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ABSTRACT 
 

HEATHER C. LASSETER: Involvement of the lateral orbitofrontal cortex in context-
induced and cocaine-primed reinstatement of cocaine-seeking behavior in rats 

(Under the direction of Rita A. Fuchs-Lokensgard) 

 

Orbitofrontal cortex (OFC) damage produces impaired decision-making, impulsivity, and 

perseveration of maladaptive behaviors and it potentially contributes to compulsive drug 

seeking in cocaine users.  To investigate whether lOFC damage contributes to enhanced 

context-induced cocaine seeking in an animal model of drug relapse, the effects of lOFC 

temporary functional inactivation, pre-training lesions, and post-training lesions were 

assessed on the reinstatement of previously extinguished cocaine-seeking behavior (i.e., non-

reinforced responses on a previously cocaine-paired lever).  All rats were trained to lever 

press for intravenous cocaine infusions (0.2 mg/infusion) in a distinct environmental context 

followed by extinction training in a different context where cocaine was not available.  In 

experiment 1 we assessed whether acute loss of lOFC output alters context-induced cocaine-

seeking behavior by infusing either the GABA receptor agonists, baclofen and muscimol (1.0 

mM, 0.5 µl/side), or vehicle into the lOFC or mOFC anatomical control region immediately 

before re-exposure to the cocaine-paired context.  To evaluate the effects of long-term loss of 

lOFC output on this behavior, in experiment 2 we assessed the effects of pre-training 

bilateral NMDA (0.1 M, 0.6 µl/side) or sham lesions of the lOFC on cocaine-seeking 

behavior elicited by either re-exposure to the cocaine-paired context or a cocaine priming 

injection (0 or 10 mg/kg, i.p.) administered immediately before exposure to the extinction 
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context.   GABA agonist-induced functional inactivation of the lOFC, but not mOFC, 

significantly attenuated context-induced cocaine seeking (Fuchs et al., 2004).  In contrast, 

pre-training lOFC lesions enhanced cocaine context-induced cocaine seeking, but failed to 

alter cocaine-primed cocaine seeking.  To identify whether the timing of the lOFC 

manipulation underlies this discrepancy, in experiment 3 we assessed the effects of post-

training lOFC lesions on context-induced cocaine-seeking behaviors.  In contrast to the 

effects of pre-training lesions and functional inactivation, post-training lOFC lesions failed to 

alter context-induced cocaine-seeking behavior.  Overall, the results of the functional 

inactivation experiment suggest that the lOFC promotes context-induced cocaine-seeking 

behavior.  However, prolonged loss of lOFC output may enhance the motivational salience of 

the cocaine-paired environmental stimuli by eliciting compensatory neuroadaptations, which 

may develop over time such that the effects of post-training lOFC lesions reflect an 

intermediate state of compensatory neuroplasticity.   
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CHAPTER I 
INTRODUCTION 

 
 
Significance of the Problem 

  Cocaine addiction remains a prominent health and social issue in the United States.  

According to the 2007 National Survey on Drug Use and Health (NIDA), approximately 22.3 

million people were classified as having substance abuse or dependence problems.  Although 

dependence on alcohol accounted for the vast majority of such problems, cocaine represented 

the second most abused illicit drug, with 1.6 million individuals classified as abusing or 

being dependent on cocaine.   In this same year, 808,000 individuals – including both current 

and former cocaine users – reported receiving treatment for cocaine abuse and dependence 

from hospitals, rehabilitation centers, and mental health centers.  However, only 2.4 million 

out of the 6.9 million people specified as needing treatment for illicit drug use actually 

obtained some form of medical or social support for their problem from such specialty 

treatment facilities.    

The successful treatment of cocaine addiction is severely impeded by a high 

propensity for relapse seen in former drug users, even after they have completed 

detoxification and rehabilitation programs.  Hence, drug addiction typically manifests as a 

chronic relapsing disorder characterized by compulsive drug seeking and drug craving that 

can be precipitated by exposure to drug-associated explicit cues or environmental contexts 

even after prolonged abstinence periods (Ehrman et al., 1992; Foltin and Haney, 2000; 

Rohsenow et al., 2007).  Remarkably, relapsing persists even when individuals experience 
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diminished drug-induced euphoria, are faced with adverse consequences (i.e., health risks, 

incarceration, and family problems), or express a desire to cease drug-taking activities 

(Volkow and Fowler, 2000).  Chronic drug users typically develop an inability to control 

drug seeking, which becomes compulsive or impulsive in nature (American Psychiatric 

Association, 1994).  Evidence suggests that the transition from recreational drug use to drug 

addiction may be related to either neural sensitivity predisposing one to drug addiction or 

neural plasticity resulting from prolonged drug exposure and/or drug-related learning 

experiences (Franklin et al., 2002; Volkow et al., 2002). Thus, from an addiction treatment 

perspective it is critical to understand the neural mechanisms underlying the loss of control in 

drug seeking.   

 
Modeling Drug Relapse  
  
 Over the course of chronic drug use, environmental stimuli are repeatedly paired with 

the effects of the drug.  Through associative learning processes, these previously neutral 

stimuli can acquire conditioned rewarding properties such that the stimuli themselves 

become reward, conditioned reinforcing properties that maintain behavior, and/or incentive 

motivational properties in that stimuli elicit motivation for drug reinforcement.  Given that 

re-exposure to drug-associated contexts is a major factor precipitating relapse in humans, 

several in vivo models have been developed to assess environmentally induced incentive 

motivation for cocaine reinforcement.  

One of the most commonly used animal models for studying drug seeking and relapse 

behaviors is the extinction-reinstatement model.  In this model, subjects are trained to 

respond for drug reinforcement in a distinct environmental context or drug reinforcement is 

explicitly paired with the presentation of a response-contingent conditioned stimulus (CS).  
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After animals reach an arbitrary response acquisition criterion, responding is extinguished in 

a distinctly different environmental context or in the absence of the response-contingent CS, 

respectively.  To assess cue-induced relapse to drug seeking, animals are given a 

reinstatement test during which they are re-exposed to either the cocaine-paired context or 

the response-contingent CS in the absence of cocaine reinforcement.  Responding during the 

reinstatement test is thought to reflect context- or CS-induced cocaine-seeking behavior, 

respectively.  The contextual reinstatement model offers several advantages over the CS-

induced reinstatement model.  Namely, subjects receive uniform cocaine-cue exposure and, 

due to the lack of response-contingent CS presentations, responding likely provides an index 

of cocaine context-induced incentive motivation rather than conditioned reinforcement.  

