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ABSTRACT 

Yunching Chen: Nanoparticle Delivery of siRNA for Cancer Therapy 
(Under the direction of Leaf Huang, Ph.D.) 

     We have developed lipid-polycation-DNA (LPD) nanoparticles containing DOTAP and 

targeted with polyethylene glycol (PEG) tethered with a targeting ligand such as anisamide 

(AA) to specifically deliver siRNA to cancer cells. Two novel non-glycerol based cationic 

lipids which contain both a guanidinium and a lysine or an arginine residue as the cationic 

headgroup are synthesized to replace DOTAP and form nanoparticles. DSGLA, which 

contains a lysine residue, down-regulated pERK more efficiently in H460 cells than DOTAP.  

DSAA, which contains an arginine residue, induced reactive oxygen species (ROS), triggered 

apoptosis and down-regulated anti-apoptotic protein Bcl-2 in B16F10 melanoma cells. A 

significant improvement in tumor growth inhibition was observed after dosing with targeted 

nanoparticles containing DSGLA or DSAA.      

We further designed a LPD nanoparticle modification with NGR (aspargine–glycine–

arginine) peptide, targeting aminopeptidase N (CD13) expressed in the tumor cells or tumor 

vascular endothelium. The targeted nanoparticles efficiently delivered c-myc siRNA into the 

cytoplasm of HT-1080 xenograft tumor and effectively suppressed c-myc expression and 

triggered cellular apoptosis in the tumor, resulting in a partial tumor growth inhibition. When 

doxorubicin (Dox) and siRNA were co-formulated in the multi-functional nanoparticles, an 

enhanced therapeutic effect was observed. 
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     Furthermore, we explored the application of the multi-functional nanoparticles in multi-

drug resistant cells which are new targets for cancer therapy. In this study, we have used a 

multi-functional anionic LPD (LPD-II) nanoparticle for efficient systemic co-delivery of 

siRNA against c-myc and Dox, into P-gp-positive NCI/ADR-RES tumors in a xenograft 

model. c-Myc siRNA delivered by the targeted nanoparticles significantly down-regulated 

both c-myc and P-gp expressions in the tumor, caused enhanced Dox uptake and sensitized 

tumor cells to the co-delivered Dox. Three daily intravenous injections of c-myc siRNA and 

Dox co-formulated in the targeted nanoparticles showed a significant improvement in tumor 

growth inhibition.  

     We have further developed a LPH (liposome-polycation-hyaluronic acid) nanoparticle 

formulation modified with tumor specific scFv (single chain variable fragment) for systemic 

delivery of small interfering RNA (siRNA) and microRNA (miRNA) into lung metastasis of 

murine B16F10 melanoma. When miR-34a and therapeutic siRNAs were co-formulated in 

C4-targeted nanoparticles, an enhanced anti-cancer effect was observed. 
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1.0 INTRODUCTION AND LITERATURE REVIEW 

RNA interference (RNAi) was first discovered in the plant in the late 1980s (1). 

RNAi, serving as an anti-viral mechanism (2), is a unique regulatory system that uses small 

double stranded RNA (dsRNA) molecules to degrade the target mRNA in a homology-

dependent manner (3). Small interfering RNA (siRNA) of 21-23 bp in length is produced 

from longer dsRNA which is cleaved by Dicer, a dsRNA-specific endonuclease (4-6).  Dicer 

is a complex which includes TAR-RNA binding protein (TRBP). Dicer and siRNA form 

RNA-induced silencing complex (RISC). Argonaute 2, the core component of RISC, cleaves 

the target mRNA between bases 10 and 11 relative to the 5′ end of the antisense strand. The 

cleaved mRNA fragments are released from RISC and degraded.  

RNAi technology has recently been developed as a potential therapeutic agent.  

Comparing with antisense oligonucleotides, siRNAs are more resistant to nuclease 

degradation and show prolonged therapeutic effect (6, 7). Properly delivered RNAi works in 

both cell lines and various primary cells (8). It is broadly, yet specifically, applicable to any 

target gene with which the sequence is known. The promise that siRNA can specifically 

down-regulate ‘‘undruggable’’ gene products brings hope to the “incurable” diseases and 

usher in a new era of pharmaceutical (9). This chapter summarizes on different signaling 

pathways inhibited by siRNA and the advantage made in the usage of targeted siRNA 

delivery system. 
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1.1 SIRNA FOR CANCER TREATMENT      

1.1.1 Inhibition of angiogenesis 

Angiogenesis is a main factor which regulates tumor growth, invasion, and 

metastasis. The vascular endothelial growth factor (VEGF) family has been reported as a key 

mediator of these processes [10]. VEGF, a glycoprotein, can activate the signaling pathway 

to enhance endothelial cell growth, differentiation and migration and protect the pre-existing 

vasculature from death. As shown in Figure 1.1, activation of VEGFR-1 or VEGFR-2 can 

lead to cell survival, proliferation or migration via several different pathways. First, Ras 

pathway is activated to stimulate cell proliferation and survival via the mitogen-activated 

protein-kinase cascade (MAPK). Secondly, VEGF can also phosphorylate phospholipase C 

(PLC-γ), which activates protein kinase C and triggers the MAPK pathway (10). Third, AKT 

pathway is phosphorylated through VEGFR activation in a PI3K-dependent manner. Finally, 

focal adhesion kinase (FAK) activation is mediated via the C-terminal tail of VEGFR-2 and 

is required for cell migration (11, 12).  
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siRNA which down-regulates VEGF expression inhibits tumor growth in HeLa cells, 

ovarian carcinoma or melanoma cells in vitro, as well as in a PtdCho-3 xenograft model (13). 

Blocking VEGF receptor expression is another way to inhibit angiogenesis. It has been 

shown in endothelial cells of different tumor models that siRNAs down-regulating VEGFR-1 

and VEGFR-2 could block angiogenesis. Combination of anti-VEGF and anti-VEGFR 

siRNA improves therapeutic effect (14-16).  

 

 

Figure 1.1 Cellular signaling in tumor and endothelial cells. Target genes to which siRNA has been used 
for down-regulation are identified with a red star. 
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1.1.2 Inhibition of tumor survival and induction of apoptosis 

siRNAs targeting oncogenes that are involved in survival or anti-apoptosis show great 

therapeutic potential for cancer therapy (17). Wnt pathway plays an important role in 

carcinogenesis. Wnt signaling is transduced through Wnt receptors to the beta-catenin-Tcf 

pathway, the c-Jun-N-terminal kinase (JNK) pathway or the Ca2+-releasing pathway. 

Wnt/beta-catenin signaling pathway is highly activated and results in beta-catenin 

accumulation in a variety of human cancer. Anti-Wnt-1 siRNA induced apoptosis in MCF-7 

breast cancer cell line (18). siRNAs blocking Wnt pathway have also been used to target 

cancerous stem cells in non-small cell lung cancer (NSCLC) which has limited response to 

single-agent chemotherapy (19). These results suggest that siRNA inhibiting Wnt pathway 

may serve as a potential anti-cancer agent.  

NF-κB, a transcription factor which regulates various genes involved in different 

pathological states, has been related to oncogenesis and serves an important role on cell 

survival and anti-apoptosis in response to chemotherapy. siRNA is currently used to inhibit 

the function of NF-κB pathway. Combination of p65 siRNA and CPT-11, a topoisomerase I 

inhibitor, significantly delayed tumor growth and reduced tumor size (20). These studies 

demonstrate siRNA targeting NF-κB can not only enhance apoptosis but also increase 

sensitivity to radiation or chemotherapy in tumor cells (20, 21).  

siRNA targeting heparin binding-epidermal growth factor-like growth factor (HB-

EGF), a ligand of epidermal growth factor receptor (EGFR), can inhibit each step involved in 

peritoneal dissemination in human ovarian cancer in vitro and in vivo [21]. EGFR, which is 

over-expressed in a variety of tumors, is related to tumor proliferation, anti-apoptosis, 
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enhanced metastasis and drug resistance (22, 23). As shown in Figure 1.1, activation of 

EGFR results in homo/hetero-dimerization of the receptor, phosphorylation of specific 

tyrosine kinases which trigger several signal pathways. For example, PLC γ binds directly to 

the receptor and activates PKC. The transcription factors, STAT, enters into the nucleus to 

activate the expression of target genes. Ras/Raf/MAPK pathway and PI3K/AKT pathway are 

both triggered by EGFR signaling and lead to transcription activation of target genes related 

with cell proliferation, anti-apoptosis, invasion, and metastasis (24). siRNA against EGFR 

could trigger cell death and inhibit tumor growth in NCI-H460 xenograft tumor and the 

complete tumor growth inhibition lasted for 1 week when combined with cisplatin (25).  

Many cancer cells over-express HER-2/neu which inhibits apoptosis and promotes 

cell growth. HER-2/neu over-expression activates Ras/MAPK pathway which helps cell 

survival and growth (26). Zhou et al. (27) demonstrated that activation of HER-2/neu 

activated AKT, which phosphorylated MDM2, could enhance MDM2-mediated 

ubiquitination and degradation of p53. Loss of p53, a key molecule in regulating cell growth 

and apoptosis, makes the cancer cells resistance to DNA-damaging agents. Her-2 siRNA 

formulated in nanoparticles significantly inhibited Her-2 protein expression and suppressed 

tumor growth in vitro and in vivo (28).   

Telomerase, an enzyme maintaining cancer cell immortality and promoting malignant 

transformation, is abundant in most malignant cells but expressed only at low levels in 

normal somatic cells. Wang et al. (29) evaluated the ability of siRNA targeting a human 

telomerase reverse transcriptase component (hTERT) to inhibit telomerase activity in human 

cancer cells. In their research, tumor-specific siRNA expression system targeting hTERT 

driven by the survivin promoter could inhibit the growth and increase the radiosensitivity of 



 6

human cervical carcinoma cells (HeLa). Shen et al. (30) demonstrated that siRNA targeting 

hTERT inhibited telomerase activity, HCT116 cell growth in vitro and tumorigenicity in 

vivo. They further showed the depletion of hTERT also repressed cell adhesion, migration, 

and invasion by down-regulating the expression of adhesion- and motility-related proteins 

such as c-Met and integrins. Taken together, hTERT siRNA may offer a new potential gene 

therapy strategy for cancer.  

p53, a transcription factor, maintains the normal cell cycle and keeps the genome 

integrity through apoptosis induction in response to DNA damage. p53 is negatively 

regulated by MDM2. Down-regulation of MDM2 by siRNA results in increasing p53 which 

is able to regulate its target genes (31). Loss-of-function p53 gene mutations results in a 

decreased ability of the cancer cells to undergo apoptosis. Martinez et al. (32) showed that 

highly sequence-specific siRNA could suppress the expression of mutated p53 and restored 

the wild-type p53 in cells expressing both forms, thereby promoting apoptosis of the treated 

tumor cells,  reducing the cancer formation and inhibiting the development of malignant 

process.  

Bcl-2 which is over-expressed in many cancer cells such as gastric cancer has a 

strong anti-apoptotic effect. Both Bcl-2 and Bcl-XL, which belong to anti-apoptotic Bcl-2 

family, counteract the activity of pro-apoptotic molecules such as Bid, Bax and Bak and thus 

can suppress pro-apoptotic signaling in the mitochondria. When apoptotic signaling is 

triggered in the mitochondria, cytochrome c escapes from the mitochondrial intermembrane 

space to the cytosol and forms apoptosomes with Apaf-1 and dATP. After apoptosome 

formation, caspase-9 cleaves pro-caspase-3 into the active form caspase-3 and leads to cell 

death (33). Hao et al. (34) reported that siRNAs inhibiting Bcl-2 expression decreased 
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telomerase activity (by about 80 %), promoted apoptosis and delayed the growth of human 

gastric cancer cells. Therefore, knockdown of Bcl-2, an important factor in carcinogenesis, 

may provide an efficient therapeutic approach for treating cancer. 

 1.1.3. Enhancing the chemo-sensitivity 

The occurrence of drug resistance is a main impediment to the success of cancer 

chemotherapy. Cancer cells develop different ways to be resistant to chemotherapy drugs of 

malignant tumors. Over-expression or activation of anti-apoptotic molecules such as Bcl-2 

proteins achieves imbalanced apoptosis regulation and drug resistance (35, 36).  Oncogenes 

which activate cell survival signaling also play the roles to develop drug resistance. For 

example, a calcium-dependent protein crosslinking enzyme, tissue transglutaminase 2 

promoting fibronectin-mediated cell attachment and cell growth contributes to the occurrence 

of the drug-resistant phenotype (37). Furthermore, increased drug-metabolizing enzymes can 

trigger drug resistance through enhanced detoxification of the chemotherapy drugs (38). 

Over-expression of drug transporter proteins, such as P-glycoprotein (P-gp) plays a key role 

to regulate drug resistance. P-gp is directly related to the drug resistance to vinca alkaloids 

(vinblastine, vincristine), anthracyclins (adriamycin, daunorubicin), etoposide and paclitaxel. 

For enhancing the therapeutic effect of these chemotherapeutic agents, siRNAs were 

designed to inhibit MDR1 expression and convert the tumor back to the drug-sensitive state 

[29,30]. 

Furthermore, it has been shown that combination of siRNAs targeting various 

oncogenes and angiogenic factors mediated greater anti-tumor effect. In order to achieve 

siRNA combination approach, Chen et al. (39) have constructed multiple shRNA expression 

vectors that simultaneously targeted VEGF, hTERT and Bcl-xl. The reduction in VEGF, 
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hTERT and Bcl-xl expression significantly repressed tumor growth in human laryngeal 

squamous carcinoma (Hep-2) in vivo. Li et al. (40) showed that selective delivery of siRNA 

targeting c-myc, MDM2 and VEGF by LPD nanoparticles significantly reduced the lung 

metastasis of B16F10 melanoma cells in vivo. These studies suggest that siRNA targeting 

multiple genes in human cancers could prove to be valuable in preventing cancer cell 

proliferation and metastasis and should be considered as a novel approach for cancer therapy.  

Co-delivery of a chemotherapy drug and siRNAs as suppressors of drug resistance is 

an efficient strategy to treat cancer. For example, mesoporous silica nanoparticles can be 

modified to carry Dox inside the pores. The Dox-loaded mesoporous silica nanoparticles 

modified with generation 2 (G2) amine-terminated polyamidoamine (PAMAM) dendrimers 

can bind with siRNA. The bi-functional MSNs which co-delivered Dox and Bcl-2 siRNA 

achieved enhanced apoptosis in multidrug-resistant A2780/AD human ovarian cancer cells 

(41).   

1.1.4 Inhibition of metastasis 

The thrombin receptor [protease-activated receptor-1 (PAR-1)] is up-regulated in 

malignant metastatic melanoma cell lines and in patients with metastatic tumor. Down-

regulation of PAR-1 with lentiviral short hairpin RNA significantly inhibited both tumor 

growth and metastasis of metastatic melanoma cell lines in vivo. PAR-1 Silencing also 

decreased the expression of vascular endothelial growth factor, interleukin-8, and matrix 

metalloproteinase-2 which are involved in the invasion and angiogenesis. Therefore, PAR-1 

can serve as a therapeutic target for inhibition of the melanoma cell growth and metastasis by 

suppression of the angiogenic and invasive factors (42).  
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In summary, siRNA shows great potential in many different anti-cancer strategies. 

However, there are serious obstacles that need to be overcome before it becomes a powerful 

new class of drug: difficulties with delivery, bio-stability, pharmacokinetics, and the off-

target effect, just to name a few. The half life of the naked siRNA is less than an hour in 

human plasma, and the circulating siRNA is rapidly cleared by the kidneys because of their 

relatively small size. Recently, adverse off-target activity due to cross-reactivity between 

RNAi pathways was identified as potential cause of toxicity (43). It is unwise to systemically 

administer naked siRNA as a therapeutic agent. Thus, use of a delivery system and/or 

chemical modification is developed to protect siRNA from degradation and to enhance its 

stability in serum.  

1.2 NON-VIRAL VECTORS FOR SIRNA DELIVERY  

Effective strategy to deliver siRNA systematically into solid or metastatic tumor 

should fulfill at least five requirements – protection of siRNA from degradation and rapid 

clearance, prolonged circulation time after administration, efficient uptake of siRNA by the 

tumor, cellular uptake of siRNA, and endosomal release of siRNA into the cytoplasm (44). 

Some viral vectors can effectively deliver their genomes into the tumor cells and express 

short hairpin RNA (shRNA) for gene silencing (45). But none of the viral vectors can 

efficiently accumulate in the tumor after systemic administration. Their strong 

immunogenicity and other safety issues are also concerns (46). 

It is of great importance to prevent instability and inactivation of siRNA in the human 

blood and avoid the side effect such as off-target effect of siRNA, the interferon response, or 

the activation of Toll-like receptors. This might be accomplished by several different 

strategies: chemical modification of siRNA, inhibition of RNAse family enzymes that 
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degrade siRNA in the blood circulation and use of siRNA carriers such as cationic liposomes 

and polymers [37,38].  These non-viral vectors are commonly used.  

1.2.1 polycationic polymer based polyplexes 

Systemic delivery of siRNA to tumor cells continues to be a major hurdle. Several 

synthetic cationic polymers and oligopeptides have been designed as systemic, nonviral 

delivery vectors for polynucleotides. The drawback of the carrier system is the positively 

charged complex nonspecifically interacts with anionic plasma proteins or other blood 

components, such as heparan sulfate and hyaluronic acid, resulting in the inactivation of the 

vector and undesired toxicity.  

Therefore, using a water-soluble polymer, such as poly (ethylene glycol) (PEG) and 

polysaccharides, to modify the polymer/siRNA complex have been a major strategy to 

decrease such non-specific interactions, and thereby prolong the blood circulation time. Sato 

et al. (47) studied a cationic comb-type copolymer (CCC) consisting of a polycation 

backbone and side chains of water-soluble polymer and found that the dense brush of the 

water-soluble side chain polymer enhanced interpolyelectrolyte complex between the 

polycation backbone and siRNA. Furthermore, the CCC/siRNA complex exhibited a 

protective effect against nuclease activity and produced prolonged circulation time of siRNA 

in mouse.  

Bartlett and Davis [40] developed cyclodextrin-containing polycations (CDP) 

nanoparticles for siRNA delivery. Inclusion complex formed between adamantane (AD)-

containing molecule and the β-cyclodextrin allowed the attachment of poly (ethylene glycol) 

(AD-PEG) for steric stabilization and a targeting ligand (AD-PEG-transferrin) for target 

specific delivery of the siRNA. The nanoparticles protected siRNA from nuclease 



 11

degradation, prevented aggregation at physiological salt concentrations and avoided 

complement fixation. CDP vector may serve as a tool for targeted siRNA delivery. 

For developing a safe and serum stable carrier system that can rapidly release siRNA 

from endosome, calcium phosphate (CaP) is incorporated into the formulation. The siRNA-

entrapped CaP nanoparticles made with poly(ethylene glycol)-block-poly(methacrylic acid) 

(PEG-PMA) was designed by Kakizawa et al. (48). PMA nanoparticles undergo a 

conformational transition at pH 4–6, which is similar to the endosomal pH. The formulation 

can protect the entrapped siRNA from degradation until it arrives at the acidic endosome, 

where the siRNA escapes the nanoparticles and enters into the cytoplasm. They demonstrated 

a highly efficient transfection activity of siRNA using nano-sized calcium phosphate crystals 

with appreciable serum stability.  

Polyethyleneimine (PEI) is a synthetic polymer which contains many cationic charges 

and a protonable amino group in every third position [42]. PEI condenses DNA and delivers 

it into mammalian cells in vitro and in vivo. It is also known to exhibit a “proton sponge 

effect” due to its strong buffering capacity at mildly acidic pH in the endosome and lysosome 

to facilitate the escape of DNA into the cytoplasm (49). More recently, PEI was used to 

deliver siRNA, but the siRNA has to be polymerized into greater lengths to increase its 

interaction with PEI (50). Werth et al. (51) also demonstrated that the non-covalent 

complexation of siRNA and a commercially available polymer, Jet-PEI, led to enhanced 

siRNA stabilization and delivery efficacy. They also showed that lyophilized PEI/siRNA 

complex retained the activity and the stability to serve as a ready-to-use reagent for specific 

and efficient silencing of genes. 
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Inorganic particles such as gold nanoparticles modified with polymers served as safe 

and effective carriers of siRNA. siRNA was conjugated to the gold nanoparticles modified 

with the hydrophilic polymer poly(ethylene glycol) (PEG) via biodegradable disulfide 

linkages. The gold nanoparticles coated with a library of end-modified poly(beta-amino 

ester)s (PBAEs) showed efficient siRNA delivery in vitro (52). Polyethyleneimine (PEI)-

capped gold nanoparticles (AuNPs) were recently developed to efficiently and safely deliver 

siRNA. PEI served as both the reductant and stabilizer to generate PEI-capped AuNPs and 

interact with siRNA. siRNA against an oncogene polo-like kinase 1 (PLK1) delivered by 

PEI-capped AuNPs/siRNA showed stronger gene silencing effect and induced more 

apoptosis in MDA-MB-435s cells than siRNA delivered by PEI alone. Without the unwanted 

toxicity, PEI-capped AuNPs appear to be suitable carriers for siRNA therapy (53) 

Chitosan, a cationic polymer, has also been used to delivery siRNA. Morten et al. 

developed the easy-to-use freeze-dried chitosan/siRNA complex capable of efficient 

knockdown of target gene in vitro with an extended storage period.  These systems provide 

the advantage for RNAi based high throughput screening, surface mediated siRNA delivery 

for implants as well as storage of siRNA therapeutics (54). 

The Dynamic Polyconjugate technology is recently developed by Rozema et al. (55). 

A membrane-active polymer is designed to reversibly mask its activity until it reaches the 

acidic environment of the endosome. It also possesses the features of prolonged circulation 

time, reduced toxicity and targeted delivery to the hepatocytes in vivo after i.v. 

administration. They demonstrated that siRNA formulated in the dynamic polyconjugate 

could effectively silence either apolipoprotein B (apoB) or peroxisome proliferator-activated 

receptor alpha (PPARa) in the mouse liver.  
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1.2.2 Lipid based lipoplex and liposomes  

Lipid based lipoplex and liposomes have been applied for the delivery of siRNA to 

provide an improved pharmacokinetic property and a decreased toxicity profile. Liposomes 

are composed of a single or multiple lipid bilayers and an aqueous core. Usually, a cargo is 

entrapped in the aqueous core of the liposomes. In contrast, a typical feature of lipoplex is a 

heterogeneous association of cationic lipid and nucleic acid (56). Generally, liposomes are 

more stable than lipoplex in biological fluid.  

Zimmermann et al. [48] developed a liposomal formulation, i.e., stable nucleic acid 

lipid particles (SNALP), for systemic delivery of siRNA in non-rodent species. siRNA 

against apoB formulated in SNALP could silence the disease target apoB in the liver 48 h 

after administration in cynomolgus monkey. Twenty four hours after the treatment, apoB 

protein, serum cholesterol and low-density lipoprotein levels were significantly reduced and 

the therapeutic effect lasted for 11 days. Their studies demonstrated that liposomal 

formulation of siRNA could be an efficient strategy for silencing hepatocyte genes.  

To avoid the drawback of cationic lipid such as immunogenicity and instability in the 

serum, neutral liposomal delivery systems have also been developed for siRNA delivery. 

Halder et al. (57) successfully delivered siRNA against FAK into human ovarian tumor in 

nude mice by neutral liposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). The 

siRNA formulation inhibited FAK expression for up to 4 days in tumor tissue and reduced 

mean tumor weight by 44% to 72% in three different human ovarian cell lines (HeyA8, 

A2780-CP20, and SKOV3ip1). This group also reported recently that siRNA targeting IL-8 

incorporated into neutral liposomes (siRNA-DOPCs) reduced the mean tumor weight by 

32% and 52% in the HeyA8 and SKOV3ip1 mouse models and also decreased microvessel 
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density of these tumors (58). Since the liposomes did not contain charges, it is unclear how 

siRNA could be efficiently encapsulated in the liposomes. 

