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ABSTRACT

YIFAN CUI: Tree-based survival models and precision medicine
(Under the direction of Dr. Michael R. Kosorok and Dr. Jan Hannig)

Random forests have become one of the most popular machine learning tools in recent years.

The main advantage of tree- and forest-based models is their nonparametric nature. My dissertation

mainly focuses on a particular type of tree and forest model, in which the outcomes are right censored

survival data. Censored survival data are frequently seen in biomedical studies when the true clinical

outcome may not be directly observable due to early dropout or other reasons.

We first carry out a comprehensive analysis of survival random forest and tree models and

show the consistency of these popular machine learning models by developing a general theoretical

framework. Our results significantly improve the current understanding of such models and this is

the first consistency result of tree- and forest-based regression estimator for censored outcomes under

high-dimensional settings. In particular, the consistency results are derived through analyzing the

splitting rules and establishing an adaptive concentration bound of the variance component, which

may also shed light on the theoretical analysis of other random forest models.

In the second part, motivated by tree-based survival models, we propose a fiducial approach to

provide pointwise and curvewise confidence intervals for the survival functions. On each terminal

node, the estimation is essentially a small sample and maybe heavy censoring problem. Most of the

asymptotic methods of estimating confidence intervals have coverage problems in many scenarios.

The proposed fiducial based pointwise confidence intervals maintain coverage in these situations.

Furthermore, the average length of the proposed pointwise confidence intervals is often shorter than

the length of competing methods that maintain coverage.

In the third topic, we show one application of tree-based survival models in precision medicine.

We extend the outcome weighted learning to right censored survival data without requiring either

inverse probability of censoring weighting or semi-parametric modeling of the censoring and failure

times. To accomplish this, we take advantage of the tree based approach to nonparametrically
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impute the survival time in two different ways. We also illustrate the proposed method on a phase

III clinical trial of non-small cell lung cancer.
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CHAPTER 1

Introduction

In this chapter, we outline the contributions in the subsequent development of the thesis.

1.1 Some asymptotic results for survival tree and forest models

In Chapter 2, we develop a theoretical framework and asymptotic results for survival tree and

forest models under right censoring. We first investigate the method from the aspect of splitting

rules, where the survival curves of the two potential child nodes are calculated and compared. We

show that existing approaches lead to a potentially biased estimation of the within-node survival

and cause non-optimal selection of the splitting rules. This bias is due to the censoring distribution

and the non i.i.d. sample structure within each node. Based on this observation, we develop an

adaptive concentration bound result for both tree and forest versions of the survival tree models.

The result quantifies the variance component for survival forest models. Furthermore, we show with

two specific examples how these concentration bounds, combined with properly designed splitting

rules, yield consistency results. The two examples are: 1) a finite dimensional setting with random

splitting rules; and 2) an infinite dimensional case with marginal signal checking. The development

of these results serves as a general framework for showing the consistency of tree- and forest-based

survival models.

1.2 Nonparametric generalized fiducial inference for survival functions under censor-
ing

Fiducial Inference, introduced by Fisher in the 1930s, has a long history, which at times aroused

passionate disagreements. However, its application has been largely confined to relatively simple

parametric problems. In Chapter 3, we present what might be the first time fiducial inference,

as generalized by Hannig et al. [64], is systematically applied to estimation of a nonparametric
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survival function under right censoring. We find that the resulting fiducial distribution gives rise to

surprisingly good statistical procedures applicable to both one sample and two sample problems. In

particular, we use the fiducial distribution of a survival function to construct pointwise and curvewise

confidence intervals for the survival function, and propose tests based on the curvewise confidence

interval. We establish a functional Bernstein-von Mises theorem, and perform thorough simulation

studies in various scenarios with different levels of censoring. The proposed fiducial based confidence

intervals maintain coverage in situations where asymptotic methods often have substantial coverage

problems. Furthermore, the average length of the proposed confidence intervals is often shorter

than the length of competing methods that maintain coverage. Finally, the proposed fiducial test

is more powerful than various types of log-rank tests and sup log-rank tests in some scenarios. We

illustrate the proposed fiducial test comparing chemotherapy against chemotherapy combined with

radiotherapy using data from the treatment of locally unresectable gastric cancer.

1.3 Tree based weighted learning for estimating ITRs with censored data

Estimating individualized treatment rules is a central task for personalized medicine. [135]

and [133] proposed outcome weighted learning to estimate individualized treatment rules directly

through maximizing the expected outcome without modeling the response directly. In Chapter 4,

we extend the outcome weighted learning to right censored survival data without requiring either

inverse probability of censoring weighting or semiparametric modeling of the censoring and failure

times as done in [138]. To accomplish this, we take advantage of the tree based approach proposed

in [141] to nonparametrically impute the survival time in two different ways. The first approach

replaces the reward of each individual by the expected survival time, while in the second approach

only the censored observations are imputed by their conditional expected failure times. We estab-

lish consistency and convergence rates for both estimators. In simulation studies, our estimators

demonstrate improved performance compared to existing methods. We also illustrate the proposed

method on a phase III clinical trial of non-small cell lung cancer.
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CHAPTER 2

Some asymptotic results for survival tree and forest models

2.1 Introduction

Random forests [19] have become one of the most popular machine learning tools in recent years.

Many extensions of random forests [106, 73, 26, 93] have seen tremendous success in statistical and

biomedical related fields [85, 105, 14, 60, 100, 114, 71] in addition to many applications to artificial

intelligence and machine learning problems.

The main advantage of tree- [21] and forest-based models is their nonparametric nature. How-

ever, the theoretical properties have not been fully understood yet to date, even in the regression

settings, although there has been a surge of research on understanding the statistical properties of

random forests in classification and regression. [83] is one of the early attempts to connect random

forests to nearest neighbor predictors. Later on, a series of work including [12, 11, 54] and [92]

established theoretical results on simplified tree-building processes or specific aspects of the model.

More recently, [142] established consistency results based on an improved splitting rule criteria; [125]

analyzed the confidence intervals induced from a random forest model; [84] established connections

with Bayesian variable selection in the high dimensional setting; [110] showed consistency of the

original random forests model on an additive structure; and [126] studied the variance component of

random forests and established corresponding concentration inequalities. For a more comprehensive

review of related topics, we refer to [13].

In this chapter, we focus on the theoretical properties of a particular type of tree- and forest-

model, in which the outcomes are right censored survival data [50]. Censored survival data are

frequently seen in biomedical studies when the true clinical outcome may not be directly observable

due to early dropout or other reasons. Random forest based survival models have been developed

to handle censored outcomes, including [70, 69, 73, 141, 115] and many others. However, there are

few established theoretical results despite the popularity of these methods in practice, especially

3



in genetic and clinical studies. For a general review of related topics, including single-tree based

survival models , we refer to [16]. To the best of our knowledge, the only consistency result to date is

given in [72] who considered the setting where all predictors are categorical. Hence, in this chapter,

we attempt to lay out a theoretical framework for tree- and forest-based survival models in a general

setting, including when the number of dimensions diverges with the sample size. Furthermore, we

establish consistency under several specific models. Without the risk of ambiguity, we refer to

all considered models as tree-based survival models, while the established results apply to both

single-tree and forest versions.

The chapter is organized as follows: in Section 2.2, we introduce tree-based survival models

and some basic notations. Section 2.3 is devoted to demonstrating a fundamental property of the

survival tree model associated with splitting rule selection and terminal node estimation. A concen-

tration inequality of the Nelson-Aalen [1] estimator based on non-identically distributed samples is

established. Utilizing this result, we derive adaptive concentration bounds for tree-based survival

models in Section 2.4. Furthermore, in Section 2.5, we establish consistency and a variance bound

for two particular choices of splitting rules, one of which are infinite dimensional cases, and one

of which is finite dimensional. Details of proofs are given in the appendices, and a summary of

notation is given before the appendices for convenience.

2.2 Tree-based survival models

The essential ingredient of tree-based survival models is recursive partitioning. A d-dimensional

feature space X is partitioned into terminal nodes, or more precisely, mutually exclusive and ex-

haustive subsets. We denote A = {Au}u∈U to be the collection of these terminal nodes returned by

fitting a single tree, where U is a set of indices, and hence X =
⋃
u∈U Au and Au ∩Al = ∅ for any

u 6= l. We also call A a partition of the feature space X . In a traditional tree-building process [21],

where binary splitting rules are used, all terminal node are (hyper)rectangles, i.e., A =
⊗d

j=1(aj , bj ].

Other possibilities can also be considered. For example, linear combination splits [93, 77, 142] may

result in more complex structures of terminal nodes. However, regardless of the construction of

the trees, the terminal node estimates are obtained by treating the within-node observations as

4



identically distributed. Before giving a general algorithm of tree-based survival models, we first

introduce some notation.

Following the standard notation in the survival analysis literature, let {Xi, Yi, δi}ni=1 be a set of

n i.i.d. copies of the covariates, observed survival time, and censoring indicator, where the observed

survival time Yi = min(Ti, Ci), and δi = 1(Ti ≤ Ci). We assume that each Ti follows a conditional

distribution Fi(t) = pr(Ti ≤ t | Xi), where the survival function is denoted Si(t) = 1 − Fi(t), the

cumulative hazard function Λi(t) = − log{Si(t)}, and the hazard function λi(t) = dΛi(t)/dt. The

censoring time Ci’s is assumed to follow the conditional distribution Gi(t) = pr(Ci ≤ t | Xi), where

a non-informative censoring mechanism, Ti ⊥ Ci | Xi, is assumed.

In any tree-based survival model, terminal node estimation is a crucial part. For any node

Au, this can be obtained through the Kaplan-Meier [74] estimator for the survival function or the

Nelson-Aalen [99, 1] estimator of the cumulative hazard function based on the within-node data.

Our focus in this chapter is on the following Nelson-Aalen estimator

Λ̂Au(t) =
∑

s≤t

∑n
i=1 1(δi = 1)1(Yi = s)1(Xi ∈ Au)∑n

i=1 1(Yi ≥ s)1(Xi ∈ Au)
, (2.1)

and the associated Nelson-Altshuler estimator [4] for the survival function when needed:

ŜAu(t) = exp
{
− Λ̂Au(t)

}
.

Hence a single tree model can be expressed by a collection of doublets {Au, Λ̂Au}u∈U . In

an ensemble survival tree method [73, 141], a set of B trees are fitted to the data. In practice,

B = 1000 is used in the popular R package randomForestSRC as the default value. Hence the

forest, or a collection of partitions, {{Abu, Λ̂Abu}u∈Ub}
B
b=1 indexed by b is constructed. These trees

are constructed with a bootstrap sampling mechanism or with the entire training data, in addition

to a variety of types of randomness injected [55] to the vanilla random forests [19]. To facilitate

later arguments, we conclude this section by providing a high-level outline (Algorithm 1) for fitting

a survival forest model. Many of the details of the splitting rule component are deferred to later

sections.
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Algorithm 1: Pseudo algorithm for tree-based survival models
Input: Training dataset Dn, terminal node size k, number of trees B;
Output: {{Abu, Λ̂Abu}u∈Kb}

B
b=1

1 for b = 1 to B do
22 Initiate A = X , a bootstrap sample Dbn of Dn, Kb = ∅, u = 1;
33 At a node A, if

∑
Xi∈Dbn 1(Xi ∈ A) < k, proceed to Line 5. Otherwise, construct a

splitting rule such that A = Aleft ∪Aright, where Aleft ∩Aright = ∅. ;
44 Send the two child nodes Aleft and Aright to Line 3 separately;
55 Conclude the current node A as a terminal node Abu, calculate Λ̂Abu using the

within-node data, and update Kb = Kb ∪ {u} and u = u+ 1;
6 end
7 return {{Abu, Λ̂Abu}u∈Kb}

B
b=1

2.3 The splitting rule and its biasedness

One central idea throughout the survival tree and forest literature is to construct certain

goodness-of-fit statistics that evaluate the impurity reduction across many candidate splitting rules.

The best splitting rule is then selected and implemented to partition the node. This essentially re-

sembles the idea in a regression tree setting where the mean differences or equivalently the variance

reduction is used as the criterion. The most popular criteria in survival tree models is construct-

ed through the log-rank statistic [59, 28, 81, 43, 73, 141] and other nonparametric comparisons of

two curves, such as the Kolmogorov-Smirnov, Wilcoxon-Gehan and Tarone-Ware type of statistics

[29, 111]. Other ideas include likelihood or model based approaches [27, 36, 87, 2, 120, 43], inverse

probability of censoring weighting (IPCW) [94, 69], and non-standard criteria such as [134] and

[Krętowska]. [16] provides a comprehensive review of the methodological developments of survival

tree models.

The literature on the theoretical analysis of survival tree based methods seems to be somewhat

sparse. One of the more recent general results, as mentioned in the introduction, is [72], who

established uniform consistency of random survival forests [73] by assuming a discrete feature space

as can happen, for example, when the covariates are genotyping data. The idea can be extended to

many other specific survival tree models, however, the discrete distribution assumption of the feature

space is not satisfied in most applications. The major difficulty of the theoretical developments in

a general setting is the highly complex nature of the splitting rules and their interference with the

entire tree structure.
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2.3.1 Within-node estimation

To begin our analysis, we start by investigating the Kaplan-Meier (KM) and the Nelson-

Altshuler (NA) estimators of the survival function. There are two main reasons that we revisit

these classical methods: first, these methods are wildly used for terminal node estimation in fitted

survival trees. Hence, the consistency of any survival tree model inevitably relies on their asymp-

totic behavior; second, the most popular splitting rules, such as the log-rank, Wilcoxon-Gehan and

Tarone-Ware statistics, are all essentially comparing the KM curves across the two potential child

nodes, which again plays an important role in the consistency results. We note that although other

splitting criteria exist, our theoretical framework can be extended to address their particular prop-

erties. Without making restrictive distributional assumptions on the underlying model, our results

shows that the currently implemented splitting rules, not surprisingly, are affected by the under-

lying censoring distribution, and are essentially biased, in the sense that they may not select the

most important variable to split on asymptotically. Furthermore, we exactly quantify this biased

estimator by developing a concentration bound around its true mean.

Noticing that the KM and the NA estimators are the two most commonly used estimators, the

following Lemma bounds their difference through an exact inequality regardless of the underlying

data distribution. The proof follows mostly from [34], and is given in the Appendices.

Lemma 1. Let ŜKM(t) and ŜNA(t) be the Kaplan-Meier and the Nelson-Altshuler estimators, re-

spectively, obtained using the same set of samples {Yi, δi}ni=1. Then we have,

|ŜKM(t)− ŜNA(t)| < ŜKM(t)
4∑n

i=1 1(Yi ≥ t)
,

for any observed failure time point t such that ŜKM(t) > 0.

The above result suggests that calculating the difference between two KM curves is asymptoti-

cally the same as using the NA estimator as long as we only calculate the curve up to a time point

where the sample size is sufficiently large. For this purpose, we make the following assumption

throughout the chapter to guarantee with large probability that ŜNA(t) = ŜKM(t) + O(1/n) across

all terminal nodes:
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Assumption 1. There exists fixed positive constants τ <∞ and M ∈ (0, 1), such that

pr(Yi ≥ τ | Xi) ≥M,

uniformly for all Xi ∈ X .

Note that similar assumptions are commonly used in the survival analysis literature, for exam-

ples, pr(T ≥ τ) > 0 in [50], and pr(C = τ) > 0 in [95]. The above assumption is a straightforward

extension due to the partitioning nature of tree models.

2.3.2 A motivating example

Noting that the splitting rule selection process essentially compares the survival curves computed

from two child nodes, we take a closer look at this process. In fact, most studies of the large sample

property of the KM estimator assume that the observations are i.i.d. [22, 56], or at least one set

of the failure times or censoring times are i.i.d. [139]. However, this is almost always not true

for tree-based methods at any internal node because both Ti’s and Ci’s typically depend on the

covariates. The question is whether this affects the selection of the splitting rule. A simulation

study can be utilized to better demonstrate this issue.

Consider the split at a particular node. We generate three random variables: X(1), X(2) and

X(3) from a multivariate normal distribution with mean 0 and variance Σ, where the diagonal

elements of Σ are all 1, and the only nonzero off diagonal element is Σ12 = Σ21 = 0.8. The failure

distribution of T is exponential with mean exp(1.25 ·X(1) +X(3) − 2). We consider two censoring

distributions for C: the first one is an exponential distribution with mean 1 for all subjects, i.e.,

they are identically distributed; and the second one is an exponential distribution with mean equal

to exp(3 ·X(2)). The splitting rule is searched for by maximizing the log-rank test statistics between

the two potential child nodes {X(j) ≤ c,X ∈ A} and {X(j) > c,X ∈ A}, and the cutting point c

is searched for throughout the entire range of the variable. In an ideal situation, one would expect

the best splitting rule to be constructed using X(1) with large probability, since it carries the most

signal. This is indeed the case as shown in the first row of Table 2.1 for the i.i.d. censoring case, but

not so much for the dependent censoring case. The simulation is done with n = 1000 and repeated

1000 times. While this only demonstrates the splitting process on a single node, the consequence of
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this on the consistency of the entire tree is much more involved since the entire tree structure can

be altered by the censoring distribution. It is difficult to draw a definite conclusion at this point,

but the impact of the censoring distribution is clearly demonstrated.

Table 2.1: Probability of selecting the splitting variable.

Censoring distribution X(1) X(2) X(3)

Gi identical 0.950 0.004 0.046
Gi depends on X

(2)
i 0.256 0.028 0.716

2.3.3 Survival estimation based on independent but non-identically distributed ob-
servations

It now seems impossible to analyze the consistency without exactly quantifying the within node

estimation performance. We look at two different quantities corresponding to the two scenarios

used above. The first one is an averaged cumulative hazard function within any node A:

ΛA(t) =
1

µ(A)

∫
x∈A

Λ(t | x)dP(x), (2.2)

where P is the distribution of X, and µ(A) =
∫
x∈A dP(x) is the measure of node A. Clearly,

since in the first case, the censoring distribution is not covariate dependent, we are asymptotically

comparing ΛA(t) on the two child nodes, which results in the selection of the first variable. This

should also be considered as a rational choice since X(1) contains more signal at the current node.

In the second scenario, i.e., the dependent censoring case, the within-node estimator Λ̂A(t) does

not converge to the ΛA(t) in general, which can be inferred from the following theorem. As the

main result of this section, Theorem 1 is interesting by its own right for understanding tree-based

survival models, since it establishes a bound of the survival estimation under independent but non-

identically distributed samples, which is a more general result than [139]. It exactly quantifies

the estimation performance for each potential child node, hence is also crucial for understanding

splitting rules generally. This theorem can be found in an unpublished technical report by Mai

Zhou at the University of Kentucky.
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Theorem 1. Let Λ̂(t) be the Nelson-Aalen estimator of the cumulative hazard function from a

set of n independent samples {Yi, δi}ni=1 subject to right censoring, where the failure and censoring

distributions (not necessarily identical) are given by Fi’s and Gi’s. Under Assumption 1, we have

for n ≥ 288/(ε21M
4),

pr
(

sup
t<τ

∣∣∣Λ̂(t)− Λ∗n(t)
∣∣∣ > ε1

)
< 16(n+ 2) exp

{−nM4ε21
288

}
, (2.3)

where

Λ∗n(t) =

∫ t

0

∑
[1−Gi(s)]dFi(s)∑

[1−Gi(s)][1− Fi(s)]
. (2.4)

The proof is deferred to Appendix. Based on Theorem 1, if we restrict ourselves to any node

A, the difference between the within-node estimator Λ̂A(t) and

Λ∗A,n(t) =

∫ t

0

∑
Xi∈A[1−Gi(s)]dFi(s)∑

Xi∈A[1−Gi(s)][1− Fi(s)]
(2.5)

is bounded above, where Λ∗A,n(t) is some version of the underlying true cumulative hazard contami-

nated by the censoring distribution. Noting that Λ∗A,n(t) also depends on the sampling points Xi’s,

we further develop Lemma 14 in the Appendix to verify that Λ∗A,n(t) and its expected version Λ∗A(t)

are close enough, where

Λ∗A(t) =

∫ t

0

EX∈A[1−G(s | X)]dF (s | X)

EX∈A[1−G(s | X)][1− F (s | X)]
. (2.6)

It is easy to verify that the difference between Λ∗A,n(t) and ΛA(t) will vanish if the Fi’s are identical

within a node A (a sufficient condition):

Λ∗A,n(t) =

∫ t

0

∑
Xi∈A[1−Gi(s)]∑
Xi∈A[1−Gi(s)]

dF (s)

1− F (s)

(if Fi ≡ F for all Xi ∈ A)

=

∫ t

0

dF (s)

1− F (s)
=

1

µ(A)

∫
x∈A

∫ t

0

dF (s)

1− F (s)
dP(x) = ΛA(t). (2.7)
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As we demonstrated in the simulation study above, comparing Λ̂A(t) between the two child

nodes may lead to a systematically different selection of splitting variables than using ΛA(t) which

can’t be known a priori. The main cause of the differences between these two quantities is that the

NA estimator treats each node as a homogeneous group, which is typically not true. Another simple

interpretation is that although the conditional independence assumption T ⊥ C | X is satisfied, we

have instead at each internal node that

T 6⊥ C | 1(X(j) < c)

is almost always true for any j and c, causing a nonidentifiability problem.

Exactly quantifying the statistical behavior of each internal node in the entire survival tree

or forest is difficult due to the fact that some subtle changes in the censoring distribution G may

completely alter the entire tree structure. Of course, such a difficulty only arises when the splitting

rule is highly data dependent as happens, e.g., with the log-rank test statistic. When the splitting

rule is independent of the observed data, the analysis becomes much easier. We will provide the

results under this random splitting rule setting in Section 2.5. An analog of this result for the

uncensored regression and classification settings was proposed by [20], and further analyzed by

[83, 11, 6] and many others. Another situation where consistency can be derived is when the splitting

rules find almost always the correct variable to split. To look closer at this setting, we consider two

high dimensional cases in Section 2.5, and show that the marginal screening type of splitting rules

will lead to consistency. To establish these results, we use the variance-bias breakdown, and start

by analyzing the variance component of a survival tree estimator in the next section.

Remark 2.3.1. Another kind of inconsistency can be caused by non-marginal underlying failure

models. In the regression setting, this is well documented through, for example, the “checker-board”

structure used in [88], [11] and [142]. It is easy to see that the failure distribution in a survival model

can be chosen similarly to cause inconsistency under the regular marginal splitting rule. However,

the mechanism of their causes is fundamentally different from the issue that we described above

which is solely due to the underlying censoring distribution.
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2.4 Adaptive concentration bounds of survival trees and forests

In this section, we focus on quantifying the survival tree model from a new angle, namely, the

adaptive concentration [126] of each terminal node estimator to the true within-node expectation.

In the sense of the variance-bias breakdown, this section is to quantify a version of the variance

component of a tree-based model estimator. To be precise, with large probability, our main results

bound
∣∣Λ̂A(t)−Λ∗A,n(t)

∣∣ across all potentially possible terminal nodesA in a fitted tree or forest. The

adaptiveness comes from the fact that the target of the concentration is the censoring contaminated

version Λ∗A,n(t), which is adaptively defined for each node A with the observed samples, rather than

as a fixed universal value.

The results in this section have many implications. This bound is essentially the variance

part in a bias-variance break down of an estimator, and is satisfied regardless of the splitting rule

selection. Hence, we can then analyze the bias part to show the consistency of a survival tree

model. Furthermore, following our framework, the consistency results for any survival tree model

can simply be established by checking several conditions on the splitting rules. Although this may

still pose challenges in certain situations, our unified framework is largely applicable to most existing

methods. Some additional definitions and notations are needed as we proceed.

2.4.1 Additional definitions

Following our previous assumptions on the underlying data generating model, we observe a set

of n i.i.d. samples Dn = {Xi, Yi, δi}ni=1. We view each tree as a partition of the feature space,

denoted A = {Au}u∈U , where the Au’s are non-overlapping hyper-rectangular terminal nodes. The

following definition of a valid partition, which we owe to [126], is used to restrict the partition A

being constructed. Here we state the definition again:

Definition 2.1 Valid tree and forest partitions [126]. A tree partition A is {α, k}-valid if it

satisfies two conditions: 1). For each splitting, the child node contains at least a fraction α ∈ (0, 0.5)

of the training samples in its parent node; and 2). Each terminal node contains at least k training

examples. For the training data D, we denote the set of all {α, k}-valid tree partitions by Vα,k(D).