Nevertheless, the contextual model has some limitations.  The drug-associated context must 

be multi-modal in order to elicit robust reinstatement and to permit repeated testing using a 

within-subjects design.  As a result, experimental results may not be readily generalizable to 

other cue types. 

 Similar to drug-associated cues, exposure to small amounts of drug can increase drug 

craving in human drug users and elicit drug seeking in laboratory animals (Jaffe et al., 1989; 

de Witt and Stewart, 1981).  Drug primed reinstatement has been traditionally modeled by 

giving intraperitoneal injections of drug immediately before exposing subjects to the 

previous drug-paired operant chamber in the absence of the drug-paired CS.   However, when 

drug priming is administered in the previously drug-paired operant chamber, the motivational 

effects of the drug-paired context may interact with the motivational effects of the drug prime 

to produce drug-seeking behavior.  Hence, studying the effects of drug priming in a non-drug 
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paired context may provide a better model for isolating the motivational effects of drug 

priming on relapse behaviors.    

While reinstatement models are highly similar to the human condition in that drug is 

self-administered, extinction training unfortunately reduces the face validity of the models 

given that humans seldom undergo explicit extinction training prior to relapse (Katz and 

Higgins, 2003).  However, some extinction experience may be accrued in humans whenever 

cocaine use is not possible despite the presence of drug-related stimuli.  Therefore, 

extinction-reinstatement models provide a powerful tool for exploring the neurobiological 

mechanisms of cue-induced drug relapse, a research endeavor that may prove critical for 

developing effective anti-relapse pharmacotherapies.  Hence, in the present study we utilized 

the contextual reinstatement and drug-primed models to further investigate the involvement 

of the orbitofrontal cortex (OFC) in drug context-induced and drug-primed relapse.  

 

Anatomy of the orbitofrontal cortex  

The likely involvement of the OFC in drug-seeking behaviors stems from its 

functional connectivity with cortical and limbic brain regions.  Rose and Woolsey (1948) 

suggested that homologous brain regions could be identified between different species based 

on the similarity of anatomical connections.  Specifically, they proposed that the prefrontal 

cortex could be defined by mediodorsal thalamus (MD) afferents.  Within the PFC, the 

orbital and agranular insular areas of the rat prefrontal cortex are thought to be homologous 

to the primate orbitofrontal cortex based on the pattern of input received from the medial and 

central areas of the MD, as well as their connectivity with the amygdala and ventral striatum 

(Rose and Woolsey, 1948; for review, see Price 2007).  The primate OFC receives robust 
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sensory input from the olfactory cortex, gustatory cortex, somatosensory areas in the insula 

and parietal cortex, and visual association areas in the inferior temporal cortex, while the 

rodent OFC is strongly connected to the olfactory system and likely receives gustatory, 

somatosensory, and visual inputs, making this structure crucial for the integration of sensory 

information (Carmichael and Price, 1995; Price, 1985).  Moreover, both the primate and rat 

OFC share robust connections with several elements of the known brain relapse circuitry.  

Most notably, the OFC has extensive reciprocal connections with the basolateral amygdala, a 

structure implicated in the attachment of motivational significance to environmental cues 

(Everitt et al., 1999).  In addition, it shares both direct and indirect (via the thalamus) 

connections to the cingulate gyrus, hippocampus, prelimbic cortex, basal ganglia, nucleus 

accumbens, and lateral hypothalamus (Krettek and Price, 1977; Groenewegen et al., 1990; 

Ray and Price, 1992, 1993; Carmichael and Price, 1995; Haber et al., 1995; Oades and 

Halliday, 1987).  Because many of these brain regions have been implicated in relapse to 

drug seeking (Fuchs et al., 2005; 2007; 2008; Lasseter et al., in prep; McFarland and Kalivas, 

2001; McLaughlin and See, 2003; See et al., 2001; Sun and Rebec, 2003), the OFC is 

anatomically well positioned to integrate information from sensory and limbic regions and 

then use this information to generate outcome expectancies that guide subsequent behavioral 

responses, including drug seeking behavior (Holland and Gallagher, 2004).   

 

Role of the orbitofrontal cortex in drug-seeking behavior 

Numerous lines of evidence suggest that structural, physiological, and functional 

abnormalities in the frontal cortex may facilitate addictive behavior.  Cocaine users exhibit 

abnormalities in frontal cortical regions, including decreased gray matter density in the 
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orbitofrontal cortex and anterior cingulate, diminished baseline blood glucose metabolism in 

the frontal cortex, and enhanced cue-evoked activation of the orbitofrontal cortex, some of 

which are proportional to drug use (Volkow and Fowler, 2000; Volkow et al., 1991; Franklin 

et al., 2002; Bolla et al., 2003; Matochick et al., 2003; London et al., 2000).  Additionally, 

OFC damage in drug-naïve individuals produces behavioral impairments similar to those 

seen in cocaine addicts, including maladaptive decision-making, impulsive behavior, and 

perseveration of non-rewarding responses (O’Doherty et al., 2001; Bechara et al., 1994).  

Humans with OFC damage perform poorly on tasks that assess impulsivity, such as the Iowa 

Gambling Task, and are unable to use performance feedback following response selection to 

either modulate their emotional response or alter their response strategy (Bechara et al., 

1994; Camille et al., 2004).  

Similar to humans with OFC damage, animal with lateral OFC (lOFC) lesions exhibit 

deficits on reinforcer devaluation tasks, rapid reversal learning, and extinction learning 

(Gallagher et al., 1999; Pickens et al., 2003; Pickens et al., 2005; Izquierdo et al., 2004; 

Izquierdo and Murray, 2005).  However, OFC damage does not appear to induce 

fundamental deficits in learning or primary motivation given that primates and rats with OFC 

lesions display normal responding for food reward and acquire novel visual and odor 

discriminations (Izquierdo et al., 2005; McDannald et al., 2005; Schoenbaum et al., 2002).  

