upper left panel of Figure 4.2.

The grid based experimental design measures the curves at a set of given time points.

For this toy example, 30 grid points were chosen to be evenly spaced between -3 and 3.
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Figure 4.2: Top left are toy data curves. Dashed lines in top right are the given evenly spaced
time points. Bottom right is the grid based representation of curves. Bottom left are the land-
mark representation of curves. Notice that landmark representation does much better job of
representing actual curves than grid based representation.
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This range was chosen so that all curves have an attribute value at each given time point,

i.e all curves start at -3 and end at 3. The given time points are shown in the upper right

of Figure 4.2 as dotted lines. Where the dotted lines intersect a curve are the attribute

values for that curve. Each curve is represented by a point in R30, which corresponds to

a 30 × 1 vector, xi. This is because there are 30 attribute values associated with each

curve at the 30 given time points. The bottom right shows the representation of the

curves based on these grid points and attribute values. The grid based representation

of the curves is produced by plotting the attribute values at the given time points. The

first entry of xi is plotted at given time point 1 and the second entry of xi is plotted at

given time point 2, etc. The points are then linearly interpolated in between the given

time points. Notice that these curves look similar to the original curves but they are not

exactly symmetric and have corners which are different. For instance around the peaks

the lines before and after the peaks are not mirror images of each other as in the original

curves.

The developmental stage landmark representation of the curves is shown in the bottom

left of Figure 4.2. Each developmental stage is represented by an asterisk. At each asterisk

the attribute value and time is measured. Now each curve is represented as a point in

R14, which corresponds to a 14× 1 vector, xLi . The mass measurements are recorded in

the first half of the vector and the time measurements are recorded in the second half

of the vector. The developmental stage representation of the curves are produced by

plotting the attribute value at the landmarks vs the time at the landmarks and linearly

interpolating the attribute value and time points in between landmarks. The 1st entry

of xLi , i.e. the attribute value at the first landmark, is plotted vs the eigth entry of xLi ,

i.e the time value at the first landmark, and the second entry of xLi is plotted vs the

ninth entry of xLi , etc. For this toy example, the curves are represented perfectly by the

developmental stage landmark representation. Notice that the top left and bottom left

panels of the figure have curves which are exactly the same.
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Since each curve is only the mean curve shifted along the horizontal axis, intuitively

one expects the variation of the curves to be one dimensional in nature. Figure 4.3 shows

the results of a PCA when the common grid based representation is used. In Figure 4.6

are the results of a PCA when the developmental stage landmark representation is used.

These figures will help to compare and contrast the two representations of the data.
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Figure 4.3: PCA of Grid based representation, not all variation explained by one linear dimen-
sion due to representation. Horizontal shift is modeled as vertical modes of variation. Top row
from left to right are the grid based representation of the curves, mean curve for this represen-
tation, and residual curves. Second Row from left to right are projected data curves of PC 1,
mean curve plus and minus multiple of PC 1 curve, and residual curves. Rows 3 and 4 have
same structure as Row 1 except with PC 2 and 3 instead of PC 1.

Row 1 Column 1 of Figure 4.3 shows the grid based representation of the curves. The
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curves are the same as in the bottom right of Figure 4.2. In Row 1 Column 2 is the mean

of these curves. The mean curve at each time value is the mean of attribute values at

that time point, i.e. vertical dashed line in the right of Figure 4.2. The peak of this curve

is not at the vertical height of all of the peaks of the other curves. This is because the

peak of the mean curve is the mean of the measurements at a specific vertical line, not

the mean height of all of the peaks. The mean curve is more bell shape than linear line

segments, which differs from the curves in the top left. This mean curve being a different

shape than all of the curves indicates an important sense in which it does not accurately

reflect the center of the curves. In Row 1 Column 3 are each individual’s curve after the

mean has been removed, i.e the mean residuals.

Row 2 Column 1 shows the projection of each individual onto the PC 1 direction vector

called v1. This corresponds to plotting the projections of the data onto v1, denoted as

p1,i, vs the given time points, where

p1,i = 〈v1, xi〉v1 = vT1 xiv1.

This is the representation of the curves, after the mean has been removed, if only one

linear direction was used. The mode of variation described by PC 1 is about the blue

curves having a larger mass at early time points and the red curves having higher masses

at later time points.

This mode of variation is due to the representation of the data. For this representation

PCA is trying to explain horizontal shift via vertical variation. The blue curves have

peaks before time point 0 while the red curves have peaks after time point 0. The mean

curve has its peak around time point 0. PCA of this representation only explicitly models

vertical variation from the mean. So the blue curves have their peaks early and are then

vertically higher than the mean curve for early times, where as the red curves have their

peaks later and are vertically higher than the mean curve for later times. The red and
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blue curves are most prominent in PC 1 due to the fact that the farther a peak is from

time point 0 the more vertical variation from the mean curve. This is because the mean

curve’s height decreases as it moves away from time point 0. The shape of the curves are

reminiscent of the second Hermite basis function.

An important point is that PC 1 does not explain all of the variation from the mean.

Row 2 column 2 shows the extreme positive and negative multiples of v1 added to the

mean curve and shows the percent of variation that PC 1 explains in the top left corner.

PC 1 only explains around 78% of the variation, but it was expected that all of the

variation could be explained by one direction. Row 2 Column 3 shows the residuals

after the mean and PC 1 have been removed. Again these curves show that there is a

significant amount of variation that is not explained by PC 1.

Row 3 has the same structure as Row 2 except now all of the panels involve PC 2

instead of PC 1. The third column is the residuals after the mean, PC1, and PC 2 have

been removed. The rows continue with this same structure. PC 2 explains a significant

amount of the variation, about 18%. The mode of variation of PC 2 is about the curves

with peaks in the middle time range vs curves with peaks at the starting or ending time

ranges. This mode of variation is reminiscent of the third Hermite basis function. Again

this is because the obviously horizontal mode of variation is being modeled via vertical

modes of variation.

The data was simulated to have, in some intuitive sense, only one dimension of vari-

ation, Figure 4.3 shows that the data lie in a more than one dimensional subspace using

this representation. This is because PCA only finds directions of linear variation but the

family of curves has non-linear variation, that was imposed by the grid based represen-

tation. This non-linear, yet one dimensional variation can be understood by looking at

a scatter plot of the PC scores, which is shown in Figure 4.4.

Figure 4.4 is a graphic of a 4 × 4 matrix of the scatter plots of PC scores. This

graphic allows us to visualize a 4 dimensional subspace through projections of the data
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Figure 4.4: Along diagonal are projections of data onto 1-d subspaces generated by PC directions.
Off diagonal are data projections onto 2-d subspaces generated by PC directions. Notice that all
of the data lies along a line in each of the 2-d off diagonal subspaces, which indicates non-linear
variation.

onto 1 dimensional and 2 dimensional subspaces generated by the PC directions. Along

the diagonal is the plot of the projections onto the 1 dimensional subspaces generated

by PC directions 1-4. Row 1 column 1 is the projection of the data onto PC direction

1, and row 2 column 2 is the projection of the data onto PC direction 2, etc. Also in

the diagonal panels are a smoothed density curve of the PC scores. These are kernel

density estimates, see Wand and Jones (1995) for a good introduction. Off diagonal

are the projections of the data onto a 2-dimensional subspace generated by pairs of PC

directions. Row 1 has PC1 projections along the vertical axis for columns 2-4 and the

projection onto PC2-4 along the horizontal axis respectively. Row 2 has projections onto

PC 2 direction along the vertical axis for columns 1, 3, and 4 and the projections of the

data onto PC directions 1, 3, and 4 respectively. The rows continue in this way.
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Row 2 column 1 shows the projection of the data onto the subspace generated by

the PC 1 and PC 2 directions. All of the data points line along a parabola in this

scatter plot. This shows that indeed there is non-linear variation in the data set, i.e. this

”one-dimensional” data set lies in at least a 2-dimensional subspace. All of the other

scatter plots show that the data points lie along some curve as well, again highlighting

the non-linear variation. In particular the data lies in at least a 4-dimensional subspace.

The data are in some sense 1 dimensional since all of the data points lie along a curve

in a 4-d space. This 1 dimension is explained by a horizontal shift, but the grid based

representation tried to model this horizontal shift through vertical variation, i.e the hor-

izontal variation is more efficiently modeled as nonlinear. The landmark representation

allows PCA to explicitly model both vertical and horizontal variation, so the horizontal

shift can now be modeled through horizontal variation rather than vertical variation, i.e

horizontal variation can now be efficiently modeled as linear.

If the data have developmental stage landmarks, then each individual is represented

by a data point that can have variation in both mass and time. For this toy example,

the curves are parabolas shifted horizontally and not changed vertically. Because of this

the curves have no mass variation and all of the variation is in a linear direction of time

variation.

The upper left panel of Figure 4.5 shows the landmark representation of the data set

in the mass vs time view, it is the same as the lower left panel of Figure 4.2. The upper

right panel shows the landmark representation of the data viewed in parallel coordinates.

Each view of the data can be used to gain useful insight. Certain aspects of the data

may be better understood in the mass vs time view than parallel coordinates view or

vice versa.

Parallel coordinates is a multidimensional visualization tool, where each entry of a

vector is plotted vs its entry number, see Inselberg (1985). For this case because of the

way we grouped the data measurements in the vector, all of the mass measurements
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will be plotted first and then all of the time measurements will be plotted next. To

gain understanding of the data through the parallel coordinates view, the ordering of the

measurements in the vector is essential. To form the parallel coordinates plot the values
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Figure 4.5: Left hand side is mass vs time view and right hand side is parallel coordinates view.
Top row is landmark representation of curves in mass vs time view, left, and parallel coordinates
view, right. Row 2 is mean curve shown in mass vs time view, on left, and parallel coordinates
view, on right. Bottom row is mean residuals shown in mass vs time view, on left, and parallel
coordinates view, on right. All lines are multiples of each other in the column 2 residual plot
indicating that variation in data can be explained by one linear direction.

for the mass of each developmental stage landmark are plotted first and then the time of

each developmental stage landmark next. This also corresponds to plotting each column

vector of the data matrix, due to the chosen structure of the vectors. Notice that the
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horizontal axis shows numbers 1-7 twice. The numbers represent which developmental

stage each value corresponds to, and the numbers are there twice since each developmental

stage corresponds to both a mass, shown on the left, and time measurement, shown on

the right. The dotted line separates mass values from time values.

For the toy example the mass measurements form a parabola over the developmental

stages, while the time measurements form lines that increase as the developmental stage

increases. Notice that each individual has the same left hand side, i.e mass portion of

the curve, but different right hand sides, i.e. time portions of the curve. In row 2 is the

mean curve viewed in the mass vs time view, i.e. column 1, and the parallel coordinates

view, i.e column 2. The mean curve in the mass vs time view is a parabola. The mean

curve, denoted by the vector X
L
, has entries that are the mean of all individuals for that

specific entry of the vectors, i.e. the mean mass or time of each landmark. This parabola

has the same shape as all of the raw data curves. All of the data curves are simply a

horizontal shift of this curve. The parallel coordinate view shows the same thing. This

already shows that this mean curve is an intuitively more sensible representation of the

mean, than the mean curve of the grid representation.

Row 3 is the residuals after the mean has been removed. In the mass vs time view

the picture does not give us much information. This indicates that the residuals should

be viewed added to the mean in the mass vs time view, for easier interpretation. Each

point, not at (0,0), is actually 5 points, because each developmental stage is shifted the

same amount horizontally from the mean except the first and last stage. The first and

last stage of all individuals is now at the point (0,0), since all individuals have the same

value for the first and last developmental stages. All stages have a vertical value of zero

since they are never shifted vertically from the mean but only horizontally.

The parallel coordinates view of the residuals is more easily interpreted with the mean

removed than the mass vs time view. Now it can be seen that the mass measurements

have no variation from the mean, since they are all flat lines along zero. It is also seen
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that the time measurements for stages 2-6 are the same distance from the mean for each

color, i.e. individual. The first and last stages have no variation. All of these lines

are parallel which shows that the data has only 1 linear direction of variation for this

representation. This is only time variation, since only the right hand side of the curves

have spread to them.

Figure 4.6 shows the landmark PCA for this data set. The first two columns of

Figure 4.6 are visualizations of the data in the mass vs time view, while the last two

columns are visualizations of the data in parallel coordinates view. Row 1 shows the raw

data in column 1 using the mass vs time view. This is the same developmental stage

representation of the curves as shown in Figures 4.1 and 4.5. This is entries 1-7 of XL
i

plotted vs entries 8-14 of XL
i . This representation shows the curves are parabolas, shifted

along the horizontal axis and are exactly the same as the true data curves. Row 1 column

2 shows the mean of the data in the mass vs time view. The mean is the parabola which

is shifted along the horizontal axis to generate the curves.

The third column shows the same data set, with the mean removed, in the parallel

coordinates. This is the same view that is used in the second column of Figure 4.5. In

this view it is easy to see that the mass measurements have no variation, i.e. are all

flat lines at 0. The time measurements are parallel flat lines. All the lines being parallel

is an indication that the variation can be explained by one linear direction using the

developmental stage representation. This tells us that the middle 5 landmarks for each

individual are shifted horizontally from the mean by the same amount, suggesting that

the variation is linear in this representation. The first and last stages have the same time

measurements for all individuals and therefore have no variation.

Row 2 column 1 shows the projection of the data onto the PC 1 direction, vL1 , for

this representation as a function of mass versus time. This is achieved by adding the

projection vector to the mean vector, pL1 +XL. Then plot entries 1-7 versus entries 8-14.
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Figure 4.6: Landmark PCA of Toy Data, now all of of the variation is explained by one linear
direction. Left 2 columns are mass vs time view. Right 2 column are parallel coordinates view.
Row 1 is raw data, row 2 is PC 1 projections, and row 3 is PC 2 projections.

The vector

pL1,i = 〈vL1 , xLi 〉vL1

is the projection of individual i onto the PC 1 direction. This is the best representation

of the curves if only one linear direction is used. In this case the projection curves are

the exact same as the original curves. This is because PC 1 explains all of the variation

of the curves. This can also be seen in the upper left corner of the panel, where the

number, 100%, tells us how much variation is explained by this direction.

Row 2 column 3 shows the projection of each individual onto the PC 1 direction,

with the mean removed, using parallel coordinates. This again corresponds to plotting

the projection vector,

pL1 = 〈vL1 , xLi 〉vL1
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of each individual for the PC 1 direction. Once again these curves are the exact same as

the curves in the panel above it, indicating that one linear direction explains all of the

variation.

Row 2 column 2 shows the residuals, after PC 1 has been removed, added to the

mean plotted in mass vs time view. This panel shows the mean curve which indicates

there is no variation left to explain. In row 2 column 4 the residuals are shown, after PC

1 is removed and with out the mean, plotted in parallel coordinates view. The residual

curves are flat lines at zero. This is another indication that there is no variation left to

explain after PC 1. Row 3 has the same structure as row 2 except with PC 2 instead

of PC 1. PC 2 explains 0% of the variation, since there was no variation left to explain

after PC 1.

4.3 Representation for a Differing Number of Devel-

opmental Stages

PCA is a tool for understanding linear variation and therefore has been useful for

many data sets, for reasons stated in Sections 1.1 and 4.1. A weakness of PCA, for

analyzing developmental stage data, is it requires data vectors of the same length. So a

classical analysis requires a common number of developmental stages. But experiments

may not always consist of individuals with the same number of developmental stages,

such as the Manduca sexta data set introduced in Section 4.1. PCA can be used when an

appropriate modification is made to the developmental stage landmark representation.

This section will provide one option for such a modification. The new representation will

be presented through the Manduca sexta example.

Manduca sexta individuals historically have 5 instars and 3 other developmental stages

but through evolution some now have 6 instars and 3 other developmental stages. For

this experiment the individuals were not measured until the third instar. For this reason

those individuals with 5 instars were only measured at 6 developmental stages and will
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be referred to as 6 stage individuals. While those with 6 intstars were measured at 7

developmental stages and will be referred to as 7 stage individuals. The stages also will

be referred to as stage 1 starting with the third instar and counting up from there. For a

visualization of the curves from the third instar on see Figure 4.1. Due to the population

having individuals with differing number of developmental stages the developmental stage

representation described in Section 4.2 will have to be modified before traditional PCA

can be performed.

If it was biologically evident which developmental stage was extra then those indi-

viduals with 6 stages could have a pseudo-landmark added, i.e. a seventh developmental

stage, through interpolation. If for instance, the extra stage was between the original first

and second stage then a developmental stage could be added between these two stages

through linear interpolation. By embedding those curves of individuals with 6 stages into

a higher dimensional space, all curves have an equal number of landmarks, which allows

simple direct PCA, see Vapnik (1995) and Scholkopf et al. (1998).

However for the Manduca sexta data set, it is not biologically evident which stage

is the extra developmental stage. What is evident is that some of the stages for worms

with 7 stages correspond to some of the stages for worms with 6 stages. Figure 4.7 shows

the biological correspondence of stages between worms with 7 stages and worms with 6

stages.

The upper left panel shows the curve of one worm from the population of worms with

7 stages, shown as the red curve, and the curve of one worm from the population of worms

with 6 stages, shown as the blue curve. The asterisks represent original developmental

stages. Those stages connected by a dotted line correspond biologically. The table below

shows this biological correspondence of the stages.
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7 Stage Curve 6 Stage Curve

1 1

2 2

3 2

4 3

5 4

6 5

7 6

As can be seen from the figure and table, stages 1,4,5,6, and 7 of the worm with 7

stages correspond to stages 1,3,4,5, and 6 of the worm with 6 stages, i.e. are connected

by a dotted line. But also stages 2 and 3 of the worm with 7 stages correspond with

only stage 2 of the worm with 6 stages. The second blue asterisk has two dotted lines

connected to it. If there was one stage for the 7 stage individuals that was an extra stage

then there would be one red asterisk not connected to any blue asterisk by a dotted line.

Since all the red asterisks are connected to a blue asterisk, where to add an extra stage

for the blue curve is not obvious. Since it is not obvious where to add a landmark to the

curve of the worm with 6 stages, both the data points representing the the curve of the

worm with 6 stages and the data point representing the curve of the worm with 7 stages

will be embedded into a higher dimensional space.

The worm with 7 stages will have one stage added to it’s curve between it’s second

and third stage, while the worm with 6 stages will have two stages added to it’s curve,

one before and one after it’s second stage. The added stages can be seen in the upper

right panel of Figure 4.7. The added stages are represented by green circles. The stages

are added as a linear interpolation of the midpoint between the appropriate adjacent

stages. Now with the added stages both worms have 8 developmental stage landmarks,

i.e data vectors of equal length.

Now both curves have the same number of landmarks. But the correspondence of
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Figure 4.7: Top left show the biological correspondence of a worm with 6 stage and a worm
with 7 stages. Top right shows how an extra stage was added to the curve of the worm with 7
stages and 2 stages were added to the curve of the worm with 6 stages. Bottom left shows the
correspondence between both developmental stage landmarks and pseudo-landmarks.

landmarks still has to be established. The correspondence of the landmarks are shown

in the bottom left panel of Figure 4.7 as dotted lines. The stages that had a one to

one biological correspondence are considered corresponding landmarks. Remember that

a biological correspondence was shown as a black dotted line. A one to one biological

correspondence is when only one red asterisk is connected by a dotted line with only

one blue asterisk. That is stages 1,4,5,6, and 7 of the worm with 7 stages corresponds

to stages 1,3,4,5, and 6 of the worm with 6 stages. Also stage 2 of the worm with

7 stages corresponds to the stage added before the second stage of the worm with 6

stages. This correspondence is shown as a green dotted line connecting the first green

circle along the blue line to the second red asterisk. This time the correspondence is

shown as a green dotted line because it is not a true biological correspondence, but a
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correspondence assumed for statistical purposes. Another statistical correspondence is

between the added stage of the worm with 7 stages and the second stage of the worm

with 6 stages. This correspondence is shown as a green dotted line between the second

blue asterisk and the green circle along the red curve. Finally the third stage of the worm

with 7 stages corresponds statistically to the stage added after stage 2 of the worm with

6 stages. This correspondence is shown as a green dotted line between the second green

circle along the blue curve and the third red asterisk. Now both worms have 8 stages

and all of the correspondences, represented by dotted lines, are established.