To prolong the circulation time of liposomes, Morrissey et al. [51] reported a 

sustained circulation in the blood of a formulation of chemically modified siRNA employing 

polyethylene glycol (PEG)-modified liposomes. They demonstrated that siRNA against HBV 

encapsulated by the modified liposomes could be delivered to the mouse liver and reduced 

the HBV DNA titer in vivo. Ueno et al. [52] have developed the LPD which showed 

enhanced stability and increased transfection efficiency. Li and Huang (59) modified the LPD 

formulation for siRNA delivery. The tumor-targeted nanoparticles LPD-PEG-anisamide 

(LPD-PEG-AA) increased the tumor uptake of siRNA and the associated gene-silencing 

effect, resulting in an inhibition of tumor growth in vitro and in vivo.  

Efficient endosomal release of siRNA into the cytoplasm can significantly improve 

siRNA delivery. pH-dependent (PD) liposomes have been designed for endosomal release of 

siRNA (60). A polycationic block, either poly [2-(dimethylamino)ethyl methacrylate] (31 or 

62 DMA repeat units) or polylysine (21 K repeat units), serves as an anchor for PEG. 1,2-

dioleoyl-3-dimethylammonium-propane (DAP), a titratable lipid, was added into the 

liposomes to enhance the net cationic character at the acidic condition, resulting in polymer 

release and membrane fusion in the endosomes. Auguste et al. demonstrated that the polymer 

release from PD liposomes increased siRNA-mediated gene silencing effect. 

Wrapsome (WS) is developed by using both polymer and liposome as siRNA 

carriers. It is composed of a core containing siRNA and a cationic lipofection complex and 

an envelope containing a neutral lipid bilayer and hydrophilic polymers. WS prolonged the 

blood circulation of siRNA and efficiently delivered siRNA into the tumor site. siRNA 



 15

against KLF5 which plays a role in tumor angiogenesis delivered by WS reduced 

angiogenesis and exhibited significant antitumor effect (61). 

1.3 NON-VIRAL TARGETED SIRNA DELIVERY TO TUMOR  

For cancer therapy, an effective delivery system is designed to specifically deliver 

functional siRNA into the target tumor cells and reach an effective intracellular 

concentration. A suitable targeting ligand is usually added into the carrier to achieve tumor 

specific siRNA delivery. The following is a review of different targeting ligands used for 

delivery. 

1.3.1 Peptides 

The RGD peptide has been used to target siRNA to integrins over-expressed in the 

tumor neovasculature. Schiffelers et al. [55] attached siRNA against VEGF receptor to 

PEGylated PEI with an RGD peptide as a targeting ligand. They showed suppression of 

angiogenesis, reduction of tumor growth in the murine neuroblastoma N2A xenograft tumor. 

De Wolf (62) further designed nanoparticles assembled upon complexation of siRNA with 

cationic liposome (DOTAP/DOPE) and RGD-PEG-PEI, a PEGylated polymer that carries 

RGD. They showed that both the circulation kinetics and the overall tumor accumulation of 

the siRNA complex were similar to non-complexed siRNA. However, the intratumoral 

distribution of siRNA was improved by the carriers. The benefits from using the targeted 

carrier were attributed to the specific transport towards the tumor mediated by the RGD 

ligand.  

Peptide carriers have been developed that have proved effective for siRNA delivery. 

Leng et al. (63) demonstrated that the highly branched polymers composed of histidine and 

lysine were effective carriers of siRNA. Furthermore, RGD containing peptide carriers 
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showed more siRNA silencing activity in an endothelial cell line (SVR-bag4) than the 

carriers without RGD peptide. Thus, RGD peptide can be used as a targeting ligand for 

siRNA delivery into the tumor neovasculature and enhance the therapeutic effect. 

A tumor-homing peptide (F3) was found to target the cell-surface nucleolin (64). It 

binds to the surface of the tumor cells and is internalized by the tumor cells when 

administered systemically as a free peptide [59]. Derfus et al. (65) used a PEGlyated 

quantum dot (QD) core as a scaffold conjugated with both siRNA and tumor-homing peptide 

(F3) on the particle surface. siRNA attached to the particle by a disulfide cross-linker showed 

a greater silencing effect than that attached by a nonreducible thioether linkage. Delivery of 

the enhanced green fluorescence protein (EGFP) siRNA by F3/siRNA-QD complex to 

EGFP-transfected HeLa cells led to significant knockdown of the EGFP signal. By replacing 

EGFP siRNA with other therapeutic siRNAs, the targeted complex may be useful to treat 

cancer. 

1.3.2 Small molecular weight ligands 

Yoshizawa et al. (28) developed a folate-linked nanoparticle (NP-F) for tumor-

targeted siRNA delivery. NP-F was composed of cholesteryl-3-beta-carboxyamidoethylene-

N-hydroxyethylamine (OH-Chol), Tween 80 and folate-poly(ethylene glycol)-distearoyl-

phosphatidylethanolamine conjugate (f-PEG(2000)-DSPE). NP-F could delivery higher 

amounts of siRNA into the cytoplasm than the non-targeted nanoparticles in human 

nasopharyngeal KB cells, which over-expressed the folate receptor (FR). Her-2 siRNA 

formulated by NP-F significantly and selectively suppressed Her-2 protein expression and 

inhibited tumor growth in vitro and in vivo. These results provided optimism for tumor-

targeted siRNA therapy. 
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Tenascin-C is an extracellular matrix glycoprotein highly expressed in a range of 

tumors, but not in normal tissues. Shao et al. (66) developed a liposomal carrier system, 

using sulfatide as a targeting ligand which binds with tenascin-C. The targeted liposomes 

bound specifically with the tenascin-C expressing glioma cells. After binding to the 

extracellular matrix, the sulfatide-containing liposomes were internalized via both 

caveolae/lipid raft- and clathrin-dependent pathways and the cargoes in the liposomes were 

released into the cytoplasm. Such targeted, lipid-based intracellular delivery shows promise 

for effective siRNA mediated cancer therapy in the future. 

Li and Huang (59) have developed a tumor-targeted LPD formulation for siRNA 

delivery. (Figure 1.2). This formulation included anisamide (AA), which binds with the 

sigma receptor over-expressed in NCI-H460 lung cancer cells. The tumor-targeted 

nanoparticles LPD-PEG-anisamide increased the siRNA delivery efficiency and the gene-

silencing effect in vitro. siRNA against survivin formulated by LPD-PEG-AA induced 90% 

of apoptosis and sensitized the cells to cisplatin in vitro. Four hours after IV injection of 

LPD-PEG-AA into a xenograft model, 70-80% of the injected siRNA/g accumulated in the 

tumor, approximately 10%/g was detected in the liver and approximately 20%/g recovered in 

the lung (25). siRNA against the epidermal growth factor receptor (EGFR) delivered by 

LPD-PEG-AA significantly silenced EGFR in the tumor, induced approximately 15% tumor 

cell apoptosis and completely inhibited tumor growth for 1 week when combined with 

cisplatin. They also selectively delivered a mixture of siRNA against MDM2, c-myc, and 

VEGF co-formulated in LPD-PEG-AA into a lung metastasis model of B16F10, sigma 

receptor–expressing murine melanoma cells (40). siRNAs delivered by targeted nanoparticle 

caused simultaneous silencing of each of the oncogenes in the metastatic nodules. Two 
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Figure 1.2 Illustration of preparation of LPD or LPH nanoparticles containing siRNA  
 

consecutive IV injections of siRNA formulated in the LPD-PEG-AA significantly reduced 

the lung metastasis ( 70–80%) and significantly prolonged the mean survival time of the 

animals by 30% as compared to the untreated controls. A lipid coated calcium phosphate 

nanoparticle (LCP) was recently developed for improvement of siRNA silencing effect by 

enhanced siRNA release from the endosome (67). LCP contains a core which is composed a 

biodegradable nano-sized calcium phosphate precipitate and siRNA. After entering the cells, 

siRNA was released from LCP into the cytoplasm at acidic pH in the endosome. Luciferase 

siRNA delivered by the targeted LCP suppressed about 70% and 50% of luciferase activity 

of the solid tumors in a xenograft model. These studies indicate that surface-modified LPD 

and LCP may serve as a potent vector for RNAi-based tumor therapy. 

1.3.3 Antibodies and Proteins 

The development of a systemically administered, tumor-specific immunoliposome 

nanocomplex with high transfection efficiency could serve as a carrier for siRNA delivery 

and be utilized as effective anticancer clinical modalities when formulated with a therapeutic 

siRNA. 
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A receptor-specific monoclonal antibody delivery system and avidin-biotin 

technology were used to deliver siRNA into brain tumor across the blood-brain barrier (68). 

The siRNA was mono-biotinylated on either terminus of the sense strand, in parallel with the 

production of a conjugate of the targeting antibody and streptavidin. Intravenous 

administration of the transferrin receptor antibody attached siRNA caused 69-81% 

suppression in luciferase gene expression in the intracranial brain cancer (C6 or RG-2) model 

in vivo. This study showed a therapeutic potential for brain cancer gene therapy. 

Pirollo et al. (69) have developed an anti-transferrin receptor (TfR) single-chain 

antibody fragment-directed nanoimmunoliposome to deliver siRNA to both primary tumor 

and metastatic disease. A pH-sensitive histidine-lysine peptide and a modified hybrid (DNA-

RNA) anti-HER-2 siRNA molecule were used to enhance the efficiency of this complex. The 

nanoimmunoliposome anti-HER-2 siRNA complex could silence the target gene and its 

downstream pathway components in vivo, sensitize the tumor cells to chemotherapeutic 

agent, and inhibit tumor growth in a pancreatic cancer model.  

A polymer, OEI-HD (beta-propionamide-cross-linked oligoethylenimine) conjugated 

with transferrin were used for siRNA delivery into the mouse Neuro2a neuroblastoma cells 

in vitro and in vivo (70). siRNA against the Ras-related nuclear protein Ran delivered by 

transferrin-conjugated OEI-HD (three intravenous applications at 3-day interval) resulted in 

>80% reduced Ran protein expression, apoptosis, and a reduced tumor growth in a xenograft 

Neuro2A tumor models without unspecific toxicity. Bartlett et al. (71) used positron emission 

tomography (PET) and bioluminescence imaging to quantify the in vivo biodistribution and 

function of siRNA formulated in cyclodextrin-containing polycation nanoparticles. Both non-

targeted and transferrin-targeted siRNA nanoparticles showed similar biodistribution and 
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tumor localization through the enhanced permeability and retention (EPR) effect [66]. 

However, the transferrin-targeted siRNA nanoparticles decreased luciferase activity in the 

tumor more than the nontargeted nanoparticles. Their results demonstrated that the function 

of the targeting ligand is to enhance the cellular uptake in tumor cells rather than tumor 

localization. Li et al. (25, 59) have reached the same conclusion in their work using the 

anisamide ligand.  

1.3.4. Aptamers 

Aptamer is a nucleic acid molecule selected for high affinity binding with a protein 

target (72). McNamara et al. (73) have developed an aptamer-siRNA chimeric RNA capable 

of specific binding and delivery of therapeutic siRNAs into the target cells. The aptamer 

portion of the chimera had the ability to bind with PSMA, a cell-surface receptor over-

expressed in prostate cancer cells and tumor vascular endothelium, but not the normal cells. 

siRNA delivered by aptamer-siRNA chimera were internalized and processed by Dicer, 

resulting in repression of the target protein and cell death. siRNA against a survival gene 

delivered by aptamer-siRNA chimera also specifically inhibited tumor growth and mediated 

tumor regression in a xenograft model of the prostate cancer. The formulation did not contain 

an endosome release mechanism. So, how the chimera could escape the endosomes is not 

clear. 

1.4 CONCLUSION 

Various targeted siRNA delivery systems described above serve as a promising 

approach for the development of safer and effective therapeutics for cancer. However, the 

following issues are to be dealt with before a full-scale development effort is embarked. 
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1.4.1 Safety 

One of the important features of a good delivery system is its lack of nonspecific 

immune stimulation. For example, transferrin-conjugated OEI-HD did not induce acute 

toxicity or significant changes in the host body weight, hematology parameters, or liver 

enzymes (AST, ALT, or AP). siRNA formulated by LPD-PEG-AA caused a low level of 

toxicity based on the serum level of liver enzymes and body weight monitoring during the 

treatment. The carrier itself only showed little immunotoxicity (IMT). To improve the safety 

of siRNA delivery, Chono et al. (74) have developed a nanoparticle formulation [liposomes-

protamine-hyaluronic acid nanoparticles (LPH-NP)] for systemically delivering siRNA into 

the tumor. siRNA formulated in the targeted LPH-NP showed similar gene silencing effect as 

LPD-PEG-AA, but the targeted LPH-NP showed very little immunotoxicity in a wide dose 

range (0.15 - 1.2 mg siRNA/kg) compared with LPD-NP (liposome-protamine-DNA 

nanoparticles) which had a much narrower therapeutic window (0.15-0.45 mg/kg)(Figure 

1.2). 

1.4.2 Efficacy 

As an effective therapeutics for oncology applications, siRNA formulated in 

nanoparticles can accumulate in the tumor through the EPR effect independent of the 

targeting ligand. However, targeting ligand attached to the nanoparticles can enhance the 

cellular uptake of siRNA and lead to enhanced potency compared to the non-targeted 

formulation. Receptor mediated endocytosis of the targeted nanoparticles is considered a key 

feature for effective siRNA delivery. An ideal receptor targeted by the nanoparticles should 

have several properties, such as over-expression on the tumor cells rather than the normal 
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cells, homogeneous distribution on all tumor cells, accessibility from the blood circulation 

and rapid internalization of carried cargo after binding to the target cells.  

Internalization often occurs through the receptor-mediated endocytosis. For example, 

when the  pH sensitive folate-targeted nanoparticles bind with the folate receptor, the 

nanoparticles are internalized into the endosomes. As the pH in the endosome decreases, the 

formulated siRNA is released from the endosome into the cytoplasm. At the same time, the 

folate receptor released from the endosome returns to the cell membrane and starts another 

round of internalization through binding with new folate-targeted nanoparticles (75). A 

RGD-oligolysine containing cationic liposome showed the ability to deliver plasmid DNA 

through endocytosis. The vector complex internalizes into the early endosomes within 5 min, 

and then enters into the late endosomes and the lysosomes (76). Since the vector 

internalization and trafficking is important for siRNA delivery, a better understanding of 

these processes should help design improved carriers. 

Gene therapy is a potential way for the treatment of cancer. Major limitations of 

siRNA therapy such as low stability and poor cellular uptake need to be overcome by using a 

suitable vector. An ideal carrier system for tumor targeted siRNA delivery should form 

neutrally charged and nano-scale particle size to achieve a high EPR effect. Additional 

component such as PEG should be added into the nanoparticles to maintain prolonged 

circulation. A suitable targeting ligand facilitates the binding to the tumor cells and the 

internalization of the nanoparticles into the endosomes. The ability to release the cargo from 

the endosome to the cytoplasm such as the proton sponge effect is another key feature for 

improving siRNA delivery. Fortunately, siRNA does not need to penetrate into the nucleus, 

which is a significant barrier for DNA. In conclusion, siRNA has an excellent potential to 
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become a class of novel cancer therapeutics. A suitable carrier that can delivery siRNA into 

the tumor tissue and achieve the therapeutic effect is the most important issue facing the 

field. In particular, targeted nanoparticles offer the potential to improve the pharmacokinetics 

of siRNA, while providing clinical applications for diagnostic imaging and cancer therapy.  

1.5 AIMS AND OBJECTIVES OF THIS DISSERTATION PROJECT 

The Huang lab has designed LPD nanoparticles which can efficiently delivery of 

siRNA to the solid and metastasis tumor and silence the target gene. However, the current 

formulation only induced partial apoptosis and growth inhibition. We hypothesize that this 

was due to alternative pathways of proliferation in the cancer cell. This project is to further 

enhance the activity and expand the therapeutic applications of LPD nanoparticles via the 

following strategies. First is to design novel cationic lipids that can enhance the therapeutic 

activity of the LPD nanoparticles for efficient tumor killing in a xenograft model. Second is 

to expand the application of the LPD nanoparticles to treat different tumor models or target 

tumor vasculature by designing a peptide-targeted LPD nanoparticle. Third is to design and 

test a combination therapy using multi-functional LPD nanoparticle formulations that contain 

both siRNA and a chemotherapy drug to induce synergistic tumor cell apoptosis and 

overcome drug resistance. 

1.6 ORGANIZATION OF DISSERTATION  

The framework for this project is presented in the following Chapters. A novel lipid 

containing a lysine residue that delivers siRNA in lung cancer cells is presented in Chapter 

2. Chapter 3 describes another novel lipid containing an arginine residue delivers siRNA to 

the murine melanoma lung cancer cells. Chapter 4 presents a nanoparticle formulation 

targeted with tumor specific peptide ligand co-delivers c-myc siRNA and Dox for anticancer 
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therapy. A multi-functional nanoparticle formulation, i.e., LPD-II, delivering both siRNA 

and Dox to overcome drug resistance in cancer is described in Chapter 5. A nanoparticle 

formulation modified with scFv that co-delivered siRNA and miRNA into B16F10 lung 

metastases is presented in Chapter 6. Discussions, conclusions and directions for future 

research are presented in Chapter 7. 



2.0 NOVEL CATIONIC LIPID THAT DELIVERS SIRNA AND ENHANCES 

THERAPEUTIC EFFECT IN LUNG CANCER CELLS 

We have developed LPD nanoparticles containing 1,2-dioleoyl-3-

trimethylammonium-propane (DOTAP) and targeted with polyethylene glycol (PEG) 

tethered with anisamide (AA) to specifically deliver siRNA to H460 human lung carcinoma 

cells which express the sigma receptor. A novel non-glycerol based cationic lipid which 

contains both a guanidinium and a lysine residue as the cationic headgroup, i.e., DSGLA, 

down-regulated pERK more efficiently in H460 cells than DOTAP. As demonstrated by 

using fluorescently labeled siRNA, LPD-PEG-AA prepared with DSGLA efficiently 

delivered siRNA to the cytoplasm of the H460 cells. Although the siRNA delivered by LPD-

PEG-AA containing either DOTAP or DSGLA could effectively silence EGFR expression, a 

synergistic cell killing effect in promoting cellular apoptosis was only observed with DSGLA. 

The fluorescently labeled siRNA was efficiently delivered into the cytoplasm of H460 

xenograft tumor by the LPD-PEG-AA containing either DOTAP or DSGLA 4 h after 

intravenous injection. Three daily injections (0.6 mg/kg) of siRNA formulated in the LPD-

PEG-AA containing either DOTAP or DSGLA could effectively silence the epidermal 

growth factor receptor (EGFR) in the tumor, but the formulation containing DSGLA could 

induce more cellular apoptosis. A significant improvement in tumor growth inhibition was 

observed after dosing with LPD-PEG-AA containing DSGLA. Thus, DSGLA served as both 
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a formulation component as well as a therapeutic agent which synergistically enhanced the 

activity of siRNA. 

2.1 INTRODUCTION  

Non-small cell lung cancer (NSCLC) is the most common lung cancer which is the 

most common cancer and the major cause of death throughout the world according to the 

World Health Organization (WHO) cancer report (77). Because of their propensity to 

metastasize early and develop resistance to a wide range of anticancer drugs, the prognosis of 

lung cancer patients has had limited improvement and innovative strategies that effectively 

treat lung cancer are urgently needed. 

Recently, new approaches such as immunotherapy, targeted agents and gene therapy 

are developed for cancer therapy. Success of gene therapy critically depends on the safety 

and efficacy of the transfection vector used in delivering the therapeutic gene (78, 79). Small 

interfering RNA (siRNA) that can induce sequence-specific gene silencing has been 

developed as a potential cancer therapy agent (80-82). Cancer growth inhibition was 

observed after siRNA mediated knockdown of the over-expressed oncogenes such as EGFR 

that are essential to NSCLC proliferation (25). Cationic liposomes as well as viral vectors 

have been shown to be powerful tools to deliver siRNA (83).  

To enhance gene transfection effect, various cationic liposomes have been 

synthesized to deliver plasmid DNA, antisense or siRNA to the cytoplasm or nucleus (84-88). 

A cationic lipid generally contains two parts - a cationic headgroup and a hydrophobic 

moiety such as hydrocarbon chains (89-91). One of the critical factors that influences nucleic 

acid delivery is the composition of the cationic headgroup (92). For example, a spacer 

between the headgroup of cholesterol-based gemini lipids increases the serum compatibility 
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of the lipoplex (93, 94). Spermine or spermidine containing headgroup has the ability to 

condense nucleic acid. Kim et al. demonstrated that a lysine headgroup can enhance gene 

expression efficiency and decrease cytotoxicity (95). Obata et al. reported that cationic lipids 

bearing lysine or arginine as a cationic headgroup showed higher gene transfection activity, 

more serum compatible, and lower cytotoxicity compared with Lipofectamine2000 (92). 

Furthermore, cationic transfection amphiphiles containing guanidinium functionality, which 

mimics the arginyl residues in DNA binding protein such as histones and protamine, were 

first reported by Vigneron et al. (96). The guanidinium group remains protonated over a 

much wider range of pH than other basic groups due to its high pKa value. It also forms 

characteristic parallel zwitterionic hydrogen bonds N-H+…O- with phosphate ions. The 

guanidinium groups are also capable of forming hydrogen bonds with nucleic acid bases, 

thus further enhancing the capacity to deliver plasmid DNA or siRNA. 

Our lab has developed LPD nanoparticles which are composed of cationic liposomes 

and polycation-condensed DNA to deliver plasmid DNA or siRNA (25, 97, 98). We have 

demonstrated that siRNA can be formulated in LPD and causes gene silencing activity in the 

treated cells. The LPD formulation contained a commercially available cationic lipid DOTAP. 

However, DOTAP activates ERK in the dendritic cells (99). ERK is a member of the 

mitogen activated protein kinase (MAPK) family, activation of which could lead to an anti-

apoptosis effect.  

In order to combat this potential problem in cancer therapy and improve siRNA 

delivery efficacy, we developed a novel non-glycerol based cationic lipid DSGLA which 

contains both guanidinium and lysine residues as a cationic headgroup. We substituted the 

DOTAP with DSGLA to form LPD nanoparticles for siRNA delivery in vitro and in vivo. 
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Here we report the studies of formulating EGFR siRNA in LPD prepared with DSGLA. We 

have shown enhanced cellular uptake of siRNA, pronounced down-regulation of the target 

gene, increased apoptosis of the tumor cells and improved antitumor activity of the novel 

formulation as compared with the formulation containing DOTAP. 

2.2 MATERIALS AND METHODS  

2.2.1 Materials  

DOTAP and cholesterol were purchased from Avanti Polar Lipids, Inc. (Alabaster, 

AL). Protamine sulfate (fraction X from salmon) and calf thymus DNA (for hybridization, 

phenol-chloroform extracted and ethanol precipitated) were from Sigma-Aldrich (St. Louis, 

MO). The EGFR and control siRNA sequences are adopted from the previous studies (25). 

Synthetic 19-nt RNAs with 3’ dTdT overhangs on both sequences were purchased from 

Dharmacon (Lafayette, CO). The sequence of EGFR siRNA was 5’-

AACACAGTGGAGCGAATTCCT-3’ and high-purity control siRNA with sequence 5’-

AATTCTCCGAACGTGTCACGT-3’ was also synthesized in Dharmacon. For quantitative 

studies, cy3 was conjugated to 5’ sense sequence. 5’ cy3 labeled siRNA sequence was also 

obtained from Dharmacon. NCI-H460 human lung cancer cells were obtained from 

American Type Culture Collection. Cells were maintained in RPMI-1640 medium 

supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA), 100 U/ml penicillin, 

and 100 μg/ml streptomycin (Invitrogen, Carlsbad, CA). 

2.2.2 Experimental animals 

Female athymic nude mice of age 6–8 weeks were purchased from Charles River 

Laboratories (Wilmington, MA). All work performed on animals was in accordance with and 

permitted by the University of North Carolina Institutional Animal Care and Use committee. 
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2.2.3 Synthesis of DSGLA 

Detailed synthetic procedures, spectral and purity data delineated in another 

manuscript (Bathula et al., unpublished).                                                                                                             

2.3.4 Preparation of Liposomes.  

A cationic lipid and cholesterol in 1:1 mole ratio were dissolved in a mixture of 

chloroform in a 5 ml glass vial. The solvent was removed with a thin flow of moisture-free 

nitrogen gas, and the dried lipid film was then kept under high vacuum for 8 h. An amount of 

5 mL of sterile deionized water was added to the vacuum-dried lipid film, and the mixture 

was allowed to swell overnight. The vial was then vortexed for 2-3 min at room temperature 

and sonicated in a bath type sonicator for 5 min followed by extrusion (Hamilton Co., Reno, 

NV, USA) through 400, 200 and 100 nm membrane filters and was stored at 4°C before use. 

