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ABSTRACT 

REBECCA LEA BIGLER: The Axonal Transcriptome of Human Embryonic Stem Cell Derived Neurons 
and the Cell Autonomous Transcriptional Response to Axon Injury 

(Under the direction of Anne Marion Taylor) 
 

During development and adulthood neurons rapidly react to isolated events sensed by and 

affecting the most distal portion of the neuron, the axon. Prompt local responses at axons to 

extracellular signaling molecules and mechanical contacts suggest limited immediate involvement of 

the neuron cell body. The delayed response of the cell bodies may include altered gene expression 

and mRNA trafficking, which may influence the availability of mRNA at distal axons. The primed 

axonal transcriptome is critical for the rapid and local responses influenced by local protein synthesis. 

To establish the presence of mRNA within human axons and quantify the axonal 

transcriptome I evaluated human embryonic stem cell derived neurons (hESC-neurons) grown in 

axon-isolating microfluidic chambers. The hESC-neuron axonal transcriptome was significantly 

different from the somatic transcriptome suggesting functions within the axons that depend on local 

translation. The enriched functional categories within the axonal transcriptome of hESC-neurons were 

similar to those of primary rodent neurons demonstrating conservation of translation-dependent axonal 

functions, while features unique to hESC-neurons are also present. This evidence supports the use of 

hESC-neurons as a model system to further investigate mechanisms establishing and modifying the 

human axonal transcriptome and the function of local translation within human axons. 

The axonal transcriptome encodes locally translated proteins required for axon injury 

signaling. Axon injury initiates a multi-phased injury response that begins locally at the injury site, is 

transmitted to the somata and eventually expands to other regions of the neural network. The 

structural and functional changes of the delayed injury response have been investigated in vivo but the 

molecular signaling of this response is poorly understood. I evaluated the effect of sparse direct 

axotomy to cultured primary rat neurons grown in two-compartment axon-isolating microfluidic 

chambers. Directly injured axons regenerated in vitro and axotomy did not affect culture viability but 
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did induce a delayed, persistent synaptic function change in the in vitro neural network, consistent with 

previously reported in vivo findings. This functional change was dependent on a transcriptional 

response generated within the first hour after injury. Gene expression 24 hours after axotomy in this 

model system showed similarities to gene expression 24 hours after in vivo injury and suggested 

expression of proteins that function at the synapse might mediate the synaptic changes. Our in vitro 

axotomy model system demonstrates significant similarities to in vivo model systems but greatly 

enhances our ability to investigate the transcription-dependent mechanisms of injury signaling within 

neurons. 
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Reproduced figures are used with permission under the Creative Commons CC-BY license. 
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Messenger RNAs localized to distal projections of human stem cell derived neurons. Sci. Rep. 
7(1):611. doi: 10.1038/s41598-017-00676-w. 
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collaboration with a post-doctoral researcher Dr. Tharkika Nagendran who initially observed the 

change in synaptic function following in vitro axotomy. The following figures are based on the work of 
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published figures include: 3.1A-B, 3.2A (Somata before and after axotomy), 3.2C-D, 3.3A, 3.6A-E, 

3.7A-B, and 3.8A-E. Reproduced figures are used with permission under the Creative Commons CC-

BY-NC-ND license. 

Nagendran, T., Larsen, R.S., Bigler, R.L., Frost, S.B., Philpot, B.D., Nudo, R.J., Taylor, 
A.M. (2017) Distal axotomy enhances retrograde presynaptic excitability onto injured 
pyramidal neurons via trans-synaptic signaling. bioRxiv, doi: 10.1101/065391. 

For this dissertation I created all figures and wrote the text. 
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CHAPTER ONE: INTRODUCTION 

Overview 

Neurons are unique among all the cells of the body in that a single cell can span up to half the 

length of the organism (Fig.1.1A). Throughout development and adulthood they must rapidly respond 

to isolated local events, such as extracellular signaling molecules or mechanical contacts. Some of 

these events are only sensed by and affect the most distal portions of the neuron, the dendrites and/or 

axon. Prompt local responses suggest a high degree of independence from the neuron cell body, the 

soma. Rapid quantitative and qualitative changes in the local proteome, that do not require somatic 

transcription or translation, demonstrate that the most distal regions are semi-autonomous. The 

autonomy of the axon is of particular interest as the furthest location from the soma. 

There is a wide diversity of neurons, morphologically and functionally, within each organism. A 

broad description of the variety of neurons and components of the mammalian nervous system will be 

given in the first two sections of this chapter as reference for the similarities and differences between 

common model systems. 

Historically, the dogma of axon function stated that the axon was solely dependent on the 

neuron cell body for all necessary protein components. This theory has been overturned within the last 

few decades with a growing body of evidence definitively identifying translational machinery and the 

organelles necessary for protein trafficking within axons. Further, the transcriptome within axons is 

diverse and translation-dependent axonal functions have been determined from development through 

adulthood. This body of work will be covered in detail in this introduction. An intriguing, still 

controversial topic related to axon independence from the somata is glia-to-axon transport of RNA. 

Current evidence supporting this theory will also be discussed. 
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Figure 1.1 

 
Figure. 1.1. Scale representation of an adult vertebrate neuron. 
A. The axon depicted corresponds to a length of approximately 1 cm. Several neurons have axons 
longer than 1 m and may form thousands of synapses in their terminal arborization. [Modified with 
permission from Giuditta et al (2008)]. 

While much seminal work has been performed in invertebrate and non-mammalian systems, 

such as the squid giant axon, goldfish, Aplysia californica, C. elegans, X. laevis and D. melanogaster, 

my focus will be mammalian systems. Significant nervous system differences exist between the 

branches of the animal kingdom, this includes anatomical, dendritic-axon polarity, axon myelination 

and chemical or electrical synaptic signaling. Literature from the body of mammalian work is more 

relevant to the data contained herein though I will mention seminal work in other systems for historic 

reference. 

Neurons 

Together neurons form a cellular information conductance network throughout the body, the 

nervous system. It is an extremely complex and dynamic network with component parts that have 
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significant similarities and differences. The information transfer is bidirectional within and between 

neurons. 

Neurons are polar cells, they have unique and unequal traits at different subcellular locations 

within the cell. They are morphologically polar, functionally polar and the local proteome is polarized. A 

key morphological and functional feature of neurons are the long projections emanating from the cell 

body (Fig. 1.1A). These projections can be classified as dendrites, which typically extend a few 

millimeters to centimeters from the cell body, and axons, which can extend meters from the cell body. 

This polarity facilitates information transfer between neural networks through maintenance of 

subcellular regions with segregated functions, this polarity also imposes significant biological 

constraints. The functional polarity of neurons resides within these projections, the dendrites receive 

information, the cell body consolidates the input and regulates whether the axon transmits information 

to the synaptic terminals. The local proteome is polar with many unique proteins in dendrites and 

axons. The polarity of the local proteome is maintained through protein transport and local protein 

translation (Holt and Schuman, 2013). 

When an axon and dendrite are in close proximity they can form a synapse, the site of 

information transfer between neurons. The presynapse is formed along the axon and the postsynapse 

is formed along the dendrite. Each axon and dendrite can form hundreds of synapses leading to an 

extremely complex network of connections. In each synapse the postsynaptic component and dendrite 

are many times larger than the presynaptic component and axon, creating unique technical challenges 

when investigating the axon and presynapse. 

Rapid anterograde transmission from the soma to the synapse occurs through a well-

established actively propagated wave of ions, an action potential, generated through changes in 

membrane potential. The result is presynaptic neurotransmitter release to the extracellular 

environment of the synapse where postsynaptic neurotransmitter receptors are activated, initiating an 

intradendritic response to this brief chemical change. The postsynaptic cell is also capable of releasing 

signaling molecules to modulate the function and stability of the presynaptic structure. These signaling 

mechanisms are the basis of all neural network communication from autonomic processes, such as 
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controlling and responding to internal organ function, to the highest level brain function processes, 

including memory, thought and consciousness. 

Retrograde signaling, from the axon to the soma, is less well established. There is evidence 

that some signaling occurs through active transport of protein complexes from the distal axon to the 

soma. In addition, there might be mechanisms of back-propagating ionic waves or biophysical 

methods conducted through the cytoskeleton.  

Neurons can have many different dendrite and axon configurations, which provide unique 

signaling capabilities to each type of neuron. Multipolar neurons have many dendrites extending in 

multiple directions and a single axon. The broad dendritic arbor allows them to synapse with and 

receive information from many neurons. Bipolar neurons have clustered dendrites extending in a 

single direction from the soma, a more focused source of input, and a single axon. Unipolar neurons 

have a bifurcated single projection, one branch is the dendritic arbor and the other branch is the axon 

such that information bypasses the cell body. Pseudo-unipolar neurons also have a bifurcated 

projections but in these cells it is only axonal in nature, with the distal branch receiving stimulation and 

transmitting it directly to the proximal branch.  

The Mammalian Nervous System 

The mammalian nervous system is classified into many branches based on function and 

anatomy. The neurons and support cells of each have unique features that result in significant 

biological differences between branches of the nervous system. 

The central nervous system (CNS) includes the brain and spinal cord and functions to 

integrate information across the nervous system, regulate motor function and control “higher” brain 

function. Many of the neurons in the CNS have a multipolar structure. Notable exceptions are the 

retinal ganglion cells (RGC) and olfactory receptor neurons which have a bipolar neuron structure. 

These two neuron types are also unique in the CNS as the only neurons that are directly activated by 

environmental stimuli and have axons that project to the brain, directly converting environmental 

stimuli into synaptic activity in the brain. Substructures of the brain are differentially enriched for 

neurons that release and respond to more than 13 different neurotransmitters. A neuron, and even an 
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individual postsynapse, can be capable of responding to information transmitted by more than one 

neurotransmitter but each neuron only releases one type of neurotransmitter. Canonically axons of 

CNS neurons in vivo have limited capacity to regenerate and re-establish proper synaptic connections. 

This might be the combined effect of an inhospitable in vivo cellular milieu for regeneration, the 

inability of the target neurons to release neurotrophic factors or the inability of the injured axon stump 

to respond to cues. 

Neurons from the CNS can be cultured in vitro by a number of methods that all require special 

surface coatings to provide an extracellular matrix mimetic environment. Retinal ganglion can be 

dissected and directly cultured as an explant culture preserving the anatomical structure; the axons 

naturally grow out from the tissue to the cell culture substrate and are easy to visually isolate. 

Glutamatergic and GABAergic neurons are common CNS model neurons because they function in 

many ‘higher’ brain function pathways. They release the neurotransmitters glutamate and gamma-

aminobutyric acid (GABA), respectively. Glutamate is an excitatory neurotransmitter, meaning a 

dendrite that receives the neurotransmitter signal is more likely to initiate an action potential signal to 

the soma, while GABA is an inhibitory neurotransmitter, reducing the probability that an action 

potential signal will initiate in the dendrite. The hippocampus and cerebral cortex brain substructures 

are common sources for glutamatergic and GABAergic neurons. The cerebral cortex plays a key role 

in a number of higher brain functions, such as memory, attention, perception, awareness, thought, 

language and consciousness. The hippocampus functions in long-term memory and spatial navigation 

and is located directly below the cortex. Neurons of the hippocampus and cortex can be cultured in a 

number of ways. Organotypic slices, prepared from coronal sections of microdissected tissue, can be 

derived from embryonic, neonatal, young or adult animals. They preserve much of the unique cellular 

structure and neuro-circuitry established during brain development. Alternatively, microdissected 

cortical and hippocampal tissue can be enzymatically dissociated and cultured for approximately a 

month, either with an astrocyte feeder layer or with media supplements (Kaech and Banker, 2006; 

Vicario-Abejon, 2004). The enzymatic digestion damages the dendrites and axons and destroys the in 

vivo neurocircuitry but the axons and dendrites regenerate and new synaptic connections are made in 

vitro demonstrating that CNS neurons are capable of reactivating mechanisms of projection 
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development and synaptogenesis. These preparations have been used for many studies, including 

axon guidance and synaptic plasticity. 

The nerves and ganglia, clusters of nerve cell bodies, outside the brain and spinal cord are 

part of the peripheral nervous system (PNS). The PNS is divided into the somatic nervous system, 

which transmits sensory signals, such as taste and touch, to the CNS, and the autonomic nervous 

system, which controls the function of internal organs. Neurons derived from the dorsal root ganglion 

(DRG) of the somatic nervous system, responsible for relaying sensory information to the CNS, are a 

common in vitro model system. DRG neurons are pseudo-unipolar neurons, they have a single, very 

long axon with two functionally distinct branches, the ‘distal process’ performs dendrite-like functions 

while the ‘proximal process’ operates as the axon. The distal process projects to the sensing organ in 

the animal periphery while the proximal process projects to the spinal cord making it possible for an 

action potential that originated in the distal process to bypass the soma and propagate directly to the 

synaptic terminal with the spinal cord. The axons within the sciatic nerve are a common in vivo model 

system. The sciatic nerves emanate from DRGs in the lower back and innervate the legs/ hind legs, 

providing most of the somatic nervous system connections for the whole leg and foot. They are large 

and easy to identify making them an experimentally tractable system. 

The autonomic nervous system is further differentiated into the sympathetic nervous system, 

activated during “fight or flight” situations, and the parasympathetic nervous system, functioning in 

“rest and digest”. Norepinephrine and epinephrine are the dominant signaling molecules of the 

sympathetic nervous system while acetylcholine is the primary neurotransmitter of the 

parasympathetic nervous system. The superior cervical ganglion (SCG), of the sympathetic nervous 

system, is a common in vitro research model. These neurons are pseudo-unipolar, similar to DRGs, 

allowing signaling to quickly occur over long distances from the distal process to the proximal process. 

Axons of the SCG innervate the head and neck, including the blood vessels of the facial muscles and 

brain, salivary glands and thyroid gland. 

Dissected DRGs and SCGs can be cultured directly as explants or dissociated and cultured, 

both methods require special surface coatings to provide an extracellular matrix mimetic environment 

and exogenous addition of neurotrophic factors for in vitro viability. Sympathetic and sensory neurons 
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have significant regenerative capability, in vivo and in vitro, such that proper functional re-innervation 

can occur following injury. Because of their biologically relevant regenerative mechanisms they are 

commonly used in to study axon injury signaling, axon-to-soma survival signaling, axon regeneration 

and guidance. 

Compartmentalized Analysis of Neurons in vitro 

The distinctive morphological and functional polarity of neurons has necessitated the 

development of custom cell culture environments to facilitate isolating long axons from the somata 

once the tissue is dissected or neurons are dissociated.  

Campenot chamber 

The Campenot chamber (Campenot, 1977) is a three-chamber system developed to 

investigate the biology of nerve growth factor (NGF) signaling in sympathetic neurons but has been 

applied to sensory neurons and other signaling molecules. The chamber is constructed from a 

collagen coated surface with multiple parallel microscratches in the coating, a three compartment 

Teflon piece is sealed to the surface with silicon grease. Dissociated neurons or whole tissue explants, 

derived from the SCG of neonatal rodents or DRG of rodents, are plated in one chamber. Guided by 

the microscratches as barriers the axons penetrate the fluid-impermeable barrier of silicon grease to 

access a separate fluidically-isolated compartment (Fig. 1.2A). If the neurons are plated in the center 

chamber the axons can extend into the left and right chambers (Fig. 1.2B), with a minimum axon 

length of about 1 mm. If the neurons are plated in a side chamber the axons can extend into the 

middle then the far opposite chamber allowing the manipulation of distal axons with a minimum axon 

length of over 3 mm (Fig. 1.2C). The fluidic environments of the three compartments can be 

independently manipulated to evaluate the local effects of neurotrophic or guidance factors. Also, the 

cellular material within each compartment can be collected without contamination from the other 

compartments for downstream analysis. Optical properties of the Teflon piece and silicon grease 

restrict live imaging of neurons and axons but low resolution fixed imaging is possible. These 

chambers are prone to leakage and not all cells are biocompatible with silicon grease. Further, due to 
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the chamber dimensions these are only appropriate for use with peripheral neurons that have very 

long axons, not neurons from the central nervous system. 

Modified Boyden chamber 

The Boyden chamber was originally developed for chemotaxis assays and has been modified 

to physically isolate DRG and SCG axons in explant and dissociated cell culture (Fig. 1.2D) (Zheng et 

al., 2001). The chamber is composed of a cell culture well with a removable insert well. The 

polyethylene tetraphthalate (PET) insert well has micropores of sufficiently small size to only allow 

axons, but not somata, to grow through and cover the bottom surface of the insert. The surface of the 

insert can be directly coated with the necessary coatings or glass coverslips can be coated and placed 

on the inserts. Media is added to the culture well, the insert is placed in the well and the cells or 

explant are added to the upper chamber with media. Fluid exchange occurs between the upper and 

lower compartments occurs through the micropores, so media must be changed regularly if differential 

treatment of the somata and axons is desired. Because the cell bodies or explants are grown on the 

other side of the insert membrane from the axons this culture method cannot be used to visually 

evaluate the neurons by immunocytochemistry unless the cells are cultures on coverslips. Modified 

Boyden chambers allow biochemical isolation of pure axons for downstream biochemical analysis. 
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Figure 1.2 

 
Figure. 1.2. Schematic representations of compartmentalized neuron culture chambers for 
isolation of axons. 
A. Top view of sympathetic or sensory neurons/ explants cultured in a Campenot chamber. A thin 
layer of vacuum grease seals the Teflon divider to the prepared culture surface. [Modified with 
permission from (Zweifel et al., 2005)] 
B. Side view of a Campenot chamber with dissociated cells or ganglion explants plated in the center 
compartment. [Modified with permission from (Zweifel et al., 2005)] 
C. Side view of a Campenot chamber with dissociated cells or ganglion explants plated in the side 
compartment. [Modified with permission from (Zweifel et al., 2005)] 
D. Boyden chamber schematic. Dissociated cells or explants are cultured on the upper surface of a 
microporous membrane, with or without a glass coverslip between the neurons and membrane. 
Elongating axons pass through the micropores. The cell body compartment and the axon 
compartment are not fluidically isolated due to diffusion but a gradient can be maintained with regular 
media changes. [Modified with permission from (Cox et al., 2008)] 
E. The molded PDMS microfluidic chamber is affixed to a glass coverslip creating two symmetrical, 
fluidically isolated compartments connected by over 150 microgrooves, each compartment has two 
media access wells. Dissociated CNS neurons are plated in one compartment, growing axons enter 
the microgrooves and emerge in the parallel compartment. 

Microfluidic chamber 

The microfabricated multicompartment microfluidic chamber was developed for optimal growth 

and isolation of long projections from hippocampal and cortical neurons (Fig. 1.2E) (Taylor et al., 

2003). There are two symmetrical, parallel fluidically isolated compartments measuring 2 mm by 7 mm 

by 100 µm tall connected by over 150 microgrooves 10 µm wide by 3 µm tall, which fill by capillary 

action when media is added to one of the compartments. Commercially available microfluidic 
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chambers have various microgroove lengths, which regulates the minimum length necessary for an 

axon to reach the isolated compartment. There are two large media access points, wells, for each 

compartment which minimize the effect of evaporation. Sterile, replica molded poly(dimethylsiloxane) 

(PDMS) microfluidic chambers are placed on coated glass coverslips to create the microfluidic 

chamber, dissociated neurons are directly added to one of the compartments followed by media. 

Astrocyte feeder co-culture is not used in this culture platform, instead B-27 neuron culture 

supplement (Invitrogen) is added to the media. These chambers have been optimized for visual and 

biochemical axon isolation and can be used for fixed or live imaging and biochemical analysis. 

Axonal Capacity for Translation 

For many decades dogma held that the axon of mature neurons depended exclusively on 

transport of proteins from the soma yet a large body of work has overturned this view and informed the 

establishment of a ‘local synthesis model’ of axon function (Alvarez et al., 2000). In this model a 

portion of the local proteome is locally synthesized from mRNA and ribosomes within the axon. Early 

work investigating RNA in neurons detected RNA in the adult rabbit optic nerve derived from the soma 

following in vivo intraocular injection of tritium labeled nucleoside, ([3H]uridine) (Gambetti et al., 1973). 

This study was not able to differentiate between the many different classes of RNA including, rRNA, 

mRNA, tRNA and microRNA, but suggested the hunt for axonal ribosomes and mRNA would be 

successful. Since then translational machinery has been identified within axons of many species. 

Further, cellular components necessary for protein trafficking and secretion, the endoplasmic reticulum 

and Golgi apparatus, are present in axons. Recent, controversial, work proposes transport of 

ribosomes from glia to axons in the PNS. 

Axonal Ribosomes 

Historically the presence of ribosomes within mature axons was discounted due to the inability 

to find them by electron microscopy (EM) but technological advances have facilitated detecting 

ribosome and the proteins of translation initiation and elongation within mature axons. In the rodent 

peripheral nervous system ribosomes have been detected by immunofluorescence (IF) in cultured 
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DRGs from neonatal and adult rats (Bisbal et al., 2009; Calliari et al., 2014) and in vivo by EM in adult 

sciatic nerves (Zheng et al., 2001). Within the central nervous system ribosomes have been 

demonstrated by IF in adult rat medullary roots projecting to the spinal cord (Calliari et al., 2014), 

myelinated axons of spinal nerve roots from adult rabbits and rats (Koenig et al., 2000) and by EM in 

the axons of retinal ganglion cells within the mouse brain from embryonic, young and adult animals 

(Shigeoka et al., 2016). Axonally localized ribosomes have been identified within cultured hippocampal 

neuron by IF and EM (Taylor et al., 2013; Tcherkezian et al., 2010) and adult rat and mouse 

GABAergic hippocampal neurons as well as at the presynapse, as detected by super-resolution 

STORM microscopy (Younts et al., 2016). Evidence suggests mechanisms to regulate the supply of 

axonal translational machinery to meet the local demand. Translational machinery was detected in 

regenerating adult rat spinal cord axons but decreased after recovery. Subsequent injury reactivated 

the axonal enrichment of these proteins suggesting a dynamic intra-axonal environment (Sachdeva et 

al., 2016). Additionally, proteomic analysis of extracted axioplasm from in vivo regenerating adult rat 

sciatic nerves also demonstrated in increase in translational machinery following injury (Michaelevski 

et al., 2010). 

Axonal protein secretion machinery 

Proper trafficking of membrane and secreted proteins involves the rough endoplasmic 

reticulum (ER) and Golgi apparatus. Transcripts encoding membrane and secreted proteins have 

been identified repeatedly as enriched in axons. ER and Golgi components have been detected in rat 

DRG and X. laevis RGC cultures (Merianda et al., 2009) and in vivo in rat DRG (Merianda and Twiss, 

2013). Pharmacological inhibition of Golgi function of cultured X. laevis RGC blocked growth cone 

turning, a process known to require protein synthesis (Merianda et al., 2009). Mechanical injury of 

axons increases intra-axonal calcium levels, and the calcium stores of the axon localized ER is a 

major source for this increase in adult rat DRG axons (Villegas et al., 2014). Additionally, ER and Golgi 

components were enriched in regenerating axons following in vivo axon injury consistent with an 

increased demand for protein synthesis during reinnervation (Merianda and Twiss, 2013). 
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Glia to axon transfer of RNA 

There is a growing body of evidence demonstrating glia to axon transport of RNA. Early work 

investigating RNA in neurons used the peripheral nerve of the adult newt, Triturus viridescens (Singer 

and Green, 1968). Newts have high tissue regenerative capacity with the ability to regenerate whole 

functional limbs following amputation. To investigate the RNA content of axon fragments detached 

from the somata they locally injected [3H]uridine immediately after severing peripheral nerves. They 

found radioactivity in the distal peripheral nerve portions 24 h later despite the fact that these axons 

were severed from the somata and destined to degenerate (Fig. 1.3A and 1.3B). They concluded that 

the most likely source of this RNA signal was the associated Schwann cell (Singer and Green, 1968). 

The unusual regenerative capacity of the newt made it unclear whether this was a species specific 

phenomenon. Similar work identified [3H]uridine labeled RNA grains in the severed axon stump of 

adult rat sciatic nerves (Benech et al., 1982) suggesting transfer of RNA from glia to degenerating 

axon fragments occurs in mammals. Glia-to-axon RNA transfer has been definitively demonstrated in 

the squid giant axon in vitro. It is strongly stimulated by axon depolarization or activation of glial 

glutamate and acetylcholine receptors (Eyman et al., 2007) suggesting the neurotransmitters for 

communication between neurons might also signal to surrounding glia. 

Interest in the possibility of glia-to-axon transport in mammals was fueled by a unique 

spontaneous mutant mouse, Wallerian degeneration slow (Wlds), that has delayed peripheral nerve 

degeneration following injury. Typically a distal desomatized axon (Fig. 1.3A), begins to degenerate 

within 24 to 36 h by a process known as Wallerian degeneration that takes roughly 24 h (Fig. 1.3B). In 

the Wlds mouse, desomatized axon degeneration is delayed by 2 -3 weeks facilitating studies of the 

severed axon fragment (Lunn et al., 1989). Court and Alvarez (2005) noticed that axon fragments 

following sciatic nerve crush in adult Wlds mice contained more ribosomes than their uninjured axon 

counterparts. Since the distal axon was severed from the neuron soma it was highly unlikely that the 

ribosomes originated there (Court and Alvarez, 2005). To study this more closely they created a DNA 

lentivirus encoding enhanced green fluorescent protein (eGFP) fused to the ribosomal protein L4 (L4-

eGFP) and injected the lentivirus into the distal segment of the desomatized nerve. Nerves were 

dissected 7 d later and evaluated for co-localization of ribosome antibody staining and L4-eGFP 
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protein within glia and axons (Fig. 1.3B). All axons that demonstrated L4-eGFP signal were enveloped 

by L4-eGFP positive Schwann cells and uninfected Schwann cells enveloped L4-eGFP negative 

axons (Court et al., 2008). They showed that this transfer was relatively specific as Schwann cell 

cytoplasmic protein S100 was not detected in axons and neither was eGFP from a control lentivirus 

lacking the L4 protein. Small protrusions of the Schwann cells appeared to pierce the myelin sheath 

and enter the axon suggesting a model of axonal entry for the glial derived ribosomes (Court et al., 

2008). 