Hence, observed deficits appear to reflect either an impairment in error detection, an inability 

to update outcome expectancies in the face of changing reward contingencies, or an inability 

to express updated expectancies in behavioral responses.    
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Involvement of the lOFC in drug relapse 

Recent studies have suggested that cocaine-seeking behavior is mediated by a 

corticolimbic “brain relapse circuitry” comprised of the hippocampus, amygdala, prefrontal 

cortex, nucleus accumbens, as well as the OFC.  In a previous study we investigated the 

effects of lOFC lesions and functional inactivation on CS-induced and drug-primed 

reinstatement of cocaine seeking (Fuchs et al., 2004).  In this study, pre-training lOFC lesions 

greatly potentiated cocaine-primed reinstatement to cocaine seeking in a preservative manner 

during a reinstatement test session held in the previously cocaine-paired operant chamber 

(Fuchs et al., 2004).  Conversely, temporary functional inactivation of the lOFC produced by 

infusions of either GABAA and GABAB agonists or tetrodotoxin (TTX) failed to alter 

cocaine-primed reinstatement (Fuchs et al., 2004; Capriles et al., 2006).  This pattern of 

findings suggests that chronic loss of the lOFC output may elicit neuroadaptations in other 

elements of the brain relapse circuitry that are responsible for the observed lesion-induced 

functional impairment in cocaine-primed cocaine-seeking behavior.   

Several lines of evidence suggest that the ability of cocaine-paired cues to evoke 

cocaine-seeking depends on the functional integrity of the lOFC.  Cocaine-experienced rats 

exhibit enhanced expression of the activity-dependent immediate-early genes (IEG) c-fos, zif-

268, BDNF, and arc in the OFC following exposure to a cocaine-paired context relative to 

IEG expression observed in saline-yoked controls exposed to a saline-paired context or 

cocaine-experienced rats exposed to an alternate context (Hearing et al., 2008).  Consistent 

with this, temporary inactivation of the lOFC prevents CS-induced cocaine seeking, 

suggesting that the functional integrity of the lOFC is necessary for cocaine-paired cues to 

elicit motivation for cocaine reinforcement (Fuchs et al., 2004).  Moreover, repeated cocaine 
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intake or self-administration experience may produce enduring neuroadaptations in the OFC 

given that Arc expression is enhanced in cocaine-experienced rats regardless of whether rats 

were exposed to cocaine-paired cues (Zavala et al., 2008).  

Cellular and molecular changes in orbitofrontal cortical neurons induced by cocaine 

self-administration may reflect aberrant neuroadaptations in neuronal processing related to 

learning and memory.  Recent neurophysiological evidence suggests that cocaine exposure 

induces inflexible encoding in OFC neurons during an odor discrimination task and that such 

abnormalities are associated with impaired reversal learning (Stalnaker et al., 2006).  

Importantly, behavioral deficits resulting from OFC lesions do not stem directly from 

abnormal OFC output, but rather reflect inflexible encoding in basolateral amygdala (BLA) 

neurons.  Consistent with this, unilateral OFC lesions impair cue-selective firing in the BLA 

during reversal learning (Saddoris et al., 2005).  Moreover, OFC lesion-induced deficits in 

reversal learning are actually rescued by BLA lesions (Stalnaker et al., 2007).  These findings 

are consistent with the idea that OFC damage in humans or lab animals produces inflexible 

behavior.  However, it has yet to be determined whether OFC damage produces compulsive 

responding to cocaine or cocaine-paired conditioned stimuli via similar mechanisms.  

Interestingly, lOFC lesions fail to enhance reinstatement elicited by an explicit, 

response-contingent CS, which contrasts with evidence that lOFC lesions potentiate cocaine-

primed reinstatement (Fuchs et al., 2004).  While this suggests the lOFC may play a different 

role in explicit CS-induced and cocaine-primed cocaine-seeking behavior, the apparent 

inability of the CS to induce perseverative cocaine seeking may stem from ceiling effects 

related to steady cocaine-seeking behavior maintained by conditioned reinforcement in the 

sham control group.  Unlike in the CS-induced reinstatement model, responding is unlikely 
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to be maintained by conditioned reinforcement in the context-induced reinstatement model 

because cues are passively presented.  Hence, the latter model may be more suitable for 

evaluating cue-induced incentive motivation for cocaine given that putative perseveration in 

lOFC-lesioned rats is not obscured by CS-maintained responding in sham animals.  

Furthermore, it is worthwhile to re-investigate the effects of lOFC lesions on cocaine-primed 

reinstatement of cocaine seeking when cocaine-priming injections are administered in a non-

cocaine-paired context to exclude potential context-cocaine interactions and thereby isolate 

the effects of lOFC lesions on cocaine-induced incentive motivation.      

 

Hypothesis and Predictions 

To evaluate whether lOFC damage contributes to enhanced context-induced cocaine-

seeking behavior in the absence of conditioned reinforcement, the present study investigated 

whether bilateral lOFC functional inactivation (experiment 1) or pre-training lesions 

(experiment 2) alter the reinstatement of cocaine-seeking behavior following re-exposure to a 

distinct cocaine-predictive environmental context after extinction training in a different 

context (i.e. extinction context).  Based on previous research (Fuchs et al., 2004), we 

hypothesized that lOFC functional inactivation would attenuate context-induced cocaine 

seeking in experiment 1 given that the functional integrity of the lOFC appears to be 

necessary for the expression of explicit CS-induced cocaine-seeking behavior.  In addition, 

we hypothesized that lOFC lesions would fail to impair the acquisition of cocaine self-

administration or extinction learning in experiment 2, but would potentiate both context-

induced and cocaine-primed reinstatement of cocaine-seeking behaviors in a perseverative 

manner (Fuchs et al., 2004).  Unlike in our previous study, the cocaine-primed reinstatement 
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test was conducted in the extinction context to eliminate potential interactions between the 

motivational effects of cocaine and those of the previously cocaine-paired contextual stimuli 

(Fuchs et al., 2004). 