The resulting clear aqueous liposomes were used in forming LPD.  

        2.3.5 Preparation of PEGylated LPD Formulations.  

                  LPD were prepared as previously described with slight modifications (100). Briefly, 

small unilamellar liposomes consisting of DOTAP (or DSGLA) and cholesterol (1:1 molar 

ratio) were prepared by thin film hydration followed by membrane extrusion. The total lipid 

concentration of the liposome was fixed at 10 mM. LPD was composed of DOTAP (or 

DSGLA) /cholesterol liposome, protamine, and the mixture of siRNA and calf thymus DNA 

(1:1 weight ratio). To prepare LPD, 6 µL of protamine (2 mg/mL), 47 µL of deionized water, 

and 8 µL of a mixture of siRNA and calf thymus DNA (2 mg/mL) were mixed in a 1.5 mL 

tube. The complex was allowed to stand at room temperature for 10 min before the addition 

of 40 µL of DOTAP (or DSGLA)/cholesterol liposome (total lipid concentration = 10 mM). 

LPD nanoparticles were kept at room temperature for another 10 min before further 
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application. PEGylated LPD formulations were prepared by the postinsertion method (101, 

102). Briefly, 100 µL of preformed LPD was mixed with 0.63-16 µL of DSPE-PEG or 

DSPE-PEG-AA (20 mg/mL) and then incubated at 50-60 ۫C for 10 min. The resulting 

formulations were allowed to cool to room temperature before use. The particle size of LPD 

and PEGylated LPD was measured by using a Coulter N4 Plus particle sizer (Beckman 

Coulter, San Francisco, CA). Particle sizes were reported as the mean ± standard deviation. 

For size exclusion chromatography, either 10 mol% NBD-cholesterol labeled liposomes 

containing DSGLA or DOTAP or 10 mol% DSPE-PEG2000-CF labeled DSPE-PEG2000 was 

used for the preparation of the PEGylated LPD. Ten μl of the samples was loaded onto a 

phosphate buffered saline (PBS) pre-equilibrated Sepharose CL 2B column (1 × 10 cm). 

Column was eluted with PBS. The eluted fractions (200-500 μl) were collected, diluted 1:1 in 

ethanol and detected for fluorescence intensity with a plate reader (λex: 485 nm, λem: 535 

nm) (PLATE CHAMELEON Multilabel Detection Platform, Bioscan Inc., Washington, DC).   

2.3.6 Analysis of ROS in H460 cells  

H460 cells (1 × 106 per well) were seeded into 12-well plates. Cells were treated with 

10 μM DSGLA or DOTAP liposomes in serum containing medium at 37 ۫C for 30 min. Then 

cells were incubated with 20 mM 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) 

(Sigma-Aldrich) in serum containing medium for 30 min at 37 °C. Cells were quickly 

washed and immediately analyzed by flow cytometry.  

2.3.7 Cellular Uptake and Quantification Study.  

H460 cells (105 per well) were seeded in 12-well plates (Corning Inc., Corning, NY) 

12 h before experiments. Cells were treated with different formulations at a concentration of 

100 nM for cy3 labeled siRNA in serum containing medium at 37 °C for 4 h. Cells were 
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washed twice with PBS. Cells were fixed with 3.8% paraformaldehyde in PBS at room 

temperature for 10 min, mounted onto a glass slide, and imaged by a Leica SP2 confocal 

microscope. Cy3 positive cells were detected and quantified by flow cytometry (Becton-

Dickinson, Heidelberg, Germany). Results were processed using the Cellquest software 

(Becton-Dickinson). 

2.3.8 Assessment of Apoptosis by TUNEL Staining  

TUNEL assay was conducted using a TACSTM TdT Kit (R&D Systems, Minneapolis, 

MN). H460 cells (5 × 104 per well) were seeded into 24-well plates. Cells were treated with 

different formulations at a concentration of  500 nM for siRNA in serum containing medium 

at 37 ۫ C for 72 h. Cells were washed once with PBS, and then fixed in 4% buffered 

paraformaldehyde–PBS (pH 7.4) for 30 minutes at room temperature. Endogenous 

peroxidase was inactivated with 0.3% H2O2 methanol for 15 minutes at room temperature. 

The plates were then rinsed with PBS, and after processing with Permeabilization Buffer, 

labeling Buffer containing terminal deoxynucleotidyl transferase and fluorescein 

isothiocyanate–deoxyuridine 5-triphosphate was added to the plate. The plate was incubated 

in a humid atmosphere at 37°C for 60 minutes. The reaction was terminated by stop solution 

and developed with DAB according to manufacturer’s instructions. Samples were imaged 

using a Nikon Microphot SA microscope. The number of apoptosis cells within the 

rectangular area of 300 cells was counted on three or four areas for each treatment. 

2.3.9 Western blot analysis  

Cells were lysed in lysis buffer for 20 min on ice and the soluble extract was 

recovered by centrifugation. Extracts were separated on a 10% acrylamide gel and 

transferred to a PVDF membrane. Membranes were blocked for 1 h in 5% skim milk and 
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then incubated for 1 h with monoclonal antibodies directed against pERK (Santa Cruz 

Biotechnology, Inc.) or polyclonal antibodies against EGFR (BD Transduction Labs), ERK 2 

and actin (Santa Cruz Biotechnology, Inc.) for standardization. Membranes were washed in 

PBST (PBS, 0.1% Tween-20) and then incubated for 1 h with appropriate secondary 

antibodies. Membranes were again washed and then developed by an enhanced 

chemiluminescence system according to the manufacturer’s instructions (PerkinElmer). 

For in vitro p-ERK inhibition study, H460 cells were seeded in 12-well plates (1 × 105 per 

well) for 24 h. Cells were treated with different lipids at the concentration of 10μM  and were 

collected after 1 h, 24 h and 48 h for measuring p-ERK expression. For in vitro EGFR gene 

silencing study, H460 cells were seeded in 6-well plates (2 × 105 per well) for 24 h. Cells 

were treated with siRNA-containing different formulations (250 nM siRNA) and were 

collected after 72 h for measuring EGFR protein expression. For in vivo EGFR gene 

silencing and pERK inhibition study, tumor-bearing mice were given IV injections of siRNA 

with different formulations at the dose of 0.6 mg siRNA/kg. One day after the third injection, 

the mice were killed and the tumors were collected for western blot analysis.  

2.3.10 Immunofluorescence microscopy  

H460 cells were washed, fixed with methanol/acetone (1:1), and permeabilized with 

triton X100 (1%). Cells were incubated with rabbit polyclonal anti-Apoptosis-Inducing-

Factor (AIF) (Santa Cruz Biotechnology, Inc.) (1:100) for 1 h. After washed with PBS, the 

fluorescently labeled secondary antibody was added and incubated for 1 h. Nuclei were 

counterstained with Vectashield® mounting solution (Vector Laboratories, Inc., Burlingame, 

CA) containing DAPI. 
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2.3.11 Tissue distribution and siRNA uptake  

Mice with tumor size around 1 cm2 were intravenously injected with cy3 labeled 

siRNA in different formulations (1.2 mg/kg or 1.8 nmole siRNA per injection). Four hours 

later, mice were killed and tissues were collected, fixed in 10% formalin and embedded in 

paraffin. Tissues were sectioned (7 μm thick) and imaged using a Leica SP2 confocal 

microscope. 

2.3.12 Tumor growth inhibition study.  

H460 xenograft tumor-bearing mice (size 9–16 mm2) were intravenously injected 

with siRNA-containing formulations at the dose of 0.6 mg/kg (one injection per day for 3 

days). Tumor growth in the treated mice was monitored after treatment. 

2.3.13 Statistical analysis.   

All statistical analyses were performed by student t-test.  Data were considered 

statistically significant when p value was less than 0.05. 



 34

 

Figure 2.1 The structure of DSGLA and pERK inhibition induced by lipids. (A) The structure of DSGLA. 
(B) pERK and ERK expression in H460 cells after incubation with 10 µM DSGLA and DOTAP for various 
times.  
 

2.4 RESULTS  

2.4.1 Preparation and characterization of the nanoparticle - containing the novel 

cationic lipid  
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Figure 2.2 Sepharose CL 2B size exclusion chromatography of different nanoparticle samples. Separation 
of different components in the PEGylated LPD containing DSGLA (A) or DOTAP (B) is shown.   Lipid was 
labeled with NBD-cholesterol. DSPE-PEG was labeled with DSPE-PEG-carboxyfluorescein. Ten μl of the 
samples was loaded onto a PBS pre-equilibrated Sepharose CL 2B column (1 × 10 cm). Column was eluted with 
PBS. 

          We have developed a LPD nanoparticle formulation which is targeted with AA and 

contains the cationic lipid DOTAP to specifically deliver siRNA to H460 human lung 

carcinoma cells which express the sigma receptor. Our novel non-glycerol based cationic 

lipid (DSGLA) (Fig. 2.1A) could be readily used to formulate siRNA in LPD-PEG or LPD-
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Figure 2.3 pERK and ERK expression in H460 cells after incubation with 10 µM DSGLA, DSLA (analog 
of DSGLA without the guanidinium group) and DSA (analog of DSGLA without the lysine and the 
guanidine residues) for various times. 

PEG-AA nanoparticles, similar to the original DOTAP lipid. The particle size of the 

nanoparticles is around 100 nm and the zeta potential is 25 mV. To further characterize the 

new formulation, we used 10 mol% NBD-cholesterol labeled liposomes or 10 mol% DSPE-

PEG2000-carboxyfluorescein (DSPE-PEG2000-CF) labeled DSPE-PEG2000 to make PEGylated 

LPD and the final formulation was separated by using a Sepharose CL 2B column.  As 

shown in figure 2.2, two major particle populations were observed in the DSPE-PEG2000-CF 

or NBD-cholesterol labeled LPD. Figure 2.2 indicates that the nanoparticles containing 

DOTAP eluted in the first peak was composed of 47.3 % of total lipids and 23.4 % of the 

input DSPE-PEG2000. The nanoparticles containing DSGLA eluted in the first peak was 

composed of 40.6 % of total lipids and 21.2 % of the input DSPE-PEG2000. Based on our 

calculation, 11.4 mol% of the outer leaflet of the lipid bilayer containing DSGLA was 

modified with DSPE-PEG2000 and 10.8 mol% of the one containing DSGLA was modified 

with DSPE-PEG2000. The ratio of PEGylation to LPD containing DOTAP was similar to 
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those containing DSGLA. The particle size and zeta potential of the PEGylated LPD 

containing either DSGLA or DOTAP collected from the first peak was around 160 nm and 3 

mV, respectively. 

2.4.2 Inhibition of ERK1/2 activation by novel lipid treatment          

We first studied the activation of ERK in the H460 cells. The phosphorylation of 

ERK is often associated with the anti-apoptosis phenotype (103, 104). H460 cells were 

treated with DOTAP or DSGLA liposomes for different time periods, and ERK 1/2 

phosphorylation which leads to the activation of the MAP kinase activity was measured by 

western blot analysis. As shown in Fig. 2.1B, 10µM DSGLA could decrease ERK1/2 

activation. Total ERK1/2 expression remained unperturbed under all conditions. The lipids 

without guanidine group did not cause the inhibition of ERK1/2 activation (Fig. 2.3). 

 

Figure 2.4  ROS generation by DSGLA or DOTAP in H460 cells. Cells were incubated with 20 mM DCFH-
DA after treatment of different lipids to evaluate ROS induction. The ROS content of cells was analyzed by flow 
cytometry.  



 38

Figure 2.5 Cellular uptake of siRNA and EGFR expression inhibited by siRNA formulation in H460 cells 
in vitro. Fluorescence photographs of cultured H460 cells after treatment with sense strand 5’-cy3 labeled 
siRNA against an irrelevant target in LPD-PEG or LPD-PEG-AA with DSGLA or DOTAP as the cationic lipid 
for 4 h (A). Quantitative measurement of mean fluorescence intensity (MFI) of cy3 siRNA uptake by flow 
cytometry. Data = mean ± SD, n = 3 (B). (C) Western blot analysis of EGFR and β-actin in H460 cells treated 
with LPD-PEG with formulations containing anisamide ligand (AA+) or without (AA-). Formulations were 
prepared with either DOTAP or DSGLA. 

However, DOTAP increased ERK1/2 activation, an effect which is consistent with our 

previous findings (99). Besides, we also found that DSGLA could more efficiently induce 

reactive oxygen species (ROS) in H460 cells than DOTAP (Fig. 2.4). Interestingly, there was 

no statistically significant difference between the cytotoxicity of DSGLA and DOTAP based 

on MTT assays and flow cytometry with propidium iodide (PI) staining (Bathula et al., 

unpublished). DSGLA alone is as safe as DOTAP. These observations suggest that inhibition 

of the ERK pathway by DSGLA may not induce cell death but can present a synergistic pro-

apoptosis effect when combined with other treatment. 

 



 39

 
Figure 2.6 Intracellular uptake of siRNA and synergistic apoptosis induction in sigma receptor-positive 
H460 cells and in receptor-negative CT26 cells in vitro. (A), cells were treated with different formulations 
containing cy3-labeled siRNA for 4 h and analyzed for fluorescence by flow cytometry. (B), cells were treated 
with different formulations (250 nM siRNA) for 3 days and were then stained with annexin V-FITC (Y axis) and 
PI (X axis), and analyzed by flow cytometry. Both are apoptosis markers. 

2.4.3 cellular uptake of siRNA in vitro 

To achieve targeted delivery of siRNA in cancer gene therapy, we post-inserted 

PEGylated lipids onto our LPD formulation to increase the serum stability (98). In addition, 

we also tethered anisamide, a compound specifically binding to the sigma receptor, to the 

distal end of PEG as a targeting ligand (105). As shown in Fig. 2.5A, confocal microscopy 

showed that the uptake to the cellular cytoplasm of H460 cells, which express sigma receptor 

(Li et al, 2008), of the fluorescently labeled siRNA formulated with LPD prepared with 

DSGLA was much greater than that prepared with DOTAP. Furthermore, for both lipids, the 

fluorescence signal in the cells treated with LPD-PEG-AA was much stronger than that of 
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cells treated with LPD-PEG. Quantitatively (Fig. 2.5B), the fluorescently labelled siRNA 

uptake by LPD-PEG-AA containing DSGLA was about two-fold higher than that of LPD-

PEG-AA containing DOTAP as measured by flow cytometry. Fig. 2.5B also showed that 

ligand conjugation increased the delivery efficiency of PEGylated LPD prepared with 

DSGLA by 3-fold. Thus, the results indicate that the LPD-PEG-AA prepared with DSGLA 

could efficiently deliver siRNA to the tumor cells and the delivery was highly ligand 

dependent. The targeted LPD (AA+) did not show different siRNA uptake compared to non-

targeted LPD (AA-) in the sigma receptor negative cell line CT26 (Fig. 2.6), suggesting that 

the cellular uptake of siRNA is related to sigma receptor expression. 

2.4.4 Inhibition of EGFR expression in H460 cells 

To further demonstrate the biological activity of the nanoparticle formulation, siRNA 

against EGFR was delivered by LPD formulations containing either DSGLA or DOTAP. The 

siRNA silencing effect on EGFR levels was determined by western blot analysis. We 

compared different formulations in the presence or the absence of AA targeting ligand. Free 

anti-EGFR siRNA had little effect due to the poor cellular uptake of this negatively charged 

oligonucleotide (data not shown). Cultured H460 cells were treated with anti-EGFR siRNA-

containing LPD-PEG-AA prepared with DSGLA or DOTAP, and EGFR protein expression 

was measured after 72 h (Fig. 2.5C). LPD-PEG-AA formulations with either DSGLA or 

DOTAP knocked down EGFR expression with H460 cells in approximately equal efficiency. 

However, anti-EGFR siRNA in LPD-PEG (AA-) prepared with either DSGLA or DOTAP 

could only slightly down-regulate EGFR (Fig. 2.5C). Control siRNA did not show any 

silencing activity with any formulations. The data indicates that the siRNA could effectively 

suppress EGFR expression and the silencing activity was formulation dependent.  
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Figure 2.7 Apoptosis induced by siRNA formulation in vitro. Cells treated with different formulations for 72 
h and analyzed for TUNEL staining (A), or AIF distribution (B). Cells with nuclear AIF are shown by arrows. 
Formulations contained anisamide ligand (AA+) or without (AA-). Formulations were prepared with either 
DOTAP or DSGLA. 
 

 

2.4.5 Synergistic apoptosis induction in vitro     

The effect of the combination of anti-EGFR siRNA and DSGLA on cancer cell 

killing effect was further studied. To determine whether depletion of EGFR could promote 

tumor cell death, TUNEL assays were performed at 72 h after treatment with either anti-

EGFR or control siRNA formulations. Fig. 2.7A indicates that about 15 ± 3 % of H460 cells 

treated with EGFR siRNA-containing LPD-PEG-AA prepared with DSGLA underwent 

apoptosis. This value was higher than the ones treated with EGFR siRNA-containing LPD-
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PEG prepared with DSGLA, EGFR siRNA-containing LPD-PEG-AA prepared with DOTAP, 

or control siRNA-containing LPD-PEG-AA prepared with DSGLA (Fig. 2.7A). It was also 

observed that about 4 ± 1 % of H460 cells treated with EGFR siRNA-containing LPD-PEG-

AA prepared with DOTAP underwent apoptosis, compared to less than 1% in the control 

siRNA and EGFR siRNA-containing LPD-PEG (Fig. 2.7A). In addition, about 2.5 % of 

H460 cells treated with control siRNA-containing LPD-PEG-AA prepared with DSGLA 

underwent apoptosis as opposed to less than 1% in the control siRNA-containing LPD-PEG 

(Fig. 2.7A). Thus, the data indicate that cytotoxic effect mediated by LPD nanoparticles was 

siRNA sequence specific, targeting ligands specific and formulation lipid dependent. Thus, a 

synergistic effect between siRNA against EGFR and DSGLA, but not DOTAP, in promoting 

cellular apoptosis was observed and the synergy was well controlled by AA.  

Redistribution of cytochrome C and apoptosis inducing factor (AIF) is an early event 

in the cellular apoptotic process (106, 107). To further evaluate the enhancement of H460 

lung cancer cell death by the combination of EGFR siRNA and DSGLA, we examined the 

involvement of AIF by immunofluorescence microscopy (Fig. 2.7B). Immunofluorescence 

detection of AIF in untreated control cells normally yields a punctate cytoplasmic staining 

pattern with some preference for the perinuclear area as a typical pattern for mitochondrial 

localization (108-110). Cells treated with EGFR siRNA-containing LPD-PEG-AA that were 

prepared with DSGLA showed an increased translocation of AIF from the cytoplasm into the 

nucleus (Fig. 2.7B). No significant translocation was observed in other treatment groups. The 

results indicate that combined treatment with EGFR siRNA formulated with DSGLA 

interacted synergistically to promote cell death in H460, and that the synergistic effect was 

controlled by the targeting ligands. 
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Figure 2.8 Tissue distribution and cellular uptake of siRNA in different formulations. Fluorescence signal 
of cy3 labeled siRNA in different tissues observed by confocal microscopy. 
 

To confirm that the selective synergistic cellular killing effect of the targeted 

nanoparticles, H460 cells were stained with annexin V-FITC and PI and analyzed by flow 

cytometry for apoptosis. As shown in Fig. 2.6, a ligand and lipid-dependent induction of 

apoptosis was observed. It indicates that about 25 % of H460 cells treated with EGFR 

siRNA-containing LPD-PEG-AA prepared with DSGLA underwent apoptosis. The sigma 

receptor negative CT26 cells were also assessed by an annexin V-FITC and PI binding assay. 

As shown in Fig. 2.6, the treatment of EGFR siRNA-containing LPD-PEG-AA prepared 
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Figure 2.9 EGFR and p-ERK expression in H460 xenograft tumor. Western blot analysis of EGFR (A) and 
p-ERK (B) in the H460 xenograft tumor after treatment with different formulations. 
 

with DSGLA induces a low level of apoptosis (6.3 %) in CT26 cells compared with the 

similar rate of apoptosis induced by other formulations. It indicates that the synergistic 

cellular killing effect of DSGLA AA+ containing EGFR siRNA is sigma receptor specific. 

2.4.6 Tissue distribution and intracellular uptake of siRNA 

We further studied the cy3-siRNA distribution and bioavailability in major tissues in 

the H460 xenograft model 4 hours after intravenous (i.v.) injections using confocal 

microscopy. As shown in Fig. 2.8, the intracellular fluorescence signals were hardly detected 

in the tumor tissues collected from the mice treated with LPD-PEG prepared with DSGLA 

and DOTAP. The LPD-PEG-AA prepared with DSGLA or DOTAP showed strong cytosolic 

delivery of cy3 siRNA in the tumor tissue, while other tissues showed lower uptake of 

siRNA. The distribution of cy3 siRNA in the tumor was heterogeneous. These results 
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Figure 2.10 Synergistic apoptosis induction in H460 xenograft tumor. TUNEL staining (positive cells 
indicated by dark arrows) (A) and AIF expression and localization (cells with nuclear AIF indicated by red 
arrows) (B) in H460 tumor cells after treated with EGFR siRNA with different formulations in vivo. (C) 
Quantitative analysis of TUNEL positive staining and nuclear translocation of AIF in the tumors treated with 
different formulations. a, EGFR siRNA in DSGLA AA+; b, EGFR siRNA in DSGLA AA-; c, EGFR siRNA in 
DOTAP AA+; d, EGFR siRNA in DOTAP AA-; e, Control siRNA in DSGLA AA+; f, Free siRNA. Data = 
mean ± SD, n = 3-4. *indicates P < 0.05. 
 

indicate that the LPD-PEG-AA prepared with the novel DSGLA can efficiently deliver 

siRNA to the tumor tissue and that the intracellular delivery is highly ligand dependent. 

2.4.7 EGFR gene silencing, inhibition of ERK1/2 activation and apoptosis induction 

To examine the biological activities of siRNA in vivo, EGFR levels in the xenograft 

tumor were detected by western blotting (Fig. 2.9A). EGFR in H460 tumor was silenced by 

EGFR siRNA in LPD-PEG-AA prepared with DSGLA and DOTAP. The EGFR siRNA-
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Figure 2.11 H460 xenograft tumor growth inhibition by siRNA in different formulations. Solid arrows 
indicate the intravenous administrations of siRNA (0.6 mg/kg). Data = mean, n = 5–7. SD of the data points 
is not shown for clarity.  
 

containing LPD-PEG prepared with DSGLA and DOTAP showed only a partial effect, 

whereas the control siRNA showed no effect. The inhibition of ERK1/2 activation was only 

observed with LPD-PEG-AA prepared using DSGLA (Fig. 2.9B). We also stained for 

apoptotic markers in the H460 tumor (Fig. 2.10). Fig. 2.10C indicates that about 8 % of 

H460 cells treated with EGFR siRNA-containing LPD-PEG-AA prepared with DSGLA 

underwent apoptosis detected by TUNEL staining. This value was higher than that of tumors 

treated with EGFR siRNA-containing LPD-PEG prepared with DSGLA, EGFR siRNA-

containing LPD-PEG-AA prepared with DOTAP, or control siRNA-containing LPD-PEG-

AA prepared with DSGLA (Figs. 2.10A and 2.10C). To further evaluate the enhancement of 

killing effect in the H460 tumor by the combination of EGFR siRNA and DSGLA, we 

examined the involvement of AIF in cellular apoptosis (Fig. 2.10B). Cells treated with EGFR 

siRNA-containing LPD-PEG-AA prepared with DSGLA showed an increased translocation 

of AIF from the cytoplasm into the nucleus (Figs. 2.10B and 2.10C). No significant 
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translocation was observed in other treatment groups. The results indicate that combined 

treatment with EGFR siRNA formulated with DSGLA interacted synergistically to promote 

cell death in the H460 tumor and that the synergy effect was ligand dependent.  