Figure 4.8 shows how a stage was added to the full population of worms with 7 stages

on the right hand side. The upper right panel shows the the full population of 7 stage

worms with only the original developmental stages, represented by red asterisks. The
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Figure 4.8: Top left is Data with 6 stages and no stages added. Top right is data with 7 stages
and no stages added. Bottom left is Data with 6 stages and 2 stages added. Bottom right is
data with 7 stages and 1 stage added. Added stages are in green.
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bottom right panel shows the same curves again, only now with a stage added between

the second and third stages of each curve. The added stages are again shown as green

circles.

The left hand side of Figure 4.8, shows how two stages were added to the worms

with 6 stages. The upper left panel shows the curves of the 6 stage worms with only

the original developmental stages. The bottom left panel shows the full population of

6 stage worms with a stage added before and after the second developmental stage for

each curve. The added stages are represented by green circles.

Now all individuals have 8 developmental stage landmarks along each curve. Each

individual having the same number of developmental stage landmarks along the curve

allows PCA to be performed on the full data set.

4.4 Results for the Manduca sexta Data Set

Section 4.2 described how PCA is performed on developmental stage landmark data.

This section shows the results for landmark PCA of the Manduca sexta data set. First

the results of PCA will be shown for the data on the original raw data scale without any

standardization, shown in Section 4.4.1. These results are strongly driven by horizontal

variation, because of differing horizontal and vertical scales. To better understand verti-

cal variation a landmark PCA of the correlation matrix was performed, shown in Section

4.4.2. Both horizontal and vertical variation can be understood through landmark PCA

of the correlation matrix, but a substantial drawback of this approach is that the co-

variance structure within mass and time is lost. An approach that gives a more useful

decomposition of the variation of the data is standardizing the mass measurements using

the trace of mass covariance matrix and the time measurements using the trace of the

time covariance matrix, is shown in Section 4.4.3.
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4.4.1 Original Raw Data Scale Landmark PCA

Figure 4.9 shows the results of landmark PCA on the original raw Manduca sexta data

curves. The graphic has the same structure as Figure 4.6. The 2 left most columns are

visualizations of the data using the mass vs time view while the 2 right most columns are

visualizations of the data using the parallel coordinates view. Row 1 column 1 shows the

original raw Manduca sexta data set with mass plotted versus time. The markers along

each curve are the developmental stage landmarks. Each curve has eight developmental

stage landmarks because of the extra stage correction described in Section 4.3. The

curves for this Figure have the same color scheme as Figure 4.1.

Shown in the panel in row 1 column 2 is the mean of the data using the mass vs time

view. The mean for this data set is an increasing line for stages 1 to 6. Where the peak

of the mean curve is reached at developmental stage 6. After stage 6 the developmental

stages decrease in mass while increasing in time. The third column in row 1 shows the

data with the mean removed, using parallel coordinates. For this view, first the mass

measurements of each stage are plotted on the left and the time measurements for each

stage are plotted on the right. The dotted line separates mass from time. Notice that

there are two of each number from 1-8 on the horizontal axis. This is because each

developmental stage landmark has both a mass and time associated with it. Also it is

evident from this plot that time, and the variation in time, is on a much larger scale than

is mass. Time being on a larger scale than mass can be seen using the mass vs time view,

in the top left panel, as well. Notice that the horizontal, i.e. time, axis ranges form 20

to 80 while the vertical, i.e. mass, axis ranges from 4 to 8.

Row 2 column 1 is a visualization of the data projected onto the PC 1 direction added

to the mean, for ease of interpretation, and plotted as a function of mass vs time. The

best way to understand variation using this view is to notice how the markers are spread

for each developmental stage. Notice that the blue markers in general have a smaller

time measurement for each stage while the red markers have a larger time measurement.
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Figure 4.9: PCA on originally scaled data, time variation is much larger than mass variation
and therefore dominates PCA calculations. Mass vs time view of results shown in left 2 columns
while parallel coordinates view of results shown in right 2 columns. Notice in parallel coordinates
view how the time portion of curves fans out for higher developmental stages in the raw data
and PC 1.

Also notice the markers fall along a line for each developmental stage. This is because

PCA only finds directions of linear variation. Also these curves are quite similar to the

actual data curves, which is due to the fact that the PC 1 direction explains over 92% of

the variation.

The power spectrum of the PCA is shown in row 1 column 4. This is a plot of the the

percent of variation explained by PC j vs j. This plot shows that there is a drop after

PC 1 and then the curve levels off for the rest of the PC’s, i.e. there is a knee at PC 2.

For this plot it is common to look for a knee in the curve and then the number of PC’s

to the left of this knee is viewed as the effective dimension of the data. In this case the

data variation is explained almost completely by PC 1.
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Row 2 column 2 shows the residuals, after PC 1 has been removed, added to the

mean, again for interpretability purposes. Notice that these curves have little variation.

This again shows that PC 1 explains most of the variation.

Shown in Row 2 column 3 is the projection of the data onto PC 1 in the parallel

coordinates view but not added to the mean. The parallel coordinates can provide

another way to understand the variation of PC 1. In this view it can be seen that PC 1

consists mostly of time variation by the left hand side, i.e. mass portion, of the curves

being much less spread out than the right hand side, i.e. time portion, of the curves.

Also the time portion of the curves fans out as the developmental stages increase. This

tells us that the time variation increases as the developmental stages do. Also notice that

the time portion of the blue curves are mostly below zero while the time portion of the

red curves are mostly above zero. This correlates with what was seen using the mass vs

time view when it was pointed out that most blue individuals have a lower time value

for each developmental stage than the red individuals.

Row 2 column 4 shows the residuals, after PC 1 and with out the mean, using the

parallel coordinates view. The curves in this panel are not spread out much again showing

that PC 1 explains most of the variation.

Row 3 and Row 4 are the same as Row 2 except with PC 2 and PC 3 respectively,

instead of PC 1. Again these PC directions mostly explain time variation which can best

be seen in the parallel coordinates view by the right hand side of the curves being more

spread out than the left hand side.

The mode of variation described by PC 2 is about how time at lower stages is different

from time at higher stages. This can be seen in the parallel coordinates view by the time

portion of the curve being low at first and then switching to high at the other end. This

also can be seen in the mass vs time view by the fact that those individuals with lower

time values at the lower developmental stages have higher time values at the higher

developmental stages. PC 2 seems to be driven mostly by an extreme point. Notice
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in the mass vs time view that there is one curve that is not grouped with the rest of

the curves. That same curve is not grouped with the rest of the curves in the parallel

coordinates view as well.

Because time is on such a larger scale compared to mass, PCA is going to find direc-

tions that reflect mostly time variation. Since mass information is likely to be relevant

as well, an adjustment of the mass and time scales to be similar allows PCA to find

directions reflecting both mass and time variation. A simple, commonly used approach

to this is tried in Section 4.4.2. An improved approach appears in Section 4.4.3.

4.4.2 Landmark PCA on the Correlation Matrix

A common approach to adjusting the mass and time scales is standardizing each

coordinate to have a variance of one. This is the familiar PCA on the correlation matrix.

Figure 4.10 shows the PCA results based on the correlation matrix. This graphic has

the same structure as Figure 4.9, only in the 2 right most columns are now visualizations

of the standardized data and projections of the standardized data using parallel coordi-

nates. The first 2 columns show the data and projections as curves in the mass vs time

view. The projections are recalibrated to be on the original scale, in mass vs time view,

by multiplying the mass and time of each developmental stage by its original variance

and then adding these to the mean vector.

The representation of the raw data using the mass vs time view, i.e. row 1 column

1, is the same as Figure 4.9. The mean is the same as well, shown in row 1 column 2.

The mean residual data using the parallel coordinates view is shown as the standardized

data in row 1 column 3. The scale is much smaller than originally and both mass and

time variation can be seen. The left side and right side of the curve has about similar

spread. But the curves no longer fan out as the developmental stages increase in the

time coordinates, unlike in row 1 column 3 of Figure 4.9. This is because all coordinates

are made to have a variance of 1 which is the same as making the spread of the curves
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Figure 4.10: PCA on Correlation Standardized Data, time and mass are on similar scales but
covariance structure, within time coordinates, is lost. The loss of covariance structure can be
seen best in parallel coordinates PC 1 projection by there no longer being a fanning of the curves
as developmental stages get larger.

similar for each coordinate. The power spectrum, shown in row 1 column 4, now has a

knee at PC 3. So most of the variation of the data is explained by PC 1 and PC 2.

The mode of variation described by PC 1, shown in row 2, is interpreted as those

individuals that have a smaller mass also take a longer time to reach that mass or those

with a larger mass take less time to reach that mass. The color indicates that PC 1

separates those individuals with 6 stages from those with 7 stages. This is seen using

both the mass vs time view, in row 2 column 1, and parallel coordinates view, in row 2

column 3. The red curves generally have lower mass values but higher time values while

the blue curves have higher mass values but lower time values. PC 1 no longer has the fan

structure in the time coordinates such as was evident when the data was analyzed on the

original scale, which is best seen using the parallel coordinates view, i.e. row 2 column 3.
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This is because all of the coordinates were made to have variance 1 so the variance does

not increase as developmental stages increase. This tells us that the covariance structure

within the time coordinates has been lost using this standardization technique.

The mode of variation described by PC 2, shown in row 3, is about individuals with

a smaller mass taking less time to reach that mass and vice versa. PC 2 separates those

individuals in the field group that have only 6 stages from the rest. This can best be

seen using the parallel coordinates view, shown in row 3 column 3. The cyan curves have

lower mass and time values than the other curves, i.e. the cyan curves are always below

zero in the parallel coordinates view. The cyan curves form a different group than the

other curves using the mass vs time view as well, shown in row 3 column 1.

4.4.3 Landmark PCA on Trace Standardized Data

There is a second option to make the scales of mass and time similar, but preserve

the covariance structure within each of mass and time. This is done by not standardizing

coordinate by coordinate but rather divide all mass measurements by one constant and

all time measurements by another larger constant. This way both mass and time are

on similar scales but the coordinates within mass and time are allowed to have different

variances.

The method we chose to standardize mass and time separately, upon suggestion by

Nancy Heckman, is to divide all mass measurements by the square root of the sum of

all the mass coordinates variances and the time measurements by the square root of

the sum of all the time coordinates variances. This is analogous to dividing all mass

measurements by the square root of the trace of the covariance matrix formed by them

and the time measurements by the square root of the trace of the covariance matrix

formed by the time measurements. In this case the time coordinates have more variance

than the mass coordinates, therefore the time coordinates will be divided by a larger

constant. Dividing the time coordinates by a larger constant will adjust the mass and
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time scales to be similar.

Figure 4.11 shows the PCA results from this standardization technique. Again this
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Figure 4.11: PCA on Trace Standardized Data, time and mass are on the same scale and
covariance structure is conserved. The curves fan out as developmental stages increase in the
time coordinates

graphic has the same structure as Figure 4.9 and Figure 4.10. The 2 right most columns

are now the trace standardized data along with projections of the trace standardized

data in the parallel coordinates view. The 2 left most columns show the data along with

the projection in the mass vs time view. The projections are recalibrated to be on the

original scale by multiplying by the square root of the trace and adding to the mean.

PC 1 and PC 2 yield the same general information, i.e. separating out the groups,

as done by the correlation matrix PCA. Notice that rows 1-3 look similar to Figure

4.10. Also the power spectrum is similar to that of the correlation standardized data.

But viewing PC 1 using parallel coordinates view, shown in row 2 column 3, the curves
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again spread out more as the developmental stages increases, i.e. fan out in the time

coordinates. So the covariance structure within time and mass coordinates is not lost.

The same understanding of the group structure is gained as in the correlation matrix

PCA but the covariance structure within mass and time is still visible.
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CHAPTER 5

Hypothesis Test for Line Segment Slopes and
Visualization

This chapter will focus on an analysis of the developmental stage landmark data first

introduced in Section 4.1, see Figure 5.1. Several t-tests are preformed to test which sets

of line segments, between landmarks, have equal slopes to better understand the slope

structure of the data. Also a way to simultaneously visualize the results of the multiple

t-tests in one graphic is presented. This visualization provides a way for each test to not

only be interpreted individually, but for multiple tests to be interpreted as a group.

In Section 5.1 is an introduction to the data set being analyzed as well as a general

overview of the t-test that is being used to test equality of slopes. A tool to visualize

the results of multiple t-tests for this data set is presented in Section 5.2. Section 5.3

describes a method to combine data sets measured at different temperatures. The data

sets are adjusted to minimize the effect temperature has on the slopes. The combined

data set is then analyzed in Section 5.4 using the tools of the previous sections. A similar

analysis involving the length of sets of line segments instead of slopes is discussed in

Section 5.5.



5.1 Introduction to the Data Set and Hypothesis

Test for Slope Equality

A truncated version of the Manduca sexta data set, i.e. the developmental stage

landmark data introduced in Section 4.1, is focused on for this analysis, see Figure 5.1.

The analysis is going to provide a tool to better understand the slope structure of the

data. For this chapter, only the landmarks up to the peak of the curves, i.e. highest

mass value, is considered. The landmarks of the data are represented by asterisks. Also

it will be assumed that all of the curves start at the origin. The Manduca sexta data set

is further truncated to only include the individuals from the field population. For Figure

5.1 only individuals measured at 20◦C are shown.
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Figure 5.1: Manduca sexta growth trajectories up to peak. Cyan are field caterpillars with 6
original stages and red are field caterpillars with 7 original stages. Asterisks represent develop-
mental stages. Thick black lines are mean curves of the cyan and red curves.
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The thick black line on the left, corresponds to the mean curve for the population

of individuals with 6 original developmental stages, i.e. cyan curves. While the thick

black line on the right, corresponds to the mean curve of the population with 7 original

developmental stages, i.e. red curves.

One question of biological interest is how the slopes of the line segments relate within

each group. But also of interest is how the slope of line segment slopes relate between

groups. One way to help understand these questions is by testing if the mean slope of a

set of line segments is equal to the mean slope of another set of line segments. Here a set

of line segments is the collection of line segments between adjacent landmarks for each

group. For this data set there are a total of 9 sets of line segments. Each cyan curve has

4 line segments, while each red curve has 5 line segments. Therefore there will be a total

of
(

9
2

)
= 36 comparisons, since we wish to test all pairs of sets of line segments.

In order to test if the mean slope of one set of line segments is equal to the mean slope

of a second set of line segments a t-test is performed. A total of 36 t-tests are performed,

with each test having a similar procedure. A detailed description of one test is explained

in the rest of this section.

Without loss of generality, the test for comparing the mean slope of the first set of line

segments of the cyan curves with the mean slope of the second set of line segments for

the red curves is described. Figure 5.2 shows the data set being considered with the sets

of line segments being compared highlighted in different colors, to aid in the explanation

of sets of line segments and the t-test procedure. The first set of line segments of the

cyan curves is highlighted in grey, while the second set of line segments of the red curves

is highlighted in magenta.

The first step in the test is to calculate the slope of each grey and magenta line

segment. Then the sample mean, bg, and sample variance, varg, of the slopes of the grey

line segments are calculated. Also the sample mean, bm, and sample variance, varm, of

the slopes of the magenta line segments are calculated. The number of grey line segments,
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Figure 5.2: Manduca sexta growth trajectories up to peak. Grey portions of each cyan curve
make up the first set of lines segments of the cyan curves. Magenta portions of each red curve
makes up the second set of line segments of the red curves.

ng, and the number of magenta line segments, nm, are counted. Then a two sample t-test

statistic is calculated. For the grey and magenta line segments this is

T =
bg − bm√
varg
ng

+ varm
nm

.

Then a p-value for T is calculated. The p-value is equal to

p-value = 2P(|T | > tmin(n1,n2)),

where tmin(n1,n2) follows a t-distribution with degrees of freedom equal to min(n1, n2). If

the p-value is small enough then the hypothesis that the mean slopes are equal is rejected.

This testing procedure is performed for all 36 comparisons. Since there is such a large
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number of comparisons a way to visualize the results of all the tests at once is helpful,

which is shown in the next section.

5.2 Visualization of Results Of Multiple Slope Com-

parisons

The above section described how to test if the mean slope of two sets of line segments

are equal. For the data set, a t-test for each pair of sets of line segments is performed.

A way to simultaneously view the results of all of the t-tests in one graphic is shown in

Figure 5.3. By viewing all of the results using one graphic, the results can be understood
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Figure 5.3: Bottom left displays data along with mean curves of cyan and red curves added.
Matrix in top left shows results of t-tests for within cyan group. Matrix in bottom right shows
results of t-tests for within red group. Matrix in top right displays results of t-test between cyan
and red groups.

individually or as a group. Also the display allows for interpretation within groups of
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curves, i.e. colors, as well as between groups of curves.

We will start by analyzing the slope structure within the cyan curves. The lower left

of Figure 5.3 is the same as Figure 5.1. One question is if the mean slope of the first set

of line segments of the cyan curves is equal to the mean slope of the second set of line

segments of the cyan curves. A t-test of the type described in Section 5.1 is performed.

Notice that in the figure in the bottom left that the mean slope of the first set of line

segments looks visually different than the mean slope of the second set of line segments.

Therefore a low p-value is expected.

The matrix in the top left displays the p-value of the t-test of mean slope equality

for every pair of sets of line segments of the cyan curves. The specific p-value of the

test of the first set of line segments vs the second set of line segments is shown in the

box that is in the bottom row second from the left. The p-value for this test is 0.001.

This p-value matches the intuition seen from the picture in the bottom left. The box is

also colored according to the p-value. The coloring, shown in the color bar to the right

of the matrix, goes from yellow to green, with yellow representing a low p-value and

green representing a high p-value. Therefore those that are yellow are considered to have

significantly different mean slopes.

The coloring scheme above is chosen based on 0.05 being the level of significance. Any

box with a p-value of 0.05 is colored 50% yellow and 50% green. But 36 tests are being

performed on one data set. Therefore a Bonferroni correction level of significance could

be used as well, i.e. 0.05
36

. The p-value of all 36 tests are displayed in one of the matrices,

so the p-value can be compared to 0.05
36

to see if the mean slopes are significantly different

based on the Bonferroni correction. The coloring scheme can be adjusted as well, so that

any box with a p-value of 0.05
36

is colored 50% yellow and 50% green.

The bottom row displays the results of the comparison of the first set of line segments

to the rest of the line segments of the cyan curves. Figure 5.4 is provided to aid in the

understanding of how the results are displayed in the matrix in the upper left. This figure
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highlights the first mean line segment of the cyan curves in grey. Notice also that a grey

box has been drawn around the bottom row of the matrix in the upper left. This box

indicates that the bottom row of this matrix corresponds to the results of the first set of

line segments vs the rest of the line segments of the cyan curves. Also notice that the

horizontal and vertical axis of the matrix is labeled as non-extra stage data, which tells

us that the results shown in this matrix only pertain to the cyan curves. The left most

box in the bottom row shows the p-value for the t-test of the first set of line segments vs

itself. This test is going to say that the slopes are always equal, so therefore the p-value

is 1. The box second to the left is the p-value of the comparison of the first set of line

segments to the second set of line segments. This test yielded a p-value of 0.001. The

box third to the left is the test of the first set of line segments to the third set of line

segments, with a p-value of 0.001 as well, etc.

The mean curve of the cyan curves, shown in the bottom left, is also colored to help

illustrate which box matches with which set of line segments. The first mean line segment

is colored grey. All of the results include this set of line segments. The next mean line

segment is colored the same yellow as the box second from the left. This indicates that

the first set of line segments is being compared to the second set of line segments. The

third mean line segment is colored the same yellow as the third box, etc.

The matrix and colored line segments tells us that the mean slope of the first set of

line segments is different than the mean slopes of the last 3 sets of line segments. Notice

in the bottom left of the figure that the mean slope of the first set of line segments is

larger than the other 3. The difference between the mean slope of the first set of line

segments and the mean slopes of the second and third set of line segments is about the

same, which is reflected in that both tests have a p-value of 0.001. While the difference

between the mean slope of the first set of line segments and the mean slope of the last

set of line segments is less, which is reflected by a larger p-value equal to 0.029.