In addition, define the collection {A(b)}Bb=1 as a valid forest partition if all of the B partitions A(b)’s

are valid. Then the set of all such valid forest partitions is denoted as Hα,k(D).
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The following definition is essentially the tree model estimator of the cumulative hazard function

obtained form a partition A. When A ∈ Vα,k(D), we will call the induced estimator a valid survival

tree. The regression version of their definitions can be found in [126].

Definition 2.2 Valid survival tree. Given the observed data Dn, a valid survival tree estimator

of the cumulative hazard function is induced by a valid partition A ∈ Vα,k(Dn) with A = {Au}u∈U :

Λ̂A(t | x) =
∑
u∈U

1(x ∈ Au)Λ̂Au(t), (2.8)

where each Λ̂Au(t | x) is defined in Equation (2.1).

When an ensemble of trees are fitted, we define a valid survival forest :

Definition 2.3 Valid survival forest. A valid survival forest Λ̂{A(b)}B1
is defined as the average

of B valid survival trees induced by a collection of valid partitions {A(b)}B1 ∈ Hα,k(Dn):

Λ̂{A(b)}B1
(t | x) =

1

B

B∑
b=1

Λ̂A(b)
(t | x). (2.9)

In the following, we define the censoring contaminated survival tree and forest, which are the

asymptotic versions of the corresponding within-node average estimators of the cumulative hazard

function. Note that by Theorem 1, these averages are censoring contaminated versions Λ∗A,n(t), but

not the true averages ΛA(t).

Definition 2.4 Censoring contaminated survival tree and forest. Given the observed data

Dn and A ∈ Vα,k(Dn), the corresponding censoring contaminated survival tree is defined as

Λ∗A,n(t | x) =
∑
u∈U

1(x ∈ Au)Λ∗Au,n(t), (2.10)

where each Λ∗Au,n(t) is defined by Equation (2.5). Furthermore, let {A(b)}B1 ∈ Hα,k(Dn). Then the

censoring contaminated survival forest is given by

Λ∗{A(b)}B1 , n
(t | x) =

1

B

B∑
b=1

Λ∗A(b), n
(t | x). (2.11)
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2.4.2 Main result

In order to obtain the adaptive concentration bound for survival trees, we need to bound

Λ̂A(t | x)− Λ∗A,n(t | x)

for all valid partitions A ∈ Vα,k(Dn). We first specify several regularity assumptions. The first

assumption is a bound on the dependence of the individual features. Note that in the literature,

uniform distributions are often assumed [12, 11] on the covariates, which implies independence. To

allow dependency among covariates, we assume the following, which has also been considered in

[126].

Assumption 2. Covariates X ∈ [0, 1]d are distributed according to a density p(·) satisfying 1/ζ ≤

p(x) ≤ ζ for all x and some ζ ≥ 1.

We also set a restriction on the tuning parameter—the minimum terminal node size k—so that

it grows with n and dimension d via the following rate:

Assumption 3. Assume that k is bounded below so that

lim
n→∞

log(n) max{log(d), log log(n)}
k

= 0. (2.12)

Then we have the adaptive bound for our tree estimator in the following theorem. The proof is

presented in Appendix.

Theorem 2. Suppose the training samples (Xi, Yi, δi) satisfy Assumptions 1 and 2, and the rate of

the sequence (n, d, k) satisfies Assumption 3. Then all valid trees concentrate on censoring contam-

inated tree:

sup
t<τ, x∈[0,1]d,A∈Vα,k(Dn)

∣∣∣Λ̂A(t | x)− Λ∗A,n(t | x)
∣∣∣

≤ M1

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

with probability larger than 1− 2/
√
n, for some universal constant M1.
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In addition, in a high dimensional setting, i.e. lim inf
n→∞

(d/n) > 0, Theorem 2 can be simplified as

follows:

Corollary 1. Suppose the training samples (Xi, Yi, δi) satisfy Assumptions 1 and 2, and the rate of

sequence (n, d, k) satisfies Assumption 3 and lim inf
n→∞

(d/n) > 0. Then all valid trees concentrate on

censoring contaminated trees:

sup
t<τ, x∈[0,1]d,A∈Vα,k(Dn)

∣∣∣Λ̂A(t | x)− Λ∗A,n(t | x)
∣∣∣

≤ M1

√
log(n) log(d)

k log((1− α)−1)
,

with probability larger than 1− 2/
√
n, for some universal constant M1.

Remark 2.4.1. In a moderately high dimensional setting, i.e. d ∼ n, the rate is log(n)/k1/2. In

an ultra high dimensional setting, for example, log(d) ∼ nϑ, where 0 < ϑ < 1, the rate is close to

nϑ/k1/2. The rate that k grows with n cannot be too slow in order to achieve the bound in the

ultra high dimensional setting. This is somewhat intuitive since if k grows slowly then we are not

able to bound all possible nodes defined in 2.1.

The above theorem and corollary hold for all single tree partitions in Vα,k(Dn). Consequently,

we have the following results for the forest estimator. The proof is deferred to Appendix.

Corollary 2. Suppose Assumptions 1-3 hold. Then all valid forests concentrate on the censoring

contaminated forest probability with larger than 1− 2/
√
n,

sup
t<τ, x∈[0,1]d, {A(b)}B1 ∈Hα,k(Dn)

∣∣∣Λ̂{A(b)}B1
(t | x)− Λ∗{A(b)}B1 , n

(t | x)
∣∣∣

≤ M1

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

for some universal constant M1. Furthermore, if lim inf
n→∞

(d/n)→∞,

sup
t<τ, x∈[0,1]d, {A(b)}B1 ∈Hα,k(Dn)

∣∣∣Λ̂{A(b)}B1
(t | x)− Λ∗{A(b)}B1 , n

(t | x)
∣∣∣

≤ M1

√
log(n) log(d)

k log((1− α)−1)
,
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with probability larger than 1− 2/
√
n, for some universal constant M1.

The results established in this section essentially address the variation component in a fitted

random forest. We chose not to use the true within-node population averaged quantity Λ∗A(t) (see

Equation 2.6), or its single tree and forest versions as the target of the concentration. This is

because such a result would require bounded density function of the failure time T . However, when

f(t) is bounded, the results can be easily generalized to Λ∗A(t). Lemma 2 provides an analog of

Theorem 1 in this situation.

The next section establishes consistency of several specific models. Intuitively, if a particular

splitting rule leads to “nicely behaved” terminal nodes across the entire tree or forest, then consis-

tency results can be derived. For example, for a finite dimensional case, “nicely behaved” terminal

nodes essentially require that the diameter of each terminal node shrinks to 0 (in the language

of [38]), while in a high-dimensional case, we would require that the diameters of all important

variables (see definition in Section 2.5.2 below) shrink to 0.

2.5 Consistency of survival tree and forest models

With the above established concentration inequalities, we are now in a position to discuss

consistency results under several scenarios and particular choices of splitting rules. We note that

there is no existing splitting rule which can universally handle all underlying models, hence it is more

realistic to discuss several different specific scenarios. Of course, the choice of the corresponding

splitting rule would then depend on the particular scenario which is not known a priori. However,

this is still both theoretically and practically important for understanding the model since there are

currently no practical guideline. In addition, the analysis strategy serves as a general framework

for showing consistency results for any tree- and forest-based survival model. We consider two

specific scenarios: 1) a finite dimensional case where the splitting rule is chosen randomly; and

2) an infinite dimensional case using the difference of Nelson-Aalen estimators as the splitting

rule. Throughout this section, to streamline our presentation, we assume that the covariates X is

uniformly distributed.
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2.5.1 Consistency of survival forest when dimension d is fixed

In this setting, we assume the dimension of the covariates space is fixed and finite. At each

internal node we choose the splitting variable randomly. When the splitting variable is chosen, we

choose the splitting point at random such that both two child nodes contain at least a proportion

α of the samples in the parent node. To prove the consistency of the forest, we need to bound the

bias term

sup
t<τ

EX

∣∣∣Λ∗{A(b)}B1 , n
(t | X)− Λ(t | X)

∣∣∣ ,
and combine the results with the variance aspect. It should be noted that in Section 2.4, we did

not treat the tree- and forest- structures (A and {A(b)}B1 ) as random variables. Instead, they were

treated as elements of the valid structure sets. However, in this section, once a particular splitting

rule is specified, these structures become random variables associated with certain distributions

induced from the splitting rule. When there is no risk of ambiguity, we inherit the notation Λ̂A

to represent a tree estimator, where the randomness of A is understood as part of the randomness

in the estimator itself. A similar strategy is applied to the forest version of the estimator. Before

presenting the consistency results, we introduce an additional smoothness assumption on the hazard

function:

Assumption 4. For any fixed time point t, the cumulative hazard function Λ(t | x) is L1-Lipschitz

continuous in terms of x, and the hazard function λ(t | x) is L2-Lipschitz continuous in terms of x,

i.e., |Λ(t | x1) − Λ(t | x2)| ≤ L1||x1 − x2|| and |λ(t | x1) − λ(t | x2)| ≤ L2‖x1 − x2‖, respectively,

where ‖ · ‖ is the Euclidean norm.

We are now ready to state our main consistency results for the proposed survival tree model.

Theorem 3 provides the point-wise consistency result. The proof is presented in Appendix.

Theorem 3. Under the assumptions 1–4, the proposed survival tree model with random splitting

rule is consistent, i.e., for each x,

sup
t<τ

∣∣Λ̂A(t | x)− Λ(t | x)
∣∣ = O

(√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d

)
,
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with probability approaching to 1, where the constants 0 < c2, c4 < 1, c3 = (1 − 2α)/8 and c1 =

c3(1−c2)(1−c4)
log1−α(α) . Consequently,

sup
t<τ

EX |Λ̂A(t | X)− Λ(t | X)|

= O

(√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d

+ log(k)wn

)
,

where

wn =
2√
n

+ d exp
{
−
c2

2 log1/α(n/k)

2d

}
+ d exp

{
−

(1− c2)c3c
2
4 log1/α(n/k)

2d

}
.

Remark 2.5.1. The first part
√

log(n/k)[log(dk)+log log(n)]
k log((1−α)−1)

comes from the concentration bound results

and the second part ( kn)
c1
d comes from the bias part. We point out that the optimal rate is obtained

by setting k = n
c3

c3+1/2d log1−α(α) , and then the optimal rate is close to n
− c3

2[c3+1/2d log1−α(α)] . If we

always split at the middle point at each internal node, then the optimal rate degenerates to n−
1
d+2 ,

which is the same rate as in [32].

The consistency result can be easily extended to survival forests with B trees. Theorem 4

presents an integrated version, which can be derived from Theorem 3.

Theorem 4. Under the Assumptions 1-4, the proposed survival forest is consistent, i.e.

lim
B→∞

sup
t<τ

EX |Λ̂{A(b)}B1
(t | X)− Λ(t | X)|

= O

(√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d

+ log(k)wn

)
,

where wn is a sequence approaching to 0 as defined in Theorem 3, 0 < c2, c4 < 1, c3 = (1 − 2α)/8

and c1 = c3(1−c2)(1−c4)
log1−α(α) .

2.5.2 Consistency of survival forests with a nonparametric splitting rule when dimen-
sion d is infinite

In this section, we allow the dimension of the feature space d to go to infinity with sample size

n. We assume there are d0 important features for the failure time among d covariates, i.e., the true
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model has size |M| = d0 ≤ d. We implement the splitting rule as following. A similar idea for

splitting rules has been considered in the guess-and-check forest [126] in the regression setting.

Algorithm 2: Splitting rule for marginal checked survival forest
11 For a currently internal node A containing at least 2k training samples, we pick a splitting
variable j ∈ {1, . . . , d} uniformly at random;

22 We then pick the splitting point x̃ using the following rule such that both two child nodes
contain at least proportion α of the samples in their parent node:

x̃ = arg max
x

∆(x),

where ∆(x) =
∫ τ

0

∣∣Λ̂A+
j (x)(t)− Λ̂A−j (x)(t)

∣∣dt, A+
j (x) = {X : Xj ≥ x}, and

A−j (x) = {X : Xj < x}, X(j) is the j-th dimension of X;
33 If either there is already a successful split on the variable j or the following inequality holds:

∆(x̃) ≥ 2M3τ

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

for a universal constant M3 then we split at x̃ along the j-th variable. If not, we randomly
sample another variable out of the remaining variables and proceed to Step 2). When there
are no remaining feasible variables, we randomly select an index out of d to proceed to a split.

Lemma 3 and 4 show that a d dimensional survival forest based on the above splitting rule

is equivalent to a d0 dimensional survival forest with probability approaching to 1. Λ∗A,n(t) is an

essential tool to prove Lemma 3 and 4. Notice that Λ∗A,n(t) is a sample version of the asymptotic

distribution of the terminal node A. In Lemma 2, we show the bound of the difference of Λ∗A,n(t)

and its integrated version Λ∗A(t) across all valid nodes A, where Λ∗A(t) is as defined in Equation 2.6.

The proof is given in Appendix.

Lemma 2. Assume the density function of the failure time f(t | x) is bounded by L for each x.

The difference between Λ∗A,n(t) and Λ∗A(t) is bounded by

sup
t<τ, x∈[0,1]d,A∈Vα,k(Dn)

∣∣Λ∗A,n(t | x)− Λ∗A(t | x)
∣∣

≤ M2

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

with probability larger than 1− 1/
√
n.

Now we are ready to present Lemma 3 and Lemma 4. The proof is shown in Appendix.
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Lemma 3. The probability that the proposed survival tree ever splits on a noise variable is smaller

than 3/
√
n.

To establish consistency, we need one additional assumption about monotonicity of the failure

distribution and the effect size of the censoring distribution.

Assumption 5. Monotonicity of dF . Without loss of generality, assume that f = dF is monotone

increasing with respect to X. Furthermore, there is a minimum effect size ` > 0 such that

∫ τ

0

∣∣∣∣M̃ ∫ t

0

∫ 1
1/2 f(s | X(j) = x(j), X(−j) = x(−j))dx(j)∫ 1

1/2[1− F (s | X(j) = x(j), X(−j) = x(−j))]dx(j)
ds

− 1

M̃

∫ t

0

∫ 1/2
0 f(s | X(j) = x(j), X(−j) = x(−j))dx(j)∫ 1/2

0 [1− F (s | X(j) = x(j), X(−j) = x(−j))]dx(j)
ds
∣∣∣∣ dt ≥ `,

for all x ∈ [0, 1]d and all important (non-noise) variables j. Here, X(−j) is a sub-vector of X

obtained by removing the jth entry, and M̃ stands for the lower probability bound of censoring at τ ,

i.e., pr(C ≥ τ | X) ≥ M̃ > 0.

Recall in Assumption 1, we assumed that pr(Yi ≥ τ |Xi) ≥ M > 0. Hence taking M̃ as M

automatically satisfies the above assumption of the censoring distribution; however, M̃ is usually

larger than M . Note that Assumption 5 essentially bounds below the signal size regardless of any

dependency structures between Ci and Ti for a given subject i. However, when the Gi’s in Equation

2.5 are identical, the constant M̃ can be removed from the assumption.

Lemma 4. At any given internal node, if an important variable is randomly selected and has never

been used before, then the probability that the proposed survival tree splits on this variable is at least

1− 3/
√
n.

Based on Lemma 3 and 4, we essentially only split on d0 dimensions with probability 1−3/
√
n.

The consistency holds from Theorem 3. The following result shows the consistency of the proposed

survival forest. The proof is almost identical to Theorem 4:
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Theorem 5. Under the Assumptions 1-5, the proposed survival forest using the splitting rule spec-

ified in Algorithm 2 is consistent, i.e.

lim
B→∞

sup
t<τ

EX |Λ̂{A(b)}B1
(t | X)− Λ(t | X)|

= O

(√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d0 + log(k)wn

)
,

where wn is a sequence approaching to 0 as defined in Theorem 3, 0 < c2, c4 < 1, c3 = (1 − 2α)/8

and c1 = c3(1−c2)(1−c4)
log1−α(α) .

Although we have developed a result where d can grow exponentially fast with n in this section,

the splitting rule implemented was not a completely the same as the practically used version because

it essentially checks only the signal where the candidate variable have never been used. This is done

by comparing the signal for the two potential splits X(j) < 1/2 versus X(j) < 1/2 at an internal

node. Once a variable is first used, it will be automatically included as a candidate thereafter. This

idea is essentially the same as the protected variable set used in [142], where the protected set serves

as the collection of variables that have used in previous nodes.

2.6 Discussion

In this chapter, we developed several fundamental results for tree- and forest-based survival

models. Firstly, we investigated the within-node Nelson-Aalen estimator of the cumulative hazard

function and developed a concentration inequality for independent but non-identically distributed

samples. Secondly, we extended the result to develop a concentration bound across all possible

fitted tree and forest models. Lastly, we developed consistency under two specific models with

corresponding splitting rule methods.

In section 2.5, our results suggest that survival tree models are able to adapt to the sparsity

structure of the underlying model. This is demonstrated in the second consistency results, where

the number of true important variables d0 is much smaller than the total number d ≥ d0. The

splitting rules inherit information from nodes in the upper level of a tree and will always consider

a variable that has been used before. There is a possible extension that the signals of the splitting
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variables could be repeatedly check at all internal nodes. Alternative splitting rules which can

further improve this upper limit on d are of theoretical interest.
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CHAPTER 3

Nonparametric generalized fiducial inference for survival functions under cen-
soring

3.1 Introduction

Fiducial inference can be traced back to a series of articles by the father of modern statistics

R. A. [46, 47, 48, 49] who introduced the concept as a potential replacement of the Bayesian

posterior distribution. A systematic development of the idea has been hampered by ambiguity, as

[23] describes: “The reason for this lack of agreement and the resulting controversy is possibly due

to the fact that the fiducial method has been put forward as a general logical principle, but yet has

been illustrated mainly by means of particular examples rather than broad requirements.” Indeed,

we contend that until recently fiducial inference was applied to relatively a small class of parametric

problems only.

Since the mid 2000s, there has been a renewed interest in modifications of fiducial inference. [61,

62] bring forward a mathematical definition of what they call the Generalized Fiducial Distribution

(GFD). Having a formal definition allowed fiducial inference to be applied to a wide variety of

statistical settings [65, 129, 130, 131, 128, 63, 30, 127, 66, 80, 86].

Other related approaches include Dempster-Shafer theory [37, 40], inferential models [91], and

confidence distributions [132, 109, 68]. Objective Bayesian inference, which aims at finding non-

subjective model based priors can also be seen as addressing the same basic question. Examples

of recent breakthroughs related to reference prior and model selection are Bayarri et al. [8], Berger

et al. [9, 10]. There are many more references that interested readers can find in the review article

[64].

In this paper, we apply the fiducial approach in the context of survival analysis. To our

knowledge, this is the first time fiducial inference has been systematically applied to an infinite-

dimensional statistical problem. However, for use of confidence distributions to address some basic
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non-parametric problems see Chapter 11 of [109]. In this manuscript, we propose a computationally

efficient algorithm to sample from the GFD, and use the samples from the GFD to construct statisti-

cal procedures. The median of the GFD could be considered as a substitution for the Kaplan-Meier

estimator [74], which is a classical estimator in survival analysis. Appropriate quantiles of the GFD

evaluated at a given time provide pointwise confidence intervals for survival function. Similarly, the

confidence intervals for quantiles of survival functions can be obtained by inverting the GFD.

The proposed pointwise confidence intervals maintain coverage in situations where classical

confidence intervals often have coverage problems [45]. [45, 44] construct solutions to avoid these

coverage problems. It is interesting to note that the conservative version of the proposed pointwise

fiducial confidence interval is equivalent to beta product confidence procedure confidence interval of

[45]. The other fiducial confidence interval proposed in this paper is based on log-linear interpolation

and has the shortest length among all existing methods which maintain coverage.

We also construct curvewise confidence intervals for survival functions. Based on the curvewise

confidence intervals, we propose a two sample test for testing whether two survival functions are

equal. The proposed test does not need the proportional hazard assumption [17], and appears to

be a good replacement for the log-rank test and sup log-rank test.

We establish an asymptotic theory which verifies the frequentist validity of the proposed fiducial

approach. In particular, we prove a functional Bernstein–von Mises theorem for the GFD in Sko-

rokhod’s D[0, t] space. Because randomness in GFD comes from two distinct sources the proof of

this results is different from the usual proof of asymptotic normality for the Kaplan-Meyer estima-

tor. As a consequence of the functional Bernstein–von Mises theorem, the proposed pointwise and

curvewise confidence intervals provide asymptotically correct coverage, and the proposed survival

function estimator is asymptotically equivalent to the Kaplan-Meier estimator.

We report results of a simulation study showing the proposed fiducial methods provide compet-

itive, and in some cases superior performance to the methods in the literature. In particular, we

compare the performance of the GFD intervals with classical confidence intervals like Greenwood

[122], Borkowf [15], Strawderman-Wells [117, 118], nonparametric bootstrap [41, 3], constrained

bootstrap [7], Thomas-Grunkemeier method [123], constrained beta [7], and beta product confidence

procedure [45, 44] in various settings with small samples and/or heavy censoring. Additionally we

also consider the setting of [7] in which the data contains fewer censored observations. Next, we
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report several scenarios showing the desirable power of the GFD test in comparison to 12 different

types of log-rank tests implemented in the R package survMisc [35]: original log-rank test [90];

Gehan-Breslow generalized Wilcoxon log-rank test [52]; Tarone-Ware log-rank test [121]; Peto-Peto

log-rank test [101]; Modified Peto-Peto log-rank test [5]; Fleming-Harrington log-rank test [67] and

corresponding supremum versions [51, 42].

We apply the proposed fiducial method to test the difference between chemotherapy and

chemotherapy combined with radiotherapy in the treatment of locally unresectable gastric can-

cer [75]. The proposed fiducial test has the smallest p-value compared to existing methods. We also

report a small simulation study based on 500 synthetic datasets mimicking the cancer data. The

proposed fiducial test is more powerful than the 12 different tests described above.

3.2 Methodology

3.2.1 Fiducial approach explained

In this section, we explain the definition of a generalized fiducial distribution. We demonstrate

the definition on the problem of estimating survival functions when no censoring is present. We

start by expressing the relationship between the data Y and the parameter θ using

Y = G(U ,θ), (3.1)

where G(·, ·) is a deterministic function termed the data generating equation, and U is a random

vector whose distribution is independent of θ and completely known. Data Y could be simulated by

generating a random variable U and plugging it into the data generating equation (3.1). For exam-

ple, a data generating equation for the N(µ, σ2) model is Yi = G(Ui, µ, σ) = µ + σΦ−1(Ui), where

U = (U1, · · · , Un) are independent and identically distributed U(0, 1) and Φ(y) is the distribution

function of the standard normal distribution.

The inverse cumulative distribution function method for generating random variables provides

a common data generating equation for a nonparametric independent and identically distributed

model:

Yi = G(Ui, F ) = F−1(Ui), i = 1, . . . , n, (3.2)
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where F−1(u) = inf{y ∈ R : F (y) ≥ u} is the usual “inverse” of the distribution function F (y)[24].

Notice that the distribution function F itself is the parameter θ in this infinite dimensional model.

The actual observed data is generated using the true distribution function F0.

Roughly speaking a GFD is obtained by inverting the data generating equation, and [64] pro-

poses a very general definition of GFD. However, in order to simplify the presentation, we will use

an earlier, less general version found in [61]. The two definitions are equivalent for the models

considered here.

We start by denoting the inverse image of the data generating equation (3.1) by

Q(y,u) = {θ : y = G(u,θ)}.

For the special case (3.2) the inverse image is

Q(y,u) =

n⋂
i=1

{F : F (yi) ≥ ui, F (yi − ε) < ui for any ε > 0}. (3.3)

If y is the observed data and u0 the value of the random vector U that was used to generate

it, then we are guaranteed that the true parameter value θ0 ∈ Q(y,u0). However, we only know a

distribution of U and not the actual value u0. Notice that y = G(u0,θ0) and therefore only values

of u for which Q(y,u) 6= ∅ should be considered. Let U∗ be another random variable independent

of and having the same distribution as U . Since the conditional distribution of U∗ | {Q(y,U∗) 6= ∅}

can be viewed as summarizing our knowledge about u0, the conditional distribution of

Q(y,U∗) | {Q(y,U∗) 6= ∅} (3.4)

can be viewed as summarizing our knowledge about θ0.