To investigate glia-to-axon ribosome transfer in the context of axon regeneration they 

performed similar experiments on wild-type adult mice. Degeneration of the severed axon portion is 

complete by day 3 after injury and regeneration begins around day 4. Seven days after injury co-

localization of L4-eGFP and ribosome staining was detected in 12% ± 1% of the regenerating axons 

(Fig. 1.3C) (Court et al., 2011). They also investigated this phenomenon in the regenerative context of 

rat sciatic nerve grafts. Instead of administering the L4-eGFP lentivirus in vivo they cultured and 

infected Schwann cells in vitro, enriching for eGFP positive Schwann cells by fluorescence activated 

cell sorting (FACS). Rats received a 13 mm sciatic nerve graft then 5 x 105 transduced Schwann cells 

were injected into the graft. Regeneration through the length of the graft was seen 16 days after 

surgery and co-localized L4-eGFP and ribosome staining was observed in these axons (Fig. 1.3C). 

There were also L4-eGFP negative ribosomes in axons potentially from the neuron soma or non-

transduced Schwann cells. Co-localized L4-eGFP and ribosome staining was detected in a 

subpopulation of axons at 3, 6 and 8 weeks after surgery (Court et al., 2011). These long term 

observations could mean that the glial derived ribosomes have a very long half-life in the axon or the 

glial transfer of ribosomes continues after regeneration, potentially to support axon maintenance. 

Evidence using rat sciatic nerve explants collected 18 h after nerve injury suggests the mechanism of 

glia-to-axon transport of ribosomal RNA and non-ribosomal RNA molecules requires actin 

polymerization and the actin-based motor protein myosin-Va (Sotelo et al., 2013). In mouse myosin-Va 

is necessary for survival beyond 19-21 days (Searle, 1952) and has been associated with axonal 

transport of diverse cargo including synaptic vesicles and axonal mRNA (Calliari et al., 2014; Kisiel et 

al., 2014). 



 

14 
 

Figure 1.3 

 
Figure. 1.3. Glia-to-axon transport of the large ribosome subunit to degenerating and 
regenerating axons in the sciatic nerve of the PNS. 
A. Mechanical injury to the sciatic nerve severs the distal portions of the axons from the somata, 
inhibiting soma-to-axon transport. 
B. Large ribosome subunits derived from the surrounding Schwann cells can be detected in the 
degenerating axon fragments of the sciatic nerve after injury. 
C. Large ribosome subunits derived from the surrounding Schwann cells can be detected in 
regenerating axons of the sciatic nerve. 

The theory of glia-to-axon transport challenges the doctrine of an autonomous neuron, holding 

that the soma is the only source of protein and mRNA for the axon. It has only been observed 
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following axotomy of PNS neurons and might be limited to this context. The fact that highly enriched 

populations of dissociated neurons, lacking significant numbers of glial cells, can be cultured in vitro 

for weeks demonstrates that neurons have the capacity for autonomous growth. In addition, culturing 

CNS neurons with glial feeder cells, compared to media supplements, does not significantly improve 

viability or the length of time cells can be cultured ex vivo but these feeder layers are rarely in direct 

contact with the neurons (Kaech and Banker, 2006; Vicario-Abejon, 2004). A deeper understanding of 

bidirectional communication between glia and axon, together with our understanding of axon-to-soma 

communication, could alter the way we approach axon biology. 

Axonal transcriptomes 

A critical element for axonal protein synthesis is axonally localized protein-coding mRNA. High 

resolution polyA mRNA in situ hybridization of cultured cortical neurons demonstrated mRNA 

throughout the somata, dendrites and proximal axons after 4 d in culture (Bassell et al., 1994). With 

the necessary components for translation identified within axons the next logical questions were: what 

mRNAs are present in axons and what axonal functions are translation dependent? Unbiased 

methods to evaluate large scale gene expression within the axons of a variety of neurons have 

revealed many conserved Gene Ontology (GO) functional groups. These include proteins involved in 

translation (ribosomal proteins as well as translation initiation and elongation factors), nuclear-encoded 

mitochondrial proteins, cytoskeletal proteins, transmembrane and secreted proteins (Table 1.1). 

There are a few special technical considerations when performing an analysis of axonal RNA. 

First, the RNA content of axons and somata is quantitatively different by many fold, this must be 

controlled and corrected for to compare relative gene expression. Secondly, in vitro methods to 

evaluate axons necessitates that the in vivo axons are injured and regenerate in vitro prior to analysis. 

Mechanisms of axon regeneration are dependent on intra-axonal translation and, as described below, 

active regeneration alters the axonal transcriptome. 
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Table 1.1 Functional analysis of the axonal transcriptome in multiple models 

 Functional categories  
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Reference 

Injury-conditioned adult 
DRG, rat 

Yes Yes Yes Yes (Willis et al., 
2007) 

Embryonic DRG, rat Yes Yes Yes Yes (Gumy et al., 
2011) 

Adult DRG, rat Yes Yes   (Gumy et al., 
2011) 

Embryonic DRG, 
mouse 

Yes Yes  Yes (Minis et al., 
2014) 

Neonatal SCG, rat  Yes   (Andreassi 
et al., 2010) 

Naïve CNS, rat Yes Yes Yes  (Taylor et 
al., 2009) 

Regenerating CNS, rat Yes   Yes (Taylor et 
al., 2009) 

Embryonic RGC, frog Yes Yes Yes Yes (Zivraj et al., 
2010) 

Adult hippocampal 
neuropil, rat 

Yes   Yes (Cajigas et 
al., 2012) 

In vivo RGC, mouse  Yes Yes Yes (Shigeoka et 
al., 2016) 

In vitro sensory neurons 

One of the earliest axonal transcriptome datasets used adult rat ‘injury-conditioned’ DRGs 

grown in modified Boyden chambers (Willis et al., 2007). Previous in vivo injury of the DRG unipolar 

axon distal branch conditions them to regenerate axons more rapidly following subsequent injury, such 

as dissociation prior to in vitro culturing (Lankford et al., 1998). This axon regeneration is transcription-

independent but translation-dependent over 24 h in culture suggesting important features of the 
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axonal transcriptome facilitate regeneration (Twiss et al., 2000). Animals underwent sciatic nerve 

crush injury 7 d before primary DRGs were dissected, dissociated and cultured on Boyden chamber 

inserts with 8 µm diameter pores. Both the injured distal axon branch and the uninjured proximal 

branch of the DRG axon likely regenerated but this was not differentiated in this system. After 20 – 22 

h in culture the lower surface of the membrane, coated with isolated axons, was scraped and 

processed for hybridization to Atlas cDNA arrays (approximately 4000 cDNAs represented). They 

identified more than 200 protein encoding mRNAs, including ‘transmembrane proteins’, ‘translational 

machinery’, ‘cytoskeleton’, and nuclear encoded ‘mitochondrial proteins’. 

To investigate the effects of axon growth-promoting and growth-inhibiting factors on the 

axonal transcriptome they selected a representative panel of 50 mRNAs evaluate following growth 

factor treatment. The growth-promoting factors selected were NGF, neurotrophin-3 (NT3) and brain 

derived neurotrophic factor (BDNF) which all signal through members of the tropomyosine receptor 

kinase (Trk) family of tyrosine receptor kinases. The growth-inhibiting factors were semaphorin 3A 

(Sema3A) and myelin-associated glycoprotein (MAG), selected because they induce retraction or 

repulsion of rat DRG axons. To prevent diffusion to the upper chamber growth factors were covalently 

coupled to 15 µm diameter polystyrene microspheres and the inserts were placed directly in contact 

with the microspheres for 4 h. An additional pharmacological manipulation in these experiments was 

the addition of the reversible transcription blocker, 5,6-dichloro-1-β-D-ribofuranosyl-1H-benzimidazole 

(DRB), to prevent any transcriptional effect of the growth factors. The ability to rule out transcription as 

the driving force behind changes in the axonal transcriptome allowed them to focus on targeted, 

stimulated trafficking of mRNA to axons though it did not rule out changes in mRNA stability. Since this 

form of injury-conditioned axon regeneration is transcription-independent blocking transcription did not 

negatively affect axon growth. Each of the 5 treatments resulted in significant increases and 

decreases in specific axonal mRNAs as well as identification of transcripts that did not change (Willis 

et al., 2007). 

They found that NGF and BDNF broadly had similar effects on the transcripts tested while the 

effect of NT3 was unique. With only one exception the growth-inhibiting factors had distinct effects on 

transcripts compared to the growth-stimulating factors. Some of the most interesting single transcript 
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response patterns included the very well characterized axonally translated β-actin mRNA; all three 

neurotrophins significantly increased axonal localization of this mRNA while both inhibitory factors 

significantly decreased its localization. Localization of growth associated protein 43 (GAP43) mRNA 

was increased only by NGF and remained unchanged in the presence of the other growth factors. 

Subsequently, this group demonstrated that the balance between axonal translation of GAP43 and β-

actin regulated axon branching and axon length in this model system (Donnelly et al., 2013). In 

addition, vimentin mRNA had a unique response pattern, it was unchanged following NT-3 exposure 

but increased greater than 3.5 fold with the other growth-stimulating factors and the growth-inhibiting 

factors. Vimentin is a type III intermediate filament protein of the intermediate filament protein family 

the cytoskeleton and has a role in anchoring ER and mitochondria within the cytosol (Katsumoto et al., 

1990). They showed that changes in the axonal and somatic transcriptomes were inversely related 

supporting the hypothesis that, in at least some cases, individual transcript changes in the axon draw 

from the pre-existing somatic transcriptome. Further, bath application of NGF did not stimulate the 

same axonal transcriptome changes as isolated axon NGF treatment suggesting the importance of the 

local extracellular environment in altering the local axonal transcriptome. 

To determine the mechanism behind this NGF-stimulated transcriptome plasticity they 

demonstrated functional microtubules were critical while functional microfilaments were important but 

not necessary. Trk kinase activity was necessary for the NGF-stimulated increases and blocking it 

lead to axonal increases in the transcripts typically decreased following NGF. Lastly, individual 

transcripts responded differently to pharmacological inhibition of phosphatidyl inositol-3 kinase (PI3K) 

and mitogen-activated protein kinase (MAPK) signaling pathways downstream of Trk activation. Taken 

together their data suggest that the plasticity and diversity of the adult rat DRG axonal transcriptome in 

the integrated effect of multiple local mechanisms (Willis et al., 2007). 

Axon regeneration in the PNS system is dependent on local translation and the axons of 

neurons from younger animals have a higher capacity for regeneration than those from older animals 

(Chierzi et al., 2005). The axonal transcriptomes of DRGs from young and old animals might reveal 

axon-intrinsic regeneration mechanisms. To investigate this, whole DRG explants were dissected from 

embryonic (E16) and adult (3 – 5 month old) rats and cultured without dissociation in Campenot 
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chambers with NGF-supplemented media for 4 d (Gumy et al., 2011). Microarray analysis of axonal 

mRNA revealed 2627 transcripts localized to embryonic axons and 2924 transcripts within adult 

axons, 1445 of these localized transcripts (55.0% and 49.4% of the embryonic and adult 

transcriptomes, respectively) were present in both age samples while the remainder were age specific. 

The common transcripts were enriched for nuclear encoded ‘mitochondrial protein’s, proteins involved 

in ’translation’, and ‘neurite development and growth’. The embryonic specific transcripts were 

enriched for ‘cytoskeleton’ proteins and ‘transport/trafficking’ related proteins, such as microtubule 

associated motor proteins, ‘vesicle’ proteins involved in membrane trafficking and synaptotagmins, 

synaptic vesicle proteins necessary for Ca2+-induced exocytosis. They were also exclusively enriched 

for ‘cell cycle’ proteins. In the adult derived DRG axons mRNAs encoding ‘inflammatory’ and ‘immune-

related’ functions were enriched, specifically cytokine-cytokine receptor interactions, Toll-like receptor 

signaling and antigen presenting and processing functions. The enriched functions in the axonal 

transcriptome point toward axon growth and maintenance while those of the adult transcriptome 

highlight pathways that have been implicated in chronic and neuropathic pain (Gumy et al., 2011).  

There are a few noteworthy details of the pharmacological manipulations in this work. First, 

the potent DNA cross-linker mitomycin C was included in their cultures to block the proliferation of 

mitotic, non-neuronal cells, such as fibroblasts and Schwann cells, present in DRG explants. This 

served to isolate the neuron intrinsic differences between embryonic and adult DRG axons without the 

potentially confounding contribution of non-neuronal cells. Secondly, as previously demonstrated by 

Willis et al (2007), the necessary inclusion of NGF in this culture system likely had an effect on the 

axonal transcriptome. This might recapitulate the in vivo environment since NGF is one of the 

neurotrophic factors secreted by DRG innervated tissues. 

Microarrays have a reduced quantitative range and finite coverage of the genome as 

compared to RNA sequencing (RNA-seq). Minis et al (2014) applied Solexa sequencing to total RNA 

derived from the distal axon branch of embryonic mouse DRGs. They used cultured explants of 

embryonic mouse DRGs still attached to the spinal cord in Boyden chambers; because the proximal 

axon branch was still attached to the spinal cord it was not able to grow through the membrane pores 

(Minis et al., 2014). Explants were cultured in the presence of NGF for 48 h prior to purifying RNA. The 
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‘explant’ RNA samples contained the whole DRG-spinal cord explant. Using ranked differential 

expression they evaluated enriched GO categories within differential expression bins spanning the 

expression profile from ‘absent in axons but present in explants’ to ‘highly enriched in axons’. The 

transcripts highly depleted in axons clustered into one functional category while the transcript highly 

enriched in axons clustered into 4 categories. They focused their analysis on the mRNAs that were 

within the extremes of differential expression (Minis et al., 2014). 

The axonally depleted fraction was best represented by the GO category ‘membrane fraction’ 

(GO:0005624). They interpreted this as support for somatic synthesis of membrane proteins followed 

by transport to axonal sites. This GO term was based on experimental results of biochemical cell 

fractionation not a bona fide cellular compartment and was made obsolete in the EMBL-EBI database 

in mid-2012. They specifically look at 20 transcripts encoding receptors for neurotrophins and axon 

guidance cues within their RNA-seq data and found that 9 were depleted from axons, 5 were not 

differentially expressed and 6 were enriched in axons. While they stated this supported their 

conclusions I find this diverse transcript specific localization more suggestive of a variety of 

mechanisms regulating receptor localization. 

The 4 axonally enriched categories included ‘secreted proteins’, ‘sequence specific DNA 

binding’, proteins involved in ‘translation’ and ‘immune response’. Beyond this broad characterization 

they made three unique discoveries. First, a closer analysis of the transcript encoding ‘secreted 

proteins’ revealed that, in particular, mRNAs encoding proteins with an N-terminal signal peptide 

amino acid sequence were axonally enriched. The signal peptide sequence is rapidly bound during 

protein translation by the signal-recognition particle which stalls translation and facilitates transport of 

the ribosome complex to the ER for secretion of the new protein. Another sub-category of note within 

‘secreted proteins’ were related to collagen of the extracellular matrix. Transcripts encoding many 

collagen chain subunits and enzymes of the collagen biosynthesis pathway were highly enriched in 

axons. Taken together these results suggest local translation and ER-dependent protein secretion 

within sensory axons facilitates modification of the local extracellular environment. 

Secondly, taking advantage of the unique genome coverage of their RNA-seq data evaluated 

the axonal expression of all mitochondrial genes. Mitochondrial function requires coordinated 
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expression of the 37 genes of the mitochondrial genome (mtDNA) and more than 1000 nuclear 

encoded mitochondrial genes (Garesse and Vallejo, 2001), events that are separated by a long 

physical distance in axons. Proteins encoded in both genomes form the complexes of the electron 

transport chain, but the enzymes of the citric acid cycle and the mitochondrial transcription machinery 

are all nuclear encoded. Mitochondrial translation requires mtDNA encoded tRNAs and rRNA and 

nuclear encoded accessory ribosomal proteins and translation factors. Mitochondrial encoded genes 

were within the highest expressed RNAs in both axons and explants. More than 20% of the total 

axonal RNAs aligned to mtDNA, while approximately 2% of the explant RNA aligned to mtDNA; 

mitochondrial rRNA (mt-rRNA) was extremely enriched in the axons. Transcripts from the nuclear 

encoded mitochondrial genes were equal expressed between the two compartments, consistent with 

the finding that the GO category ‘mitochondria’ was not an enriched cluster in the axons. The relative 

expression, not enrichment, of mtDNA genes was 1 to 2 orders of magnitude higher than the 

expression of nuclear encoded genes in the axons. This novel finding of extreme differential 

expression of mitochondrial genes could be a result of the smaller size of the axonal transcriptome, in 

terms of how many genes are represented, as compared to the explant transcriptome. Alternatively, it 

could point to unknown post-transcriptional events coordinating mitochondrial gene expression and 

function.  

The ability to deeply evaluate splice variants in their RNA-seq data allowed them to identify 

short sequence motifs enriched in axonal mRNAs. They identified 4169 differentially expressed splice 

variants, from 1556 genes, where at least one splice variant was preferentially found in axons and at 

least one different splice variant was found in the whole explant but absent from the axon, 1888 were 

preferentially axonal and 2281 were absent from axons. This is the first large scale evidence for 

alternative splicing associated with mRNA axonal localization. Using only unique sequences contained 

within each splice variant, 7743 axonally present elements and 6202 axonally devoid elements, they 

used a published ‘Feature Motif Model’ algorithm to find elements enriched in the axonal sequences 

versus the axonally devoid sequences. They identified 5 short sequence elements enriched in the 

axonally localized splice variants and 2 sequence elements in the axonally absent splice variants. 

Messenger RNA localization sequence elements are canonically found in the 3’ untranslated region 
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(UTR) of the mRNA between the stop codon and the polyA tail. They evaluated the distribution of the 5 

short sequence elements within the 1888 preferentially axonal transcripts finding that the elements 

were equally distributed across the 5’ UTR, protein coding sequence, and 3’ UTR, after controlling for 

the length of each of these elements (Minis et al., 2014).  

It is important to point out that proliferation of non-neuronal cells in explant tissue was not 

blocked in this work. Mitotic cells, particularly Schwann cells, were clearly detected in the explant 

cultures by immunocytochemistry. These non-neuronal cells also contributed to the quantitative gene 

expression profile of their explant samples to an unknown degree. Additionally, the presence of NGF 

in the axonal media, to stimulate axon regeneration, could affect the transcriptome (Willis et al., 2007), 

the methods do not specify whether the explants were also in NGF supplemented media which could 

have an effect on transcription. 

The mitochondrial mRNA and mt-rRNA results raise a few questions. They did not consider 

that the extremely high mitochondrial rRNA expression could be a technical or bioinformatic artifact. 

Nuclear-encoded rRNA typically makes up more than 80% of the total RNA isolated from whole cell 

lysate and in vitro RNA amplification methods might be slightly biased toward amplifying rRNA over 

mRNA. Specifically, amplification methods use a pool of primers including random hexamer sequence 

primers and 12 – 18 nt oligo(dT) primers, the random primers equivalently amplify the whole transcript 

while the oligo(dT) primers amplify sequences upstream of a poly-adenylate track, such as the polyA 

tail. Most mRNAs have a polyA tail, co-transcriptionally added by factors associated with RNA 

polymerase II, regulating mRNA translation and degradation. Ribosomal RNA units are transcribed by 

RNA polymerases I and III, they do not have polyA tails but they do contain multiple poly-adenylate 

tracks that are genetically encoded; these sequences can be amplified by oligo(dT) primers. Taken 

together this creates an in vitro reaction where each mRNA is primed once from the polyA tail and 

multiple times, roughly proportional to the length of the mRNA, throughout the length of the transcript. 

The rRNAs can be amplified from each polyA track and multiple times from random locations by the 

random hexamer primers. It would have been helpful if they reported on the relative quantity of cellular 

rRNA within axons in relation to mt-rRNA, but the rRNA RNA-seq data is typically discarded during the 

RNA-seq data genome mapping process. 
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In vitro sympathetic neurons 

Sympathetic and sensory neurons are functionally unique so the axonal transcriptome of 

neonatal rat SCGs were quantified by serial analysis of gene expression (SAGE) (Andreassi et al., 

2010). The SAGE technique produces one short, less than 20 base pair, cDNA ‘tag’ from each RNA 

molecule. The library of cDNA tags are enzymatically concatenated, cloned and sequenced by 

traditional Sanger sequencing (Gowda et al., 2004). Theoretically the transcript to tag ratio is 1:1 so 

the number of unique tags mapping to a gene is a direct measure of the number of transcripts. 

Dissociated SCG cells from neonatal rats were plated in Campenot chambers supplemented with 

NGF. Regenerating axons were grown for 3 – 4 weeks. Total RNA was purified from the cell bodies 

and isolated axons and amplified with SAGE primers incorporating sequence elements to facilitate 

preparation of the SAGE library and deconvolution of the sequencing results. They sequenced 1440 

clones from each library, obtaining 20082 tags from the axonal library and 20420 tags from the cell 

body library which they mapped to the rat UNiGene build 166 reference database. They found the 

somatic transcriptome contained transcripts related to ‘cytoskeletal’, ‘synaptic’, and ‘nuclear’ functions. 

The axonal library was enriched for transcripts of nuclear encoded ‘mitochondrial’ and ‘signal 

transduction’ proteins (Andreassi et al., 2010). 

The greatest difference between their somatic library and axonal library was the percentage of 

tags that that could not be mapped to their reference database. The UNiGene databases contain only 

transcribed sequences, not intergenic DNA sequences, and are filtered to omit RNAs with repeated or 

low-complexity sequences, RNAs derived from ribosomal RNA genes, and mtDNA genes. Tags 

mapping to uncharacterized but annotated genes represented 11.25% of the somatic library and 4.7% 

of the axonal library but tags that couldn’t be mapped comprised 30.05% of the somatic library and 

39.9% of the axonal library. Comparing these unannotated axonally derived tags to a database of 

known noncoding RNAs suggested that approximately 1% of the total axonal transcriptome could be 

noncoding RNAs. 

Two cell culture pharmacological manipulations they used created a unique and potentially 

more homogeneous cell body population. First, similar to Gumy et al (2011), they prevented the 

proliferation of mitotic cells using a deoxyribonucleotide analogue to disrupt DNA synthesis enriching 
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for neurons in the cell body compartment. Second, they remove NGF from the somatic compartment 

after a week causing cells without axons in the isolated compartment to activate programmed cell 

death pathways leaving a neuronal population that only had axons extending into the isolated culture 

compartment. 

Regarding the ‘unmappable’ tags, it would be informative if these tag sequences could be 

mined for ribosomal RNA, mtDNA encoded proteins and mt-rRNA. This analysis could support the 

mitochondrial RNA findings of Minis et al (2014) in a different species and neuron type. 

In vitro CNS neurons 

RNA within the axons of CNS neurons is more controversial than within the axons of PNS 

neurons. The axonal transcriptome of CNS neurons grown in axon-isolating microfluidic chambers was 

evaluated in uninjured and injured regenerating axons (Taylor et al., 2009). Dissociated cortical and 

hippocampal neurons from embryonic rats were grown in microfluidic chambers with 450 µm 

microgrooves separating the somatic compartment from the axonal compartment. While these 

neurons have an embryonic origin they are fully differentiated ‘mature’ neurons. The media did not 

contain serum, limiting the proliferation of rare non-neuronal cells, or exogenous growth or guidance 

cues for axon elongation through the microgrooves but the media supplement B-27 (Gibco) was used. 

Axonal and somatic RNA was collected on days in vitro (DIV) 13 and evaluated by microarray. 

Microarray data was thresholded for expression resulting in 6702 microarray probe sets in the somatic 

dataset and 2051 probe sets in the axonal dataset. All of the axonal probes were detected in the 

somatic dataset. A second threshold was set for the axonal dataset to generate a list of transcripts 

reliably localized to axons, 308 genes. GO categories enriched in the axonal mRNAs encoded 

‘translation’, ‘mitochondrion’, ‘intracellular transport’, and ‘cytoskeleton’ proteins (Taylor et al., 2009). 

Next they investigated how in vitro axon injury affected the axonal transcriptome of 

regenerating axons. On DIV11 fluidically-isolated axons were destroyed by physical disruption and the 

transcriptome of regenerating axons was evaluated 48 h later, on DIV13. The somatic RNA following 

this manipulation was not collected. Comparing the transcriptome of regenerating axons to naïve 

axons revealed 866 transcripts that changed in axonal expression by more than 20% in regenerating 
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axons, 480 transcripts increased and 386 transcripts decreased. Surprisingly, all but 8 of the increased 

transcripts had not been detected as reliably localized to axons in their initial axonal transcriptome 

analysis. Functional classification of the differentially expressed mRNAs suggested that the increased 

transcripts in regenerating axons were enriched for ‘cell-cell signaling’ molecules, ‘cell differentiation’, 

and ‘secreted’ proteins. The decreased transcripts were enriched for ‘mitochondrial’ and ‘cytoskeletal’ 

proteins and ‘intracellular transport’ proteins. Many of the enriched ‘cell differentiation’ proteins are 

required for nervous system development and those of the ‘cell-cell signaling’ and ‘secretion’ groups 

are involved in synaptogenesis, neurotransmitter release and synaptic plasticity suggesting that these 

regenerating axons might have an increased capacity for axon targeting and synapse formation and 

function. The decreased categories in regenerating axons suggests that the dynamic cytoskeleton and 

intracellular transport along the cytoskeleton might be unique in regenerating axons. Also, the balance 

between oxidative phosphorylation and glycolysis might be different in regenerating axons or transport 

of new mitochondria during axon outgrowth reduces the local need for mitochondrial protein synthesis. 