In experiments 1 and 2, lOFC functional inactivation and lesions had distinctly 

different effects on context-induced reinstatement.  Importantly, functionally inactivating the 

lOFC is a fundamentally different manipulation from administering permanent excitotoxic 

lesions in two respects: first, the manipulations, by necessity, occur at different time points 

relative to associative learning processes and second, the manipulations have different 

neurochemical effects.  For instance, while both manipulations attenuate glutamate output 

from the lOFC, functional inactivation with GABAA and GABAB agonists increases – while 

excitotoxic lesions disrupt – GABA neurotransmission (Beal et al., 1991; Matsumoto et al., 

2003).  To investigate the source of discrepancy between experiments 1 and 2, experiment 3 

was designed to minimize differences in the timing (i.e. pre- or post-training) of the 

functional inactivation and lesion manipulation.  To this end, lOFC lesions were induced 

following self-administration and extinction training, and the effects of these post-training 

lOFC lesions were assessed on context-induced reinstatement of cocaine-seeking behavior.  

Consistent with the hypothesis that pre-training lOFC lesions potentiate context-induced 

cocaine seeking due to neuroadaptations that occur following lesion induction, we predicted 

that post-training lOFC lesions would either A) produce similar effects as lOFC functional 

inactivation if the loss of lOFC output during self-administration training critically underlies 

these effects or B) have similar effects as pre-training lOFC lesions if lesion-induced 

neuroadaptations are sufficient to enhance context-induced motivation for cocaine.  



 
 
 
 
 

CHAPTER II 
METHODS AND MATERIALS 

 
 
Subjects 

Male Sprague-Dawley rats (n = 79), weighing 250-300 g at the start of the experiment, were 

individually housed in a temperature- and humidity-controlled vivarium on a reversed light-

dark cycle. Rats were maintained on 20-25 gm of rat chow per day with water available ad 

libitum.  The housing and treatment of the rats followed guidelines outlined in the Guide for 

the Care and Use of Laboratory Rats (Institute of Laboratory Animal Resources on Life 

Sciences, 1996) and the study protocol was approved by the Institutional Animal Care and 

Use Committee of the University of North Carolina at Chapel Hill.  

 

Procedures 

Food Training.  Rats were acclimated to handling 2 days before being trained to lever press 

on a fixed ratio 1 (FR1) schedule of food reinforcement (45 mg pellets; Noyes, Lancaster, 

NH, USA) in sound-attenuated operant conditioning chambers (26 x 27 x 27 cm high; 

Coulbourn Institute, Allentown, PA, USA) during a 16-h overnight food training session. The 

chambers were equipped with two retractable levers, a stimulus light above each lever, a food 

pellet dispenser between the levers, a house light on the wall opposite to the levers, and a 

speaker connected to a tone generator (Coulbourn Institute, Allentown, PA, USA).  During 

the food training session, stimuli subsequently used for contextual cocaine conditioning were 

not present.  Each active (right) lever response resulted in delivery of one food pellet; 



 
 

12

inactive (left) lever responses had no programmed consequences.  Food pellet dispensers 

were removed from the chambers after food training.  

 

Surgery. At least 48-h after food training, rats was pre-anesthetized using ketamine 

hydrochloride and xylazine (66 and 1.33 mg/kg, i.p., respectively).  Full anesthesia was 

maintained during surgery with pentobarbital sodium (50mg/kg, i.p.) so that ketamine would 

not inhibit the development of NMDA-induced excitotoxic lesions induced immediately after 

surgery in Experiment 1.  The rats received the same anesthesia regimen in all experimental 

groups. Chronic indwelling catheters were constructed in-house using bent-steel cannulae 

with a screw-type connector (Plastics One, Roanoke, VA, USA), SILASTIC tubing (10 cm, 

inner diameter, 0.64 mm; outer diameter, 1.19 mm; Dow Corning, Midland, MI, USA), 

Prolite monofilament mesh (Atrium Medical Corp., Hudson, NH, USA) and cranioplastic 

cement, as described before (Fuchs et al., 2007).  The end of the catheter was inserted 3.25 

mm into the right jugular vein and secured with suture to surrounding tissue.  The catheter 

ran subcutaneously and exited the back between the scapulae. Immediately following 

catheterization, rats were placed into a stereotaxic instrument (Stoelting, Wood Dale, IL, 

USA) and bilateral stainless-steel guide cannulae (26 gauge; Plastics One) were aimed dorsal 

to the target brain structure in the rats’ brain using standard stereotaxic procedures.  The 

guide cannulae were secured to the skull using three screws and cranioplastic cement.  All 

rats were cannulated regardless of experimental manipulation so that differences in surgical 

history could not account for potential differences across the experiments.    

To extend catheter patency during the recovery period, catheters were flushed daily 

with 0.1 ml of an antibiotic solution of cefazolin (10.0 mg/ml; Schein Pharmaceuticals, 
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Albuquerque, NM, USA) dissolved in heparinized saline (70 U/ml; Baxter Health Care Corp, 

Deerfield, IL, USA).  Thereafter, catheters were flushed with 0.1 ml of heparinized saline (10 

U/ml) before each self-administration session and with 0.1 ml of the cefazolin solution and 

0.1 ml of heparinized saline (70 U/ml) after each session.  Stylets (Plastics One) were placed 

in catheters and cannulae to prevent both occlusion and infection. Catheter patency was 

periodically verified by infusing 0.1 ml of propofol (10 mg/ml, i.v. Eli Abbot Lab, North 

Chicago, IL, USA), a fast-acting barbiturate that produces a rapid loss of muscle tone only 

when administered intravenously.  