2.4.8 Tumor growth inhibition  

Three injections of EGFR siRNA in LPD-PEG-AA containing DOTAP showed a 

partial inhibition of tumor growth (P < 0.01 on day 11) similar to that of siRNA in LPD-PEG 

containing DSGLA (on day 8) (Fig. 2.11). A significant improvement in tumor growth 

inhibition was observed when treated with combination of siRNA and DSGLA (LPD-PEG-

AA containing DSGLA) (P < 0.001 on day 6). Other control treatments had no or much 

lower therapeutic effects.  

2.5 DISCUSSION 

In this study, our objective was to develop a novel cationic lipid that could avoid the 

possible anti-apoptotic effect of DOTAP, yet could still deliver siRNA with high efficiency. 

We have synthesized a lysine based cationic lipid containing a guanidine group and tested its 

ability to form LPD. Our studies demonstrate that siRNA formulated in LPD prepared with 

DSGLA showed enhanced cellular uptake, gene silencing activity and synergistic therapeutic 

activity with EGFR siRNA in H460 tumor cells in vitro and in vivo. This synergistic 

therapeutic effect is AA ligand dependent which is targeted to the sigma receptor over-

expressed in many human cancer cells (111, 112). 

The strategy that we used to achieve tumor targeted delivery is based on the enhanced 

permeability and retention (EPR) effect (113, 114). Although the normal cells also express 

the sigma receptor (115), they are not accessible by the blood borne nanoparticles. Sigma 
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receptor-targeting ligands such as AA play the major role to increase the intracellular uptake 

of the nanoparticles but do not enhance tumor localization (116). 

Obata et al. reported that cationic lipids bearing lysine or arginine as a cationic 

headgroup showed higher plasmid transfection efficacy and are more serum compatible than 

Lipofectamine 2000 (92). In our studies, we have demonstrated that DSGLA containing LPD 

showed higher cellular uptake of siRNA in H460 cells in vitro than DOTAP, although the 

enhanced siRNA uptake was not observed in vivo. We suggest that the enhanced siRNA 

uptake may be related to the guanidine containing headgroup and this hypothesis will be 

further evaluated. DSGLA also showed its own biological activity to down-regulate pERK 

(Fig. 2.1B) but the lipids without guanidine group did not cause this effect (Fig. 2.3). Clearly, 

the guanidine group plays an important role in determining the biological characteristics of 

the lipids.  

We have found that DSGLA promoted apoptosis induced by EGFR siRNA 

synergistically. The mechanisms for promoting apoptosis of H460 cells induced by DSGLA 

could be complicated. A guanidine group, which easily accepts an electron, may generate a 

superoxide forming a hydroxyl radical (117). We also found that DSGLA can more 

efficiently induce reactive oxygen species (ROS) in H460 cells than DOTAP (Fig. 2.4) (118). 

It may involve different pathways in cancer cell killing. For example, in this study, inhibition 

of p-ERK, essential for cell survival, could be just one of the mechanisms (119).  ROS 

mediates apoptosis in many different cell types. It plays an important role as a second 

messenger in many signaling pathways such as Akt, TNF and MAPK pathways (120). It also 

regulates the expression or stability of pro- or anti- apoptosis protein such as Bcl-2, the key 

enzyme suppressing apoptosis (121). ROS may also cause membrane and DNA damage, 
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which enhances poly(ADP-ribose) polymerase-1 (PARP-1) activation and triggers AIF 

translocation from mitochondria to the nucleus (122, 123). The extent of the ROS regulation 

of signaling pathways is not fully understood. We will study further to understand the 

network of signaling pathways influenced by DSGLA. The information may provide new 

therapeutic targets for cancer therapy.  

Cancer cells develop multiple mechanisms to ensure proliferation, metastasis and 

survival (124, 125). Inhibiting a resistance or survival pathway is often an effective way to 

enhance the toxicity of a chemotherapeutic drug (126, 127). It is often necessary to target 

multiple pathways to efficiently reduce the growth of cancer cells (128). For this purpose, we 

studied the effect of combined treatment of human lung cancer cells with siRNA targeting 

EGFR and DSGLA.  

Our data (Figs. 2.10) indicate that DSGLA significantly enhanced the killing effect of 

EGFR silencing in a formulation dependent manner both in vitro and in vivo, although the 

lipid itself is not cytotoxic (Bathula et al., unpublished). The synergistic pERK inactivation 

of EGFR siRNA delivered by LPD-PEG-AA containing DSGLA was demonstrated in a 

xenograft model of H460 cells (Fig. 2.9). However, DSGLA without the cooperation of 

EGFR siRNA (control siRNA delivered by LPD-PEG-AA containing DSGLA) or EGFR 

siRNA without the cooperation of DSGLA (EGFR siRNA delivered by LPD-PEG-AA 

containing DOTAP) did not show pERK inactivation (Fig. 2.9B). EGFR promotes cell 

proliferation by both the Raf/MEK/ERK and the PI3K/PDK1/Akt pathways (129). Thus, 

inhibition of pathways other than Raf/MEK/ERK, which is already effectively inhibited by 

DSGLA, by EGFR siRNA should bring enhanced apoptosis in cells treated with both agents 
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(Fig. 2.10). The synergistic therapeutic effect of LPD-PEG-AA containing DSGLA was also 

demonstrated in a xenograft model of H460 cells (Fig. 2.11).  

In conclusion, we have described a target specific nanoparticle formulation that 

contains both siRNA and DSGLA, a new cationic lipid, and plays both roles of a delivery 

component and a therapeutic agent. As far as we know, this is the first demonstration of such 

approach and it may serve as a safe and effective anti-cancer drug.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3.0 TARGETED NANOPARTICLES DELIVER SIRNA TO MURINE MELANOMA 

Melanoma is a severe skin cancer often leading to deaths. To examine the potential of 

siRNA therapy for melanoma, we have developed anisamide-targeted nanoparticles that can 

systemically deliver siRNA into the cytoplasm of B16F10 murine melanoma cells which 

express the sigma receptor. A c-myc siRNA delivered by the targeted nanoparticles 

effectively suppressed c-myc expression in the tumor and partially inhibited tumor growth. 

More significant tumor growth inhibition was observed with nanoparticles composed of 

DSAA, a guanidinium containing cationic lipid, than with a commonly used cationic lipid, 

DOTAP. Three daily injections of c-myc siRNA (1.2 mg/kg) formulated in the targeted 

nanoparticles containing DSAA could impair tumor growth, and the ED50 of c-myc siRNA 

was about 0.55 mg/kg. The targeted DSAA nanoparticles containing c-myc siRNA sensitized 

B16F10 cells to paclitaxel (Taxol®), resulting in a complete inhibition of tumor growth for 1 

week. The enhanced anti-melanoma activity is probably related to the fact that DSAA, but 

not DOTAP, induced reactive oxygen species, triggered apoptosis and down-regulated anti-

apoptotic protein Bcl-2 in B16F10 melanoma cells. Thus, the targeted nanoparticles 

containing c-myc siRNA may serve as an effective therapeutic agent for melanoma.  

3.1 INTRODUCTION 

Melanoma is the most serious type of skin cancer in the world, accounting for about 

80% of deaths. Most patients develop metastasis with the five-year survival rate being only 
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14% (130). Currently, improved therapeutic options such as chemotherapy and 

immunotherapy are increasing but the therapeutic outcome is still limited due to the 

resistance of melanoma cells to these agents (131-133). Most therapeutic agents trigger anti-

cancer effects by induction of apoptosis or generation of ROS (reactive oxygen species) (133, 

134). However, the best response rate produced by a single-agent chemotherapy or 

biochemotherapy for melanoma is only 16% (132, 135). There is still plenty of room for 

improvement in the treatment strategy (136). 

Over-expression of c-myc has been found in more than half of human cancers (137). 

Over two thousand myc-responsive genes have been identified.  They are involved in cell 

cycle control, proliferation, cell death, cell adhesion, biosynthesis of ribosomal and transfer 

RNAs, protein synthesis and metabolism (138). In melanoma, c-myc expression is essential 

for nucleotide metabolism and proliferation of tumor cells (139). Over-expression of c-myc 

during progression of melanoma continuously suppresses oncogene-induced senescence in 

the cells (140). In this study, we explored the possibility of siRNA against c-myc as a therapy 

for subcutaneous malignant melanoma in a syngeneic murine model (40, 141).  

siRNA therapy is a novel strategy for effective cancer treatment with reduced toxicity 

commonly found with conventional cytotoxic drugs (142). Combination therapy using 

siRNA and one or more chemotherapy drugs may be beneficial in decreasing the required 

dose of the drug and improving the therapeutic effect. Down-regulation of the epithelial 

growth factor receptor sensitizes small cell lung carcinoma to cisplatin, resulting in a 

significantly improved growth inhibition (25). siRNA against SLUG, which is required for 

melanoma cell survival and metastasis progression, enhances the efficacy of cisplatin and 

fotemustine (143). Similarly, a combination of siRNAs against MDM2, c-myc and VEGF 
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showed a synergistic tumor growth inhibition effect in the B16-F10 melanoma lung 

metastasis model (40).  

To increase the stability of siRNA in the blood and promote selective uptake of 

siRNA into the tumor cells, we have developed targeted LPD nanoparticles containing 

cationic liposomes which are efficient in delivering siRNA to several different solid tumors 

in mouse models (25, 40). Here we show that a nanoparticle formulation targeted with 

anisamide, which binds with the sigma 1 receptor of the melanoma cells, is effective in 

delivering siRNA to B16F10 melanoma in a murine syngeneic model. Furthermore, a 

cationic lipid DSAA, which contains an arginine residue as the head group, was particularly 

suitable as a formulation lipid. Our study indicates that c-myc siRNA, delivered by DSAA-

containing nanoparticles, may affect different signaling pathways and sensitize the melanoma 

cells to chemotherapeutic agents such as paclitaxel. The nanoparticle formulation showed 

minimal immunotoxicity in normal mice. 

3.2 MATERIALS AND METHODS  

3.2.1 Materials 

DOTAP (1,2-dioleoyl-3-trimethylammonium-propane) and cholesterol were 

purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). Protamine sulfate and calf thymus 

DNA were from Sigma-Aldrich (St. Louis, MO). Paclitaxel (Taxol.®.) was purchased from 

Bristol-Myers Squibb Company. Synthetic 19-nt RNAs with 3' dTdT overhangs on both 

sequences were purchased from Dharmacon (Lafayette, CO). For quantitative studies, cy3 

was conjugated to 5' sense sequence. 5'-cy3 labeled siRNA sequence was also obtained from 

Dharmacon. The sequence of mouse c-myc siRNA was 5'-GAACAUCAUCAUCCAGGAC-

3' and control siRNA with sequence 5'-AATTCTCCGAACGTGTCACGT-3' was obtained 
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from Dharmacon. DSPE-PEG2000-anisamide was synthesized in our laboratory using the 

methods described earlier (105). 

3.2.2 Cell culture 

Murine melanoma B16F10 (sigma receptor positive (40)) cells were used in this study. 

The cells were purchased from American Type Culture Collection and stably transduced with 

GL3 firefly luciferase gene by using a retroviral vector produced in Dr. Pilar Blancafort's 

laboratory at the University of North Carolina at Chapel Hill. The cells were maintained in 

Dulbecco's modified Eagle's medium (Invitrogen, Carlsbad, CA) supplemented with 10% 

fetal bovine serum (Invitrogen, Carlsbad, CA), 100 U/ml penicillin, and 100 μg/ml 

streptomycin (Invitrogen). 

3.2.3 Experimental animals 

Female C57BL/6 mice of age 6–8 week were purchased from National Cancer 

Institute (Frederick, MD). All work performed on animals was in accordance with and 

approved by the IACUC committee at UNC. 

3.2.4 Synthesis of DSAA  

DSAA [ N,N-Distearyl-N-methyl-N-2-(N’-arginyl) aminoethyl ammonium chloride ]: 

DSAA is a non glycerol based cationic lipid that contains guanidine head group. It was 

synthesized in five steps. N-alkylation by n-octadecyl bromide and subsequent Boc 

deprotection of mono-Boc protected ethylene diamine yielded mixed primary tertiary amine 

N1,N1-dioctadecylethane-1,2-diamine. Tri Boc protected arginine conjugation to the primary 

amine group by the conventional EDCI and quaternization of the tertiary amine group using 

methyl iodide on the above obtained product gave tri Boc protected DSAA. To obtain final 

product DSAA, [(N-(2-(Arginyl)ethyl)-N-methyl-N, N-di octadecyl amonium chloride) Boc 
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group deprotection with TFA and chloride ion exchange with Amberlyst A 27(Cl-)ion 

exchange resin was carried out. The resulting compound was characterized by using 1H NMR 

spectra and LSIMS. Detailed synthetic procedures, spectral and purity data will be delineated 

elsewhere (Bathula et al., unpublished).                                                                                                              

3.2.5 Analysis of ROS in B16F10 cells 

B16F10 cells (106 per well) were seeded into each well of 12-well plates. Cells were 

incubated with 20 mM 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) (Sigma-

Aldrich) in serum containing medium for 30 min at 37 °C. Then, cells were treated with 

DSAA or DOTAP liposomes at various doses in serum containing medium at 37 ۫C for 1 h. 

Cells were quickly washed and immediately analyzed by flow cytometry.  

3.2.6 Preparation of PEGylated LPD Formulations 

LPD were prepared according to the previously method with slight modifications 

(100). Briefly, cationic liposomes composed of DOTAP or DSAA and cholesterol (1:1 molar 

ratio) were prepared by thin film hydration followed by membrane extrusion to reduce the 

particle size. To prepare LPD, 18 µL of protamine (2 mg/mL), 140 µL of deionized water, 

and 24 µL of a mixture of siRNA and calf thymus DNA (2 mg/mL) were mixed and kept at 

room temperature for 10 min before adding 120 µL of cationic liposome (10mM). After 10 

min at room temperature, LPD was mixed with 37.8 µL of DSPE-PEG-AA or DSPE-PEG 

(10 mg/mL) and incubated at 50-60 ºC for 10 min.  

3.2.7 Cellular Uptake Study 

B16F10 cells were seeded in 12-well plates (Corning Inc., Corning, NY) 12 h before 

experiments. Cells were treated with different formulations at a concentration of 250 nM for 
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5'-cy3-labeled siRNA in serum containing medium at 37 °C for 4 h. Cells were washed twice 

with PBS, counterstained with DAPI and imaged by using a Leica SP2 confocal microscope.  

3.2.8 Western blot analysis 

For in vivo study, B16F10 tumor bearing mice (tumor size around 1 cm2) were i.v. 

injected via the tail vein with siRNA in different formulations (1.2 mg siRNA/kg) with one 

injection per day for 3 consecutive days. The day after the third injection, mice were killed 

and tumor samples were collected. Extracted protein (40 µg) from the tumor was separated 

on a 10% acrylamide gel and transferred to a PVDF membrane. Membranes were blocked for 

1 h in 5% skim milk and then incubated for 12 h with polyclonal antibodies directed against 

c-myc (Santa Cruz Biotechnology, Inc.) and actin (Santa Cruz Biotechnology, Inc.) for 

standardization. Membranes were washed in PBST (PBS, 0.1% Tween-20) and then 

incubated for 1 h with appropriate secondary antibodies. Membranes were again washed and 

then developed by an enhanced chemiluminescence system according to the manufacturer’s 

instructions (PerkinElmer). 

For in vitro Bcl-2 down-regulation study, B16F10 cells were seeded in 12-well plates 

(1 × 105 per well) for 24 h. Cells were treated with different lipids at the concentration of 50 

μM  and were collected after 24 h and 48 h for measuring Bcl-2 expression by Western blot 

analysis as described above.  

3.2.9 Tumor uptake study 

Mice with tumor size of ~1 cm2 were i.v. injected with cy3-labeled siRNA (1.2 mg/kg) 

and NBD-labeled cholesterol (Avanti Polar Lipids) in different formulations. Four h later, 

mice were killed and tissues were collected, fixed in 10% formalin and embedded in paraffin. 
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Tumor tissues were sectioned (7 ¼ µm thick) and imaged using a Leica SP2 confocal 

microscope.  

3.2.10 Tissue biodistribution study 

Mice with tumor size of 1 cm2 were i.v. injected with NBD- cholesterol in different 

formulations. Four hours later, mice were killed and tissues were collected and homogenized 

in lysis buffer and incubated at room temperature for 30 min. The supernatant was collected 

after centrifugation at 14,000 rpm for 10 min and 50 µl supernatant was transferred to a black 

96-well plate (Corning, Corning, NY). The fluorescence intensity of the sample was 

measured by a plate reader (Bioscan, Washington, DC) at excitation wavelength 485 nm and 

emission wavelength 535 nm. Lipid concentration in each sample was calculated from a 

standard curve.  

3.2.11 Tumor growth inhibition study 

B16F10 tumor bearing mice (size 16–25 mm2) were i.v. injected with different 

formulations containing siRNA (1.2 mg/kg) once per day for 3 days. Tumor size in the 

treated mice was measured at different days after the treatment. 

3.2.12 Analysis of serum cytokine levels 

C57BL/6 mice were i.v. injected with siRNA against c-myc formulated in 

formulations at the dose of 1.2 mg siRNA/kg (1.2 mg DNA /kg for DSAA AA+ without 

siRNA). Four h after the injections, blood samples were collected from the tail artery and 

allowed to stand on ice for 2 h for coagulation. Serum was obtained by centrifuging the 

clotted blood at 16,000 rpm for 20 min. Cytokine levels were determined by using ELISA 

kits for IL6 and IL12 (BD Biosciences, San Diego, CA). 
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Figure 3.2 Sepharose CL 2B size exclusion chromatography of the nanoparticles. siRNA was labeled with 
FITC.  

 
Figure 3.1 Chemical structure of DSAA (A) and DOTAP (B). 
 
 

3.2.13 Statistical analysis 

 All statistical analyses were performed by student t-test. Data were considered 

statistically significant when p value was less than 0.05.  

3.3 RESULTS  

3.3.1 Cellular uptake of siRNA in B16F10 melanoma cells 

We used anisamide-targeted LPD nanoparticles containing DSAA as a carrier lipid to 

specifically deliver siRNA to the cultured B16F10 melanoma cells which express the sigma 

receptor. The structure of DSAA is shown in Figure 3.1 The particle size of the 

nanoparticles was around 100 nm and the zeta potential was about 25 mV. To characterize 
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the new formulation, we used FITC labeled siRNA to prepare targeted nanoparticles using 

DSAA as the cationic lipid.  The final formulation was fractionated by Sepharose CL 2B 

column chromatography. Figure     3.2 indicates that the amount of siRNA loaded into the final 

formulation was about 85%.of the total siRNA. Since DSAA is new lipid, we compared the 

data collected with nanoparticles containing DSAA with those containing a previously used 

lipid, DOTAP. As shown in Figure 3.3A, confocal microscopy showed that nanoparticles 

containing DSAA could deliver cy-3 labeled siRNA into the cytoplasm of B16F10 cells more 

efficiently than those containing DOTAP. Furthermore, cy-3 siRNA uptake of the cells 

treated with the targeted nanoparticles DSAA AA+ was much more than that of cells treated 

with the non-targeted nanoparticles DSAA AA-. The results indicate that the nanoparticles 

containing DSAA could efficiently deliver siRNA into the tumor cells and the delivery was 

significantly enhanced by the presence of the targeting ligand (AA) on the nanoparticles.  
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3.3.2 Luciferase gene silencing in vitro 

B16F10 cells stably transduced with the firefly luciferase gene were used to study in 

vitro gene silencing. Luciferase gene silencing effect of the nanoparticles containing DSAA 

was stronger than those containing DOTAP (Figure 3.3B). Furthermore, the silencing effect 

in the cells treated with the targeted nanoparticles was much higher than cells treated with the 

non-targeted nanoparticles, when DSAA was the carrier lipid. The result correlated very well 

with that of the intracellular siRNA uptake (Figure 3.3A).  

 

Figure 3.3 Intracellular uptake of siRNA and luciferase gene silencing in cultured melanoma cells. (A), 
fluorescence micrographs of B16F10 cells after treatment with 5’-cy3 labeled siRNA in the targeted nanoparticles 
(AA+) or the non-targeted nanoparticles (AA-) containing DSAA and DOTAP. (B), B16F10 cells were incubated 
with different formulations containing anti-luciferase siRNA. Luciferase activity in cells was measured after 24 h. 
Each value represents the mean ± S.D. (n = 3). Luc: luciferase. 
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3.3.3 Tissue distribution and intracellular uptake of siRNA and lipid      

We further studied the siRNA and lipid distribution and bioavailability of major 

tissues in the B16F10 melanoma model in C57BL/6 mice. We used 10 mol% NBD-

cholesterol labeled liposomes (green) and cy-3 labeled siRNA (red) to prepare PEGylated 

LPD and the final formulation was i.v. administered into the tumor bearing mice. As shown 

in Figure 3.4A, a clear overlap (yellow/orange) between NBD-cholesterol labeled liposomes 

and cy-3 labeled siRNA was observed, indicating intact nanoparticles were taken up by the 

tumor cells. The targeted nanoparticles containing DSAA or DOTAP (DSAA AA+ or 

DOTAP AA+) showed higher cytosolic delivery of cy-3 siRNA and NBD-cholesterol in the 

tumor tissue than the non-targeted nanoparticles (DSAA AA- or DOTAP AA-). Since the 

non-PEGylated liposomes containing DSAA/chol were a crucial component of the targeted 

nanoparticles (DSAA AA+), we compared the lipid (NBD-cholesterol) uptake of DSAA 

 

Figure 3.4 Tumor uptake of siRNA and lipid in different formulations. (A), fluorescence micrographs 
of cy3-siRNA (red) and NBD-cholesterol (green) in B16F10 tumor. Mice were injected with different 
formulations and sacrificed at 4 h. (B), tissue distribution of NBD-cholesterol in mice injected with different 
formulations. Data = mean + S.D., n = 3. DSAA: non-PEGylated liposome containing DSAA and 
cholesterol (1:1 mole ratio). 
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Figure 3.5 c-Myc expression in the tumor after treatment with siRNA in different formulations. Mice 
bearing B16F10 tumor were i.v. injected with siRNA formulated in different LPD nanoparticles. c-Myc 
expression was examined by western blot analysis.  
 

AA+ with that of the non-PEGylated liposomes containing DSAA/chol. For quantitative 

results of lipid  uptake (Figure. 3.4B), the targeted nanoparticles containing DSAA showed 

higher lipid delivery in the tumor tissue than the non-PEGylated liposomes containing DSAA, 

while other tissues showed lower uptake of lipid when treated with the targeted nanoparticles 

containing DSAA than the non-PEGylated liposome containing DSAA. Taken together, these 

data indicated that the targeted nanoparticles containing DSAA could efficiently deliver 

siRNA and the carrier lipid to the tumor tissue and the intracellular delivery was ligand 

dependent. 

3.3.4 c-Myc gene silencing in vivo 

To examine the biological activities of siRNA in vivo, the c-myc level in the 

subcutaneous melanoma tumor was detected by western blotting (Figure 3.5). c-Myc in 

B16F10 tumor was silenced by c-Myc siRNA in the targeted nanoparticles DSAA AA+ and 
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Figure 3.6 Tumor growth inhibition. (A), B16F10 tumor growth 
inhibition by siRNA in different formulations. (B), dose-dependent 
antitumor activity of c-myc siRNA formulated in DSAA AA+. (C), 
combination of c-myc siRNA formulated in the targeted DSAA 
nanoparticles and paclitaxel inhibited B16F10 tumor growth (20mg 
paclitaxel/kg). Solid arrows indicate the i.v. administrations of siRNA and 
dash-line arrows indicate the i.v. injections of paclitaxel. N= 4~7.  
   

DOTAP AA+. The c-Myc siRNA-containing DSAA AA- and DOTAP AA- and control 

siRNA showed no effect. 

The results indicated that 

the nanoparticle containing 

DSAA or DOTAP could 

systemically deliver siRNA 

into the tumor tissue and 

the delivery was 

specifically controlled by 

the targeting ligand (AA). 

The result correlated well 

with that of the intracellular 

siRNA uptake in the tumor 

tissue (Figure 3.4A). 