They pointed out that axonal localization of proteins involved in translation, such as ribosomal proteins 

and initiation and elongation factors, were not significantly changed during regeneration suggesting 

the local capacity for translation was not significantly altered (Taylor et al., 2009). 

Growth cone turning in response to guidance cues is unequivocally dependent on local 

translation and the attractive or repulsive response to cues changes during the course of development 

(Jung et al., 2011; Jung and Holt, 2011). To determine whether this change in responsiveness was 

dependent on changes in the growth cone transcriptome Zivraj et al (2010) used laser capture 

microdissection (LCM) to isolate mRNA within growth cones. Whole-eye primordia from late stage X. 

laevis embryos were cultures and growth cone RNA was collected 24 h later. Microarray analysis 

identified 444 transcripts with known functions in the growth cones. Ingenuity Pathway Analysis (IPA) 

for enriched functions and signaling pathways revealed that 31% of the encoded proteins functioned in 

‘protein synthesis and translation’, this included translation initiation and elongation factors, mRNA 

processing proteins, protein folding chaperones and 69 0f the 80 ribosomal proteins. The second 

largest functional category was ‘metabolic/glycolytic’ and included proteins of oxidative 

phosphorylation and metal-binding proteins. Functional categories with fewer transcripts represented 
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included ‘cytoskeletal/motor’, ‘signaling’, ‘transmembrane/cell surface receptor’, and ‘transcription 

factor’. They then evaluated the mRNA within growth cones derived from earlier stage embryos grown 

in culture for 17 h, resulting in growth cones that were approximately 24 h younger than the ones 

previously evaluated. Significantly fewer mRNAs were detected in these younger growth cones, 171 

genes with known function. The young growth cone transcriptome was significantly less diverse than 

that of the older growth cones. The majority of these transcripts could be functionally classified as 

involved in ‘protein synthesis’ and the major enriched pathway was ‘oxidative phosphorylation’. Of the 

transcripts in young growth cones 66% were also present in old growth cones, only 60 transcripts were 

exclusively detected in the young growth cones (Zivraj et al., 2010). 

The growth cone is a unique functional subcellular compartment as compared to the axon but 

whether the growth cone transcriptome was distinct or reflected that of the axonal transcriptome was 

the next question they asked. Since the older growth cones had a more diverse transcriptome they 

used LCM to capture axons of similarly cultured older RCGs. They identified 5105 axonally localized 

mRNAs. Functionally there were many similarities between the axonal and growth cone 

transcriptomes, including functional enrichment for ‘protein synthesis’, ‘metabolic/glycolytic’, and 

‘cytoskeleton/motor’, as well as the ‘oxidative phosphorylation’. Categories unique to the axons 

included ‘protein trafficking’, ‘protein folding’ and ‘cell-mediated immune response’. They then turned 

to evaluate the transcripts enriched in growth cones as compared to the axons. Twenty-eight genes 

were enriched in the growth cones, the majority had cytoskeleton-associated functions or were 

involved in protein synthesis. The 523 transcripts enriched in the axons over the growth cones 

included the ‘metabolic/glycolytic’ functional group and ‘transcription factors’ (Zivraj et al., 2010). 

To compare the RGC growth cone transcriptome across species they collected embryonic 

mouse RGC growth cones by LCM after 24 h in culture. They identified 1800 annotated transcripts. 

They found moderate conservation between species of specific transcripts within growth cones which 

was enriched for ‘oxidative phosphorylation’ and ‘protein synthesis’, in particular ribosomal proteins, 

yet the mouse growth cones included several nuclear-encoded proteins of the mitochondrial ribosome. 

Taken together their work suggests a dynamic transcriptome in the RGC growth cone that has 

age specific and species specific unique features with a moderate sized pool of potentially constitutive 
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mRNAs. The finding that young growth cones have a smaller transcriptome than older growth cones 

suggests that as growth cones mature they require an increase in the diversity of the locally 

synthesized proteins, potentially protein transport from the somata cannot produce a sufficiently rapid 

change in the local proteome of longer axons. Their work was somewhat restricted due to the limited 

annotation of the X. laevis genome at the time of the study. Notwithstanding, the similarities found 

between the X. laevis and mouse grown cone transcriptomes are consistent with previous findings. 

In vivo CNS neurons 

As previously pointed out cultured neurons must recover from the stress and injury associated 

with techniques to isolate them. Whether this has long term effects on the somatic or axonal 

transcriptome is unknown making it valuable to evaluate the axonal transcriptome in vivo. The ability to 

collect pure axonal RNA in vivo is significantly hindered by the extreme size differential between axons 

and the surrounding cells. Extensive brain mapping data can suggest areas that are enriched for 

axons but the ability to physically isolate axons from dendrites in vivo has not been developed, though 

some genetic tools exist to isolate the presynapse from the postsynapse. Intra-axonal translation in 

mature, uninjured neurons of the adult CNS has been difficult to unequivocally prove; dendrites rely on 

local translation and easily mask any contribution of axonal translation. Regions enriched for 

dendrites, axons and glial filaments are referred to as ‘neuropil’ and provide the best physical sites to 

enrich for axonal and dendritic transcripts in vivo. 

Many forms of synaptic plasticity in the CA1 region of the hippocampus are translation 

dependent so deep sequencing was used to determine the transcripts within the neuropil of the adult 

rat CA1 area (Cajigas et al., 2012). The microdissected neuropil contained dendrites, axons, glia, a 

sparse population of interneurons and some blood vessels. They detected 8379 unique mRNAs 

enriched for genes classified in ‘synaptic function’, ‘myelin’ and ‘translation’. To enrich for transcripts 

within axons and dendrites they bioinformatically subtracted mRNAs identified in astrocytes, 

oligodendrocytes, interneurons, blood vessels, mitochondria and transcripts encoding nuclear 

proteins. The resulting list of 2550 transcripts represents the combined axonal and dendritic 

transcriptome of the adult rat hippocampal neuropil. These transcripts broadly represented most of the 
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biological functions known to occur in dendrites and axons. Specific to axons they found many mRNAs 

encoding canonical presynaptic proteins including proteins that function to structurally organize the 

presynapse and regulate presynaptic vesicle release. 

This work was not able to quantify or differentiate the relative contribution of transcripts 

localized to the axons versus the dendrites so questions regarding the differences between the 

transcriptomes of these subcellular compartments remain. I suspect that there is a significant amount 

of overlap between these transcriptomes since both regions rely on local translation for cytoskeleton 

dynamics, ribosomal protein expression, and mitochondrial function. Differences might include 

neurotrophic and endocannabinoid receptors, implicated in modulating presynaptic function, or the 

protein subunits of post-synaptic glutamate and GABA receptors, the major neurotransmitters in this 

brain region. 

Recently, a group developed a method to sequence the ribosome-bound mRNAs from the 

axons of mouse RGCs in vivo (Shigeoka et al., 2016). The RiboTag knock-in mouse (Sanz et al., 

2009) uses cre-mediated recombination to replace the endogenous ribosomal protein L22 (Rpl22) 

allele to a human influenza hemagglutinin (HA) tagged allele. Shigeoka et al (2016) permanently 

labelled RGCs by mating RiboTag mice with Pax6-alpha-Cre mice to transiently express cre in neural 

progenitors of the peripheral retinal primordium. The axons of these cells terminate in the superior 

colliculus of the midbrain (SC) so dissection of this region followed by RNA immunoprecipitation (RIP) 

significantly enriched for ribosome bound mRNAs within the distal axons. They also prepared samples 

from the retinal ganglion somata. Electron microscopy demonstrated HA-tagged ribosomes in RGC 

axons and presynaptic terminals of embryonic (E17.5), neonatal (P0.5), young (P7.5) and adult 

animals so they evaluated axonally localized mRNA at these stages. They estimated that the 

optimized protocol captured approximately 40% of the total HA-tagged ribosome population. They 

confirmed, using an in vitro ribosome run-off protocol, that 85% of these purified ribosome-mRNA 

complexes were actively translating so they refer to their data as capturing the ‘axonal translatome’ 

(Shigeoka et al., 2016). 

The landscape of the translatome was developmentally regulated. There was clear evidence 

of axonal translation within adult axons but the number of axonally translated mRNAs was highest in 
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neonatal axons and decreased with age. Axon enriched categories included ‘neuron projection’, the 

actin and microtubule ‘cytoskeleton’, ‘axon’, ‘synapse’, and ‘vesicle’, ‘oxidative phosphorylation’ and 

neurodegenerative disease pathways. Developmental changes in the translatome included categories 

associated with ‘morphogenesis’, ‘development’, ‘organization’, and transport at the  embryonic and 

neonatal time points and at the young and adult time points ‘neuron remodeling’, ‘synaptic 

transmission’ and ‘plasticity’, and ‘metabolic’ processes. 

An interesting finding of this work was evidence in younger axons of active translation to 

regulate axon pruning that was absent from adult axons. This suggesting that in mature, properly 

targeted, uninjured RGCs axon pruning mechanisms are locally silenced through mRNA trafficking or 

storage in ribonucleoprotein complexes that do not contain ribosomes. Secondly, they found evidence 

for differential translation of isoform-specific splice variants between the somata and axon such that 

one variant is axonally translated while the other was only detected in the RGCs. In fact, some of 

these axonal splice variants contained alternative amino acid sequences, absent from the somatic 

isoform, potentially pointing to altered protein function in axons. Lastly, they found evidence of 

ribosome-bound circular RNAs derived from three genes (Rhobt3, Ubn2, and Ankrd12) and were able 

to confirm this using RT-PCR without additional RNA amplification techniques. 

 The RiboTag mouse provides a unique genetic tool to capture and enrich for ribosome-bound 

mRNAs within heterogeneous material. The novel application of this allele in isolating axonally 

localized ribosomes and the associated mRNAs by Shigeoka et al (2016) support existing functions for 

axonal translation and suggest that differential trafficking of mRNA splice variants might 

mechanistically regulate some mRNA trafficking and axonal protein function. It is important to note that 

if glia-to-axon ribosome transport occurs in RGC axons astrocyte delivered ribosomes would not 

contain the HA-tagged RLP22 protein and would not be captured. 

Conserved axonal transcriptome functions 

Taken together these datasets clearly demonstrate the conserved enrichment for mRNAs 

encoding ribosomal proteins and factors regulating translation, nuclear encoded mitochondrial 



 

30 
 

proteins, cytoskeleton components, transport proteins and their regulators, as well as secreted 

proteins. 

Intra-axonal translation 

A large body of evidence from a number of in vitro model systems implicates intra-axonal 

translation in mechanisms during all stages of life. Local translation within the growth cone, a unique 

subcellular compartment at the tip of the axon, during axon guidance is well established. The related 

topic of local translation during axon growth and extension, in the context of development and 

regeneration following injury, is well accepted. Local translation during these processes, guidance and 

extension, have been thoroughly reviewed (Doron-Mandel et al., 2015; Jung and Holt, 2011; Jung et 

al., 2011; Wang et al., 2007). These topics will not be specifically covered in this review. I will focus on 

axonal translation in the context of the long term health of the neuronal cell body and axon, synaptic 

plasticity and axon-to-soma signaling following axon injury. 

Nerve growth factor (NGF) was discovered in the late 1940’s for its ability to regulate the 

survival, maturation and guidance of embryonic neurons in the chick PNS (Levi-Montalcini and 

Hamburger, 1951; Levi-Montalcini et al., 1954). Study of this prototypical neurotrophic factor and 

others led to the ‘neurotrophic factor hypothesis’ (Levi-Montalcini, 1987). It states: developing neurons 

compete with each other for a limited supply of neurotrophic factors secreted from target tissues; 

successful neurons survive while unsuccessful neurons die. The tenets of this hypothesis place the 

developmentally regulated mechanisms of neuron survival, axon guidance, axon maintenance/ 

pruning, as well as axon regeneration and reinnervation on the opposite side of the coin from the 

disease and disability of neurodevelopmental disorders, age related neurodegeneration and axon 

injury. 

Cell viability and axon maintenance 

Neuron cell death and axon pruning are necessary during the highly orchestrated process of 

neurodevelopment. The predictable neuroanatomical circuitry necessary for normal nervous system 
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function relies on removing unnecessary components but dysregulated cell death or axon 

degeneration can have a significant effect on health. 

CREB-mediated pro-survival gene expression profile 

DRG sensory neuron survival in vitro is dependent on axonal NGF signaling (Cox et al., 2008). 

There are two known NGF receptors, tropomyosine receptor kinase A (TrkA) and low-affinity 

neurotrophin receptor (p75NTR) (Levi-Montalcini, 1987), both are tyrosine receptor kinases. Locally 

applied NGF stimulated intra-axonal translation of cyclic adenosine monophosphate (cAMP) response 

element binding protein (CREB) and this locally synthesized CREB was retrogradely transported to the 

nucleus, likely via microtubule motor-dependent active transport, to maintain a pro-survival gene 

expression profile. Further, this axonally synthesized CREB seemed to be the predominant source of 

transcriptionally active phosphorylated CREB (pCREB) required for the transcriptional profile (Cox et 

al., 2008). 

NGF-stimulated local translation of IMPA1 has been implicated in SCG axon maintenance 

(Andreassi et al., 2010). Impa1 encodes the protein inositol monophosphatase 1, a key enzyme in 

regulating the cellular availability of inositol which is a basic component or precursor to many 

intracellular messengers and membrane phospholipids. Interestingly a downstream of TrkA 

phosphatidyl inositol-3 kinase (PI3K)/ Protein kinase B (AKT) signaling is implicated in the translational 

response. The authors speculate that axonal IMPA1 might locally regulate membrane 

phosphoinositides and therefore have a role in lipid biosynthesis required for axon membrane stability, 

growth, vesicle trafficking and endocytosis. Predicting that axonally applied Impa1 siRNA would 

negatively affect endocytosis and vesicle trafficking by disrupting lipid biosynthesis they evaluated 

nuclear pCREB which depends on NGF-TrkA internalization and retrograde transport; pCREB was 

significantly reduced (Andreassi et al., 2010). 

In stark contrast to the axons of rodent sensory neurons from the DRG (Cox et al., 2008), 

Creb mRNA was not detected in SCG axons (Andreassi et al., 2010), suggesting significantly different 

mechanisms of NGF-stimulated pCREB nuclear accumulation in DRGs and SCGs. The pro-survival 

gene expression profile maintained through axonal NGF signaling has not been characterized. 
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Axonally translated mitochondrial proteins 

Local protein synthesis is required for SCG axon maintenance in vitro (Hillefors et al., 2007). A 

24 h blockade of axonal translation using three functionally distinct translation inhibitors (the cytosolic 

translation inhibitor cycloheximide; mitochondrial translation inhibitor chloramphenicol; cytosolic and 

mitochondrial translation inhibitor emetine) resulted in axon retraction with no detectable change in the 

fluidically isolated somata. Further, blocking local translation for 3 h was sufficient to reduce 

mitochondrial function as measured by the renewal of ATP stores following chemical axon 

depolarization. Blocking axonal mitochondrial protein transport, the mechanisms by which nuclear-

encoded mitochondrial proteins are imported, reduced mitochondrial function. They verified the axonal 

localization of mRNA for three nuclear-encoded mitochondrial genes, including that of cytochrome C 

oxidase subunit IV (Coxiv) (Hillefors et al., 2007). In a follow up study they verified that local synthesis 

of COXIV is directly proportional to mitochondria function within the axon. Increased COXIV protein 

was associated with increased ATP levels and decreased COXIV protein was associated with reduced 

ATP levels. Further, axonal levels of Coxiv mRNA, protein and mitochondrial function could be 

regulated by axonal miR-338 (Aschrafi et al., 2008). Transport of Coxiv mRNA to the axon could be 

prevented with a competitive transgene carrying the Coxiv localization sequence resulting in 

decreased local ATP levels and increases in reactive oxygen species (ROS). Transgenic mice 

expressing the competitor in the forebrain had increased ROS in the forebrain and behavioral testing 

revealed an “anxiety-like” and “depression-like” phenotype (Kar et al., 2014). 

Lamin B2 (LB2, gene lmnb2) was identified, using proteomic techniques, as axonally 

translated in X. laevis retinal ganglion cells (RGC) following stimulation by the guidance cue Engrailed-

1 (Yoon et al., 2012). Beta type nuclear lamin (LB2) is one of three class V intermediate filament 

proteins that comprise the nuclear lamina inside the inner nuclear membrane with functions in nuclear 

stability and chromatin structure. It has also been identified in proteomic studies of mitochondria 

(Rezaul et al., 2005). Local synthesis of LB2 was required and sufficient for in vivo axonal 

maintenance of the retinal ganglion cell pathway. Axonal knockdown of LB2 resulted in axon 

degeneration without activating apoptotic signaling in the RGCs, suggesting the nuclear lamina was 

undisturbed. Further, an LB2 construct lacking the nuclear localization sequence was able to rescue 
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axon degeneration following local LB2 knockdown, further suggesting axonally synthesized LB2 did 

not primarily function in the nucleus. Axonal mitochondria morphology was altered and membrane 

potential was reduced following local Lamin B2 knockdown suggesting axonal LB2 is involved in 

mitochondrial function necessary for axon maintenance (Yoon et al., 2012). 

Taken together this work demonstrates that neuron viability can depend on distal neurotrophic 

signals detected by the axon and converted to somatic signals through local protein synthesis. Further, 

axon maintenance relies on local translation-dependent mitochondrial function and implicates axonal 

microRNA mediated gene regulation. Reduced local mitochondrial function and compromised axon 

health might contribute to some neuropsychiatric diseases. 

Axonal translation in synaptic plasticity 

The current theory for the molecular basis of memory is synaptic plasticity, the strengthening 

or weakening of synaptic function. Synaptic plasticity includes changes in presynaptic neurotransmitter 

release, changes in postsynaptic responsiveness to neurotransmitter, synaptogenesis and synapse 

elimination. The requirement for protein translation to form memories, a process called memory 

consolidation, has been demonstrated in vivo for many memory pathways but not all. In rodents fear-

condition context memory (Barrientos et al., 2002), spatial memory (Meiri and Rosenblum, 1998) and 

incentive-based behavioral modification (Wang et al., 2005) depend on new protein synthesis. 

Synaptic plasticity mechanisms involving changes in the postsynaptic neuron response to 

neurotransmitter have been shown to depend on local dendritic translation. One of the major obstacles 

to definitively demonstrating presynaptic translation in synaptic plasticity is isolating the presynapse 

from the postsynapse visually, pharmacologically and biochemically. 

Long-term depression of synaptic activity 

Indirect evidence of intra-axonal translation in long-term depression (LTD), a form of synaptic 

plasticity characterized by long term reduction in synaptic signaling, was demonstrated using in vitro 

slice preparation of the striatum brain substructure (Yin et al., 2006). Glutamatergic axons from the 

cerebral cortex synapse with GABAergic striatal neurons in the striatum. LTD can be induced in vitro 
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at these synapses by a high-frequency sequence of individual stimulations combined with postsynaptic 

depolarization (Calabresi et al., 1992). Through retrograde endocannabinoid (eCB) signaling the 

postsynaptic neuron induces a change in the presynaptic neuron resulting in reduced glutamate 

release (Choi and Lovinger, 1997), known as endocannabinoid-dependent LTD (eCB-LTD). The 

distance between the cortex and striatum allows the striatum to be definitively dissected removing the 

presynaptic soma while maintaining the glutamatergic axon to GABAergic neuron circuitry. Using adult 

rat striatum brain slice preparations they were able to induce LTD in the absence of the presynaptic 

somata. This in vitro LTD was blocked when the whole slice preparation was pretreated with the 

eukaryotic translation inhibitors cycloheximide or anisomycin, but not when cycloheximide was added 

after the LTD-inducing stimulus. To functionally isolate postsynaptic translation they intracellularly 

delivered cycloheximide or an mRNA-cap analog that blocks translation by competing for translation 

initiation factors. LTD was induced when only postsynaptic translation was blocked suggesting the 

presynapse was the site for critical translation. This effect was specific since blocking transcription in 

the whole slice preparation or the isolated postsynaptic neuron had no effect on LTD (Yin et al., 2006). 

Taken together their results implicate presynaptic protein translation to alter glutamate release 

following endocannabinoid signaling. Alternatively, the surrounding glial cells could be a key 

intermediary to the plasticity since they are known to express components of  the endocannabinoid 

signaling pathway (Stella, 2009) and can function in synaptic plasticity (Todd et al., 2006). 

In the non-mammalian leech, Hirudo verbena, the adult nociceptive ganglia exhibit eCB-LTD 

(Yuan and Burrell, 2013). The intact presynaptic and postsynaptic cells can be individually 

manipulated pharmacologically. Bath application of transcription and translation inhibitors implicated 

both mechanisms in this eCB-LTD system. Specifically evaluating the individual requirements of the 

postsynaptic and presynaptic cells they found that transcription and translation were required within 

the postsynaptic cell but only translation was required in the presynaptic cell. The rapid onset of 

synaptic plasticity and quantitative measurements of axonal protein transport makes it highly unlikely 

that somatic translation was sufficient. The authors suggested that presynaptic translation occurs 

locally within the axon or presynaptic component itself but were not able to demonstrate this (Yuan 

and Burrell, 2013). 
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The involvement of local axonal translation versus somatic translation was evaluated in 

endocannabinoid-dependent LTD in the rodent hippocampus (Younts et al., 2016). At GABAergic to 

glutamatergic synapses translation was only required during the induction of eCB-LTD. Once eCB-

LTD was established it could be maintained long-term without the need for protein synthesis, 

suggesting stable changes to the synaptic proteome. Mechanistically, the mammalian target of 

rapamycin (mTOR) pathway was required for LTD. While mTOR signaling regulates a variety of 

downstream functions, including translation, ribosome biogenesis, metabolism, autophagy, the 

requirement for translation and mTOR signaling suggested mTOR activated protein synthesis. Using 

long-term paired electrophysiological recordings coupled with single cell pharmacological manipulation 

they ruled out involvement of postsynaptic translation. Turning to the presynaptic cell they compared 

the effect of the large molecule translation inhibitor gelonin, which has limited diffusion to axons, with 

the small molecule translation inhibitor 7-methyl-guanosine-5’-triphosphate-5’-guanosine (M7), an 

mRNA cap analog predicted to freely diffuse through the axon. M7 completely blocked LTD when 

loaded to the presynaptic cell for more than 60 min but gelonin loading for over 100 min had no effect 

on LTD. This supports a model of presynaptic endocannabinoid receptor activation followed by local 

axonal translation involving mTOR signaling (Younts et al., 2016). 

These three systems all demonstrate a role of presynaptic translation in eCB-LTD suggesting 

that presynaptic endocannabinoid signaling might active translation across species and synapse 

types. 

Long-term potentiation of synaptic activity 

BDNF, a neurotrophin related to NGF, is required for long-term potentiation (LTP) within the 

adult hippocampus, specifically at the synapse between cells of the cornu ammonis 3 (CA3) region 

and cornu ammonis 1 (CA1) region (CA3-CA1 synapses). LTP, a persistent increase in the synaptic 

signal transmission between neurons, can be induced with electrical stimulation patterns or 

pharmacologically with BDNF. In hippocampal slice preparations extracellular bath application of 

BDNF enhanced CA3-CA1 synaptic transmission by a transcription-independent, translation-

dependent mechanism (Kang and Schuman, 1996). Further, the translation-dependent effect on 
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synaptic transmission was maintained when either the presynaptic axons or the postsynaptic dendrites 

were severed from their somata. When both the presynaptic and postsynaptic somata were severed, 

completely insulating the synapse from somatic protein translation, synaptic transmission was still 

enhanced suggesting a completely local origin for the effect (Kang and Schuman, 1996). Many in vitro 

stimulation protocols that result in hippocampal LTP also induce BDNF secretion (Kang et al., 1997). 

BDNF signals through two receptors tropomyosine receptor kinase B (TrkB) and p75NTR and TrkB 

mutant mice have significantly dampened LTP response (Minichiello et al., 1999; Minichiello et al., 

2002). BDNF mutant mice also have significantly reduced CA3-CA1 LTP, that can be rescued with 

bath application of recombinant BDNF (Patterson et al., 1996) or re-expression of BDNF via a virally 

delivered BDNF gene (Korte et al., 1996a; Korte et al., 1996b). 

To investigate the relative contribution of presynaptic and postsynaptic BDNF-TrkB signaling 

cultured rat hippocampal neurons were genetically manipulated with a dominant-negative truncated 

TrkB gene delivered by adenovirus also carrying a GFP gene (Li et al., 1998). In this system a 3 

minute BDNF treatment is sufficient to induce potentiation of synaptic signaling including greater 

stimulus-evoked synaptic transmission and frequency of spontaneous synaptic currents in the culture. 

The BDNF effect was absent from synapses where the presynaptic and postsynaptic cells expressed 

the mutant TrkB (GFP-positive). When the postsynaptic cell was transduced and the presynaptic cell 

was wild type synaptic signaling was potentiated but when the presynaptic cell expressed the mutant 

TrkB the BDNF effect was blocked (Li et al., 1998). This in vitro synapse model suggested presynaptic 

BDNF-TrkB signaling in LTP, whether it truly reflected mature neurocircuitry synaptic plasticity was 

unclear. 