 

Excitotoxic lesions and intracranial drug infusions. For all intracranial infusions, stainless-

steel injection cannulae (33 gauge; Plastics One) were inserted to a depth of 1 mm (mOFC) 

or 2 mm (lOFC) below the tip of the guide cannulae.  The injection cannulae were connected 

to 10 µl Hamilton syringes (Hamilton, Reno, NV) mounted on an infusion pump (KD 

Scientific, Holliston, MA).  Either the GABAB/GABAA agonist cocktail baclofen/muscimol 

(BM; 1.0 and 0.1 mM, respectively), N-methyl-D-aspartic acid (NMDA; 0.1 M; pH ~7.0), or 

phosphate buffered saline vehicle (VEH) was then infused bilaterally into the lOFC or mOFC 

(control region) over 2 min at a volume of 0.6 or 0.3 µl per hemisphere, respectively. The 

injection cannulae were left in place for 1 min before and 1 min (BM) or 4 min (NMDA) 

after the infusion to minimize diffusion dorsally along the cannulae shaft. The doses of BM 

and NMDA were selected based on previous research showing these intra-lOFC doses alter 

explicit CS-induced and drug-primed cocaine-seeking behavior, respectively (Fuchs et al., 

2004).  The timing of the above intracranial manipulations was varied from experiment to 

experiment as described below in the specific methods section for experiments 1, 2, and 3.   
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Operant Conditioning Contexts.  Self-administration and extinction sessions were conducted 

in operant conditioning chambers configured to one of two unique environmental contexts 

that differed along four sensory modalities.  Context 1 consisted of a continuous red house 

light (0.4 fc brightness) on the wall opposite the levers, an intermittent pure tone (80 dB, 1 

kHz, 2 sec on, 2 sec off), a pine-scented air freshener strip (4.5 x 2 cm, Car Freshener Corp, 

Watertown, NY, USA), and wire mesh flooring (26 X 27 cm). Context 2 consisted of an 

intermittent white stimulus light above the left lever (1.2 fc brightness, 2 sec on, 4 sec off), a 

continuous pure tone (75 dB, 2.5 kHz), a vanilla-scented air freshener strip (4.5 x 2 cm, 

Sopus Products, Moorpark, CA, USA), and ceramic tile bisecting the chamber (19 cm X 27 

cm).  Rats had no exposure to these contextual stimuli prior to self-administration training.  

As in our previous studies, these stimuli were presented throughout each session independent 

of responding (Fuchs et al. 2007; Fuchs et al. 2008). 

 

Self-Administration Training. Subjects were assigned randomly to receive self-administration 

training in Context 1 or 2.  Self-administration training was conducted during the rats’ dark 

cycle in one of the two distinct environmental contexts during 2-h sessions.  The rats’ 

indwelling catheters were connected to liquid swivels (Instech, Plymouth Meeting, PA, USA) 

via polyethylene 20 tubing that was incased in steel spring leashes (Plastics One). The 

swivels were suspended above the operant conditioning chambers and were connected to 

infusion pumps (Coulbourn Institute, Allentown, PA, USA).  Rats were trained to press on 

the right active lever on an FR1 schedule of cocaine reinforcement (0.2 mg/0.1 ml of cocaine 

hydrochloride, duration 4 s, i.v.; NIDA, Research Triangle Park, NC, USA).  Responses on 
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the left, inactive lever were recorded but had no programmed consequences.  A 20-sec time-

out period followed each infusion during which lever responses were recorded, but had no 

programmed consequences.  Training continued until the rats successfully obtained ≥10 

cocaine infusions per session on at least 10 training days (i.e., acquisition criterion).   

Extinction Training. After meeting the acquisition criterion for self-administration, rats 

underwent daily 2-h extinction training sessions in the environmental context that distinctly 

differed from the self-administration context.  Active and inactive lever presses were 

recorded, but had no programmed consequences. Extinction training continued for a 

minimum of 7 sessions plus additional extinction training sessions, as needed, until the rats 

reached the extinction criterion (≤25 active lever presses per session on 2 consecutive 

sessions).   

 
Locomotor Activity Testing. Motor side effects of intracranial manipulations can affect 

instrumental behavior.  To assess the general motor effects of the experimental 

manipulations, locomotor activity was measured in a novel Plexiglas chamber (42 x 20 x 20 

cm) equipped with an array of eight photodetectors and corresponding light sources.  A 

computerized activity system (San Diego Instruments, San Diego, CA) recorded the number 

of consecutive photobeams interrupted by rats moving in the activity chamber during a 2-h 

test session.  Locomotion was assessed within 72-h of the reinstatement test as described 

below in the specific methods sections for experiments 1-3.  
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Experiment 1 

Effects of functional inactivation of the OFC on drug context-induced cocaine-seeking 

behavior. Experiment 1 was designed to evaluate whether BM-induced functional 

inactivation of the lOFC would disrupt drug context-induced reinstatement of cocaine-

seeking behavior in accordance with previous findings that lOFC functional inactivation 

attenuates CS-induced cocaine seeking (Fuchs et al., 2007).  Because BM spread cannot be 

visualized, anatomical control groups received BM or VEH infusions into the mOFC to 

assess whether the effects were sub-region specific within the OFC.   

Following surgery, rats underwent a 5-day post-operative recovery period before 

undergoing self-administration training in one context and extinction training in a different 

context.  On extinction day 4, rats were acclimated to the intra-OFC infusion procedure.  

During the adaptation procedure, rats were held gently by the experimenters and injection 

cannulae were bilaterally inserted into the rats’ guide cannulae and left in place for 4 

minutes, but no drug was infused.  Immediately following the adaptation procedure, rats were 

placed into the operant chamber for an extinction session.   

After the rats reached the extinction criterion, reinstatement of cocaine-seeking 

behavior was assessed in the cocaine-paired context or extinction context over the course of 4 

test sessions using a fully counterbalanced within-subjects testing design.  The order of the 

tests in the extinction context and the cocaine context, as well as the order of intracranial 

treatments (BM, VEH), were counterbalanced based on previous cocaine intake during self-

administration training.  On the test day, intracranial infusions were administered while rats 

were gently held by the experimenter.  Immediately thereafter, rats were placed into the 

operant conditioning chamber for a 1-h test session during which active and inactive lever 
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responses were recorded, but had no programmed consequences.  Session length was 1-h to 

allow for repeated testing without significant extinction learning. Subjects received 

additional extinction sessions between test sessions until they reached the extinction criterion 

(≤25 lever presses per session for 2 consecutive days).  Rats were given two, 1-h locomotor 

activity test sessions 24-h after the last test session.  Immediately before each locomotor test, 

rats received either a BM or VEH infusion consistent with the order of treatment received 

during the reinstatement test sessions.  