The second row from the bottom is the results of the tests of the second line segment
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Figure 5.4: Bottom left displays data along with mean curves of cyan and red curves added.
Matrix in top left shows results of t-tests for within cyan group. Matrix in bottom right shows
results of t-tests for within red group. Matrix in top right displays results of t-test between cyan
and red groups. First mean line segment highlighted in grey to match box in upper left matrix.
Grey indicates that the first set of line segments is being compared to rest of cyan set of line
segments, with results shown in bottom row of upper left matrix.

vs the rest of the line segments of the cyan curves. The box most to the left has the

same p-value and color as the box second to the left in the bottom row. This is because

the same two sets of line segments are being compared. The matrix is symmetric by

the same reasoning. Also the matrix is always going to have 1 along the diagonal from

bottom left to upper right. Because if the set of line segments is compared to itself, then

the mean slopes are always equal. The third row from the bottom is the results of the

third set of line segments vs the rest of the sets of line segments of the cyan curves etc.

From investigating this matrix, some statements can be made about the slope struc-

ture of the cyan curves. The main lesson about the slope structure is that the mean

slopes are all significanlty different except for the second and third set of line segments.
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Therefore the mean growth rate is similar, in the sense of no statistically significant

difference, for the second and third segments.

The mean slope of the second and third line segments being equal gives evidence

that the interpolation procedure performed in Section 4.3 is appropriate. This is since

landmarks were added by linear interpolation between these three landmarks. Since the

slopes between these three landmarks is the same, this says that adding a landmark by

linear interpolation is appropriate because the landmarks are linear related.

These facts are seen in the bottom left of the figure as well. The mean slope of the

first set of line segments is different than the other mean slopes. Also the last set of line

segments appears to be different than the rest. While the mean slope of second and third

line segments appear to be similar to each other but different than the rest.

The matrix in the bottom right of Figure 5.3 shows the corresponding test results

for the comparisons of sets of line segments of the red curves. The matrix has the same

structure as the one in the upper left, but is a 5 × 5 matrix. This is because there are

now 5 sets of line segments to be compared rather than 4. Again there is always 1 along

the diagonal from bottom left to upper right. Also the matrix is symmetric. Again the

p-values for each test are displayed and the color scheme is the same as for the upper left

matrix.

The mean slopes of all of the line segments are significantly different except for the

third and fourth set of line segments. Also the first set of line segments may have a mean

slope the same as the fifth set of line segments. For the red curves the growth rate is

similar for the third and fourth line segments.

These results are again supported by viewing the mean curve of the red curves in the

bottom left of the figure. The third and fourth sets of line segments have mean slopes

which are most similar. While the mean slope of the first and last are similar to each

other but quite different from the others. Also the mean slope of the second set of line

segments appears different from the rest.
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The results of the comparisons between groups is shown in the matrix in the upper

right corner of Figure 5.3. This is a 4× 5 matrix, and therefore not symmetric nor does

it have ones along the diagonal. This is because the matrix displays the results for the

t-tests between groups. Notice that the horizontal axis is labeled extra stage data and

the vertical axis is labeled non-extra stage data. The vertical axis corresponds to sets of

line segments from the cyan curves, while the horizontal axis corresponds to sets of line

segments of the red curves. Therefore there are 4 boxes vertically since there are 4 sets of

line segments associated with the cyan curves. Also there are 5 boxes horizontally since

there are 5 sets of line segments associated with the red curves.

The box in the lower left hand corner displays the p-value for the test between the

mean slope of the first set of line segments of the cyan curves vs the mean slope of the

first set of line segments of red curves. The rest of the bottom row shows the p-values

for the tests of the first set of line segments of the cyan curves vs the rest of the sets of

line segments of the red curves. While the rest of the first column displays the p-values

of the tests of the first set of line segments of the red curves vs the rest of the sets of line

segments of the cyan curves. The color scheme is the same as the matrices in the upper

left and lower right.

This matrix displays how the slope structure between the cyan curves and red curves

is related. The first two sets of line segments for both the red and cyan curves have

similar mean slopes. The third set of line segments of the cyan curves has a similar mean

slope to the second set of line segments for both curves. While the third and fourth set

of line segments of the red curves has a mean slope that is different. The last set of line

segments for both curves have a similar mean slope to each other. The mean relative

growth rate for both sets of curves is similar at the beginning, i.e. the first and second

set of line segments, and at the end, i.e. the last set of line segments. But the mean

growth rate is different in the middle, i.e. third of cyan is different than third and fourth

of red. This difference between the groups fits biologically, since this is the point where
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it is believed that a developmental stage is added for the red curves.

A similar analysis is performed for individuals measured at 25◦C. The results of the

mean slope comparisons, shown in a graphic similar to Figure 5.3, which can be viewed

by opening the file Ttest25 at Gaydos (2007) in the folder T-test.

5.3 Temperature Adjustment

The above sections analyzed data consisting only of individuals that were measured at

20◦C, but there are also individuals measured at 25◦C. Figure 5.5 shows the growth rate

curves for both temperatures up to the peak mass value. Individuals with 6 and 7 original

developmental stages, represented by cyan and red curves respectively, were measured at

both temperatures. The solid cyan and red curves are the individuals measured at 20◦C,

while the dashed cyan and red curves are the individuals measured at 25◦C. This graphic

shows that temperature has a significant effect on the overall slope of the curves. But if

the overall slope difference due to temperature differences is adjusted for, then how do

the slopes of the cyan and red curves relate?

The objective of the adjustment is for the solid and dashed cyan curves to lie on top

of each other. Also the dotted and dashed red curves should lie on top of each other. One

way to do this adjustment is to multiply all of mass measurements of the cyan individuals

measured at 20◦C by a constant. Also the time measurements of these individuals are

multiplied by another constant. But the constants are chosen, such that the peak mass

and time values of the mean curve of the cyan individuals measured at 20◦C is shifted

to be exactly on top of the peak mass and time values of the mean curve of the cyan

individuals measured at 25◦C. Then a similar adjustment is performed on the red curves.

An adjustment with overall means, i.e. both colors included, was performed and

similar results were obtained. The results of this adjustment can be seen at Gaydos (2007)

in the folder overallMeanAdjustment. The files of interest are NonExtra, Extra, and All,

which shows the cyan curves, red curves and all curves adjusted by the overall means.

93



0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

9

10
Mass vs Time View of Curves

Time

lo
g(

m
as

s)

Figure 5.5: Manduca sexta growth trajectories up to peak are shown. Cyan are field caterpillars
with 6 original stages and red are field caterpillars with 7 original stages. Asterisks represent
developmental stages. Solid lines are individuals measured at 20◦C, while dashed lines are
individuals measured at 25◦C.

It was decided to perform the adjustment color by color, since that way within color

temperature effect would be removed. This would not necessarily be true with an overall

mean adjustment. Also it was decided to multiply the landmarks by a constant, since we

are dealing with slope and the curves are all assumed to start at the origin. Therefore the

multiplication is easily interpreted in the mass vs time view, as a rotation and enlarging

or shrinking of the curves. If mass and time of the landmarks were subtracted by a

constants then the curves would no longer start at zero. Another option is to subtract

a constant from all of the slopes of line segments, but then a separate adjustment is

needed when length of line segments is considered, see Section 5.5. The multiplication

adjustment provides a way to adjust both the slope and length of the line segments at

once.
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The data curves after this adjustment is performed are shown in Figure 5.6. The

solid and dashed cyan curves lie roughly in the same area, as do the solid and dashed red

curves. Also notice that the horizontal axis in Figure 5.5 includes values 0 to 70, while

the axis in Figure 5.6 includes only values from 0 to 40. This is because the time values

of the solid lines landmarks were multiplied by a constant which shifted them to the left.

Also the mass values were multiplied by a constant. But the effect of the multiplication

on mass was much less than for the time values, since the original mass values of the

solid and dashed lines are similar.
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Figure 5.6: Manduca sexta growth trajectories adjusted for temperature effect on overall slope
are shown. Cyan are field caterpillars with 6 original stages and red are field caterpillars with 7
original stages. Asterisks represent developmental stages. Solid lines are individuals measured
at 20◦C, while dashed lines are individuals measured at 25◦C.

Once this adjustment is completed a question arises as to how do the slope structures

between the 20 and 25◦C individuals relate? Ideally if we wish to compare between red

and cyan curves for both temperatures, then the two groups of cyan curves should have
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similar slope structures. Also the same should be true of the red curves. The tools

described in earlier sections of this chapter will be used to analyze if the slope structures

between temperatures within each color are similar.

First we will restrict our analysis to the cyan curves. The same t-test procedure

will be performed but the between group comparison is now between temperatures, i.e.

comparing dotted and dashed curves, rather than differing number of stages. The results

are shown in Figure 5.7. The bottom left of the figure displays the adjusted curves and

their group means. Notice that the last landmarks of the two mean curves lie directly on

top of each other, due to the adjustment.

The upper left and lower right are the comparisons for within groups, i.e. line types

(temperatures). Notice that the lower right matrix of Figure 5.7 and the upper left of

Figure 5.3 are the same. This is because although the slopes of the individuals have

changed, all of the slopes have only been multiplied by the same constant. Therefore by

the nature of the t-test all of the p-values for the tests are the exact same.

The matrix in the upper left is the comparison of slope structure within the dashed, i.e.

25◦, curves. The dashed curves were never multiplied by a constant in the combination

of the two line types. Therefore this matrix is the same as in the upper left of Ttest25

at Gaydos (2007).

The matrix in the upper right is the t-test p-values for between group comparisons. If

the adjustment is good then the two temperatures should have similar slope structures,

i.e. sets of line segments in the same order along the curves will have the same mean

slope. A way to tell if they have similar slope structure is to view the p-values along

the diagonal of the matrix in the upper right, from lower left to upper right. If the

adjustment is good then the p-values will be large along the diagonal, i.e green boxes.

In this case the adjustment works well, except that the last set of line segment mean

slopes are significantly different. The mean curves in the bottom left visually display this

result. The two curves are relatively parallel, except the last line segments. The last line
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Figure 5.7: Bottom left displays data along with mean curves of solid and dashed cyan curves
added. Matrix in top left shows results of t-tests for within dashed curves group. Matrix in
bottom right shows results of t-tests for within solid curves group. Matrix in top right displays
results of t-test between solid and dashed cyan groups. Notice that diagonal from bottom right
to upper left is green boxes with high p-values, except for top right box. This indicates that the
adjust is good.

segments start at different points, but end at the same point. These mean curves both

end at the same point due to the adjustment performed earlier in this section. Forcing the

mean curves to end at the same point may be the cause of the last sets of line segments

having differing slopes.

A similar analysis for the red curves was performed and a similar result was rendered.

Again only the last set of line segments did not have equal mean slopes, i.e. the top

right box in the matrix was yellow with a small p-value. The analysis can be viewed by

opening the file Extra at Gaydos (2007) in the folder groupadjusted.

By using the tools of this section it is judged that the adjustment works well. There-

fore we will proceed with the adjusted data. All cyan curves are considered to be one
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group and all red curves are considered the other group. Now insight into the structure

of all the cyan curves and red curves can be gained. Also how the slope structures are

related between the red and cyan curves can be investigated. The next section shows the

results of the t-tests for this combined data set.

5.4 Multiple Slope Comparisons for Multiple Tem-

perature Data

A way for the data of individuals measured at 20 and 25◦C to be combined is described

in Section 5.3. Now we wish to analyze the slope structure within the cyan curves and

also within the red curves for this combined data set, with the goal of increased statistical

power. Also the question of how do the slope structures between the cyan and red curves

relate is analyzed. These questions will be investigated using the t-tests described in

Section 5.1 and the visualization tool described in Section 5.2.

The results of the analysis of the adjusted data set, with both temperatures included,

are shown in Figure 5.8. The adjusted data along with the mean curves for the cyan and

red curves are shown in the bottom left of the figure. The upper left matrix displays

the results for the t-tests of sets of line segments within the cyan curves. The lower

right matrix displays results of the t-tests for sets of line segments within the red curves.

While the upper right matrix displays the results of the t-tests between the cyan and red

curves’ sets of line segments.

In viewing the upper left matrix, it can be seen that within the cyan curves the second

and third sets of line segments have similar mean slopes. It also suggests that the last

set of line segments has a similar mean slope to the second set of line segments. But due

to the fact that the solid and dashed curves had different mean slopes for the last set of

line segments after adjustment, this result is questionable. All other line segments have

differing mean slopes. The mean curve of the cyan curves, in the bottom left corner,

appears to have slopes which are equal after the first line segment. The difference in
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Figure 5.8: Bottom left displays adjusted data of 20 and 25◦ along with mean curves of cyan
and red curves added. Matrix in top left shows results of t-tests for within cyan group. Matrix
in bottom right shows results of t-tests for within red group. Matrix in top right displays results
of t-test between cyan and red groups.

slopes of the third and fourth line segment does not appear visually, but does appear in

the results of the t-test.

This matrix is similar to the separate 20 and 25◦ analysis in that the second and third

set of line segments have slopes which are not significantly different. Also the first set

of line segments has a mean slope significantly different than the rest. The rest of the

tests for the combined data seems to compromise between the two separate temperature

analyses. For instance the second and fourth set of line segments had significantly dif-

ferent mean slopes for 20◦ but not for 25◦, while the combined data has a p-value which

indicates borderline significance. Similar tests with differing results for 20 and 25◦, yield

test test results for the combined data set which are a compromise of these 2 results. This

is expected since they have about an equal number of cyan curves for both temperatures.
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Temperature 20◦ has 8 cyan curves while 25◦ has 12 cyan curves.

The matrix in the bottom right analyzes the slope structure within the red curves.

The second and fourth sets of line segments, as well as the third and fourth may have

similar mean slopes. The p-values for these comparisons are close to the border for

significance, and therefore it is hard to distinguish if the mean slopes are similar or not.

But the other p-values are much lower and therefore these mean slopes are much more

similar than the others. The mean curve of the red curves, in the bottom left corner,

reinforces these results. The middle three line segment slopes are visually much more

similar to each other, than to the first and last. The beginning and end of this mean

curve has a mean slope steeper than in the middle.

The combined data has mean slopes which are borderline significantly different for

the third and fourth set of line segments. While the separate temperature analyses yield

means slopes which were not significantly different for the third and fourth set of line

segments. The rest of the matrix yields test results much similar to results of 20◦ than

25◦. This is expected since the 20◦ has 17 red curves while the 25◦ has only 11 red curves.

How the slope structures between groups relate is investigated by viewing the matrix

in the upper right. This matrix suggests that the second, third and fourth line segments

of the cyan curves have similar mean slopes to the last line segments of the red curves.

But again due to the fact that the adjustment did not cause the last set of line segments

of the solid and dashed lines to have equal mean slopes, this result is questionable. Also

the mean slopes of the second and third sets of line segments of the cyan curves could be

similar to the mean slope of the second set of line segments of the red curves. Although

these p-values are borderline to be considered to have significantly differing slopes, the

p-values are much larger than the rest of the p-values, except for the ones mentioned

earlier. Again the slope structures of the mean curves can be investigated visually in the

bottom left corner. The second line segment for the mean curve on the right appears to

be parallel to the second and third line segments of the mean on the left.
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For the between color analysis the statistical power seems to increase with the com-

bined data set over the separate temperature analyses. Overall the p-values are lower

except for the last column. Also the first sets of line segments have significantly different

mean slopes for the combined data set, which was not true for either of the separate

temperature analyses. Also the combined data results matrix has more p-values close to

0 than either of the other separate temperature analyses.

5.5 Multiple Segment Length Comparisons

A similar analysis can be performed on the lengths of the line segments. But instead

of comparing means of slopes of sets of line segments the mean lengths of sets of line

segments are compared. The same visualization tool is used. For this analysis go to the

website Gaydos (2007). The folder Ttest contains another folder Lentgh Test. In the

folder LengthTest are the files which show these results.

This analysis has one further complication, the fact that the time and mass scales are

very different. Notice in Figure 5.1 that the horizontal axis ranges form 0 to 60 while the

vertical axis ranges from 0 to 10. If the original scales of mass and time are used then

the portion of length attributed to time is going to dominate the length calculation. So

the analysis will be more strongly influenced by time differences than mass differences.

Therefore a way to standardize the scales of mass and time is necessary. To see results

of the length test on unstandardized data, i.e. raw scale, see the files 20unstandardized

and 25unstandardized for 20 and 25 degrees respectively.

A similar standardization to the one performed for the PCA analysis of landmark

data, see Section 4.4.3, is done. The standardization is performed by dividing the mass

measurements by the square root of the trace of a matrix measuring sums of squares of

mass measurements. While the time measurements are divided by the square root of

the trace of a matrix measuring the sums of squares of time measurements. In the PCA

analysis this was the covariance matrix of mass measurements and time measurements
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respectively. The covariance matrix measures sums of squares from a mean curve. For

this analysis the sums of squares of the mean curve must be taken into account. Therefore

the mass measurements are divided by the trace of a matrix measuring the total sums of

squares from zero of the mass measurements and the time measurements are divided by

the trace of a matrix measuring the total sums of squares from zero of time measurements.

To see results on the standardized data see files 20standardized and 25standardized. Also

at the website in this same folder is the results for when the combined data is analyzed,

i.e. 20 and 25 degree data is included. To see the results open the file Combined. Only

the standardized data results are shown for this case.
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CHAPTER 6

Mathematical Background

In chapter 3 there is a discussion of estimating subspaces. The distance between the

estimated subspace, N̂ , and the true subspace, N , provides a measure of how accurate

the estimate is and thus provides the foundation of a mathematical statistical analysis.

But the idea of distance between subspaces is not straightforward. In this chapter several

metrics from the literature will be defined and then compared. These metrics will define

what is meant by distance between two subspaces. But before the metrics can be defined

the idea of canonical angles must be introduced. Section 6.1 contains an introduction

to the geometry of canonical angles, described through a series of low dimensional toy

examples. Section 6.2 consists of an introduction to Canonical Angles and their relation

to the common statistical procedure Canonical Correlation Analysis (CCA). Section 6.3

contains a discussion of a metric from the literature known as the gap metric. Section

6.4 has a discussion of a second metric from the literature known as the Euclidean sine

metric.

6.1 Geometric Introduction to Canonical Angles

This section gives a geometric introduction to canonical angles, since all of the metrics

discussed later are based on canonical angles. For a more detailed discussion of canonical

angles see Stewart and Sun (1990) or Kato (1966). The material is presented through a

series of low dimensional toy examples, so that the written text can be accompanied by

graphics that are easily visualized. The first toy example is the definition of a canonical



angle between 2 lines in a 2 dimensional Euclidean space. The canonical angle is the angle

between these lines. The second toy example is the canonical angles between two planes

in a 3 dimensional Euclidean space. Finally a third toy example is the canonical angles

between a line and a plane in a 3 dimensional Euclidean space. This is presented after

the 2 plane example because additional consideration is needed to handle the unequal

dimensions of the subspaces.

Canonical angles define how one subspace is related to another. In the case of 2

lines in a 2 dimensional Euclidean space, the angle between the lines is the canonical

angle. These lines are 1 dimensional subspaces in a 2 dimensional space. So the angle

between these lines is between 0 and 90 degrees. An angle of 0◦ indicates they are the

same subspaces and 90◦ indicates they are orthogonal. Figure 6.1 shows several different

canonical angles between 1 dimensional subspaces. The subspaces are represented by the

lines. The horizontal line parallel to the x-axis represents the subspace N , in following

with the notation from above. While the other line represents the subspace N̂ . The top

left panel shows two 1-d subspaces with a canonical angle of 0◦. Notice that the two

lines are directly on top of each other, i.e. they are the same. The top right panel shows

2 1-d subspaces with a canonical angle of 30◦. The first subspace is the horizontal line

while the other subspace is a line 30◦ degrees from it. The bottom left panel shows 2 1-d

subspaces with a canonical angle of 60◦. The bottom right shows 2 1-d subspaces with a

canonical angle of 90◦. Notice that as the canonical angle gets larger the two subspaces

are in some sense farther apart.

One way to think about the distance between the subspaces is by the angle between

them, but a second way is via a right triangle formed between them. This right triangle

representation is important for the metrics below as well as to gain a general under-

standing of canonical angles. This triangle is defined completely by the angle. Since

their are actually infinitely many triangles the convention is to use triangles that have a

hypotenuse of 1. This way the cosine of the angle is exactly equal to the Euclidean inner
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product. To form the triangle between the subspaces, a point that is distance 1 from the

origin is found along one of the lines. In Figure 6.1 we will use the line, N̂ , which is not

parallel to the x-axis to find a point at distance 1 from the origin. Finding this point is

exactly the same as finding an orthonormal basis of the 1-d subspace N̂ . This point is

then projected onto the other subspace. The triangle is then formed by the origin, the

basis point of N̂ , and its projection onto N .