To evaluate in vivo TrkB signaling in organotypic slice circuits a TrkB mutant mouse with 

reduced TrkB protein was genetically manipulated to remove the TrkB gene from the CA1 

(postsynaptic) neurons in the CA3-CA1 pathway (Xu et al., 2000). In vitro stimulated LTP could be 

induced in adult hippocampal slices but the magnitude of the persistent increase was reduced. The 

presynaptic CA3 neuron still expressed TrkB so they added a scavenger antibody to globally reduce 

TrkB signaling in the preparations, significantly reducing LTP, implicating TrkB signaling within the 

presynaptic CA3 neuron. They evaluated presynaptic function following LTP induction in the TrkB 
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mutant and the CA1 knockout mouse and found no significant difference between them, though both 

were reduced compared to wild type mice (Xu et al., 2000). This suggest that presynaptic BDNF-TrkB 

signaling in the CA3-CA1 synapse contributes to a sustained change in neurotransmitter release.  

Having established that LTP following BDNF is presynaptically expressed and translation 

dependent the question turned to the cellular source of BDNF. CA3-CA1 BDNF induced LTP was 

evaluated in mutant mice with the Bdnf gene deleted from both the presynaptic and postsynaptic 

neurons were compared to CA1 only BDNF deletion mice (Zakharenko et al., 2003). LTP could not be 

established in adult hippocampal slice preparations using two different LTP-inducing stimulation 

protocols. The CA1 mutants demonstrated LTP following both stimulation protocols implicating 

presynaptic release of BDNF required for BDNF-LTP. In vivo stereotaxic microinjection of a Sindbis 

virus carrying the Bdnf gene when targeted to the CA3 somata but not the CA1 somata. 

Taken together this body of work demonstrates that BDNF-LTP at the CA3-CA1 hippocampal 

synapse is modulated by presynaptic release of BDNF which functions in an autocrine manner to 

activate presynaptic TrkB signaling. Further, this rapid form of synaptic plasticity does not require 

transcription or the somata but does require local protein synthesis.  A potential critical role of glial 

cells and a small population of GABAergic interneurons in BDNF-LTP cannot be completely ruled out 

though. While BDNF-TrkB induced protein synthesis within the presynapse or axon in BDNF-LTP was 

not been explicitly demonstrated in this work BDNF activates translational machinery and stimulates 

global protein synthesis in dissociated embryonic mouse cortical neurons through MAP kinase-

interacting kinases (Genheden et al., 2015). 

Synaptogenesis 

There is only a small amount of direct evidence implicating presynaptic translation in 

synaptogenesis due to technical complications isolating the presynaptic component. There is a body of 

evidence demonstrating BDNF-induced synaptogenesis in hippocampal neurons where presynaptic 

translation is necessary for BDNF-induced LTP. 

Hippocampal neurons from early embryonic rats (E16) cultured for 2 weeks rarely form 

functional synaptic connections, as measured by spontaneous and evoked synaptic activity, unlike 
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neurons derived from E18 rats which exhibit strong synaptic activity. Treatment with either BDNF or 

NT-3 for 24 h, 72 h or 2 weeks significantly increased the number of mature functional synapses in 

E16 cultures only. BDNF stimulated excitatory and inhibitory synaptogenesis while NT-3 was specific 

for excitatory synapses (Vicario-Abejon et al., 1998). In follow up work they evaluated the presynapse 

and postsynapse individually. BDNF and NT-3 significantly increased the number of synaptic vesicle 

within presynaptic terminals, detected by fluorescent microscopy and EM. Postsynaptic activity of E16 

cultures could only be detected after drug treatment. Pharmacological blockade of postsynaptic 

neurotransmitter receptors or action potentials did not affect synaptogenesis suggesting key 

synaptogenic signaling occurred presynaptically (Collin et al., 2001). This work demonstrates that 

BDNF can increase the number of mature, functional glutamatergic synapses, and therefore synaptic 

transmission, through a presynaptic mechanism. 

One mechanism by which BDNF increases the density of mature synapses is by destabilizing 

the presynaptic cadherin-β-catenin scaffold that organizes synaptic vesicles in pre-existing synapses 

possibly allowing mobilization of vesicles for capture during subsequent synaptogenesis (Bamji et al., 

2006). In mature in vitro synapses BDNF lead to phosphorylation of β-catenin, transient disruption of 

the cadherin-β-catenin interaction and synaptic vesicle pool splitting. The result was a significant 

increase in the number of stable mature synapses and mobile synaptic vesicle clusters (Bamji et al., 

2006). These results are consistent with aspects of the BDNF-LTP model, namely a presynaptic driven 

mechanism that has the potential to alter synaptic signaling long term. 

There are many potential axonally synthesized proteins that could mediate BDNF-induced 

synaptogenesis and long-term potentiation. One potential target is β-catenin. Evidence suggests that 

presynaptic translation of β-catenin is necessary during the early stages of synaptogenesis, potentially 

to provide the increased demand for local β-catenin to stabilize synaptic vesicles at maturing synapses 

(Taylor et al., 2013). Secondly, β-actin and actin dynamics play a role in synaptogenesis (Dillon and 

Goda, 2005) and neurotransmitter release (Wolf et al., 2015) and local translational control of this 

pathway is well established in growth cones and dendrites (Jung et al., 2011; Jung and Holt, 2011; 

Shirao and Gonzalez-Billault, 2013). An additional target for consideration is growth associated protein 

43 (GAP43). It is translated within DRG axons to regulate axon extension and branching (Donnelly et 
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al., 2013) and increased GAP43 phosphorylation following hippocampal LTP is directly correlated with 

the increase in synaptic function (Biewenga et al., 1996). Lastly, inhibition of intra-axonal translation, 

using a genetically-encoded constitutively-active translation inhibitor increased the size of synaptic 

vesicle clusters and increased synaptic vesicle release. Cyclin-dependent kinase 5 activator 1 (p35), a 

necessary activator of cyclin-dependent kinase 5 (Cdk5), was identified as axonally synthesized and 

critical for regulating synaptic vesicle dynamics, implicating axonal Cdk5 signaling in moderating 

synaptic vesicle clustering and release (Hsiao et al., 2014). 

There is clear evidence for presynaptic translation in synaptic plasticity induced by presynaptic 

TrkB and endocannabinoid signaling and suggestive evidence for presynaptic translation in 

synaptogenesis. Techniques to visually, genetically or biochemically isolate the axon and presynapse 

from the postsynapse will facilitate investigating these mechanisms and identify relevant locally 

synthesized mRNA. 

Axonal translation in injury signaling 

Axon-to-soma signaling following axon injury likely employs multiple mechanisms, including a 

back-propagating action potential, cytoskeletal biophysical fluctuations and changes in retrograde 

transported molecules. Post-translational modification of transported proteins and complexes could 

change following injury or there could be quantitative differences in the molecules due to catabolic and 

anabolic axonal mechanisms. The relative contributions and integration of these signaling 

mechanisms might be different following different insults, including toxic events, metabolic changes or 

mechanical axon injury, called axotomy. A common model system for axon injury is sciatic nerve 

crush, which injures sensory neurons of the DRG. 

While the role of axonal translation in axon regeneration following injury is well understood, 

and the translation of many specific mRNA targets have been described and functionally 

characterized, less is known about the axonally translated proteins involved in signaling to the soma 

following distal injury of the axon. 
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Peripheral nerve injury 

Nuclear proteins have an amino acid encoded ‘nuclear localization sequence’ (NLS) to traffic 

the protein to the nucleus following translation. The importin protein family are a group of proteins that 

bind the NLS to ensure nuclear import. Importin α/β heterodimers have high affinity for the NLS and 

facilitate transport of NLS-containing proteins through the nuclear pore complex (Cautain et al., 2015). 

Many importin-α family members were detected in dissected sciatic nerves but importin-β protein was 

only detectable after mechanical crush injury (Hanz et al., 2003). Importin-β mRNA was detected in 

uninjured axons and the injury-induced increase in importin-β protein was dependent on local protein 

synthesis. This locally synthesized importin-β was implicated in axon-to-soma transport of NLS-

containing axonal proteins which was critical for axon regeneration in vitro and in vivo (Hanz et al., 

2003). Further, a conditional knockout mouse missing the axonal localization sequences within the 

importin-β mRNA had reduced importin-β protein in the sciatic nerve. These animals demonstrated a 

significant change in the DRG transcriptional response following sciatic nerve crush and had a 

significant delay in rehabilitation after injury (Perry et al., 2012). Additionally, axon injury of cultured 

DRGs induced calcium-dependent local translation of RanBP1, an effector of Ran GTPase. Axonal 

RanBP1 was implicated in activating Importin-β mediated, dynein-driven axon-to-soma signaling 

necessary at the time of injury to stimulate axon outgrowth hours and days later (Yudin et al., 2008). 

This body of work demonstrates a critical role for local translation of components and 

regulators of importin-mediated axon-to-soma transport of NLS-containing proteins following axotomy. 

This raises the question: what cargo is transported by this mechanism after injury? The demonstration 

that the injury-induced transcriptional response was altered in the importin-β knockout mouse 

suggests axonally localized transcription factors could be responsible. 

The signal transducer and activator of transcription (STAT) family of transcription factors was 

bioinformatically identified as a likely to participate in retrograde injury signaling in DRGs (Ben-Yaakov 

et al., 2012). STAT transcription factors are canonically activated by receptor-associated Janus kinase 

(JAK) phosphorylation. Three STAT family members were identified in axons but only STAT1 and 

STAT3 were phosphorylated following injury. Phosphorylated STAT1 was only detected in axons while 

phosphorylated STAT3 was in axons and somata, suggesting that only STAT3 was transported to the 
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nucleus. STAT3 was locally translated within injured axons by a calcium-dependent mechanism and 

phosphorylated STAT3 interacted with dynein. Activated STAT3 axon-to-soma transport appeared to 

promote DRG neuron survival in vivo following sciatic nerve crush (Ben-Yaakov et al., 2012). 

CNS injury 

There are few models to study axonal injury signaling in mammalian CNS neurons. In vivo 

models are not optimal for investigating the immediate axonal events so relevant in vitro models are 

necessary. A recently developed in vitro mechanical axon injury model of microfluidically isolated 

axons (Taylor et al., 2005) has been used to investigate the axonal transcriptome of regenerating CNS 

neurons (Taylor et al., 2009). An in vitro model of Alzheimer’s has been recently developed employing 

microfluidically isolated rat hippocampal neurons treated with a β-amyloid peptide (Aβ). Somatic 

apoptosis in this model depended on axonal translation of activating transcription factor 4 (ATF4). 

Axonally translated ATF4 was retrogradely transported to the somata to initiate the cell death cascade 

in vitro and in vivo (Baleriola et al., 2014). Interestingly, Aβ treatment significantly increased the 

amount of ATF4 mRNA in axons suggesting Aβ peptide injury signaling primes the axon for a robust 

ATF4 translational response. 

Much more work is necessary to better understand pro-survival and apoptotic signaling 

following distal axon injury. General mechanism of injury signaling might be shared throughout the 

nervous system, such as calcium-stimulated local translation, importin-dynein transport complexes 

and local translation and/ or activation of transcription factors. The specific transcription factors 

transported are likely neuron and injury specific to initiate proper survival and regeneration pathways 

or cell death pathways. The CNS injury induced gene expression profile has been investigated in vivo 

capturing the combined transcriptional response of the heterogeneous cellular environment. The 

specific transcription response of neurons has not been investigated. 

Axon injury work has focused on the short-term local neuronal response to the initial primary 

axon injury, with a therapeutic eye to axon regeneration and reinnervation. There is clear evidence of 

progressive long-term secondary loss of function, far from the injury site. The complex primary injury in 

vivo involves neurons, glia, and blood vessels, with immediate small scale hemorrhage and hypoxia. 
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Some aspects of the in vivo injury response are beneficial and necessary to repair cerebral circulation 

while other aspects lead to widespread functional changes within the brain. These primary and 

secondary injuries in the CNS, following stroke and blunt trauma to the brain and spine, contribute to 

the disability and mortality of these conditions. Currently, we do not understand the molecular events 

and biochemical messengers of the secondary injuries well enough to develop targeted 

pharmacological therapeutics specific for the detrimental aspects while minimizing interference with 

beneficial aspects of the injury response. 

Dissertation goals 

My studies establish that mRNAs are present within the axons of human embryonic stem cell 

derived neurons (hESC-neurons) and I investigate transcription-dependent secondary effects of 

mechanical axon injury using an in vitro axotomy model. 

In Chapter Two, I demonstrate that the long projections of hESC-neurons are axon-like by 

immunofluorescence and contain mRNA. The hESC-neuron axonal transcriptome is significantly 

different from the somatic transcriptome. Enriched functional Gene Ontology categories that describe 

the hESC-neuron axonal transcriptome are similar to the categories that describe axonal 

transcriptomes of primary rodent neurons. Further, by multiplexed single molecule RNA-FISH I 

demonstrate the presence of β-actin, GAP43 and oxytocin mRNA within hESC-neuron axons. This 

evidence supports the use of hESC-neurons as a model system to further investigate mechanisms 

establishing and modifying the human axonal transcriptome and the function of local translation within 

human axons. 

In Chapter Three, together with the post-doctoral researcher Dr. Tharkika Nagendran, 

secondary injury signaling is investigated. I evaluate the effect of sparse direct axotomy to cultured 

primary rat neurons grown in two-compartment axon-isolating microfluidic chambers. Directly injured 

axons can regenerated in vitro and axotomy does not affect culture viability. I demonstrate that the 

percentage of cells with axons entering the isolated compartment is inversely related to the length of 

the microgrooves and these cells are most likely to be within 500 µm of the microgrooves. Axotomy 

induces delayed but persistent secondary functional change in the in vitro neural network that is 
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dependent on a transcriptional response generated within the first hour after injury. Gene expression 

24 hours after in vitro axotomy is broadly similar to gene expression 24 hours after in vivo injury and 

suggests altered expression of proteins that function at the synapse might mediate secondary injury 

signaling. 
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CHAPTER TWO: MESSENGER RNAS LOCALIZED TO DISTAL PROJECTIONS OF HUMAN STEM 

CELL DERIVED NEURONS 

INTRODUCTION 

Local translation within the axons and dendrites of neurons is involved in multiple neuronal 

functions, including axon maintenance, guidance, synaptogenesis, post- and presynaptic plasticity and 

response to injury (Donnelly et al., 2010; Holt and Schuman, 2013; Kelly et al., 2000; Lyles et al., 

2006; Younts et al., 2016). Specific mRNAs implicated in these functions, distal from somata, have 

been experimentally identified in Aplysia sensory neurites, rodent peripheral and central neurons, and 

other model systems (Aschrafi et al., 2008; Goldman et al., 2013; Lyles et al., 2006; Merianda et al., 

2015; Shigeoka et al., 2016; Taylor et al., 2013). In axons and synapses, local translation may be 

critical for spatially restricted and rapid responses to extracellular signals such as glutamate, brain 

derived neurotrophic factor, neurotrophin-3 and netrin-1 (Genheden et al., 2015; Goldman et al., 2013; 

Hsu et al., 2015; Kang and Schuman, 1996; Welshhans and Bassell, 2011). 

Comparing axonal transcriptomes of various neuronal subtypes has the potential to highlight 

conserved roles of intra-axonal translation and reveal unique functions and targets within each neuron 

type. Direct evaluation of primary human neurons is severely restricted due to the limited ability to 

obtain tissue or culture isolated neurons. Human stem cell derived neurons are a biologically relevant 

and tractable in vitro system and protocols have been developed to differentiate stem cells into 

specific neuronal subtypes, such as motor, striatal, dopaminergic and glutamatergic neurons 

(Baronchelli et al., 2015; Duan et al., 2015; Hu et al., 2015; Li et al., 2009; Reddington et al., 2014; 

Sagal et al., 2014). Here we sought to identify the transcriptome of the distal projections of human 

embryonic stem cell derived neurons enriched for glutamatergic lineage (Li et al., 2009; Zeng et al., 

2010) and compare this transcriptome to the axonal transcriptome of glutamatergic rodent neurons. 
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MATERIALS AND METHODS 

Microfluidic chambers 

Custom microfluidic chambers were fabricated by soft lithography using an established 

protocol (Taylor et al., 2005) with the following modifications. The somatic and axonal compartments 

of these chambers were 2 mm by 7 mm by 450 µm tall. These compartments were connected by 

microgrooves of 450 µm by 10 µm by 3 µm tall. The only dimension different from previously published 

microfluidic chambers (Taylor et al., 2009) was the compartment height, which was increased to 

facilitate the daily media changes necessary to meet the nutrient demands of hESC-neurons. To 

create the tall cell compartments a thick layer of photoresist (SU-8-2050; Microchem) was spun on the 

wafer in 2 coatings. Each coating was spun at 800 rpm for 45 s, the first coating was baked on a 

leveled 95 °C hot plate for 3 h and the second coating was baked for 5 h. Wafers were UV-exposed 

(1000 mJ total over 3 sessions with at least 45 s between exposures) and baked for 1 h in a leveled 95 

°C oven. Finally wafers were gradually cooled to room temperature over 30 minutes and developed in 

propylene glycol methyl ether acetate (PGMEA). 

The resulting masters were used to cast microfluidic chambers using poly(dimethylsiloxane) 

(PDMS) (Sylgard 184 Silicon Elastomer, Dow Corning) as described previously(Taylor et al., 2003). 

German glass coverslips were sterilized and coated overnight with a solution of 500-550 kDa poly-D-

lysine/laminin (80 µg/ml and 10 µg/ml, respectively), washed and dried. Microfluidic chambers were 

assembled from PDMS devices and coated coverslips. 

Maintenance and differentiation of hESC-neurons 

Stem cell differentiation into neural progenitor cells (neuroepithelial cells) was performed 

according to previously published modifications of the original protocol (Li et al., 2009; Niedringhaus et 

al., 2015; Zeng et al., 2010). Days in vitro (DIV) numbering began when H9 human embryonic stem 

cells were plated in embroid body media to induce neuronal differentiation. 

Maturation of hESC-neurons in microfluidic chambers 
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On DIV24 mitotic neural progenitor cells were manually lifted and dissociated manually or with 

Accutase (Life Technologies). Approximately 5x103 cells were seeded into the somatic compartment 

of microfluidic chambers in N2B27 media supplemented with 100 ng/ml human recombinant brain 

derived neurotrophic factor (BDNF). Neural progenitor cells continued to divide during the 

differentiation period until becoming senescent neurons. Half of the media (100 µl) from each 

compartment was changed daily and cells were matured for at least 35 days (DIV59). This protocol 

has been demonstrated to generate glutamatergic neurons as early as DIV25, as verified by staining 

for the telencephalic transcription factor FOXG1, the transcription factor CTIP specific for subcerebral 

projection neurons, the glutamatergic transcription factor TBR1 and the glutamatergic marker protein 

VGLUT1 (Li et al., 2009; Zeng et al., 2010). 

Immunocytochemistry 

Human ESC-neurons grown in axon isolating microfluidic chambers were fixed with freshly 

prepared 4% paraformaldehyde in PBS containing 40 mg/ml sucrose, 1 μM MgCl2, and 0.1 μM CaCl2 

for 45 min. Neurons were permeabilized in 0.25% Triton X-100 for 15 min then blocked in PBS 

containing 10% goat serum for 15 min. Staining conditions and antibodies used are summarized in 

Tables 2.1 and 2.2. Primary antibodies were diluted in PBS with 1% goat serum and incubation 

overnight at 4 °C. All Alexa Fluor conjugated secondary antibodies were raised in goat, diluted 1:1000 

in PBS and incubated for one hour at room temperature. Cells were counterstained with 71.5 µM 4’,6-

diamidino-2-phenylindole (DAPI) in PBS. 

Table 2.1 Primary antibody concentrations 

Primary Antibody Raised In Source Concentration 

β-tub III chicken Aves Labs, TUJ 1:2000 

β-tub III rabbit Abcam, ab6046 1:1000 

MAP2 rabbit Millipore, AB5622 1:1000 

MAP2 mouse Sigma, M4403 1:1000 

GFAP rabbit Millipore, AB5804 1:1000 

Nestin [10C2] mouse Abcam, ab22035 1:1000 
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VGLUT1 mouse NeuroMab, 75-066 1:200 

GAD67 chicken Aves Labs, GAD 1:2000 
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Table 2.2 Secondary antibody concentrations 

Species recognized Fluorescent dye Source 

Chicken 488 Invitrogen, A11039 

Mouse 488 Invitrogen, A11029 

Rabbit 488 Invitrogen, A11034 

Mouse 568 Invitrogen, A11031 

Rabbit 568 Invitrogen, A11036 

Chicken 647 Invitrogen, A21449 

Rabbit 647 Invitrogen, A21245 

RNA-FISH 

Affymetrix ViewRNA ISH Cell Assay kit was used for multiplexed visualization of β-actin, 

oxytocin and growth associated protein 43 (GAP43) mRNA in human ESC-neurons grown in axon 

isolating microfluidic chambers. Commercially available ViewRNA Probe Sets were used to detect 

human β-actin mRNA (Affymetrix, VA4-10293) and GAP43 mRNA (Affymetrix, VA6-13097) and a 

custom probe was designed by Affymetrix to detect human oxytocin mRNA (Affymetrix, VA1-20398). 

The same staining procedure was used for the negative control samples, but without the RNA-FISH 

probes. All steps were performed in a humidified chamber protected from light and all solutions were 

made with DNase, RNase free molecular biology grade water (Sigma). Affymetrix ViewRNA ISH Cell 

Assay procedure was followed with some adjustments to preserve and fix the long projections to the 

coverglass, as outlined in Table 2.3.  

Table 2.3 ViewRNA ISH Cell Assay procedure 

Solution Duration Temperature Repetition Protocol adjustment 

PBS Brief rinse RT 2  

4% PFA, 40 mg/ml 
sucrose, 1 µM 
MgCl2, 0.1 µM 
CaCl2 in PBS 

30 minutes RT single Freshly prepared, 
Modified for neurons 

PBS Brief rinse RT 3  
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50% Ethanol 2 minutes RT Single Optional step 

70% Ethanol 2 minutes RT Single Optional step 

100% Ethanol 2 minutes RT 2 Optional step 

70% Ethanol 2 minutes RT Single Optional step 

50% Ethanol 2 minutes RT Single Optional step 

PBS 10 minutes RT Single Optional step 

Detergent QC 5 minutes RT Single  

PBS Brief rinse RT 2  

Protease 10 minutes RT Single 1:5000, experimentally 
determined to be optimal 

PBS Brief rinse RT 3  

Probe set 3 hours 40 °C Single Probes omitted for 
negative controls 

Wash buffer 2 minutes RT 3  

PreAmplifier mix 30 minutes 40 °C Single  

Wash buffer 2 minutes RT 3  

Amplifier mix 30 minutes 40 °C Single  

Wash buffer 2 minutes RT 3  

Label probe mix 30 minutes 40 °C Single  

Wash buffer 2 minutes RT 2  

Wash buffer 10 minutes RT Single  

DAPI 5 minutes RT Single Increased duration 

PBS Brief rinse RT 2  

Modified rabies virus infection 

The axonal compartment of DIV61 cultures were incubated with approximately 100,000 viral 

units of modified rabies virus carrying the mCherry gene (Wickersham et al., 2007a) in a total of 50 µl 

media for 2 hours at 37 °C, washed twice with fresh media and live imaging was performed 48 hours 
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later. We have observed within 48 hours this viral load results in detectable mCherry expression within 

80-85% of hESC-neuron axons in microfluidic chambers. Similar observations were made with primary 

embryonic rat hippocampal neurons grown in axon isolating microfluidic chambers.  

Confocal imaging 

Z-stack fluorescent images and single plane differential contrast (DIC) images were acquired 

using a spinning disk confocal imaging system (Revolution XD, Andor Technology) configured for an 

Olympus IX81 zero-drift microscope and spinning disk unit (CSU-X1, Yokogawa). Light excitation was 

provided by 50 mW, 488 nm; 50 mW, 561 nm; and 100 mW, 640 nm lasers. The following bandpass 

emission filters (BrightLine, Semrock) were used: 525/30 nm (TR-F525-030), 607/36 nm (TR-F607-

036), 685/40 nm (TR-F685-040). All slides within a series were imaged during a single session in 

which image capture settings were identical for all fields. 

Image analysis 

Z-stack fluorescent images were MAX projected. 16-bit images were manually thresholded to 

the same values within each series of stained chambers. Montage images were stitched using the 

ImageJ plugin Stitching (Preibisch et al., 2009) available in the Fiji imaging processing package. 

Determination of differentiation efficiency 

Seven fields of hESC-neurons in monolayer from 4 independently stained chambers of at 

least DIV39 were used to estimate the efficiency of differentiation to mature hESC-neurons as 

detected by co-localization of DAPI signal with MAP2 or β-tubulin III positive staining. Three fields from 

two independently stained chambers of at least DIV49 were used to evaluate Nestin, GFAP, VGLUT1 

and GAD67 immunofluorescence. 
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RNA isolation 

On DIV59 RNA was isolated from microfluidic cultures using the RNAqueous-Micro Kit 

(Ambion) as previously described (Taylor et al., 2009). To collect RNA from the axonal compartment 

continuous aspiration was applied to the somatic compartment to prevent somatodendritic RNA from 

entering the sample. Most of the axonal media was removed and lysis buffer was added to one well, 

the reagent that flowed to the other axonal well through the axonal compartment was collected as the 

RNA of distal projections.  Neuronal RNA was collected from the somatic compartment of hESC-

neurons grown in microfluidic chambers not used for axonal RNA collection, this compartment 

contained somata, dendrites and axons which did not pass through the microgrooves. The majority of 

the media from the somatic compartment was removed and the same RNA isolation procedure was 

followed, omitting constant aspiration. Subsequent RNA purification was performed according to 

manufacturer’s instructions and RNA was eluted in a final volume of 10 µl. Each sample was obtained 

from one microfluidic chamber. Samples were stored at -80°C until further processing by the UNC 

Lineberger Comprehensive Cancer Center Genomics Core and the UNC School of Medicine 

Functional Genomics Core. Three axonal and three neuronal samples were collected and analyzed. 