 

Experiment 2 

Effects of pre-training lesions of the lOFC on context-induced and cocaine-primed cocaine-

seeking behavior.  Experiment 2 was designed to evaluate the effects of prolonged loss of 

lOFC output on the reinstatement of cocaine-seeking behavior.  Immediately after stereotaxic 

surgery, rats received infusions of either NMDA or VEH into the lOFC as described above, 

with lesion groups assignment randomized.   Rats were then given a 7-day post-operative 

recovery period to allow the lesions to develop followed by self-administration in one 

context and extinction training in a different context.  72-h prior to the first reinstatement test 

session, locomotor activity was assessed in all rats in order to examine the effects of lesion 

and sham manipulations on general activity at the approximate time of reinstatement testing.   

Context-induced and cocaine-primed reinstatement of cocaine-seeking behavior was 

assessed in the same subjects over 2 test sessions. Between test days rats received a minimum 

of 2 extinction sessions until they reached the extinction criterion (≤25 lever presses per 

session for 2 consecutive days).  During the context-induced reinstatement test, rats were re-

exposed to the cocaine context  in the absence of cocaine reinforcement for a 2-h test session 
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during which lever responses had no programmed consequences. Responding in the 

extinction context 24-h before the cocaine-context reinstatement test served as the measure of 

lesion effects on baseline operant responding.  For the cocaine-primed reinstatement test, rats 

received an i.p. injection of cocaine (10 mg/kg, i.p.) or saline (1 ml/kg, i.p.) using a between-

subjects design.  Assignment to cocaine or saline priming injections was based on previous 

cocaine intake during self-administration training.  After the i.p. injection, rats were placed 

into the extinction context for a 2-h test session during which lever responses had no 

programmed consequences.  The cocaine priming dose was selected based on previous 

studies demonstrating that it produces robust reinstatement with minimal variability in 

responding (Lynch and Carroll, 2000; Fuchs et al. 2004; Placenza et al., 2005).   

 

Experiment 3 

 Effects of post-training lOFC lesions on drug context-induced cocaine-seeking behavior. 

Functional inactivation of lOFC attenuated context-induced reinstatement of cocaine seeking 

in experiment 1, whereas pre-training lOFC lesions potentiated cocaine context-induced 

cocaine seeking in experiment 2.  To determine whether differential effects of lOFC lesions 

and functional inactivation stemmed from the timing of the manipulation relative to 

associative learning, experiment 3 was designed to evaluate the effects of post-training lOFC 

lesions on context-induced reinstatement.   After reaching self-administration and extinction 

criteria, rats received infusions of either NMDA or VEH into the lOFC, with assignment to 

lesion group counterbalanced based on previous cocaine intake during self-administration 

training. Rats were given a 7-d post-operative recovery period to allow the lesions to 

develop. Thereafter, rats received a minimum of 2 extinction sessions to re-establish 
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extinction baselines to pre-lesion levels and eliminate spontaneous recovery before a context-

induced reinstatement test was conducted.  During the context-induced reinstatement test, 

rats were re-exposed to the cocaine-paired context in the absence of cocaine reinforcement 

for 2-h during which lever responses had no programmed consequences.  Responding in the 

extinction context 24-h before the context-induced reinstatement test served as the measure 

of lesion effects on baseline operant responding.  Locomotor activity was assessed 72-h prior 

to the reinstatement test in order to examine the effects of lesions on general activity at the 

approximate time of reinstatement testing, as in Experiment 1. 

  

Histology 

Immediately following the last test session, rats were fully anesthetized with 0.2 ml 

ketamine (66 mg/ml, i.v.) after which they were decapitated and their brains were dissected 

out.  Brains of rats in Experiments 2 and 3 were flash-frozen in methylbutane (J.T. Baker, 

Phillipsburg, NJ) and stored at -70°C until coronal sections (14 µm) were taken on a cryostat.  

The extent of the lesions and/or cannula placements were verified under a light microscope. 

The pattern of cell loss or the most ventral point of each cannula track was mapped onto 

schematics of the appropriate plates from the rat brain atlas of Paxinos and Watson (1997).  

 

Statistical Analysis 

Only data from rats with correctly placed lesions and cannula placements were 

included in data analysis.  In experiment 1, repeated measures ANOVAs were used to 

analyze lever responses on the test days with treatment (BM, VEH), context (extinction 

context ), and time (three, 20-min intervals) as factors, where appropriate.  Locomotor 
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activity was assessed using a repeated measures ANOVA with treatment (BM, VEH) and 

time (three, 20-min intervals) as factors.  Significant main and interaction effects were 

investigated using simple main-effects test (Tukey test) and Tukey post-hoc tests with the 

alpha set at 0.05.  In experiments 2 and 3, mixed-factorial ANOVAs were used to analyze 

lever responses and cocaine intake during self-administration training and extinction training 

with lesion (sham, lesion) and group (sham, lesion) as the between-subjects factors and day 

as the within-subjects factors.  Mixed-factorial ANOVAs were used to analyze lever 

responses on the context-induced reinstatement test days with lesion (sham, lesion) as the 

between subjects factors and context (extinction context, reinstatement context) and time 

(six, 20-min intervals) as the within-subjects factors.  In experiment 2, two-factorial 

ANOVAs were used to analyze lever responses on the cocaine-primed reinstatement test day 

with lesion (sham, lesion) and priming (saline, cocaine) as the between-subjects factors.  

Locomotor activity was assessed using mixed-factorial ANOVAs with lesion (sham, lesion) 

as the between-subjects factors and time (six, 20-min intervals) as within-subjects factors.  

Interaction effects were investigated, where appropriate, using Tukey post hoc tests with 

alpha set at 0.05. 