Let us focus on the top right corner panel of Figure 6.1, the triangle is formed by the

magenta, cyan, and black line segments. The black line is the hypotenuse of the triangle,
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Figure 6.1: Upper left shows canonical angle of 0 between 2 1-d subspaces, upper right shows
canonical angle of 30, bottom left shows canonical angle of 60, and bottom right shows canonical
angle of 90. Magenta line gets smaller while cyan line gets larger as canonical angles get larger.

i.e. the line segment from the origin to the basis point. The magenta line is the line

segment from the origin to the projection of the basis point. Finally the cyan line is the

line segment between the basis point and its projection onto N . The magenta line has
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length equal to the cosine of the canonical angle while the cyan line has length equal to

the sine of the canonical angle. From Figure 6.1 note that the magenta line’s length gets

smaller as the canonical angle gets larger while the cyan line’s length gets larger. These

are all right triangles with a hypotenuse of 1. By the Pythagorean theorem the sum of

the squared lengths of the magenta and cyan lines is 1. So the magenta and cyan lines’

lengths get larger and smaller deterministically based on each other.

The top left shows the case when the canonical angle is 0◦, i.e the subspaces are the

same. In this case the magenta line length is 1, i.e the cyan line length is 0. This tells us

that the basis point is equal to its projection. This only happens if the basis point is in

both spaces. The bottom right is the opposite. In this case the cyan line length is 1 and

the magenta line length is 0. So here the subspaces are orthogonal. For the case of the

canonical angle of 30◦, the magenta line is smaller than in the top left but larger than in

the other 2 panels. Also the subspaces are farther apart than in the top left but closer

than in the rest of the panels. In the bottom left panel the magenta line is larger than in

the bottom right panel but smaller than the magenta line in the rest. This corresponds

to the subspaces being closer in the bottom left only when compared with the bottom

right panel.

Let us move on to the more complicated case of 2 planes in a 3 dimensional Euclidean

space. Now it is not obvious where to form the triangles at, as well as what the canonical

angles are between subspaces, since the subspaces have infinitely many angles between

them. Figure 6.2 shows an example of 2 planes in a 3-dimensional space. The two

subspaces chosen for this toy example are shown in the top left of Figure 6.2. The one

subspace, N , is represented by the pink plane, while the other subspace, N̂ , is represented

by the green plane. So first we will start with two arbitrary orthonormal basis points of

one subspace, represented by the black lines, and project them onto the other subspace.

This will allow us to form triangles at right angles to each other, in the sense that both

hypotenuses are at 90◦ of each other, and so are the line segments on N . But there are
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many such pairs of angles which define these triangles, so more thought is needed to

define the canonical angles.

The panels in the top row of Figure 6.2 display two example of pairs of triangles that

are 90◦ from each other. The top left is a pair of triangles formed from an arbitrary basis,

while the top right is a pair of triangles formed from the canonical angle basis. The first,

i.e. smallest, canonical angle is taken from the triangle with the smallest possible cyan

line segment length, i.e. the direction of N̂ with the smallest distance between its basis

point and the projection of the basis point onto N . For the current example, the first

canonical angle is 0◦. The top right panel shows the triangles formed by the canonical

angles. Notice that one triangle has a cyan line segment length of zero. The sine of the

next canonical angle corresponds to the length of the cyan line segment of the triangle

which is 90◦ from the first one and has the smallest cyan line segment length. The cyan

line segment in the top right panel corresponds to the triangle with the next smallest

cyan line segment length that is 90◦ from the triangle with a cyan line segment length of

0. In general, the sine of the third canonical angle corresponds to the length of the cyan

line segment of the triangle 90◦ from both of the other triangles which has the smallest

cyan line segment length, etc. The sine of the canonical angles are equal to the length of

the cyan line segments. For the toy example there are only two canonical angles because

the subspaces are of dimension 2. In general the number of canonical angles is equal to

the largest dimension of the two subspaces.

These triangles of increasing cyan line segments, i.e. sines of angles, can be calculated

by solving an eigenproblem. First an arbitrary orthonormal basis of one subspace is

projected onto the other. Then finding the minimum cyan line segment length is the

same as finding the maximum magenta line segment length. Finding the maximum

magenta line segment length is the same as finding the direction of N , which maximizes

the sum of squares of the basis points of N̂ projected onto N . The eigenvalues define the

sum of squares of the eigendirections. Sums of squares define the magenta line segments
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Figure 6.2: Upper right and left shows N , pink plane, and N̂ , green plane, in R3. Top left is
arbitrary basis of N̂ . Top right is N̂ with basis that matches the canonical angles, with cyan
line segments of 0 and

√
2/2, i.e. sine of 0 and 45. Bottom left is N with canonical directions

shown. Bottom right is N with canonical directions shown, as dotted and dashed lines, and
square root of eigenvalues marked by magenta points.

squared lengths in these directions and therefore the triangles. Once the triangles are

established the angles that define them are the canonical angles.

Figure 6.2 provides help in understanding of how the eigenanalysis solves for the

canonical angles. The one subspace, N , is represented by the pink plane, while the other

subspace, N̂ , is represented by the green plane. An arbitrary orthonormal basis of N̂ is

represented by the black lines in the top left panel. There are two triangles that can be

formed from the basis points of these directions. These triangles both have cyan lines

with a length larger than 0. But since these are planes in a 3 dimensional space they

have at least one direction in common, hence there is a triangle that can be formed

between these two subspaces with a cyan line segment with length 0. This corresponds
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to a canonical angle of 0◦. Also these subspaces are not exactly the same, so there should

be a canonical angle greater than 0◦. This is also true since no matter what orthonormal

basis is chosen the total sum of the squared lengths of the cyan line segments will be the

same.

To find the directions which yield the canonical angles in the subspace N , an eigen-

analysis of the projected basis points of N̂ onto N is performed. In the bottom left corner

of Figure 6.2 is the subspace N in a 2-dimensional view with the projected basis points

of N̂ , i.e the magenta asterisks. The dotted line on this plot is the direction which has

the largest sum of squares of these points, i.e. the eigendirection which corresponds to

the largest eigenvalues. The dashed line is the direction which has the next largest sum

of squares of the points, i.e. the other eigendirection. But since this is a 2 dimensional

example, the dashed line has the least sum of squares of any direction as well. The top

right shows the basis of N̂ , which has its basis points’ projections onto N lying on the

dotted and dashed lines. What you will notice is that the dotted line direction is in both

subspaces, and hence has no cyan line and a magenta line with a length of 1. This implies

that there is a canonical angle of 0◦ between these 2 subspaces. The direction associated

with the dashed line, now has a larger cyan line segment than the original basis triangles.

This is because in this case it is the last canonical angle and will therefore have the

largest cyan line segment possible, i.e. the shortest magenta line segment.

In the bottom right of Figure 6.2 is the subspace N but now with the new canonical

angle basis of N̂ projections shown. Notice that the projections fall onto the eigendirec-

tions. The magenta point on the largest eigenvalue direction has a length of 1 from the

origin. To find the canonical angle find the angle which has a cosine of 1. The other

point happens to be a distance of
√

2/2 from the origin in this example, and to find the

second canonical angle find the angle with a cosine of
√

2/2. The eigenvalues are equal

to the sum of squares of these points. So the cosine of the canonical angles are equal to

the square root of the eigenvalues, based on the projection of basis points of N̂ onto N .
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The canonical angles define orthonormal bases of N and N̂ , which have angles between

directions which are smallest, then next smallest, etc. This is the same as finding the

eigenvalues and eigendirections of an orthonormal basis of N̂ projected onto N and vice

versa.

Figure 6.3: 1-d subspace, N̂ represented by the line, while 2-d subspace, N , represented by the
pink plane. There is a cyan line of length

√
2/2 and 1. So the canonical angles are 45 and 90.

One canonical angle is 90, since subspaces are not of equal dimension.

Finally we have to define the canonical angles in the case where the subspaces have

differing dimensions. This will be explained through a toy example with a line, i.e 1

dimensional subspace, and a plane, i.e. 2 dimensional subspace, in 3 dimensions. Two

such subspaces of differing dimension are shown in Figure 6.3. The pink plane will

represent N and the line will represent N̂ . Again we take a basis of N̂ and project it

onto N . This will correspond to the smallest canonical angle. The cosine of the smallest

canonical angle will be equal to the length of the magenta line, which is
√

2/2. But since
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one subspace is 2 dimensional there should be 2 triangles defining these subspaces, i.e. 2

canonical angles. If we look at the orthogonal direction of the magenta line, then there

are no basis points of N̂ to project. We then assume that this triangle has magenta line

segment of length 0 and a cyan line segment of length 1. This triangle is shown in Figure

6.3 by the cyan line with a length of 1. In this case the subspaces have canonical angles

of 45◦ and 90◦ degrees between them.

6.2 Canonical Angles and Relation to CCA

Canonical angles are closely related to the calculation of Canonical Correlation Anal-

ysis. CCA, developed by Hotelling (1936), is useful when n observations correspond

between two paired data sets. Also see Anderson (1984) for more detailed discussion

of CCA than is presented in this chapter. Both data sets are standardized to have

mean 0 and variance of 1 in every direction. CCA tries to find a direction in one stan-

dardized data set with projection coefficients that are most correlated with projection

coefficients of a direction from the other standardized data set. It then finds a second

orthogonal direction of the first standardized data set with projection coefficients that

are most correlated with projection coefficients of a second orthogonal direction of the

other standardized data set, etc.

The calculation of CCA is related to canonical angles, which is shown in Section 6.2.1.

For an introduction to the geometry of CCA see Kuss and Graepel (2003). In section

6.2.2 it is shown how to solve for canonical angles between 2 subspaces in the framework

of CCA. This will be done so that the intuition of CCA can be used to understand

canonical angles. A toy example will be used throughout to help visualize the written

explanation.

6.2.1 CCA Calculations in Terms of Canonical Angles

CCA is used to understand correlation between two paired data sets. Let one data

set be represented by X, a p× n matrix. Let the other data set be represented by Y , a
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q × n matrix. The n observations are assumed to correspond between the two data sets.

In the primal space of X the columns are treated as data, i.e. the data are represented

as n points in Rp. For the primal space of Y, the data are represented as n points in Rq.

For the toy example let p = q = 2 and n = 4, so X is a 2 × 4 matrix as is Y . The

primal space representation of X is shown in the upper left corner of Figure 6.4, while

the primal space representation of Y is shown in the upper right corner of Figure 6.4.

The points with the same color are assumed to correspond between X and Y . Both
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Figure 6.4: Top row is X and Y represented in the primal spaces. Second row is row sample
mean centered X and Y . Notice that points now approximately centered around origin. Third
row is full standardization of X and Y using empirical covariance matrix. The covariance
structure is no longer the same as in rows above.
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matrices are represented as 4 points in 2 dimensional Euclidean spaces. Although both

spaces are 2 dimensional, X and Y are not shown overlayed on the same axes because

the measurements of X and Y are not necessarily of the same variables, e.g. they could

be on completely different scales. For example X could be height measurements while Y

is weight measurements, so it is not appropriate to look at X and Y on the same axes.

In general for CCA it is not necessary for p and q to be equal.

Similar to PCA which is based on the covariance matrix, that summarizes the vari-

ance structure, CCA is based on the matrix denoted AXY , which summarizes the cross

correlation structure of X and Y .

In order to calculate AXY we first have to standardize X and Y , much like in the

univariate case of correlation. The first step in the standardization process is to subtract

the sample mean of each row of X from X and like wise for Y . The sample mean centered

version of X, i.e. X −X, in the primal space of X is shown in row 2 column 1 of Figure

6.4. The sample mean centered version of Y , i.e. Y − Y , viewed in the primal space of

Y is shown in row 2 column 2 of Figure 6.4. The points in both spaces are now centered

around the origin.

The next step in the standardization process is to make projections of the data in all

possible directions have a sum of squares of 1. This is done by multiplying the centered

data by the square root of the inverse of the empirical covariance matrix and a constant.

The standardized version of X is

BX =
1√
n− 1

Σ̂
− 1

2
X (X −X)

where X is the sample mean of the rows of X and Σ̂X = 1
n−1

(X − X)(X − X)T is the

empirical covariance matrix of X. The corresponding standardized version of Y is

BY =
1√
n− 1

Σ̂
− 1

2
Y (Y − Y )
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where Y is the sample mean of the rows of Y and Σ̂Y = 1
n−1

(Y − Y )(Y − Y )T is the

empirical covariance matrix of Y . The standardized version of X in it’s primal space

is shown in the bottom left corner of Figure 6.4. The standardized version of Y in it’s

primal space is shown in the bottom right corner of Figure 6.4. This standardized data

has a sum of squares of 1 when projected in any direction. Therefore the data points do

not have the same covariance structure as the plots above them.

Now that BX and BY are defined, we will define

AXY = BXB
T
Y ,

to be the matrix which summarizes the cross correlation structure between X and Y . It is

important to note that this is not the usual cross correlation matrix generally denoted by

RXY . The calculation of RXY is similar to AXY , except instead of multiplying (X −X)

by the inverse of the covariance matrix it is multiplied by the inverse of the diagonal

elements of the covariance matrix with the off diagonals equal to 0 and a corresponding

calculation is performed for Y . In order to calculate RXY , let

B̃X =
1√
n− 1

Σ̃
− 1

2
X (X −X)

and

B̃Y =
1√
n− 1

Σ̃
− 1

2
Y (Y − Y )

where

Σ̃X =



Σ̂X(1, 1) 0 0 · · · 0

0 Σ̂X(2, 2) 0 · · · 0

0 0
. . .

...

0 · · · 0 0 Σ̂X(p, p)
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and

Σ̃Y =



Σ̂Y (1, 1) 0 0 · · · 0

0 Σ̂Y (2, 2) 0 · · · 0

0 0
. . .

...

0 · · · 0 0 Σ̂Y (q, q)


.

The usual cross correlation matrix can now be characterized in terms of B̃X and B̃Y , i.e.

RXY = B̃XB̃
T
Y .

There is a case where AXY = RXY and that is when the original coordinates of X

and Y have a diagonal covariance matrix. In that case AXY = RXY because Σ̂X and Σ̂Y

are already diagonal matrices. For the rest of this section we will assume that X and Y

are data matrices such that this is true for simplicity in explanation and interpretation

purposes.

In Section 6.2.2 we will show how to frame the calculations of canonical angles in terms

of CCA. In order to do this we will assume that X and Y are orthonormal bases. If X

and Y are assumed to be 0 then Σ̂X and Σ̂Y are the identity matrices. This implies that

when X and Y are orthonormal bases AXY = RXY . Also when X and Y are orthonormal

bases they are already in the standardized form needed for CCA calculations.

If X and Y have diagonal covariance matrices then the ijth entry of AXY is the em-

pirical correlation between the projection coefficients of the ith original primal coordinate

direction of X and the projection coefficients of the jth original primal coordinate direc-

tion of Y . This is also the univariate correlation between the ith row of X and the jth

row of Y . If X and Y are not assumed to have diagonal covariance matrices then the cal-

culations to follow are still applicable but the interpretation of AXY as usual correlations

no longer holds.

For the toy example, we need to only concentrate on the third row of Figure 6.4 to
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demonstrate the calculation of AXY . The horizontal value of each same colored point in

the primal spaces of X and Y are multiplied together and then summed. This is entry

(1,1) of AXY . If the horizontal values of the points in Y are multiplied by the vertical

values of the same colored points in X and summed, then this is entry (2,1) of AXY . If

the vertical values of the points in Y are multiplied by the horizontal values of the same

colored points in X and summed, then this is entry (1,2) of AXY . If the vertical values

of the points in Y are multiplied by the vertical values of the same colored points in X

and summed, then this is entry (2,2) of AXY .

If we consider the p × q matrix AXY from the perspective of the primal space of X,

then AXY can be thought of as q points in a p dimensional space, i.e. the columns of

AXY are viewed as data. The value of a point of AXY along a coordinate in the primal

space of X reflects the correlation of a row of Y with a row of X, where each data point

corresponds to a row of Y . The first CCA direction of X is the same as the direction

which maximizes the sum of squared distance from the origin of the q points of AXY in

the primal space of X. This direction is then found by an eigenanalysis of AXYA
T
XY or

Singular Value Decomposition (SVD) of AXY . The direction which corresponds to the

largest eigenvalue is called the first CCA direction of X. This direction is called the first

CCA direction of X and not Y , since the calculations are performed in the primal space of

X. The directions which correspond to the decreasing eigenvalues are the corresponding

CCA directions of X.

To find the CCA directions of Y we think about AXY in the primal space of Y , i.e.

as p points in a q dimensional space. We are now considering the rows of AXY as data

points. So the directions found by the eigenanalysis of AXY in the primal space of Y , i.e.

the eigenanalysis of ATXYAXY , are the CCA directions of Y .

The sum of squares of the points of AXY are the same for both the primal space of

X and Y . Since we are looking at the same matrix the eigenvalues for both spaces will

be the same. The eigenvalues represent the square of the correlation coefficients between
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directions. The only change is the directions corresponding to the eigenvalues in each

space, i.e. the CCA directions of Y are the eigendirections which correspond to ATXYAXY

but the CCA directions of X correspond to AXYA
T
XY . In each space, CCA is finding the

directions most correlated between standardized versions of X and Y .

To understand how canonical angles play a role in the calculation of CCA, we think

about X and Y in their dual spaces, i.e. treat their rows as data. In the dual space X is

represented as p points in Rn and Y is represented as q points in Rn. Remember that the

n observations are assumed to correspond between data sets, so then we can think of the

p points associated with X and the q points associated with Y in the same Rn coordinate

system. But again for correlation we are interested in the standardized versions of X

and Y , so BX and BY are thought of in the dual spaces of X and Y .

The dual space of X and Y in our toy example is 4 dimensional. In order to calculate

BX and BY the sample mean is subtracted from the data. This tells us that BX has data

points which are orthogonal to the direction where the n individuals all have the same

value for a dimension, i.e. the direction [1 1 1 1]. The same is true for BY . Therefore

we can look at the data in the remaining three directions orthogonal to this one without

any loss of information, since BX and BY will have coefficients of 0 in the direction [1 1

1 1].

The top left of Figure 6.5 is BX represented in the dual space of X, and in the top

right is BY represented in the dual space of Y . Both data are represented as 2 points in

the 3 dimensional space orthogonal to [1 1 1 1]. The space is also rotated such that the

points of BX lie on the x and y axes. This is done so that the view of the data points

can be better seen and related to each other.

Notice that BXB
T
X = Ip, so BT

X is an orthonormal basis for a p dimensional subspace

of Rn. Also notice that BYB
T
Y = Iq, so BT

Y is an orthonormal basis for a q dimensional

subspace of Rn. We can then think about the two subspaces generated by these two

bases in Rn.
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Figure 6.5: Upper left is BX in the dual space of X, while upper right is Y in the dual space of
Y . BX and BY are represented as 2 points in a 3-d space. Lower left is N and N̂ in R3. Notice
that the planes intersect but also are not the same. So the subspaces N and N̂ have canonical
angles of 0 and, for this example, 45 degrees.

The subspaces generated by BT
X and BT

Y for the toy example are shown in the bot-

tom left corner of Figure 6.5. The subspace, N , that is parallel to the x and y axis is

the subspace generated by BT
X and is represented by the green plane. While the other

subspace, N̂ , is generated by BT
Y and is represented by the pink plane. The magenta

lines on N̂ represent the basis BT
Y . The magenta points on N represent the projection

onto N of the unit length points corresponding to the directions of BT
Y , i.e. the basis

points. It was shown in Section 6.1 that by solving an eigenproblem formulated from

these points that the canonical angles could be found. Also notice that the projection

coefficients are AXY = BXB
T
Y . So the eigenproblem to solve for the CCA directions is

the same eigenproblem that solves for the canonical angles. The CCA directions are

already shown to equal the eigendirections of the outer and inner product of AXY , i.e.
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AXYA
T
XY and ATXYAXY , for X and Y respectively. To get the CA basis directions of

N , BT
X is multiplied by the eigendirections of the outer product of AXY . To get the CA

basis directions of N̂ , BT
Y is multiplied by the eigendirections of the inner product of

AXY . Also the squared cosine of the canonical angles are equal to the eigenvalues, which

represents the squared correlation of the first CCA directions of X and Y .