RNA amplification and microarray 

RNA of distal projections harvested from microfluidic chambers is below the detection limit of 

currently available technology. A fixed volume of each axonal RNA sample (5 µL) and a fixed mass of 

each neuronal RNA sample (250 pg) were subjected to one round of linear amplification using the 

Ovation One-Direct System (NuGEN). This system initiates amplification at the 3’ end as well as 

randomly throughout the transcript and is optimized for very small biological samples such as single 

cell transcriptomics. The integrity and concentration of the resulting cDNA samples were quantified 

with an Agilent Bioanalyzer 2100 at the UNC Lineberger Comprehensive Cancer Center Genomics 

Core. A fixed concentration of amplified cDNA from all samples, including the 10 pg neuronal sample, 

were processed in parallel for microarray analysis using the Encore Biotin Module (NuGEN) at the 

UNC School of Medicine Functional Genomics Core. 
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Human Gene 2.0 ST Arrays (Affymetrix) were used and scanned with an Affymetrix GeneChip 

Scanner 3000 7G Plus with Autoloader. Affymetrix Expression Console v1.4 software was used to 

analyze microarray CEL files. Affymetrix normalization controls, built into the microarray chips and 

analysis software, were used for raw data normalization. The Robust Multichip Analysis (RMA) 

algorithm was used for global background adjustment, quantile normalization and gene expression 

summarization between samples. This method is sensitive to small changes between samples without 

negatively affecting signal variance. Affymetrix Transcriptome Analysis Console v2.0 software 

algorithms were used to determine differential expression and statistical analysis using one-way 

between-subject ANOVA of normalized intensities.  

Data analysis 

Microarray probe sets with fold change linear (Axon vs Neuron) greater than or equal to 1.5 

and an ANOVA p-value (Axon vs Neuron) less than 0.05 were designated the enriched fraction (3943 

probe sets). Probe sets with fold change linear (Axon vs Neuron) less than or equal to -1.5 and an 

ANOVA p-value (Axon vs Neuron) less than 0.05 were designated the depleted fraction (3631 probe 

sets). The fold change threshold of 1.5 was selected to counter balance the compressed calculated 

fold change values obtained by the RMA method. This threshold generated gene symbol lists of an 

appropriate size for DAVID Functional Annotation Clustering. For each subset of the data official gene 

symbols were extracted, duplicates were removed and gene symbol lists (3297 unique gene symbols 

in the enriched fraction and 3638 unique gene symbols in the depleted fraction) were submitted to 

DAVID Bioinformatics Resources for Gene ID Conversion and Functional Annotation Clustering with 

the single species Homo sapiens selected and the default human background list (Huang da et al., 

2009a; Huang da et al., 2009b).  

To obtain a gene symbol list of most abundant transcripts within hESC-neuron distal 

projections microarray probe sets with Axon bi-weight average signal (log2) equal to or greater than 

6.48 were selected. This threshold excluded known dendritic transcripts and included β-actin, a well 

characterized axonal mRNA. These criteria were similar to those used by Taylor et al. (2009) to 

determine axonal mRNAs within primary rat cortical neurons. Official gene symbols were extracted, 
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duplicates were removed and the gene symbol list (3696 gene symbols) was submitted to DAVID 

Bioinformatics Resources for Gene ID Conversion and Functional Annotation Clustering with the 

single species Homo sapiens selected and the default human background list (Huang da et al., 2009a; 

Huang da et al., 2009b). 

Data availability 

The raw microarray data (CEL and CHP files) and gene expression data has been submitted 

to the NCBI Gene Expression Omnibus under accession number GSE84975. 

RESULTS 

Differentiation of human embryonic stem cell derived neurons in microfluidic chambers 

To identify transcripts within human projections we first modified an existing microfluidic 

chamber design for compartmentalizing and harvesting pure axons, originally developed for murine 

neurons (Taylor et al., 2005). To optimize the growth of hESC-neurons, which have an increased 

nutrient demand compared to primary rodent neurons, we increased the height of the fluidically 

isolated compartments to provide a greater volume of media surrounding the cells. In these 

microfluidic chambers, neurons were seeded in the “somatic” compartment and stochastic neurite 

development and growth resulted in processes passing through the 450 µm long microgrooves to the 

“axonal” compartment (Fig. 1A). Similar chamber designs have been used to characterize the axonal 

transcriptome of primary rat cortical neurons (Taylor et al., 2009).  

Differentiation of hESC-neurons (Fig. 2.1A), according to an established protocol to enrich for 

functionally matured glutamatergic neurons that produce action potentials after approximately 6 weeks 

of differentiation (Li et al., 2009; Zeng et al., 2010), began when hESC maintenance media was 

replaced with differentiation-inducing media, designated days in vitro (DIV) 0. On DIV24 neural 

progenitor cells (NPC) were transferred to our custom microfluidic chambers and matured to hESC-

neurons over the next 30 day (>7 weeks in culture total, Fig. 2.1B). As early as DIV39 long neurites 

could be seen in the microgrooves. Microtubule-associated protein 2 (MAP2) and neuron-specific 
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class III β-tubulin (β-tubulin III, βtub) staining, markers for cell bodies/dendrites and neurons inclusive 

of axons, respectively, suggest that the majority of neurites entering the axonal compartment are 

axon-like (Fig. 2.1C). The dendrites of in vitro matured primary human neural progenitor cells cultured 

for 12 weeks never exceeded 80 µm in length (Stein et al., 2014) supporting our conclusion that it is 

unlikely these long projections are dendrites. 
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Figure 2.1 

 
Figure. 2.1. Human embryonic stem cell derived neurons (hESC-neurons) matured in axon-
isolating microfluidic chambers. 
A. Schematic and timeline of the hESC-neuron differentiation and maturation protocol with images to 
demonstrate cell morphology at four time points, scale bars 100µm. 
B. Diagram depicting the plating of neural progenitor cells (NPC) in the somatic compartment of axon-
isolating microfluidic chambers and their maturation to hESC-neurons while the nascent axons extend 
through the microgrooves into the axonal compartment. 
C. Representative montage image of MAP2 (red, dendrites), βtub (green, axons, β-tubulin III) and 
DAPI (blue, nuclei) immunostaining spanning the somatic and axonal compartments of DIV39 hESC-
neurons cultured within a microfluidic chamber. White dashed lines delineate the boundaries of the 
microgroove barrier, scale bar 100µm. 

β-tubulin III staining revealed extensive neurite growth within the axonal compartment at 

DIV59 (Fig. 2.2A) as well as healthy growth cones (Fig. 2.2B). After five weeks in culture, some 

clustering of somata occurred (Fig. 2.2A and Fig. 2.2E), as is common in long term cultures of hESC-

neurons. Cells demonstrated neuron arborization as revealed by MAP2 staining (Fig. 2.2C). This 
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differentiation protocol, by DIV49, produced mainly neurons with only rare NPCs or astrocytes [nestin 

and glial fibrillary acidic protein (GFAP), respectively] (Table 2.4). Almost 40% of the cells expressed 

the glutamatergic marker vesicular glutamate transporter 1 (vGLUT1) while cells were rare that 

expressed the GABAergic marker glutamate decarboxylase, 67 kDa (GAD67) (Table 2.4). This 

differentiation efficiency and subtype enrichment were consistent with published hESC-neuron 

differentiation protocols (Lu et al., 2016).  

Table 2.4 Evaluation of differentiation efficiency and glutamatergic enrichment  

Cell identity (IF 
target) 

Neuron (βtub 
and/or MAP2) 

NPC 
(Nestin) 

Astrocyte 
(GFAP) 

Glutamatergic 
(vGLUT1) 

GABAergic 
(GAD67) 

n = (fields) 7 4 3 3 3 

Positive cells 198 19 27 128 12 

DAPI nuclei 209 501 724 333 516 

% 94.74% 3.79% 3.73% 38.44% 2.33% 

 

To further evaluate the composition of neurites extending into the axonal compartment, we 

tested whether a modified rabies virus incapable of trans-synaptic transmission and carrying the 

mCherry gene (Wickersham et al., 2007a) could infect hESC-neurons when applied exclusively to the 

distal neurites within the axonal compartment. Rabies virus infection requires endocytosis and 

retrograde transport of viral particles following attachment to one of three axonal receptors: nicotinic 

acetylcholine receptor, neuronal cell adhesion molecule or p75NTR (Lafon, 2005). The modified rabies 

virus was added to the axonal compartment of hESC-neuron cultures on DIV62 for 2 hours. Within 48 

h fluorescent protein expression can be detected throughout the cell, including the axons and 

dendrites. Live imaging was performed to visualize the fine processes and fluorescent protein 

expression throughout hESC-neurons within the microfluidic chamber (Fig. 2.2E). Our data show that 

distal projections of hESC-neurons contain axonally-localized receptors sufficient for rabies viral 

infection. Taken together, these data support our conclusion that the vast majority of the distal 

projections in the isolated axonal compartment were axon-like. 
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Figure 2.2 

 
Figure. 2.2. hESC-neurons demonstrate common neuronal features. 
A. Representative montage image of β-tubulin III immunostaining of distal projections in the axon 
compartment on DIV58. Somata demonstrate clustering as is common in long term ex vivo rodent 
neuron cultures, scale bar 100µm. 
B. Image of a β-tubulin III immunostained hESC-neuron growth cone within the axon compartment, 
“Fire” LUT pseudocolor pixel intensity of 0 as black and 255 as white, scale bar 25µm. 
C. hESC-neurons exhibited dendritic arborization revealed by MAP2 immunostaining, scale bar 25µM. 
D. Matured hESC-neurons were positive for the glutamatergic marker vGLUT1, scale bar 25µm. 
E. A modified rabies virus encoding the mCherry fluorescent protein was applied to the axonal 
compartment for 2 hr to infect neurons with axons extending into the axonal compartment and imaged 
2 days after infection on DIV64, scale bar 200µm. 

 

Differential gene expression between axons and neurons derived from hESCs 
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On DIV58, after more than 8 weeks in culture, we harvested total RNA from hESC-neurons 

and isolated neurites within the somatic and axonal compartments of microfluidic chambers (referred 

to as “neuron” and “axon” samples, respectively). The ‘neuron’ samples included somata, dendrite- 

and axon-like projections. The ‘axon’ samples were stringently scrutinized by light microscopy to 

ensure no somata were present in the axonal compartment. The amount of RNA harvested from the 

axonal compartment of an individual microfluidic chamber was below detection limits, therefore one 

round of linear cDNA amplification was performed on a fixed volume of RNA and a fixed mass of 

neuronal RNA. As a control reaction 10 pg of neuronal RNA was subjected to linear amplification in 

parallel. The amount of cDNA generated in this reaction suggested that the RNA yield within the 

axonal compartment was 1.9 ± 0.49 pg/µL (mean ± SEM, Table 2.5). 

Table 2.5 Calculated RNA yield from axonal compartment 
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[1] Amplification yield (ng/µl) 123.9 252.1 230.5 305.0 199.0 

[2] Input (mass or volume) 0 pg 10 pg 5µl 5µl 5µl 

[3] Background corrected yield (ng/µl) 

{ = [1] – Water yield }  

0 128.2 106.6 181.1 75.1 

[4] Calculated amplification 

{ = [3] / [2] } 

 12.82    

[5] Calculated input mass (pg) 

{ = [3] / [4] } 

  8.32 14.13 5.86 

[6] Calculated sample concentration (pg/µl) 

{ = [5] / [2] } 

  1.66 2.83 1.17 

 

 Equivalent amounts of cDNA from all samples was processed for microarray expression 

profiling, including the 10 pg neuronal sample. Potential chamber-to-chamber variability as well as 

possible variation in sample collection led us to evaluate the specificity and robustness of our 
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expression profiling. Box-and-whiskers plot of the raw probe cell intensity (log2) by sample shows 

similarity between the dynamic range of replicates (t-test, p=0.40) (Fig. 2.3A). Pearson’s correlation 

analysis demonstrated a high degree of correlation between replicates (correlation r value >0.8) (Fig. 

2.3B). This replicability suggests little variation in the differentiation efficiency between chambers. The 

10 pg neuronal sample expression profile more closely resembled the neuronal samples than the 

axonal samples, showing that the linear amplification step broadly preserved the gene expression 

profile of the low concentration samples and demonstrated that differential gene expression was not 

due to the amplification step. Bivariate histogram plotting of gene expression in the axonal 

compartment versus the neuronal compartment (Fig. 2.3C) suggested that axonal expression values 

(log2) clustered between values of approximately 3 to 7 while neuronal expression values (log2) 

clustered between values of approximately 3 to 9. 
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Figure 2.3 

 
Figure. 2.3. Evaluation of the quality of Affymetrix microarray results generated from mRNA 
from hESC-neurons. 
A. Box and whiskers plot of the Affymetrix microarray raw probe cell intensity values (log2) of samples 
from the axonal and somatic compartments (‘Projections’ and ‘Neuronal’ samples, respectively) in 
triplicate and the 10pg neuronal RNA sample. 
B. Pearson correlation coefficient of microarray data from projections and neurons. 
C. Bivariate histogram plot of neuronal and axonal expression (log2), solid line marks fold change of 0, 
upper dashed line marks fold change of 1.5, lower dashed line marks fold change of -1.5. 

As an additional validation of our hESC-neuron differentiation efficiency we examined the 

expression of cell type specific markers in our neuronal data (Fig. 2.4A). Markers of mature neurons 

were significantly higher expressed in our cells than markers for neural stem cells, astrocytes and 

oligodendrocytes, other cell types occasionally present in stem cell derived neuron cultures (Appendix 

A). The neural stem cell markers were originally identified in gene expression studies across time 

during human fetal cortical development or in vitro hESC-neuron differentiation and maturation (Stein 

et al., 2014; van de Leemput et al., 2014). These marker genes are specific to neurogenesis and 
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neural differentiation. The mature neuron, astrocyte and oligodendrocyte specific marker genes were 

identified in dissociated adult mouse forebrain samples (Cahoy et al., 2008). This strongly supports 

our conclusions regarding the differentiation efficiency and neuron enrichment of our hESC-neuron 

protocol (Table 2.4). 
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Figure 2.4 

 
Figure. 2.4. hESC-neuron gene expression profile is enriched for markers of mature neurons. 
A. Neuronal expression (log2) values of marker proteins from: neural stem cells (Stein et al., 2014; 
van de Leemput et al., 2014), mature neurons, astrocytes or oligodendrocytes (Cahoy et al., 2008). 
Asterisks indicate one-way ANOVA with Dunnett’s multiple comparison test p-value (* < 0.01, ** < 
0.001, and *** < 0.0001). 

The identity of transcripts within the axonal compartment that have disproportionally high 

expression may reveal functions reliant on local translation. We evaluated the proportionally enriched 

fraction of mRNAs within our axonal dataset by DAVID Gene Functional Classification (Huang da et 

al., 2009a; Huang da et al., 2009b). For comparison we also evaluated the proportionally depleted 

mRNAs within the axonal dataset. Figure 2.5A is a scatterplot of expression levels highlighting these 

fractions. Together these subsets encompassed approximately 15.7% of the probesets on the 

microarray (Fig. 2.5B). DAVID Gene Functional Classification of these genes revealed functional 

categories which were assigned an enrichment score (Fig. 2.5C and 2.5D, solid bars). This enrichment 

score measures and weighs the ratio of transcripts that fall into a given functional category. The 

proportionally enriched mRNAs within hESC-neuron projections were classified as ‘secreted’ and 

‘extracellular’ proteins, ‘DNA sequence-specific binding’ proteins, ‘neurofilament’ proteins and ‘voltage-

gated’ and ‘cation’ channels (Fig. 2.5C). This analysis suggests that translation of proteins within these 

classes may have a more prominent role within the specialized distal subcellular compartment than 

within the soma. The proportionally depleted mRNAs were associated with the terms ‘intracellular’ and 

‘nuclear” proteins and proteins that function in RNA splicing, protein degradation and maintaining 

genome organization and integrity (Fig 2.5D), functions representative of the identity of this dataset 
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inclusive of somata and dendrites. Taken together these data suggest that enriched transcripts within 

the distal projections of hESC-neurons have the capacity to support a repertoire of functions 

autonomously from the cell body. 
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Figure 2.5 

 
Figure. 2.5. Differential gene expression between the transcriptome of distal projections and 
the neuronal transcriptome of hESC-neurons. 
A. Gene expression scatterplot comparing expression levels in hESC-neurons and distal projections. 
Threshold for proportional enrichment or depletion was set at ±1.5 fold change, ANOVA p-value < 
0.05. The proportionally enriched fraction is shown in red, 3942 probe sets. The proportionally 
depleted fraction is shown in blue, 3630 probe sets. 
B. Pie chart depicting the percentages of the total microarray probe sets that reached threshold to be 
considered enriched (8.17% of probe sets, red region) and depleted (7.53% of probe sets, blue region) 
within the axonal compartment. 
C. Gene ontology (GO) enrichment scores (solid red bars, scale along the top) and Benjamini p-values 
(hashed red bars, scale along the bottom) of the proportionally enriched fraction as determined by 
DAVID Gene Functional Classification. 
D. GO enrichment scores (solid blue bars, scale along the top) and Benjamini p-values (hashed blue 
bars, scale along the bottom) of the proportionally depleted fraction as determined by DAVID Gene 
Functional Classification. 
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Abundant transcripts within axons of hESC-neurons functionally resemble axonal transcripts localized 

to rat cortical neurons 

Many of the mRNAs highly abundant within the axons of hESC-neurons were not enriched 

relative to neuronal samples, yet may perform important biological functions that depend on local 

translation. For example, β-actin (ACTB) is not enriched in our dataset (expression in ‘axons’: 6.74; 

expression in ‘neurons’: 6.86; fold change -1.09) nor in the axonal transcriptomes of rat cortical 

neurons (Taylor et al., 2009) or rat sympathetic neurons (Andreassi et al., 2010), yet local translation 

of β-actin in neurites and axons is well-established (Eng et al., 1999; Welshhans and Bassell, 2011). 

To assess the degree of functional similarity between the abundant transcripts within hESC-neuron 

axons and comparable primary rodent glutamatergic neurons we first created a subset of our 

expression data containing the microarray probe sets with the highest average signal intensity in our 

axon samples, those above the 90th percentile (expression value ≥6.48), representing the highest 

expressed transcripts (Fig. 2.6A) (3696 transcripts). We compared this subset of highly expressed 

transcripts by DAVID Gene Functional Classification with a published dataset of mRNAs reliably 

localized to axons of primary embryonic rat cortical neurons grown in similar microfluidic chambers 

(Taylor et al., 2009). Transcripts encoding proteins involved in ‘translation’ and ribosomal proteins 

were significantly over-represented in the resulting transcriptomes from both species as well as 

proteins of the mitochondrial ‘respiratory chain’ and cytoskeletal proteins (‘neurofilament’ in hESC-

neurons and ‘microtubule’ and ‘cell projection’ in rat cortical neurons, Fig. 2.6B and 2.6C). Unique to 

the highly expressed mRNAs within hESC-neuron axons were transcripts encoding ‘extracellular’ 

proteins. 
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Figure 2.6 

 
Figure. 2.6. Enriched gene ontology categories were similar between the transcriptomes of 
isolated hESC-neuron axons and axons of embryonic rat cortical neurons. 
A. hESC-neuron gene expression scatterplot highlighting abundant transcripts within the axons, 
expression levels above the 90th percentile. 
B. GO enrichment scores (solid orange bars, scale along the top) and p-values (hashed orange bars, 
scale along the bottom) of abundant transcripts from hESC-neuron axons as determined by DAVID 
Gene Functional Classification. 
C. GO enrichment scores (solid green bars, scale along the top) and p-values (hashed green bars, 
scale along the bottom) of axonal transcripts from rat cortical neurons on DIV13 as determined by 
DAVID Gene Functional Classification. 

Post hoc evaluation of this threshold revealed that it excluded known abundant dendritic 

transcripts, such as activity-regulated cytoskeleton-associated protein (ARC), Calcium/calmodulin-

dependent protein kinase type II alpha chain (CAMK2A) and α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor (AMPAR) subunits and included the well characterized axonal 

transcript GAP43 (>98th percentile) and ACTB (>93rd percentile). 

After determining that the axonal transcriptomes of hESC-neurons and embryonic rat cortical 

neurons were functionally similar we then asked if there were orthologous mRNAs within these 
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transcriptomes. We determined that there were 161 orthologous transcripts within the axonal 

transcriptomes of glutamatergic-enriched hESC-neurons and glutamatergic-enriched embryonic rat 

cortical neurons (Fig. 2.7A). DAVID Gene Functional Classification of these conserved transcripts 

revealed that they were significantly enriched for transcripts encoding proteins functioning specifically 

in the elongation step of translation, intracellular proteins and proteins located at the synapse (Fig. 

2.7B). 
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Figure 2.7 

 
Figure. 2.7. Conserved orthologous transcripts within the axons of hESC-neurons and 
embryonic rat cortical neurons are enriched for synaptic proteins. 
A. Venn diagram proportionally depicting the overlap of orthologous transcripts within the axons of 
hESC-neurons and the axons of embryonic rat cortical neurons. There are 3535 transcripts unique to 
hESC-neuron axons, 1802 transcripts unique to embryonic rat cortical axons and 161 orthologous 
transcripts present in both axonal transcriptomes. 
B. GO enrichment scores (solid purple bars, scale along the top) and p-values (hashed purple bars, 
scale along the bottom) of conserved orthologous transcripts within the axonal transcripts from hESC-
neurons and embryonic rat cortical neurons. 

Overall, these data suggest that the axonal transcriptomes of hESC-neurons and primary rat 

cortical neurons are broadly similar, despite differences in species of origin and neuron derivation. 

Further, the orthologous mRNAs in common between the two axonal transcriptomes revealed further 

similarities. 

RNA-FISH verification of specific mRNAs within hESC-neuron distal projections 

To validate our microarray results, we chose to verify the presence of known axonally 

localized mRNA transcripts and a novel distally localized mRNA identified in our expression data using 

multiplexed single molecule RNA fluorescence in situ hybridization (RNA-FISH). The transcripts 

selected for visualization were β-actin (ACTB), growth associated protein 43 (GAP43) and oxytocin 

(OXT). ACTB and GAP43 mRNA are well characterized within rodent axons and are locally translated 

(Donnelly et al., 2013). We identified OXT mRNA as a potentially unique transcript present in these 

human axons as it was below the detection limit in rodent cortical axons (Taylor et al., 2009). The 

presence and function of OXT mRNA within distal projections has not been investigated to our 

knowledge. Our RNA-FISH results confirmed the presence of ACTB, GAP43, and OXT transcripts 
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within the long projections of hESC-neurons (Fig. 2.8A). RNA-FISH probes were omitted for negative 

control axons (Fig. 2.8B) and no fluorescence puncta were detected in these samples. These results 

confirm the hESC-neuron axonal localization of mRNAs encoding β-actin, GAP43 and oxytocin. 
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Figure 2.8 

 
Figure. 2.8. Multiplexed RNA-FISH verification of mRNA within the distal projections of hESC-
neurons. 
A. Representative image of hESC-neuron projections processed for RNA-FISH with gene specific 
probes for β-actin (ACTB, red), Growth Associated Protein 43 (GAP43, green) and Oxytocin (OXT, 
white). Individual greyscale images (inverted fluorescence) for each probe and a merged color image 
are shown. In the greyscale images black lines delineate the microgroove walls and the neuronal 
projection is outlined in red. The region within the dashed box is enlarged to the right of each image, 
scale bar is 5 µm. In the merged image white lines delineate the microgroove walls and the neuronal 
projection is outlined in yellow, scale bars are 10 µm. 
B. Representative portion of a negative control hESC-neuron axon processed for RNA-FISH without 
gene specific probes. Individual greyscale images for each probe are shown. Scale bars 10 µm. 

Semi-automated quantification of RNA-FISH puncta revealed averages of 7.88 ACTB puncta/ 

mm axon (range 0 to 14.78), 1.58 GAP43 puncta/ mm axon (range 0 to 7.34) and 6.31 OXT puncta/ 

mm axon (range 0 to 18.66). A total of 1.929 mm linear axon length was evaluated. No puncta were 

detected when the RNA-FISH probes were omitted in 0.875 mm linear axon length evaluated. 

Quantification of RNA-FISH puncta is not a direct 1:1 correlate to transcript number since multiple 

mRNAs may appear to be a single punctum and RNA-FISH probes can have different RNA labeling 

efficiencies and fluorescence intensities. The short length of the oxytocin mRNA (548nt) and homology 

with vasopressin mRNA (AVP) our custom OXT RNA-FISH probe set pool (Affymetrix) contained 7 

branched DNA sequences instead of the customary 20 sequences, which may explain the smaller size 
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of these fluorescent puncta. Together, these data validate our microarray data and demonstrate that 

these human distal projections contain mRNAs also found in axons of model organisms, yet also have 

mRNAs that may also be uniquely localized to human axons. 