 

 

 
 
 
 
 
 



 
 
 
 
 

CHAPTER III  
RESULTS 

 

Histological Analysis 

The photomicrographs in Fig 1A are of representative brains from rats that received 

BM- or VEH-infusions into the lOFC or mOFC, as well as photomicrographs of 

representative lOFC lesions.  Furthermore, the schematic diagrams in Fig 1B depict the 

distribution of injection cannula placements in the brains of rats from experiments 1-3 as well 

as the extent and the location of the smallest and largest lesions in experiment 2-3.  The lOFC 

target region was defined as an aggregate of the lateral and ventrolateral subregions of the 

OFC based on the atlas of Paxinos and Watson (1997).  After lOFC lesions, cell loss was 

observed in the ventrolateral and lateral regions of the lOFC as well as in the adjacent 

agranular insular (AIC) and frontal cortices in a subset of rats. The mOFC target region was 

defined as the combination of medial and ventromedial subregions of the OFC based on the 

atlas of Paxinos and Watson (1997).  The most ventral points of the cannulae tracts were 

bilaterally located within the lOFC or mOFC for all rats whose data were included in the 

analyses.  Data obtained from rats with misplaced cannulae or with lesions in unintended 

brain regions were excluded.  For experiment 1, the resulting groups (sample sizes) were as 

follows:  lOFC functional inactivation, n = 10; mOFC functional inactivation, n = 8.  For 

experiment 2, the resulting groups were: pre-training lOFC lesion (cocaine priming, n = 11; 

saline priming, n = 11); pre-training lOFC sham (cocaine priming, n = 9; saline priming, n = 
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10).  For experiment 3, the resulting groups were: post-training lOFC lesion, n = 9; post-

training lOFC sham, n = 11. 

 
Experiment 1 

Self-Administration and Extinction Responding. Groups received intra-lOFC or intra-mOFC 

BM or VEH treatment immediately prior to two reinstatement test sessions, with treatment 

order counterbalanced based on cocaine intake during self-administration training.  

Consequently, for the lOFC-cannulated subjects, active lever responding, inactive lever 

responding, and cocaine intake during the last 7 days of self-administration did not vary as a 

function of treatment order.  The mean active and inactive lever responding was 33.97 ± 5.15 

and 2.97 ± 1.56, respectively, while the mean cocaine intake was 17.40 ± 1.245 infusions 

(11.60 ± 0.83 mg/kg per session). Similarly, for the mOFC-cannulated subjects, active lever 

responding, inactive lever responding, and cocaine intake during the last 7 days of self-

administration did not vary as a function of treatment order.  The mean active and inactive 

lever responding was 34.00 ± 3.374 and 1.88 ± 1.38, respectively, while the mean cocaine 

intake was 23.38 ± 2.421 infusions (15.58 ± 1.493 mg/kg per session).  

There were no pre-existing differences in active or inactive lever responding during 

extinction training as a function of treatment order.  In lOFC-cannulated subjects, as well as 

in mOFC-cannulated subjects, the mean number of days (mean ± SEM) to reach the 

extinction criterion was 7.00 ± 0.00 (data not shown).   

 

Effects of lOFC Functional Inactivation on Context-induced Reinstatement of Cocaine-

seeking Behavior. Re-exposure to the previously cocaine-paired context enhanced active 

lever responding relative to responding in the extinction context, and lOFC functional 
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inactivation impaired responding in a lever-selective manner.  The ANOVA of active lever 

responses following intra-lOFC BM or VEH pretreatment before exposure to either the 

cocaine-paired or the extinction context revealed significant treatment X context interaction 

(F(1, 9) = 52.494, p < 0.001), treatment main (F(1,9) = 40.218, p < 0.001), and context main 

effects (F(1,9) = 39.439, p < 0.001) (Fig 2A).  Thus, re-exposure to the cocaine-paired context 

increased active lever responding following VEH pretreatment, but not BM pretreatment, 

relative to responding in the extinction context (Tukey, p < 0.001).  Moreover, BM 

pretreatment administered into the lOFC significantly attenuated active lever responding in 

the cocaine-paired context relative to VEH treatment (Tukey, p < 0.01) without altering 

active lever responding in the extinction context.  The ANOVA of active lever responses 

across the three 20-min intervals of the 1-h reinstatement test confirmed that there were 

significant treatment main (F(2,18) = 64.310, p < 0.001) and time main effects (F(2,18) = 5.926, p 

= 0.011), but no treatment X time interaction effect (F(2.18) = 0.399, p = 0.677).  Hence, BM 

treatment administered into the lOFC attenuated active lever responding throughout the test 

session relative to VEH treatment (Fig 2B).    

The ANOVA of inactive lever responses revealed no significant treatment X context  

interaction (F(1, 9) = 0.638, p = 0.139), treatment main (F(1,9) = 0.098, p = 0.761), or context 

main effect (F(1,9) = 0.455, p = 0.517) (Fig 2C).  Hence, exposure to the cocaine-paired 

context did not alter responding on the inactive lever relative to responding in the extinction 

context.  Furthermore, intra-lOFC BM treatment failed to alter inactive lever responding 

relative to VEH treatment in either context. 
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Effects of mOFC Functional Inactivation on Context-Induced Reinstatement of Cocaine-

seeking Behavior.  Following re-exposure to the cocaine-paired context or extinction context, 

mOFC functional inactivation failed to alter lever responding (Fig 3A).  The ANOVA of 

active lever responses following intra-mOFC BM or VEH pretreatment before re-exposure to 

either the cocaine-paired or extinction context revealed a significant context main effect 

(F(1,7) = 17.184; p = 0.004), but no significant treatment X context interaction (F(1,7) = 0.370, 

p = 0.562) or treatment main effect (F(1,7) = 0.057, p = 0.819).  In addition, the 2X3 ANOVA 

of active lever responses across three, 20-min intervals of the 1-h reinstatement test revealed 

a significant time main effect (F(2,14) = 9.088, p = 0.03), but no treatment X time interaction 

(F(2,14) = 0.139, p = 0.872) or treatment main effect (F(1,7) = 0.218; p = 0.650) (Fig 3B).  

Hence, re-exposure to the cocaine-paired context enhanced lever responding to a similar 

extent following BM or VEH treatment administered into the mOFC relative to responding in 

the extinction condition.  Additionally, BM pretreatment failed to alter active lever 

responding in the cocaine-paired context or extinction context relative to VEH pretreatment.  