Notice that Q(y,u) is a set that can contain more than one element. We deal with this by

selecting a representative from the closure of Q(y,u). The distribution of a representative selected

from (3.4) is a Generalized Fiducial Distribution. Based on the theoretical results presented, the

non-uniqueness caused by this somewhat arbitrary choice disappears asymptotically. A possible

conservative alternative to selecting a single representative from Q(y,u) could use the theory of

belief functions [37, 112].
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To describe the GFD in the particular case of (3.2) we define for all s ≥ 0, FL(y,u)(s) = inf{F (s) :

F ∈ Q(y,u)} and FU(y,u)(s) = sup{F (s) : F ∈ Q(y,u)}. The closure of the inverse image (3.3) is a

set of all distribution functions F that stay between FL(y,u) and FU(y,u). Also notice that Q(y,u) is

not empty if and only if the order of u matches the order of y, with the understanding that in the

case of ties in y, the ui’s corresponding to the ties could be any order.

By exchangeability, the conditional distribution U∗ | {Q(y,U∗) 6= ∅} is the same as the distri-

bution of U∗[y], where U
∗
[y] is the independent and identically distributed U(0,1) reordered to match

the order of y. Thus, any distribution stochastically larger than FL(y,U∗
[y]

) and stochastically smaller

than FU(y,U∗
[y]

) is a GFD. Sampling from this fiducial distribution is easy to implement.

We consider the following 2 main options in using the GFD for inference. The first option is to

construct conservative confidence sets. For example, when designing pointwise confidence intervals

for the survival function at time s, we use quantiles of 1−FU(y,U∗
[y]

)(s) for lower bounds and quantiles

of 1− FL(y,U∗
[y]

)(s) for upper bounds.

The second option is to select a suitable representative of Q(y,U∗[y]). When there are no ties

present in the data we propose to fit a continuous distribution function by using linear interpolation

for the survival function on the log scale, i.e., the distribution function F I(y,u)(s) = 1− eL(s), where

L(s) is the linear interpolation between (0, 0), (y(1), log u(1)), . . . , (y(n), log u(n)), and on the interval

(y(n),∞) we extrapolate by extending the line between (y(n−1), log u(n−1)) and (y(n), log u(n)). We

will call this the log-linear interpolation.

As usually, we denote the GFD for survival functions SL(y,u) = 1−FU(y,u), S
U
(y,u) = 1−FL(y,u), and

SI(y,u) = 1−F I(y,u). For simplicity, hereinafter we omit the subindex (y,u). In the rest of this paper

we will also denote Monte Carlo samples of the lower bound, the upper bound, and the log-linear

interpolation of the GFD for the survival function by SLi , S
U
i , and S

I
i (i = 1, . . . ,m), respectively.

To demonstrate the fiducial distribution of this section, we draw 300 observations from

Weibull(20, 10). We plot a fiducial sample of survival functions SIi (i = 1, . . . , 1000) and the empir-

ical survival function in the left panel of Figure 3.2.
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3.2.2 Fiducial approach in survival setting

In this section, we derive the GFD for the failure distribution based on right censored data.

Here we treat the situation when the failure and censoring times are independent. The same GFD is

derived under a more general model that includes dependence between failure and censoring times

in the Appendix.

Let failure times Xi (i = 1, . . . , n) follow the true distribution function F0 and censoring times

Zi (i = 1, . . . , n) have the distribution function R0. We observe partially censored data {yi, δi}

(i = 1, . . . n), where yi = xi ∧ zi is the minimum of xi and zi, δi = I{xi ≤ zi} denotes censoring

indicator.

We consider the following data generating equation,

Yi = F−1(Ui) ∧R−1(Vi), δi = I{F−1(Ui) ≤ R−1(Vi)}, (3.5)

where Ui, Vi are independent and identically distributed U(0, 1) and the actual observed data were

generated using F = F0 and R = R0. We are committing a slight abuse of notation as Y in

Equation (3.1) is (Y , δ) in Equation (3.5) and U in Equation (3.1) is (U ,V) in Equation (3.5).

For a failure event δi = 1, we have full information about failure time xi, i.e., xi = yi, and partial

information about censoring time zi, i.e., zi ≥ yi. In this case, just as in the previous section,

F−1(ui) = yi if and only if F (yi) ≥ ui, F (yi − ε) < ui for any ε > 0.

For a censored event δi = 0, we know only partial information about xi, i.e., xi > yi, and full

information on zi, i.e., zi = yi. Similarly,

F−1(ui) > yi if and only if F (yi) < ui,

R−1(vi) = yi if and only if R(yi) ≥ vi, R(yi − ε) < vi for any ε > 0.
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To obtain the inverse map, we start by inverting a single observation. If δi = 1, the inverse map

for this datum is

QF,R1 (yi, ui, vi) = {F : F (yi) ≥ ui, F (yi − ε) < ui for any ε > 0} × {R : R−1(vi) ≥ yi}.

If δi = 0, the inverse map is

QF,R0 (yi, ui, vi) = {F : F (yi) < ui} × {R : R(yi) ≥ vi, R(yi − ε) < vi for any ε > 0}.

Combining these we obtain the complete inverse map

QF,R(y, δ,u,v) =
⋂
i

QF,Rδi (yi, ui, vi) = QF (y, δ,u)×QR(y, δ,v), (3.6)

where

QF (y, δ,u) =

F :


F (yi) ≥ ui, F (yi − ε) < ui for any ε > 0 for all i s.t. δi = 1

F (yj) < uj for all j s.t. δj = 0

 , (3.7)

and QR(y, δ,v) is analogous. Notice that the inverse of QF,R in (6) is in the form of a Cartesian

product. This is a direct consequence of our choice of data generating equation, and it greatly

simplifies the calculation of marginal fiducial distribution for failure times.

To demonstrate the inverse (3.7), Figure 3.1 presents the survival function representation of

QF (y, δ,u) for one small data set (n = 8) of X ∼ Weibull(20, 10) censored by Z ∼ Exp(20),

and two different values of u. The circle points denote failure observations and the triangle points

denote censored observations. Any survival function lying between the upper and the lower bounds

is an element of the closure of QF (y, δ,u). In particular, we plot the log-linear interpolation going

through the failure observations as described in Section 3.2.1 with a modification to ensure it satisfies

the lower fiducial bound. Notice that the upper fiducial bound changes at the failure times only,

while the lower fiducial bound changes at all failure times and at some censoring times depending

on the value of u.
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Figure 3.1: Two realizations of fiducial curves for a sample of size 8 from Weibull(20, 10) censored by
Exp(20). Here fiducial curves refer to Monte Carlo samples SL

i , SU
i , and SI

i (i = 1, 2). The red curve is
an upper bound and the black curve is a lower bound. The green curve is the log-linear interpolation. The
circle points denote failure observations. The triangle points denote censored observations. The dashed blue
curve is the true survival function of Weibull(20, 10). Since the fiducial distribution reflects uncertainty we
do not expect every fiducial curve to be close to the true survival function.

When defining the GFD, let (U∗,V∗) be independent of and having the same distribution as

(U ,V). Because of the way the inverse (3.6) separates and the fact that U∗ andV∗ are independent,

the (marginal) fiducial distribution for the failure distribution function F is

QF (y, δ,U∗) | {QF (y, δ,U∗) 6= ∅}. (3.8)

The conditional distribution of U∗ | {Q(y, δ,U∗) 6= ∅} can be sampled efficiently because it is the

distribution of a particular random reordering of a sample of independent and identically distributed

U(0, 1). To this end we define P as the set of all permutations for which the permuted order statistics

u(Π),Π ∈ P satisfy QF (y, δ,u(Π)) 6= ∅. Notice that the i-th element of uΠ is the Π(i)-th order

statistics of u, i.e., u(Π)i
= u(Π(i)). The set P is invariant to u as long as u has no ties. Therefore

we simulate independent and identically distributed U(0, 1), sort them, and then permute them

using a permutation selected at random from P.

The random permutation Π ∈ P can be generated sequentially starting from the smallest among

the y to the largest. We start with the set N = {1, . . . , n}. At any given observation yi, we select

Π(i) from N as either a) the smallest remaining value if the observed value yi is a failure time or b)

any of the remaining values selected at random if the observed value yi is a censoring time. We then
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Figure 3.2: A plot of Monte Carlo realizations SI
i (i = 1, . . . , 1000) sampled from the GFD based on a sample

of 300 uncensored Weibull(20, 10) observations, and the same 300 Weibull(20, 10) observations censored by
Exp(20). The red curves are the 1000 fiducial curves, and the blue curve are the empirical survival function
and the Kaplan-Meier estimator, respectively. As expected, we observe higher uncertainty in the fiducial
sample under censoring.

remove the selected Π(i) from N and proceed to the next smallest observation yj until we exhaust

the observations and N .

Given {QF (y, δ,U∗) 6= ∅}, and the results of the first i − 1 steps, the components of U∗ not

yet selected are exchangeable, which validates the proposed algorithm.

The details of this algorithm are in the Appendix. We implement the same two basic approaches

to deriving statistical procedures from the GFD as in Section 3.2.1. To illustrate the fiducial

distribution in the right censoring case, failure time X follows Weibull(20, 10) and censoring time

Z follows Exp(20) with sample size 300. Censoring percentage is about 60%. We plot a fiducial

sample of the survival function SIi (i = 1, . . . , 1000) and Kaplan-Meier estimator in the right panel

of Figure 3.2. As expected, we see a wider spread of fiducial curves in the censoring case indicating

higher uncertainty.

3.2.3 Inference based on fiducial distribution

In this section, we describe how to use fiducial samples for inference, specifically, point esti-

mation, pointwise confidence intervals for survival functions and quantiles, curvewise confidence

intervals, and testing. The actual numerical implementation will be based on a sample of survival

functions SLi , S
U
i , and S

I
i (i = 1, . . . ,m), i.e., the lower bound, the upper bound, and the log-linear

interpolation respectively, obtained from the algorithm in the Appendix.

By Lemma 16 shown in the Appendix, the Kaplan-Meier estimator falls into the interval given

by the expectation of the lower and upper fiducial bounds at any failure time t. However, instead
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of using the Kaplan-Meier estimator we propose to use the pointwise median of the log-linear

interpolation fiducial distribution as a point estimator of the survival function. It follows from

Section 3.3 that the proposed estimator is asymptotically equivalent to the Kaplan-Meier estimator.

Numerically, we estimate the median of the GFD at time x by computing a pointwise median of

the fiducial sample SIi (x) (i = 1, . . . ,m). We report a simulation study in Section 3.4.1 to support

this estimator.

As explained at the end of Section 3.2.1 we use two types of pointwise confidence intervals,

conservative and log-linear interpolation, using quantiles of appropriate parts of the fiducial samples.

For example, a 95% confidence log-linear interpolation confidence interval for S(x) is formed by using

the empirical 0·025 and 0·975 quantiles of SIi (x). Similarly, a 95% conservative confidence interval

is formed by taking the empirical 0·025 quantile of SLi (x) as a lower limit and the empirical 0·975

quantile of SUi (x) as an upper limit. Simulation results in Section 3.4.1 show that the proposed

confidence intervals match or outperform their main competitors regarding coverage and length.

In order to save space, in the rest of this section we present procedures based on the log-

linear interpolation sample only. A conservative version can be obtained analogously. In survival

analysis, we are also interested in confidence intervals for quantile q of the survival function, where

0 < q < 1. We obtain such a confidence interval by inverting the procedure of computing the

pointwise confidence interval. Specifically, a 95% confidence interval is obtained by taking empirical

0·025 and 0·975 quantiles of the inverse of fiducial sample SIi evaluated at q.

Next, we discuss the use of the GFD to obtain simultaneous curvewise confidence bands. In

particular, for a 1 − α curvewise confidence set we propose using a band {S : ‖S −M‖ ≤ c} of

fiducial probability 1 − α, where M denotes the pointwise median of the GFD, and ‖ · ‖ is the

L∞ norm, i.e., ‖S −M‖ = max
x
|S(x)−M(x)|. Numerically we implement this by using a fiducial

sample. Let

lj = ‖SIj − M̂‖ = max
x
|SIj (x)− M̂(x)|, j = 1, . . . ,m,

where M̂ is the estimated pointwise median of the GFD. Then we form the 95% curvewise confidence

band {S : ‖S−M̂‖ ≤ ĉ}, where ĉ is the 0·95 quantile of lj . To illustrate, we plot 95% pointwise and

curvewise confidence intervals for the Weibull(20, 10) example under right censoring in Figure 3.3.
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Figure 3.3: An example of 95% pointwise and curvewise confidence intervals of survival function by proposed
log-linear interpolation approach.

The curvewise confidence set could be inverted for testing. The resulting test is different from

the log-rank test [90] and its modifications. Based on our definition of the 1− α fiducial band, the

fiducial p-value for the two sided test

H0 : S(t) = S0(t) for all t, H1 : S(t) 6= S0(t) for some t,

is pr∗y,δ(‖SI−M‖ ≥ ‖S0−M‖), where pr∗y,δ stands for a fiducial probability computed for observed

data (y, δ), SI stands for a random survival function following the log-linear interpolation GFD,

and as before M is the pointwise median of the fiducial distribution. We estimate this p-value from

a fiducial sample by finding the largest α for which 1− α curvewise confidence set contains S0. In

particular, let

l0 = max
x
|S0(x)− M̂(x)|, lj = max

x
|SIj (x)− M̂(x)|, j = 1, . . . ,m. (3.9)

Numerically, we approximate the p-value by the proportion of the fiducial sample satisfying lj ≥ l0.

While the log-rank test is a two sided test only, the fiducial approach could also be used to

define one sided tests. For example for testing

H0 : S(t) ≥ S0(t) for all t, H1 : S(t) < S0(t) for some t,

we define a fiducial p-value as the fiducial probability pr∗y,δ(max
x
{SI(x) −M(x)} ≥ max

x
{S0(x) −

M(x)}).
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Finally, let us consider two sample testing. For each sample, we have observed values yi and

censoring indicators δi, i = 1, 2. The two independent log-linear interpolation GFDs are denoted

by SI(yi,δi), i = 1, 2. When testing H0 : S1 − S2 = ∆0 we define a fiducial p-value as the fiducial

probability pr∗y,δ(‖SI(y1,δ1)−S
I
(y2,δ2)−MD‖ ≥ ‖∆0−MD‖), whereMD is the median of the difference

of the two GFDs.

Numerically, we evaluate the p-value in the same fashion as in Equation (3.9). We will compare

the performance of the proposed fiducial test with the log-rank test and sup log-rank test with

different weights for the two sample settings by simulation in Section 3.4.2.

3.3 Theoretical results

Recall that the GFD is a data dependent distribution pr∗y,δ that is defined for every fixed data

set (y, δ). It can be made into a random measure pr∗Y ,δ in the same way as one defines the usual

conditional distribution, i.e., by plugging random variables (Y , δ) for the observed data set. In this

section, we will study the asymptotic behavior of this random measure assuming there are no ties

with probability 1.

[103] prove a Bernstein-von Mises theorem for the exchangeably weighted bootstrap, of which

the Bayesian bootstrap [107] is an example. However, the result of [103] is not applicable in the

survival settings due to the fact that the jump sizes of FL or FU are not exchangeable. In this

section, we study the theoretical properties of the GFD in the survival setting. For simplicity, we

state the results in this section using upper fiducial bound of survival functions SU , i.e., the lower

fiducial bound of cumulative distribution functions FL. Lemma 15 in the Appendix proves that the

same results hold for SL and SI .

First we introduce some notations: Xi is failure time, Zi is censoring time, Yi is the observed

minimum of failure and censoring time, and δi = I{Xi ≤ Zi} is the censoring indicator. We define

the counting process

Ni(t) = I{Yi ≤ t}δi, N̄(t) =
n∑
i=1

Ni(t),

and the at-risk process

Ki(t) = I{Yi ≥ t}, K̄(t) =

n∑
i=1

Ki(t).
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We need the following two assumptions which are also needed for theoretical study of the

Kaplan-Meier estimator [50].

Assumption 6. There exists a function π such that, as n→∞,

sup
0≤t<∞

∣∣K̄(t)/n− π(t)
∣∣→ 0 almost surely.

This assumption is very mild. For example if Yi are independent and identically distributed, it

is implied by Glivenko-Cantelli Theorem; see the discussion following Assumption 6.2.1 in [50] for

more details.

Assumption 7. F0 is absolutely continuous.

Let S̃(t) =
∏
s≤t{1 − ∆N̄(s)/K̄(s)} be the Kaplan-Meier estimator. It is well-known, see for

example Theorem 6.3.1 of [50], that for any t satisfying π(t) > 0,

√
n{F̃ (·)− F0(·)} → {1− F0(·)}W{γ(·)} in distribution on D[0, t], (3.10)

where F̃ (t) = 1 − S̃(t), γ(t) =
∫ t

0 π
−1(s)dΛ(s), W is Brownian Motion, and Λ is the cumulative

hazard function.

Recall that the procedure for sampling from (3.8) in Section 3.2.2 defines a random permutation

Π. Conditional on {QF (y, δ,U∗) 6= ∅} and the results of the first i − 1 steps, the distribution of

the Π(i)-th order statistic U∗(Π(i)) corresponding to a failure time yi is the minimum of K̄(yi)

independent random variables distributed as uniform on (U∗(Π(j)), 1), where U∗(Π(j)) corresponds to

the failure time yj immediately preceding yi. If yi is the smallest failure time then set U∗(Π(j)) = 0.

Since SU (yi) = 1−U∗(Π(i)) for all failure times, the upper bound of the GFD has a distribution that

can be written as

SU (t) =
∏
si≤t
{1−∆N̄(si)Bi}, (3.11)

where ∆N̄(t) = N̄(t)− N̄(t−), si are ordered failure times, and Bi are independent Beta(1, K̄(si)),

respectively. Its expectation Ŝ(t) = E{SU (t)} can be easily computed from (3.11) as

Ŝ(t) =
∏
s≤t

{
1− ∆N̄(s)

1 + K̄(s)

}
. (3.12)
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Equation (3.12) provides us with a modification of the Kaplan-Meier estimator that also satisfies

(3.10). We will use this modification throughout this section and in all the proofs that can be found

in the Appendix. As our first result, we prove a concentration inequality for SU (t).

Theorem 6. The following bound holds for any dataset with K̄(t) ≥ 1 and any ε > 0,

pr∗y,δ{sup
s≤t
|SU (s)− Ŝ(s)| ≥ 3ε2/n1/2+N̄(t)/K̄(t)−2} ≤ N̄(t)[(1−ε/n3/4)K̄(t)+0·4K̄(t)+n/{ε2K̄(t)}2]. (3.13)

Remark 3.3.1. Theorem 6 and Assumption 6 imply that the fiducial distribution is uniformly

consistent. In particular, provided that we have a sequence of data so that K̄(t)/n→ π(t) > 0, the

right-hand side of (3.13) is O(n−1) whenever ε2 = n1/2.

Before presenting our main result we need two additional assumptions.

Assumption 8.
∫ t

0 fn(s)/K̄(s)dN̄(s)→
∫ t

0 f(s)λ(s)ds almost surely for any t ∈ I = {t : π(t) > 0}

and fn → f uniformly.

Assumption 8 is reasonable since the probability of failure and censoring both happening in the

[t, t+ ∆t) is of a higher order O((∆t)2).

Assumption 9. sup0≤s≤t |F̃ (s) − F0(s)| → 0 almost surely for any t ∈ I = {t : π(t) > 0}, where

F̃ = 1− S̃, and S̃ is the Kaplan-Meier estimator.

Remark 3.3.2. The strong consistency result of Assumption 9 has been proved for the model

described in Section 3.2.2 by [57, 119]. Moreover, Assumption 9 is only needed for establishing a

strong version of Theorem 7, i.e., convergence in distribution almost surely. If the Kaplan-Meier

estimator only converges in probability, then the convergence mode in Theorem 7 is in distribution

in probability.

The following theorem establishes a Bernstein-von Mises theorem for the fiducial distribution.

In particular, we will show that the fiducial distribution of n1/2{FL(·)−F̂ (·)}, where F̂ (·) = 1−Ŝ(·)

and FL(·) = 1 − SU (·), converges in distribution almost surely to the same Gaussian process as

in (3.10). To understand the somewhat unusual mode of convergence used here, notice that there

are two sources of randomness present. One is from the fiducial distribution itself that is derived

from each fixed data set. The other is the usual randomness of the data. The mode of convergence

here is in distribution almost surely, i.e., the centered and scaled fiducial distribution viewed as a

36



random probability measure converges almost surely to the Gaussian distribution described in the

right-hand side of Equation (3.10) using the weak topology on the space of probability measures.

Theorem 7. Based on Assumptions 6–9, for any t ∈ I = {t : π(t) > 0}, n1/2{FL(·) − F̂ (·)} →

{1− F0(·)}W{γ(·)} in distribution on D[0, t] almost surely, where γ(t) =
∫ t

0 π
−1(s)dΛ(s).

Notice that Theorem 7 implies that the pointwise fiducial confidence intervals are equivalent to

the asymptotic confidence intervals based on the Kaplan-Meyer estimator. This fact can be also

seen from Theorem 2 of [45]. This is in line with our experience with GFD in parametric settings,

i.e., the fiducial procedures are asymptotically as efficient as maximum likelihood. The following

corollary shows that Theorem 7 also implies that all the pointwise and curvewise confidence intervals

described in Section 3.2.3 have asymptotically correct coverage. Consequently, the tests described

in Section 3.2.3 also have asymptotically correct type I error.

Corollary 3. Let Ψ{φ(·)} be a map: D[0, t]→ R satisfying, there exists a function ψ so that

Ψ{φ(·)} = Ψ{−φ(·)}, Ψ{aφ(·)} = ψ(a)Ψ{φ(·)}, (3.14)

for all φ ∈ D[0, t], a > 0, the distribution of the random variable Ψ[{1−F0(·)}W{γ(·)}] is continuous

and the (1− α)-th quantile of this distribution is unique.

Then, under the assumptions in Theorem 7, any set Cn,α = {F : Ψ{F (·) − F̂ (·)} ≤ εn,α} with

pr∗y,δ(Cn,α) = 1− α is a 1− α asymptotic confidence set for F0.

3.4 Simulation study

3.4.1 Coverage of pointwise confidence intervals and mean square error of point esti-
mators

We present comparisons of frequentist properties of the proposed fiducial confidence intervals

with a number of competing methods. We will consider two basic groups of settings, one with

heavy censoring from [45] and another with a moderate level of censoring from [7]. In both cases

the proposed GFD intervals perform comparable to or better than the reported methods.

First we reproduce the settings in [45] that have a very high level of censoring. [45] compared

their proposed beta product confidence procedure methods with a number of asymptotic methods.
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These include Greenwood by logarithm transformation, the confidence interval on the Kaplan-Meier

estimator using Greenwood’s variance by logarithm transformation [122]; Modified Greenwood by

logarithm transformation which modifies the estimator of variance for the lower limit by multipling

the Greenwood’s variance estimator byK(yi)/K(t) at t, where yi is the largest observed survival less

than or equal to t [122]; Borkowf by logarithm transformation, which gives wider intervals with more

censoring and assumes normality on log(S̃(t)), where S̃(t) is the Kaplan-Meier estimator [15]; shrink-

age Borkowf by logarithm transformation, which uses a shrinkage estimator of the Kaplan-Meier

estimator with a hybrid variance estimator [15]; Strawderman-Wells, that uses the Edgeworth expan-

sion for the distribution of the studentized Nelson-Aalen estimator [117, 118]; Thomas-Grunkemeier,

a likelihood ratio method which depends on a constrained product-limit estimator of the survival

function [123]; Constrained Beta, which refers the distribution of S̃(t) to a beta distribution sub-

ject to some constraints [7]; nonparametric Bootstrap [41, 3]; Constrained Bootstrap, an improved

bootstrap approximation subject to some constraints [7].

Simulation studies in [45] show that the above asymptotic methods have a coverage problem,

i.e., the error rate of 95% confidence interval of all these methods is larger than 5% in their high

censoring scenarios. Therefore in this setting we focus on comparing the fiducial methods with our

main competing methods, which are beta product confidence procedure [45], mid-p beta product

confidence procedure [44], see also Chapter 11 of [109], and Binomial-C [31], which maintain the

coverage. We report the error rate of coverage and the average width of confidence intervals for fidu-

cial methods, beta product confidence procedure using method of moment, beta product confidence

procedure using Monte Carlo with samples 1000, mid-p beta product confidence procedure, and

Binomial-C. We point out that Clopper-Pearson Binomial-C requires knowledge of the censoring

times for each individual [45].