3.3.5 Tumor growth 

inhibition  

Three injections of 

c-myc siRNA in DOTAP 

AA+ showed a partial 

inhibition of tumor growth 

(P < 0.01 at day 11) similar 

to that of c-myc siRNA in 

DSAA AA- and control 
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Figure 3.7. ROS generation and apoptosis induction and by liposome containing DSAA or DOTAP in 
mouse melanoma B16F10 cells. (A) dose-dependent ROS generation by DSAA or DOTAP after 1 h incubation 
with different concentrations of DSAA or DOTAP. The ROS content of cells was analyzed by flow cytometry. 
N=3, *P<0.05. (B) and (C), dose- and time-dependent apoptosis induction by DSAA or DOTAP in B16F10 
cells, respectively. (D), Bcl-2 expression in H460 cells after incubation with 50 µM DSAA and DOTAP for 24 
and 48 h.  

 

siRNA in DSAA AA+ (Figure 3.6A). A significant improvement in the tumor growth 

inhibition was observed  with c-myc siRNA formulated in DSAA AA+ (P < 0.0001 at day 

11), with an ED50 of 0.55mg/kg (Figure 3.6B). With additional paclitaxel treatment, which is 

a common first line chemotherapy agent for malignant melanoma, the therapeutic activity of 

c-myc siRNA formulated in DSAA AA+ showed further improvement (Figure 3.6C). Tumor 

growth was completely inhibited with the combination therapy for 1 week after the last 

dosing (Figure 3.6C).  
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Figure 3.8 Serum cytokine levels of C57BL/6 mice treated with siRNA against c-myc in different 
formulations. Data = mean SD, n = 3~4. 
 

Since DSAA played an important role in the uptake and the anti-cancer activity of 

siRNA delivered to the tumor cells, we decided to study the biological functions of DSAA in 

some detail. We first investigated the ROS activation in the B16F10 cells since it plays an 

important role as an apoptosis inducer. B16F10 cells were treated with DOTAP/chol or 

DSAA/chol liposomes at different doses, and the cellular ROS content was measured by 

using dichlorofluorescin diacetate (DCFH-DA) and flow cytometry. As shown in Figure 3.7, 

DSAA could more efficiently generate ROS in B16F10 cells than DOTAP after one h of 

treatment and the ROS induction was elevated in a dose-dependent manner. There was a 

statistically significant difference in the apoptosis induction between DSAA and DOTAP at 

concentrations of 10, 25 and 50 µM after 24 h incubation based on flow cytometry assay 

using propidium iodide (PI) and annexin V staining (Figure 3.7B and C). Since it has been 

report that ROS inducing apoptosis was regulated by the ubiquitination of Bcl-2 family 

proteins (144), we further studied the Bcl-2 protein expression after treatment of DSAA or 

DOTAP liposomes for different time periods in B16F10 cells. As shown in Figure 3.7D, 
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50µM DSAA could decrease Bcl-2 expression at 24 and 48 h after treatment. However, Bcl-

2 expression remained unchanged after the treatment with DOTAP. These results suggest 

that ROS induced by DSAA may lead to apoptosis via Bcl-2 down-regulation. Thus, 

silencing c-myc by siRNA and ROS induction and the associated Bcl-2 down-regulation by 

DSAA may work together to impair the growth of a melanoma tumor. 

3.3.6 Immunotoxicity 

The proinflammatory cytokine (IL-6 and IL-12) levels in the serum were examined 

for evaluation of immunotoxicity induced by our formulations in C57BL/6 mice (Figure 3.8). 

c-Myc siRNA formulated in different formulations (DSAA AA+, DSAA AA-, DOTAP AA+ 

and DOTAP AA-) induced a significant production of IL-12, while IL-6 was not induced by 

the formulations. Empty nanoparticle showed very mild immunotoxicity. When treated with 

LPS (1mg/kg), both inflammatory cytokines were induced to high levels. The data suggested 

that the immunotoxicity of c-myc siRNA in DSAA AA+ was similar to DOTAP AA+. Since 

DSAA significantly enhanced the anti-cancer activity, but not the immunotoxicity, of c-myc 

siRNA, it is a valuable formulation lipid for nanoparticles for the siRNA delivery against the 

melanoma 

3.4 DISCUSSION 

Previous studies showed that a mixture of siRNAs against c-myc, MDM2 and VEGF 

had a tumor inhibition effect on the B16F10 melanoma lung metastasis model (40). In this 

study, we have improved the formulation by introducing a novel cationic lipid DSAA. 

Anisamide-targeted LPD nanoparticles containing DSAA effectively delivered siRNA to 

subcutaneous melanoma tumors, and induced elevated apoptosis and tumor growth inhibition. 
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Furthermore, c-myc siRNA so delivered also sensitized the tumor cells to paclitaxel, a 

commonly used chemotherapeutic agent for malignant melanoma.   

c-Myc oncoprotein, as a general transcription factor, regulates various key cellular 

processes such as cancer onset and maintenance in human tumors. Genetic aberrations of c-

myc promote tumorigenesis in various forms of cancer, leading to about 70,000 cancer deaths 

per year in the U.S. (145).  In melanoma, c-myc expression and activation are also essential 

for cancer cell proliferation (139). Down-regulation of c-myc protein induces apoptosis in 

melanoma cells and sensitizes the tumor cells to anti-cancer drugs (146, 147). It has also 

been demonstrated that over-expression of myc oncoprotein inhibits apoptosis triggered by 

paclitaxel in human melanoma (148). Data presented in Figure 3.5 clearly indicate that c-

myc oncogene in the murine melanoma model could be effectively down-regulated by using 

a systemic delivery vehicle carrying siRNA against c-myc. Such down-regulation brought 

tumor growth inhibition as predicted (Figure 3.6). The potency of the new anti-melanoma 

treatment, as shown by the relatively low ED50 (0.55 mg/kg for siRNA), compares favorably 

with other siRNA mediated therapies for cancer (149). The therapeutic activity could be 

further enhanced by combining it with a commonly used first line chemotherapy agent, i.e. 

paclitaxel.  

A critical element for the success of the nanoparticle formulation is the new cationic 

lipid DSAA. Our data (Figure 3.7D) showed that the expression of Bcl-2 was down-

regulated in B16F10 melanoma cells after the treatment of DSAA. The reduction of Bcl-2 

may be related to the induction of ROS in B16F10 cells by DSAA (Figure 3.7A). Bcl-2 is an 

anti-apoptosis protein and over-expressed in various cancer cells. Down-regulation of Bcl-2 

renders the cancer cell more sensitive to cell death triggered by chemotherapeutic agent or 
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Figure 3.9 Schematic illustration of possible mechanisms of the combination strategy using c-myc siRNA 
and the cationic lipid DSAA. Cyt c: cytochrome c. 

radiation and leads to inhibition of tumor growth (150, 151). Chemotherapeutic drugs that 

promote down-regulation of Bcl-2 trigger strong apoptotic activity in B16F10 cells (152). c-

Myc and Bcl-2 cooperate to suppress p53 functions in mediating chemotherapy-induced 

apoptosis (153, 154). Thus, it is not surprising that the combination of siRNA against c-myc 

and DSAA down-regulating Bcl-2 synergistically impaired the growth of the melanoma 

tumor and sensitized the tumor cells to paclitaxel. The combination therapy may also be 

considered for patients who developed drug-resistance in tumors with over-expressed c-myc. 

The possible mechanisms of the combination strategy using siRNA against c-myc and DSAA 

are shown in Figure 3.9. DSAA induced ROS, triggered apoptosis and down-regulated anti-

apoptotic protein Bcl-2 which prevents the release of cytochrome c from mitochondria. C-
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Myc protein silencing by siRNA inhibited cell proliferation and sensitized melanoma cells to 

chemotherapy drugs. siRNA against c-myc and DSAA may cooperate to activate nuclear 

translocation of p53 in mediating chemotherapy-induced apoptotic cell death in melanoma 

cells.  

DSAA, a guanidinium containing cationic lipid, induced ROS and triggered apoptosis 

in B16F10 melanoma cells in a dose- and time-dependent manner (Figure 3.7B and C). ROS 

has important functions affecting cell growth, death, development and survival (155). 

Induction of ROS can initiate a lethal signal transduction resulting in damaged cellular 

integrity and apoptosis (156-159). We suspected that the guanidinium residue was playing a 

critical role in the induction of ROS in the cells and the generation of ROS collaborated in a 

synergistic manner with c-myc siRNA to inhibit tumor growth. The activity of DOTAP in 

inducing ROS is very limited (Figure. 3.7A), hence no effect in enhancing the tumor growth 

inhibition activity of c-myc silencing (Figure. 3.6A). 

However, c-myc also plays a key role for cell proliferation, cell growth, 

differentiation, and cell death in the normal cells (160). In this study, we have used a targeted 

nanoparticle formulation (DSAA AA+) that can specifically deliver c-myc siRNA into the 

tumor tissue (Figure 3.4A). Furthermore, the enhanced uptake of lipid into the tumor also 

appeared to be ligand dependent. The formulation was thus not very immunotoxic as shown 

in Figure 3.8. 

In summary, c-Myc siRNA formulated in the targeted nanoparticle containing DSAA 

could effectively impair tumor growth in the B16F10 melanoma model. The formulation 

shows great promise to be an effective therapeutic agent, perhaps used together with some 

traditional chemotherapies such as paclitaxel, for malignant melanoma.  



4.0 NANOPARTICLES TARGETED WITH NGR MOTIF DELIVER C-MYC SIRNA 

AND DOXORUBICIN FOR ANTICANCER THERAPY 

We have designed a PEGylated LPD nanoparticle for systemic, specific and efficient 

delivery of small interfering RNA (siRNA) into solid tumors in mice by modification with 

NGR (aspargine–glycine–arginine) peptide, targeting aminopeptidase N (CD13) expressed in 

the tumor cells or tumor vascular endothelium. LPD-PEG-NGR efficiently delivered siRNA 

to the cytoplasm and down-regulated the target gene in the HT-1080 cells but not CD13-

negative HT-29 cells, whereas nanoparticles containing a control peptide, LPD-PEG-ARA, 

showed only little siRNA uptake and gene silencing activity. LPD-PEG-NGR efficiently 

delivered siRNA into the cytoplasm of HT-1080 xenograft tumor 4 h after intravenous 

injection. Three daily injections (1.2 mg/kg) of c-myc siRNA formulated in the LPD-PEG-

NGR effectively suppressed c-myc expression and triggered cellular apoptosis in the tumor, 

resulting in a partial tumor growth inhibition. When doxorubicin (Dox) and siRNA were co-

formulated in LPD-PEG-NGR, an enhanced therapeutic effect was observed. 

4.1 INTRODUCTION 

c-Myc oncogene is over-expressed and activated in various human tumors. It 

promotes cell growth, transformation and angiogenesis which play important roles in the 

progression and metastasis of tumor (161). Down-regulation of c-myc with antisense 

oligonucleotides inhibits tumor growth both in vitro and in vivo and sensitizes cancer cells to 
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chemotherapy (162, 163), possibly by induction of p53 and inhibition of Bcl-2 proteins 

which trigger cell apoptosis 3.  

Surgical resection is a common primary cancer treatment. Radiation and 

chemotherapeutic agents such as Dox may improve treatment response and survival. 

However, resistance to chemotherapy and radiation often occurs and leads to poor prognosis. 

Delivery of siRNA against an oncogene or a drug resistant gene is a new strategy to increase 

the therapeutic armament (164-166). Dox, one of the most effective anticancer agents, is 

efficacious against various neoplasms such as acute lymphoblastic and myeloblastic 

leukemia, malignant lymphoma, soft tissue and bone sarcoma, breast, ovarian, prostate, 

bladder, gastric, and bronchogenic carcinoma (167). However, the associated cardiotoxicity 

caused by free radicals generated by Dox has prompted the development of a targeted 

delivery vehicle to tumor cells (168).  

We have successfully developed a core/shell type of nanoparticle formulation, called 

LPD, to specifically deliver siRNA to tumor cells in vivo (25, 40, 169). Dox contains flat 

aromatic rings which intercalate into the DNA strands (170). Since dsDNA is a component of 

the LPD nanoparticle, we have decided to use the DNA as a carrier for Dox. We 

hypothesized that Dox may form a physical complex with the DNA inside the nanoparticles 

through non-covalent intercalation, which does not change the property of Dox or siRNA in 

the LPD nanoparticles. This novel system may provide a platform for efficient and specific 

co-delivery of siRNA and the DNA binding chemotherapy drug for cancer treatment. 

In this study, we have designed the LPD nanoparticles armed with NGR, a peptide 

motif targeting CD13 (171) which is up-regulated in angiogenic tumor vasculature and 

various cancer cells such as HT-1080 human fibrosarcoma cells. CD13 is a multifunctional 
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protein involved in cancer angiogenesis, invasion, and metastasis (172). NGR-containing 

peptides have been successfully used to deliver cytotoxic drugs such as Dox, apoptotic 

peptides, and cytokines such as tumor necrosis factor (TNF) to the tumor or tumor 

vasculature and enhance the antitumor activity of the cargo (171, 173-178). 

In the present study, we have developed LPD nanoparticles modified with PEGylated 

NGR for targeted co-delivery of siRNA and Dox in vitro and in vivo. We have shown 

increasing cellular uptake of siRNA, profound down-regulation of the target gene, enhanced 

apoptosis of the tumor cells and improved tumor growth inhibition effect triggered by LPD-

PEG-NGR containing c-myc siRNA. These results indicate that the suppression of c-myc 

protein by NGR-targeted siRNA therapy and the co-delivery of c-myc siRNA and Dox could 

provide an efficient strategy for cancer treatment.          

4.2 MATERIALS AND METHODS  

4.2.1 Materials 

DOTAP and cholesterol were purchased from Avanti Polar Lipids, Inc. (Alabaster, 

AL). Protamine sulfate (fraction X from salmon) and calf thymus DNA (for hybridization, 

phenol-chloroform extracted and ethanol precipitated) were purchased from Sigma-Aldrich 

(St. Louis, MO). Dox was purchased from IFFECT CHEMPHAR (HK). Synthetic 19-nt 

RNAs with 3' dTdT overhangs on both sequences were purchased from Dharmacon 

(Lafayette, CO). For quantitative studies, cy3 was conjugated to 5' sense sequence. 5'-cy3 

and 5’-FITC labeled siRNA sequence was also obtained from Dharmacon. The sequence of 

c-myc siRNA was 5'-AACGUUAGCUUCACCAACAUU-3' and control siRNA with 

sequence 5'-AATTCTCCGAACGTGTCACGT-3' was obtained from Dharmacon. DSPE-

PEG-NGR (GNGRGGVRSSSRTPSDKYC), a peptide ligand conjugated to a PEG chain 
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tethered to a phospholipid (Figure 4.1A), and DSPE-PEG-ARA 

(GARAGGVRSSSRTPSDKYC), a similar conjugate but containing the control peptide 

ARA, were supplied by Ambrilia (179). These conjugates were used to modify the surface of 

the nanoparticles, as described (100), to obtain LPD-PEG-NGR and LPD-PEG-ARA 

containing siRNA. 

4.2.2 Cell culture  

HT-1080 and HT-29 cells were obtained from American Type Culture Collection. 

HT-1080 cells were maintained in MEM Alpha Media (GibcoBRL) supplemented with 10% 

fetal bovine serum (Invitrogen, Carlsbad, CA), 100 U/ml penicillin, and 100 μg/ml 

streptomycin (Invitrogen). HT-29 cells were maintained in McCoy’s 5A Medium Modified 

Medium (cellgro) supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA), 

100 U/ml penicillin, and 100 μg/ml streptomycin (Invitrogen). To study the siRNA uptake, 

HT-1080 cells were chosen as the CD-13 receptor positive human tumor cell lines and H-29 

cells as receptor negative control cell lines 17. 

4.2.3 Preparation of PEGylated LPD Formulations 

LPD were prepared according to the previously method with slight modifications 

(100). Briefly, cationic liposomes composed of DOTAP and cholesterol (1:1 molar ratio) 

were prepared by thin film hydration followed by membrane extrusion to reduce the particle 

size. To prepare LPD, 18 µL of protamine (2 mg/mL), 140 µL of deionized water, and 24 µL 

of a mixture of siRNA and calf thymus DNA (2 mg/mL) were mixed and kept at room 

temperature for 10 min before adding 120 µL of cationic liposome (10mM). LPD stand at 

room temperature for 10 min before the addition of DSPE-PEG. LPD was then mixed with 
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37.8 µL of DSPE-PEG-NGR or DSPE-PEG-ARA (17 mg/mL) and kept at 50-60 ºC for 10 

min.  

4.2.4 Cellular Uptake Study 

Human HT-1080 and HT-29 cells, originally obtained from ATCC, (1 × 105 per well) 

were seeded in 12-well plates (Corning Inc., Corning, NY) 12 h before experiments. Cells 

were treated with different formulations at a concentration of 250 nM for 5'-cy3-labeled 

siRNA or 1.5 µM Dox in serum containing medium at 37 °C for 4 h. Cells were washed 

twice with PBS, counterstained with DAPI and imaged using a Leica SP2 confocal 

microscope. Dox uptake of HT-1080 and HT-29 cells was also measured by flow cytometry. 

Briefly, cells were treated with different formulations at a concentration of 1.5 µM Dox in 

serum containing medium at 37 °C for 1 h. Cells were harvested and resuspended at a 

concentration of 1 × 106 cells/mL. Cells were washed with PBS and analyzed immediately by 

flow cytometry.  

4.2.5 Gene silencing study 

Sterile round cover slips (1 cm × 1 cm) were placed into each well in 24-well plates. 

HT-1080 cells (5 × 104 cells/0.5 ml/well) were then seeded into each well overnight. Cells 

were treated with different formulations at a concentration of 250 nM for c-myc siRNA in 

10% FBS containing medium at 37 °C for 24 h. Cells were washed three times with PBS and 

fixed with cold acetone/methanol 1:1 for 10 min. Cells were incubated with anti c-myc 

antibody (Santa Cruz Biotechnology, Inc.) at 1:50 dilution for 1 h. After washing with PBS, 

immunostaining was carried out by using a kit (DakoCytomation Envision + Dual Link 

System-HRP (DAB+), DakoCytomation, Carpinteria, CA) following the vendor’s protocol. 

For in vivo study, HT-1080 tumor bearing mice (tumor size ~1 cm2) were i.v. injected with 
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siRNA in different formulations (1.2 mg siRNA/kg, one injection per day for 3 days). A day 

after the third injection, tumors were collected, paraffin embedded and sectioned. Some 

sections were analyzed for TUNEL assay (see below). Sections of 7 ¼ µm thick were 

immunostained with primary antibodies and visualized by using kits from DakoCytomation. 

Samples were imaged by using a Nikon Microphot SA microscope. 

4.2.6 Western blot analysis 

Cells were lysed in lysis buffer CelLytic M Cell Lysis Reagent, (Sigma) for 30 min 

on ice and the supernatant was collected after centrifugation at 12,000 rpm. Cell lysate were 

separated on a 10% acrylamide gel and transferred to a PVDF membrane. Membranes were 

blocked for 1 h in 5% skim milk and then incubated with polyclonal antibody against c-myc 

(Santa Cruz Biotechnology, Inc.) overnight. Membranes were washed in PBST (PBS with 

0.1% Tween-20) three times and then incubated for 1 h with secondary antibody. Membranes 

were washed four times and then developed by an enhanced chemiluminescence system 

according to the manufacturer's instructions (PerkinElmer). For in vivo study, HT-1080 

tumor bearing mice (tumor size ~1 cm2) were i.v. injected with siRNA in different 

formulations (1.2 mg siRNA/kg, one injection per day for 3 days). A day after the third 

injection, mice were killed and tumor samples were collected. Total protein (40 µg) isolated 

from the tumors was loaded on a polyacrylamide gel, electrophoresed, blotted as described 

above. 

4.2.7 Assessment of Apoptosis by TUNEL Staining 

Paraffin sections of HT-1080 tumor were stained by using TACSTM TdT Kit (R&D 

Systems, Minneapolis, MN) according to the manufacturer's recommendation. The apoptotic 
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cells were counted in four randomly selected visual fields for each treatment. The apoptotic 

index was calculated as the ratio of apoptotic nuclei to total nuclei. 

4.2.8 Tumor uptake study 

Mice with tumor size of ~1 cm2 were i.v. injected with cy3-labeled siRNA (1.2 mg/kg) 

or Dox (1.2mg/kg) in different formulations. Four h later, mice were killed and tissues were 

collected, fixed in 10% formalin and embedded in paraffin. Tumor tissues were sectioned (7 

¼ µm thick) and imaged using a Leica SP2 confocal microscope.  

4.2.9 Tissue distribution study 

Mice with tumor size of 1 cm2 were i.v. injected with FITC-labeled siRNA or Dox 

in different formulations (1.2 mg/kg). Four h later, mice were killed and tissues were 

collected and homogenized in lysis buffer and incubated at room temperature for 30 min. The 

supernatant was collected after centrifugation at 14,000 rpm for 10 min and 50 µl supernatant 

was transferred to a black 96-well plate (Corning, Corning, NY). The fluorescence intensity 

of the sample was measured by a plate reader (Bioscan, Washington, DC) at excitation 

wavelength 485 nm and emission wavelength 535 nm. siRNA and Dox concentration in each 

sample was calculated from a standard curve.  

4.2.10 Tumor growth inhibition study 

HT-1080 tumor bearing mice (size 16–25 mm2) were i.v. injected with different 

formulations containing siRNA (1.2 mg/kg) or Dox (0.3 mg/kg) once per day for 3 days. 

Tumor size in the treated mice was measured after treatment. 

4.2.11 Statistical analysis  

 All statistical analyses were performed by student t-test. Data were considered 

statistically significant when p value was less than 0.05.  
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Figure 4.1 Intracellular uptake of siRNA and c-myc expression inhibited by siRNA formulation in vitro. 
(A) the structure of DSPE-PEG-NGR. (B) fluorescence photographs of HT-1080 and HT-29 cells after treatment 
with 5' Cy3 labeled siRNA against an irrelevant target in LPD-PEG-NGR and LPD-PEG-ARA for 4 h. Western 
blot analysis of c-myc and β-actin in HT-1080 cells (C) and HT-29 (D) after treatment with 250nM siRNA in 
different formulations for 24 h. (E) immunocytochemical staining of c-myc after treatment with 250nM siRNA 
in different formulations for 24 h.
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4.3 RESULTS  

4.3.1 Uptake of siRNA in vitro 

The average size of the LPD-PEG-NGR nanoparticles was 197±1 nm and the zeta 

potential was 30.5±0.6 mV. As shown in Figure 4.1B, the uptake of fluorescently labeled 

siRNA was much greater in HT-1080 cells treated with LPD-PEG-NGR than cells treated 

with LPD-PEG-ARA. It indicates that NGR ligand increased the delivery efficiency of the 

nanoparticles for CD13 expressing cells, HT-1080. The CD13-negative cell line HT-29 

(Figure 4.1B) did not show fluorescence, suggesting that uptake of siRNA is related to CD13 

expression.  

 

 
Figure 4.2 Tumor uptake of siRNA in different formulations. (A) fluorescence signal of cy3 labeled 
siRNA in HT-1080 tumor observed by confocal microscopy. (B) tissue distribution of FITC-siRNA in 
different formulations. Data = mean SD, n = 3. * indicates P<0.05 compared with free siRNA. NGR: LPD-
PEG-NGR. ARA: LPD-PEG-ARA. c-Myc: c-Myc siRNA. Control: control siRNA. 
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c-Myc gene silencing in vitro 

To further demonstrate the biological activity of the formulation, siRNA against 

human c-myc was delivered by either LPD-PEG-NGR or LPD-PEG-ARA. Its effect on c-

myc levels was determined by immunostaining and western blot analysis (Figure 4.1C-E). 

The c-myc protein expression of HT-1080 cells treated with c-myc siRNA-containing LPD-

PEG-NGR was significantly inhibited (Figure 4.1C,E). However, anti c-myc siRNA-

containing LPD-PEG-ARA could only slightly down-regulate c-myc. The CD13-negative 

cell line HT-29 (Figure 4.1D,E) did not show silencing activity. The data indicates that 

siRNA could effectively suppress c-myc expression and the silencing activity was ligand 

dependent.  