The bottom right of Figure 6.5 shows the canonical angle bases of N and N̂ . The

canonical angle basis of N̂ is represented by the cyan lines. The canonical angle basis of

N are the lines on N which pass through the cyan points and the origin, i.e. the x and

y axes. Notice that the x and y axes are the directions of the basis BT
X . Therefore the

canonical angle basis of N is BT
X .

The toy example is useful to better understand why the same eigenanalysis to find

the canonical angles is related to CCA. The upper left of Figure 6.6 shows AXY , for

the toy example, as data points thought of in the primal space of X, represented by

the magenta points. Point 1 is about at (0.7,0.5) which says that the horizontal axis

projection coefficients of Y , i.e. row 1 of Y , is more correlated with the horizontal axis

projection coefficients of X, i.e. row 1 of X, than the vertical axis projection coefficients

of X, i.e. row 2 of X. Point 2 is about at (0.7,-0.5) which says that the vertical axis

projection coefficients of Y , i.e. row 2 of Y , is more correlated with the horizontal axis

projection coefficients of X as well. The dotted line is the direction of X which maximizes

the sum of squares of the two points associated with AXY , i.e. eigendirection. This panel

is the same as if the green plane is shown as a 2-d object. Notice that the magenta points

are in the same position relative to the directions of BX .

This eigendirection is the first CCA direction of X, i.e. the direction with standard-

ized projection coefficients most correlated with standardized projection coefficients of

a direction of Y . The dashed line is the direction in the primal space of X which next

maximizes the sum of squares of these points and is orthogonal to CCA direction 1 of X.

This eigendirection is the second CCA direction of X. The dotted and dashed lines are
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Figure 6.6: Upper left is AXY in primal space of X, while upper right is AXY in primal space of
Y Dotted lines are CCA direction 1 which maximizes sums of squares, i.e. correlation between
BX and BY . Dashed lines are CCA direction 2 which next maximizes sums of squares. Bottom
left is CCA directions of X with BX and bottom right is CCA directions of Y with BY

the x and y axis in this panel. This is because the directions of BX are the canonical angle

directions, i.e. CCA directions. In the bottom left of Figure 6.6 is the CCA directions of

X shown with BX in the primal space of X. Since both X and Y are 2 dimensional, all

of the correlation is explained by these directions.

The display on the right side of Figure 6.6, for the Y -space, are similar to those on the

left for the X-space. In this case the panel is the magenta plane shown as a 2-d object.

The magenta lines would correspond to the x and y axis of this figure. The dotted and

dashed lines are the first and second CCA directions of Y . This would be the same as

the cyan lines in the bottom right of Figure 6.5. In the bottom right of Figure 6.6 is the

CCA directions of Y shown with BY in the primal space of Y .

For the toy example one eigenvalue is 1, and the dotted line is the direction associ-
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ated with that eigenvalue. This says that if you were to project the data points of the

standardized version of X onto the dotted line in the bottom left panel of Figure 6.6,

then they would be perfectly correlated, i.e have r= ±1, with the points of standard-

ized version of Y projected onto the dotted line in the bottom right of Figure 6.6. The

second eigenvalue is 0.5, so the projections onto the dashed lines have a correlation of

r=±
√

(0.5) = ±0.7071 = ±
√

2/2.

So finding the canonical angles corresponds to maximizing the sum of squares of

these projections coefficients. So therefore if the canonical angles are found then the

calculations for CCA are complete. The link between the two is that the cosine of the

canonical angles are equal to the square root of the eigenvalues of AXY , which is equal

to the amount of correlation between the CCA directions of the standardized versions of

X and Y .

For the toy example, the cosine of the canonical angles are cos(0) = 1 and cos(45) =
√

2/2, see Figure 6.5. So 1 and
√

2/2 is the distance of the cyan points from the origin.

This tells us that the cosine of the canonical angles is equal to the correlation coefficient.

We can use the cyan points distance since that is the canonical angle basis of N̂ , and

therefore the distance is equal to the square root of the eigenvalues.

6.2.2 CA calculations in Terms of CCA

Section 6.2.1 showed how the calculations of CCA in the primal space could be derived

in terms of canonical angles in the dual space. In this section it is shown how to start

with two subspaces in Rn, and calculate the canonical angles through CCA. We want to

go from the case of subspaces as shown in the bottom left of Figure 6.5 to data as shown

in row 3 of Figure 6.4.

Let N be of dimension p, and let BT
X be an orthonormal basis of N represented by

p points in Rn. Let N̂ be of dimension q, and let BT
Y be a basis of N̂ represented as q

points in Rn. Each subspace is then being compared in the same space Rn. In CCA we
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went from thinking about n points in two different spaces, to thinking about a p and a q

dimensional subspace in Rn, i.e from the row 1 of Figure 6.4 to the lower left of Figure

6.5. We can apply the above connection in reverse now. We will think about BT
X as n

points in a space that is p dimensional and we will think of BT
Y as n points in a different

q dimensional space.

Each of the n points correspond between spaces, by the angle between the basis

directions and the coordinate direction of Rn. Let Ni be a p× 1 vector that corresponds

to a point in Rp, then the entries of this vector are equal to the cosine of the angles

between the basis directions of N and the ith coordinate of Rn. Let N̂i be a q × 1 vector

that corresponds to a point in Rq, then the entries of this vector are equal to the cosine

of the angles between the basis directions of N̂ and the ith coordinate of Rn. This is the

same as projecting a point that is distance 1 from the origin along a coordinate of Rn

onto the subspace N and onto N̂ , respectively. This is the same by the relation of the

Euclidean inner product and the cosine of an angle between directions. This operation

is the same as plotting BX as n points in a p dimensional space and BY as n points in a

q dimensional space.

How to map the subspaces in the bottom of Figure 6.5 into spaces that look like the

bottom row of Figure 6.4 using the cosine relationship will now be shown. The green,

red, and blue lines represent the coordinate directions of R3, shown in the upper left of

Figure 6.7. The x and y coordinate axes, represented by the red and blue lines, are the

basis chosen to generate N . The black lines represent the basis chosen to generate N̂ .

Each of these bases can be mapped into a different 2 dimensional Euclidean space.

The mapping is done by taking the cosines of the angles between a direction of the

basis and the original coordinates of R3. In this case each basis is 2 directions in a 3

dimensional space, so there will be 3 points in a 2 dimensional space for N and N̂ .

The mapping of BT
X into a 2-d space is shown in the bottom left panel. Notice that

the subspace N is orthogonal to the green line in the bottom of Figure 6.7, i.e. each
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direction of the basis is 90◦ from this direction. Also cos(90◦) = 0, so the green point

in the bottom left of Figure 6.7 is at (cos(90◦), cos(90◦)) = (0, 0). Now let’s look at the

basis with relation to the x-axis, i.e. red line. One of the directions of the basis is this

red line, i.e. has an angle of 0◦ with respect to it, while the other direction is orthogonal

to it. So the red point is at (cos(0◦), cos(90◦)) = (1, 0) in the bottom left of Figure 6.7.

Finally one direction of the basis is the blue line while the other is orthogonal to it. So

the blue dot is at the point (cos(90◦), cos(0◦)) = (0, 1) in the bottom left of Figure 6.7.

The mapping of BT
Y into a 2-d space is shown in the bottom right panel. The color of

Figure 6.7: Upper left is N and N̂ in R3. Lower left is mapping of N to a 2-d Euclidean space
by using cosine. Lower right is mapping of N̂ to a 2-d Euclidean space by using cosine. Notice
that the same colored points correspond between spaces and to the coordinates of R3.

the points is the same as the axis colors in the top panel, with the value being the cosine

of the angle that each direction of the basis is away from that color line in R3.

If a direction is found in each space such that these n projection coefficients are per-
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fectly correlated, then these directions of N and N̂ have the same angles with relation

to the original Rn directions, i.e. the two subspaces have a common direction. So as the

n points are less correlated the directions are, in some sense, farther apart in Rn. If the

n projection coefficients have a correlation of 0 then N and N̂ have directions which are

orthogonal. So by finding directions which have n projection coefficients correlated it

is the same as finding directions which have similar angles with relation to the original

directions of Rn. This exact problem is solved by CCA analysis for data that is stan-

dardized to have mean 0 and variance of 1 in every direction. Orthonormal bases have

sums of squares, i.e. variance, of 1 in every direction. However the rows do not have

mean 0. But we are interested in the relationship of these points from 0, not the sample

mean. Therefore it is assumed that the mean is 0. Therefore if the orthonormal bases of

N and N̂ are thought of as the standardized versions of X and Y then the calculations

of Section 6.2.1 can be followed to find the squared sines of the canonical angles.

This allows us to think of canonical angles in terms of the intuition of CCA. Canonical

angles find directions of each subspace where the cosine of angles between these directions

and the original coordinates are most correlated, i.e. the angles are similar. So the

directions with the most correlated cosine of angles have the smallest canonical angles

associated with them. So this allows us a way to view the correlation of angles.

6.3 Gap Metric

The Gap Metric, Dgap, is a common metric from the literature for the distance between

two subspaces, see Stewart and Sun (1990) or Kato (1966). The Gap Metric is defined

as the sine of the largest canonical angles between two subspaces.

Dgap(N, N̂) = sin θ1

where {θ1, θ2, . . . , θdN
} are the canonical angles between N and N̂ in decreasing order.

The gap metric can also be expressed in terms of the eigenvalues of the inner or outer
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product of AXY , i.e. ATXYAXY or AXYA
T
XY , the matrix introduced in Section 6.2.1. This

characterization of the gap metric is,

Dgap(N, N̂) =
√

1−min
i
λAi ,

where λAi are the eigenvalues of the inner or outer product of AXY . The gap metric seems

to get its name from the fact that it is the largest distance between a point that is a

distance of 1 from the origin in N̂ and its projection onto N , i.e. the sine of the largest

canonical angle.

There are two other important characterizations of the gap metric based on projec-

tion matrices see Stewart and Sun (1990) Theorem 5.5. These characterizations will

be important in Chapter 7, when the focus will be on the asymptotic properties of an

estimated subspace. This estimated subspace is studied mainly through its projection

matrix. Let PN be the projection matrix of N and P̂N be the projection matrix of N̂ .

Both of the following characterizations of the gap metric only hold for the case when N

and N̂ are of equal dimension. Assume N and N̂ both are of dimension dN and subspaces

of Rd. The first characterization is based on the eigenvalues of the matrix Pone, defined

as

Pone = (PN(Id − P̂N))(PN(Id − P̂N))T = PN − PN P̂NPN ,

which are denoted by {λPone
1 , . . . , λPone

d } in descending order. The eigenvalues of Pone are

equal to {sin2θ1, . . . , sin
2θk, 0, . . . 0}, where

k = dN if 2dN ≤ d or

d− dN if 2dN > d

125



Therefore the first characterization is

Dgap(N, N̂) =
√

max
i
λPone
i .

The next characterization is also based on the projection matrices of N and N̂ . This

characterization is based on the eigenvalues of

Ptwo = (PN − P̂N)(PN − P̂N)T ,

which are denoted by {λPtwo
1 , . . . , λPtwo

d } in descending order. The eigenvalues of Ptwo are

also related to the canonical angles. But in this case the eigenvalues are equal to

{sin2θ1, sin
2θ1, . . . , sin

2θk, sin
2θk, 0, . . . 0}

, where k is the same as in the case of Pone. So for this characterization

Dgap(N, N̂) =
√

max
i
λPtwo
i .

Several characterizations of the gap metric are given above, now some properties

of the gap metric are presented. The distance defined by the Gap metric is strongly

influenced by the largest canonical angle. Because Dgap(N, N̂) depends more heavily on

θ1, then the other θi’s are discounted, which can be seen from the following example.

When the dimension of N̂ is dN ± 1 and the dimension of N is dN then Dgap(N, N̂) =

1. Also let Ñ be of dimension dN ±m, when m is an integer > 1, and N is of dimension

dN then Dgap(N, Ñ) = 1 as well. Therefore the gap metric says two subspaces that are

off by one dimension are the same distance apart as two subspaces that are off by more

than one dimension.

Also the gap metric says that two subspaces with canonical angles of θ1 = 80, and
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θ2 = 10 are the same distance apart as two subspaces with canonical angles of θ1 = 80

and θ2 = 70. In both cases Dgap = sin 80. This is again because the gap metrics value is

directly related only to θ1.

Another matrix from the literature described in the next section will depend more

heavily on all of the canonical angles. Therefore this metric will be more sensitive to

changes in the canonical angles besides the largest.

6.4 Euclidean Sine metric

Another common metric from the literature is

Dsine(N, N̂) =
√∑

sin2 θi =
√

max(dimN, dim N̂)−
∑

λAi ,

see Stewart and Sun (1990) or Kato (1966). There are also two other characterizations

of the Euclidean sine metric based on PN and P̂N , the projection matrices of N and N̂

respectively, through the matrices Pone and Ptwo. Again it has to be assumed that N and

N̂ are of the same dimension. The first characterization is

Dsine(N, N̂) =

√
trace(PN − PN P̂NPN) =

√√√√ d∑
i=1

λPone
i ,

which is the square root of the sum of the eigenvalues of Pone. It may seem as though

more attention needs to be paid to the number of eigenvalues being summed, since there

are more eigenvalues than there are canonical angles. But in this case all eigenvalues not

corresponding to a canonical angle are 0, and therefore do not contribute anything to the

calculation of the trace. The second characterization

Dsine(N, N̂) =

√
1

2
trace[Ptwo] =

√
1

2
trace[(PN − P̂N)T (PN − P̂N)],

is based on projection matrices as well.
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Although sometimes we are only summing 2 × (d − dN) squared sines of canonical

angles this characterization of the Euclidean sine metric is still correct. This is because

the remaining canonical angles are 0, so the Euclidean sine metric is not changed if the

summation of these values are included or not. This is best understood by thinking of

the subspaces orthogonal to N and N̂ , i.e. N⊥ and N̂⊥. The subspaces N and N̂ should

be the same distance apart as N⊥ and N̂⊥. Therefore if d < 2dN then the above metric

can be thought of as summing the squared sines of the canonical angles between N⊥ and

N̂⊥, which have d− dN canonical angles.

Several characterizations of the Euclidean sine metric are given above, some intuition

into how it measures the distance between subspaces is given here. The Euclidean sine

metric is equal to the square root of the sum of squared length of all line segments

between the basis points of an orthonormal basis of N̂ and their projections onto N . So

not just the largest line segment appears directly in the calculation of the metric but all

of the line segments do, i.e. the largest canonical angle is not as influential as in the gap

metric.

This metric is more sensitive to the dimensions of the two subspaces. For instance,

the distance between two subspace with dimensions that differ by one would be less than

two subspaces with dimensions that differ by a larger amount. If N is of dimension dN

and N̂ is of dimension dN + 1 and N ⊆ N̂ then Dsine(N, N̂)= 1 as does Dgap(N, N̂).

But if N is of dimension dN and Ñ is of dimension dN + m, m>1, and N ⊆ Ñ then

Dsine(N, Ñ) =
√
m while Dgap(N, Ñ) still equals 1. Also unlike the gap metric though

the sine metric is smaller when θ1 = 80 and θ2 = 10 than θ1 = 80 and θ2 = 70. In the first

case Dsine = 1 while for the second case Dsine = 1.3612. Also if N and N̂ are orthogonal

to each other then Dsine =

√
max(dimN, dim N̂).

But if the sine metric is large you are unable to tell if it is due to one large angle or

many small angles. This is best understood by an example. Let there be two pairs of

subspaces. For the first pair of subspaces, one subspace is of dimension 4 while the other
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is of dimension 2 and therefore θ1 = 90 and θ2 = 90 and let θi = 0 for 3 ≤ i ≤ 4. In this

case Dsine =
√

(2). The other pair of subspaces are both of dimension 4 and θi = 30 for

1 ≤ i ≤ 4. So for this pair of subspaces Dsine =
√

(2) as well.

For the Euclidean sine metric no eigenanalysis is needed. As long as you find a basis

of N and N̂ the Euclidean sine metric can be calculated. In section 6.1 and 6.2.1 it is

shown that the cosines of the canonical angles are equal to
√
λAi . Also AX,Y = BXB

T
Y ,

where BX and BY are any orthonormal bases of N̂ and N . The Euclidean sine metric is

equal to
√

max (dimN, dim N̂)−
∑
λAi . But

∑
λAi = trace(AX,YA

T
X,Y ), so the canonical

angles do not have to be found, i.e. an eigenanalysis is not needed. For the gap metric

the canonical angles must be found in order to find the largest possible cyan line segment

between N and N̂ , see Figure 6.2, or eigenanalysis of a matrix performed.

In the next chapter we will study the asymptotic properties of an estimated subspace.

In order for an estimated subspace to be a good estimate we would like for it to converge

to the true subspace. Therefore we will be interested in the relation of these two metrics

as they converge to 0. The metrics have the following relationship, if Dsine(N, N̂) → 0

then Dgap(N, N̂) → 0 where N̂ is a sequence of subspaces which converges to N in the

Euclidean sine metric. The first step in proving this relationship is noticing that

(sin θ1)2 ≤
dN∑
i=1

(sin θi)
2.

This is since all of the canonical angles are between 0 and 90◦, i.e. sin θi ≥ 0 for all i.

The above implies that √
(sin θ1)2 ≤

√√√√(

dN∑
i=1

sin θi)2.

The proof is complete by noticing that
√

(sin θ1)2 = Dgap(N, N̂) and
√

(
∑dN

i=1 sin θi)2 =

Dsine(N, N̂).

It also holds that if Dgap(N, N̂) → 0 then Dsine(N, N̂) → 0. The proof starts by
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noticing that for all i,

(sin θi)
2 ≤ (sin θ1)2,

since θ1 is the largest canonical angle. Therefore this implies that

dN∑
i=1

(sin θi)
2 ≤ dN(sin θ1)2.

If the square root of both sides are taken, i.e.

√√√√ dN∑
i=1

(sin θi)2 ≤
√
dN(sin θ1)2,

then by the characterizations given above this is the same as stating

Dsine(N, N̂) ≤
√
dNDgap(N, N̂).

Therefore if dN < ∞ and Dgap(N, N̂) → 0, then Dsine(N, N̂) → 0. This relationship of

the two metrics converging to 0 is important for chapter 7.
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CHAPTER 7

Mathematical Statistic Investigation

This section gives a discussion of the work for the dissertation in the area of math-

ematical statistics. The focus of this analysis is on the asymptotic properties of the

nearly null space and the interesting genetic constraint space. Section 7.1.2 studies the

convergence of the dimension of the estimated nearly null space to the dimension of the

true nearly null space. The next section, 7.1.3, analyzes the deeper property of the con-

vergence of the estimated nearly null space to the true nearly null space. Section 7.2.2

considers the convergence of the dimension of the estimated interesting genetic constraint

space to the dimension of the true interesting genetic constraint space. Section 7.2.3 fol-

lows this with an investigation of the convergence of the estimated interesting genetic

constraint space to the true interesting genetic constraint space. Section 7.3 describes a

hypothesis test of whether S0 ⊆ S, where S is the interesting genetic constraint space

and S0 is a given vector subspace.

Before moving on to the precise mathematical statistics that are going to be investi-

gated, first several distributional assumptions are stated to establish the mathematical

setting. For the following sections it is assumed that there is a sequence, X = [X1,

...,Xn], of independent identically distributed d dimensional normal random vectors.

Each vector Xi is assumed to have covariance matrix Σ, which has eigenvalues λ1

to λd in descending order. The eigenvalues will be assumed to have the structure of

λm > λm+1 = · · · = λd > 0. With the larger eigenvalues having an unspecified structure.



Also Σ will be estimated by an empirical covariance matrix Σ̂ = 1
n−1

(X −X)(X −X)T ,

where X = 1
n

∑n
i=1Xi. Σ̂ has the estimated eigenvalues λ̂1 to λ̂d, in descending order.

See Anderson (1984) for a more detailed discussion about multivariate analysis.