DISCUSSION 

Significance 

Subcellular compartments distal from the cell body, such as axons, were once thought to be 

devoid of mRNA and ribosomes but are proving to contain transcripts encoding thousands of proteins 

and the machinery for translation (Koenig and Martin, 1996; Koenig et al., 2000). Functionally, intra-

axonal translation is necessary for growth cone guidance, axon maintenance, injury response and may 

be involved in presynaptic plasticity. Specific locally translated mRNAs involved in these cellular 

events have been identified (Andreassi et al., 2010; Aschrafi et al., 2008; Baleriola et al., 2014; Ben-

Yaakov et al., 2012; Calliari et al., 2002; Colak et al., 2013; Eng et al., 1999; Merianda et al., 2015; 

Moretti et al., 2015; Perlson et al., 2005; Perry et al., 2012; Taylor et al., 2013; Welshhans and 

Bassell, 2011; Wu et al., 2005; Yudin et al., 2008). Discovery of axonally translated proteins in hESC-

neurons has the potential to expand and deepen our knowledge of the role of local translation. While 

this study focuses on the proportionally enriched fraction and the abundant transcripts within distal 

projections local translation of moderate to low abundance axonal transcripts may also be functionally 

relevant. 

Functional classification of differentially enriched mRNAs revealed that local, distal translation 

of transcription factors (Fig. 2.4C, ‘sequence-specific DNA binding’) is likely a common mechanism by 

which distal events trigger a transcriptional response following transport of the protein to the nucleus. 

Axonal translation of the transcription factors ATF4 and STAT3 are induced following injury in CNS 

and PNS neurons, respectively (Baleriola et al., 2014; Ben-Yaakov et al., 2012). Retrograde transport 

of these proteins to the soma mediate the transcriptional response to axon injury. Retrograde transport 

of axonally synthesized transcription factors could function in a variety of axon-to-soma signaling 

pathways beyond injury. Alternatively, some annotated transcription factors could have transcription-
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independent roles. For example, axonally synthesized β-catenin, a Wnt signal transducer, functions at 

the presynapse as a scaffold protein (Bamji et al., 2003; Taylor et al., 2013).. The highly enriched 

categories of ‘secreted’ and ‘extracellular’ protein transcripts suggests a significant demand on distal 

projections to dynamically modulate the extracellular environment, likely as part of axon guidance, 

synaptogenesis and even synaptic plasticity. Differential expression of the proportionally enriched and 

proportionally depleted fractions may be the cumulative result of differential trafficking of RNA to distal 

subcellular compartments as well as differential mRNA stability. Messenger RNA stability can be 

regulated by multiple mechanisms, including microRNAs and nonsense mediated decay. MicroRNA 

mediated mRNA regulation is documented in axons (Hengst et al., 2006; Natera-Naranjo et al., 2010). 

Nonsense mediated decay (NMD) components are present in axons and growth cones and in vivo 

disruption of NMD in mouse commissural neurons alters axon guidance. Spatiotemporal cues 

developmentally regulate NMD of Robo3.2 mRNA in the axons of these neurons (Colak et al., 2013).  

Our comparison of the most abundant distal mRNAs within hESC-neurons with that of axons 

of primary embryonic rat cortical neurons revealed functional similarities, specifically in mRNAs 

encoding proteins required for translation, ribosomal proteins and nuclear-encoded mitochondrial 

proteins necessary for ATP production (Fig. 2.5B and 2.5C). These axon enriched categories have 

been described in the adult rat neuropil, adult and embryonic rat DRGs, embryonic mouse DRGs, 

neonatal rat SCGs and mouse retinal ganglion cells (Andreassi et al., 2010; Gumy et al., 2011; Minis 

et al., 2014; Shigeoka et al., 2016; Willis et al., 2007). Axonal translation of nuclear encoded 

mitochondrial respiratory chain proteins has been described previously (Gioio et al., 2001; Hillefors et 

al., 2007). We speculate that it is more efficient to replenish critical mitochondrial proteins via de novo 

and in situ translation than for the neuron to support a continual cycle of soma to axon mitochondrial 

protein transport. The conservation of ribosomal protein transcripts in axons suggest that either the 

protein components of the ribosome have a shorter half-life than the RNA components or local 

translation of ribosomal protein is a mechanism to dynamically regulate distal ribosomes and 

translation. There are over 100 human ribosomal proteins but only a few are characterized as 

constitutive ribosome components and the function of many of these proteins are unknown. It is 

interesting to speculate that the unique repertoire of ribosomal proteins associated with rRNA could 
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confer target mRNA specificity. Ribosomes containing ribosomal protein L38 have been shown to 

preferentially interact with and translate the mRNA of Hox genes in mouse (Kondrashov et al., 2011). 

With the large number of ribosomal proteins it is possible that this is a common, under characterized, 

mechanism of translational regulation. Additionally, ribosomal proteins may mediate differential 

ribosome localization by regulating ribosome interaction with transmembrane proteins of organelles, 

such as the axonal endoplasmic reticulum, or growth factor receptors, such as the netrin-1 receptor 

Deleted in Colorectal Cancer (DCC) (Tcherkezian et al., 2010). 

The enrichment of ‘synaptic’ protein transcripts in the conserved mRNAs between the axonal 

transcriptome of hESC-neurons and embryonic rat cortical neurons (Fig. 2.7B) suggests that these two 

glutamatergic-enriched neuron populations share the capacity for local translation of synaptic proteins, 

potentially functioning in synaptogenesis and synaptic plasticity. Dynamic synaptogenesis and 

synaptic plasticity throughout the lifespan of the organism are key features of the hippocampus and 

cortex, the brain regions enriched for glutamatergic neurons. 

We confirmed the presence of three specific mRNAs, ACTB, GAP43 and OXT, within hESC-

neuron axons using multiplexed RNA-FISH. Axonal localization of ACTB and GAP43 appears to be 

conserved between rodents and humans suggesting that local function and synthesis of these proteins 

may also be conserved. Oxytocin mRNA within the axonal compartment and intra-axonal translation of 

oxytocin may be unique to human neurons. 

Possible improvements 

In vitro differentiation and maturation of stem cell derived neurons within microfluidic 

chambers is a labor intensive process requiring almost daily attention for many weeks. To improve 

efficient use of each chamber it would be beneficial to optimize the current RNA collection method so 

both compartments of the same chamber can be used, maybe one compartment for RNA and the 

other for immunofluorescence or other downstream biochemical analysis. 

The time course and identifying characteristics of human neuron polarization has not been 

rigorously investigated so researchers must apply what is known about neuron polarization from other 

species. Our immunofluorescent evaluation of the neurites within the microgrooves and the axonal 
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compartment demonstrated that they were β-tubulin III positive and MAP2 negative; these are 

canonical features of properly polarized mature axons of embryonic and adult neurons from all model 

species. Further, a modified rabies virus delivered to the isolated axonal compartment was able to 

infect the hESC-neurons and the GO functional categories were similar between this hESC-neuron 

axonal transcriptome and the rat cortical axon transcriptome (Taylor et al., 2009) suggesting that this 

was an enriched population of mature axons. The presence of mCherry negative distal projections 

within the axonal compartment could arise from variability in the time course of mCherry expression. In 

primary rat hippocampal cultures the minimum amount to time to detect fluorescent protein is 48 hours 

but some cells do not express detectable mCherry until 4 days after transfection. Alternatively, these 

mCherry negative projections could be resistant to viral infection due to lack of viral receptors 

suggesting an incomplete axon phenotype or, less likely, a dendritic phenotype.  

Neurons derived from in vitro differentiated pluripotent stem cells are generally accepted as 

resembling fetal neurons (Stein et al., 2014). While the differentiation and maturation protocol we used 

has generated neurons capable of action potentials as early as DIV42 (Zeng et al., 2010), a 

characteristic of functionally mature neurons, these cells are not “aged” to a point of resembling adult 

neurons. RNA-mediated mechanisms have been implicated in both neurodegenerative and 

neurodevelopmental models, making “young” and “aged” neurons beneficial model systems. 

Researchers are working to generate appropriately aged stem cell derived neurons to model age-

related neuronal function (Miller et al., 2013). 
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CHAPTER THREE: DIFFERENTIAL GENE EXPRESSION FOLLOWING IN VITRO AXON INJURY 

OF RAT HIPPOCAMPAL NEURONS 

INTRODUCTION 

Stroke and traumatic brain injury induce significant local synaptic reorganization as well as 

reorganization in distal uninjured regions isolated from the site of damage (Nudo and Milliken, 1996; 

Nudo, 2013; Takechi et al., 2014). This injury-induced neural plasticity supports formation of new 

synaptic connections and remapping of neural networks to compensate for loss of function. This is 

well-described in humans using neuroimaging and non-invasive stimulation techniques (Frost et al., 

2003; Nudo, 2013; Oudega and Perez, 2012; Takechi et al., 2014). The cellular mechanisms of this 

injury-induced plasticity far from the primary injury site remain largely unknown.  

Neurons of the cerebral cortex extend long axons into numerous distant areas of the CNS, 

including the spinal cord and the contralateral cortical hemisphere. Brain injury and disease 

preferentially affect these long projection neurons within the CNS (Nakatomi et al., 2002; Will et al., 

2004). When remote areas are injured, long projecting axons are damaged and injury signals 

propagate retrogradely to the somatodendritic domains to alter the neural network. For example, 

spinal cord injury damages long projecting corticospinal axons with subsequent, time-dependent 

morphological changes to dendritic spines, protrusions that form synapses with presynaptic neurons, 

in the motor cortex. These changes include decreased spine density and alterations in spine length 

and diameter (Kim et al., 2006) which induce synaptic changes affecting neuron connectivity. Loss of 

local GABAergic inhibition onto injured neurons has been observed following injury, potentially 

unmasking preexisting excitatory connections resulting in enhanced excitability (Ding et al., 2011; 

Jacobs and Donoghue, 1991; Takechi et al., 2014). Further, injury signaling initiates a transcriptional 

response that is necessary for recovery (Rishal and Fainzilber, 2014; Urban et al., 2012). Together 

these findings suggest a cascade of events following distal axonal injury involving retrograde axon-to-
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soma signaling, transcription and trans-synaptic signaling from the injured neuron to uninjured 

presynaptic neurons resulting in synaptic plasticity and enhanced excitability.  

The cellular heterogeneity and structural complexity of the CNS complicates dissecting the 

intrinsic neuronal responses to distal axon injury in vivo. An in vitro axon injury model using embryonic 

rat hippocampal neurons grown in axon-isolating microfluidic chambers (Taylor et al., 2005; Taylor et 

al., 2009) allowed us to investigate the injury-induced synaptic and transcriptional changes. 

MATERIALS AND METHODS 

Hippocampal cultures 

Animal procedures were carried out in accordance with the University of North Carolina at 

Chapel Hill Institutional Animal Care and Use Committee (IACUC). Dissociated hippocampal cultures 

were prepared from Sprague Dawley rat embryos (E18-E19) as previously described (Ivins et al., 

1998; Taylor et al., 2003) with the following modifications. Hippocampal tissue was dissected in 

dissociation media containing 82 mM Na2SO4, 30 mM K2SO4, 5.8 mM MgCl2, 0.25 mM CaCl2, 1 mM 

HEPES, 20 mM Glucose and 0.001% Phenol red. For enzymatic digestion, equal volumes of TrypLE 

Express (Invitrogen) and dissociation media were added to the tissue and incubated at 37 °C for 8 

min. Tissue was then rinsed and gently triturated in neuronal culture media consisting of Neurobasal 

media (Invitrogen) supplemented with 1x B-27 serum-free supplement (Gibco), 1x Antibiotic-

antimycotic (Invitrogen), 1x Glutamax (Invitrogen). Dissociated cells were resuspended in neuronal 

culture media to yield 12x106 cells per ml. 

Microfluidic chambers 

Poly(dimethylsiloxane) (PDMS) microfluidic chambers were replica molded from 

microfabricated master molds as described previously (Taylor et al., 2005). All experiments used 

chambers with 900µm long microgrooves to separate the somatodendritic and axonal compartments 

as described previously (Taylor et al., 2005; Taylor et al., 2009; Taylor et al., 2013), except the 

experiments associated with Figure 3.4 which used chambers with 150 µm, 450 µm and 900 µm long 

microgrooves. Microfluidic chambers were placed onto glass coverslips coated with 500-550 kDa poly-
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D-lysine (BD Biosciences). Approximately 90,000 cells were plated into the somatodendritic 

compartment and axons extended into the adjacent axonal compartment after 5-7 days of culture in 

the absence of exogenous growth or chemotactic factors. Axotomy was performed between 11 and 15 

days in vitro (DIV) according to previously published procedures (Taylor et al., 2005; Taylor et al., 

2009). Briefly, media was first removed from the axonal compartment of ‘axotomized’ experimental 

cultures and ‘naive’ control cultures and stored for future use. The axonal compartment of ‘axotomized’ 

cultures was aspirated until completely devoid of fluid, while the ‘naive’ cultures were not further 

manipulated. The stored culture media was then returned immediately to the axonal compartment for 

the duration of the culture time. Microfluidic devices with equivalent viable cell populations were 

randomly chosen for either axotomy or naïve control groups. 

Cell viability assay 

Dead cells were labeled using SYTOX Green (Invitrogen) at a final concentration of 1 µM and 

all cell nuclei were labeled with NucBlue Hoechst Stain (Invitrogen). Cells were incubated with 

SYTOX/Hoechst solution simultaneously in 1x Phosphate Buffered Saline (PBS) for 5 min at 37 °C, 

washed with PBS, and fixed with 4% paraformaldehyde (PFA) in PBS containing 40 mg/ml sucrose, 1 

µM MgCl2 and 0.1 µM CaCl2 for 15 min at room temperature (RT). Coverslips were then rinsed three 

times with PBS and mounted onto the glass slide using Fluoromount G (Southern Biotech). SYTOX 

positive (Sytox+) cells were manually counted in ImageJ using sum projected z-stack confocal images. 

Percent cell viability was calculated using [ (Hoechst - Sytox+) / Hoechst ] * 100. 

Retrograde labeling 

Retrograde labeling was performed using either modified cholera toxin or rabies virus. Cholera 

Toxin Subunit B Alexa Fluor 488 (Thermo Fisher Scientific, C34775; 1 µg in 200 μl of neuronal culture 

media) was added to the axonal compartment of the microfluidic chamber and incubated for 

approximately 15 h at 37 °C. After 15 h of incubation, the axonal compartment media was removed, 

rinsed and replaced using fresh neuronal culture media. Cultures were immediately used for imaging 

or experimental manipulation.   
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G-deleted Rabies-mCherry (Wickersham et al., 2007a) (Salk Institute; 1x105 viral units) in 50 

µl conditioned media was added to the axonal compartment of each chamber and incubated for 2 h at 

37 °C. Conditioned media was added back to the axonal compartments following two washes with 

fresh neuronal culture media. Chambers were maintained in 37 °C incubator for approximately 48 h 

until fluorescence expression was visible. 

Immunocytochemistry 

Cells were fixed with 4% paraformaldehyde in PBS containing 40 mg/ml sucrose, 1 µM MgCl2 

and 0.1 µM CaCl2 then permeabilized in 0.25% Triton X-100 and blocked in 10% normal goat serum 

for 15 min each. Coverslips were incubated with anti-MAP2 (1:1000; Millipore # AB5622), anti-β-

tubulin III (1:2000; Aves # TUJ) primary antibodies in 1% blocking solution for overnight at 4°C. 

Coverslips were then incubated with goat anti-rabbit or goat anti-mouse or anti-chicken secondary 

antibodies conjugated to Alexa-fluorophores (1:1000; Invitrogen) at RT for 1 h. Following PBS washes 

cells were counterstained with 71.5 µM 4’,6-diamidino-2-phenylindole (DAPI) in PBS, washed again 

and coverslips were mounted onto glass slides with Fluoromount G (Southern Biotech).  

Microgroove length analysis 

Primary embryonic rat hippocampal neurons were cultured in microfluidic chambers with 

microgroove lengths of 150 µm, 450 µm and 900 µm, 2 chambers for each configuration. On DIV13 

isolated axons and their associated somata were labeled with cholera toxin conjugated to AlexaFluor 

488 as described above. On DIV14 after cholera toxin was washed away cells were fixed with 4% 

paraformaldehyde in PBS containing 40 mg/ml sucrose, 1 µM MgCl2 and 0.1 µM CaCl2, washed with 

PBS, counterstained with 71.5 µM DAPI and mounted onto glass slides with Fluoromount G (Southern 

Biotech). Imaging captured a region of each chamber measuring 2 mm wide by 1.7 mm long. The 

width of each chamber (2 mm) was visually divided into four equal regions measuring 0.5 mm wide by 

1.7 mm long and DAPI nuclei and cholera toxin positive somata were manually counted in each region 

using the ImageJ plugin ‘Cell Counter’. 

RNA isolation 



 

79 
 

Total RNA from each of 3 axotomized chambers and 3 naive manipulated chambers (6 total 

samples) was isolated from the somatodendritic compartment of DIV14 cultures, 24 h after 

manipulation. RNA was collected from the entire somatodendritic compartment for gene expression 

analysis; thus, a fraction of neurons in the axotomized chambers were axotomized and the remaining 

fraction were uninjured (Fig. 3.1B). RNA was isolated using an RNAqueous-Micro Kit (Ambion) 

according to the manufacturer’s instructions including DNase treatment, with modifications specific to 

accessing the microfluidic compartment (Taylor et al., 2009). Briefly, 50 µl lysis solution was added to 

one somatodendritic well and collected from the other somatodendritic well after solution flowed 

through the somatodendritic compartment. Lysate was added to 50 µl of fresh lysis solution and mixed 

by careful pipetting. Further RNA purification steps were performed according to the manufacturer's 

guidelines. Samples were stored at -80 °C until prepared for microarray gene expression. 

Microarray analysis 

Quantification of RNA integrity and concentration was confirmed with an Agilent TapeStation 

2200 at the UNC Lineberger Comprehensive Cancer Center Genomics Core. Microarrays were 

processed at the UNC School of Medicine Functional Genomics Core using the Affymetrix GeneChip 

WT Plus Reagent Kit for cRNA amplification, cDNA synthesis, fragmenting and labeling. Samples 

were hybridized to Rat Gene 2.0 ST Arrays (Affymetrix). The Robust Multichip Analysis (RMA) 

algorithm was used for global background adjustment, quantile normalization and gene expression 

summarization between samples. This method is sensitive to small changes between samples without 

negatively affecting signal variance. Data analysis was performed with Affymetrix Expression Console 

software and Affymetrix Transcriptome Analysis Console v2.0 software to compare axotomized 

cultures to naive control samples using one-way between-subject ANOVA of RMA normalized 

intensities. Because a fraction of the harvested cells were uninjured in our axotomized samples, we 

used modest fold change values for defining our list of significantly changed transcripts (fold change 

absolute value ≥ 1.05 and ANOVA p-value < 0.05). 

Raw microarray data of cortical layers V/VI of female Wistar rats subjected to either spinal 

cord transections at thoracic layer 8 or sham injury was downloaded from EMBL-EBI Array Express 
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(E-MTAB-794) (Jaerve et al., 2012). Four animals were used for each condition and samples were 

hybridized to Rat Gene 1.0 ST Arrays (Affymetrix). The microarray data was previously validated using 

qPCR. Data analysis was performed with Affymetrix Expression Console software and Affymetrix 

Transcriptome Analysis Console v2.0 software to compare cortical layers V/VI from injured to sham 

operated animals. 

FM dye experiments and analysis 

Cultures in microfluidic chambers at 24 h (DIV14), 48 h (DIV15), and 4 d (DIV17) after 

axotomy were loaded with lipophilic dye FM5-95 (Invitrogen) using KCl mediated depolarization as 

described previously (Taylor et al., 2013). Briefly, cultures were first incubated for 30 min with pre-

warmed HEPES-buffered solution (HBS; 119 mM NaCl, 5 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 30 mM 

glucose, 10 mM HEPES). Media was then replaced with FM dye loading solution containing 10 µM 

FM5-95, 20 μM AMPAR antagonist 6-cyano-7-nitroquinoxaline-2,3-dione disodium (CNQX; Tocris), 50 

μM NMDAR antagonist D-(-)-2-amino-5-phosphonopentanoic acid (D-AP5; Tocris) in 90 mM KCl HBS 

for 1 min. The loading solution was replaced with HBS containing 10 μM FM5-95 for 1 min and later 

rinsed three times with a high-Mg2+, low-Ca2+ solution (106 mM NaCl, 5 mM KCl, 0.5 mM CaCl2, 10 

mM MgCl2, 30 mM glucose, 10 mM HEPES) containing 1 mM Advasep-7 (Biotium) to remove 

extracellular membrane-bound FM. Finally, cultures were washed in HBS containing 20 μM CNQX 

and 50 μM D-AP5 three times, 1 min each. Next, we stimulated the microfluidic chambers using 

extracellular electrodes by placing a positive and negative electrode in each well of the 

somatodendritic compartment.  

Electrical stimulation was provided by an AD Instrument 2 Channel Stimulus Generator 

(STG4002) in current mode with an asymmetric waveform (-480 µA for 1 ms and +1600 µA for 0.3 ms) 

at 20 Hz for 600 pulses, approximately 1 min. The FM5-95 imaging was performed as described 

previously using a spinning disk confocal imaging system (Taylor et al., 2013).  Z-stacks (31 slices) 

were captured every 15 s during the baseline (1 min), stimulation (1 min), and after stimulation (2 min) 

periods. This stimulation pattern was optimized for efficient FM unloading within these microfluidic 

chambers and the frequency is greater than typically used in open well dishes. At least 3 baseline 
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images were acquired before electrical stimulation. Sum projected confocal z-stacks were converted to 

8-bit images and registered using TurboReg, an ImageJ plugin. We background subtracted the image 

stack using the image 3 min after stimulation began. Image stacks were thresholded to a pixel value of 

15. FM puncta between 0.4 to 10 µm2 were analyzed. We measured the intensity of each punctum in 

the whole field throughout all time-series. We normalized fluorescence intensity of each puncta to the 

frame before stimulation. Puncta with > 5% unloading immediately after the stimulation were used in 

the analysis as unloaded puncta. 

In activity and transcription blocking experiments the FM5-95 unloading experiment were 

performed 48 h after axotomy and the intensity measurements of each punctum in the whole field and 

subsequent analysis of FM unloading kinetics was performed as described above. 

Drug treatments 

5,6-dichloro-1-β-D-ribofuranosyl-1H-benzimidazole (DRB; Sigma-Aldrich # D1916) was 

suspended in Dimethyl sulfoxide (DMSO) and applied to the somatodendritic compartment at a final 

concentration of 80 μM for 15 min prior to axotomy and 45 min after axotomy. Tetrodotoxin citrate 

(TTX; Tocris Bioscience # 1078) was suspended in HBS and applied to the somatodendritic 

compartment at a final concentration of 1 μM for 15 min prior to axotomy and 45 min after axotomy. 

Media stored from the axonal compartment prior to treatment was added back to the axonal 

compartment after treatment. 

Microscopy 

Fixed imaging, live imaging and FM kinetics imaging was performed using a CSU-X1 

(Yokogawa) spinning disk confocal imaging unit configured for an Olympus IX81 microscope (Andor 

Revolution XD). Excitation for the spinning disk confocal imaging system was provided by 405 nm, 488 

nm, 561 nm, and/or 640 nm lasers. The following bandpass emission filters (BrightLine, Semrock) 

were used: 447/60 nm (TRF447-060), 525/30 nm (TRF525-030), 607/36 nm (TR-F607-036), 685/40 

nm (TR-F685-040). For FM imaging, the spinning disk confocal imaging system was used with 
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excitation at 561 nm and the 685/40 nm emission filter. We used 2x2 binning to reduce the laser 

intensity and acquisition time for each frame; each z-stack was obtained in approximately 5 s. 

Statistics 

Statistics were analyzed using GraphPad Prism 6. Unpaired two-tailed t-test was performed 

when comparing two independent groups. For FM unloading experiments and for comparing multiple 

groups, Two-way ANOVA and One-way ANOVA were used respectively followed by Bonferroni post-

hoc test. 

Data availability 

The raw microarray data (CEL and CHP files) are available through the NCBI Gene 

Expression Omnibus under accession number GSE89407. 

RESULTS 

Fluidically isolated axons of embryonic rat hippocampal neurons can be injured without affecting cell 

viability 

To investigate the effect of distal axotomy on cell viability, synaptic plasticity and gene 

expression we grew embryonic rat hippocampal neurons in 2-compartment axon-isolating microfluidic 

chambers with 900 µm microgrooves separating the compartments (Fig. 3.1A). Hippocampal tissue 

provided a consistently enriched population of pyramidal neurons (85-90% pyramidal) compared with 

similarly harvested cortical neurons. Neurons were plated in the somatodendritic compartment in the 

absence of exogenous growth or chemotactic factors. After 10 days in vitro (DIV) the axonal 

compartment was densely populated with neuron-specific class III β-tubulin (β-tubulin III, βtub) positive 

axons while the microtubule-associated protein 2 (MAP2) positive soma and dendrites were restricted 

to the somatodendritic compartment (Figure 3.1A). In this model system the somatodendritic 

compartment included the somata, dendrites and axons of neurons that did not extend into the axonal 

compartment (Figure 3.1B, grey neurons) as well as the somata and dendrites of neurons with axons 

extended into the isolated compartment (Fig. 3.1B, red neurons). The fluidic isolation of the 
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compartments allowed manipulation of the isolated axons without physically or chemically disrupting 

the somatodendritic compartment. To axotomize the isolated axons high speed airflow was applied to 

the axonal compartment for at least 60 seconds via a traditional tissue culture aspirator system (Taylor 

et al., 2005; Taylor et al., 2009). This manipulation completely ablated the axons within the 

compartment (Fig. 3.2A and 3.3C). Media was removed from the axons of naïve manipulated cultures 

for approximately 60 seconds, without aspiration air flow, then the media was returned to the 

compartment. Due to the enclosed design of the compartments the naïve axons remained surrounded 

by media during this control manipulation. These control, naïve cultures were exposed to minimal 

axonal stress and damage while controlling for the microforces associated with removing and 

recirculating the axonal media. 
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Figure 3.1 

 
Figure. 3.1. Long projecting axons of rat hippocampal neurons grown in axon-isolating 
microfluidic chambers can be injured. 
A. Representative montage image of fixed embryonic rat hippocampal neurons immunostained for 
somata and dendrites (MAP2, red) and axons (β-tubulin III, green), scale bar 100µm. 
B. Diagram demonstrating axotomy of long projecting neurons and the mixed population of neurons 
that were injured (red) and uninjured (grey). 