4.3.2 Uptake of siRNA in vivo 

We studied the cy3-siRNA uptake of HT-1080 tumor tissue in the tumor-bearing 

mice 4 h after i.v. injections using confocal microscopy. As shown in Figure 4.2A, the 

intracellular fluorescence signals were hardly detected in the tumor tissues collected from the 

mice treated with LPD-PEG-ARA. The LPD-PEG-NGR showed strong cytosolic delivery of 

cy3-siRNA in the tumor tissue. The distribution of cy3-siRNA in the tumor was 

heterogeneous. These results indicate that the LPD-PEG-NGR can efficiently deliver siRNA 

to the tumor tissue and the intracellular delivery is targeting peptide dependent. In other 

organs (Figure 4.2B), the liver and the kidney showed stronger uptake of free siRNA than 

siRNA formulated in the targeted nanoparticles, whereas the targeted nanoparticles showed 

stronger siRNA delivery in the tumor tissue than free siRNA. The uptake of siRNA 

formulated in the targeted nanoparticles was under the detection limit in the heart, the spleen, 

and the lung.  
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4.3.3 c-Myc gene silencing and apoptosis induction 

To examine the biological activities of siRNA in vivo, c-myc level in the tumor was 

assayed by western blot analysis and immunostaining (Figure 4.3A, B). c-Myc expression in 

HT-1080 tumor was silenced by siRNA delivered with LPD-PEG-NGR. The LPD-PEG-

 
Figure 4.3 c-Myc expression and apoptosis induction in HT-1080 xenograft tumor. (A) western blot analysis 
of c-myc in the HT-1080 xenograft tumor after treatment with different formulations. c-Myc expression (B) and 
TUNEL staining (C) in HT-1080 tumor cells after treated with siRNA with different formulation in vivo. (D) 
quantitative analysis of TUNEL positive staining in the tumors treated with different formulations. N=3~5. ** 
indicates P < 0.001. 
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Figure 4.4 HT-1080 xenograft tumor growth inhibition by siRNA in different formulations. Solid arrows 
indicate the intravenous administrations of siRNA (1.2 mg/kg). Data = mean, n = 5–7. SD of the data points is 
not shown for clarity. * indicates P < 0.05. 

 

ARA showed only a partial effect, whereas the control siRNA showed no effect. We also 

stained for the apoptotic markers in the HT-1080 tumor (Figure 4.3C). Figure 4.3C and 3D 

indicate that about 5 % of HT-1080 cells treated with c-myc siRNA containing LPD-PEG-

NGR underwent apoptosis as detected by the TUNEL staining. This value was significantly 

higher than the ones treated with c-myc siRNA formulated in LPD-PEG-ARA, or control 

siRNA formulated in either LPD-PEG-NGR or LPD-PEG-ARA. The results indicate that c-

myc siRNA formulated with LPD-PEG-NGR can promote cell death in the HT-1080 tumor 

and the apoptosis effect was targeting peptide dependent.  

4.3.4 Tumor growth inhibition by siRNA nanoparticles 

Three injections of c-myc siRNA in LPD-PEG-NGR showed a partial inhibition of 

tumor growth (P < 0.05 at day 21) (Figure 4.4). Other control groups treated with c-myc 

siRNA formulated in LPD-PEG-ARA, control siRNA formulated in LPD-PEG-NGR had no 

therapeutic effect. The results indicate that c-myc siRNA formulated with LPD-PEG-NGR 

can inhibit the growth of HT-1080 tumor and the tumor growth inhibition effect was 
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targeting peptide dependent. The LPD-PEG-NGR nanoparticles efficiently delivered of 

siRNA to the solid tumor and almost totally silenced the target gene, c-myc, throughout the 

entire HT-1080 tumor. Since only partial apoptosis and growth inhibition of the tumor was 

observed, we hypothesized that it was due to the existence of alternative mechanisms of 

proliferation or some anti-apoptosis events in the tumor. To enhance the therapeutic activity 

of LPD-PEG-NGR nanoparticles containing c-myc siRNA, we co-delivered siRNA and Dox 

to the tumor cells. Dox has a unique property to bind with dsDNA by base intercalation 

(170). Since dsDNA is a component of the LPD nanoparticles, we have decided to use DNA 

as a carrier for Dox. We hypothesized that Dox will form a physical complex with DNA 

inside the LPD nanoparticles by non-covalent intercalation, which will not change the 

property of Dox or siRNA in the LPD nanoparticles. 



 83

 
Figure 4.5 Intracellular uptake of DOX in vitro. (A) illustration of preparation of LPD-PEG-NGR containing 
siRNA and DOX. (B) fluorescence photographs of HT-1080 and HT-29 cells after treatment with DOX in LPD-
PEG-NGR (NGR), LPD-PEG-ARA (ARA) and LPD-PEG (PEG) for 1 h. Quantitative measurement of DOX 
uptake in HT-1080 cells by flow cytometry (C). Uptake of siRNA and DOX by HT-1080 and HT-29 cells were 
compared (D). cells were treated with different formulations containing DOX and FITC-siRNA for 1 h and 
analyzed for fluorescence by flow cytometry. Data = mean ± SD, n = 3. ** indicates P < 0.001. 
 

4.3.5 Characterization of the nanoparticles containing siRNA and Dox 

In this study, we have explored a novel strategy for specifically co-delivery of siRNA 

and Dox to the tumor by using DNA-Dox physical complex. The preparation of LPD-PEG-
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Figure 4.6 DOX fluorescence intensity during the nanoparticle self-assembly. (A) fluorescence of free 
DOX. (B) after the addition of calf thymus DNA and siRNA. Addition of protamine did not change the 
fluorescence, i.e. same as (B). (C) addition of DOTAP/chol liposomes. Dox : DNA : siRNA : protamine = 
1:1:1:1.5 (wt ratio).  

NGR containing Dox is shown in Figure 4.5A.  Figure 4.6 showed that the fluorescence of 

Dox was quenched upon its intercalation into DNA, whereas the fluorescence was enhanced 

when the cationic liposomes were added. The average size of the LPD-PEG-NGR 

nanoparticles containing Dox was 188±29 nm and the zeta potential was 27.2±1.0 mV. The 

resulting nanoparticles efficiently delivered Dox to the HT-1080 cells as much as the free 

Dox (Figure 4.5B). Dox was found in the nuclei of the cells. Dox uptake was further 

compared among different nanoparticle formulations by using flow cytometry. FITC labeled 

siRNA was included in the nanoparticles for comparison. As can be seen in Figure 4.5D, 

both siRNA and Dox were taken up by CD13 positive HT-1080 cells more than the CD13 

negative HT-29 cells. However, the enhanced uptake was only seen with formulations 

targeted with NGR. Thus, peptide targeted LPD nanoparticles showed potential to delivery 

both siRNA and Dox to tumor cells in a target specific manner.   
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Figure 4.7 Tumor uptake of DOX in different formulations. (A) fluorescence signal of DOX in HT-1080 
tumor observed by confocal microscopy. (B) tissue distribution of DOX in different formulations. Data = mean 
SD, n = 3. * indicates P<0.05 compared with free DOX.  
 

4.3.6 Uptake of Dox in vivo 

We studied the Dox uptake of HT-1080 tumor tissue in the tumor-bearing mice 4 h 

after i.v. injection using confocal microscopy. As shown in Figure 4.7A, the LPD-PEG-NGR 

showed stronger cytosolic delivery of cy3-siRNA in the tumor tissue than LPD-PEG-ARA 

and free Dox. The distribution of Dox in the tumor was heterogeneous. These results indicate 

that the LPD-PEG-NGR can efficiently deliver Dox to the tumor tissue and the intracellular 

delivery is targeting peptide dependent. In the quantitative analysis (Figure 4.7B), liver, 

kidney, heart and spleen showed stronger uptake of free Dox than Dox formulated in the 
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Figure 4.8 HT-1080 xenograft tumor growth inhibition by siRNA and DOX in different formulations. 
Solid arrows indicate the intravenous administrations of siRNA (1.2 mg/kg) and DOX (0.3 mg/kg). Data = mean, 
n = 5–7. SD of the data points is not shown for clarity. ** indicates P < 0.01. 

targeted nanoparticles, whereas the targeted nanoparticles showed stronger Dox delivery in 

the tumor tissue than free Dox.  

4.3.7 Tumor growth inhibition by nanoparticles containing siRNA and DOX 

Three injections of c-myc siRNA in LPD-PEG-NGR showed a partial inhibition of 

tumor growth (P < 0.05 at day 21) (Figure 4.5 and 4.8). The control group treated with free 

Dox at a dose of 0.3mg/kg had no therapeutic effect (Figure 4.8). The admixture of free Dox 

and c-myc siRNA in LPD-PEG-NGR induced similar tumor growth inhibition as c-myc 

siRNA in LPD-PEG-NGR. A significant improvement in tumor growth inhibition was 

observed when treated with Dox and c-myc siRNA co-formulated in LPD-PEG-NGR. The 

results indicate that Dox and c-myc siRNA co-delivered by targeted nanoparticles can 

synergistically inhibit tumor growth and enhance the therapeutic effect. 
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4.4 DISCUSSION  

c-Myc gene is a key in cancer onset and maintenance in various human tumors. The 

genetic alterations of c-myc are related to approximately 70,000 U.S. cancer deaths per year. 

Over-expression and activation of c-myc induces various forms of cancer. However, 

expression of the c-myc is also essential for proliferation and regulation in normal 

mammalian cells. The aim of this study is to design a targeted nanoparticle formulation that 

can specifically deliver c-myc siRNA into the tumor site, down-regulate c-myc expression in 

the tumor and achieve therapeutic cures. Our formulation can also help understand the 

function and mechanism of c-myc in tumor development.  

Our results demonstrate that inhibition of c-myc protein expression by siRNA could 

induce apoptosis in HT-1080 tumors and significantly suppress tumor growth of HT-1080 

cells in nude mice (Figure 4.3 and 4.4). Through co-delivery of Dox and siRNA in the LPD 

formulation, siRNA against c-myc sensitized HT-1080 cells to Dox chemotherapy (Figure 

4.8). The combination strategy may be effective to overcome the drug resistance of cancer 

cells which over-express c-myc gene. Therefore, the new formulation may serve as a new 

strategy for cancer therapy.  

 There are two major issues with siRNA based approaches in cancer therapy: 1. poor 

selectivity in delivery, i.e., inadequate siRNA uptake by the tumor and nonspecific siRNA 

uptake by normal tissues, and 2. unfavorable pharmacokinetics, i.e., rapid clearance of free 

siRNA in the blood. LPD-PEG-NGR is a PEGylated LPD containing siRNA or Dox, or both, 

coated with a tumor targeting peptide containing the NGR motif. We have demonstrated that 

the nanoparticles can protect siRNA from degradation in the systemic circulation in our 

previous study (25). In this study, we have shown that it can deliver siRNA and Dox into the 
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tumor site, increase the accumulation of siRNA and Dox in the tumor tissues (Figure 4.2 and 

4.7), down-regulate the target gene (Figure 3) and improved tumor growth inhibition effect 

(Figure 4.5 and 4.8). Furthermore, it has been reported that NGR motif can also target the 

tumor blood vessels (180). Our results also demonstrate that LPD-PEG-NGR can specifically 

and efficiently deliver the fluorescence labeled siRNA into the HUVEC endothelial cells. By 

using siRNA against angiogenesis, our delivery system could serve as a carrier to deliver 

therapeutic siRNA into tumor vascular endothelial cells and disrupt tumor vasculature. LPD-

PEG-NGR containing therapeutic siRNA could serve as a novel anti-cancer agent for a wide 

variety of tumors. 

In Figure 4.5D, NGR targeted LPD nanoparticles deliver more siRNA and Dox to 

HT-1080 tumor cells than to HT-29 tumor cells. However, the nonspecific uptake of Dox 

(Figure 4.5C and 4.5D) may be due to the poor entrapment of Dox in the LPD nanoparticles. 

The data in Figure 4.6 suggest that when the cationic liposomes interacted with the 

negatively charged DNA/protamine complex, there was a substantial leakage of Dox from 

the nanoparticle associated DNA. Indeed, Dox encapsulation in the final LPD nanoparticles 

was only about 20%. It implies that addition of cationic liposome may decrease the 

entrapment efficiency. The positive charge of the C-3′ amine of Dox is required to stabilize 

the intercalation into DNA via charge interaction with the negative charge of the DNA 

phosphate backbone (181). Cationic lipid may directly compete with the Dox for interaction 

with calf thymus DNA and dislodge Dox from the DNA. However, the small amount of Dox 

entrapped in the LPD-PEG-NGR induced a significantly increased tumor uptake (Figure 4.7) 

in the HT-1080 tumor model. A significant improvement in therapeutic effect was also 

achieved by the small amount of Dox entrapped in the targeted nanoparticle (Figure 4.7). 
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Free, un-entrapped Dox was rapidly cleared from the blood circulation after i.v. 

administration and rarely up-taken in the tumor tissue. If the interaction of DNA with 

cationic liposomes, but not with protamine, was the cause of the Dox leakage, we will 

attempt to modify the nanoparticle formulation to enhance entrapment efficacy in our future 

study. 

The tumor homing peptide (NGR) modified nanoparticle provides an enhancement of 

drug potency and may potentially be a therapeutic agent against drug resistant tumors when 

combined with siRNA against drug resistant genes such as p-glycoprotein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5.0 NANOPARTICLES DELIVERING SIRNA AND DOXORUBICIN OVERCOME 

DRUG RESISTANCE IN CANCER 

 Multi-drug resistant cells are new targets for cancer therapy as they display drug 

resistance by over-expression of multiple drug resistance (MDR) transporters which can 

efflux chemotherapy drug molecules. In this study, we have used a multi-functional anionic 

LPD-II nanoparticle for efficient systemic co-delivery of small interfering RNA (siRNA) 

against c-myc and doxorubicin (Dox), into P-gp-positive NCI/ADR-RES tumors in a 

xenograft model. c-myc siRNA delivered by the targeted nanoparticles significantly down-

regulated both c-myc and P-gp expressions in the tumor, caused enhanced Dox uptake and 

sensitized tumor cells to Dox. Furthermore, the synergistic therapeutic effect of Dox and c-

myc siRNA on apoptosis was caspase-3 dependent. Three daily intravenous injections of c-

myc siRNA and Dox co-formulated in the targeted nanoparticles showed a significant 

improvement in tumor growth inhibition. This is the first report of systemic co-delivery of 

Dox and c-myc siRNA to a drug resistant tumor by using a multi-functional gene delivery 

system. 

5.1 INTRODUCTION 

The occurrence of drug resistance is a main impediment to the success of cancer 

chemotherapy. Cancer cells develop different ways to be resistant to chemotherapy drugs. 

Over-expression of drug transporter proteins, such as P-glycoprotein (P-gp) plays a key role 

to regulate drug resistance. Development of strategies to down-regulate the expression of P-
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gp or inhibit P-gp function has been the major subject of cancer research. For example, one 

of the strategies to overcome MDR is to use carriers like nanoparticles to avoid P-gp 

mediated drug efflux. Only the drug presenting in the cell membrane can be effluxed out of 

the cancer cell. The drug delivered by nanoparticles is internalized in the cytoplasm or the 

lysosome and not pumped out by P-gp (182). Doxorubicin (Dox)-loaded liposomes are able 

to overcome MDR by increasing Dox uptake in the nuclei and extending retention in the 

nuclei of the MDR cells (183, 184).  

Small interfering RNA (siRNA) is a promising novel approach of cancer therapy. It 

offers a new strategy to down-regulate the targeted oncogene for therapeutic intervention. c-

Myc which is over-expressed and activated in various human tumors was selected as a target 

oncogene in this study. It stimulates cell growth, angiogenesis and transformation which are 

the keys of the occurrence of the tumor progression and metastasis (161). Suppression of c-

myc protein with antisense oligonucleotides impeded tumor growth and sensitizes cancer 

cells to chemotherapy (162, 163).  c-Myc also involves in the regulation of P-gp expression 

(185, 186). Therefore, c-myc siRNA can be a potential therapeutic agent that sensitizes MDR 

tumors to chemotherapeutic drugs such as Dox. 

Systemically delivering siRNA to tumors remains a major hurdle in cancer gene 

therapy (142, 187). Major problems of siRNA delivery include poor cellular uptake, low 

stability and rapid clearance from the systemic circulation. We have developed a nanoparticle 

formulation, LPD to intravenously deliver siRNA to the solid tumor in high efficiency (25, 

40, 59, 169). siRNA-containing LPD is coupled to a targeting moiety that targeted delivers 

the therapeutic siRNA into cancer cells via receptor specific endocytosis. 
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In the present study, we have further developed the multi-functional LPD-II 

nanoparticles, made with anionic lipids which co-deliver siRNA and Dox into the MDR 

tumor cells and trigger synergistic anti-cancer effect. We co-formulated siRNA and Dox in 

the LPD-II nanoparticles via Dox intercalation into the DNA in the nanoparticles. The 

nanoparticles were targeted specifically to the tumor cells by modification with anisamide 

(AA), a ligand of sigma receptor over-expressed in many human cancer cells. We 

hypothesized that c-myc siRNA delivered to the MDR cells will down-regulate both c-myc 

and P-gp and sensitize the tumor cells to the co-delivered Dox, resulting in an enhanced 

therapeutic activity of the nanomedicine. The experiments were carried out in a xenograft 

model of the MDR tumor. 

5.2 MATERIALS AND METHODS  

5.2.1 Materials 

DOPA, DOPE and cholesterol were purchased from Avanti Polar Lipids, Inc. 

(Alabaster, AL). Protamine sulfate (fraction X from salmon) and calf thymus DNA were 

purchased from Sigma-Aldrich (St. Louis, MO). Dox was purchased from IFFECT 

CHEMPHAR (Hong Kong). Synthetic 19-nt RNAs with 3' UU overhangs on both sequences 

were purchased from Dharmacon (Lafayette, CO). For quantitative studies, FITC or cy5.5 

was conjugated to 5' sense sequence. 5.5'-cy3 and 5’-FITC labeled siRNA sequence was also 

obtained from Dharmacon. The sequence of c-myc siRNA was 5'-

AACGUUAGCUUCACCAACAUU-3' and control siRNA with sequence 5'-

AATTCTCCGAACGTGTCACGT-3' was obtained from Dharmacon.  

5.2.2 Cell culture 
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NCI/ADR-RES cells were a kindly gift of Russell Mumper, PhD (UNC, school of 

pharmacy). NCI/ADR-RES cells were maintained in DMEM high glucose with GlutaMAX 

(GibcoBRL) supplemented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA), 100 

U/ml penicillin, and 100 μg/ml streptomycin (Invitrogen).  

5.2.3 Experimental animals 

Female athymic nude mice of age 6–8 weeks were purchased from National Cancer 

Institute, Frederick, MD. All work performed on animals was in accordance with and 

permitted by the University of North Carolina Institutional Animal Care and Use committee. 

5.2.4 Preparation of PEGylated LPD-II Formulations 

LPD-II were prepared according to the previously method with slight modifications 

(188). Briefly, anionic liposomes composed of DOPA, DOPE and cholesterol (2:1:1 molar 

ratio) were prepared by thin film hydration followed by membrane extrusion to reduce the 

particle size. To prepare LPD-II, 48 µL of protamine (2 mg/mL), 60 µL of deionized water, 

and 24 µL of a mixture of siRNA and calf thymus DNA (2 mg/mL) were mixed and kept at 

room temperature for 10 min before adding 90 µL of cationic liposome (20 mM). LPD stand 

at room temperature for 10 min before the addition of DSPE-PEG. LPD was then mixed with 

54 µL of DSPE-PEG or DSPE-PEG-AA (10 mg/mL) and kept at 50-60 ºC for 10 min for the 

attachment of the PEG chains to the surface membrane of the nanoparticles. 

5.2.5 Transmission electron microscopy (TEM) image 

TEM images of the LPD-II nanoparticles were acquired by the use of JEOL 100CX II 

TEM (JEOL, Japan). Briefly, 5 µl of LPD-II nanoparticles was dropped on to a 300 mesh 

carbon coated copper grid (Ted Pella, Inc., Redding, CA). Excess sample was removed by 
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blotting with a filter paper. The grid was air dried and viewed in TEM without staining. The 

scale bar was automatically shown in the image according to the magnification.  

5.2.6 Cellular Uptake Study  

NCI/ADR-RES cells (1 × 105 per well) were seeded in 12-well plates (Corning Inc., 

Corning, NY) 12 h before experiments. Cells were treated with different formulations at a 

concentration of 250 nM for 5'-FITC-labeled siRNA or 1.5 µM Dox in serum containing 

medium at 37 °C for 4 h. Cells were washed twice with PBS, counterstained with DAPI and 

imaged using a Leica SP2 confocal microscope. Dox and siRNA uptake of NCI/ADR-RES 

cells was also measured by flow cytometry. Briefly, cells were treated with different 

formulations at a concentration of 250 nM 5'-FITC-labeled siRNA or 1.5 µM Dox  in serum 

containing medium at 37 °C for 1 h. Cells were harvested and resuspended at a concentration 

of 1 × 106 cells/mL. Cells were washed with PBS and analyzed for fluorescence by flow 

cytometry.  

5.2.7 Gene silencing study  

NCI/ADR-RES tumor bearing mice (tumor size ~1 cm2) were i.v. injected with 

siRNA and Dox in different formulations (1.2 mg siRNA/kg, one injection per day for 2 

days). A day after the third injection, tumors were collected, paraffin embedded and 

sectioned. Sections of 7 ¼ µm thick were immunostained with primary antibodies and 

visualized by using kits from DakoCytomation. Samples were imaged by using a Nikon 

Microphot SA microscope or Leica SP2 confocal microscope.  

5.2.8 Quantitative RT-PCR  

NCI/ADR-RES tumor bearing mice (tumor size ~1 cm2) were i.v. injected with 

siRNA and Dox in different formulations (1.2 mg siRNA/kg, one injection per day for 2 
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days). A day after the third injection, mice were killed and tumor samples were collected. 

Total RNA were extracted with the RNeasy® Mini Kit (Qiagen, Valencia, CA) by following 

the manufacturer protocol. cDNA was then prepared in the presence of reverse transcriptase 

(Promega, Madison, WI). The mRNA levels were determined by an ABI PRISM HT7500 

sequence detection system (Applied Biosystems, Foster City, CA) as described previously 

(189). The oligomer pairs used for the amplification of PCR products were 

AAGCCACAGCATACATCC (forward primer for c-myc), TTACGCACAAGAGTTCCG 

(reverse primer for c-myc), CACCACCAACTACTTAGC (forward primer for GADPH) and 

GTAGAGGCAGGAATGATG (reverse primer for GADPH). 

5.2.9 Western blot analysis  

NCI/ADR-RES tumor bearing mice (tumor size ~1 cm2) were i.v. injected with 

siRNA and Dox in different formulations (1.2 mg siRNA/kg, one injection per day for 2 

days). A day after the third injection, mice were killed and tumor samples were collected. 

Total protein (40 µg) isolated from the tumors was loaded on a polyacrylamide gel. Tumor 

lysate were separated on a 10% acrylamide gel and transferred to a PVDF membrane. 

Membranes were blocked for 1 h in 5% skim milk and then incubated with polyclonal 

antibody against c-myc (Santa Cruz Biotechnology, Inc.) overnight. Membranes were 

washed in PBST (PBS with 0.1% Tween-20) three times and then incubated for 1 h with the 

secondary antibody. Membranes were washed four times and then developed by an enhanced 

chemiluminescence system according to the manufacturer's instructions (PerkinElmer).  

5.2.10 Tumor uptake study  

Mice with tumor size of ~1 cm2 were i.v. injected with cy5.5-labeled siRNA (1.2 

mg/kg) and Dox (1.2mg/kg) in different formulations. Four h later, mice were killed and 
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tissues were collected, fixed in 10% formalin and embedded in paraffin. Tumor tissues were 

sectioned (7 ¼ µm thick) and imaged using a Leica SP2 confocal microscope.  

5.2.11 Tumor growth inhibition study  

NCI/ADR-RES tumor bearing mice (size 16–25 mm2) were i.v. injected with 

different formulations containing siRNA (1.2 mg/kg) or Dox (1.2 mg/kg) once per day for 3 

days. Tumor size in the treated mice was measured after treatment. 