7.1 Study of Nearly Null Space Asymptotic Proper-

ties

7.1.1 Definition of Nearly Null Space

Before the mathematical statistical properties of the nearly null space are investi-

gated, the nearly null space first must be defined. One way to define the nearly null

space, which was discussed in Chapter 3, is the subspace generated by the eigenvectors

which correspond to the smallest eigenvalues of Σ, the covariance matrix, such that the

proportion of variance of these small eigenvalues is less than a given constant, cprop. This

definition will be referred to as the proportion threshold nearly null space, i.e Nprop. See

Anderson (1984) for more discussion on why this threshold is commonly used. The esti-

mate of this nearly null space, N̂prop, is the subspace generated by the eigenvectors which

correspond to the small eigenvalues of Σ̂, the empirical covariance matrix, such that the

proportion of variance of these small eigenvalues is less than cprop.

An alternative definition is to define the nearly null space to be the subspace generated

by the eigenvectors which correspond to eigenvalues of Σ that are less than a given

threshold, cthresh. This definition will be referred to as the eigenvalue threshold nearly

null space, i.e. Nthresh. The subspaceNthresh is estimated by N̂thresh, which is the subspace

generated by the eigenvectors which correspond to the eigenvalues of Σ̂ that are less than

cthresh. There are other definitions that could be used to define this nearly null space,

but the above two definitions will be focused on here.

The proportion threshold nearly null space, N̂prop, has the advantage over the eigen-

value threshold nearly null space, N̂thresh, in that it is more interpretable. Often when
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thinking about a model space, one looks at the total percentage of variation explained by

the first several principal components. The proportion threshold nearly null space can

be easily thought of as the orthogonal subspace to this, i.e. as the subspace generated

by the smallest principal components that explain a small percentage of the total varia-

tion. But the proportion threshold nearly null space requires careful treatment when the

eigenvalues are tied at the proportion threshold limit. For instance let λj = λj+1, where∑d
i=j+1 λi < cprop

∑d
i=1 λi <

∑d
i=j λi. The eigendirections corresponding to these values

are random directions in a 2-d space since λj = λj+1, so the subspace Nprop will not be

clearly defined. The eigenvalue threshold nearly null space does not have this problem

because if λj = λj+1, then either both will be included in the nearly null space or both

will not be included in the nearly null space. So Nthresh is clearly defined. We also know

that any direction in Nthresh will explain less variation than cthresh, but Nthresh could

explain a large percentage of the total variation if a large portion of the total variation

is equally distributed over many directions. Due to the limitations of each definition of

the nearly null space, the mathematical statistical properties of both are investigated.

Although Nprop was introduced in earlier chapters, in general for the mathematical

statistics Nthresh will be analyzed before Nprop. This is because in general the assumptions

used for both are similar, except that Nprop will have the added assumption that λj 6=

λj+1. This extra assumption allows Nprop to be uniquely defined.

Although if the nearly null space is assumed to be the subspace generated by eigen-

vectors which correspond to λm+1 . . . λd, then both Nprop and Nthresh will have the same

assumption. This assumption is that λm 6= λm+1. This will be the case when the inter-

esting genetic constraint space is being considered.

For this analysis cthresh and cprop will be defined in two ways. First cthresh and cprop are

viewed as constants that are not equal to one of the eigenvalues of Σ or the proportion

of the lower eigenvalues of Σ, respectively. Next cthresh is viewed as a sequence which

depends on n that converges to an eigenvalue. For this case we will let c(n)thresh =
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λm+1 +n−α and study the asymptotic properties of the nearly null space as n→∞. Also

we will let c(n)prop =
∑d

i=m+1 λi∑d
i=1 λi

+ n−α and investigate the asymptotic properties of the

nearly null space.

The sequences c(n)thresh and c(n)prop are defined so that the convergence asymptot-

ically can be studied in a similar manner to that of contiguity in statistical inference.

Contiguity studies probability measures which live “on top of each other” in the limit,

see van der Vaart (1998). In this same way c(n)thesh and λ̂j both are equal in the limit

to λj. So the question is which converges quicker to λj. The probability of λ̂j being less

than c(n)thesh for different α’s gives an answer to this question and therefore information

about the convergence of N̂thresh to Nthesh. This same type of asymptotic analysis is

performed for the case of c(n)prop.

7.1.2 Convergence In Probability Of the Dimension of the Es-

timated Nearly Null Space

This section studies the convergence in probability of the dimension of the estimated

nearly null space to the dimension of the true nearly null space. It outlines several

conditions necessary to have dim(N̂thresh) converge in probability to dim(Nthresh) and to

have dim(N̂prop) converge in probability to dim(Nprop), as the sample size n grows. First

the nearly null space defined as Nthresh is investigated, then an investigation is done for

Nprop.

Theorem 1 Given the definition of Nthresh, N̂thresh, and cthresh from above, the

dimension of N̂thresh converges in probability to the dimension of Nthresh, i.e.

lim
n→∞

P(dim(N̂thresh) = dim(Nthresh)) = 1

In order to show that the dimension of N̂thresh converges in probability to the dimen-

sion of Nthresh, the behavior the sample eigenvalues with relation to cthresh are studied.

Without loss of generality it is assumed that λm > cthresh > λm+1. So in order to prove
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Theorem 1 it is shown that

P(λ̂i > cthresh for i ≤ m and λ̂j > cthresh for j ≥ m+ 1)

converges in probability to 1.

Proof of Theorem 1 Estimated eigenvalues which correspond to true eigenvalues

which are different are asymptotically independent, see Anderson (1963). Therefore as

n→∞

lim
n→∞

P(λ̂i > cthresh for i ≤ m and λ̂j > cthresh for j ≥ m+ 1) (7.1)

= lim
n→∞

R∏
r=1

P(Λ̂r > cthresh)
∏
R+1

P(Λ̂R+1 < cthresh)

(7.2)

Where Λ̂r is a set of estimated eigenvalues which corresponds to a set of true eigenvalues

which are equal. For our case we will assume that there are R+1 distinct true eigenvalues,

labeled λdist1 to λdistR+1 in descending order. Each λdistr is assumed to have multiplicity qr.

If each piece of the product in equation 7.2 is shown to converge in probability to 1, then

the Theorem will be proven.

In order to make a probability statement about a set of eigenvalues the asymptotic

distribution of the set is useful. The focus need only be on the distribution of each set

separately and not the distribution of all sets together, since distinct eigenvalues are

asymptotically independent.

In Anderson (1963) it is shown that
√
n(Λ̂r−Λr) converges in distribution to H. Let

hi,r =
√
n(λ̂i,r − λdistr ), where λi,r is the ith largest sample eigenvalue in the set Λ̂r. If the

eigenvalue has a multiplicity of 1, then H converges to a normal distribution with mean

0 and variance 2(λdistr )2. If the eigenvalue has a multiplicity of size qr, then H converges

in distribution to f(
√
n(Λ̂r − Λr);qr,λ

dist
r ).
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Where f(
√
n(Λ̂r − Λr);qr,λ

dist
r )

= K(qr, λ
dist
r )exp(

∑qr
i h

2
i,r

4(λdistr )2
)
∏
i<j

(hi,r − hj,r).

In the above density K(qr, λ
dist
r ) is a constant that ensures that the density integrates to

1.

Now that the asymptotic distribution of each set is defined, the asymptotic probability

of the set can be studied. Finding the probability for each set of sample eigenvalues less

then cthresh will be similar. Therefore finding the probability of only one set of estimated

eigenvalues less than cthresh will be shown in detail. So for this case there is only one

set of sample eigenvalues which should be less than cthresh. The set contains qr sample

eigenvalues. We want to investigate the probability that all of the sample eigenvalues are

less than the constant cthresh.

lim
n→∞

P(Λ̂R+1 < cthresh)

= lim
n→∞

P(
√
n(Λ̂R+1 − ΛR+1) <

√
n(cthresh − λdistR+1))

= lim
n→∞

P(H <
√
n(cthresh − λdistR+1))

Notice that (cthresh − λdistR+1) is positive. Therefore as n → ∞,
√
n(cthresh − λdistR+1) → ∞.

So as n→∞

= lim
n→∞

P(
√
n(Λ̂R+1 − ΛR+1) <

√
n(cthresh − λdistR+1))

= P(H <∞))
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Therefore P(Λ̂R+1 < cthresh) converges in probability to 1.

A similar argument can be made for sets of eigenvalues greater than cthresh. Again

only one set of eigenvalues are shown in detail. For this case we will look at the set of

eigenvalues closet to cthresh.

P(Λ̂R > cthresh)

= P(
√
n(Λ̂R − ΛR) >

√
n(cthresh − λdistR ))

For this case (cthresh − λdistR ) is negative. Therefore as n→∞,
√
n(cthresh − λdistR )→

−∞. So as n → ∞, P(Λ̂R > cthresh) is equal in limit to P(H > −∞). Therefore

P(Λ̂R > cthresh) converges in probability to 1.

Since the probability of each term in Equation 7.2 converges in probability to 1, it

follows that the product as a whole converges in probability to 1. Therefore the dimension

of N̂thresh converges in probability to the dimension of Nthresh. �

Defining Nthresh and N̂thresh by letting c(n)thresh = λm+1 + n−α, allows for a deeper

understanding of the asymptotic convergence of the dimension of N̂thresh to Nthresh.

Theorem 2 Given the definition ofNthresh and N̂thresh from above as well as c(n)thresh =

λm+1 +n−α, the dimension of N̂thresh converges in probability to the dimension of Nthresh

when 0 < α < 1
2
, i.e.

lim
n→∞

P(dim(N̂thresh) = dim(Nthresh)) = 1

The proof for this Theorem is similar to the case of cthresh. Again the probability will

be studied as a product of several probabilities. Each set Λ̂r will be studied separately,

and if all sets converge to above or below the threshold respectively, then the estimated

dimension will converge in probability to the true dimension. Without loss of generality
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it will be assumed that c(n)thresh = λm+1 + n−α, where λm+1 ⊆ ΛR+1.

Proof of Theorem 2 First a set that corresponds to an eigenvalue larger that λdistR+1

is chosen and the probability that the set is large than c(n)thresh is studied.

P(Λ̂R > c(n)thresh)

= P(Λ̂R > λdistR+1 + n−α)

= P((Λ̂R − ΛR) > (λdistR+1 − λdistR ) + n−α)

= P(
√
n(Λ̂R − ΛR) >

√
n(λdistR+1 − λdistR ) + n

1
2
−α)

Notice that (λdistR+1 − λdistR ) is negative. This implies that as n→∞,
√
n(λdistR+1 − λdistR )→

−∞. Also since α < 1
2

then n
1
2
−α →∞. But

√
n(λdistR+1− λdistR ) is on a large scale than is

n
1
2
−α, so

√
n(λdistR+1 − λdistR ) + n

1
2
−α → −∞. Therefore as n→∞

lim
n→∞

P(Λ̂R > c(n)thresh)

= P(H > −∞)

which implies that P(Λ̂R > c(n)thresh) converges in probability to 1. This same argument

can be made for all sets Λr such the true eigenvalues which correspond to the set are

greater than λdistR+1.

Next the set Λ̂R+1 is investigated.

P(Λ̂R+1 < c(n)thresh)

= P((Λ̂R+1 − ΛR+1) < (λdistR+1 − λdistR+1) + n−α)

= P((Λ̂R+1 − ΛR+1) < n−α)
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= P(
√
n(Λ̂R+1 − ΛR+1) < n

1
2
−α)

Therefore as n→∞

lim
n→∞

P(Λ̂R+1 < c(n)thresh)

= P(H <∞)

Therefore P(Λ̂R+1 < c(n)thresh) converges in probability to 1.

Now all terms of the product are shown to converge in probability to 1. So this implies

that the dimension of N̂thresh converges in probability to the dimension of Nthresh when

c(n)thesh is used as the eigenvalue threshold. �

Next when the definition of the nearly null space is changed to Nprop, the asymptotic

properties of the convergence of the dimension of N̂prop to Nprop are investigated. Similar

to the case of Nthresh, first cprop is assumed to be a given fixed constant not equal to

the proportion of variance of the lower eigenvalues. It is also assumed that
∑d

i=j+1 λi <

cprop
∑d

i=1 λi <
∑d

i=j λi, where λj 6= λj+1. With out loss of generality it is assumed that

j = m.

Theorem 3 Given the definition of Nprop, N̂prop, and cprop from above, the dimension

of N̂prop converges in probability to the dimension of Nprop , i.e.

lim
n→∞

P(dim( ˆNprop) = dim(Nprop)) = 1

The behavior of the proportion of variance of a set of eigenvalues will be examined in

order to show that the estimated dimension converges to the true dimension. So in order
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for Theorem 3 to be proved it can be shown that

P(fm+1(λ̂) > cprop or fm(λ̂) < cprop)

converges in probability to 0, where fj(λ̂) =
∑d

i=j λ̂i∑d
i=1 λ̂i

. Also fj(λ) will represent an analo-

gous quantity, with the estimated eigenvalues replaced by the true eigenvalues.

Proof of Theorem 3 Similar to the case of Nthresh, if the asymptotic distribution of

fj(λ̂) is understood then probability statements can be made. It is shown in Anderson

(1984) that
√
n(fj(λ̂)− fj(λ))

converges in distribution to Nj, which is normally distributed with mean 0 and variance

2(

∑d
i=j λi∑d
i=1 λi

)2(

j−1∑
i=1

λ2
i ) + 2(

∑j−1
i=1 λi∑d
i=1 λi

)2(
d∑
i=j

λ2
i ).

Now that the asymptotic distribution of fj(λ̂) is understood, we can examine the

probability of fj(λ̂) being greater than or less than a constant.

P(fm+1(λ̂) > cprop or fm(λ̂) < cprop)

≤ P(fm+1(λ̂) > cprop) + P(fm(λ̂) < cprop)

Now examine each piece of the sum separately. First focus on showing that P(fm+1(λ̂) >

cprop) converges to 0.

P(fm+1(λ̂) > cprop)
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= P((fm+1(λ̂)− fm+1(λ)) > (cprop − fm+1(λ)))

= P(
√
n(fm+1(λ̂)− fm+1(λ)) >

√
n(cprop − fm+1(λ)))

Notice that (cprop−fm+1(λ)) is positive, so therefore
√
n(cprop−fm+1(λ))→∞. This

implies that as n→∞

lim
n→∞

P(
√
n(fm+1(λ̂)− fm+1(λ)) >

√
n(cprop − fm+1(λ)))

= P(Nm+1 >∞)

So then P(fm+1(λ̂) > cprop) converges in probability to 0.

Next show that P(fm(λ̂) < cprop) converges in probability to 0.

P(fm(λ̂) < cprop)

= P((fm(λ̂)− fm(λ)) < (cprop − fm(λ)))

= P(
√
n(fm(λ̂)− fm(λ)) <

√
n(cprop − fm(λ)))

Notice that (cprop − fm(λ)) is negative, so therefore
√
n(cprop − fm(λ))→ −∞. This

implies that as n→∞

lim
n→∞

P(
√
n(fm(λ̂)− fm(λ)) <

√
n(cprop − fm(λ)))

= P(Nm < −∞)

So then P(fm(λ̂) < cprop) converges in probability to 0. �
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Again defining Nprop and N̂prop by letting c(n)prop =
∑d

i=m+1 λi∑d
i=1 λi

+ n−α, allows for a

deeper understanding of the asymptotic convergence of the dimension of N̂prop to Nprop.

Theorem 4 Given the definition of Nprop, N̂prop, and c(n)prop, the dimension of N̂sum

converges in probability to the dimension of Nsum when 0 < α < 1
2
, i.e.

lim
n→∞

P(dim(N̂prop) = dim(Nprop)) = 1

Proof of Theorem 4 This proof is quite similar to the proof of cprop as the threshold

limit.

P(fm+1(λ̂) > c(n)prop or fm(λ̂) < cprop)

≤ P(fm+1(λ̂) > c(n)prop) + P(fm(λ̂) < c(n)prop)

Now examine each piece of the sum separately. First focus on showing that P(fm+1(λ̂) >

cprop) converges in probability to 0.

P(fm+1(λ̂) > c(n)prop)

= P((fm+1(λ̂)− fm+1(λ)) > (c(n)prop − fm+1(λ)))

= P(
√
n(fm+1(λ̂)− fm+1(λ)) >

√
n(c(n)prop − fm+1(λ)))

Notice that c(n)prop =fm+1(λ) + n−α. So then

P(
√
n(fm+1(λ̂)− fm+1(λ)) >

√
n(c(n)prop − fm+1(λ)))
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= P(
√
n(fm+1(λ̂)− fm+1(λ)) >

√
n(fm+1(λ) + n−α − fm+1(λ)))

= P(
√
n(fm+1(λ̂)− fm+1(λ)) > n

1
2
−α)

Since α < 1
2
, n

1
2
−α →∞, this implies that as n→∞

lim
n→∞

P(
√
n(fm+1(λ̂)− fm+1(λ)) > n

1
2
−α)

= P(Nm+1 >∞)

So then P(fm+1(λ̂) > c(n)prop) converges in probability to 0.

Next show that P(fm(λ̂) < cprop) converges in probability to 0.

P(fm(λ̂) < c(n)prop)

= P((fm(λ̂)− fm(λ)) < (c(n)prop − fm(λ)))

= P(
√
n(fm(λ̂)− fm(λ)) <

√
n(c(n)prop − fm(λ)))

= P(
√
n(fm(λ̂)− fm(λ)) >

√
n(fm+1(λ) + n−α − fm(λ)))

= P(
√
n(fm(λ̂)− fm(λ)) >

√
n(fm+1(λ)− fm(λ)) + n

1
2
−α)

Notice that (fm+1(λ)− fm(λ)) is negative, so therefore
√
n(fm+1(λ)− fm(λ))→ −∞.

But α < 1
2
, which implies n

1
2
−α →∞. But

√
n(fm+1(λ)−fm(λ)) is on a larger scale than

is n
1
2
−α, so

√
n(fm+1(λ)− fm(λ)) + n

1
2
−α)→ −∞

This implies that as n→∞

lim
n→∞

P(
√
n(fm(λ̂)− fm(λ)) <

√
n(c(n)prop − fm(λ)))
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= P(Nm < −∞)

So then P(fm(λ̂) < c(n)prop) converges in probability to 0. �

7.1.3 Convergence In Probability of the Nearly Null Space

The next step in our mathematical statistical analysis is to show that the estimated

nearly null space will converge to the true nearly null space. First a metric of distance

between subspaces must be decided upon. In Section 6.3 and Section 6.4 the gap metric,

Dgap, and the Euclidean sine metric, Dsine, were introduced respectively. Although there

are other metrics to measure the distance between subspaces, we will concentrate on these

two metrics. For a discussion of the advantages and disadvantages of the two metrics see

Sections 6.3 and 6.4.

Both of these metrics can be written in terms of the matrices which project onto the

given subspaces. Therefore let PN be the matrix which projects onto Nthresh and P̂N be

the matrix which projects onto N̂thresh.

Before proceeding a lemma about true and estimated projection matrices of eigenspaces,

from Tyler (1981), will be stated. This lemma will be used in several of the proofs. Let

P0 be the matrix which projects onto the subspace generated by the eigenvectors which

correspond to the true eigenvalues λm+1 to λd. Also let P̂0 be the subspace generated

by the estimated eigenvectors which correspond to the estimated eigenvalues λ̂m+1 to λ̂d.

Notice that P0 = PN , but it is not always true that P̂0 = P̂N . The estimated cases are

not always equal, since P̂N may have a larger or smaller dimension than P̂0. But in the

case when the dimension of N̂thresh is equal to Nthresh then P̂0 = P̂N . In the lemma below

PN can always replace P0. Also P̂N can replace P̂0 when the estimated dimension is equal

to the true dimension.

If anvec(Σ− Σ̂) converges in distribution to a multivariate normal then the below can
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be stated.

Lemma 1 Define the norm ‖ B ‖=[max eigenvalue (B′B)]
1
2 . If ‖ Σ− Σ̂ ‖ ≤ λm−λm+1

2

then there is a sequence an, with an →∞, so that

an(P0 − P̂0)→ N0

where vec(N0) is distributed multivariate normal with mean 0 and covariance matrix Σ0.