We consider following two scenarios in [45]. In the first scenario, failure time X is Exp(10),

censoring time Z is U(0, 5). We simulate 100000 independent datasets of size 30 and applied our

methods with fiducial sample size 1000. In the second scenario, we reproduce the setting using a

mixture of exponentials to mimic the pilot study of treatment in severe systemic sclerosis [98]. In

particular, failure time X is a mixture of Exp(0·227) with probability 0.187 and Exp(22·44) with

probability 0·813, censoring time Z is U(2, 8). We simulate 100000 independent datasets of size 34

and apply our methods with fiducial sample size 1000.
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The simulation results are in Table 3.1 and Table 3.2 for each scenario, respectively. In the

tables, L denotes the error rate that the true parameter is less than the lower confidence limit;

U denotes the error rate that the true parameter is greater than the upper confidence limit. The

two-sided error rate is obtained by adding the values in column L and U. Values less than 2·5% in

individual columns, 5% in aggregate, indicate good performance. W is the average width of the

confidence interval. The row labels are: FD-I the proposed method using log-linear interpolation;

FD-C the proposed conservative confidence interval; BPCP-MM beta product confidence procedure

using method of moment; BPCP-MC beta product confidence procedure using Monte Carlo; BPCP-

MP mid-p beta product confidence procedure; BN Clopper-Pearson Binomial-C. From Table 3.1 and

Table 3.2 we see that our confidence intervals using log-linear interpolation maintain the aggregate

coverage, are much shorter, but may be slightly biased to the left. Not surprisingly, the performance

of the proposed conservative confidence interval is similar to the beta product confidence procedure

method. Recall, Table 1 and Table F·2 in [45] show all asymptotic methods mentioned above have

a coverage problem in this heavily censored setup, and so are not considered here.

We also perform a simulation for the mean square error of survival functions, adopting a setting

in [45]. Here, failure time is Exp(1), and censoring time is U(0, 5). We simulate 100000 independent

datasets of size 25 and apply our fiducial methods with fiducial sample size 10000. Since the Kaplan-

Meier estimator is not defined after the largest observation if it is censored, we follow [45] and define

it in three ways after the last observation: KML is defined as 0, KMH is defined as the Kaplan-

Meier at the last value, and KMM=0·5*KML+0·5*KMH. We evaluate mean square error at t,

where S(t) = 0·99, 0·9, 0·75, 0·5, 0·25, 0·1, 0·01. We report the results in Table 3.3. FD-I uses

the pointwise median of the log-linear interpolation fiducial distribution as a point estimator of the

survival function. BPCP-MM and BPCP-MP are associated median unbiased estimators defined

in [45]. We see the proposed fiducial approach has the smallest mean square error for S(t) = 0·99,

0·9, 0·75, 0·5, 0·25, 0·1, 0·01.

Our second simulation study setting comes from [7] where the data contains more exact obser-

vations. In the first scenario, survival time X follows Exp(10), and censoring time Z is Exp(50).

In the second scenario, survival time X follows Exp(10), and censoring time Z is Exp(25). We plot

the empirical error rates from 5000 simulations with sample size n = 100 of different non-asymptotic

confidence intervals in the Figures 3.4 and 3.5, respectively. From the Figures 3.4, Figure 3.5, and
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Table 3.1: Error rate (in percent) and average width of 95% confidence intervals for scenario 1

t=1 t=2 t=3 t=4
L U W L U W L U W L U W

FD-I 1·9 2·7 0·21 1·5 2·8 0·29 1·4 3·0 0·37 1·8 3·1 0·45
FD-C 0·0 1·4 0·26 0·3 1·6 0·36 0·1 1·5 0·46 0·0 1·4 0·63

BPCP-MM 0·0 1·3 0·26 0·3 1·4 0·35 0·1 1·3 0·46 0·0 1·0 0·62
BPCP-MC 0·0 1·3 0·25 0·4 1·5 0·35 0·1 1·5 0·46 0·0 1·4 0·63
BPCP-MP 0·0 2·2 0·23 0·8 2·3 0·32 0·4 2·2 0·41 0·0 2·0 0·57

BN 0·0 1·4 0·26 0·7 1·3 0·38 0·6 1·3 0·51 0·1 0·9 0·70

Table 3.2: Error rate (in percent) and average width of 95% confidence intervals for scenario 2

t=3 t=4 t=5 t=6
L U W L U W L U W L U W

FD-I 2·2 2·7 0·29 1·9 2·9 0·31 1·7 3·0 0·33 1·5 3·2 0·36
FD-C 1·2 1·7 0·33 0·7 1·8 0·36 0·4 1·8 0·40 0·1 1·7 0·46

BPCP-MM 1·3 1·7 0·33 0·7 1·7 0·35 0·4 1·6 0·39 0·1 1·4 0·46
BPCP-MC 1·2 1·8 0·32 0·7 2·0 0·35 0·4 1·9 0·39 0·1 1·9 0·46
BPCP-MP 1·8 2·1 0·30 1·6 2·4 0·32 0·9 2·5 0·36 0·4 2·3 0·41

BN 1·4 1·5 0·35 1·5 1·6 0·40 1·5 1·7 0·46 1·0 1·5 0·56

Table 3.3: Mean square error of survival function estimators

S(t) =0·99 S(t) =0·9 S(t) =0·75 S(t) =0·5 S(t) =0·25 S(t) =0·1 S(t) =0·01
FD-I 0·30 3·11 7·08 10·08 8·24 4·38 1·20

BPCP-MM 0·44 3·44 7·50 10·60 8·83 4·40 1·50
BPCP-MP 0·48 3·65 7·54 10·62 8·99 5·79 0·26

KML 0·39 3·61 7·71 10·94 9·38 6·17 0·28
KMM 0·39 3·61 7·71 10·94 9·35 5·77 0·79
KMH 0·39 3·61 7·71 10·94 9·33 5·65 2·92
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Figure 3.4: Error rates from 5000 simulations of different confidence intervals with n = 100, survival time
follows Exp(10), and censoring time follows Exp(50). L denotes the error rate that the true parameter is
lower than lower bound. U denotes the error rate that the true parameter is above the upper bound.

the figures in [7], we see that the fiducial confidence intervals do as well as the constrained bootstrap

in these settings.

3.4.2 Comparisons between the proposed fiducial test and different types of log-rank
tests for two sample testing

We compare the performance of the proposed fiducial approach with different types of tests for

testing the equality of two survival functions [35]. A common approach to testing the difference of

two survival curves is the log-rank test. There are several modifications of the log-rank tests that

consist of re-weighing. In our tables, LR denotes the original log-rank test with weight 1 [90]; GW,

i.e., Gehan-Breslow generalized Wilcoxon, denotes log-rank test weighted by the number at risk

overall [52]; TW denotes log-rank test weighted by the square root of the number at risk overall

[121]; PP denotes log-rank test with Peto-Peto’s modified survival estimate [101]; MPP denotes log-

rank test with modified Peto-Peto’s survival estimate [5]; FH denotes Fleming-Harrington weighted

log-rank test [67]. The supremum family of tests are designed to detect differences in survival curves
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Figure 3.5: Error rates from 5000 simulations of different confidence intervals with n = 100, survival time
follows Exp(10), and censoring time follows Exp(25). L denotes the error rate that the true parameter is
lower than lower bound. U denotes the error rate that the true parameter is above the upper bound.

which cross [51, 42]. SLR denotes the original sup log-rank test with weight 1; SGW denotes the

sup version of GW; STW denotes the sup version of TW; SPP denotes the sup version of PP; SMPP

denotes the sup version of MPP; SFH denotes the sup version of FH.

Four scenarios are considered in this section. In the first scenario the null hypothesis is true.

In the remaining three scenarios we consider various departures from the null hypothesis. For

each scenario we simulated 500 independent datasets of size 200, and applied the proposed fiducial

test with fiducial sample size 1000 as well as the 12 existing methods mentioned above. Then we

calculate the percentage of p-values less than 0·05. If the null hypothesis is true, the p-value should

follow uniform distribution and the percentage should be around 5%. If the null hypothesis is false,

a higher percentage is preferable as it means bigger power.

In the first scenario, for the first group, failure time is Weibull(2, 1) and censoring time follows

|N(0, 1)|. The censoring percentage is approximately 55%. For the second group, failure time is

again Weibull(2, 1) but censoring time is Exp(1). The censoring percentage is approximately 60%.

We observe that p-values of all methods follow uniform distribution under H0. Table 3.4 shows the
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Table 3.4: Percentage of p-value less than 0·05 (%)

Fiducial LR GW TW PP MPP FH SLR SGW STW SPP SMPP SFH
5·0 5·0 6·6 6·4 6·4 6·0 4·8 4·6 6·0 6·0 6·0 6·0 4·2

Table 3.5: Percentage of p-value less than 0·05 (%)

Fiducial LR GW TW PP MPP FH SLR SGW STW SPP SMPP SFH
100 71·0 98·4 27·6 49·2 50·8 100 100 100 100 100 100 100

percentage of p-value less than 0·05. The percentages of p-value less than 0·05 of all methods are

about 0·05.

In the second scenario for the first group, failure time follows Exp(30) and censoring time follows

Exp(30). The censoring percentage is about 50%. For the second group, we use Weibull(30, 20)

to generate failure time, and Exp(30) for censoring time with censoring percentage of about 50%.

The power of the test at the α =0·05 level, i.e. the proportion of p < 0·05 is shown in Table 3.5. In

this scenario, the proposed fiducial test is as powerful as the sup log-rank tests.

In the third scenario, for the first group, let Weibull(30, 20) be the distribution of failure time

and U(0, 80) be the distribution of censoring time. The censoring percentage is about 25%. For the

second group, letWeibull(20, 20) be the distribution of failure time and U(0, 80) be the distribution

of censoring time. The censoring percentage is about 20%. The power of the test at the α = 0·05

level, i.e. the proportion of p < 0·05 is shown in Table 3.6. We see that only SGW, SPP, SMPP

and the proposed fiducial test have power larger than half at α = 0·05 level.

In the fourth scenario, for the first group, failure time follows Exp(1), and censoring time follows

|N(0, 1)| with censoring percentage of about 50%. For the second group, failure time is |N(0, 1)|

censored by Weibull(2, 1). The censoring percentage is about 40%. The power of the test at the

α = 0·05 level, i.e. the proportion of p < 0·05 is shown in Table 3.7. We see that only FH, SFH,

and the proposed fiducial test have power larger than 0·1 at the α = 0·05 level. FH seems to use

better weights than other log-rank tests, however, the proposed fiducial test doesn’t need to specify

any weight and is better than FH in this scenario.

Table 3.6: Percentage of p-value less than 0·05 (%)

Fiducial LR GW TW PP MPP FH SLR SGW STW SPP SMPP SFH
54·2 21·4 15·2 4·8 14·0 14·4 39·4 26·6 55·0 39·4 53·8 54·0 29·6
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Table 3.7: Percentage of p-value less than 0·05 (%)

Fiducial LR GW TW PP MPP FH SLR SGW STW SPP SMPP SFH
19·0 7·8 5·4 4·8 4·6 4·6 16·2 6·6 7·4 5·4 5·4 5·4 10·6
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(a) Kaplan-Meier estimators for two treat-
ment groups.

(b) Difference of two sample fiducial distri-
butions using log-linear interpolation.

Figure 3.6

3.5 Gastric tumor study

In this section, we analyze the following dataset presented in [75]. A clinical trial of chemother-

apy against chemotherapy combined with radiotherapy in the treatment of locally unresectable

gastric cancer was conducted by the Gastrointestinal Tumor Study Group [108]. In this trial, forty-

five patients were randomized to each of the two groups and followed for several years. We draw

the Kaplan-Meier curves for these two datasets in Figure 3.6a.

By examining the plot in Figure 3.6a we notice that the two hazards appear to be crossing

which could pose a problem for some log-rank tests. Table 3.8 reports p-values obtained using the

same 13 tests described in Section 3.4.2.

The proposed fiducial test gives the smallest p-value of 0·002. To explain why the fiducial

approach works on this dataset, we plot the sample of the difference of two fiducial distributions

in Figure 3.6b. If these two datasets are from the same distribution, 0 should be well within the

sample curves. However, from the picture, we could see that the majority of curves are very far

Table 3.8: p-value of different tests (in %)

F LR GW TW PP MPP FH SLR SGW STW SPP SMPP SFH
p 0·2 63·5 4·6 16·8 4·6 4·3 90·6 5·6 0·6 1·5 0·6 0·6 22·8
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Table 3.9: Percentage of p-value less than 0·05 (%)

F LR GW TW PP MPP FH SLR SGW STW SPP SMPP SFH
87·4 10·2 53·4 31·0 53·0 53·4 7·6 57·6 84·6 78·4 84·6 84·6 23·2

away from 0 on the interval [0, 1].

In order to study the power of our test in this situation, we present a simulation study. We use

the data to estimate the failure and censoring distribution for both datasets. Then we use these

estimated distributions as truth to generate 500 synthetic datasets that mimic our data. On each

dataset, we perform the proposed fiducial test with fiducial sample size 1000 and the 12 different

types of log-rank tests. Table 3.9 shows the percentage of p-value less than 0·05. We see that the

proposed fiducial test has the best power.

3.6 Discussion

In this paper we derived a nonparametric generalized fiducial distribution for right censored

data. This GFD provided us with a unified framework for deriving statistical procedures such as

pointwise and curvewise approximate confidence intervals and tests. This is to our knowledge the

first time the fiducial distribution has been derived for a non-trivial nonparametric model. We

proved a functional Bernstein-von Mises theorem which established the asymptotic correctness of

the inference procedures based on our GFD. Additionally, our simulation studies suggest that our

GFD inference procedures are as good and in some instances better than the many other statistical

procedures proposed for the various aspects of this classical problem. Overall, we view generalized

fiducial inference in a similar way as maximum likelihood, as a general purpose approach that

provides good quality answers to many statistical problems. As we can see in the paper, the

proposed point estimator of survival function is very similar to Kaplan-Meier estimator. However,

the strength of the fiducial approach is in uncertainty quantification when the sample size is small.

In particular, we recommend using proposed fiducial confidence intervals and tests in the small

sample or heavy censoring cases.

We conclude by listing some open research problems:
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1. We chose to use the sup-norm in the definition of the curvewise confidence intervals and tests.

It could be possible to make the procedure somewhat more powerful by using a different

(possibly weighted) norm [97]. Similarly, it might be also possible to use the choice of norm

for tuning the GFD tests for use against specific alternatives.

2. The proposed fiducial test seems to be relatively powerful against a broad spectrum of al-

ternatives. It would be interesting to implement it inside other statistical procedures where

log-rank tests are recursively used, such as imputed survival random forests and their appli-

cations [141, 33, 32].

3. There seems to be an intriguing connection between GFD and empirical likelihood for semi-

parametric models [109, Chapter 11]. To investigate this connection should make for a fruitful

avenue of future research.
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CHAPTER 4

Tree based weighted learning for estimating ITRs with censored data

4.1 Introduction

An individualized treatment regime provides a personalized treatment strategy for each patient

in the population based on their individual characteristics. A significant amount of work has been

devoted to estimating optimal treatment rules [96, 104, 133, 136, 135]. While each of these ap-

proaches has strengths and weaknesses, we highlight the approach in [135] because of its robustness

to model misspecification (this is similarly true of the approach in [133]) combined with its ability

to incorporate support vector machines through the recognition that optimizing the treatment rule

can be recast as a weighted classification problem. This approach is commonly referred to as out-

come weighted learning. In clinical trials, right censored survival data are frequently observed as

primary outcomes. Adapting outcome weighted learning to the censored setting, [138] proposed two

new approaches, inverse censoring weighted outcome weighted learning and doubly robust outcome

weighted learning, both of which require semiparametric estimation of the conditional censoring

probability given the patient characteristics and treatment choice. The doubly robust estimator

additionally involves semiparametric estimation of the conditional failure time expectation but only

requires that one of the two models, for either the failure time or censoring time, be correct. Po-

tential drawbacks of these methods are that either or both models may be misspecified and inverse

censoring weighting estimation can be unstable numerically [104, 141].

In this chapter, we propose a nonparametric tree based approach for right censored outcome

weighted learning which avoids both the inverse probability of censoring weighting and restrictive

modeling assumptions for imputation through recursively imputed survival trees [141]. Since the

true failure times T are only partially known, they cannot be used directly as weights in the outcome

weighted learning [135] framework. However, recursively imputed survival trees [141] provide an

alternative approach to weighting by using the conditional expectations of censored observations
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without requiring inverse weighting. Tree-based methods [21, 19] are a broad class of nonparametric

estimators which have become some of the most popular machine learning tools. Its adaptation to

the survival setting has also drawn a lot of interests in the literature [81, 70, 73], and it has also

been used for interpretable prediction modeling in personalized medicine [78]. The recursively im-

puted survival tree approach [141] combines extremely randomized trees with a recursive imputation

method, which has been shown to improve performance and reduce prediction error while avoiding

estimation of inverse censoring weights without making parametric or semiparametric assumptions

on the conditional probability distribution of the failure time. Numerical studies demonstrate that

the proposed method outperforms existing alternatives in a variety of settings.

The proposed method uses these recursively imputed survival trees to impute the survival times

nonparametrically in a manner suitable for implementation within outcome weighted learning. We

verify this novel approach both theoretically and in numerical examples. As part of this, we also

present for the first time consistency and rate results for tree-based survival models in a more general

setting than the categorical predictors considered in [72].

The remainder of the article is organized as follows. In section 4.2, we present the mathematical

framework for individualized treatment rules for right censored survival outcomes. In section 4.3

we establish consistency and an excess value bound for the estimated treatment rules. Extensive

simulation studies are presented in Section 4.4. We also illustrate our method using a phase III

clinical trial on non-small cell lung cancer in Section 4.5. The article concludes with a discussion of

future work in Section 4.6. Some needed technical results are provided in the Appendix.

4.2 Methodology

4.2.1 Individualized treatment regime framework

Before characterizing the individualized treatment regime, we first introduce some general no-

tation and introduce the value function, and then extend the notation and ideas to the censored

data setting. Let X ∈ X be the observed patient-level covariate vector, where X is a d dimensional

vector space, and let A ∈ {−1,+1} be the binary treatment indicator. T̃ is the true survival time,

however, we consider a truncated version at τ , i.e., T = min(T̃ , τ), where the maximum follow-up

time τ < ∞ is a common practical restriction in clinical studies. The goal in this framework is to
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maximize a reward R, which could represent any clinical outcome. Specifically, we wish to identify

a treatment rule D, which is a map from the patient-level covariate space X to the treatment space

{+1,−1} which maximizes the expected reward. In the survival outcome setting, we use R = T or

log(T ) as done in [138].

To achieve this maximization, we define the value function as

V (D) = ED(R) = E
[
RI{A = D(X)}/π(A;X)

]
,

where I{·} is an indicator function, π(a;X) = pr(A = a | X) > M ′ a.s. for some M ′ > 0 and each

a ∈ {+1,−1}. The function π is the propensity score and is known in a randomized trial setting,

which we assume is the case for this chapter, but needs to be estimated in a non-randomized,

observational study setting. The individualized treatment regime we are most interested in is the

optimal treatment rule D∗ which maximizes the value function, i.e.

D∗ = arg max
D

E
[
RI{A = D(X)}/π(A;X)

]
. (4.1)

After rewriting the value function as

V (D) = E
[
E(R | A = 1, X)I{D(X) = 1}+ E(R | A = −1, X)I{D(X) = −1}

]
,

it is easy to see that

D∗ = sign
{
E(R | A = 1, X)− E(R | A = −1, X)

}
.

Hence, the definition of D∗ is equivalent to D∗(x) = arg maxaE(R | A = a,X = x). Instead of

maximization the objective function in (4.1), the outcome weighted learning approach searches for

the optimal decision rule D∗ by minimizing the weighted misclassification error, i.e.,

D∗ = arg min
D

E
[
RI{A 6= D(X)}/π(A;X)

]
. (4.2)
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In an ideal situation, we would replace R with T or log(T ). However, this is not possible under

right censoring.

4.2.2 Value function under right censoring

Consider a censoring time C that is independent of T given (X,A). We then have the observed

time Y = min(T,C), and the censoring indicator δ = I(T ≤ C). Assume that n independent and

identically distributed copies, {Yi, δi, Xi, Ai}ni=1, are collected. Since T is not fully observed we seek

for a sensible replacement which maintains as close as possible the same value function. We propose

two approaches in the following, denoted as R1 and R2 respectively. The first approach is to obtain

a nonparametric estimated conditional expectation Ê(T | X,A). Letting R1 = E(T | X,A) and

bringing the expectation of T inside, we have

E
[
TI{A = D(X)}/π(A;X)

]
= E

[
R1I{A = D(X)}/π(A;X)

]
. (4.3)

Another approach is to replace only the censored observations conditioning on the observed data.

It is interesting to observe that the conditional expectation of T , given Y and δ, can be written as

R2 :=E(T | X,A, Y, δ)

=I(δ = 1)Y + I(δ = 0)E(T | X,A, Y, δ = 0)

=I(δ = 1)Y + I(δ = 0)E(T | X,A,C = Y, T > Y, Y )

=I(δ = 1)Y + I(δ = 0)E(T | X,A, T > Y, Y ). (4.4)

An important property that we used in the last equality is the conditional independence between T

and C. With the information of Y = y given, and knowing that δ = 0, the conditional distribution

of T is defined on (c, τ ] with density function proportional to the original density of T . In other

words, the conditional survival function of T is S(t | X,A)/S(c | X,A) for t > c, where S(· | X,A)

is the conditional survival function of T . Hence, we can calculate the expectation of T accordingly.

With the definition of R2, it is easy to see that the corresponding value function is equivalent

to the left side of equation (4.3) by further taking expectations with respect to Y and δ. Note

that the above arguments remain unchanged if we replace T , C and Y with log(T ), log(C), and
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log(Y ), respectively: this equivalence will be tacitly utilized throughout the chapter, except when

the distinction is needed.

With our proposed two reward measures, the remaining challenge is to nonparametrically es-

timate the conditional expectations. To this end, we utilize the nonparametric tree based method

proposed by [141]. It is worth noting that the conditional expectation of T defined in R2 shares the

same logical underpinnings as the imputation step in [141]. However, the goal of the imputation

step is to replace the censored observations with a randomly generated conditional failure time

which utilizes the same condition survival distribution of T given T > C. We will provide details

of the estimation procedure in the next section. To conclude this section, we provide the empirical

versions of the value function using the two rewards R1 and R2, respectively, which we solve for the

optimal decision D∗ by minimization:

n−1
n∑
i=1

Ê(Ti | Ai, Xi)I{Ai = D(Xi)}
π(Ai;Xi)

, (4.5)

and n−1
n∑
i=1

{δiYi + (1− δi)Ê(Ti | Xi, Ai, Ti > Yi, Yi)}I{Ai = D(Xi)}
π(Ai;Xi)

. (4.6)

4.2.3 Outcome weighted learning with survival trees

The recursively imputed survival trees method proposed by [141] is a powerful tool to estimate

conditional survival functions for censored data. A brief outline of the algorithm is provided in

the following. We refer interested readers to the original paper for details. To fit the model, we

first generate extremely randomized survival trees for the training dataset. Secondly, we calculate

conditional survival functions for each censored observation, which can be used for imputing the

censored value to a random conditional failure time. Thirdly, we generate multiple copies of the

imputed dataset, and one survival tree is fitted for each dataset. We repeat the last two steps

recursively and the final nonparametric estimate of Ê(T | X,A) is obtained by averaging the trees

from the last step.

Following [135], we next use support vector machines to solve for the optimal treatment rule.