Previous work developing this in vitro axotomy model (Taylor et al., 2005; Taylor et al., 2009) 

but lacked the ability to track and label individual regenerating axons. To label the axons within the 

axonal compartment we applied recombinant Cholera toxin B subunit conjugated to Alexa Fluor 488 

(Thermo Fisher Scientific, C34775) to the isolated axonal compartment. Cholera toxin B subunit binds 

to the pentasaccharide chain of ganglioside GM1 on the neuronal plasma membrane and is a common 

low-toxicity tool for in vivo retrograde tracing of neurons (Xu and Sudhof, 2013). Lateral diffusion of 

fluorescently labeled gangliosides within the plasma membrane lead to intense labeling of the somata 

in less than 24 h. We used live fluorescent imaging to identify the somata and axons before and 24 h 

after axotomy (Fig. 3.2A and 3.2B). Twenty-four hours after axotomy regeneration of fluorescently 

labeled axons was seen (Fig. 3.2A, arrowheads) while pseudo-DIC imaging revealed growth of axons 

that were not fluorescently labeled (Fig. 3.2A, arrows). Regeneration of injured axons suggested that 

axotomy in our in vitro system was not lethal. Further, gross cellular morphology was no different 

between directly injured neurons, labeled with Cholera toxin B subunit, and unlabeled uninjured 

neurons in the same culture 24 h after axotomy (Fig. 3.2A and 3.2B, Somata). Fluorescent imaging 
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settings were adjusted 24 h after axotomy to capture the faint regenerating axons leading to the 

appearance of increased fluorescence intensity of the somata and uninjured axons (compare 

fluorescent intensity of somata before and after manipulation in Fig. 3.2A and 3.2B and axons in Fig. 

3.2B). 

We directly evaluated the viability of cultures using a fluorescent nucleic acid stain 

impermeant to live cells allowing differential staining of nuclei of live and dead cells. Quantification of 

cell viability verified that neuron viability was very high in our microfluidic cultures and was no different 

between naïve and injured cultures 24 h (Fig. 3.2C) or 48 h (Fig. 3.2D) after axotomy similar to in vivo 

findings (Greer et al., 2012). Supporting the use of this approach, we previously found that axotomy 

performed within the microfluidic chambers induced rapid expression of the immediate early gene c-

fos, as reported in vivo (Ikeda and Nakagawa, 1998; Taylor et al., 2005).  
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Figure 3.2 

 
Figure. 3.2. Axons regenerated after axotomy and cell viability was unaffected. 
Fluidically isolated axons and their somata were labeled with Cholera toxin conjugated to AlexaFluor 
488 administered to the isolated axons (A, B). 
A. Live imaging of somata and axons before and 24 hours (h) after axotomy. Arrows mark a 
representative non-fluorescent axon and arrowheads mark representative fluorescent regenerating 
axons, scale bars 100µm. 
B. Live imaging of the somata and axons of naïve (uninjured) cultures before and 24h after the control 
manipulation. 
C. Viability of naïve and axotomized cultures on DIV14, 24h after manipulation. 
D. Viability of naïve and axotomized cultures on DIV15, 48h after manipulation. 

Because the Cholera toxin imaging parameters had to be modified to capture the regenerating 

axons we sought an additional, brighter and more robust method to label the somata and axons that 

were directly injured. We chose to use a modified rabies virus carrying the fluorescent protein mCherry 

gene (Wickersham et al., 2007a). This method brightly labeled the somatodendritic arbor and axons of 

infected neurons within 48 h of viral treatment (Fig. 3.3A). Cultures infected with the modified rabies 

virus on DIV10 and imaged more than 48 hours later revealed that 80-85% of axons in the isolated 

compartment on DIV13 were positive for fluorescent protein. Live imaging of isolated axons before and 

immediately after axotomy showed the efficiency of our axotomy method (compare Fig. 3.3B and 

3.3C). Repeated imaging of the regenerating axons in live cultures, 24 and 48 hours after axotomy, 
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showed that the regenerating axons, as expected, do not follow the same paths as the original axons 

(compare Fig. 3.3B, 3.3D and 3.3E). Additionally, these regenerated axons appear to create paths that 

are more jagged or irregular as compared to the original axon paths, potentially suggesting a change 

in growth cone function or cytoskeletal structure in regenerating hippocampal neuron axons. 
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Figure 3.3 

 
Figure. 3.3. Rabies virus carrying a fluorescent protein gene administered to the isolated axons 
allowed monitoring of the somatodendritic arbor and axons. 
A. Representative live image montage of rabies virus treated neurons within a microfluidic culture 
chamber imaged 48h after viral infection, scale bar 100µm. 
Repeated imaging of mCherry labeled axons regenerating following axotomy 
B. A representative montage field of mCherry labeled axons on DIV13, prior to axotomy, scale bar 
100µm. 
C. The same axon field as in B imaged immediately after axotomy, scale bar 100µm. 
D. The same axon field as in B imaged 24h after axotomy, scale bar 100µm. 
E. The same axon field as in B imaged 48h after axotomy, scale bar 100µm. 

Neurons with axons extending into the isolated compartment are typically close to the microgrooves 

To determine the average percentage of neurons that had axons within the axonal 

compartment, and therefore were susceptible to axotomy, we again applied Alexa Fluor 488 

conjugated recombinant Cholera toxin B subunit to the isolated axonal compartment, these axons 

were not injured. The cells were fixed, DAPI counterstained and imaged (Fig. 3.4A). For comparison 

we simultaneously evaluated neurons grown in two-compartment chambers with microgrooves of 900 
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µm, 450 µm or 150 µm. Only the microgroove length differed between these designs; all other 

dimensions of these chambers were identical, including compartment dimensions, number and 

spacing of microgrooves, as well as microgroove height and width. Equivalent numbers of cells were 

plated in all the chambers. The chambers with 150 µm microgrooves had statistically more neurons 

with fluidically isolated axons (approximately 10%) while there was no statistically significant difference 

between the chambers with 450 µm or 900 µm microgrooves (Fig. 3.4B, mean ± SEM: 150 µm: 0.1004 

± 0.001856; 450 µm: 0.05947 ± 0.004805; 900 µm: 0.04489 ± 0.001356). 
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Figure 3.4 

 
Figure. 3.4. The number of cells with isolated axons depended on microgroove length. 
A. Representative merged montage image of somatodendritic compartment with 150 µm long 
microgrooves oriented to the right. Somata with isolated axons were labeled with Cholera toxin 
conjugated to AlexaFluor 488 (green) and DAPI (white) was used to label all nuclei, scale bar 200µm. 
B. Quantification of the percent of DAPI labeled nuclei that were also positive for Cholera toxin in 
microfluidic chambers with different length microgrooves. Quantification field dimensions were 
approximately 2.0 mm x 1.7 mm, asterisks (*) indicates ANOVA with Tukey multiple comparisons test 
p-value < 0.01.  

We were further interested in determining the probability that the axons of somata proximal to 

the microgrooves entered the isolated compartment versus whether the axons of somata distal to the 

microgrooves did so. To do this we visually divided the width of the somatic compartment, 

approximately 2 mm, into four equal regions of 0.5 mm x 1.7 mm (Fig. 3.5A). The most distal region 

was 1.5 mm to 2 mm from the microgrooves, the mid-distal region was 1.0 mm to 1.5 mm, the mid-

proximal region was 0.5 mm to 1.0 mm and the most proximal region was 0 mm to 0.50 mm from the 

microgroove. We compared the regions within each microgroove length design and across designs 

(Fig. 3.5B). Surprisingly, there was no significant difference between the three microgroove designs in 

the most distal region from the microgrooves (region 1). Within each design there was no difference 

between the most distal region (region 1) and the mid-distal region (region 2) but between designs the 

mid-distal region of the 150 µm design had significantly more cells with axons in the isolated 

compartment than the 450 µm and 900 µm designs. The mid-proximal region (region 3) of the 900 µm 

design was not statistically different from the most distal or mid-distal regions but within the 450 µm 
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and 150 µm designs the mid-proximal region had significantly more cells with axons crossing the 

microgrooves. The most proximal region (region 4) within each design had the greatest number of 

soma with axons in the isolated compartment; the most proximal region is significantly different from 

all other regions within each design. Across designs the mid-proximal and most proximal regions of 

each design is significantly different from the others. 
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Figure 3.5 

 
Figure. 3.5. The distribution of cells with isolated axons depended on microgroove length. 
A. Separate greyscale images of the Cholera toxin and DAPI channels shown in A with the 4 regions 
outlined (most distal, mid-distal, mid-proximal and most proximal). 
B. Quantification of the percent of DAPI labeled nuclei that were also positive for Cholera toxin in each 
region of the somatodendritic compartment of microfluidic chambers with different length 
microgrooves. The dimensions of each region were approximately 0.5 mm x 1.7 mm, asterisks (*) 
indicates ANOVA with Tukey multiple comparisons test p-value < 0.05 versus the immediate region 
more distal to the microgrooves. 

Transcription is necessary for axotomy-induced functional changes 

To evaluate how synapses are modified following distal axon injury, we next investigated 

whether presynaptic release properties were altered after axotomy. FM dyes, lipophilic styryl 

compounds, have been used in a variety of methods involving the plasma membrane and vesiculation, 

including eukaryotic cell endocytosis (Wiederkehr et al., 2000) and exocytosis (Mair et al., 1999). FM 

dyes have been applied to synaptically active neurons where the dye becomes internalized within 

recycling synaptic vesicles, intensely labeling the nerve terminals (Betz and Bewick, 1992; Betz and 

Angleson, 1998; Murthy and Stevens, 1998; Rea et al., 2004; Taylor et al., 2013). FM dyes are 

nontoxic, water soluble and virtually non-fluorescent in aqueous media. Their lipophilic nature allows 

them to insert into the cellular surface membrane where they become brightly fluorescent. FM puncta 

highly co-localize with synapsin1 presynaptic marker protein immunostaining. FM dyes provided us 

with a non-selective, unbiased method to label a majority of presynaptic terminals within the 

somatodendritic compartment (Gaffield and Betz, 2006; Taylor et al., 2013). FM5-95 is a slightly less 
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lipophilic analog of the red-fluorescent dye FM4-64 and can be easily removed from the cell 

membrane, minimizing background fluorescence, through repeated washes with Advasep-7, a 

sulfobutylated β-cyclodextrin derivative with higher affinity for FM dyes than the plasma membrane 

(Kay et al., 1999). Our FM loading method used a high concentration Potassium chloride solution (90 

mM KCl) to rapidly stimulate synaptic vesicle cycling, exocytosis followed by endocytosis, after cells 

had been briefly incubated in an FM5-95 solution containing the antagonists CNQX (6-cyano-7-

nitroquinoxaline-2,3-dione disodium, AMPA receptors) and D-AP5 (D-(-)-2-amino-5-

phosphonopentanoic acid, NMDA receptors). We captured a representative field of FM puncta closest 

to the microgroove barrier region within the somatodendritic compartments at 60x magnification. This 

field was within the region where statistically the largest percentage of axotomized neurons were 

located, as determined in the previous section (Fig. 3.5B). We captured FM fluorescence to optically 

measure synaptic vesicle release before (Fig. 3.6A i and ii, Fig. 3.6B i and ii), during and after a 1 

minute electrical field stimulation (Fig. 3.6A iii and Fig. 3.6B iii). 

Twenty-four hours after axotomy there was no change in synaptic vesicle release kinetics as 

compared to naïve controls (Fig. 3.6C). In contrast, 48 h after axotomy synaptic vesicle release rate 

was significantly enhanced (Fig. 3.6D). The difference in presynaptic release rate persisted, though 

modestly, 4 days (d) after axotomy. Together, these data suggest a delayed and persistent increase in 

synaptic vesicle release rate following axotomy. 
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Figure 3.6 

 
Figure. 3.6. Axotomy-induced hyper-excitability was present 48 hours after axotomy and 
persisted to 4 days after axotomy. 
A. Representative images of FM5-95 labeled presynaptic terminals (FM puncta) proximal to the 
microgrooves within the somatodendritic compartment of a naïve culture on DIV15. Color look up table 
‘Fire’. (i) The whole field captured and evaluated for synaptic vesicle release kinetics, enlarged 
outlined region shows FM puncta before (ii) and after (iii) field stimulation (1 minute), scale bars 10µm. 
B. Representative images of FM5-95 labeled presynaptic terminals (FM puncta) proximal to the 
microgrooves within the somatodendritic compartment of an axotomized culture on DIV15, 48 h after 
axotomy. Color look up table ‘Fire’. (i) The whole field captured and evaluated for synaptic vesicle 
release kinetics, enlarged outlined region shows FM puncta before and after field stimulation (1 
minute), scale bars 10µm. 
C. FM unloading 24 h after axotomy (naive, n=782; axotomy, n=877; 4 chambers for each condition). 
NS, indicates no statistically significant difference between treatments, alpha = 0.05. 
D. FM unloading 48 h after axotomy (naive, n=1,024; axotomy, n=1,015; 6 chambers for each 
condition). Asterisks (*) indicates two-way ANOVA with Bonferroni multiple comparison test p-value < 
0.01 versus Naive. 
E. FM unloading 4 days (d) after axotomy (naive, n=1,024; axotomy, n=1,015; 6 chambers for each 
condition). Asterisks (*) indicates two-way ANOVA with Bonferroni multiple comparison test p-value < 
0.01 versus Naive. 

Efficient axon regeneration requires signaling from the site of injury to the nucleus in multiple 

model systems (Rishal and Fainzilber, 2014), yet the signaling events required for synaptic remodeling 

following distal axotomy remain unclear. Breach of the axonal membrane following axon injury causes 

an influx of calcium and sodium ions into the intra-axonal space, potentially influencing signaling to the 

nucleus and gene expression. The retrograde axotomy signal could be chemical or molecular. 

Disruption of the axonal ion gradients could lead to back propagating action potentials which have the 

potential to initiate a cascade of events. Alternatively, the injury might activate local molecular 
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signaling events, such as local translation, changes in activity of cytoskeletal motor proteins or ion-

dependent enzymes that communicate the injury to the cell body. To determine whether synaptic 

activity during axotomy, possibly caused by disruption of ion gradients following breach of the plasma 

membrane, was involved in the hyper-excitability seen 48 h after axotomy we treated the 

somatodendritic compartment with tetrodotoxin (TTX) 15 min prior to, during and 45 min after 

axotomy. Tetrodotoxin reversibly binds voltage-gated sodium channels preventing action potentials. 

Somatodendritic action potential blockade with TTX at the time of axotomy did not affect changes in 

presynaptic release (Fig. 3.7A). Next, we investigated whether injury-induced transcription was 

required for the presynaptic changes seen at 48 h. We treated the somatodendritic compartment with 

the reversible transcriptional blocker DRB 15 min prior to axotomy and removed the drug 45 minutes 

later. We found that blocking transcription during this brief time was sufficient to prevent the axotomy-

induced hyper-excitability at 48 h compared with similarly treated naive chambers (Fig. 3.7B). We 

conclude that the transcriptional response rapidly initiated following distal axotomy, but not local 

synaptic activity during axotomy, is a critical mediator of the delayed changes in presynaptic release 

properties. 
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Figure 3.7 

 
Figure. 3.7. Hyper-excitability is dependent on transcription not action potentials at the time of 
axotomy. 
A. FM5-95 unloading curves following application of TTX. Approximately 200 puncta were analyzed 
per chamber; 4 individual chambers were analyzed for each condition across two independent 
experiments. The same trend was observed in each pair of experiments. Asterisks (*) indicates two-
way ANOVA with Bonferroni multiple comparison test p-value < 0.01 versus Naive. 
B. FM5-95 unloading following application of DRB. Approximately 200 puncta were analyzed per 
chamber; 4 individual chambers were analyzed per condition across two independent experiments. 
Two-way ANOVA with Bonferroni multiple comparison test, alpha = 0.05, NS indicates no statistically 
significant difference between treatments. 

Microarray analysis suggests possible mechanisms of injury-induced plasticity 

To identify differentially expressed transcripts that might mediate axotomy-induced synaptic 

plasticity within a therapeutically-relevant time window we performed microarray analysis 24 h after 

axotomy. Total RNA was collected from the somatodendritic compartment of three axotomized and 

three naïve cultures and submitted to the UNC Lineberger Comprehensive Cancer Center Genomics 

Core. RNA integrity was evaluated by TapeStation gel and fluorescence intensity traces (Fig. 3.8A and 

3.8B). Consistently strong ribosomal RNA banding (Fig. 3.8A) and peaks (Fig. 3.8B), at approximately 

1500 nt and 5000 nt, and a minor amount of degraded RNA confirmed the integrity of the RNA. In 

addition, the TapeStation reports an objective, robust and reproducible measurement of RNA 

degradation, the RNA integrity number equivalent (RINe), on a linear scale from 1 (fully degraded) to 

10 (no degradation). Our samples ranged from RINe 9.2 to 9.7. 

RNA samples were evaluated by microarray at the UNC School of Medicine Functional 

Genomics Core. Raw microarray probe fluorescence data was automatically normalized to on-chip 

Affymetrix controls. We evaluated the distribution of probe cell intensity across all six samples (Fig. 

3.8C) to confirm that each microarray dataset was reliable. The Robust Multichip Analysis (RMA) 

algorithm was used for global background adjustment, quantile normalization and gene expression 
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summarization between replicate samples. This method is sensitive to small changes between 

samples without negatively affecting signal variance. Following RMA we re-evaluated the distribution 

of the probe intensity (Fig. 3.8D) finding an equivalent distribution within and between our treatment 

groups. Lastly, Pearson’s correlation analysis of gene expression (Fig. 3.8E) suggested a modest 

amount of differential gene expression between our samples. Taken together, these data reassured us 

that our gene expression data was reliable and suggested that we would find only a few genes that 

were differentially expressed following axotomy. 
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Figure 3.8 

 
Figure. 3.8. RNA quality assessment and verification of microarray quality controls. 
A. Image of ScreenTape gel from TapeStation RNA quality assessment of triplicate naïve and 
axotomy (Axot.) RNA samples, standard ladder is included. 
B. Fluorescence intensity traces of ScreenTape lanes from “Naïve 1” and “Axotomy 1” samples plotted 
versus nucleotide length as determined by the ladder. Clearly defined 18S and 28S bands in the gel 
(A) and peaks in the traces (B) indicate high quality RNA samples. 
C. Histogram of microarray probe cell intensity prior to RMA analysis, plotted as frequency of signal 
versus signal intensity (log scale) for all naive (black) and axotomy (blue) arrays. 
D. Box-and-whiskers plot of the probe cell intensity (log scale) for each of the triplicate naïve (white) 
and axotomy (Axot., blue) arrays following RMA analysis. 
E. Pearson’s correlation of normalized expression signal after analysis of triplicate naïve and axotomy 
(Axot.) arrays. Indicator to the right demonstrates degree of correlation between samples. 

The lack of a drastic change in the transcriptional profile 24 h after axotomy was not 

completely unexpected having determined that in these cultures approximately 4.5% of the cells were 

directly injured (Fig. 3.4B). To account for this fact we set a low threshold for differential gene 

expression, 5% change in expression (± 0.05 fold change) with ANOVA p-value < 0.05 (Fig. 3.9A). 

This threshold resulted in 1059 differentially expressed probes representing 639 known genes. DAVID 

Gene Functional Classification (Huang da et al., 2009a; Huang da et al., 2009b) revealed that genes 
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in ‘synaptic function’, ‘calcium binding’, ‘neuron projections’ and ‘cell cycle’ were significantly enriched 

in the differentially expressed genes. We evaluated whether the genes in these categories tended to 

increase or decrease in expression following axotomy and found that they were equally distributed, 

except for ‘cell cycle’ genes which were predominantly increased (Fig. 3.9B). ‘Synaptic function’ and 

‘calcium binding’ genes as the top differentially expressed categories suggests that the transcription 

dependent hyper-excitability might be directly mediated through changes in expression of synaptic 

proteins and calcium-dependent enzymes which can modify synaptic proteins. 
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Figure 3.9 

 
Figure. 3.9. Differential gene expression 24 hours after axotomy. 
A. Volcano plot of gene expression fold change (linear, x-axis) versus ANOVA p-value (log, y-axis). 
Threshold for significantly changed gene expression was set at 0.05 with ANOVA p-value < 0.05. 
Unchanged probes are black (n = 29370), probes with significantly decreased expression are red (n = 
521) and probes with significantly increased expression are green (n = 538). 
B. Top DAVID gene ontology categories of differentially expressed genes. Number of genes with 
decreased expression in each category represented by red bars. Number of genes with increased 
expression in each category represented by green bars. 

Differential gene expression following in vitro axotomy resembles that of young rats 24 hours after 

spinal cord injury 

Finally, we wanted to determine if gene expression in our in vitro axotomy model was similar 

to gene expression following in vivo spinal cord injury (Jaerve et al., 2012). In this in vivo model the 

corticospinal tract (CST) of young and old rats (2- and 22-months old, respectively) was injured, by 

dorsal spinal cord hemisection. The sensorimotor cortex layer V, which contained the somata of 

primary motor neurons projecting their axons to the corticospinal tract, was collected 1, 7 and 35 days 

post operation (DPO) for microarray gene expression analysis. They verified that the correct cortical 

region was collected using DiI delivered to the injury site as a retrograde tracer. This region not only 

contained the somata of directly injured neurons but also those of uninjured neurons and astrocytes, 

oligodendrocytes and microglia. 

We hypothesized that our differential expression data from embryonic rat hippocampal 

neurons 24 h after axotomy would most closely resemble the differential expression of young rats 1 

DPO. The in vivo data and our in vitro data were measured using different microarray chip platforms 
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so a direct comparison was not possible. To overcome this we determined the comparable probe sets 

from the two microarray platforms (19991 probe sets) and rank scored the gene expression fold 

change for each dataset from lowest to highest, this controlled for different scales of gene expression 

across experiments. We analyzed the fold change rank correlation of our axotomy induced differential 

gene expression with that of the six datasets generated by Jaerve et al (Fig. 3.10). The Spearman 

correlation r value quantitatively reports the correlation between two datasets from -1 (negatively 

correlated) to 1 (positively correlated), an r value of 0 indicates no correlation. As predicted, our data 

had the highest Spearman correlation r value with the data from young rats 1 DPO. Unexpectedly, the 

second highest correlation was with the data from old rats 1 DPO. Also, our data was significantly 

positively correlated with the young rats 35 DPO but not young rats 7 DPO. To confirm that these 

correlation values represented true correlation we compared 5 randomly generated dataset to the in 

vitro and in vivo data, the resulting r values ranged from 0.020 to -0.015 with an average of 0.0015. 

This confirms a true correlation between these in vitro and in vivo models. A similar correlation pattern 

was obtained when we evaluated ‘fold change’ not ‘rank scored fold change’. These results suggest 

that the early time course of gene expression changes within our in vitro axotomy model broadly 

recapitulated those seen in vivo in the first 24 h after corticospinal tract injury. 
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Figure 3.10 

 
Figure. 3.10. Comparison of ranked gene expression fold change from in vitro axotomy model 
and published in vivo corticospinal tract injury model. 
Bivariate histograms of the 19991 microarray probes sets common between our in vitro axotomy data 
and in vivo injury data generated by Jaerve et al, 2012. Dorsal spinal cord hemisection operation was 
performed on young (2 months old) and old (22 months old) rats and gene expression in the 
sensorimotor cortex layer V was evaluated at 3 time points. XY scatter data was binned 25 x 25 and 
coloring corresponds to the number of probes in each bin, according to scale on far right. Two-tailed 
Spearman correlation of ranked expression, r value quantifies the correlation, asterisks (*) indicates 
two-tailed p-value < 0.0001. 
A. Ranked correlation between 24 hour in vitro axotomy and injured young rats (2 months old) 1 day 
post operation (DPO). White diagonal line marks 1:1 correspondence of ranked expression, note how 
the bins with more probes (tinted orange and yellow as opposed to blue and purple) roughly follow this 
diagonal indicating correlation. Asterisks (*) indicates two-tailed p-value < 0.0001. 
B. Ranked correlation between 24 hour in vitro axotomy and injured young rats (2 months old) 7 days 
post operation (DPO). Note that there are few orange-yellow bins and no clustering around the 
diagonal. 
C. Ranked correlation between 24 hour in vitro axotomy and injured young rats (2 months old) 35 days 
post operation (DPO). Note that there are no bright yellow bins but there is clustering toward the 
diagonal of orange-yellow bins. Asterisks (*) indicates two-tailed p-value < 0.0001. 
D. Ranked correlation between 24 hour in vitro axotomy and injured old rats (22 months old) 1 day 
post operation (DPO). There are bright yellow bins and clustering along the diagonal demonstrating 
statistically significant correlation between the datasets. Asterisks (*) indicates two-tailed p-value < 
0.0001. 
E. Ranked correlation between 24 hour in vitro axotomy and injured old rats (22 months old) 7 day 
post operation (DPO). Correlation r value is not statistically significant. 
F. Ranked correlation between 24 hour in vitro axotomy and injured old rats (22 months old) 35 day 
post operation (DPO). Correlation r value is not statistically significant. 
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DISCUSSION 

Significance 

While axon regeneration following injury is extensively studied, much less is known about how 

proximal neurons within the mammalian brain are affected following axonal damage (Canty et al., 

2013) and more specifically how synapses onto injured neurons are remodeled. We used a model 

system to enable the study the cellular mechanisms of synaptic remodeling following axon injury; this 

model recapitulated several hallmarks of neurons subjected to axonal injury in vivo, including axon 

regeneration and retrograde hyper-excitability (Nudo and Milliken, 1996; Nudo, 2013; Takechi et al., 

2014). Axotomy-induced transcriptional changes in this in vitro model are also consistent with in vivo 

findings (Jaerve et al., 2012; Urban et al., 2012). Because of the ability to separate neuronal 

compartments, this tool facilitates the investigation of axotomy-induced retrograde signaling intrinsic to 

neurons and the resulting effects to interneuronal communication. 