With vec being an operation that stacks columns of a matrix into a vector. Let

B = [b1, b2, · · · , bm], where B is a d×m matrix and each bi a d dimensional vector. Then

vec(B) =



b1

b2

...

bm


where vec(B) is a dm dimensional vector.

A fact concerning the condition ‖ Σ − Σ̂ ‖ ≤ λm−λm+1

2
is stated, which is useful in

allowing Lemma 1 to be used in the proof of the following theorem.

Fact 1 Let En = event{‖ Σ − Σ̂ ‖ ≤ λm−λm+1

2
}. Since vec(Σ − Σ̂) converges in

probability to 0, it follows that

lim
n→∞

P(En) = 1.

Theorem 5 Given the definition of Nthresh, N̂thresh, and cthresh from above, it follows

that for ∀ ε > 0

lim
n→∞

P(Dsine(Nthresh, N̂thresh) > ε) = 0

Proof of Theorem 5 For the proof of this Theorem, Lemma 1 will be helpful. First

P(Dsine(Nthresh, N̂thresh) > ε) is broken into where En occurs and where it does not occur.

P(Dsine(Nthresh, N̂thresh) > ε ∩ En) + P(Dsine(Nthresh, N̂thresh) > ε ∩ Ec
n).
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In order to use Lemma 1 we would like to only concentrate on the first probability in the

sum. Therefore it is shown that the second probability in the sum converges to 0.

lim
n→∞

P(Dsine(Nthresh, N̂thresh) > ε ∩ Ec
n)

≤ lim
n→∞

P(Ec
n) = 0

The convergence to 0 can be seen by Fact 1. This convergence to 0 implies

lim
n→∞

P(Dsine(Nthresh, N̂thresh) > ε) = lim
n→∞

P(Dsine(Nthresh, N̂thresh) > ε ∩ En)

Also Lemma 1 is only helpful in the case that P̂0 = P̂N . So the next step is to break

P(Dsine(Nthresh, N̂thresh) > ε ∩ En) into cases when P̂0 = P̂N and P̂0 6= P̂N . This is

the same as the case when the dim(Nthresh) = dim(N̂thresh) and when dim(Nthresh) 6=

dim(N̂thresh).

P(Dsine(Nthresh, N̂thresh) > ε ∩ En)

= P(Dsine(Nthresh, N̂thresh) > ε ∩ En|dim(Nthresh) = dim(N̂thresh))P(dim(Nthresh) = dim(N̂thresh))

+ P(Dsine(Nthresh, N̂thresh) > ε ∩ En|dim(Nthresh) 6= dim(N̂thresh))P(dim(Nthresh) 6= dim(N̂thresh))

= P(Dsine(Nthresh, N̂thresh) > ε ∩ En|P̂0 = P̂N)P(P̂0 = P̂N)

+ P(Dsine(Nthresh, N̂thresh) > ε ∩ En|P̂0 6= P̂N)P(P̂0 6= P̂N)

Since dim(N̂thesh)→ dim(Nthresh) in probability, it follows that P(P̂0 6= P̂N) converges in

probability to 0. Which implies that P(Dsine(Nthresh, N̂thresh) > ε ∩ En|P̂0 6= P̂N)P(P̂0 6=
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P̂N) converges in probability to 0. Also since dim(N̂thesh)→ dim(Nthresh) in probability,

then P(P̂0 = P̂N) converges in probability to 1.

Therefore as n→∞

lim
n→∞

P(Dsine(Nthresh, N̂thresh) > ε ∩ En)

= lim
n→∞

P(Dsine(Nthresh, N̂thresh) > ε ∩ En|P̂0 = P̂N)

Now only the terms where P̂N = P̂0 need to be examined. This allows Lemma 1 and

the continuous mapping theorem to be used to show that P(Dsine(Nthresh, N̂thresh) >

ε ∩ En|P̂0 = P̂N) converges in probability to 0.

But first an alternate characterization of Dsine is needed, where

Dsine =

√
1

2
trace[(P0 − P̂0)((P0 − P̂0)T ]

when the dimension of P0 and P̂0 are equal.

Noting lemma 1, it can be seen that (P0 − P̂0) → 0 in probability. Then by the

continuous mapping theorem
√

1
2
trace[(P0 − P̂0)((P0 − P̂0)T ] → 0 in probability. This

implies that P(Dsine(Nthresh, N̂thresh) > ε)→ 0 in probability. �

Theorem 6 Given the definition of Nthresh, N̂thresh, and cthresh, it follows that for ∀

ε > 0

lim
n→∞

P(Dgap(Nthresh, N̂thresh) > ε) = 0

Proof of Theorem 6 The proof of Theorem 6, is to notice that if Dsine converges

to zero then so does Dgap. This is because if the trace of a matrix converges to zero

then the largest eigenvalue also will converge to zero, for a positive definite matrix. This

relationship is shown in Section 6.4. �

The next step is to assume c(n)thresh = λm+1 +n−α and to show that N̂thresh converges
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in probability to Nthesh. The same assumptions as when the threshold was a constant,

along with the additional assumption that 0 < α < 1
2

are needed to show convergence in

both Dgap and Dsine.

Theorem 7 Given the definition of Nthresh and N̂thresh from above and letting

c(n)thresh = λm+1 + n−α, it follows that for 0 < α < 1
2

and for ∀ ε > 0

lim
n→∞

P(Dsine(Nthresh, N̂thresh) > ε) = 0

Proof of Theorem 7 For this proof the steps of proving Theorem 5 are followed

exactly. Since again the dimension of the estimated nearly null space converge in proba-

bility to the true nearly null space. Then the problem can be rewritten as a probability

of P0 − P̂0. �

Theorem 8 Given the definition of Nthresh and N̂thresh from above and letting

c(n)thresh = λm+1 + n−α, then for 0 < α < 1
2

and for ∀ ε > 0

lim
n→∞

P(Dgap(Nthresh, N̂thresh) > ε) = 0

Proof of Theorem 8 This Theorem is proven, by noticing that Theorem 8 is the

same as Theorem 7 except with Dsine replaced by Dgap. But if Dsine converges then this

implies that Dgap will converge. �

The above should also be shown in the case of Nprop being the definition of the nearly

null space and N̂prop being the estimated nearly null space. First it should be shown when

cprop is a given constant not equal to the proportion of variance of the lower eigenvalues.

Theorem 9 Given the definition of Nprop, N̂prop, and cprop it follows that for ∀ ε > 0

lim
n→∞

P(Dsine(Nprop, N̂prop) > ε) = 0

Proof of Theorem 9 The proof is exactly the same as the proof of Theorem 5,
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only with Nthresh replaced by Nprop. This is the case since the proof only depends on

the dimension of the estimated subspace converging to the true subspace implying that

P̂0 = P̂N , which occurs for N̂prop.

Theorem 10 Given the definition of Nprop, N̂prop, and cprop from above it follows that

for ∀ ε > 0

lim
n→∞

P(Dgap(Nprop, N̂prop) > ε) = 0

Proof of Theorem 10 Follows from the proof of Theorem 9, since ifDsine(Nprop, N̂prop)

converges in probability to 0, then so does Dgap(Nprop, N̂prop).

Also for the case when c(n)prop =
∑d

i=m+1 λi∑d
i=1 λi

+ n−α the convergence in probability of

N̂prop to Nprop should be shown. All of the assumptions of above are needed along with

the additional assumption that 0 < α < 1
2
.

Theorem 11 Given the definition of Nprop, N̂prop ,and c(n)prop from above it follows

that for 0 < α < 1
2

and for ∀ ε > 0

lim
n→∞

P(Dsine(Nprop, ˆNprop) > ε) = 0

Proof of Theorem 11 Follows directly from the proof of Theorem 7, using the same

reasoning that the proof of Theorem 9 follows from the proof of Theorem 5.

Theorem 12 Given the definition of Nprop, N̂prop ,and c(n)prop from above it follows

that for 0 < α < 1
2

and for ∀ ε > 0

lim
n→∞

P(Dgap(Nprop, ˆNprop) > ε) = 0

Proof of Theorem 12 Follows from the proof of Theorem 11, since ifDsine(Nprop, N̂prop)

converges in probability to 0, then so does Dgap(Nprop, N̂prop).
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7.2 Asymptotic Properties of the Interesting Genetic

Constraint Space

7.2.1 Definition of the Interesting Genetic Constraint Space

Similar to the case of the nearly null space, before the asymptotic properties of the

interesting genetic constraint space, described in Section 3.1, can be studied, this space

must first be defined. First some intuition into what is the interesting generic constraint

space is developed. Then later in the section comes a more rigorous mathematical defi-

nition.

The interesting genetic constraint space, S, is defined in a similar manner to Nthresh.

The set of directions which generateNthresh, is chosen such that the direction that explains

the least amount of variation is included in the set if the amount of variation explained

is less than cthresh. Then the direction which is orthogonal to the first and explains the

least amount of variation is included in the set if the amount of variation explained is less

than cthresh. This process continues until a direction explains more variation than cthresh.

This subspace is also generated by the eigendirections which correspond to eigenvalues

of Σ, i.e. the covariance matrix, that are less than cthresh.

The set of directions which generate S is chosen such that the direction in the nearly

null space that has the highest simplicity score is included in the set if the simplicity score

is greater than csimp. Then the direction in the nearly null space which is orthogonal to

the first and has the highest simplicity score is included in the set if the simplicity score

is greater than csimp. This process continues until a direction in the nearly null space has

a simplicity score less than csimp. An alternate way of generating this subspace is using

eigendirections which correspond to eigenvalues of a matrix. But in this case we will focus

on the eigenvalues and eigendirections of a simplicity matrix, rather than a covariance

matrix. The simplicity matrix defines simplicity scores of directions in the nearly null
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space. Therefore S is generated by eigendirections which correspond to eigenvalues of

the simplicity matrix larger than csimp.

Note that the interesting genetic constraint space is not defined using a threshold of

the proportion of total energy of a matrix, such as was the case for the nearly null space.

The above paragraphs gave intuition into how S is going to be defined. The rest of

the section defines S in a more rigorous mathematical fashion.

The definition of the interesting genetic constraint space, S, is highly dependent on

the definition of the nearly null space. This is because S is always going to be a subspace

of the nearly null space. So we must first consider the nearly null space before proceeding

to the definition of S. The nearly null space is defined in two ways in Section 7.1.1, labeled

as Nthresh and Nprop. The subspaces Nthresh and Nprop are equal if the constants cthresh

and cprop are chosen such that the eigendirections which generate the two subspaces

correspond to the same eigenvalues of Σ. For this section the nearly null space is denoted

as N and it will be assumed that cprop and cthresh are chosen such that the subspace is

generated by the eigendirections which correspond to λm+1 . . . λd. The estimated nearly

null space is also defined in two ways in Section 7.1.1, labeled as N̂thresh and N̂prop. For

this section it can be assumed that N is estimated by either N̂thresh or N̂prop. Therefore

the estimated nearly null space is denoted by N̂ . It was shown in Section 7.1.2 and

Section 7.1.3 that N̂thresh and N̂prop have similar asymptotic properties.

Now that the null space is defined, a way to find orthogonal directions of maximum

simplicity is needed. One way to do this is to define a simplicity matrix which summarizes

the simplicity scores of the directions of the null space. This will be analogous to the case

of principal components where a covariance matrix summarizes the variance of directions.

Then similar to principal components, an eigendecomposition of this simplicity matrix

will yield orthogonal directions of maximum simplicity.

Before a simplicity matrix of the nearly null space is found, first a simplicity ma-

trix of the full space is defined. Our definition of simplicity from Section 3.2, is that
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the simplest direction is the one that corresponds to the vector with minimal value for

the first differences squared of adjacent entries. One possible simplicity matrix is to

use DDT , where D is a matrix which produces first differences. This matrix produces

eigendirections which correspond to directions which fit our ideal of simplicity. But the

matrix produces eigenvalues which have two disadvantages. The first disadvantage is

that of interpretability. The simplest direction will have the smallest eigenvalue. But

our emphasis is on maximizing simplicity, so therefore we would like to have the simplest

direction correspond to the largest eigenvalue. The second problem with the eigenvalues

of this matrix is that there is an eigenvalue of 0. This is undesirable since when we

consider the nearly null space, those directions not in the nearly null space will have a

simplicity score of 0. Therefore if the direction from the full space with a simplicity score

of 0 is in the nearly null space, we will be unable to separate it from the directions not

in N .

A simplicity matrix, F full, which is a function of DDT and overcomes the problems

mentioned above is considered. The matrix F full should have eigendirections which are

the same as DDT , since those are the directions which match our idea of simplicity.

Define, the matrix

F full = 4Id −DDT

Note that F full has the same eigendirections as DDT , because −DDT has the same

eigendirections as DDT . F full has a constant simplicity score added to every direction

in the full space. Therefore the ordering of the simplicity scores of every direction is the

same, but the simplicity scores are all shifted by a constant. For an algebraic proof of

the eigendirections being the same see Appendix A. The simplicity matrix F full does

not encounter the problem of having eigenvalues equal to 0. Since DDT always has

eigenvalues between 0 and 4, with the largest eigenvalue never reaching 4, see Schatzman

(2002). The problem of DDT having eigendirections ordered incorrectly, i.e. from least

simple to most simple, is addressed by the negative sign in the definition of F full.

152



Now that the simplicity matrix of the full space is defined the simplicity matrix of

the nearly null space can be defined. The simplicity matrix of the nearly null space can

be thought of as a projection of the simplicity matrix of the full space into the nearly

null space. Let PN be the matrix which projects onto the nearly null space. Then the

simplicity matrix of the nearly null space is

F = PNF
fullPN .

The simplicity matrix F has similar properties to F full. First is that the eigendirections

of F will have the same eigendirections as PNDD
TPN , see Appendix A. Also F will

have the same number of eigenvalues greater than 0 as the dimension of PN and all

other eigenvalues will be 0. Finally the simplest direction in the nearly null space will

correspond to the eigendirection associated with the largest eigenvalue of F . The next

simplest direction of the nearly null space orthogonal to the first will correspond to the

eigendirection associated with the second largest eigenvalue, etc.

Therefore S is defined as the subspace generated by eigendirections of F which cor-

respond to eigenvalues larger than csimp. The eigenvalues of F are denoted by λF1 to λFd

in descending order.

The estimated interesting genetic constraint space, Ŝ, is defined by a simplicity matrix

of the estimated nearly null space. Let P̂N be the matrix which projects onto N̂ . Our

simplicity matrix of the estimated nearly null space is

F̂ = P̂NF
fullP̂N .

The definition of Ŝ is the subspace generated by the eigendirections of F̂ which correspond

to the eigenvalues larger than csimp. The eigenvalues of F̂ are denoted by λ̂F1 to λ̂Fd in

descending order. The matrix F̂ has as many non-zero eigenvalues as the dimension of

P̂N .

153



7.2.2 Convergence In Probability Of the Dimension of the Es-

timated Interesting Genetic Constraint Space

In section 7.2.1 the interesting genetic constraint space is defined. Also an estimate,

Ŝ of this space is defined. This section studies the convergence in probability of the

dimension of Ŝ to the dimension of S. For the remaining sections it is assumed that csimp

is a constant not equal to one of the eigenvalues of F and greater than 0.

Theorem 13 Given the definition of S, Ŝ, and csimp, it follows that the dimension

of Ŝ converges in probability to the dimension of S, i.e.

lim
n→∞

P(dim(Ŝ) = dim(S)) = 1

The proof of Theorem 13 involves studying the behavior of the eigenvalues of F̂

with relation to csimp. Without loss of generality assume λFk > csimp > λFk+1, where

k + 1 < dN = dim(N). Theorem 13 is proven if it is shown that

P(λ̂F1 < csimp or . . . λ̂Fk < csimp or λ̂Fk+1 > csimp or . . . λ̂Fd > csimp)

converges to 0.

Proof of Theorem 13 The first step of the proof is to break the above probability

into the case where the estimated eigenvalues correspond to true eigenvalues of 0 and

eigenvalues greater than 0.

P(λ̂F1 < csimp or . . . λ̂Fk < csimp or λ̂Fk+1 > csimp or . . . λ̂Fd > csimp)

≤ P(λ̂F1 < csimp or . . . λ̂Fk < csimp or λ̂Fk+1 > csimp or . . . λ̂FdN
> csimp)

+ P(λ̂FdN +1 > csimp or . . . λ̂Fd > csimp)
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For the second part of the sum, none of the estimated eigenvalues are greater than 0

unless the dimension of P̂N , i.e. the dimension of N̂ , is greater than dN = dim(N). This

implies that

P(λ̂FdN +1 > csimp or . . . λ̂Fd > csimp)

≤ P(dim(N̂) > dim(N))

It was shown in Section 7.1.2 that as n → ∞, P(dim(N̂) > dim(N)) converges to 0.

Because of this we need only concentrate on the behavior of λ̂F1 , . . . , λ̂
F
dN

. In other words

lim
n→∞

P(λ̂F1 < csimp or . . . λ̂Fk < csimp or λ̂Fk+1 > csimp or . . . λ̂Fd > csimp)

= lim
n→∞

P(λ̂F1 < csimp or . . . λ̂Fk < csimp or λ̂Fk+1 > csimp or . . . λ̂FdN
> csimp)

≤ lim
n→∞

P(λ̂F1 < csimp) + . . . + lim
n→∞

P(λ̂Fk < csimp)

+ lim
n→∞

P(λ̂Fk+1 > csimp) + . . . + lim
n→∞

P(λ̂FdN
> csimp)

Since there is a finite number of terms in the sum, if it is shown that all of the terms

converge to 0 then the proof will be completed. First focus on an estimated eigenvalue

which corresponds to a true eigenvalue of F greater than csimp. Without loss of generality,

consider λ̂Fk .

P(λ̂Fk < csimp)

= P(λ̂Fk − λFk < csimp − λFk )

≤ P(|λ̂Fk − λFk | > |csimp − λFk |)
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All terms involving an estimated eigenvalue that corresponds to a true eigenvalue of

F greater than csimp can be written in a similar manner as above. Next focus on an

estimated eigenvalue less than csimp. Without loss of generality, consider λ̂Fk+1.

P(λ̂Fk+1 > csimp)

= P(λ̂Fk+1 − λFk+1 > csimp − λFk+1)

≤ P(|λ̂Fk+1 − λFk+1| > |csimp − λFk+1|)

Every term of the sum is written as an absolute value between an estimated eigenvalue

with its corresponding true eigenvalue being greater than a constant. Therefore every

term in the sum is bounded by P(max1≤i≤dN
|λ̂Fi − λFi | > min1≤i≤dN

|csimp − λFi |), i.e.

P(|λ̂Fi − λFi | > |csimp − λFi |)

≤ P( max
1≤i≤dN

|λ̂Fi − λFi | > min
1≤i≤dN

|csimp − λFi |)

Now an inequality from Stewart and Sun (1990), see Equation 4.6, can be used in order

to complete the proof. The inequality states that

max
1≤i≤dN

|λ̂Fi − λFi | ≤‖ F̂ − F ‖ .

Now if it can be shown that the maximum eigenvalue of F̂ − F converges to 0 then

the proof will be completed. So in order to complete the proof, the distribution of

anvec(F̂−F ) is used. If F̂−F is characterized as projection matrices then the distribution

can be calculated. The following equality is useful
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anvec(F̂ − F ) = anvec(P̂NF
fullP̂N − PNF fullPN).

Ideally Lemma 1 and the delta method could be used in order to show that the above

converges in distribution to a multivariate normal. But again there is the problem that

PN is always equal to P0, but P̂N is not always equal to P̂0. So therefore the above can

be written as

anvec(P̂NF
fullP̂N − PNF fullPN)

= anvec(P̂NF
fullP̂N − P̂0F

fullP̂0 + P̂0F
fullP̂0 − PNF fullPN)

= anvec(P̂NF
fullP̂N − P̂0F

fullP̂0) + anvec(P̂0F
fullP̂0 − PNF fullPN)

In order to get the distribution above, we will focus on the separate parts of the sum. First

we we look at the second part. Using Lemma 1 and the delta method anvec(P̂0F
fullP̂0−

PNF
fullPN) converges in distribution to a multivariate normal. Therefore if it can be

shown that anvec(P̂NF
fullP̂N − P̂0F

fullP̂0) converges in probability to 0, then anvec(F̂ −

F ) will converge to the same multivariate normal as anvec(P̂0F
fullP̂0 − PNF fullPN) by

Slutzky’s lemma, see van der Vaart (1998).