A decision function f(x) is learned by replacing I{Ai = D(Xi)} in Equations (4.5) or (4.6) with

φ{Aif(Xi)}, where φ(x) = (1 − x)+ is the hinge loss and x+ = max(x, 0). Furthermore, to avoid
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overfitting, a regularization term λn‖f‖2 is added to penalize the complexity of the estimated

decision function f . Here, ‖f‖ is some norm of f , and λn is a tuning parameter. A high-level

description of the proposed method is given in Algorithm 3 below. We consider both linear and

nonlinear decision functions f when solving (4.7). For a linear decision function, f(x) = θ0 + θTx

and we let ‖f‖ be the Euclidean norm of θ. For nonlinear decision functions, we employ a universal

kernel function k : X × X → R, such as the Gaussian kernel, which is continuous, symmetric and

positive semidefinite. The optimization problem is then equivalent to a dual problem that maximizes

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjAiAjk(Xi, Xj),

subject to 0 ≤ αi ≤ γWi/πi and
∑n

i=1 αiAi = 0, where Wi is the numerator in either (4.5) or

(4.6) and πi is the respective denominator. Both settings can be efficiently solved by quadratic

programming. For further details regarding solving weighted classification problems using support

vector machines, we refer to [135, 138, 25].

Algorithm 3: Pseudo algorithm for the proposed method
Step 1. Use {(XT

i , Ai, AiX
T
i )T, Yi, δi}ni=1 to fit recursively imputed survival trees. Obtain

the estimation Ê(Ti | Ai, Xi) for reward R1 or the estimation Ê(Ti | Xi, Ai, Ti > Yi, Yi) for
reward R2.
Step 2. Let the weights Wi be either Ê(Ti | Ai, Xi) or
δiYi + (1− δi)Ê(Ti | Ai, Xi, Ti > Yi, Yi), depending on which of the two proposed approaches
is used. Minimize the following weighted misclassification error:

f̂(x) = arg min
f

n∑
i=1

Wi
φ{Aif(Xi)}
π(Ai;Xi)

+ λn‖f‖2. (4.7)

Step 3. Output the estimated optimal treatment rule D̂(x) = sign{f̂(x)}.
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4.3 Theoretical results

4.3.1 Preliminaries

The risk function is defined as

R(f) = E
[ R

π(A;X)
I{A 6= sign(f(X))}

]
,

where the reward R = R1 = E(T | X,A) for the first approach, or R = R2 = δY + (1 − δ)E(T |

X,A, T > Y, Y ) for the second one. We define φ-risk for both the true and the working model

as, respectively, Rφ(f) = E[Rφ{Af(X)}/π(A;X)] and R′φ(f) = E[R̂φ{Af(X)}/π(A;X)], where

R̂ is the estimated value of R based on one of the two proposed methods. We also define the

hinge loss function for the true and working models as Lφ(f) = Rφ{Af(X)}/π(A;X) and L′φ(f) =

R̂φ{Af(X)}/π(A;X), respectively.

The proposed estimator D̂ = sign(f̂n(X)), where f̂n is solved by one of the following optimization

problems within some reproducible kernel Hilbert space Hk:

f̂n = arg min
f∈Hk

n−1
n∑
i=1

Ê(Ti | Xi, Ai)

π(Ai;Xi)
φ{f(Xi)Ai}+ λn||f ||2k,

or

f̂n = arg min
f∈Hk

n−1
n∑

i=1

δiYi + (1− δi)Ê(Ti | Xi, Ai, Ti > Yi, Yi)

π(Ai;Xi)
φ{f(Xi)Ai}+ λn||f ||2k.

4.3.2 Consistency of tree-based survival models

In this section, we provide the convergence bound of a simplified tree-based survival model,

which is very close to the original algorithm in [141]. The purpose of this section and its main

result, Theorem 8, is to demonstrate the existence of an accurate estimator of the underlying

hazard function when tree-based methods are used. An earlier result developed in [72] considers

only categorical feature variables. To the best of our knowledge, what we present below is the first

53



consistency result for a tree-based survival model under general settings with restrictions only on

the splitting rules, which is interesting in its own right.

For simplicity, we assume in this section that Qn = {(Yi, δi, Xi, Ai), i = 1, . . . , n} is the training

sample, where Xi is independent uniformly distributed on [0, 1]d. The result can be easily generated

to distributions with bounded support and density function bounded above and below. For any fixed

X, our goal is to estimate the cumulative hazard function of failure time r(·, X,A) = ΛT (· | X,A);

hereinafter, we write it as Λ(· | X,A).

A random forest is a collection of randomized regression trees {r̂n(·, X,A,

Θj ,Qn), 1 ≤ j ≤ m}, where m is the number of trees. The randomizing variable Θ is used to

indicate how the successive cuts are performed when an individual tree is built. Hence the forest

version of the survival tree model can be expressed as

r̂n(·, X,A,Qn) =
1

m

m∑
j=1

r̂n(·, X,A,Θj ,Qn).

Here, we consider a simplified scenario in which the selection of the coordinate is completely

random and independent from the training data [11]. We only consider the consistency of a single

tree and denote our tree estimator as r̂n(·, X,A). The result can be easily extended to the situation

where m is finite.

A brief description of how each individual tree is constructed is provided in the appendix. Here

we highlight some key assumptions and the main result. Our first assumption puts a lower bound

on the probability of observing a failure at τ , and the second one assumes the smoothness of the

hazard and cumulative hazard functions.

Assumption 10. For some M > 0, SY (τ | X,A) > M almost surely.

Assumption 11. For any fixed time point t and treatment decision A, the cumulative hazard

function Λ(t | X,A) is L-Lipschitz continuous in terms of X, and the hazard function λ(t | X,A)

is L′-Lipschitz continuous in terms of X, i.e., |Λ(t | X1, A) − Λ(t | X2, A)| ≤ L||X1 − X2|| and

|λ(t | X1, A)− λ(t | X2, A)| ≤ L′||X1 −X2||, respectively, where || · || is the Euclidean norm.

The following theorem provides the bound of the proposed tree based survival model for each

X. Details of the proof are collected in the Appendix.
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Theorem 8. Assume that Assumptions 10–11 and the construction of a tree-based survival model

described in the Appendix. Further assume that kn → ∞ and n/kn → ∞ as n → ∞, where kn is

a deterministic parameter which we can control (each individual tree has approximately kn terminal

nodes). We have for each X,

pr
{

sup
t<τ
|r̂n(t,X,A)− r(t,X,A)| ≤ C[d1/22−{(1−r)dlog2 kne}/d

+ b1/2{(1− u)n2−dlog2 kne}−1/2]
}
≥ 1− wn,

where r, u ∈ (0, 1), b ≥ 1, C is some universal constant and

wn = 16[(1− u)n2−dlog2 kne + 2]e−b + e−u
2n2−dlog2 kne−1

+ de−dlog2 kner2/(2d).

The ideal balance happens when kn = nd/(d+2). In this case, the optimal rate of the bound is

close to n−1/(d+2). The following theorem proves consistency of the proposed tree based survival

model. Details of the proof are collected in the Appendix.

Theorem 9. Assume that Assumptions 10–11 and the construction of a tree-based survival model

described in the Appendix. Further assume that kn = nη, where 0 < η < 1. Then the estimator of

the survival tree model is consistent. Moreover,

sup
t<τ

EX |r̂n(t,X,A)− r(t,X,A)| ≤ C[d1/22−{(1−r)dlog2 kne}/d

+ b1/2{(1− u)n2−dlog2 kne}−1/2 + wn ln(n)],

where r, u ∈ (0, 1), b ≥ 1, C is some universal constant and

wn = 16[(1− u)n2−dlog2 kne + 2]e−b + e−u
2n2−dlog2 kne−1

+ de−dlog2 kner2/(2d).

4.3.3 Consistency and excess value bound

Fisher consistency follows directly from Proposition 3.1 in [135], hence the proof is omitted.

Here we restate the result as the following lemma. For the proposed method, we simply replace the
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reward R in Rφ(f) with R1 or R2. Note that both versions are equivalent to the reward function

Rφ(f) = E[Tφ{Af(X)}/π(A;X)]:

Lemma 5 (Proposition 3.1 in [135]). For any measurable function f̃ , if f̃ minimizes Rφ(f), then

D∗(x) = sign(f̃(x)).

Provided the Assumptions in Section 4.3.2 hold, the following lemma ensures the convergence

of the estimated conditional expectations. The proof is given in Appendix.

Lemma 6. Based on Theorem 8, for each X the estimated conditional expectations converge in

probability, i.e.,

pr
{∣∣Ê(T | X,A)− E(T | X,A)

∣∣
≤ C1[2−{(1−r)dlog2 kne}/d + (b/{(1− u)n2−dlog2 kne})1/2]

}
≥ 1− wn,

pr
{∣∣Ê(T | X,A, T > Y, Y )− E(T | X,A, T > Y, Y )

∣∣
≤C2[2−{(1−r)dlog2 kne}/d + (b/{(1− u)n2−dlog2 kne})1/2]

}
≥ 1− 2wn,

for some constant C1, C2 (depending on L,L′, τ,M, d).

We will use the above lemmas to prove our main theorem based on the Gaussian kernel. Before

we derive the convergence rate and excess value bound, we define the value function corresponding

to the true and working model as V (f) = E(RI[A = sign{f(X)}]/π(A;X)), V ′(f) = E(R̂I[A =

sign{f(X)}]/π(A;X)), respectively. We further define the empirical L2–norm, ‖f − g‖L2(Pn) =

(
∑n

i=1 [f(Xi)− g(Xi)]
2/n)1/2, which also defines an ε-ball based on this norm. By Theorem 2.1 in

[116], we restate the bound for covering numbers:

Lemma 7 (Theorem 2.1 in [116]). For any β > 0, 0 < v ≤ 2, ε > 0 we have

supPn logN(BHk , ε, L2(Pn)) ≤ cv,β,dσ
(1−v/2)(1+β)d
n ε−v, where BHk is the closed unit ball of Hk, σn

is the kernel bandwidth, and d is the dimension of X .
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Lastly, for f̃ = arg minf∈F E{Lφ(f)}, we define the approximation error function

a(λ) = inf
f∈Hk

[E{Lφ(f)}+ λ||f ||2k − E{Lφ(f̃)}].

Then we have following theorem, the proof of which is given in Appendix.

Theorem 10. Based on Theorem 9 and assuming that the sequence λn > 0 satisfies λn → 0 and

λn lnn→∞, we have that

pr(V (f∗) ≤ V (f̂n) + ε) ≥ 1− 2e−ρ,

where f∗ maximize the true value function V , ε = a(λn) + Mv(nλn/cn)−2/(v+2) +

Mvλ
−1/2
n (cn/n)2/(d+2) +Kρ(nλn)−1 + 2Kρn−1λ

−1/2
n + Cλ

−1/2
n {2−(1−r)dlog2 kne/d

+ (b/{(1−u)n2−dlog2 kne})1/2 +wn lnn}, cn = cv,β,dσ
(1−v/2)(1+β)d
n and ρ > 0 for both methods; also,

Mv is a constant depending on v, K is a sufficiently large positive constant and C is a some large

constant depending on d.

The rate consists of two parts. The first part is from the approximation error using Hk. The

second part controls the approximation error due to using the proposed tree-based method to

estimate the conditional expectation.

4.4 Simulation studies

We perform simulation studies to compare the proposed method with existing alternatives,

including the Cox proportional hazards model with covariate-treatment interactions, inverse cen-

soring weighted outcome weighted learning, and doubly robust learning, both proposed in [138]. We

use survival time on the log scale log(T ) as outcome. We also present for comparison an “oracle”

approach which uses the true failure time on the log scale log(T ) as the weight in outcome weight-

ed learning, although this would not be implementable in practice. However, this approach is a

representation of the best possible performance under the outcome weighted learning framework.

We generate Xi’s independently from a uniform distribution. Treatments are generated from

{+1,−1} with equal probabilities. We present four scenarios in this simulation study. The failure
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time T and censoring time C are generated differently in each scenario, including both linear and

nonlinear decision rules. For each case, we learn the optimal treatment rule from a training dataset

with sample size n = 200. A testing dataset with size 10000 is used to calculate the value function

under the estimated rule. Each simulation is repeated 500 times.

Tuning parameters in the tree based methods need to be selected. We mostly use the default

values. The number of variables considered at each split is the integer part of the square root of

d as suggested by [73] and [55]. We set the total number of trees to be 50 as suggested by [141]

and use one fold imputation. For the alternative approaches such as inverse censoring weighted

outcome weighted learning and doubly robust learning, a Cox proportional hazards model with

covariates (X,A,XA) is used to model T and C respectively. Note that when at least one of

the two working models is correctly specified, the doubly robust method enjoys consistency. We

implemented outcome weighted learning using a Matlab library for support vector machine [25].

Both linear and Gaussian kernels are considered for all methods except for the Cox model approach

which could be directly inverted to obtain the decision rules. The parameter λn is chosen by ten-fold

cross-validation.

4.4.1 Simulation settings

For all scenarios, we generate T̃ and C independently. The failure time T = min(τ, T̃ ). For all

accelerated failure time models, ε is generated from a standard normal distribution. For all Cox

proportional hazards models, the baseline hazard function λ0(t) = 2t. For all simulation results

presented in this section, we consider setting the censoring rates to approximately 45% for all

scenarios. We also perform a sensitivity analysis for different censoring rates (30% and 60%) for

each scenario. These additional results are presented in the Appendix.

Scenario 1. Both T̃ and C are generated from the accelerated failure time model. τ = 2.5

and d = 10. The optimal decision function is linear. The value of the optimal treatment rule is

approximately 0.031:
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log(T̃ ) =− 0.2− 0.5X1 + 0.5X2 + 0.3X3

+ (0.5− 0.1X1 − 0.6X2 + 0.1X3)A+ ε,

log(C) =0.1− 0.8X1 + 0.4X2 + 0.4X3 + (0.5− 0.1X1 − 0.6X2 + 0.3X3)A+ ε.

Scenario 2. T̃ is generated from a Cox model and C is generated from the accelerated failure

time model. The optimal decision function is nonlinear. τ = 8 and d = 10. The value of the optimal

treatment rule is approximately 0.181:

λ
T̃

(t | A,X) =λ0(t) exp{−0.2− 1.5X1.5
1 + 0.5X2 + (0.8− 0.7X0.5

1 − 1.2X2
2 )A},

log(C) =− 0.5 + 0.7X1 +X2
2 + 0.6X3 + 0.1X4

+ (0.2 +X2.5
1 − 2X2 + 0.5X3)A+ ε.

Scenario 3. T̃ is generated from an accelerated failure time model with tree structured effects.

C is generated from a Cox model with nonlinear effects. τ = 8 and d = 5. The value of the optimal

treatment rule is approximately 1.079:

log(T̃ ) =X1 + I(X2 > 0.5)I(X3 > 0.5) + (0.3−X1)A

+ 2{I(X4 < 0.3)I(X5 < 0.3) + I(X4 > 0.7)I(X5 > 0.7)}A+ ε,

λC(t | A,X) =λ0(t) exp{−1.5 +X1 + (1 + 0.6X1.5
2 )A}.

Scenario 4. T̃ is is generated from an accelerated failure time model. C is generated from a Cox

model. τ = 2 and d = 10. The value of the optimal treatment rule is approximately -0.389:

log(T̃ ) =− 0.5− 0.8X1 + 0.7X2 + 0.2X3

+ (0.6− 0.4X1 − 0.2X2 − 0.4X3)A+ ε,

λC(t | A,X) =λ0(t) exp{−0.5X1 − 0.5X2 + 0.2X3

− (1− 0.5X1 + 0.3X2 − 0.5X3)A}.
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Table 4.1: Simulation results: Mean (×103) and (sd) (×103). Censoring rate: 45%. For each scenario, the
theoretical optimal value (×103) is 31, 181, 1079, and -389, respectively.

kernel T RIST-R1 RIST-R2 ICO DR Cox

1 Linear 0 (26) 0 (31) 1 (30) -20 (54) -39 (76) -29 (33)Gaussian -17 (44) -11 (35) -8 (36) -25 (50) -88 (79)

2 Linear 22 (113) -1 (112) -24 (125) -137 (131) -232 (132) 53 (69)Gaussian -39 (115) -40 (103) -72 (114) -175 (120) -311 (106)

3 Linear 785 (52) 766 (59) 763 (51) 683 (113) 598 (120) 745 (64)Gaussian 896 (61) 803 (56) 834 (71) 785 (105) 606 (115)

4 Linear -453 (37) -469 (47) -451 (27) -469 (48) -481 (59) -464 (36)Gaussian -465 (35) -482 (44) -457 (28) -487 (45) -531 (43)

T: using

true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and R2 respectively
as weights, while the conditional expectations are estimated using recursively imputed survival
trees; ICO: inverse probability of censoring weighted learning; DR: doubly robust outcome weighted
learning; Cox: Cox proportional hazards model using covariate-treatment interactions.

4.4.2 Simulation results

Figure 4.1 shows the boxplot of values based on the logarithm of T calculated from the test

data. The mean and standard deviation of values are shown in Table 4.1. In scenario 1, since the

model is not correctly specified for inverse probability of censoring outcome weighted learning, the

doubly robust estimator, or Cox regression, our method performs better than all other competitors.

In scenario 2, we added some nonlinear terms into both the Cox and accelerated failure time

models. The model assumptions for inverse censoring outcome weighted learning and the doubly

robust estimator are not satisfied. Our estimated treatment rule performs much better than these

two. Compared with inverse censoring outcome weighted learning and doubly robust learning, both

our approaches improve more than 0.1 for the mean. Since the true model for the failure time is

the Cox model, Cox regression performs better here. In this case, the Gaussian kernel performs

less well than the linear kernel for most methods since the true model structure is linear and the

Gaussian kernel is too flexible.

For scenario 3, which has a more complicated tree structure, the Gaussian kernel performs

better than the linear kernel for all outcome weighted learning approaches. The performance of the

Gaussian kernel is enhanced since it can better address the true nonlinear model structure. We can

see that with either a linear or Gaussian kernel, our estimators perform better than Cox regression.

Compared with doubly robust learning, our two approaches improve 0.2 for the mean.
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Figure 4.1: Boxplots of mean log survival time for different treatment regimes. Censoring rate: 45%. T:
using true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and R2 respectively
as weights, while the conditional expectations are estimated using recursively imputed survival trees; ICO:
inverse probability of censoring weighted learning; DR: doubly robust outcome weighted learning. The black
horizontal line is the theoretical optimal value.
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In scenario 4, we see that when the model is correctly specified for inverse probability of censoring

outcome weighted learning and doubly robust learning, the performances of both approaches are

satisfactory while our methods seem to be only a little better. The performances of our first

approach, inverse probability of censoring outcome weighted learning and Cox regression are all

similar. Our second approach has the best treatment effect among all estimators. Note that our

second approach appears to perform as well as the first, oracle approach. Also, our two proposed

methods have smaller standard errors in scenarios 1 and 3. The standard error is similar for all

outcome weighted learning approaches in scenario 2 and 4. Overall, our proposed methods have

generally lower variances.

Compared with results of censoring rates (30% and 60%) in the Appendix, we can observed a

consistently pattern that lower censoring rate leads to higher performances in terms of both mean

value and variance. The relative performances between the proposed and the competing methods

remain similar across different censoring rates.

4.5 Data analysis

We apply the proposed method to a non-small-cell lung cancer randomized trial dataset de-

scribed in [113]. 228 subjects with complete information are used in this analysis. Each treatment

arm contains 114 subjects. Here we use five covariates: performance status (119 subjects ranging

from 90% to 100% and 109 subjects ranging from 70% to 80%), cancer stage (31 subjects in stage

3 and 197 subjects in stage 4), race (167 white, 54 black and 7 others), gender (143 male and 85

female), age (ranging from 31 to 82 with median 63). The length of study is τ = 104 weeks. We

adopt the same tuning parameters used in the simulation study for this analysis. The value function

is again calculated by using the logarithm of survival time log(T ) (in weeks) as the reward.

We randomly divide the 228 patients into four equal proportions and use three parts as training

data to estimate the optimal rule and calculate the empirical value based on the remaining part.

We then permute the training and testing portions and average the four results. This procedure

is then repeated 100 times and averaged to obtain the mean and standard deviation. To calculate

the testing data performance, we consider two different measurements, both are calculated based

on the formula
∑n

i=1RiI{Ai = D(Xi)}/
∑n

i=1 I{Ai = D(Xi)} for the testing samples, where two
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Table 4.2: Analysis of non-small-cell lung cancer data: Mean (sd) of value function

kernel RIST-R1 RIST-R2 ICO DR Cox
Linear 3.641 (0.144) 3.641 (0.138) 3.633 (0.158) 3.590 (0.174) 3.582 (0.158)Gaussian 3.611 (0.215) 3.615 (0.220) 3.302 (0.221) 3.470 (0.233)

RIST-

R1 and RIST-R2: using the estimated R1 and R2 respectively as weights, while the conditional
expectations are estimated using recursively imputed survival trees; ICO: inverse probability of
censoring weighted learning; DR: doubly robust outcome weighted learning; Cox: Cox proportional
hazards model using covariate-treatment interactions.

versions of Ri’s are used. We first consider the procedure proposed in [138], where R is defined as

∆Y

ŜC(Y | A,X)
−
∫
ÊT̃ {T | T > t,A,X}

{
dNC(t)

ŜC(t | A,X)
+ I(Yi ≥ t)

dŜC(t | A,X)

ŜC(t | A,X)2

}
.

Here, ŜC(t | A,X) and Ê
T̃

(T | T > t,A,X) are estimated from the Cox model for simplicity. We

also consider a more direct clinical measurement without the double robustness correction, which

can be interpreted in a similar way as the expected survival time or the restricted mean survival

time [53, 89, 124]. To be specific, we consider a restricted mean (log) survival time truncated at

τ defined as δT + (1 − δ)E(T ), and use this as a plug-in quantity of R in the testing performance

calculation. To estimate this quantity, we use a recursively imputed survival trees (RIST) method

to produce the expected survival time E(T ).

The value function results are presented in Table 4.2 and Figure 4.2. Both proposed methods

have higher values than the compared methods. Note that for the Gaussian kernel, our two new

approaches are still better than Cox regression, however, inverse probability of censoring outcome

weighted learning and doubly robust learning are not much different from Cox regression. The

standard error is comparable among all four methods using the linear kernel. For the Gaussian

kernel, the standard errors of the proposed methods and inverse probability of censoring weighted

learning are similar. The standard error for the doubly robust method is slightly worse in this

instance. Overall, the proposed methods seem to perform best.

The restricted log mean results are presented in Table 4.3 and Figure 4.3. Note for the linear

kernel, the median of the proposed methods are higher than 3.6 and median of both inverse probabil-

ity of censoring outcome weighted learning and doubly robust learning are lower. For the Gaussian

kernel, the proposed methods are much better than inverse probability of censoring outcome weight-
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Figure 4.2: Boxplots of cross-validated value of survival weeks on the log scale. RIST-R1 and RIST-
R2: using the estimated R1 and R2 respectively as weights, while the conditional expectations are estimated
using recursively imputed survival trees; ICO: inverse probability of censoring weighted learning; DR: doubly
robust outcome weighted learning.

Table 4.3: Analysis of non-small-cell lung cancer data: Mean (sd) of a clinical measure

kernel RIST-R1 RIST-R2 ICO DR Cox
Linear 3.603 (0.040) 3.606 (0.037) 3.598 (0.037) 3.601 (0.042) 3.646 (0.039)Gaussian 3.511 (0.064) 3.514 (0.068) 3.451 (0.062) 3.456 (0.052)

RIST-

R1 and RIST-R2: using the estimated R1 and R2 respectively as weights, while the conditional
expectations are estimated using recursively imputed survival trees; ICO: inverse probability of
censoring weighted learning; DR: doubly robust outcome weighted learning; Cox: Cox proportional
hazards model using covariate-treatment interactions.

ed learning and doubly robust learning. Interestingly, under this measure, the performance of Cox

regression is the best. A possible reason is that the true underlying model may not deviate much

from the proportional hazard model, making the Cox model a better choice. This is also reflected

by the fact that the results look similar to the simulation Scenario 2 plot, where the Cox model

performs the best. Another possible reason is that the pseudo-outcome estimated from RIST may

not be completely accurate and favors the Cox model in this particular dataset.

4.6 Discussion

We proposed a new method that redefines the reward function in a censored survival setting.

The method works by replacing the censored observations (or all observations) by an estimated

conditional expectation of the failure time. In practice, the failure time (or logarithm of the failure

time) is commonly used in defining the reward function R, however, this choice could more flexible.

For example, we may be interested in searching for a treatment rule that maximizes the median
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Figure 4.3: Boxplots of cross-validated value of survival weeks on the log scale. RIST-R1 and RIST-
R2: using the estimated R1 and R2 respectively as weights, while the conditional expectations are estimated
using recursively imputed survival trees; ICO: inverse probability of censoring weighted learning; DR: doubly
robust outcome weighted learning.

survival time or a certain quantile. Under our framework, this is achievable by replacing the censored

observations with a suitable estimate of the quantile. This part of the work is currently under

investigation.