5.2.12 Statistical analysis  

 All statistical analyses were performed by student t-test. Data were considered 

statistically significant when p value was less than 0.05.  

5.3 RESULTS 

5.3.1 Preparation and characterization of the nanoparticles 

    We have developed LPD-II nanoparticles for delivering plasmid DNA into tumor cells 

(188). In this study, we further explored the potential of LPD-II for specifically co-delivery 

of siRNA and Dox to the tumor by using DNA-Dox physical complex. DNA, Dox and 

siRNA was first complexed with a slight excess protamine such that the condensed DNA 

nanoparticles are positively charged. The complex is then entrapped into anionic liposomes 

composed of DOPE/cholesterol/DOPA (1:1:2 mol/mol) via charge interaction. The solution 

was incubated at 50°C for 10 min with either DSPE-PEG or DSPE-PEG-AA micelles for 

surface modification of the LPD-II. Figure 5.1A showed that the fluorescence of Dox was 

quenched upon its intercalation into the DNA, and it was further quenched when the anionic 
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Figure 5.1 Characterization of LPD II nanoparticles. A, DOX fluorescence intensity during the 
nanoparticle self-assembly. B, TEM images of PEGylated LPD-II nanoparticles shown in two different 
magnifications. 
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Figure 5.2 Intracellular uptake of siRNA and DOX in vitro and in vivo A, fluorescence photographs of 
NCI/ADR-RES cells after treatment with free siRNA (a), free Dox (b), siRNA and Dox in targeted 
nanoparticles (c) or non-targeted nanoparticles (d) for 1 h. Quantitative measurement of Dox (B) and siRNA 
(C) uptake in NCI/ADR-RES cells by flow cytometry. Cells were treated with different formulations 
containing Dox or FITC-siRNA for 1 h and analyzed for fluorescence by flow cytometry. D, tumor uptake 
of siRNA and Dox in different formulations. Fluorescence signal of Cy5.5 labeled siRNA and Dox in 
NCI/ADR-RES tumor was observed by confocal microscopy. NP: nanoparticle. 

liposomes were added. The average size of the nanoparticles containing Dox was 62.7 ± 13.3 

nm measured by dynamic light scattering and the zeta potential was -19.4 ± 1.1 mV. TEM 

images of the PEGylated LPD-II nanoparticles are shown in Figure 5.1B. These 

nanoparticles are well-dispersed spheres with sizes ranging from 20 to 50 nm. The particle 

size revealed by TEM is usually smaller than that measured by light scattering, because the 

limiting membrane is not seen in TEM without negative staining. 
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5.3.2 Uptake of Dox and siRNA in vitro 

As shown in the confocal micrographs in Figure 5.2A, the resulting nanoparticles 

efficiently delivered Dox (red) and FITC-labeled siRNA (green) to the NCI/ADR-RES cells. 

Dox was located in the nuclei of the cells and siRNA was found in the cytoplasm. The uptake 

of fluorescently labeled siRNA was much greater in the cells treated with targeted 

nanoparticles (LPD-PEG-AA) than the cells treated with non-targeted nanoparticles (LPD-

PEG). It indicates that AA, a ligand for the sigma receptor, increased the delivery efficiency 

of the nanoparticles for NCI/ADR-RES cells. The uptake of fluorescently labeled siRNA was 

much greater in the cells treated with targeted nanoparticles than the cells treated with free 

Dox suggesting that the nanoparticles can overcome drug resistance in NCI/ADR-RES cells.  

Dox and siRNA uptake was further compared among different nanoparticle 

formulations by using flow cytometry. As can be seen in Figure 5.2B and C, both siRNA 

and Dox delivered by targeted nanoparticles were taken up by NCI/ADR-RES cells more 

efficiently than those delivered by non-targeted nanoparticles or free drug. Thus, targeted 

LPD-II nanoparticles showed potential to delivery both siRNA and Dox to drug resistant 

tumor cells in a target specific manner.   

5.3.3 Uptake of siRNA and Dox in vivo 

We studied using confocal microscopy the cy5.5-siRNA (green) and Dox (red) uptake 

of NCI/ADR-RES tumor tissue in the tumor-bearing mice 4 h after i.v. injections. As shown 

in Figure 5.2D, the intracellular fluorescence signals were hardly detected in the tumor 

tissues collected from mice treated with non-targeted nanoparticles or free drug. The targeted 

nanoparticles showed strong cytosolic delivery of cy5.5-siRNA and nuclear delivery of Dox 

in the tumor tissue. Part of Dox co-localized with siRNA (yellow) in the cytoplasm of the 



 100

tumor cells. These results indicate that the targeted nanoparticles could efficiently deliver 

siRNA and Dox to the tumor tissue and the intracellularly delivery was dependent on the 

presence of the ligand on the nanoparticles.  

5.3.4 c-Myc gene silencing 

To address the activities of siRNA in vivo, c-myc level in the tumor was assessed by 

qRT-PCR, western blot analysis and immunostaining (Figure 5.3). Both c-myc mRNA and 

protein expressions of the NCI/ADR-RES tumor treated with c-myc siRNA and Dox-

containing targeted nanoparticles were significantly inhibited (Figure 5.3). c-Myc expression 

in NCI/ADR-RES tumor was silenced by c-myc siRNA delivered with targeted 

 
Figure 5.3 c-Myc expression in NCI/ADR-RES xenograft tumor. A, quantitative measurement of c-myc 
mRNA expression in the NCI/ADR-RES xenograft tumor using real time PCR. Western blot analysis (B) and 
immunostaining (C) of c-myc in the NCI/ADR-RES xenograft tumor after treatment with different formulations. 
a, c-myc siRNA and Dox co-formulated in targeted nanoparticles. b, c-myc siRNA and Dox in non-targeted 
nanoparticles. c, control siRNA and Dox in targeted nanoparticles. 

 



 101

nanoparticles, whereas the non-targeted nanoparticles and the control siRNA showed no 

effect. 

5.3.5 Effect of c-myc down-regulation on MDR transporter expression and drug 

resistance 

To verify the regulatory effects of c-myc on the expression of MDR transporters [13], 

the protein level of MDR transporters were measured 72 h after transfection of the siRNA 

targeting c-myc. As shown in Fig. 5.4A, the MDR expression was significantly decreased in 

NCI/ADR-RES cells transfected with c-myc siRNA compared with those transfected with 

control siRNA. To address the MDR down-regulation in vivo, MDR level in the tumor was 

detected by immunostaining (Figure 5.4C). The MDR expression of the NCI/ADR-RES 

tumor treated with c-myc siRNA and Dox-containing targeted nanoparticles was significantly 

inhibited (Figure 5.4C). Non-targeted nanoparticles and the control siRNA showed no effect. 

To elucidate whether the down-regulation of the c-myc expression could reverse drug 

resistance of NCI/ADR-RES cells, Dox uptake was further compared among cells transfected 

in vitro with the c-myc and control siRNAs by using flow cytometry. As shown in Fig. 5.4B, 

free Dox uptake was significantly increased in NCI/ADR-RES cells transfected with c-myc 

siRNA compared with those transfected with control siRNA. We further studied the Dox 

uptake of NCI/ADR-RES tumor tissue in the tumor-bearing mice 4 h after i.v. injections 

using confocal microscopy. Tumor bearing mice were given two daily injections of c-myc or 

control siRNA (1.2 mg/kg) formulated in the targeted nanoparticles. As shown in Figure 

5.4D, free Dox uptake was higher in the tumor tissues collected from the mice treated with c-

myc siRNA than the mice treated with control siRNA. The targeted nanoparticles 
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encapsulating Dox showed an increased cytosolic delivery of Dox on NCI/ADR-RES cells. 

Furthermore, the formulated Dox uptake was also slightly higher in the tumor tissues from 

 
 
 
 

 
Figure 5.4 MDR expression in NCI/ADR-RES xenograft tumor. A, MDR expression in NCI/ADR-RES cells 
72 h after transfection of siRNA with Lipofectamine in vitro. B, free Dox uptake in NCI/ADR-RES cells 72 h 
after transfection of siRNA with Lipofectamine. Cells were treated with free Dox for 30 min and analyzed for 
fluorescence by flow cytometry. C, MDR expression in NCI/ADR-RES tumors 24 h after dosing of different 
formulations (two daily intravenous administrations of 1.2 mg/kg siRNA formulated in nanoparticles). D, Tumor 
uptake of free Dox or Dox in the targeted nanoparticles 4 h after i.v. injection. Fluorescence signal of Dox in 
HT-1080 tumor was observed by confocal microscopy. Tumor bearing mice were given two daily injections of 
c-myc or control siRNA (1.2 mg/kg) formulated in the targeted nanoparticles. Free Dox or Dox formulated in the 
targeted nanoparticles was intravenous injected 24 h after the final treatment of siRNA. a, untreated. b, c-myc 
siRNA in targeted nanoparticles. c, c-myc siRNA in targeted nanoparticles. d, control siRNA in targeted 
nanoparticles. e, i.v administration of Dox in targeted nanoparticles 24 h after treatment of c-myc siRNA. f, i.v 
administration of Dox in targeted nanoparticles 24 h after treatment of control siRNA. g, i.v administration of 
free Dox 24 h after treatment of c-myc siRNA. h, i.v administration of free Dox 24 h after treatment of control 
siRNA. Data = mean ± SD, n = 3. * indicates P < 0.01. MFI: mean fluorescence intensity. 
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Figure 5.5 Apoptosis induction in NCI/ADR-RES xenograft tumor. Caspase 3 activation in NCI/ADR-RES 
tumors 24 h after dosing of different formulations (two daily intravenous administrations of 1.2 mg/kg siRNA 
and 1.2 mg/kg Dox co-formulated in the nanoparticles) 

mice treated with c-myc siRNA than those treated with control siRNA. These results indicate 

that the uptakes of both free and formulated Dox were enhanced after treatment with c-myc 

siRNA in the targeted nanoparticles. These studies suggest that the down-regulation of c-myc 

expression could reverse drug resistance of NCI/ADR-RES cells through the regulation of 

MDR transporter expression. 

5.3.6 Apoptosis induction and tumor growth inhibition by siRNA nanoparticles 

To examine the apoptosis induced by the nanoparticles in the tumors, the level of the 

active form of caspase-3 was detected by western blot analysis (Figure 5.5). Activation of 

caspase-3 is a common mechanism triggered by factors that induce apoptosis (190). As 

shown in Figure 5.5, active caspase-3 in the NCI/ADR-RES tumor from mice treated with 

targeted nanoparticles containing c-myc siRNA and Dox was significantly induced compared 

with those in the control groups. There was a slight increase of the active caspase-3 in the 

tumors from mice treated with non-targeted nanoparticles or targeted nanoparticles 

containing Dox and control siRNA compared with the untreated mice. The results indicate 

that c-myc siRNA and Dox formulated in the targeted nanoparticles could synergistically 
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Figure 5.6 Growth inhibition of NCI/ADR-RES xenograft tumor by siRNA and Dox in different 
formulations. A, Comparison of anti-tumor efficacy of free Dox and Dox delivered by targeted nanoparticles. B, 
combination of c-myc siRNA and Dox co-formulated in different nanoparticles. Arrows indicate the intravenous 
administrations of siRNA (1.2 mg/kg) and Dox (1.2 mg/kg). Data = mean, n = 5–7. SDs of the data points are 
not shown for clarity.  

promote apoptosis in the NCI/ADR-RES tumor and the cell killing effect was targeting 

ligand dependent.  

To elucidate the synergistic effects of Dox and c-myc siRNA, tumor growth 

inhibitory effects were examined in vivo. Three injections of control siRNA and Dox in the 

targeted nanoparticles showed a partial inhibition of tumor growth (P < 0.05 comparing with 

the untreated control at day 21) (Figure 5.6A). Other control groups treated with control 
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siRNA formulated in the targeted nanoparticles or free Dox had no therapeutic effect. The 

results indicate that Dox formulated in the targeted nanoparticles showed enhanced tumor 

inhibition effect.  

Furthermore, three injections of c-myc siRNA in the targeted nanoparticles failed to 

show the therapeutic effect (Figure 5.6B).  c-Myc siRNA and Dox in the non-targeted 

nanoparticles showed a partial inhibition of tumor growth (P < 0.05 at day 18) (Figure 5.6B). 

A significant tumor growth inhibition was observed when mice were treated with Dox and c-

myc siRNA co-formulated in the targeted nanoparticles. Thus, targeted nanoparticles loaded 

with both Dox and c-myc siRNA could overcome P-gp-mediated drug resistance. Both 

therapeutic agents acted synergistically to inhibit tumor growth through caspase-3 activation 

and apoptosis induction. 

5.4 Discussion 

The occurrence of drug resistance is an important obstacle of cancer therapy. Drug 

transporter proteins, such as those in the MDR family, are over-expressed in most of drug 

resistant cancer cell lines and recurrent tumors in cancer patients. Dox is known as a MDR 

substrate and its reduced uptake and compromised therapeutic efficacy are related to MDR 

over-expression (191). In this study, our aim was to develop a multi-functional nanoparticle 

delivery system that can deliver therapeutic siRNA and Dox into the drug resistant tumors 

and achieve enhance therapeutic effect. The key components of the nanoparticles are a DNA-

polycation condensed core coated with an anionic lipid membrane consisting of mainly 

DOPA. DSPE-PEG modified with AA, a targeting ligand, was also inserted to functionalize 

the nanoparticle surface. Protamine, an arginine-rich cationic peptide in the DNA-polycation 

condensed core of nanoparticles may also contribute to disrupting the endosomal membranes 
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and subsequent siRNA release (192). Recently, we have developed a multi-functional LPD 

nanoparticle formulation which co-delivers siRNA and Dox into the targeted tumor cells and 

triggers synergistic anti-cancer effect (193). However, our previously study suggested that 

when the cationic liposomes interacted with the negatively charged DNA/protamine 

complex, there was a substantial leakage of Dox from the nanoparticle associated DNA and 

Dox encapsulation in the final LPD nanoparticles was reduced. Comparing with the 

previously used LPD nanoparticles, the current LPD-II nanoparticles made with anionic 

lipids could carry more Dox in the formulation (Figure 5.1A). 

Our studies demonstrated that siRNA and Dox co-formulated in the targeted 

nanoparticles showed enhanced cellular uptake of both siRNA and Dox and gene silencing 

activity in NCI/ADR-RES tumor cells in vitro and in vivo. A synergistic therapeutic activity 

was observed in NCI/ADR-RES tumor when treated with c-myc siRNA and Dox co-

formulated in the targeted nanoparticles. The enhanced therapeutic effect was dependent on 

the AA ligand which is a substrate for the sigma receptor over-expressed in NCI/ADR-RES 

cells (data not shown) and many other cancer cells (111, 112). 

Our approach to overcome cancer drug resistant is in two different strategies. First, 

we use a drug delivery vehicle to deliver Dox and to avoid P-gp -mediated drug efflux. As 

shown in Figure 5.2, targeted nanoparticles delivered more Dox to NCI/ADR-RES cells than 

non-targeted nanoparticles or free Dox. Dox entrapped in the targeted nanoparticles induced 

a significantly increased tumor uptake (Figure 5.2) in the NCI/ADR-RES tumor model. An 

enhanced therapeutic effect was achieved by the Dox formulated in the targeted nanoparticle 

(Figure 5.5 and 5.6). The LPD-II nanoparticles may affect drug uptake in MDR cells in 

three ways. First, the targeted nanoparticles enhance therapeutic efficacy against resistant 
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tumors by targeting drugs to tumor cells and increasing bioavailability of drugs at the tumor 

site. Second, the targeted nanoparticles avoid p-gp mediated drug efflux by using ligand 

dependent internalization. The internalized drugs which can not “see” the efflux transporter 

are not pumped out of the cells. Furthermore, the entrapped Dox may be maintained for a 

prolonged period of time in the circulation after i.v. administration and taken up more in the 

tumor tissue compared with the free Dox. The targeted nanoparticles which selectively 

deliver Dox to tumor cells can enhance both therapeutic efficacy and safety of the therapeutic 

agents. 

The second strategy is to silence the MDR expression by siRNA. Instead of silencing 

the MDR itself, we chose to silence c-myc for two reasons. The first is that c-myc has been 

implicated to positively control MDR expression (186, 194, 195). Silencing c-myc may result 

in the down-regulation of MDR. The second is that c-myc is a well known oncogene, 

silencing of which may bring about a direct anticancer effect. In this study, we demonstrated 

that c-myc siRNA delivered by targeted nanoparticles significantly down-regulated both c-

myc and MDR expressions in NCI/ADR-RES tumor, caused enhanced Dox uptake and 

sensitized drug resistant tumor cells to the co-delivered Dox. c-Myc, a transcription factor 

over-expressed in many human cancer cells, may activate MDR-1 transcription through the 

binding of the E-box motif (CACGTG) localized in the MDR1 gene promoter (-272, -444) 

(196). Therefore, inhibition of c-myc expression by siRNA results in the down-regulation of 

the MDR expression.  

To the best of our knowledge, this is the first pre-clinical study of systemic co-

delivery of therapeutic siRNA and a chemotherapy drug to a drug resistant tumor by using a 

multi-functional gene delivery system. The nanoparticles used in the study also carried Dox. 
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Simultaneous delivery of both siRNA and a chemotherapeutic drug can be a powerful 

approach in cancer therapy, because siRNA can be chosen to inhibit the survival or signaling 

pathways which trigger drug resistance in cancer cells. We believe our delivery system may 

provide a platform for development of therapy against other types of cancer resistance to 

chemotherapy as well. 

 

 

 

 

 

 



6.0 NANOPARTICLES MODIFIED WITH SCFV DELIVER SIRNA AND MIRNA 

FOR CANCER THERAPY 

Targeted delivery of RNA-based therapeutics for cancer therapy remains a challenge. 

We have developed a LPH (liposome-polycation-hyaluronic acid) nanoparticle formulation 

modified with tumor specific scFv (single chain variable fragment) for systemic delivery of 

small interfering RNA (siRNA) and microRNA (miRNA) into lung metastasis of murine 

B16F10 melanoma. The siRNAs delivered by the scFv targeted nanoparticles efficiently 

down-regulated the target genes (c-myc/MDM-2/VEGF) in the lung metastasis. Two daily i.v. 

injections of the combined siRNAs in the C4-targeted nanoparticles significantly reduced the 

tumor load in the lung. miRNA-34a (miR-34a) induced apoptosis and inhibited survivin 

expression and down-regulated MAPK pathway in B16F10 cells. miR-34a delivered by the 

C4-targeted nanoparticles significantly down-regulated the survivin expression in the 

metastatic tumor and reduced tumor load in the lung. When miR-34a and siRNAs were co-

formulated in C4-targeted nanoparticles, an enhanced anti-cancer effect was observed. 

6.1 INTRODUCTION 

RNA-based therapeutics such as siRNA and miRNA provide a promising strategy to 

treat cancer by targeting the specific proteins involved in the mechanism of proliferation, 

invasion, anti-apoptosis, drug resistance and metastasis (197-199).  Our previous study 

demonstrated that a combination of siRNAs against MDM2, c-myc, and VEGF co-

formulated in the targeted nanoparticles significantly reduced the lung metastasis and 
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increased the survival time of the tumor-bearing animals (40). miR-34a, a potential tumor 

suppressor in many types of human cancer including melanoma, was selected as a therapeutic 

target in this study. miR-34a is commonly down-regulated in many human cancers (200). 

Multiple mechanisms are involved in the anti-cancer effect of miR-34a. For example, miR-

34a inhibits the proliferation and migration and triggers apoptosis in some cancer cell lines 

via the activation of p53 and down-regulation of c-Met (201, 202). It also directly targets the 

mRNA encoding E2F3 and significantly suppresses the expression of E2F3 protein, a key 

regulator of cell cycle progression (203). The activity of survivin promoter is decreased after 

the treatment of miR-34a (200). Taken together, we hypothesize that miR-34a may serve as a 

suitable anti-cancer therapeutic agent.  

The key to develop RNA-based therapeutics is to have effective strategies for the 

delivery of siRNA or miRNA in vivo (204). For example, modification of antisense RNA 

with a cholesteryl functionality results in enhanced stability in the serum, improved cellular 

uptake and inhibition of target miRNA (205). Our strategy is to develop a nanoparticle 

formulation to deliver siRNA in vivo (25, 40, 169). Recently, we further demonstrated LPH 

containing hyaluronic acid (HA), a FDA approved drug, could systemically deliver siRNA 

into the tumor with relatively low toxicity compared with the well established LPD 

formulation. However, the therapeutic effect of the LPH nanoparticles has not been tested 

yet. 

In this study, we have modified LPH nanoparticles with C4 scFv, a tumor specific 

monoclonal antibody (Zhu et al., Mol Cancer Ther, in press) to effectively deliver siRNA and 

miRNA to B16F10 lung metastasis in a syngeneic murine model. As a targeting ligand, scFv 

shows high affinity and low antigenicity in previous studies (206, 207). We hypothesize that 
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C4 scFv will target the nanoparticles to the lung metastasis and deliver siRNA and miRNA, 

or both, to inhibit tumor growth. The hypothesis was tested by using a combination of three 

different siRNAs and miR-45a.  

6.2 MATERIALS AND METHODS 

6.2.1 Materials 

DOTAP, cholesterol, DSPE-PEG2000 and DSPE- PEG2000-maleimide (DSPE-PEG-

mal) were purchased from Avanti Polar Lipids (Alabaster, AL). Protamine sulfate (fraction X 

from salmon) and hyaluronic acid sodium salt from Streptococcus equi were obtained from 

Sigma-Aldrich (St. Louis, MO). B16F10 cells, obtained from American Type Culture 

Collection, were widely used to establish an experimental lung metastasis model. The cells 

stably expressed GL3 firefly luciferase via retrovirus mediated gene transduction in Dr. Pilar 

Blancafort's laboratory at the University of North Carolina at Chapel Hill. The cells were 

maintained in Dulbecco's modified Eagle's medium (Invitrogen, Carlsbad, CA) supplemented 

with 10% fetal bovine serum (Invitrogen, Carlsbad, CA). Antibodies conjugated with 

horseradish peroxidase (HRP) (mouse monoclonal antibodies against mouse MDM2, c-myc 

and rabbit polyclonal antibodies against VEGF), primary antibodies (mouse monoclonal 

antibodies against p-ERK and -actin and rabbit polyclonal antibodies against survivin and 

ERK), and secondary antibodies conjugated with HRP (goat anti-mouse IgG-HRP and goat 

anti-rabbit IgG-HRP) were purchased from Santa Cruz Biotechnologies (Santa Cruz, CA). 

Primary antibody against Melan A was purchased from Abcam. MDM2 siRNA (target 

sequence: 5'-GCUUCGGAACAAGAGACUC-3'), c-myc siRNA (target sequence: 5'-

GAACAUCAUCAUCCAGGAC-3'), VEGF siRNA (target sequence: 5'-

CGAUGAAGCCCUGGAGUGC-3'), control siRNA (target sequence: 5'-
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AATTCTCCGAACGTGTCACGT-3'), miR-34a (mature microRNA sequence: 5'-

UGGCAGUGUCUUAGCUGGUUGU-3') and control miRNA were purchased from 

Dharmacon (Lafayette, CO).  

6.2.2 Experimental animals 

Female C57BL/6 mice of ages 6–7 weeks (weights 16–18 g) were purchased from 

NCI. All experiments performed with animals were in accordance with and approved by the 

Institutional Animal Care and Use Committee at University of North Carolina. C57BL/6 

mice were i.v, injected with 2 105 B16F10 cells to establish experimental lung metastasis. 

6.2.3 Preparation of LPH nanoparticles modified with scFv 

The procedure of the formulation preparation was described earlier (208). Briefly, 

cationic liposomes composed of DOTAP and cholesterol (1:1 molar ratio) were prepared by 

thin film hydration followed by membrane extrusion to reduce the particle size. To prepare 

LPH, 18 µL of protamine (2 mg/mL), 140 µL of deionized water, and 24 µL of a mixture of 

siRNA or miRNA and HA (2 mg/mL) were mixed and kept at room temperature for 10 min 

before adding 60 µL of cationic liposome (20mM). After 10 min at room temperature, LPH 

was mixed with 37.8 µL of DSPE-PEG-maleimide (10 mg/mL) and incubated at 50-60 ºC for 

10 min. For scFv conjugation, thiolated scFv was incubated with LPH nanoparticles 

containing DSPE-PEG-mal for 2 h at room temperature and the unreacted maleimide groups 

were quenched by adding L-cystein. 