It is also known that P̂N = P̂0, if the dimension of N̂ is equal to dimension of N .

Therefore for all ε > 0

P(an|vec(P̂NF fullP̂N − P̂0F
fullP̂0)| > ε)

= P(|vec(P̂NF fullP̂N − P̂0F
fullP̂0)| > ε

an
)

≤ 1− P(|anvec(P̂NF fullP̂N − P̂0F
fullP̂0))| = 0)
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= 1− P(dim(N̂) = dim(N))

In Section 7.1.2 it is shown that as n → ∞ P(dim(N̂) = dim(N)) → 1. Therefore

anvec(P̂NF
fullP̂N − P̂0F

fullP̂0) converges in probability to 0.

Now if the asymptotic distribution of anvec(P̂0F
fullP̂0 − PNF

fullPN) is found then

the asymptotic distribution of anvec(F̂ − F ) is known. By Lemma 1 it is known that as

an → ∞, anvec(P̂0 − PN) converges in distribution to a multivariate normal with mean

0 and covariance Σ0, where PN is interchangable with P0. Also the condition ‖ Σ− Σ̂ ‖

≤ λm−λm+1

2
is satisfied with probability 1 as n → ∞, which can be seen by Fact 1.

By applying the delta method, where φ(P0) = P0FP0, it is shown that as an → ∞,

anvec(P̂0F
fullP̂0 − PNF fullPN) converges in distribution to a multivariate normal with

mean 0 and covariance φ′TΣ0φ
′. This implies that vec(P̂0F

fullP̂0−PNF fullPN) converges

in distribution to a multivariate normal with mean 0 and covariance 1
an
φ′TΣ0φ

′.

Therefore

P(‖ F̂ − F ‖> min
1≤i≤dN

|csimp − λFi |)

converges to 0.

Which implies that

P( max
1≤i≤dN

|λ̂Fi − λFi | > min
1≤i≤dN

|csimp − λFi |)

converges to 0.

Thus the dimension of Ŝ converges in probability to the dimension of S. �
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7.2.3 Convergence In Probability of the Estimated Interesting

Genetic Constraint Space

This section is going to investigate the convergence in probability of Ŝ to S. This will

be shown using Dsine and Dgap as metrics of the distance between subspaces.

For this convergence again the work of Tyler (1981) will be followed closely. It will

be helpful to restate Lemma 1 in terms of matrices which project onto eigenspaces of

F and F̂ . In Section 7.2.2 it is shown that anvec(F̂ − F ) converges in distribution to a

multivariate normal.

Let PS,0 be the matrix which projects onto the subspace generated by the eigenvectors

which correspond to the true eigenvalues {λF1 , . . . , λFk }. Also let P̂S,0 be the projection

matrix of the subspace generated by the estimated eigenvectors which correspond to the

estimated eigenvalues {λ̂F1 , . . . , λ̂Fk }. Let PS be the projection matrix of S and P̂S be the

projection matrix of Ŝ.

Notice that PS,0 = PS, but it is not always true that P̂S,0 = P̂S. The estimated cases

are not always equal, since P̂S may have a larger or smaller dimension than P̂S,0. But in

the case when the dimension of Ŝ is equal to S then P̂S,0 = P̂S.

Therefore Lemma 1 can be stated with Σ replaced by F as

Lemma 2 Define the norm ‖ B ‖=[max eigenvalue (B′B)]
1
2 . If ‖ F − F̂ ‖ ≤ λF

k −λ
F
k+1

2

then there is a sequence an, with an →∞, so that

an(PS,0 − P̂S,0)→ NS,0

where vec(NS,0) is distributed multivariate normal with mean 0 and covariance matrix

ΣS,0. The above lemma will be used in the proof of convergence in probability of Ŝ to S.

A similar fact to Fact 1 is also stated, which will be of help in the following proof.

Fact 2 Let E2
n = event{‖ Σ − Σ̂ ‖ ≤ λm−λm+1

2
∩ ‖ F − F̂ ‖ ≤ λF

k −λ
F
k+1

2
}. Since

vec(Σ − Σ̂) converges in probability to 0 and vec(F − F̂ ) converges in probability to 0,
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it follows that

lim
n→∞

P(E2
n) = 1.

Theorem 14 Given the definition of S, Ŝ, and csimp from above, it follows that for

∀ ε > 0

lim
n→∞

P(Dsine(S, Ŝ) > ε) = 0

Proof of Theorem 14 The proof of Theorem 14 is similar to the proof of Theorem

5. Lemma 2 is helpful in proving Theorem 14. First P(Dsine(S, Ŝ) > ε) is broken into

where E2
n occurs and where it does not occur.

P(Dsine(S, Ŝ) > ε ∩ E2
n) + P(Dsine(S, Ŝ) > ε ∩ (E2

n)c).

In order to use Lemma 2 we would like to only concentrate on the first probability in the

sum. Therefore it is shown that the second probability in the sum converges to 0.

lim
n→∞

P(Dsine(S, Ŝ) > ε ∩ (E2
n)c)

≤ lim
n→∞

P((E2
n)c) = 0

The convergence to 0 can be seen by Fact 2. This convergence to 0 implies

lim
n→∞

P(Dsine(S, Ŝ) > ε) = lim
n→∞

P(Dsine(S, Ŝ) > ε ∩ E2
n)

Also Lemma 2 is only helpful in the case when P̂S,0 = P̂S. Therefore P(Dsine(S, Ŝ) > ε)

is separated into the cases where P̂S,0 = P̂S and where P̂S,0 6= P̂S. These cases are the

same as dim(S) = dim(Ŝ) and when dim(S) 6= dim(Ŝ) respectively.

P(Dsine(S, Ŝ) > ε ∩ E2
n)
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= P(Dsine(S, Ŝ) > ε ∩ E2
n|P̂S,0 = P̂S)P(P̂S,0 = P̂S)

+ P(Dsine(S, Ŝ) > ε ∩ E2
n|P̂S,0 6= P̂S)P(P̂S,0 6= P̂S)

It is shown in Section 7.2.2 that dim(Ŝ)→ dim(S) in probability, therefore P(Dsine(S, Ŝ) >

ε∩E2
n|P̂S,0 6= P̂S)P(P̂S,0 6= P̂S) converges in probability to 0. Also since dim(Ŝ)→ dim(S)

in probability, it follows that P(P̂S,0 = P̂S) converges in probability to 1. Therefore, it

need only be shown that P(Dsine(S, Ŝ) > ε∩E2
n|P̂S,0 = P̂S) converges in probability to 0

for the proof to be completed.

Following similar reasoning as the proof of theorem 5,

Dsine(S, Ŝ) =

√
1

2
trace[(PS,0 − P̂S,0)((PS,0 − P̂S,0)T ]

since the dimensions of P̂S,0 and PS,0 are the same.

From Lemma 2 it can be seen that (P̂S,0 - PS,0) converges in probability to 0. Then

by the continuous mapping theorem
√

1
2
trace[(PS,0 − P̂S,0)((PS,0 − P̂S,0)T ] converges in

probability to 0. This implies that P(Dsine(S, Ŝ) > ε) converges to 0. �

Next the case of when the metric Dgap is used to measure the distance between

subspaces is considered.

Theorem 15 Given the definition of S, Ŝ, and csimp from above, it follows that for

∀ ε > 0

lim
n→∞

P(Dgap(S, Ŝ) > ε) = 0

Proof of Theorem 15 The proof of Theorem 15, follows from the observation that

if Dsine converges to zero then so does Dgap. This is because if the trace of a matrix

converges to zero then the largest eigenvalue also will converge to zero, for a positive

definite matrix. This relationship is shown in Section 6.4. �
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7.3 Hypothesis Test for a Given Subspace contained

in S

The above sections developed the idea of the interesting genetic constraint space.

Also an estimate, Ŝ, for this subspace is given. A question of importance to a biologist

might be if a particular subspace of biological interest, B, is a subspace of S. Often

times B is generated by choosing directions of biological interest that look similar to a

set of eigendirections of F̂ which are included in the set of directions which generate Ŝ.

For example Figure 3.5 in Section 3.6.3 shows the simple curve basis of the caterpillar

example. For this case the simplest curve looks to be almost the second smoothest curve

of the full space simple curve basis. So a question may be if the second simplest direction

of the full space is in the interesting genetic constraint space. This section will develop

a test for determining if B is a subspace of the interesting genetic constraint space.

Given a subspace B, a hypothesis test will be developed to see if B ⊆ S. This will

be done by showing that the projection of an orthonormal basis of B, denoted by AB,

onto S is equal to AB. Let PS be the projection matrix of S, and AB be an orthonormal

basis of B. Then the test will involve the hypothesis

H0 : PSAB = AB

vs

H1 : PSAB 6= AB

where if H0 is true then B ⊆ S. This will be done by building on the work of Tyler (1981)

and Tyler (1983) which develops a test for a given basis being contained in a subspace

generated by a set of eigenvectors. A similar test, but only for the 1 dimensional case,

is developed by Anderson (1963). Tyler shows a general asymptotic distribution of AB -
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P̂SAB, where P̂S is the matrix which projects onto Ŝ, and uses it to develop several tests.

The work of Tyler (1981) depends on the matrix and estimate of the matrix from

which the eigendirections which generate the true and estimated subspace are chosen.

Therefore first it will be shown that F̂ and F fit into the frame work of Tyler (1981). Once

this is shown then the asymptotic distribution of an(AB - P̂SAB) under H0 is known.

The first property of F that must be shown is that it is symmetric. This can be seen

algebraically, starting with F T

= (PNF
fullPN)T

= (PN)T (F full)T (PN)T

Note that since PN is a projection matrix it follows that P T
N = PN . So therefore F T =

PN(F full)TPN , and to complete the proof it should be shown that (F full)T = F full. The

matrix (F full)T

= (4Id −DDT )T

= 4ITd − (DDT )T

= 4Id − (DT )T (D)T

= 4Id −DDT

= F full

Notice that this is also true of F̂ by the same reasoning.

The symmetry of F and F̂ is shown above so the next property which needs to be

shown is that an(F̂ −F ) converges in distribution to a multivariate normal distribution.

It was already shown in Section 7.2.2 that anvec(F̂ −F ) converges in distribution to NF ,
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which has a multivariate normal distribution with mean 0 and covariance φ′TΣ0φ
′ = ΣF ,

if ‖ Σ− Σ̂ ‖ ≤ λm−λm+1

2
. This condition holds with probability 1 as n→∞

With these two properties, along with the condition ‖ F − F̂ ‖ ≤ λF
k −λ

F
k+1

2
that holds

with probability 1 as n → ∞, the work of Tyler (1981) can be followed to find the

asymptotic distribution of anvec(AB − P̂SAB).

In order to show the asymptotic distribution of anvec(AB − P̂SAB), using Lemma

2 is helpful. Again the fact that P̂S is not always equal to P̂S,0 restricts us from using

Lemma 2 immediately. But a similar argument as when the asymptotic distribution of

anvec(F̂ − F ) was found can be made. Following this argument anvec(AB − P̂SAB) is

equal in distribution to anvec(AB − P̂S,0AB), since anvec(P̂SAB − P̂S,0AB) converges in

probability to 0.

The work of Tyler (1981) can be followed exactly to show that anvec(AB − P̂SAB)

converges in distribution to NAB
, which has a multivariate distribution with mean 0 and

covariance matrix ΣAB
. In order to define ΣAB

some notation needs to be established.

Let ω = (λF1 . . . λ
F
k ) and PλF,dist be the projection matrix onto the eigenspace as-

sociated with the eigenvalues equal to λF,dist. Therefore PS =
∑

λF,dist∈ω PλF,dist . The

estimated analog for this notation is ω̂ = (λ̂F1 . . . λ̂
F
k ) and P̂S =

∑
λ̂F∈ω̂ Pλ̂F .

Using this notation

ΣAB
= (AB ⊗ I)CT

ω ΣFCω(AB ⊗ I)

where Cω =
∑

λF,dist∈ω
∑

µF,dist∈ωc(λF,dist − µF,dist)PλF,dist ⊗ PµF,dist . But often the true

values are not known so the projection matrices and ΣF can be replaced by consistent

estimators. Therefore

Σ̂AB
= (AB ⊗ I)ĈT

ω Σ̂F Ĉω(AB ⊗ I)

where Ĉω =
∑

λ̂F∈ω̂
∑

µ̂F∈ω̂c(λ̂F − µ̂F,dist)Pλ̂F ⊗ Pµ̂F .

A consistent estimator of Σ̂F = φ′(PN)ΣΣφ
′(PN) is φ′(P̂N)Σ̂Σφ

′(P̂N), where ΣΣ is the
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asymptotic variance of anvec(Σ̂−Σ). A consistent estimator Σ̂Σ is given in Tyler (1981).

Therefore the hypothesis test given in Tyler (1981) and Tyler (1983) can be used to

test the hypothesis

H0 : PSAB = AB

vs

H1 : PSAB 6= AB.

Notice that the test is based on the statistic (AB − P̂SAB). The squared lengths of these

columns summed together is the Euclidean sine metric if the dimension of both spaces

is assumed to be equal. The basis of one space, i.e. AB, is projected onto the other

space, i.e. P̂SAB. Then the length between the basis points and the projections, i.e.

(AB − P̂SAB), is used to determine the distance between subspaces.

Also a biologist may be interested in if a chosen subspace, B1, is a genetic constraint

space, i.e. in the nearly null space. For this case the work of Tyler (1981) and Tyler

(1983) can be followed exactly. In this case the biologist may use the simple curve basis

as a tool. The biologist can use the simple curve basis directions to determine a subspace

that is ”biologically interesting”. Then this subspace and be tested to see if it is in the

nearly null space, i.e. a genetic constraint space.
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APPENDIX A

Algebraic Justification

A.1 Algebraic Justification of F full

This section shows that F full, introduced in Section 3.3, has the same eigenvectors

as DDT . Let the eigendecompostion of DDT = ΓsΛsΓ
T
s . This implies that the eigende-

compostion of −DDT = Γs(−Λs)Γ
T
s . We wish to add 4× Id to −DDT in order to have

all eigenvalues be greater than 0. In fact the eigenvalues of F full will be the diagonal of

(4Id − Λs).

We start with F full equal to the matrix

4Id −DDT

= 4Id + Γs(−Λs)Γ
T
s

= 4ΓsΓ
T
s + Γs(−Λs)Γ

T
s

= Γs4IdΓ
T
s + Γs(−Λs)Γ

T
s

= Γs(4Id − Λs)Γ
T
s

This implies that F full has eigenvectors Γs and eigenvalues which correspond to the

diagonal of (4Id − Λs). The value 4 can be replaced with any constant greater than 4

and the above would still hold.

A.2 Algebraic Justification of F

This section will show that the eigendirections of F , introduced in Section 3.3, are

the same as PNDD
TPN and also the eigenvalues of F are equal to the eigenvalues of



−DDT plus 4 for i = 1 . . . dN and 0 otherwise. Where the dimension of the null space is

dN . Let the eigendecomposition of PNDD
TPN equal JMJT , where J is a matrix of the

eigenvectors and M has the eigenvalues along the diagonal and 0’s off the diagonal.

Let the eigendecompostion of DDT = ΓsΛsΓ
T
s . This implies that the eigendecom-

postion of −DDT = Γs(−Λs)Γ
T
s . We wish to add 4 × Id to −DDT in order to have all

eigenvalues be greater than 0. It was shown in Section A.1 that F full = Γs(4Id −Λs)Γ
T
s .

The matrix PN(−DDT )PN = PN [Γs(−Λs)Γ
T
s ]PN = J(−M)JT , while the matrix

F = PNΓs(cId − Λs)Γ
T
s PN . We wish to show that F = J(Z +M)JT , where

Z =

 4IdN
0

0 0


which implies that F has the eigenvalues 4Id −M for i = 1 . . . dN and 0 otherwise and

the eigenvectors J . This would mean that PNDD
TPN and F have the same eigenvectors,

and the directions have simplicity scores which are shifted by a constant except for those

that are 0.

We start with the characterization of F as PNΓs(−Λs + 4Id)Γ
T
s PN .

PNΓs(−Λs + 4Id)Γ
T
s PN

= PNΓs(−Λs)Γ
T
s PN + PNΓs(4Id)Γ

T
s PN

= J(−M)JT + PN(4Id)PN

The last step in the above equations is done by noticing that J(−M)JT = PNΓs(−Λs)Γ
T
s PN

by definition. Also notice that Γs(4Id)Γ
T
s = 4ΓsΓ

T
s = 4Id. Next 4Id is replaced by J4JT ,

so
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PNΓs(−Λs + 4Id)Γ
T
s PN

= J(−M)JT + PNJ4JTPN

By definition of PN the first dN eigenvectors of J will be in the null space and the others

will not. Therefore the projection of Ji for i = 1 . . . dN onto N is equal to Ji. While the

projection of Ji for i = dN + 1 . . . d onto N is equal to 0. Therefore

J(−M)JT + PNJ4JTPN

= J(−M)JT + [J1, J2, . . . , JdN
, 0, . . . , 0]4[J1, J2, . . . , JdN

, 0, . . . , 0]T

= J(−M)JT + [J1, J2, . . . , JdN
, 0, . . . , 0]Z[J1, J2, . . . , JdN

, 0, . . . , 0]T

In the above the zero vectors can be replace by [JdN +1 . . . Jd] since the are being multiplied

by 0.

J(−M)JT + [J1, J2, . . . , JdN
, 0, . . . , 0]Z[J1, J2, . . . , JdN

, 0, . . . , 0]T

= J(−M)JT + JZJT

= J(−M + Z)JT

This shows the F = J(−M + Z)JT , so therefore F has eigenvectors J and eigenvalues

which are the diagonal of (−M + Z). The value 4 can be replaced with any constant

greater than 4 and the above would still hold.
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Germany. URL citeseer.ist.psu.edu/kuss03geometry.html.

169



Lynch M. and Walsh B. (1998). Genetics and Analysis of Quantitative Traits . Sinauer,
Sunderland,Massachesetts.

Meyer K. (1988). Dfreml: a set of programs to estimate components uncer an individual
animal model. Journal of Dairy Science 2, 33–34.

Meyer K. (1989). Restricted maximum likelihood to estimate variance components for
animal models with several random effects using a derivative-free algorithm. Genetics
Selection and Evolution 21, 317–340.

Meyer K. (1998). DRREML, version3.0β user notes .

Muirhead R.J. (1982). Aspects of Multivariate Statistical Theory . Wiley Series in Prob-
ability and Mathematical Statistics. Wiley, New York.

Nijhout H.F. (1994). Insect Hormones . Princeton University Press, Princeton, N.J.

Ramsay J.O. and Silverman B.W. (2002). Applied Functional Data Analysis: methods
and case studies . Springer Series in Statistics. Springer, New York.

Ramsay J.O. and Silverman B.W. (2005). Functional Data Analysis . Springer Series in
Statistics. Springer, New York.

Riddiford L.M., Hirune K., Zhou X. and Nelson C.A. (2003). Insights into the molecular
basis of the hormonal control of molting and metamorphosis from manduca sexta and
drosophila melanogaster. Insect Biochemistry and Molecular Biology 33, 1327–1338.

Schatzman M. (2002). Numerical Analysis: A Mathematical Introduction. Claredon
Press, Oxford.

Scholkopf B., Smola A.J. and Muller K.R. (1998). Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation 10, 1299–1319.

Searle S.R., Casella G. and McCulloch C.E. (1992). Variance Components . Wiley Series
in Probability and Statistics. Wiley, New York.

Stewart G.W. and Sun J.g. (1990). Matrix Perturbation Theory . Computer Science and
Scientific Computing. Academic Press, San Diego.

Tyler D.E. (1981). Asymptotic inference for eigenvectors. The Annals of Statistics 9,
725–736.

Tyler D.E. (1983). A class of asymptotic tests for principal component vectors. The
Annals of Statistics 11, 1243–1250.

van der Vaart A.W. (1998). Asymptotic Statistics . Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, New York.

Vapnik V.N. (1995). The Nature of Statistical Learning . Statistics for engineering and
information science. Springer, New York.

170



Wand M.P. and Jones M. (1995). Kernel Smoothing . Monographs on statistics and
applied probability ; 60. Chapman and Hall, London.

171