The proposed methods may be improved or extended in multiple ways. The estimated treat-

ment rule may be affected by the shift of the outcome. A potential extension is to combine our

methods with residual weighted learning [140], which has been shown to reduce the total variation

of the weights and improve stability. Trials with multiple treatment arms occur frequently. Thus

a potential extension of our method is in the direction of multicategory classification [18, 82]. It is

also interesting to extend our method to dynamic treatment regimes where a sequence of decision

rules [96, 136, 79, 137] need to be learned in a censored survival outcome setting [58].
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APPENDIX A: SUPPLEMENTARY MATERIAL TO CHAPTER 2

The following table provides a summary of notations used in the proofs.

Basic Notations

T Failure time

C Censoring time

Y = min(T,C), observed time

δ = 1(T ≤ C): censoring indicator

Fi, fi Survival distribution of i-th observation, fi = dFi

Gi Censoring distribution of i-th observation

A A node, internal or terminal

A = {Au}u∈U , the collection of all terminal nodes in a single tree

Λ(t|x) Cumulative hazard function (CHF)

Λ̂, Λ̂A, Λ̂A NA estimator on a set of samples, a node A, or an entire tree A

Λ∗n(t), Λ∗A,n, Λ∗A,n Censoring contaminated averaged CHF on a set of samples, a node

A, or the entire tree A

Λ∗, Λ∗A, Λ∗A Population versions of Λ∗n, Λ∗A,n and Λ∗A,n, respectively

B Number of trees in a forest

d(d0) Dimension of (important) covariates

τ The positive constant as the upper bound of Y

Concentration Bounds

k Each terminal node contains at least k training examples, i.e., mini-

mum leaf size.

α Minimum proportion of observations contained in child node

Vα,k(D) Set of all {α, k} valid partitions on the feature space X

Hα,k(D) Set of all {α, k} valid forests on the feature space X

R Approximation node

RS,w,ε, R The set of approximation nodes (rectangles)

N(t) Counting process

K(t) At-risk process

µ(R), µ(A) The expected fraction of training samples inside R,A

#R, #A The number of training samples inside R,A

Consistency

ψi Proportion of length get of its parent node on the i-th dimension

L Bound of the density function f(t)

L1, L2 Lipschitz constant of Λ and λ

66



Preliminary results

Proof of Lemma 1. For simplicity, we prove the results for the case when there are no ties in

the failure time. The proof follows mostly [34]. Let n1 > n2 > . . . > nk ≥ 1 be the sequence of

counts of the at-risk sample size, i.e., nj =
∑n

i=1 1(Yi ≥ tj), where ti is the ith ordered failure

time. Then the Kaplan-Meier estimator at any observed failure time point tj can be expressed

as ŜKM(tj) =
∏j
i=1(ni − 1)/ni, while the Nelson-Altshuler estimator at the same time point is

ŜNA(tj) = exp{−
∑j

i=1 1/ni}. We first apply the Taylor expansion of e−ni for ni ≥ 1:

1− 1/ni < e−ni < 1− 1/ni + 1/(2n2
i ) ≤ 1− 1/(ni + 1).

Thus we can bound the Nelson-Altshuler estimator with

ŜKM(tj) < ŜNA(tj) <
∏j
i=1 ni/(ni + 1).

To bound the difference between the two estimators, note that for nj ≥ 2,

∣∣∣ŜKM(tj)− ŜNA(tj)
∣∣∣ < ∣∣∣ŜKM(tj)−

∏j
i=1 ni/(ni + 1)

∣∣∣
= ŜKM(tj)

∣∣∣1−∏j
i=1

ni/(ni+1)
(ni−1)/ni

∣∣∣
≤ ŜKM(tj)

∑j
i=1(n2

i − 1)−1

≤ 2ŜKM(tj)
∑j

i=1 n
−2
i

≤ 4ŜKM(tj)/nj . (8)

Now note that both the Kaplan-Meier and the Nelson-Altshuler estimators stay constant within

(ti, ti+1), and this bound applies to the entire interval (0, tk) for nk ≥ 2. �

Proof of Theorem 1. Recall the counting process

N(s) =
n∑
i=1

Ni(s) =
n∑
i=1

1(Yi ≤ s, δi = 1),
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and the at risk process

K(s) =
n∑
i=1

Ki(s) =
n∑
i=1

1(Yi ≥ s).

We prove the theorem based on the following key results.

Lemma 8. Provided Assumption 1 holds, for arbitrary ε > 0 and n such that 1
n ≤

ε2

8 , we have

pr(sup
t≤τ
| 1
n

n∑
i=1

{Ki(s)− E[Ki(s)]}| > ε) ≤ 8(n+ 1) exp
{−nε2

8

}
,

pr(sup
t≤τ
| 1
n

n∑
i=1

{Ni(t)− E[Ni(t)]}| > ε) ≤ 8(n+ 1) exp
{−nε2

8

}
.

Lemma 9. Provided Assumption 1 holds, for any ε > 0, we have

pr(sup
t≤τ
|
∫ t

0
(

1

K(s)
− 1

E[K(s)]
)dN(s)| > ε) ≤ 8(n+ 2) exp

{
− nmin(ε2M4, 16M2)

32

}
,

where n satisfies 1
n ≤

ε2M4

32 .

Lemma 10. Provided Assumption 1 holds, for any ε > 0, we have

pr(sup
t≤τ
|
∫ t

0

d{N(s)− E[N(s)]}
E[K(s)]

| > ε) ≤ 8(n+ 1) exp
{
− nε2M2

72

}
,

where n satisfies 1
n ≤

ε2M2

72 .

The proof of Lemma 8 follows pages 14–16 in [102]. The proofs of Lemma 9 and 10 are presented

in Appendix. Now we are ready to prove Theorem 1. Note that

pr
(

sup
t<τ
|Λ̂(t)− Λ∗n(t)| > ε1

)
= pr

(
sup
t<τ
|Λ̂(t)−

∫ t

0

dE[N(s)]

E[K(s)]
| > ε1

)
≤ pr

(
sup
t≤τ

∣∣∣ ∫ t

0

[ 1

K(s)
− 1

E[K(s)]

]
dN(s)

∣∣∣ > ε1
2

)
+ pr

(
sup
t≤τ

∣∣∣ ∫ t

0

d{N(s)− E[N(s)]}
E[K(s)]

∣∣∣ > ε1
2

)
.
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By Lemma 9, the first term is bounded by 8(n+ 2) exp {−nmin(ε21M
4,64M2)

128 }. By Lemma 10, the

second term is bounded by 8(n+ 1) exp {−nε21M
2

288 }. The sum of these two terms is further bounded

by 16(n+ 2) exp {−nε21M
4

288 } for any n ≥
288
ε21M

4 . This completes the proof. �

Proof of Lemma 9. For any t ≤ τ ,

∣∣∣ ∫ t

0
(

1

K(s)
− 1

E[K(s)]
)dN(s)

∣∣∣
≤
∫ t

0

|E[K(s)]−K(s)|
K(s)E[K(s)]

dN(s)

≤
∫ t

0

sup
0<r≤τ

|E[K(r)]−K(r)|

K(s)E[K(s)]
dN(s). (9)

Thanks to Hoeffding’s inequality, we have

pr
(∣∣K(τ)− E[K(τ)]

∣∣ > nM

2

)
< 2 exp

{
− nM2

2

}
.

Then (9) is further bounded by

n

(nM)2/2
sup

0<t≤τ

∣∣E[K(t)]−K(t)
∣∣.

Combining with Lemma 8, we have

pr
(

sup
t≤τ

∣∣∣ ∫ t

0
(

1

K(s)
− 1

E[K(s)]
)dN(s)

∣∣∣ > ε
)

≤ pr
( 2

nM2
sup
t≤τ
|E[K(t)]−K(t)| > ε

)
+ 2 exp

{
− nM2

2

}
≤ 8(n+ 2) exp

{
− nmin(ε2M4, 16M2)

32

}
,

for any n satisfying 1
n ≤

ε2M4

32 . This completes the proof. �
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Proof of Lemma 10. For any t ≤ τ , we utilize integration by parts to obtain

∣∣∣ ∫ t

0

1

EK(s)
d{N(s)− E[N(s)]}

∣∣∣
=
∣∣∣N(s)− E[N(s)]

E[K(s)]

∣∣t
0
−
∫ t

0
{N(s)− E[N(s)]}d

{ 1

E[K(s)]

}∣∣∣
≤ 2 sup

t≤τ

∣∣N(t)− E[N(t)]
∣∣ 1

E[K(τ)]
+ sup

t≤τ

∣∣N(t)− E[N(t)]
∣∣ ∫ τ

0
d
{ 1

E[K(s)]

}
≤ 3

M
sup
t≤τ

1

n

∣∣N(t)− E[N(t)]
∣∣.

Thanks to Lemma 8, we now have

pr
(

sup
t≤τ

∣∣∣ ∫ t

0

d{N(s)− E[N(s)]}
E[K(s)]

∣∣∣ > ε
)

≤ pr
( 3

nM
sup
t≤τ

∣∣N(t)− E[N(t)]
∣∣ > ε

)
≤ 8(n+ 1) exp

{
− nε2M2

72

}
,

where n satisfies 1
n ≤

ε2M2

72 . This completes the proof. �

Adaptive concentration bound

The proof of Theorem 2 essentially relies on two main mechanics: the concentration bound

results we established in Theorem 1 to bound the variations in each terminal node; and a

construction of parsimonious set of rectangles, namely R, so that any terminal node A ∈ A can be

approximated by a rectangle R ∈ R [126]. We first introduce some notation and lemmas.

Preliminary. We denote the rectangles R ∈ [0, 1]d by

R =
d⊗
j=1

[r−j , r
+
j ], where 0 ≤ r−j < r+

j ≤ 1 for all j = 1, · · · , d.
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The Lebesgue measure of rectangle R is λ(R) =
∏d
j=1(r+

j − r−j ). Here we define the expected

fraction of training samples and the number of training samples inside R, respectively, as follows:

µ(R) =

∫
R
f(x)dx,#R = |{i : Xi ∈ R}|.

We define the support of rectangle R as S(R) = {j ∈ 1, . . . , d : r−j 6= 0 or r+
j 6= 1}.

The following lemmas are used in the proof. The construction of the approximation set is shown

in [126]. Lemma 11 defines RS,w,ε, a set of rectangles, and provides a bound of its cardinality.

Lemma 11. (Theorem 7 and Corollary 8 in [126]) Let S ∈ {1, . . . , d} be a set of size |S| = s,

and let w, ε ∈ (0, 1). There exists a set of rectangles RS,w,ε such that the following properties hold.

Any rectangle R with support S(R) ⊆ S and Lebesgue measure λ(R) ≥ w can be approximated by

rectangles in RS,w,ε. Specifically, there exist rectangles R−,R+ ∈ RS,w,ε such that

R− ⊆ R ⊆ R+, e
−ελ(R+) ≤ λ(R) ≤ eελ(R−).

Moreover, the cardinality of the set RS,w,ε is bounded by

|RS,w,ε| ≤
1

w

(8s2

ε2
(
1 + log2b

1

w
c
))s(

1 +O(ε)
)
.

Furthermore, if we let Rs,w,ε =
⋃
|S|=sRS,w,ε include all possible s-sparse rectangles, and let w =

k
2ζn , ε = 1√

k
and s = b log(n/k)

log((1−α)−1)
c+ 1, where 0 < α < 0.5 and ζ ≥ 1, we then have

log(|RS,w,ε|) ≤
log(n/k)(log(dk) + 3 log log(n))

log((1− α)−1)
+O(log(max{n, d})).

Lemma 12 below shows that the number of training samples in the terminal node A is close to

the approximation rectangle R.

Lemma 12. (Theorem 10 in [126]) Assume Assumption 2 and 3 hold. We set w = k
2ζn , ε = 1√

k
.

Then there exists an n0 ∈ N , for every n ≥ n0, the following event holds with probability larger than

1− n−1/2: For every possible terminal node A ∈ A, we can select a rectangle R ∈ Rs,w,ε such that
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R ⊆ A, λ(A) ≤ eελ(R), and

#A −#R ≤ 3ζ2ε#A + 2
√

3 log(|R|)#A +O(log(|R|)).

Lemma 13 below shows that with high probability there are enough observations larger than or

equal to τ on the rectangle R.

Lemma 13. Provided Assumption 1 holds, the number of observations larger than or equal to τ on

all R ∈ R is larger than
(

1−
√

4 log(|R|
√
n)

kM

)
kM with probability larger than 1− 1/

√
n.

Proof. For one R ∈ R, by the Chernoff bound, with probability larger than 1− exp
{
− c2#RM

2 )
}
≥

1 − exp
{
− c2kM

4 )
}
, the number of observations larger than or equal to τ on R is larger than

(1− c)kM , where 0 < c < 1 is a constant. Thus with probability larger than 1− 1/
√
n, the number

of observations larger than or equal to τ on every R ∈ R is larger than
(

1−
√

4 log(|R|
√
n)

kM

)
kM .

Proof of Theorem 2. We first establish a triangle inequality by picking some element R in the

set R such that it is a close approximation of A. The following is satisfied with large probability,

where the small probably event prevents us from finding a good enough R.

sup
t<τ,A∈A,A∈V

∣∣Λ̂A(t)− Λ∗A,n(t)
∣∣

≤ sup
t<τ,A∈A,A∈V

inf
R∈Rs,w,ε

∣∣Λ̂A(t)− Λ̂R(t)
∣∣

+ sup
t<τ,R∈Rs,w,ε,#R≥k/2

∣∣Λ̂R(t)− Λ∗R,n(t)
∣∣

+ sup
t<τ,A∈A,A∈V

inf
R∈Rs,w,ε

∣∣Λ∗R,n(t)− Λ∗A,n(t)
∣∣. (10)

Here, we have #R ≥ k/2 in the sub-index of the second term because #A ≥ k and from Lemma

12, #A −#R ≤ 3ζ2ε#A + 2
√

3 log(|R|)#A + O(log(|R|)) = o(k) for any possible A with large

probability. Hence the case that R < k/2 is included in the small probability event.

We now bound each part of the right hand side of the above inequality. Noting that we always

select a close approximation of A from the set R, the first part is bounded by the following with

the specific R constructed in Lemma 12. With a slight abuse of notation, we let the subject index

i first run through the observations within R and then through the observations in A but not in
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R. This can always be done since R ⊆ A. Thus we have

sup
t<τ,A∈A,A∈V

∣∣Λ̂R(t)− Λ̂A(t)
∣∣

≤ sup
t<τ,A∈A,A∈V

∣∣∣∑
s≤t

[∆N(s)]R∑#R
i=1 1(Yi ≥ s)

−
∑
s≤t

[∆N(s)]R + [∆N(s)]A\R∑#A
i=1 1(Yi ≥ s)

∣∣∣
= sup
t<τ,A∈A,A∈V

∣∣∣∑
s≤t

[∆N(s)]R∑#R
i=1 1(Yi ≥ s)

−
∑
s≤t

[∆N(s)]R + [∆N(s)]A\R∑#R
i=1 1(Yi ≥ s) +

∑#A
i=#R+1 1(Yi ≥ s)

∣∣∣
≤ sup
t<τ,A∈A,A∈V

{ #A∑
j=#R+1

∆N(sj)∑#R
i=1 1(Yi ≥ sj) +

∑#A
i=#R+1 1(Yi ≥ sj)

+

#R∑
j=1

[ ∆N(sj)∑#R
i=1 1(Yi ≥ sj)

− ∆N(sj)∑#R
i=1 1(Yi ≥ sj) +

∑#A
i=#R+1 1(Yi ≥ sj)

]}
,

where N(s) =
∑n

i=1Ni(s) =
∑n

i=1 1(Yi ≤ s, δi = 1). By Lemma 13 the first term is bounded by

#A −#R(
1−

√
4 log(|R|

√
n)

kM

)
kM

≤ 1(
1−

√
4 log(|R|

√
n)

kM

)
M

[
6ζ2ε+ 2

√
6 log(|R|)

k
+O

( log(|R|)
k

)]
,

and the second term is bounded by

#R∑
j=1

[ ∆N(sj)∑#R
i=1 1(Yi ≥ sj)

− ∆N(sj)∑#R
i=1 1(Yi ≥ sj) +

∑#A
i=#R+1 1(Yi ≥ sj)

]

≤
#R∑
j=1

∆N(sj)
∑#A

i=#R+1 1(Zi ≥ sj)[∑#R
i=1 1(Yi ≥ sj)

][∑#R
i=1 1(Yi ≥ sj) +

∑#A
i=#R+1 1(Yi ≥ sj)

]
≤

#R∑
j=1

∆N(sj)(#A −#R)[∑#R
i=1 1(Yi ≥ sj)

][∑#R
i=1 1(Yi ≥ sj) +

∑#A
i=#R+1 1(Yi ≥ sj)

]
≤ #R(#A −#R)(

1−
√

4 log(|R|
√
n)

kM

)2
k2M2

≤ 2(
1−

√
4 log(|R|

√
n)

kM

)2
M2

[
6ζ2ε+ 2

√
6 log(|R|)

k
+O

( log(|R|)
k

)]
.
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Combining these two terms, the first part of Equation 10 is bounded by

3(
1−

√
4 log(|R|

√
n)

kM

)2
M2

[
6ζ2ε+ 2

√
6 log(|R|)

k
+O

( log(|R|)
k

)]
, (11)

with probability larger than 1− 1/
√
n. For the second part,

sup
t<τ,R∈Rs,w,ε,#R≥k/2

∣∣Λ̂R(t)− Λ∗R,n(t)
∣∣ ≤ {288[1/2 log(n) + log(16k + 32)]}1/2

k1/2M2
, (12)

with probability larger than 1− 1/
√
n. The third part of Equation 10 is bounded by

sup
t<τ,A∈A,A∈V

∣∣Λ∗A,n(t)− Λ∗R,n(t)
∣∣

≤ sup
t<τ,A∈A,A∈V

∣∣∣ ∫ t

0

∑#A
i=1{1−Gi(s)}dFi(s)∑#A

i=1{1−Gi(s)}{1− Fi(s)}
−
∫ t

0

∑#R
i=1{1−Gi(s)}dFi(s)∑#R

i=1{1−Gi(s)}{1− Fi(s)}

∣∣∣
≤ sup
t<τ,A∈A,A∈V

∫ t

0

∣∣∣∣
[∑#R

i=1{1−Gi(s)}dFi(s)
][∑#A

i=#R+1{1−Gi(s)}{1− Fi(s)}
][∑#R

i=1{1−Gi(s)}{1− Fi(s)}
][∑#A

i=1{1−Gi(s)}{1− Fi(s)}
]

−
[∑#A

i=#R+1{1−Gi(s)}dFi(s)
][∑#R

i=1{1−Gi(s)}{1− Fi(s)}
][∑#R

i=1{1−Gi(s)}{1− Fi(s)}
][∑#A

i=1{1−Gi(s)}{1− Fi(s)}
]∣∣∣∣

≤ sup
t<τ,A∈A,A∈V

τ
#A(#A −#R)

#R#AM4

≤ τ

M4
{3ζ2ε+ 2

√
3 log(|R|)

k
+O(

log(|R|)
k

)}. (13)

Combining inequalities (11), (12) and (13), we obtain the desired adaptive concentration bound.

With probability 1− 2/
√
n, we have

sup
t<τ,A∈A,A∈V

|Λ̂A(t)− Λ∗A,n(t)|

≤ 3(
1−

√
4 log(|R|

√
n)

kM

)2
M2

[
6ζ2ε+ 2

√
6 log(|R|)

k
+O

( log(|R|)
k

)]

+
{288[1/2 log(n) + log(16k + 32)]}1/2

k1/2M2
+

τ

M4

{
3ζ2ε+ 2

√
3 log(|R|)

k
+O

((log(|R|)
k

)}
≤ M1

[√ log(|R|)
k

+

√
log(n)

k

]
≤M1

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

74



where M1 is an universal constant. This completes the proof of Theorem 2. Furthermore, if

lim inf
n→∞

(d/k) > 0, the bound degenerates to M1

√
log(n) log(d)
k log((1−α)−1)

. This completes the proof of

Corollary 1. �

Proof of Corollary 2. Since for any A ∈ Vα,k(Dn) we have

sup
t<τ, x∈[0,1]d

∣∣∣Λ̂A(t | x)− Λ∗A,n(t | x)
∣∣∣ ≤ M1

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

and furthermore if lim inf
n→∞

(d/n)→∞, for any A ∈ Vα,k(Dn),

sup
t<τ, x∈[0,1]d

∣∣∣Λ̂A(t | x)− Λ∗A,n(t | x)
∣∣∣ ≤ M1

√
log(n) log(d)

k log((1− α)−1)
.

By the definition of Hα,k(Dn), any {A(b)}B1 belonging to Hα,k(Dn) is an element of Vα,k(Dn).

Hence we have,

sup
t<τ, x∈[0,1]d, {A(b)}B1 ∈Hα,k(Dn)

∣∣∣Λ̂{A(b)}B1
(t | x)− Λ∗{A(b)}B1 , n

(t | x)
∣∣∣

≤ M1

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

for some universal constant M1. Furthermore, if lim inf
n→∞

(d/n)→∞,

sup
t<τ, x∈[0,1]d, {A(b)}B1 ∈Hα,k(Dn)

∣∣∣Λ̂{A(b)}B1
(t | x)− Λ∗{A(b)}B1 , n

(t | x)
∣∣∣

≤ M1

√
log(n) log(d)

k log((1− α)−1)
,

with probability larger than 1− 2/
√
n, for some universal constant M1. �
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Consistency when d is fixed

Proof of Theorem 3. In order to show consistency, we first show that each terminal node is small

enough in all d dimensions. Let m be the lower bound of the number of splits on the terminal node

A containing x, and mi be the number of splits on the i-th dimension. Then we have

nαm = k, m = log1/α(n/k) =
log n− log k

log(1/α)
and

d∑
i=1

mi = m.

The lower bound of the number of splits on i-th dimension mi has distribution Binomial(m, 1
d).

By the Chernoff bound on each dimension,

pr
(
mi >

(1− c2)m

d

)
> 1− exp

{
− c2

2m

2d

}

with any 0 < c2 < 1. Then, by Bonferroni,

pr
(

minmi >
(1− c2)m

d

)
> 1− d exp

{
− c2

2m

2d

}
.

Suppose we are splitting at the i-th dimension on a specific internal node with ν observations.

Recall the splitting rule is choosing the splitting point randomly between the max((k+1), dανe)-th,

and min((n− k − 1), b(1− α)νc)-th observations. Without loss of generality, we consider splitting

between dανe-th and b(1 − α)νc-th observations. The event that the splitting point is between

α and 1 − α happens with probability larger than c3, where c3 = (1 − 2α)/8 and is just a lower

bound. Since with probability larger than 1/4, the bα+0.5
2 νc-th order statistic is larger than α and

the d1.5−α
2 νe-th order statistic is less than 1− α for large enough ν, where ν is known to be larger

than 2k. So with probability larger than c3 = (1− 2α)/8, the splitting point falls into the interval

[α, 1− α].

The number of splits which partition the parent node to two child nodes with proportion of

length between both α and 1 − α on the i-th dimension of the terminal node A is denoted by m∗

and is Binomial(mi, c3). By the Chernoff bound, for any 0 < c4 < 1,

pr
(
m∗ ≥ (1− c4)c3mi

)
≥ 1− exp

{
− c2

4c3mi

2

}
.
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If we denote the length of the i-th dimension on the terminal node A as li,

pr
(
li ≤ (1− α)(1−c4)c3mi

)
≥ 1− exp

{
− c2

4c3mi

2

}
.