Our results demonstrate that axon regeneration occurs autonomously and viability and gross 

morphology of axotomized neurons is normal. Regeneration of axons within the peripheral nervous 

system (PNS) depends on axon-to-soma signaling, multiple transcription factor pathways and 

epigenetic mechanisms (Loh et al., 2017; Wang et al., 2017; Weng et al., 2017) but PNS neurons 

have a higher capacity for axon regeneration than CNS neurons and autonomous activation of these 

mechanisms appear to be uniquely to the PNS. It has been proposed that exogenous activation of 

these regenerative mechanisms or those involved in CNS axon growth and neurite extension might 

facilitate CNS axon regeneration (Patel et al., 2017; Venkatesh and Blackmore, 2016). 

The changes in presynaptic plasticity that we saw, and have been characterized in vivo (Nudo 

and Milliken, 1996; Nudo, 2013; Takechi et al., 2014), required the activation of a transcriptional 

response within the first 45 m after axotomy. This is consistent with axonal injury signaling in other 

non-CNS model systems (Rishal and Fainzilber, 2014). Laser axotomy of in vitro peripheral neurons 

laser axotomy induced local calcium influx that back-propagated to the nucleus to induce a 

transcriptional response that was necessary for axon regeneration (Cho et al., 2013). The localized 

influx of calcium may be a priming effect for axonal translation of signaling complexes (Chierzi et al., 



 

104 
 

2005) or retrograde transport of pre-existing signaling complexes required to initiate transcription 

(Rishal and Fainzilber, 2014). Further, our TTX results suggests that any disorganized or random 

spiking of axotomized neurons was not a major contributor to the changes in presynaptic function 

observed 48 h after axotomy.  

Our microarray results suggest that the presynaptic functional changes might depend on 

molecular remodeling of the synapse through altered expression of ‘synaptic function’ transcripts and 

‘calcium binding’ proteins. Axon regeneration and synaptic plasticity might be facilitated through 

transcriptional changes of mRNAs associated with ‘neuron projections’. Cyclin-dependent kinase 5 

(Cdk5) and it’s activator (p35/p25), canonical cell cycle proteins, have been shown to have neuron-

specific cell cycle-independent functions in synaptic plasticity and Alzheimer-like pathology (Seo et al., 

2014; Sheng et al., 2016). Many DNA repair proteins and pathways, commonly classified as ‘cell 

cycle’, are associated with neurodevelopmental or neurodegenerative diseases. Rad51, a central 

component in homologous recombination during double strand break repair, distributes from the 

perinuclear region to the axon following Netrin-1 bath application and regulates axon branching 

stimulated by Netrin-1 (Glendining et al., 2017). Mutations associated with Amyotrophic Lateral 

Sclerosis have been shown to reduce the prevention or repair of normal transcription-associated DNA 

damage (Hill et al., 2016) or generate amounts of DNA damage that are lethal to neurons (Farg et al., 

2017). Additionally, single nucleotide polymorphism variants in two base excision repair genes 

significantly increase the risk of Parkinson’s disease following environmental exposure to pesticides 

(Sanders et al., 2017). The enrichment of ‘cell cycle’ genes in our differentially expressed transcripts 

could be involved in the synaptic plasticity changes seen at 48 h or, speculatively, in responding to 

DNA damage induced by axon injury. 

 Finally, our demonstration that gene expression in our in vitro model system broadly 

correlates with gene expression following in vivo injury supports the conclusion that our simple, robust 

and reliable axotomy model is biologically relevant and helpful tool for evaluating neuronal gene 

expression and response following axon injury. While the correlation r values were low we are 

confident they represent a true similarity between the gene expression profiles. Low r values 

potentially result from the cellular heterogeneity of the two systems. Our in vitro data included a large 
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population of uninjured neurons while the in vivo data encompassed multiple cell types, including 

injured and uninjured neurons, astrocytes, oligodendrocytes and microglia, each with a potentially 

unique response to the stress of injury. 

Axonal damage within the CNS occurs in multiple disorders and diseases, but little is known 

about the overall impact on cortical circuit function. Our findings and model system have broader 

applicability beyond spinal cord injury to conditions where axonal damage is prevalent such as 

traumatic brain injury, Alzheimer’s disease, and multiple sclerosis. 

Possible improvements 

We modified two retrograde tracing methods, fluorescently labeled Cholera toxin subunit B 

and a modified rabies virus delivering a fluorescent protein gene, to identify the somata directly injured 

by in vitro axotomy. Both of these methods had unique strengths and weaknesses. The greatest 

strength of Cholera toxin labeling was that cells could be imaged or axotomized immediately after 

treatment. Additionally, all Cholera toxin labeled axons were equivalently fluorescent initially. 

Unfortunately, there was variability in the somata labeling intensity and labeling was isolated to the cell 

body with very little dendritic labeling. Second, the fluorescence intensity of the Cholera toxin labeling 

decreased over time; photobleaching during imaging, dilution of the label during membrane expansion 

associated with axon regeneration and recycling of toxin bound gangliosides likely all contributed to 

this. 

A drawback of rabies virus was that mCherry expression was not visible until around 48 h after 

viral treatment. Further, at 48 h only 80-85% of the axons in the isolated compartment were 

fluorescently labeled. This could be due to axons entering the compartment after the viral treatment, 

resistance of these axons to the virus or a slower course of viral infection and gene expression such 

that mCherry had not reached the threshold for imaging. Additionally, the time course of fluorescent 

protein accumulation required for imaging was inconsistent between neurons. In each culture cells 

were brightly fluorescent after 48 h. As we imaged the same cultures over the course of a four days a 

few more cells became fluorescent raising the question whether these neurons were different from the 

cells that were fluorescent at 48 h after infection. This difference in fluorescent protein expression 
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could be due to temporal variations in the course of events between viral infection and fluorescent 

protein accumulation or, more concerning, it could suggest trans-synaptic viral transmission. The 

glycoprotein, genetically removed in these G-deleted viruses, is required for receptor binding and 

membrane fusion and this viral genotype has been characterized to be transmission incompetent 

without a helper virus carrying the glycoprotein gene (Wickersham et al., 2007b). The greatest benefits 

of the rabies virus method were that the fluorescent protein was present throughout the neuron, 

including the dendrites and dendritic spines, facilitating very detailed morphological evaluation of the 

injured cells and the fluorescent signal did not fade over time or with repeated imaging. 
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CHAPTER FOUR: FUTURE DIRECTIONS 

Many of the major challenges associated with investigating intra-axonal events are limitations 

of scale; while axons are long their volume is small making them difficult to visually and physically 

isolate in vivo from the surrounding cells. In vitro isolation of axons is easier, especially using specially 

designed axon-isolating culture chambers, but the yield of material for biochemical analysis is 

extremely low. Pooling or amplifying samples prior to analysis can compensate for low yield but these 

manipulations can introduce background noise. Novel microfluidic chamber configurations could be 

designed to increase axon yield. As technological advances make it easier to isolate and evaluate 

axons some of the most interesting questions to address include the regulation and specific location of 

translation within axons, a deeper understanding of bidirectional axon-to-glia communication, a deeper 

understanding of the widespread effect of axon injury, especially in the CNS, and the extent to which 

‘model’ organisms model human neurons. 

Novel microfluidic chamber to increase axon yield 

In the current symmetric microfluidic chamber configuration (Fig. 4.1A) the vast majority of the 

isolated axon come from neurons closest to the microgrooves such that very few of the neurons have 

isolated axon (Fig. 3.4B and Fig. 3.5B). Factors contributing to the probability that an axon reaches the 

fluidically isolated compartment include the probability that the axon enters a microgroove, which is a 

random event, and the potential maximum axon length of that neuron. Neuron classes have different 

length axons in vivo, for example inhibitory interneurons of the hippocampus have short axons while 

excitatory neurons have significantly longer axons. Tissue samples enriched for neurons with short 

axons will always have fewer fluidically isolated axons than samples enriched for neurons with the 

capacity to extend long axons. 

To increase the yield of axons and the percentage of cells with isolated axons I propose a 

novel asymmetric compartment design (Fig. 4.1B) based on the quantitative analysis of isolated axons 
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in the existing symmetric design. In this design the somata compartment is half the width of the 

original design and twice as long (1 mm by 14 mm). These dimensions maintain the surface area and 

volume of the compartment so the same number of somata can be seeded into the ‘Somata 

compartment’ in this design as the original to maintain cell density. The neurons in the new design are 

distributed closer the microgrooves, effectively increasing the number of axons that will enter the 

microgrooves, to increase axon yield and the percentage of somata with isolated axons. The axon 

compartment remains 2 mm to provide a large surface area for axon growth. I predict in a chamber 

with 150 µm microgrooves approximately 20% of the embryonic rat hippocampal derived neurons 

would have fluidically isolated axons, with 450 µm microgrooves approximately 12% and in a 900 µm 

microgroove configuration more than 7%. This would significantly increase axon yield as well as the 

percentage of somata that could be evaluated following axon manipulation 
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Figure 4.1 

 
Figure. 4.1. A novel asymmetric microfluidic chamber design to maximize axon growth. 
A. Current symmetric microfluidic chamber configuration. Two identical microfluidic chambers are 
separated by over 150 microgrooves, somata can be plated in either chamber and axons extend into 
the opposite chamber. 
B. Proposed novel asymmetric microfluidic chamber. Somata are specifically plated in the narrow 
‘Somata compartment’ which is separated from the ‘Axon compartment’ by over 300 microgrooves. 
This design should facilitate the isolation of significantly more axons from significantly more neurons 

Zooming in on the axonal transcriptome 

Are there quantitative or qualitative differences in the axonal transcriptome along the length of 

the axon? Is RNA equally distributed along the axon or is it clustered, potentially with translational 

machinery, increasing the local concentration of components necessary for translation? RNA-FISH 

puncta for specific transcripts appear to be almost randomly distributed along the axon, with clustering 

at presynaptic terminals (Taylor et al., 2013) and enrichment at growth cones (Yao et al., 2006). More 

broadly, polyA RNA-FISH for total mRNA demonstrated a difference between the axon portion close to 

the soma and distal axon regions (Bassell et al., 1994) though translationally silent mRNAs frequently 

have very short polyA tails (Jain and Parker, 2013). 

Many of the tools necessary to address these broad questions in vitro are available. 

Transgenic cells or animals can be used to study specific mRNAs and their proteins within live axons 

but broad questions require broader tools. Selective RNA dyes compatible with live cell imaging have 

been developed (Li et al., 2006) and SYTO RNASelect dye is commercially available (Thermo Fisher 
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Scientific). These stains could reveal the distribution of RNA within fluidically isolated axons in vitro. 

The isolated axons could be treated directly or, potentially, RNA transport could be visualized by 

treating the fluidically isolated somata and imaging the axon compartment. To visualize changes in the 

distribution of axonal RNA during synaptogenesis inert presynapse-inducing microspheres (Lucido et 

al., 2009) can be added in following RNA labeling within the somata or axons. 

An alternative to this synaptogenesis model system is the use of co-culture assays that 

support synaptogenesis (Biederer and Scheiffele, 2007). Cell adhesion molecule 1 (SynCAM) is a 

brain-specific protein that functions as a cell adhesion molecule at the synapse (Biederer et al., 2002). 

Exogenous expression of SynCAM in non-neuronal cells, such as HEK 293 cells, co-cultured with 

hippocampal neurons is sufficient to induce synapse initiation and maturation (Biederer et al., 2002). A 

microfluidic chamber design with one compartment enclosed in PDMS, for the neuron somata, 

connected by microgrooves to an open compartment not enclosed in PDMS could be used for such 

co-culture experiments. Dissociated neurons would be plated in the enclosed compartment and grown 

for 7 to 10 d to allow axons to extend into the open compartment. HEK 293 cells expressing SynCAM 

would be added at low density to the isolated axons and RNA localization dynamics could be 

observed by live microscopy. Axonal RNA could be labeled prior to adding the HEK 293 cells to 

observe redistribution of RNA during synaptogenesis and synapse maturation or added to the somata 

coincident with adding the HEK 293 cells to observe RNA transport during these events. While the 

SYTO RNASelect dye can be visualized with standard fluorescein (FITC) filters microscopy equipment 

capable of detecting dim signal at high magnification would be necessary. Post-imaging processing 

could be applied to differentiate the signal from noise as well, such as algorithms correcting for point 

spread function. 

Stimulus driven changes in local translation 

There are clear examples of stimulus-driven axonal translation, such as in synaptic plasticity. 

Are maintenance functions, for example synthesis of mitochondrial proteins, constitutive or stimulus-

driven? Of the whole axonal transcriptome which mRNAs are constitutively translated and which 

transition from translationally silent to active to meet the demand for new proteins? 
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Polysome profiling, to differentiate actively translating mRNAs from translationally silent 

mRNAs (Zuccotti and Modelska, 2016), of the axonal transcriptome would provide an informative 

window into the regulation of intra-axonal translation in multiple contexts. This technique uses sucrose 

gradients to enrich for actively translating ribosomes and their bound mRNA. Ribosomal RNA is then 

preferentially degraded and the remaining mRNAs are sequenced. It requires a significant amount of 

starting material so careful optimization of methods to pool and/ or amplify axonal ribosome-

associated mRNA, as well as deconvolution of the sequencing results, would be necessary. This 

technique could be applied to microfluidically isolated axons in vitro treated with neurotrophic factors. 

An alternative method to investigate actively translated mRNAs, the translatome, in the 

context of synaptic plasticity could use the cre-mediated RiboTag allele (Sanz et al., 2009) specifically 

expressed in the presynaptic neuron of the CA3-CA1 hippocampal synapse. The promoter for the α 

subunit of Ca2+/calmodulin-dependent protein kinase II (CAMK2A) is specific to the CA3 neuron in the 

hippocampus (Xu et al., 2000; Zakharenko et al., 2003). The hippocampal sub-region containing the 

CA3 axons can be dissected and evaluated before and after LTP induction in organotypical 

hippocampal slice cultures (Kang et al., 1997), a form of plasticity at this synapse that is dependent on 

presynaptic translation (Kang and Schuman, 1996). The differentially translated mRNAs following the 

induction of LTP would suggest specific ways the local proteome changes with LTP. This information 

could suggest specific mRNA targets to investigate in the context of LTP or inform mechanistic studies 

of the signaling cascade regulating plasticity-inducing translation. 

Axon-glia communication 

Glia-to-axon RNA transport has only been investigated in the mammalian PNS and Schwann 

cells in the context of injury and regeneration. Is glia-to-axon RNA transport limited to injury signaling 

in the PNS, where axon regeneration is common? Does glia-to-axon RNA transport explain why PNS 

axon regeneration occurs while CNS axon regeneration, where oligodendrocytes are the local glial 

cells, does not occur? Further, current work of axon injury signaling focuses on axon-to-soma 

signaling, should axon injury signaling focus on axon-to-glia signaling molecules and mechanisms 

too? 
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The axon-to-glia distance is significantly shorter than the axon-to-soma distance suggesting 

that glial cells are poised to have a more rapid local response. Visually and physically separating the 

axon from the neuron somata in vivo is easier than separating the axon from the surrounding glia. 

Combining genetic tools with super-resolution microscopy or immuno-EM might allow differentiation of 

neuron-derived ribosomes and oligodendrocyte-derived ribosomes in the mature CNS. 

Multiple genetic mouse tools exist to specifically express transgenes in oligodendrocytes. 

Recombinant adeno-associated viral (rAAV) vectors with the human myelin associated glycoprotein 

(MAG) promoter are specific for oligodendrocytes (von Jonquieres et al., 2016). The myelin basic 

protein (MBP) promoter can be used to drive exogenous gene expression in oligodendrocytes of 

transgenic mice (Goujet-Zalc et al., 1993) or delivered by rAAV (Chen et al., 1999). Neuron specific 

transgene expression can be controlled with the synapsin 1 promoter (Schoch et al., 1996) or an rAAV 

carrying the cytomegalovirus (CMV) immediate early promoter (Chen et al., 1999). In vivo expression 

of a neuron-specific myc-tagged ribosomal protein L4 and an oligodendrocyte specific HA-tagged 

ribosomal protein L4 followed by super-resolution microscopy or immune-EM for the peptide tags in 

axons of the CNS could suggest whether glia-to-axon ribosome transport occurs in the uninjured adult 

CNS and the relative contribution of ribosomes from the soma versus the surrounding 

oligodendrocytes. 

Secondary axon injury signaling 

Much of the in vitro mechanical axon injury work has focused on the neuron-intrinsic response 

to the initial primary axon injury but there is clear evidence of progressive long-term secondary loss of 

function, far from the injury site, that follow neural network pathways. The complex primary injury 

involves neurons, glia, and blood vessels, with immediate small scale hemorrhage and hypoxia. Some 

aspects of the in vivo injury response are beneficial and necessary to repair cerebral circulation while 

other aspects lead to widespread functional changes within the brain. These primary and secondary 

injuries in the CNS, following stroke and blunt trauma to the brain and spine, contribute to the disability 

and mortality of these conditions. Currently, we do not understand the molecular events and 
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biochemical messengers of the secondary injuries well enough to develop targeted pharmacological 

therapeutics. 

A more refined view of the transcriptional events following distal axotomy might lead to a 

better treatment course following brain and spinal cord injury. In this era of significant advances in 

single-cell molecular biology, including proteomics and DNA and RNA sequencing, we could directly 

evaluate injured neurons separate from their uninjured neighbors. Our simple methods of labeling 

injured neurons using Cholera toxin or G-deleted rabies virus could be coupled with laser capture 

microdissection (LCM) to evaluate transcription factor occupancy, by DNA immunoprecipitation 

methods, immediately following axotomy, the transcriptional timeframe we identified as critical for 

altered synaptic plasticity 48 h later. In addition, we could evaluate de novo transcription using nuclear 

run-on assay techniques in the primary injured neurons and the secondary neurons. Neuron labeling 

coupled with LCM could be used to investigate injury-induced epigenetic remodeling, which has been 

studied in PNS neurons but not CNS neurons (Loh et al., 2017; Weng et al., 2017). 

While the focus of this work was not on CNS axon regeneration we are poised to build on 

previously published work evaluating mRNAs within regenerating axons (Taylor et al., 2009). 

Identification of local molecular mechanisms facilitating CNS axon regeneration and pharmacological 

manipulation of regeneration have significant therapeutic value for rehabilitation following spinal cord 

and brain injuries. Our model system, using enriched neuronal preparations and axon-isolating 

microfluidic chambers, is more reproducible and cost effective than in vivo injury models for 

reductionist mechanistic studies and drug screens. 

Human stem cell derived neurons and axon function 

As in all biomedical research fields, there is the question of similarity between humans and the 

common mammalian model organisms. Human axons tend to be longer that the axons of model 

organisms, does the increase in axon-to-soma distance necessitate a significantly different reliance on 

local translation? Axon localized ATF4 mRNA, implicated in Alzheimer’s Aβ peptide toxicity signaling 

(Baleriola et al., 2014), has been verified in post-mortem human brain tissue from healthy adults and 

Alzheimer’s disease patients (Baleriola et al., 2015) but there are many obstacles to obtaining human 
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samples and culturing human neurons. Researchers are turning to neurons derived in vitro from 

human stem cells as an additional model system. 

While derivative, it is important to confirm that key findings in rodent axons are conserved in 

human axons. Verifying that axonal translation is necessary for axon guidance, response to 

neurotrophins, axon maintenance and injury signaling in hESC-neurons will begin to reveal similarities 

and differences between the model systems. Stem cell derived neurons are synaptically active but 

whether they have the capacity for synaptic plasticity has not been established. With a better 

understanding of the functional limitations and strengths of in vitro differentiated and matured human 

neurons their research utility will be clearer. 

The ability to generate patient-derived induced pluripotent stem cells and differentiate these 

cells to neurons within axon isolating microfluidic chambers will facilitate studying axon function in 

complex genetic diseases such as schizophrenia and autism spectrum disorders. CRISPR-mediated 

engineered stem cells, such as targeted deletion of RNA binding proteins associated with neurological 

diseases, applied to our system would provide further insight into axonal mRNA trafficking and local 

translation in human neurons. Mechanistic examination of translation within human axons has the 

potential to reveal human specific axonal mRNAs and mechanisms in disease and normal neuron 

function. 

Closing thoughts 

Many of the traits that make us uniquely human physically originate in our neural networks. 

Our language skills, social skills, external and internal perception, motor skills, thoughts, memories 

and our consciousness itself are all encoded in our brain. These exquisite traits make us what we are 

as a species and who we are as individuals. Brain injury as well as neurodevelopmental and 

neurodegenerative diseases are financially costly to diagnose and treat but the true costs are how 

these conditions can negatively affect our most valuable qualities. The benefits to mankind of research 

to better understand our complex nervous system in health and disease could lie in restoring these 

functions. 
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APPENDIX A: hESC-NEURON EXPRESSION OF CELL TYPE SPECIFIC MARKERS 

Soma average expression signal, log2 (Exp) of markers for neural stem cells, mature neurons, astrocytes 
and oligodendrocytes used for Figure 2.4A, sorted alphabetically by gene name. 

NEURAL STEM CELL MATURE NEURON ASTROCYTE OLIGODENDROCYTE 

Gene Exp Gene Exp Gene Exp Gene Exp 

BUB1 5.29 CALB1 6.05 ACOT11 4.68 ADAMTS4 5.24 

BUB1B 5.61 CRH 4.45 ACSBG1 4.76 BCAS1 5.55 

CRMP1 4.62 DCX 9.19 ALDH1L1 4.78 CLDN11 5.17 

CYP2D6 4.83 DLX1 6.36 ALDOC 6.9 CPM 4.3 

CYP2E1 4.45 ENO2 6.04 AQP4 4.37 ELOVL7 5.08 

DRD2 5.58 EPHA7 8.01 ATP1A2 5.49 ENPP6 4.27 

DRD4 5.09 GABRA1 5.16 BMPR1B 5.21 ERBB3 4.71 

GSTM1 6.51 GABRA5 5.69 CHRDL1 6.22 EVI2A 4.1 

GSTM3 5.42 GABRG2 5.27 DCN 4.87 FA2H 4.88 

KIF20A 4.39 GDA 5.35 DIO2 4.34 GAL3ST1 6.41 

LIPC 4.49 GLRA2 6.19 F3 4.77 GPR62 4.9 

LPL 5.32 GPR88 6.05 FZD2 6.25 GSN 5.09 

NEUROG2 4.7 HS3ST2 5.21 GFAP 5.55 IL23A 5.33 

OGG1 5.6 HTR2C 4.24 GJB6 4.77 MAG 4.51 

PAX6 5.61 MAL2 6.35 HAPLN1 3.87 MAL 5.74 

PSMA2 4.88 MAP2 9.59 MERTK 4.24 MBP 4.91 

SEMA4G 5.57 MEF2C 6.63 MLC1 5.65 MOBP 4.95 

SEMA6C 5.38 MYT1L 6.91 NFIX 6.43 MOG 3.22 

SOX1 5.77 NCAM1 7.85 PAPSS2 5.63 OLIG1 5.18 
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SRGAP1 6.01 NEFM 9.92 PLA2G7 4.95 OLIG2 5.47 

XRCC1 6.14 NEUROD6 4.55 PPP1R3G 5.22 PDGFRA 4.44 
  

NOV 5.52 PRODH 4.72 PLA2G4A 4.93 
  

NPAS4 4.71 RFX4 8.98 PLEKHH1 5.44 
  

NTS 6.15 SLC14A1 4.24 PLP1 6.6 
  

PCSK2 5.4 SLC15A2 5.22 PLXNB3 5.02 
  

PGM2L1 8.72 SLC1A1 4.04 PPP1R14A 5.16 
  

PLCXD3 4.93 SLC1A2 7.06 PRKCQ 4.07 
  

PRDM8 5.38 SLC1A3 7.93 SGK2 5.37 
  

SATB2 5.16 SLC25A18 4.89 SOX10 5.71 
  

SCG2 8.4 SLC39A12 4.39 SRPK3 5.05 
  

SLA 5.36 SLC4A4 6.91 TSPAN2 7.46 
  

SLC12A5 6.1 TLR3 4.09 

  

  

SLC17A6 5.2 TTPA 4.55 

  

  

SNAP25 7.85 

    

  

SSTR2 5.69 

    

  

STMN2 10.54 

    

  

SYT1 7.68 

    

  

TUBB3 6.14 

    

  

VIP 4.6 
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