6.2.4 Cellular Uptake Study  

B16F10 cells were seeded in 12-well plates (Corning Inc., Corning, NY) 12 h before 

experiments. Cells were treated with different formulations at a concentration of 250 nM for 
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FITC-labeled siRNA in serum containing medium at 37 °C for 1 h. Cells were washed twice 

with PBS, counterstained with DAPI and imaged using a Leica SP2 confocal microscope.  

6.2.5 Gene silencing study and apoptosis analysis in vitro 

B16F10 cells were seeded into 6 well plates at a concentration of 2 X 105 per ml 24 h 

before transfection. The cells were further transfected with miR-34a or a control miRNA at a 

final concentration of 100 nM using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer's recommendations. Cells were harvested for the western blot assay and the 

analysis of apoptosis 72 h after transfection. Apoptosis was analyzed by annexin V staining. 

Briefly, 1 × 105 cells were harvested 72 h after transfection and resuspended in 100 µl 

binding buffer containing 5 µl annexin V-FITC (BD Biosciences, California, USA) for 15 

min at room temperature in the dark. The Annexin V positive cells were analyzed by flow 

cytometry. 

6.2.6 Gene silencing study in lung metastasis 

B16F10 metastasis-bearing mice were given i.v. injections of the combined siRNA or 

miRNA formulated in the nanoparticles on days 10 and 11. Twenty-four h after the second 

injection, the mice were sacrificed and the tumor-loaded lungs were collected for the 

immunostaining or western blot analysis. Expressions of MDM2, c-myc and VEGF in the 

sections were examined immunohistochemically using the antibodies from a kit 

[DakoCytomation Envision + Dual Link System-HRP (DAB+); DakoCytomation, 

Carpinteria, CA] in accordance with the product protocol. The slides were imaged by using a 

Nikon phase contrast light microscope. For western blotting, total protein (10 µg) isolated 

from the tumor-loaded lung was electrophoresed in a polyacrylamide/sodium dodecyl sulfate 

gel and and transferred to a PVDF membrane. The membrane was blocked with 5% nonfat 
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milk in phosphate-buffered saline for 1 h and then incubated overnight with primary antibody 

at 4 °C. After the membrane had been washed with PBST (0.1% Tween 20 in PBS) 5 times, 

it was further incubated with the HRP-conjugated secondary antibody for 1 h. The membrane 

was washed and developed with enhanced chemiluminescence using ECL plus (GE Health 

Care, Buckinghamshire, UK) followed by autoradiography. 

6.2.7 In vivo tumor growth/metastasis inhibition study 

B16F10 metastasis-bearing mice were i.v. injected with siRNA or miRNA in the 

nanoparticles on days 8 and 9. On day 19, the mice were sacrificed and the tumor-loaded 

lungs were collected. For quantification of the lung metastasis nodules, one lobe per lung was 

analyzed for luciferase activity. The lung lobe was homogenized in 0.2 ml of lysis buffer 

(0.05% Triton X-100 and 2 mM EDTA in 0.1 M Tris–HCl) followed by centrifugation at 

13,000 rpm for 10 min. Ten µl of the supernatant was mixed with 90 µl of luciferase 

substrate (Luciferase Assay System; Promega, Madison, WI), and the luciferase activity was 

measured by a plate reader (Bioscan, Washington, DC). The collected lobe was further fixed 

in 10% formalin for hematoxylin and eosin staining.  

6.2.8 Statistical analysis 

All statistical analyses were performed by student t-test.  
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Figure 6.1 Intracellular uptake of siRNA in vitro. Fluorescence photographs of B16F10 cells after treatment 
with free siRNA or siRNA formulated in the C4-targeted or control-targeted nanoparticles for 1 h. Fluorescence 
signal of FITC-labeled siRNA in B16F10 cells was observed by the confocal microscopy. 
 

6.3 RESULTS 

6.3.1 Delivery of siRNA by using C4 ScFv modified nanoparticles 

The LPH nanoparticles were self-assembled by charge-charge interaction. A slight 

excess amount of HA and siRNA or miRNA was first complexed with protamine such that 

the condensed cores were negatively charged. The complex was then encapsulated by 

cationic liposomes composed of DOTAP/cholesterol (1:1 mol/mol) via charge interaction. 

The nanoparticles were further PEGylated and modified with the tumor specific C4 scFv to 

increase the stability of the formulation in the blood circulation and selectively deliver the 

cargo into the tumor cells, respectively. The average size of the nanoparticles modified with 

C4 scFv was about 170 nm and the zeta potential was 10.9 ± 4.8 mV. As shown in Figure 

6.1, the uptake of FITC-labeled siRNA was greater in B16F10 cells treated with C4-targeted 

nanoparticles than cells treated with control-targeted nanoparticles. The labeled siRNA 

appeared in the cytoplasm of the cells, but not in the nucleus. The result indicates that C4 

scFv enhanced intracellular uptake of the nanoparticles for B16F10 cells.  
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Figure 6.2 Protein expression in B16F10 tumor-bearing lung. Western blot analysis of c-myc, VEGF and 
MDM-2 in the lungs containing B16F10 metastasis nodules after i.v. injections of combined siRNAs in different 
formulations. Formulations: untreated control (1), combined siRNAs in the C4-targeted nanoparticles (2), 
combined siRNAs in the control-targeted nanoparticles (3), control siRNA in the C4-targeted nanoparticles (4).  

6.3.2 In vivo gene silencing study 

To further investigate the biological activity of the nanoparticles in vivo, combined 

siRNAs against c-myc, MDM2 and VEGF (1:1:1 weight ratio) were delivered by either C4-

targeted or control-targeted nanoparticles. The B16F10 lung metastasis-bearing mice were 

treated with different formulations on days 10 and 11 with two consecutive i.v. 

administrations (dose = 0.45 mg total siRNA/kg). The gene silencing activity was determined 

by western blot analysis (Figure 6.2) and immunostaining (Figure 6.3). As shown in the 

figures, the protein expression of c-myc, MDM2 and VEGR in the B16F10 lung metastasis 

was suppressed by the combined siRNAs delivered with C4-targeted nanoparticles. The 

control-targeted nanoparticles showed a partial gene silencing effect, whereas the control 

siRNA delivered by C4-targeted nanoparticles had no effect. The results indicate that the 

combined siRNAs formulated in the targeted nanoparticles modified with C4 scFv were able 

to simultaneously silence the expressions of the target oncogenes in the lung metastases. 
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6.3.3 Tumor growth/metastasis inhibition by siRNA nanoparticles 

To elucidate the therapeutic outcomes, the lung metastasis-bearing mice were treated 

with different formulations on days 8 and 9 with two consecutive i.v. administrations (dose = 

0.45 mg total siRNA/kg). As shown in Figure 6.4A, the growth of the metastasis nodules in 

the lung was significantly inhibited when treated with the combined siRNAs formulated in 

the targeted nanoparticles modified with C4 scFv. Other control groups treated with the 

combined siRNAs formulated in the control-targeted nanoparticles and the control siRNA 

formulated in C4-targeted nanoparticles had no therapeutic effect. Furthermore, since 

B16F10 cells were stably transfected with firefly luciferase gene, the B16F10 lung 

metastases were further quantified by measuring the luciferase activity in the lung. As shown 

c-Myc

VEGF

MDM2

1 2 3 4

 
Figure 6.3 Immunostaining of the B16F10 tumor-bearing lung. Immunostaining of c-myc, VEGF and 
MDM-2 in the B16F10 metastatic nodules after i.v. injections of the combined siRNAs in different 
formulations. Formulations: untreated control (1), combined siRNAs in the C4-targeted nanoparticles (2), 
combined siRNAs in the control-targeted nanoparticles (3), control siRNA in the C4-targeted nanoparticles 
(4). 
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in Figure 6.4B, the combined siRNAs delivered by the C4-targeted nanoparticles suppressed 

the growth of the metastasis nodules; the tumor load decreased to about 30% of the untreated 

control (P < 0.01). Other control treatments showed no obvious therapeutic effect. The 

hematoxylin and eosin–stained tissue sections (Figure 6.4C) also showed a reduction in size 

and number of the metastasis nodules in the lung after treatment with the combined siRNAs 

formulated in the C4-targeted nanoparticles, whereas other control groups showed no 
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Figure 6.4 Tumor growth/metastasis inhibition by nanoparticles containing siRNA. A, images of the 
B16F10 tumor-bearing lung on day 19 after two consecutive i.v. injections of siRNAs in different 
formulations. B, luciferase activity in the tumor-bearing lung on day 19 after two consecutive i.v. injections on 
days 8 and 9 of siRNA in different formulations. n = 5. **P < 0.01 as compared to the untreated group. C, 
photographs of the hematoxylin and eosin–stained tissue sections of B16F10 tumor-bearing lung on day 19 
after two consecutive i.v. injections of siRNAs in different formulations. NP: Nanoparticles. 
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significant therapeutic effect. The results indicate that the combined siRNAs delivered by 

C4-targeted nanoparticles could inhibit the growth of B16F10 lung metastasis. 

6.3.4 Apoptosis induction by miR-34a 

We first determined whether transfection of miR-34a had any biological function on 

highly metastatic B16F10 cells. Annexin V staining was carried out to detect apoptosis 72 h 

after transfection. As shown in Figure 6.5A, apoptosis was significantly induced after the 

treatment with miR-34 compared with the control miRNA. This result suggested that miR-

34a triggered cell death and might play a critical role in regulating the survival of B16F10 

melanoma cells.  

6.3.5 Down-regulation of survivin expression and MAPK signaling by miR-34a  

     Both survivin and MAPK signaling play important roles in melanoma development and 

progression and are regulated by miR-34a in some cancer cells (200, 209-212). To further 

test the specific regulation of survivin and MAPK signaling, B16F10 cells were transfected 

with miR-34a or a control miRNA. As shown in Figure 6.5B, western blot analysis showed 

that both survivin and p-ERK expressions were significantly down-regulated when B16F10 

cells were treated with miR-34a, while the control miRNA had no effect. To further 

investigate the biological activity of miR-34a in vivo, miR-34a was delivered by either C4-

targeted or control-targeted nanoparticles. The lung metastases-bearing mice were treated 

with different formulations on days 10 and 11 with two consecutive i.v. administrations (dose 

= 0.3 mg RNA/kg). The gene silencing activity was determined by western blot analysis. As 

shown in Figure 6.5C, the protein expression of survivin in the B16F10 lung metastasis was 

suppressed by miR-34a delivered with the C4-targeted nanoparticles. Neither the control-

targeted nanoparticles containing miR-34a nor the control miRNA delivered by C4-targeted 
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nanoparticles showed any silencing effect. These results indicate that delivery of miR-34a 

inhibited the survivin expression and inactivated MAPK pathway, thus inducing apoptosis in 

the B16F10 melanoma. 
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Figure 6.5 Apoptosis induction and target gene down-regulation by miR-34a. A, B16F10 cells treated with 
miR-34a or a control miRNA for 72 h and analyzed for annexin V staining by flow cytometry. B, survivin and 
pERK expression in B16F10 cells 72 h after transfection with miR-34a or a control miRNA. C, western blot 
analysis of survivin expression in lungs containing B16F10 metastatic nodules after i.v. injections of the miR-
34a in different formulations. Formulations: miR-34a in the C4-targeted nanoparticles (1), miR-34a in the 
control-targeted nanoparticles (2), control miRNA in the C4-targeted nanoparticles (3) and untreated control (4). 



 121

1

2

3

5

4

0

20

40

60

80

100

120

140

1 2 3 4 5

%
 lu

ci
fe

ra
se

 a
ct

ic
ity

 p
er

 lu
ng

 lo
be

A

B
***

 
Figure 6.6 Tumor growth/metastasis inhibition by nanoparticles containing siRNA and miRNA A, 
images of the B16F10 tumor-bearing lungs on day 19 after two consecutive i.v. injections of siRNAs or 
miRNA in different formulations. B, luciferase activity in the tumor-bearing lungs on day 19 after two 
consecutive i.v. injections on days 8 and 9 of siRNAs and miRNA in different formulations. n = 5~6. *** 
indicates P < 0.001. Formulations: untreated control (1), combined siRNAs and control miRNA in the C4-
targeted nanoparticles (2), control siRNA and miR-34a in the C4-targeted nanoparticles (3), combined siRNAs 
and miR-34a in the control-targeted nanoparticles (4) and combined siRNAs and miR-34a in the C4-targeted 
nanoparticles (5). Dose = 0.6 mg total RNA/kg. Combined siRNAs = c-myc:MDM-2:VEGF (1:1:1), 
siRNA:miRNA = 1:1, weight ratios. 

 6.3.6 Tumor growth/metastasis inhibition by nanoparticles containing siRNA and 

miRNA             

To elucidate the therapeutic effect of the combination of siRNAs and miRNA, the 

lung metastasis-bearing mice were treated with different formulations on days 8 and 9 with 

two consecutive i.v. administrations (dose = 0.6 mg/kg, c-myc:MDM-2:VEGF:miR-34a = 

1:1:1:3, weight ratio). As shown in Figure 6.6A, i.v. injections of siRNAs or miR-34a alone 
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in the C4-targeted nanoparticles showed a partial inhibition of the tumor load in the lung. The 

presence of the metastasis nodules was synergistically inhibited when treated with siRNAs 

and miR-34a co-formulated in the C4-targeted nanoparticles. siRNAs and miR-34a co-

delivered by the control-targeted nanoparticles had a partial therapeutic effect. B16F10 lung 

metastasis was further quantified by measuring luciferase activity in the lung. As shown in 

Figure 6.6B, siRNAs and miRNA-34a co-delivered by the C4-targeted nanoparticles 

synergistically suppressed the growth of the metastasis tumor; the tumor load decreased to 

about 20% of the untreated control (P < 0.001). It was reduced to about 30% and 50% when 

treated with siRNAs and miR-34a alone, respectively (P<0.01). The results indicated that the 

combination of siRNAs and miR-34a co-delivered by C4-targeted nanoparticles could 

synergistically inhibit tumor growth and enhanced the therapeutic effect in B16F10 lung 

metastasis model. 

6.4 DISCUSSION 

RNA based therapeutics have recently been developed as a potential novel class of 

therapeutic agent to treat human diseases including cancer. RNA molecules such as siRNA 

and miRNA are highly effective therapies for cancer based on the ability to specifically 

silence the expression of cancer-related genes or to selectively regulate the pathways that are 

involved in the development and progression of malignancy. In this study, our delivery 

system provides an excellent platform to effectively, safely and selectively deliver RNA 

based therapeutics into the tumor.  

 Our study demonstrated that inhibition of c-myc, MDM-2 and VEGF protein 

expression by siRNA formulated with tumor specific scfv modified LPH nanoparticles 

significantly suppressed B16F10 metastatic tumor growth (Figures 6.2, 6.3 and 6.4). 
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Through co-delivery of miRNA and siRNA in the LPH formulation, the combination strategy 

is effective to trigger an enhanced therapeutic effect. To our knowledge, it is the first study of 

systemic delivery of miRNA for cancer therapy by using a targeted gene delivery system. 

  Many strategies were developed to treat cancer by targeting the cancer cells without 

affecting normal cells. Our results demonstrated that the formulation modified with tumor 

specific scFv is highly effective for delivery of siRNA or miRNA into the B16F10 lung 

metastasis. scFv has several advantages over the conventional monoclonal antibody or small 

molecule as a target moiety for drug/gene delivery to cancer. They include profound 

penetration into the tumor site, high specificity, strong affinity and low toxicity and weak 

induction of the unwanted immune response. Nanoparticles modified with C4 scFv may be 

internalized by the cells through receptor-mediated endocytosis. The cell-surface antigen 

associated with the B16F10 tumor to which C4 scFv targets was not characterized in this 

study. However, once identified, the tumor associated antigen could become a new target for 

cancer therapy.  

miRNA, a potential therapeutic agent, regulates cellular behavior via specific 

targeting and down-regulating mRNAs by nearly perfect base-pairing (213). It has been 

reported that certain miRNAs are involved in the oncogenic and tumor suppressor networks 

and can potentially inhibit tumorigenesis (214). miR-34a was found to suppress tumor 

proliferation and migration and cause apoptosis in cancer cells by activating p53 and down-

regulating c-Met and E2F3 (201-203). In this study, we found that miR-34a induced 

apoptosis, suppressed the survivin expression and inactivated MAPK pathway in B16F10 

melanoma cells. Unlike other reports, we found the expression of c-Met was unaffected after 
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transfection of miR-34a (data not shown). The signaling molecules upstream of MAPK 

pathways which were down-regulated by miR-34a require further investigation. 



7.0 SUMMARY 

7.1 SUMMARY OF RESEARCH RESULTS AND FUTURE DIRECTIONS 

In this study, our objective was to enhance the activity and expand the therapeutic 

applications of LPD nanoparticles for cancer therapy. First, the novel cationic lipids (DSGLA 

and DSAA) are developed to avoid the possible anti-apoptotic effect of DOTAP and deliver 

siRNA with high efficiency (Chapter 2 and 3). Our studies demonstrate that siRNA 

formulated in LPD prepared with an amino acid based cationic lipid containing a guanidine 

group showed enhanced cellular uptake, gene silencing activity and synergistic therapeutic 

activity with therapeutic siRNA in tumor cells in vitro and in vivo. The synergistic killing 

effect can be well controlled by attaching a targeting ligand to the nanoparticle formulation, 

which shows potential to be a safe and efficient siRNA based therapy for cancer. 

We have also developed a LPD nanoparticle formulation modified with a peptide 

containing the NGR motif (Chapter 4). We have shown that the targeted nanoparticle 

formulation can specifically deliver c-myc siRNA into the tumor site, down-regulate c-myc 

expression in the tumor and improve therapeutic activity. Through co-delivery of Dox and 

siRNA in the LPD nanoparticles, siRNA against c-myc sensitized HT-1080 cells to Dox 

chemotherapy. The combination strategy has also been used to treat MDR tumors. We have 

further developed a multi-functional LPD-II nanoparticle formulation which co-delivers 

siRNA and Dox into the targeted MDR tumor cells and triggers anti-cancer effect (Chapter 
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5). Our studies demonstrated that siRNA and Dox co-formulated in the targeted nanoparticles 

showed enhanced cellular uptake of both siRNA and Dox and gene silencing activity in 

MDR tumor cells in vitro and in vivo. A synergistic therapeutic activity was observed in 

MDR tumor when treated with c-myc siRNA and Dox co-formulated in the targeted 

nanoparticles.  

Furthermore, we use a foreign DNA, calf thymus DNA, to condense siRNA in the 

LPD nanoparticles. However, to avoid the unwanted immune responses and make the LPD 

formulation suitable for the clinical use, we have replaced calf thymus DNA with HA which 

has been approved by the US FDA.  We have modified LPH nanoparticles with C4 scFv, a 

tumor specific monoclonal antibody (Zhu et al., Mol Cancer Ther, in press) to effectively 

deliver siRNA and miRNA to B16F10 lung metastasis in a syngeneic murine model. 

Therapeutic RNAs delivered with C4-targeted nanoparticles inhibit tumor growth in the 

B16F10 lung metastasis model. Overall, the combination therapy achieved by a single 

nanoparticle formulation provides a potential effective treatment for cancer. 

Our future plan is to further apply the formulation to solve other problems of cancer 

therapy to enhance the antitumor effect and optimize the formulation to make it more suitable 

for clinical application. Recently, malignant-melanoma-initiating cells (MMIC) over-

expressing ABCB5 P-glycoprotein (P-gp) were identified as novel cancer stem cells. MMIC, 

capable of self-renewal and differentiation, are required for growth of established tumors and 

are responsible for melanoma immune evasion (215, 216). Drug resistance is a major 

impediment to the successful treatment of melanoma as the MMICs which have the ability to 

efflux the commonly used chemotherapy drug Doxorubicin (Dox) through ABCB5-mediated 

transport [3]. We believe the key to successfully treating cancer is to attack cancer initiating 
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cells. Toward this end, siRNA can be a powerful tool to inhibit the survival or signaling 

pathways which trigger drug resistance in cancer initiating cells. We believe that our targeted 

multi-functional nanoparticles will be able to efficiently deliver chemotherapy drugs and 

therapeutic siRNAs into cancer initiating cells and lead to a profound therapeutic effect on 

malignant melanoma.  

7.2 ENDING REMARKS 

The work provides several formulations for RNA based cancer therapy. In addition, 

the ability to target tumor sites of the nanoparticles increased the therapeutic value of RNA 

therapeutics. The capacity to deliver siRNA or miRNA with the formulations will accelerate 

research on the function of these RNAs. The delivery systems make it possible to evaluate 

the functions of different therapeutic siRNAs or miRNAs both in vivo and in vitro. Such 

results would contribute to the basic cancer research and to the development of the potential 

therapeutic agents. Further progress will rely on a better understanding of the formulation 

itself and siRNA or miRNA function in the tumors. For example, the mechanism of 

endosomal escape of the LPD nanoparticles and the release of Dox from the multi-functional 

nanoparticles should be further studied.  
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APPENDIX A 

YUNCHING CHEN’S PUBLICATION 

Peer-reviewed Papers 

• Yunching Chen, Xiaodong Zhu, Xiaoju Zhang, Bin Liu and Leaf Huang 

Nanoparticles modified with scFv Deliver siRNA and miRNA for Cancer Therapy 
(Mol Ther, revised) 

• Yunching Chen, Jun Li and Leaf Huang. Nanoparticles Delivering siRNA and 
Doxorubicin Overcome Drug Resistance in Cancer (under review) 

• Yunching Chen, Qi Yang, Surendar Reddy Bathula and Leaf Huang. Guanidinium 
Containing Cationic Lipid Delivers siRNA and Enhances Anticancer Effect in 
B16F10 Murine Melanoma Model. 2010 (Journal of Investigative Dermatology, 
revised)  

• Yunching Chen, Jinzi Wu and Leaf Huang. Nanoparticles Targeted with Tumor 
Homing peptide Motif Deliver c-Myc siRNA And Doxorubicin for Targeted 
Anticancer Therapy.Mol Ther , 2010  

• Yunching Chen, J.S., Qi Yang, Raffaella Fittipaldi, Surendar Reddy Bathula and 
Leaf Huang. Novel Cationic Lipid That Delivers and Enhances Therapeutic Activity 
of siRNA in Lung Cancer Cells. Molecular pharmaceutics, 2009 

• Jun Li; Yun-Ching Chen; Yu-Cheng Tseng; Leaf Huang, Biodegradable Calcium 
Phosphate Nanoparticle with Lipid Coating for Systemic siRNA Delivery. Journal of 
Control Release 2009 

• Shyh-Dar Li, Yung-Ching Chen, Michael J. Hackett and Leaf Huang. Targeted 
Delivery of siRNA by Self-assembled Nanoparticles. Mol Ther 16 (1): 163-169, 2008 

Review Papers and Perspectives 

• Yunching Chen.and Leaf Huang. Tumor-targeted delivery of siRNA by non-viral 
vector: safe and effective cancer therapy. Expert Opin Drug Deliv 5, (12), 1301-11. 
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Conference Abstracts 

• Yunching Chen, Surendar Reddy Bathula and Leaf Huang. Novel Cationic Lipid 
That Delivers and Enhances Therapeutic Activity of siRNA in Melanoma Model. 
Chapel Hill Drug Conference, 2009 

• Yunching Chen, J.S., Qi Yang, Raffaella Fittipaldi, Surendar Reddy Bathula and 
Leaf Huang. Novel Cationic Lipid That Targeted Delivers and Enhances Therapeutic 
Activity of siRNA in Cancer Cells. 7th Globalization of Pharmaceutics Education 
Network, Belgium, 2008 

• Yunching Chen, J.S and Leaf Huang. Novel Cationic Lipid That Delivers and 
Enhances Therapeutic Activity of siRNA in Lung Cancer Cells. 11th Liposome 
Research Days Conference, Japan, 2008 
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