Furthermore, by combining the d dimensions together, we obtain

pr
(

max
i
li ≤ (1− α)(1−c4)c3 minimi

)
≥ 1− d exp

{
− c2

4c3 minimi

2

}
,

and then

max
x1,x2∈A

||x1 − x2|| ≤
√
d(1− α)

c3(1−c4)(1−c2)m
d ,

with probability larger than 1− d exp
{
− c22m

2d

}
− d exp

{
− (1−c2)c3c24m

2d

}
. Hence, for any observation

xj inside the node A containing x, by Assumption 4, we have

sup
t<τ
|F (t | x)− F (t | xj)| ≤ L1

√
d(1− α)

c3(1−c4)(1−c2)m
d ,

sup
t<τ
|f(t | x)− f(t | xj)| ≤ (L2

1 + L2)
√
d(1− α)

c3(1−c4)(1−c2)m
d ,

where f(· | x) and F (· | x), respectively, denote the true density function and distribution function

at x ∈ A. Then Λ∗A,n(t) has the upper and lower bounds

∫ t

0

f(s | x) + b1
1− F (s | x)− b2

ds and
∫ t

0

f(s | x)− b1
1− F (s | x) + b2

ds,

respectively, where

b1 = (L2
1 + L2)

√
d(1− α)

c3(1−c4)(1−c2)m
d , and b2 = L1

√
d(1− α)

c3(1−c4)(1−c2)m
d .

Hence, |Λ∗A,n(t)− Λ(t | x)| has the bound

∫ t

0

b1(1− F (s | x)) + b2f(s | x)

(1− F (s | x)− b2)(1− F (s | x))
ds ≤M2τ

√
d(1− α)

c3(1−c4)(1−c2)m
d ,
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for any t < τ , where M2 is some constant depending on L1 and L2. Hence, for the terminal node

A containing x, we bound the bias by

sup
t<τ
|Λ∗A,n(t)− Λ(t | x)| ≤M2τ

√
d(1− α)

c3(1−c4)(1−c2)m
d ,

with probability larger than 1 − d exp
{
− c22m

2d

}
− d exp

{
− (1−c2)c3c24m

2d

}
. Combining this with the

adaptive concentration bound result from Theorem 2, for each x, we further have

sup
t<τ
|Λ̂A(t | x)− Λ(t | x)| = O

(√ log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d

)
,

with probability larger than 1− wn, where

wn =
2√
n

+ d exp
{
−
c2

2 log1/α(n/k)

2d

}
+ d exp

{
−

(1− c2)c3c
2
4 log1/α(n/k)

2d

}
,

and c1 = c3(1−c2)(1−c4)
log1−α(α) . This completes the proof of point-wise consistency.

Lastly, we need to establish the bound of |Λ̂A(t | x) − Λ(t | x)| under the event with small

probability wn. Noticing that Λ̂A(t | x) is simply the Nelson-Aalen estimator of the cumulative

hazard function with at most k terms, for any t < τ , we have

Λ̂A(t | x) ≤ 1

k
+ . . .+

1

1
= O(log(k)),

which implies that

|Λ̂A(t | x)− Λ(t | x)| ≤ O(log(k)).

This completes the proof. �
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Proof of Theorem 4. From Theorem 3, we have

sup
t<τ

EX
∣∣Λ̂(t | X)− Λ(t | X)

∣∣
= O

(√ log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d + log(k)wn

)
,

which leads to the following bounds:

sup
t<τ

EX |Λ̂{A(b)}B1
(t | X)− Λ(t | X)|

= lim
B→∞

sup
t<τ

EX |
1

B

B∑
b=1

Λ̂A(b)
(t | X)− 1

B

B∑
b=1

Λ(t | X)|

≤ lim
B→∞

1

B

B∑
b=1

sup
t<τ

EX |Λ̂A(b)
(t | X)− Λ(t | X)|

= O
(√ log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
+
(k
n

) c1
d + log(k)wn

)
. �

Consistency when d is infinite

Lemma 14. Assume that the density function of the failure time fi(t) = dFi(t) is bounded above

by L for each i. The difference between Λ∗A,n(t) and Λ∗A(t) is bounded by

sup
t<τ

∣∣Λ∗A,n(t)− Λ∗A(t)
∣∣ ≤√4τ2L2 log(4

√
n)

M2n
,

with probability larger than 1− 1/
√
n.

Proof. By Hoeffding’s inequality, we have for each s ≤ t,

pr
( ∣∣∣ 1
n

∑
Xi∈A

[1−Gi(s)]fi(s)− EX{[1−G(s | X)]f(s | X)}
∣∣∣

≥
√
L2 log(4

√
n)

2n

)
≤ 1

2
√
n
,
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and

pr
( ∣∣∣ 1
n

∑
Xi∈A

[1−Gi(s)][1− Fi(s | X)]− EX{[1−G(s | X)][1− F (s | X)]}
∣∣∣

≥
√

log(4
√
n)

2n

)
≤ 1

2
√
n
.

After combining the above two inequalities, we have

sup
t<τ

∣∣Λ∗A,n(t)− Λ∗A(t)
∣∣ ≤√4τ2L2 log(4

√
n)

M2n
,

with probability larger than 1− 1/
√
n.

Proof of Lemma 2. In a similar way as done for Lemma 14, for each s ≤ t,

pr
(∣∣∣ 1
n

∑
Xi∈A

[1−Gi(s)]fi(s)− EX{[1−G(s | X)]f(s | X)}
∣∣∣

≥
√
L2 log(4

√
n|R|)

2n

)
≤ 1

2
√
n
,

and

pr
(∣∣∣ 1
n

∑
Xi∈A

[1−Gi(s)][1− Fi(s | X)]− EX{[1−G(s | X)][1− F (s | X)]}
∣∣∣

≥
√

log(4
√
n|R|)

2n

)
≤ 1

2
√
n
.

Thus, with probability larger than 1/
√
n,

|Λ∗A,n(t)− Λ∗A(t)| ≤
√

4τ2L2 log(4
√
n|R|)

M2n

≤ M2

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

for all t < τ and all A ∈ A,A ∈ Vα,k(Dn), where M2 is some universal constant depending on L

and M . �
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Proof of Lemma 3. We start with defining ∆∗(x) =
∫ τ

0

∣∣Λ∗A+
j (x)

(t)− Λ∗A−j (x)
(t)
∣∣dt. Then for any

noise variable j,

∆∗(x) =

∫ τ

0

∣∣Λ∗A+
j (x)

(t)− Λ∗A−j (x)
(t)
∣∣dt

=

∫ τ

0

∣∣∣∣ ∫ t

0

EX∈A+
j (x)[1−G(s | X)]dF (s | X)

EX∈A+
j (x)[1−G(s | X)][1− F (s | X)]

−
∫ t

0

EX∈A−j (x)[1−G(s | X)]dF (s | X)

EX∈A−j (x)[1−G(s | X)][1− F (s | X)]

∣∣∣∣dt
= 0.

From the adaptive concentration bound result and Lemma 2, we have, for an arbitrary x ∈ [0, 1]d

and a valid partition A ∈ Vα,k(Dn),

∫ τ

0

∣∣Λ̂A(t | x)− Λ∗A(t | x)
∣∣dt ≤M3τ

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

with probability 1− 3/
√
n, where M3 = max(M1,M2). Hence

|∆(x)−∆∗(x)| ≤ ∆(x) ≤ 2M3τ

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

with probability 1 − 3/
√
n uniformly over all possible nodes with at least 2k observations and all

noise variables. Thus only with probability 3/
√
n will the proposed survival tree split on a noise

variable. �

Proof of Lemma 4. Suppose A is the current node and X(j) is an important variable. We show

with high probability that a split happens at x = 1/2. Since we choose the splitting point x̃ which
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maximizes ∆2(x), the signal is more significant at x̃ than 1/2. Hence we are interested in

∆∗(1/2) =

∫ τ

0

∣∣Λ∗A+
j (1/2)

(t)− Λ∗A−j (1/2)
(t)
∣∣dt

=

∫ τ

0

∣∣∣∣ ∫ t

0

EX∈A+
j (1/2)[1−G(s | X)]dF (s | X)

EX∈A+
j (1/2)[1−G(s | X)][1− F (s | X)]

−
∫ t

0

EX∈A−j (1/2)[1−G(s | X)]dF (s | X)

EX∈A−j (1/2)[1−G(s | X)][1− F (s | X)]

∣∣∣∣dt.
Since 1−G(τ) is bounded away from 0 by our assumption with 1−G(τ) ≥ M̃ , the above expression

can be further bounded below by

∆∗(1/2)

≥
∫ τ

0

∣∣∣∣M̃ ∫ t

0

EX∈A+
j (1/2)dF (s | X)

EX∈A+
j (1/2)[1− F (s | X)]

− 1

M̃

∫ t

0

EX∈A−j (1/2)dF (s | X)

EX∈A−j (1/2)[1− F (s | X)]

∣∣∣∣ dt.
≥ `.

Then, by the adaptive concentration bound results above, ∆∗(1/2) has to be close enough to ∆(1/2).

Thus we have

∆(1/2) ≥ `−M3τ

√
log(n/k)[log(dk) + log log(n)]

k log((1− α)−1)
,

with probability 1− 3/
√
n uniformly over all possible nodes and all signal variables. �
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APPENDIX B: SUPPLEMENTARY MATERIAL TO CHAPTER 3

Derivation of generalized fiducial distribution under dependence

We derive GFD for situations when censoring distribution might depend on the failure time. In

particular, consider the following data generating equation:

Yi = F−1(Ui) ∧R−1
i {Vi | F

−1(Ui)} , δi = I[F−1(Ui) ≤ R−1
i {Vi | F

−1(Ui)}]. (14)

Here, R−1
i (v | t) is the inverse of the conditional distribution function of the censoring time given

failure time t specific to the i-th subject. Equation (14) allows for any within subject dependence

between failure and censoring times.

The corresponding inverse map for a single observation is: If δi = 1,

QF,Ri1 (yi, ui, vi) = {F : F (yi) ≥ ui, F (yi − ε) < ui for any ε > 0} × {Ri : R−1
i (vi | yi) ≥ yi}.

If δi = 0, the inverse map for this datum is

QF,Ri0 (yi, ui, vi) = {F,Ri : F (yi) < ui,

Ri{yi | F−1(ui)} ≥ vi, Ri{yi − ε | F−1(ui)} < vi for any ε > 0}.

Unlike in (3.6), the inverse QF,R(y, δ,u,v) =
⋂
iQ

F,Ri
δi

(yi, ui, vi) does not factorize into a Cartesian

product. However, the projection of QF,R(y, δ,u,v) onto the failure time distribution margin

remains the same as in (3.7), and QF,R(y, δ,u,v) 6= ∅ if and only if QF (y, δ,u) 6= ∅. Consequently,

the marginal fiducial distribution QF (y, δ,u) | QF,R(y, δ,u,v) 6= ∅ is the same as (3.8).

Remarkably, the data generating equation (14) leads to the same fiducial distribution for failure

times as in the independent case given by (3.5). The difference is that unlike in the fully independent

case, (14) does not provide any useful information about the censoring times and can be viewed as

allocating all information in the data to the estimation of failure times.
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Proofs

In this section we collect proofs from Section 3.3.

Proof of Theorem 6. For simplicity, in this proof, we denote pr∗y,δ as pr. By the definition of SU

and Ŝ,

sup
s≤t
|SU (s)− Ŝ(s)| = sup

s≤t

∣∣∣∣∣∣
N̄(s)∏
i=1

(1−Bi)−
N̄(s)∏
i=1

(1− 1

1 + K̄(si)
)

∣∣∣∣∣∣ , (15)

where Bi ∼ Beta(1, K̄(si)), E(Bi) = {1 + K̄(si)}−1.

In order to deal with supremum in Equation (15), we use a coupling idea to get

pr(
N̄(t)∑
i=1

B2
i ≤

ε2

n1/2
) ≥ 1− N̄(t)(1− ε

n3/4
)K̄(t). (16)

In particular, define B̃i ∼ Beta(1, K̄(t)) generated by the same uniform random variable as Bi, so

B̃i ≥ Bi. We have

pr( max
1≤i≤N̄(t)

Bi ≥ ε

n3/4
) ≤ N̄(t)K̄(t)

∫ 1− ε

n3/4

0
ξK̄(t)−1dξ = N̄(t)(1 − ε

n3/4
)K̄(t). (17)

Since
∑N̄(t)

i=1 B2
i ≤ N̄(t) max1≤i≤N̄(t)B

2
i , further we have

pr(
N̄(t)∑
i=1

B2
i ≥

ε2

n1/2
) ≤ pr( max

1≤i≤N̄(t)
Bi ≥

ε

n1/4{N̄(t)}1/2
) ≤ pr( max

1≤i≤N̄(t)
Bi ≥

ε

n3/4
).

So Equation (16) follows.

In order to bound Equation (15), recall the following facts: E(Bi) = {1 + K̄(si)}−1 ≤ 0·6,

pr( max
1≤i≤N̄(t)

Bi ≤ 0·6) = 1− pr( max
1≤i≤N̄(t)

Bi > 0·6) ≥ 1− N̄(t)0·4K̄(t),
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and for any x ≤ 0·6, −x− x2 ≤ log(1− x) ≤ −x. Equation (15) is bounded by

sup
s≤t
| exp{

N̄(s)∑
i=1

log(1−Bi)} − exp{
N̄(s)∑
i=1

log(1− E(Bi))}|

≤ sup
s≤t
| exp{−

N̄(s)∑
i=1

Bi} − exp{−
N̄(s)∑
i=1

[E(Bi) + {E(Bi)}2]}|

+ sup
s≤t
| exp{−

N̄(s)∑
i=1

(Bi +B2
i )} − exp{−

N̄(s)∑
i=1

E(Bi)}|

≤ sup
s≤t
| exp{−

N̄(s)∑
i=1

Bi} − exp{−
N̄(s)∑
i=1

E(Bi)}|

+ sup
s≤t
| exp{−

N̄(s)∑
i=1

E(Bi)} − exp{−
N̄(s)∑
i=1

[E(Bi) + {E(Bi)}2]}|

+ sup
s≤t
| exp{−

N̄(s)∑
i=1

(Bi +B2
i )} − exp{−

N̄(s)∑
i=1

Bi}|+ sup
s≤t
| exp{−

N̄(s)∑
i=1

Bi} − exp{−
N̄(s)∑
i=1

E(Bi)}|

≤2 sup
s≤t
| exp{−

N̄(s)∑
i=1

Bi + E(Bi)− E(Bi)} − exp{−
N̄(s)∑
i=1

E(Bi)}|+
N̄(t)∑
i=1

{K̄(t) + 1}−2 +

N̄(t)∑
i=1

B2
i

≤2 sup
s≤t
|
N̄(s)∑
i=1

{Bi − E(Bi)}| exp{−
N̄(s)∑
i=1

E(Bi)}+ N̄(t)/K̄(t)−2 +

N̄(t)∑
i=1

B2
i , (18)

with probability larger than 1 − N̄(t)0·4K̄(t). Since exp{−
∑N̄(s)

i=1 E(Bi)} is bounded by 1 for any

s ≤ t, to complete the proof we only need to bound sups≤t |
∑N̄(s)

i=1 {Bi − E(Bi)}|.

Let Tm =
∑m

i=1{Bi − E(Bi)}. Then we have E(Tm) = 0, var(Tm) ≤ m/K̄(t)2 → 0. By

Kolmogorov’s inequality pr(max1≤m≤n |Tm| ≥ x) ≤ x−2var(Tn) [39], we know

pr(sup
s≤t
|
N̄(s)∑
i=1

{Bi − E(Bi)}| ≥ ε2/n1/2) ≤ nN̄(t)/{ε2K̄(t)}2. (19)

Combine (16), (18) and (19), we have

pr{sup
s≤t
|SU (s)− Ŝ(s)| ≥ 3ε2/n1/2 + N̄(t)/K̄(t)−2} ≤ N̄(t)[(1− ε/n3/4)K̄(t) + 0·4K̄(t) + n/{ε2K̄(t)}2].

This completes the proof.
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For the proof of the next Theorem, we will construct a martingale, and check the two conditions

similar to Theorem 5.1.1 in [50].

Proof of Theorem 7. For any t with π(t) > 0, consider a fixed growing sequence of data (y, δ) for

which the statement of Assumption 6 and 9 are valid. The set of all such sequences is assumed to

have probability one.

For convenience, we denote pr∗y,δ as pr in the rest of this section. Additionally, in this proof only,

we denote SU , FL as S̃, F̃ , and define u(x) =
∑N̄(t)

i=1 I{si−1 < x ≤ si}Bi, where si are ordered failure

times, s0 is assumed to be 0, and Bi are independent Beta(1, K̄(si)). Let Λ̃(s) =
∫ s

0 u(x)dN̄(x) =∑N̄(t)
i=1 Bi. For fixed t ∈ I, suppose 0 ≤ s ≤ t, we could rewrite S̃ recursively as

S̃(s) = 1−
∫ s

0
S̃(x−)dΛ̃(x).

Then we have

S̃(s−)− S̃(s) = −∆S̃(s) = S̃(s−)∆N̄(s)u(s),

S̃(s) = S̃(s−){1−∆N̄(s)u(s)},

This is the same as Equation (3.11).

We know Ŝ(s) > 0, therefore

S̃(s)

Ŝ(s)
=
S̃(0)

Ŝ(0)
+

∫ s

0
S̃(x−)[−{Ŝ(x)Ŝ(x−)}−1dŜ(x)] +

∫ s

0

1

Ŝ(x)
dS̃(x)

= 1−
∫ s

0

S̃(x−)

Ŝ(x)
{dN̄(x)u(x)− dN̄(x)

1 + K̄(x)
},

so

S̃(s)− Ŝ(s) = −Ŝ(s)

∫ s

0

S̃(x−)

Ŝ(x)
{dN̄(x)u(x)− dN̄(x)

1 + K̄(x)
},

and

n1/2{F̃ (s)− F̂ (s)} = Ŝ(s)

∫ s

0
n1/2 S̃(x−)

Ŝ(x)
{dN̄(x)u(x)− dN̄(x)

1 + K̄(x)
}. (20)
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Now we want to find the asymptotic distribution of right-hand-side of (20). First, notice that

for our fixed sequence of data, Ŝ(s)→ 1− F0(s). Next, let

U(s) =

∫ s

0
n1/2 S̃(x−)

Ŝ(x)
{dN̄(x)u(x)− dN̄(x)

1 + K̄(x)
}.

We need to construct a martingale M(s) to use the martingale central limit theorem. Let

M(s) =
∑
x≤s

[u(x){1 + K̄(x)}{2 + K̄(x)}1/2 − {2 + K̄(x)}1/2]∆N̄(x).

It is easy to see that M(s) is a martingale,

dM(s) = 0 if ∆N̄(s) = 0,

dM(s) = u(s){1 + K̄(s)}{2 + K̄(s)}1/2 − {2 + K̄(s)}1/2 if ∆N̄(s) = 1.

From here

dM(s) = dN̄(s)[u(s){1 + K̄(s)}{2 + K̄(s)}1/2 − {2 + K̄(s)}1/2].

Let

H(s) = n1/2 S̃(s−)

Ŝ(s){1 + K̄(s)}{2 + K̄(s)}1/2
,

then

U(s) =

∫ s

0
H(x)dM(x).

In order to obtain desired convergence, we need to establish the two conditions of Theorem 5.1.1 in

[50].

First, we need to check the first condition

< U,U > (s)
pr→
∫ s

0
f2(x)dx, where f(x) = {λ(x)/π(x)}1/2. (21)

We have

d < M,M > (x) = var(dM(x)|Fx−) = K̄(x)dN̄(x),
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and

< U,U > (s) =

∫ s

0
n

S̃2(x−)K̄(x)dN̄(x)

Ŝ2(x){1 + K̄(x)}2{2 + K̄(x)}
.

By Assumption 6, we have

∀n ≥ n0, pr

(
sup
x≤s

∣∣∣∣∣ S̃2(x−)

Ŝ2(x)

{
n

K̄(x)
− 1

π(x)

}∣∣∣∣∣ > ε/3

)
< ε/2.

By the consistency of S̃, we have

∀n ≥ n1, pr

(
sup
x≤s

∣∣∣∣∣ 1

π(x)

{
S̃2(x−)

Ŝ2(x)
− 1

}∣∣∣∣∣ > ε/2

)
< ε/2.

So for ∀ε > 0,∀n ≥ max(n0, n1),

pr

(
sup
x≤s

∣∣∣∣∣ S̃2(x−)n

Ŝ2(x)K̄(x)
− 1

π(x)

∣∣∣∣∣ > ε

)
< ε.

Then by Assumption 8, the condition (21) is satisfied.

Then we need to check the second condition, i.e., < Uε, Uε > (s)
pr→ 0. For any ε > 0,

< Uε, Uε > (s) =

∫ s

0
n

S̃2(x−)K̄(x)dN̄(x)

Ŝ2(x){1 + K̄(x)}2{2 + K̄(x)}
I{ n1/2S̃(x−)

Ŝ(x){1 + K̄(x)}{2 + K̄(x)}1/2
≥ ε}.

Consistency and Assumption 6 implies

sup
x≤s

∣∣∣∣H2(x){1 + K̄(x)}{2 + K̄(x)} − 1

π(x)

∣∣∣∣
= sup
x≤s

∣∣∣∣∣n S̃2(x−)

Ŝ2(x){1 + K̄(x)}
+

S̃2(x−)

Ŝ2(x)π(x)
− S̃2(x−)

Ŝ2(x)π(x)
− 1

π(x)

∣∣∣∣∣
≤ 1

Ŝ2(s)
sup
x≤s

∣∣∣∣ n

1 + K̄(x)
− 1

π(x)

∣∣∣∣+
1

Ŝ(s)π(s)
sup
x≤s

∣∣∣S̃(x−)− Ŝ(x)
∣∣∣ pr→ 0. (22)

From K̄(x)
pr→∞ and monotonicity of K̄ we have

inf
x≤s
|K̄(x)| pr→∞.
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Combined with Equation (22), we have

sup
x≤s
|H(x)| pr→ 0,

which is equivalent to

sup
x≤s

I{ n1/2S̃(x−)

Ŝ(x){1 + K̄(x)}{2 + K̄(x)}1/2
≥ ε} pr→ 0.

Then

∫ s

0
n

S̃2(x−)K̄(x)dN̄(x)

Ŝ2(x){1 + K̄(x)}2{2 + K̄(x)}
I{ n1/2S̃(x−)

Ŝ(x){1 + K̄(x)}{2 + K̄(x)}1/2
≥ ε} pr→ 0,

and the second condition is satisfied.

By replicating the proof in Theorem 5.1.1 in [50] for our martingale, we get U(s) ⇒ U∞(s) =∫ s
0 {λ(x)/π(x)}1/2dW (x). We know

cov(U∞(s1), U∞(s2)) =

∫ s1

0

λ(x)

π(x)
ds = γ(s1) for s1 < s2,

and

cov(W{γ(s1)},W{γ(s2)}) = γ(s1) for s1 < s2.

So U∞(·) is the same as W{γ(·)}. The conclusion of the Theorem 7 follows.

We conclude this section by proving the corollary.

Proof of Corollary 3. We know n1/2{F̂ (·)−F0(·)} → {1−F0(·)}W{γ(·)} onD[0, t] and n1/2{FL(·)−

F̂ (·)} → {1− F0(·)}W{γ(·)} in distribution on D[0, t] almost surely from Theorem 7.
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From the properties in (3.14) we have that the fiducial probability

1− α = pr∗y,δ({F : Ψ{F (·)− F̂ (·)} ≤ εn,α})

= pr∗y,δ({F : Ψ[n1/2{F (·)− F̂ (·)}] ≤ ψ(n1/2)εn,α}). (23)

By continuous mapping theorem and the fact that Ψ[{1 − F0(·)}W{γ(·)}] is continuous and has

unique (1− α)-th quantile, Equation (23) converges to

pr(Ψ[{1− F0(·)}W{γ(·)}] ≤ ε∞),

where ε∞ is the unique limit of ψ(n1/2)εn,α, and pr is the sampling distribution of the data.

Then we have

pr(F0 ∈ {F : Ψ{F (·)− F̂ (·)} ≤ εn,α}) = pr(Ψ{F0(·)− F̂ (·)} ≤ εn,α)

= pr(Ψ[n1/2{F0(·)− F̂ (·)}] ≤ ψ(n1/2)εn,α)

→ pr(Ψ[{1− F0(·)}W{γ(·)}] ≤ ε∞)

= 1− α.

This completes the proof.

Results for alternative selection schemes

Lemma 15. The following modification of Theorem 6 is valid for SL:

pr∗y,δ{sup
s≤t
|SL(s)− Ŝ(s)| ≥ ε/n3/4 + 3ε2/n1/2 + N̄(t)/K̄(t)−2}

≤ {N̄(t) + 1}(1− ε/n3/4)K̄(t) + N̄(t)[0·4K̄(t) + n/{ε2K̄(t)}2]. (24)

The same bound also holds for SI . Moreover, Theorem 7 holds for SL and SI .

Proof. Recall that SL(s) ≥ SU (s+) and SL(s) ≤ SU (s) hold for any s ≤ t, where s+ denotes the

next failure time right after s. Furthermore, the difference between SU (s) and SU (s+) is bounded
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by

|SU (s)− SU (s+)| =|
N̄(s)∏
i=1

{1−Bi} −
N̄(s)∏
i=1

{1−Bi}(1−BN̄(s)+1)|

=|
N̄(s)∏
i=1

{1−Bi}BN̄(s)+1| ≤ max
1≤i≤N̄(s)+1

Bi,

where Bi follows Beta(1, K̄(si)) and si are ordered failure times before or at time s. By Equation

(17) in the previous section, we have

pr∗y,δ(|SU (s+)− SU (s)| > ε/n3/4) ≤pr∗y,δ( max
1≤i≤N̄(s)+1

Bi > ε/n3/4)

≤{N̄(t) + 1}(1− ε

n3/4
)K̄(t).

Notice that SL(s)−Ŝ(s) = {SL(s)−SU (s)}+{SU (s)−Ŝ(s)} and SU (s+)−SU (s) ≤ SL(s)−SU (s) ≤

0. This implies (24). In addition, Theorem 7 holds for SL and SI by Slutsky’s theorem.

Lemma 16. For any failure time t, E∗y,δ[S
L(t)] ≤ S̃(t) ≤ E∗y,δ[SU (t)], where E∗y,δ is the expectation

with respect to pr∗y,δ, and S̃(t) is the Kaplan-Meier estimator.

Proof. For any failure time t, we have SU (t) =
∏N̄(t)
i=1 {1−Bi}. From here

E∗y,δ[S
U (t)] =

N̄(t)∏
i=1

{
1− 1

1 + K̄(si)

}
≥

N̄(t)∏
i=1

{
1− 1

K̄(si)

}
,

where si are ordered failure times. Similarly, SL(t) = SU (t)(1−B), whereB followsBeta(1, K̄(t)−1)

and is independent of Bi for i ≤ N̄(t). Thus

E∗y,δ[S
L(t)] =

N̄(t)∏
i=1

{
1− 1

1 + K̄(si)

}
(1− 1

K̄(t)
) ≤

N̄(t)∏
i=1

{
1− 1

K̄(si)

}
.

This completes the proof.

Algorithm for sampling from the fiducial distribution

1. Generate U = (u1, . . . , un) from U(0, 1) and sort them. Denote sorted values as preU .
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2. Sort the data. Denote sorted data as (y1, . . . , yn) and (δ1, . . . , δn).

3. Initialize LowerF id = (0)n+1, UpperF id = (1)n+1.

4. For i = 1 to n:

Let UpperF id(i) = preU(1), where preU(1) is the smallest element left in preU .

If δ = 1, set LowerF id(i+ 1) = preU(1), and delete preU(1);

If δ = 0, randomly pick one u from preU , set LowerF id(i+ 1) = LowerF id(i), and delete the

selected u from preU .

5. We output 3 survival functions that are needed for the conservative and log-linear interpola-

tion methods.

5.1. Lower fiducial bound: using LowerF id as a fiducial curve.

5.2. Upper fiducial bound: using UpperF id as a fiducial curve.

5.3. Log-linear interpolation: Fit a continuous fiducial distribution by linear interpolation based

on failure observations as described in Section 3.2.1. Then correct the linear interpolation at the

censoring observations so that the upper fiducial bound on continuous distribution function (lower

fiducial bound for survival function) is satisfied. Let yn−k (k = 0, 1, . . . , n − 1) denotes the last

failure observation. We fit a single line after last uncensored observation and take the maximum

of s0, s1, . . . , sk as slope, where s1 is the slope between (yn−k, log un−k) and (yn−k+1, log un−k+1),

. . ., sk is the slope between (yn−k, log un−k) and (yn, log un), s0 is the slope between (ỹ, log ũ) and

(yn−k, log un−k), ỹ is the second last uncensored observation. If there is only one failure time, ỹ and

log ũ are 0.

6. From step 1–5 we get one curve of fiducial distribution. Repeat step 1–5 to get one fiducial

sample with m curves.
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APPENDIX C: SUPPLEMENTARY MATERIAL TO CHAPTER 4

A simplified tree-based survival model used in Theorem 8

We consider a simplified version of a tree-based survival model. Starting from the root node

[0, 1]d, at each internal node, we randomly chose the j-th feature of X to split the node, while the

splitting point is always at the midpoint of the range of the chosen feature. We repeat splitting

dlog2 kne times, where kn is a deterministic parameter which we can control. Hence, each individual

tree has exactly 2dlog2 kne terminal nodes, which is approximately kn. In practice, we always chose

kn to go to infinity as n goes to infinity.

After we build an individual tree, let Bi (i = 1, 2, . . . , 2dlog2 kne) be the rectangular cell of the

random partition. We treat observations inside each leaf node as a group of homogeneous subjects

and compute the Nelson-Aalen estimator Λ̂(· | Bi) for each leaf node Bi. Hence, our estimator is

essentially

r̂n(·, X,A) =
2dlog2 kne∑
i=1

I{(X,A) ∈ Bi}Λ̂(· | Bi).

Proof of Theorem 8

Proof. Since we always assume that the treatment variable A is important, and A has only two

categories, we force a split on A at the root node. This is equivalent to fitting trees for A = 1 and

A = −1 separately. In a balanced design, the problem reduces to estimating r(·, X, 1) or r(·, X,−1)

with sample size n/2. Without the risk of ambiguities, the following results are developed for

r̂n(·, X) with sample size n, where the results can be applied to either A = 1 or −1. Our proof

utilizes two facts from [11]:

Fact 1 Let Knj{Bi} be the number of times the j-th coordinate (j = 1, . . . , d) is split

on to reach the terminal node Bi, (i = 1, 2, . . . , 2dlog2 kne). Conditionally on X, Knj{Bi} is

Binomial(dlog2 kne , 1/d). Moreover,
∑d

j=1Knj{Bi} = dlog2 kne.

Fact 2 Let Nn(Bi) be the number of data points falling in the cell Bi, (i = 1, 2, . . . , 2dlog2 kne).

Conditionally on Θ, Nn(Bi) follows Binomial(n, 2−dlog2 kne).
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The following lemma, for later reference, provides the deterministic limit of the Nelson-Aalen

estimator in the independent non-identically distributed case. This lemma can be found in an

unpublished technical report by Mai Zhou at the University of Kentucky.

Lemma 17 (Theorem 1 in Chapter 2). Suppose we have two sets of non-negative random variables:

T1, T2, . . . , Tn which are survival times, independent but non-identically distributed with continuous

distribution F1(t), F2(t), . . . , Fn(t); C1, C2, . . . , Cn which are censoring times, independent but non-

identically distributed with continuous distribution G1(t), G2(t), . . . , Gn(t). We also assume the T ′is

and C ′is are independent. The Nelson-Aalen estimator of data Yi = min(Ti, Ci), δi = I(Ti ≤ Ci) is

Λ̂(t). Provided Assumption 10, we have

pr(sup
t<τ
|Λ̂(t)−

∫ t

0

∑
i{1−Gi(s)}dFi(s)∑

i{1−Gi(s)}{1− Fi(s)}
| > (288b)1/2

n1/2M2
) < 16(n+ 2)e−b, (25)

where b ≥ 1.

Now we start the proof of Theorem 8. Let the limit of the Nelson-Aalen estimator inside the

cell Bi (i = 1, 2, . . . , 2dlog2 kne) be

Λ∗(t | Bi) =

∫ t

0

[
∑

Xj∈Bi{1−Gj(s)}dFj(s)]
[
∑

Xj∈Bi{1−Gj(s)}{1− Fj(s)}]
.

For any t < τ , in order to bound the |r̂n(t,X)− r(t,X)|, we define

r∗n(t,X) =

2dlog2 kne∑
i=1

I{X ∈ Bi}Λ∗(t | Bi).

Then |r̂n(t,X)− r(t,X)| can be decomposed as

|r̂n(t,X)− r(t,X)| = |r̂n(t,X)− r∗n(t,X)|+ |r∗n(t,X)− r(t,X)|. (26)

We start with the first term in Equation (26). From Fact 2, we know the number of observations

in each terminal node is Binomial(n, 2−dlog2 kne). By the Chernoff bound, with probability larger

than 1− e−u2n2−dlog2 kne−1 , in one terminal node we have at least (1−u)n2−dlog2 kne observations for

some 0 < u < 1.
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Combining Equation (25), the following equation holds:

|r̂n(t,X)−r∗n(t,X)|

≤
2dlog2 kne∑
i=1

I{X ∈ Bi}(288b)1/2{(1− u)n2−dlog2 kne}−1/2M−2

= (288b)1/2{(1− u)n2−dlog2 kne}−1/2M−2, (27)

with probability 1− 16[(1− u)n2−dlog2 kne + 2]e−b − e−u2n2−dlog2 kne−1 , where b ≥ 1.

Before we bound the second term in Equation (26). We first show the bound for the difference

between the true cumulative hazard function and aggregated estimator inside the cell Bi (i =

1, 2, . . . , 2dlog2 kne), i.e. |I{X ∈ Bi}{Λ∗(t | Bi)− Λ(t | X)}|.

From Fact 1, we know the number of times the terminal node Bi is split on the j-th coordinate

(j = 1, · · · , d) Knj{Bi} is Binomial(dlog2 kne , 1/d). By the Chernoff bound, P (Knj{Bi} ≤ (1 −

r) dlog2 kne /d) ≤ e−dlog2 kner2/(2d) for some 0 < r < 1. So with probability (1− e−dlog2 kner2/(2d))d ≥

1− de−dlog2 kner2/(2d), every dimension of Bi is less than 2−{(1−r)dlog2 kne}/d. Then with probability

larger than 1− de−dlog2 kner2/(2d), we have

max
X1,X2∈Bi

||X1 −X2|| ≤ d1/22−{(1−r)dlog2 kne}/d.

So for all the observations Xj inside the same cell as X, by Assumption 11, we have

|FX(·)− Fj(·)| ≤ Ld1/22−{(1−r)dlog2 kne}/d,

|fX(·)− fj(·)| ≤ (L′ + L2)d1/22−{(1−r)dlog2 kne}/d,

where fX(·) and FX(·) denote the true density function and distribution function at X, respectively.

Then Λ∗(t | Bi) has the upper bound and lower bound

∫ t

0
[fX(s) + b1]/[1− FX(s)− b2]ds and

∫ t

0
[fX(s)− b1]/[1− FX(s) + b2]ds,
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respectively, where

b1 = (L′ + L2)d1/22−{(1−r)dlog2 kne}/d and b2 = Ld1/22−{(1−r)dlog2 kne}/d.

Hence, |I{X ∈ Bi}{Λ∗(t | Bi)− Λ(t | X)}| has the bound

∫ t

0

b1(1− F (s)) + b2f(s)

(1− F (s)− b2)(1− F (s))
ds ≤ Cτd1/22−{(1−r)dlog2 kne}/d,

where C is some constant depending on L and L′. We then bound the second term of Equation

(26) as follows:

|r∗n(t,X)− r(t,X)| ≤
2dlog2 kne∑
i=1

I{X ∈ Bi}|Λ∗(t | Bi)− Λ(t | X)|

≤ Cτd1/22−{(1−r)dlog2 kne}/d.

(28)

Combining Equation (27) and (28), For each X, we have

pr[sup
t<τ
|r̂n(t,X)− r(t,X)| ≤ C[τd1/22−{(1−r)dlog2 kne}/d

+ (288b)1/2{(1− u)n2−dlog2 kne}−1/2M−2] ≥ 1− wn,

where

wn = 16[(1− u)n2−dlog2 kne + 2]e−b + e−u
2n2−dlog2 kne−1

+ de−dlog2 kner2/(2d).

This completes the proof.

Proof of Theorem 9

Proof. Based on Theorem 8, we now only need to establish the bound of

|r̂n(t,X,A) − r(t,X,A)| under the event with small probability wn. Noticing that r̂n(t,X,A) is

simply the Nelson-Aalen estimator of the cumulative hazard function with at most n terms, for any
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t < τ we have

r̂n(t,X,A) ≤ 1

n
+ . . .+

1

1
= O(ln(n)),

which implies that

|r̂n(t,X,A)− r(t,X,A)| ≤ O(ln(n)).

Combining this with Theorem 8 completes the proof.

Proof of Lemma 6

Proof. Our survival function estimator is Ŝ(t) = e−Λ̂(t). From Theorem 8, we know that for any

t < τ ,

pr(|Ŝ(t | X,A)− S(t | X,A)| ≤ C[2−(1−r)dlog2 kne/d + (b/{(1− u)n2−dlog2 kne})1/2])

≥ 1− 16[(1− u)n2−dlog2 kne + 2]e−b − e−u
2n2−dlog2 kne−1

− de−dlog2 kner2/(2d).

It is then easy to see that for R1,

∣∣∣Ê(T | X,A)− E(T | X,A)
∣∣∣

=
∣∣∣ ∫ τ

0
Ŝ(t | X,A)dt−

∫ τ

0
S(t | X,A)dt

∣∣∣
≤
∫ τ

0
|Ŝ(t | X,A)− S(t | X,A)|dt

≤ τC[2−{(1−r)dlog2 kne}/d + (b/{(1− u)n2−dlog2 kne})1/2],
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with probability larger than 1− wn. And for reward R2, we have

∣∣Ê(T | X,A, T > Y, Y )− E(T | X,A, T > Y, Y )
∣∣

=
∣∣∣ ∫ τ

Y
{Ŝ(t | X,A)/Ŝ(Y | X,A)}dt−

∫ τ

Y
{S(t | X,A)/S(Y | X,A)}dt

∣∣∣
≤
∣∣∣ ∫ τ

Y
{Ŝ(t | X,A)/Ŝ(Y | X,A)}dt−

∫ τ

Y
{Ŝ(t | X,A)/S(Y | X,A)}dt

∣∣∣
+
∣∣∣ ∫ τ

Y
{Ŝ(t | X,A)/S(Y | X,A)}dt−

∫ τ

Y
{S(t | X,A)/S(Y | X,A)}dt

∣∣∣.
Note that we can bound the distance between Ŝ(Y | X,A) and S(Y | X,A) with probability no less

than 1− wn, which is further bounded above by

(1/M2 + 1/M)

∫ τ

Y
|Ŝ(Y | X,A)− S(Y | X,A)|dt

≤ C2[2−{(1−r)dlog2 kne}/d + (b/{(1− u)n2−dlog2 kne})1/2],

for some constant C2 with probability larger than 1− 2wn.

Proof of Theorem 10

Proof. We restate the value function corresponding to the true and working model as

V (f) = E(RI[A = sign{f(X)}]/π(A;X))

and V ′(f) = E(R̂I[A = sign{f(X)}]/π(A;X)),

respectively. Then we have

V (f∗)− V (f̂n) ≤ V (f∗)− sup
f∈F

V ′(f) + sup
f∈F

V ′(f)− V ′(f̂n) + V ′(f̂n)− V (f̂n)

≤ V (f∗)− V ′(f∗) + sup
f∈F

V ′(f)− V ′(f̂n) + V ′(f̂n)− V (f̂n)

≤ sup
f∈F

V ′(f)− V ′(f̂n) + 2 sup
f∈F
|V (f)− V ′(f)|. (29)
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We start with the first term in Equation (29). From Lemma 5, we know that supf∈F V
′(f)−V ′(f̂n) =

V ′(f̃)− V ′(f̂n), where f̃ = arg minf∈F E{Lφ(f)}.

Let f̃λn = arg minf∈Hk [E{Rφ{Af(X)}/π(A;X)}+ λn‖f‖2k], then

n−1
n∑
i=1

R̂φ{Aif̂n(Xi)}
π(Ai;Xi)

+ λn‖f̂n‖2k ≤ n−1
n∑
i=1

R̂φ{Aif̃λn(Xi)}
π(Ai;Xi)

+ λn‖f̃λn‖2k. (30)

By the definition of a(λ), we have

a(λn) = [E{Lφ(f̃λn)}+ λn||f̃λn ||2k − E{Lφ(f̃)}],

and by Theorem 3.2 in [135], we further have

V ′(f̃)− V ′(f̂n) ≤ E{Lφ(f̂n)} − E{Lφ(f̃)}

≤ E{Lφ(f̂n)} − E{Lφ(f̃λn)} − λn||f̃λn ||2k

+E{Lφ(f̃λn)} − E{Lφ(f̃)}+ λn||f̃λn ||2k

≤ E{Lφ(f̂n)} − E{Lφ(f̃λn)} − λn||f̃λn ||2k + λn||f̂n||2k + a(λn).

Combined with (30),

V ′(f̃)−V ′(f̂n) ≤ a(λn) + E

[
Rφ{Af̂n(X)}
π(A;X)

− R̂φ{Af̂n(X)}
π(A;X)

]

+E

[
R̂φ{Af̃λn(X)}

π(A;X)
− Rφ{Af̃λn(X)}

π(A;X)

]

+

(
− n−1

n∑
i=1

[
λn‖f̂n‖2k +

R̂φ{Aif̂n(Xi)}
π(Ai;Xi)

− λn‖f̃λn‖2k −
R̂φ{Aif̃λn(Xi)}

π(Ai;Xi)

]
+E
[
λn‖f̂n‖2k +

R̂φ{Af̂n(X)}
π(A;X)

− λn‖f̃λn‖2k −
R̂φ{Af̃λn(X)}

π(A;X)

])
= a(λn) + (I) + (II) + (III).

Since

n−1
n∑
i=1

R̂φ{Aif̂n(Xi)}
π(Ai;Xi)

+ λn‖f̂n‖2k ≤ n−1
n∑
i=1

R̂φ(0)

π(Ai;Xi)
= n−1

n∑
i=1

R̂

π(Ai;Xi)
,
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and the estimated value function R̂ is bounded by τ , we know that ‖f̂n‖k ≤ τ1/2λ
−1/2
n . Furthermore,

since

λn‖f̃λn‖2k ≤ inf
f∈Hk

{
λn‖f‖2k + E

[
Rφ{Af(X)}
π(A;X)

]}
≤ E

[
Rφ(0)

π(A;X)

]
,

we have ‖f̃λn‖k ≤ τ1/2λ
−1/2
n . Combining with Lemma 6, |I| and |II| are bounded by

C1λ
−1/2
n {2−{(1−r)dlog2 kne}/d + (b/{(1 − u)n2−dlog2 kne})1/2 + wn lnn} for both R1 and R2, where

C1 is some constant. Following the results in [138], |III| is bounded by Mv(nλn/cn)−2/(v+2) +

Mvλ
−1/2
n (cn/n)2/(d+2) + Kρ(nλn)−1 + 2Kρn−1λ

−1/2
n with probability larger than 1 − 2e−ρ, where

Mv is a constant depending on v and K is a sufficiently large positive constant. Finally, combining

(I), (II) and (III), we have

pr(sup
f∈F

V ′(f) ≤ V ′(f̂n) + ε1) ≥ 1− 2e−ρ, (31)

where ε1 = a(λn) +Mv(nλn/cn)−2/(v+2) +Mvλ
−1/2
n (cn/n)2/(d+2) +Kρ(nλn)−1 + 2Kρn−1λ

−1/2
n +

C1λ
−1/2
n {2−{(1−r)dlog2 kne}/d + (b/{(1− u)n2−dlog2 kne})1/2 + wn lnn}.

For the second part in Equation (29),

V (f)− V ′(f) = E
(RI[A = sign{f(X)}]

π(A;X)

)
− E

(R̂I[A = sign{f(X)}]
π(A;X)

)
= E

(
{E(T | X,A)− Ê(T | X,A)}I[A = sign{f(X)}]

π(A;X)

)
if R = R1. For R = R2, we have

V (f)− V ′(f)

= E
(

(1− δ){E(T | X,A, T > Y, Y )− Ê(T | X,A, T > Y, Y )}I[A = sign{f(X)}]
π(A;X)

)
.

By Lemma 6,

sup
f∈F
|V (f)− V ′(f)|

≤C2λ
−1/2
n {2−{(1−r)dlog2 kne}/d + (b/{(1− u)n2−dlog2 kne})1/2 + wn lnn},

(32)
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Table A.1: Simulation results: Mean (×103) and (sd) (×103). Censoring rate: 30%. For each scenario,
the theoretical optimal value (×103) is 31, 181, 1079, and -389, respectively.

kernel T RIST-R1 RIST-R2 ICO DR Cox

1 Linear 0 (26) 1 (31) 2 (28) -10 (40) -20 (63) -26 (33)Gaussian -17 (44) -10 (34) -7 (37) -18 (45) -48 (65)

2 Linear 22 (113) 17 (105) -14 (126) -110 (136) -193 (133) 65 (63)Gaussian -39 (115) -25 (101) -62 (113) -164 (119) -285 (112)

3 Linear 785 (52) 768 (53) 771 (52) 737 (95) 667 (124) 763 (61)Gaussian 896 (61) 810 (54) 854 (69) 817 (124) 679 (123)

4 Linear -453 (37) -465 (46) -448 (27) -461 (42) -471 (54) -457 (32)Gaussian -465 (35) -477 (42) -456 (27) -474 (41) -505 (48)

T: using

true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and R2 respectively
as weights, while the conditional expectations are estimated using recursively imputed survival
trees; ICO: inverse probability of censoring weighted learning; DR: doubly robust outcome weighted
learning; Cox: Cox proportional hazards model using covariate-treatment interactions.

where C2 is some constant. Now, combining (31) and (32) we have

pr(V (f∗) ≤ V (f̂n) + ε) ≥ 1− 2e−ρ,

where

ε = a(λn) +Mv(nλn/cn)−2/(v+2) +Mvλ
−1/2
n (cn/n)2/(d+2) +Kρ(nλn)−1

+ 2Kρn−1λ−1/2
n + Cλ−1/2

n {2−{(1−r)dlog2 kne}/d + (b/{(1− u)n2−dlog2 kne})1/2

+ wn lnn}.

This completes the proof.

Additional simulation results for different censoring rates

We summarize the additional simulation results in this section. For each simulation scenario

considered in Section 4.4, we alter the first constant term in the censoring distribution to achieve

30% (Table A.1 and Figure A.1), and 60% (Table A.2 and Figure A.2) censoring rates.
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Figure A.1: Boxplots of mean log survival time for different treatment regimes. Censoring rate: 30%.
T: using true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and R2 respectively
as weights, while the conditional expectations are estimated using recursively imputed survival trees; ICO:
inverse probability of censoring weighted learning; DR: doubly robust outcome weighted learning. The black
horizontal line is the theoretical optimal value.
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Figure A.2: Boxplots of mean log survival time for different treatment regimes. Censoring rate: 60%.
T: using true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and R2 respectively
as weights, while the conditional expectations are estimated using recursively imputed survival trees; ICO:
inverse probability of censoring weighted learning; DR: doubly robust outcome weighted learning. The black
horizontal line is the theoretical optimal value.
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Table A.2: Simulation results: Mean (×103) and (sd) (×103). Censoring rate: 60%. For each scenario,
the theoretical optimal value (×103) is 31, 181, 1079, and -389, respectively.

kernel T RIST-R1 RIST-R2 ICO DR Cox

1 Linear 0 (26) -2 (39) -5 (43) -29 (57) -64 (92) -34 (36)Gaussian -17 (44) -12 (40) -12 (45) -35 (55) -144 (78)

2 Linear 22 (113) -36 (123) -61 (135) -138 (133) -248 (129) 31 (79)Gaussian -39 (115) -69 (108) -102 (115) -165 (117) -313 (101)

3 Linear 785 (52) 753 (77) 748 (69) 646 (104) 556 (94) 721 (70)Gaussian 896 (61) 796 (63) 819 (67) 775 (106) 573 (93)

4 Linear -453 (37) -478 (55) -458 (33) -486 (55) -492 (59) -480 (43)Gaussian -465 (35) -492 (48) -461 (29) -513 (53) -551 (38)

T: using

true survival time as weight; RIST-R1 and RIST-R2: using the estimated R1 and R2 respectively
as weights, while the conditional expectations are estimated using recursively imputed survival
trees; ICO: inverse probability of censoring weighted learning; DR: doubly robust outcome weighted
learning; Cox: Cox proportional hazards model using covariate-treatment interactions.
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