Finally, the ANOVA of inactive lever responses indicated no treatment X context 

interaction (F(1,7) = 0.517, p = 0.495), treatment main (F(1,7) = 0.040, p = 0.0847), or context 

main effect (F(1,7) = 1.197, p = 0.310) (Fig 3C).  Hence, re-exposure to the cocaine-paired 

context following BM or VEH treatment did not alter inactive lever responding relative to 

responding in the extinction context.  Furthermore, intra-mOFC BM pretreatment failed to 

alter inactive lever responding relative to VEH pretreatment in either context. 
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Effects of lOFC and mOFC Functional Inactivation on Locomotor Activity: lOFC functional 

inactivation attenuated motor activity during the locomotor activity test relative to VEH 

treatment (Fig 4A).  The 2X3 ANOVA of photobeam breaks during the three, 20-min 

intervals of the locomotor test indicated significant time main (F(2,18) = 61.162, p < 0.001) 

and treatment main effects (F(1,9)= 5.895, p = 0.038), but no treatment X time interaction 

effect (F(2,18) = 1.367, p = 0.280).  Thus, both groups exhibited a decrease in motor activity 

following the first 20-min interval of the locomotor test session (interval 1 > interval 2-3; 

Tukey p < 0.01).  Furthermore, intra-lOFC BM treatment decreased locomotor activity 

relative to VEH treatment.   

 Unlike lOFC functional inactivation, mOFC functional inactivation failed to alter 

motor activity relative to VEH treatment.  The 2X3 ANOVA of photobeam breaks indicated 

a significant time main effect (F(2,14) = 54.306, p < 0.001), but no treatment X time 

interaction (F(2,14) = 0.415, p = 0.668) or treatment main effect (F(1,7)= 0.037, p = 0.853) (Fig 

4B).   Thus, following pretreatment with either VEH or BM, motor activity declined at a 

similar rate following the first 20-min interval of the locomotor test session (interval 1 > 

interval 2-3; Tukey p < 0.01).   

 

Experiment 2  

Self-Administration Responding: Pre-training lOFC lesions did not impair cocaine self-

administration given that the lOFC lesion and sham groups exhibited similar levels of lever 

responding and cocaine intake.  The mean ± SEM daily cocaine intake for the lOFC lesion 

and sham group was 24.56 ± 1.60 and 24.41 ± 1.58 infusions/session (16.37 ± 1.07 and 

16.27± 1.05 mg/kg per session), respectively  (Fig 5).  The mixed factors ANOVA for active 
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lever responses over the last 7 days of cocaine self-administration training indicated no lesion 

X day interaction (F(6,234) = 1.029, p = 0.407), day main (F(6,234) = 0.730, p = 0.626), or lesion 

main effect (F(1,39) = 1.217, p = 0.266).  While the ANOVA of inactive lever presses 

indicated a significant day main effect (F(6,234) = 2.486, p = 0.024), there was no significant 

lesion X day interaction effect (F(6,234) = 0.213, p = 0.974) or lesion main effect (F(1,39) = 

0.016, p = 0.937).  Hence, inactive lever presses decreased over time for both lesion and 

sham groups.  Finally, the ANOVA of cocaine intake revealed no significant lesion X day 

interaction (F(6,234) = 1.572, p = 0.156), day main (F(6,234) = 0.653, p = 0.688), or lesion main 

effect (F(1,39) = 0.523,  p = 0.474).  Overall, these results indicate there were no differences 

between the lesion and sham groups in lever responding or cocaine intake during cocaine 

self-administration training.  

 

Extinction Responding: Pre-training lOFC lesions did not impair extinction learning upon 

removal of cocaine reinforcement (Fig. 5B).  The lOFC lesion and sham controls groups did 

not differ in the mean number of days they needed to reach the extinction criterion (t(39) = 

1.294, p = 0.214; Sham mean = 7.26 + 0.214, Lesion mean = 7.00 + 0.00; data not shown).  

Furthermore, the ANOVA of active lever responses on the first 7 days of extinction training 

revealed a significant day main effect (F (6,234) = 26.747, p < 0.001), but no lesion X day 

interaction effect (F(6,234) = 1.922, p = 0.072) or lesion main effect (F (1,39) = 1.355, p = 0.251).  

Hence, active lever responding declined following removal of cocaine reinforcement 

irrespective of lesion condition (day 1 > day 2-7, Tukey, p < 0.001).  Similarly, the ANOVA 

of inactive lever responses revealed a significant day main effect (F(6,234) = 3.615, p = 0.002), 

but no lesion X day interaction (F(6,234) = 2.413 p = 0.128) or lesion main effect (F(1,39) = 
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1.041, p = 0.400).  The day main effect stemmed from higher levels of inactive lever 

responding on the first day of extinction training independent of lesion condition relative to 

responding on subsequent extinction days (day 1 > days 2-7, Tukey, p < 0.01).  Overall, both 

groups exhibited high levels of active and inactive lever responding on the first day of 

extinction training after which responding declined at similar rates for both groups, 

suggesting there were no differences between the lOFC lesion and sham groups in lever 

responses during extinction training.    

 

Context-induced Reinstatement of Cocaine-seeking Behavior: Re-exposure to the cocaine-

paired context on the reinstatement test day increased lever responding in all groups relative 

to responding in the extinction context, while the pre-training lOFC lesions selectively 

altered active lever responding relative to the sham manipulation (Fig 6).  The ANOVA of 

active lever responses on the reinstatement test day and preceding extinction day revealed a 

significant context X lesion interaction effect (F(1,39) = 5.461, p = 0.025) as well as context 

main (F(1,39) = 130.748, p < 0.001) and lesion main effects (F(1,39) = 6.663, p = 0.014 5.461, p 

= 0.025) (Fig 6A).  Thus, re-exposure to the previously cocaine-paired context elicited 

enhanced responding in all groups relative to responding the extinction context (Tuket’s test, 

p < 0.01).  However, the lOFC lesion group exhibited greater active lever responding in the 

cocaine-paired context relative to the sham controls (Tukey’s test, p < 0.01).  The 2X6 

ANOVA of active lever responses across the six, 20-min intervals of the reinstatement test 

session revealed a significant time X lesion interaction effect (F(5,195) = 2.771, p = 0.019) as 

well as time main (F(5,195) = 17.243, p < 0.001) and lesion main effects (F(1,39) = 6.244, p = 
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0.017) (Fig 6B).  Thus, lOFC lesions increased active lever responding relative to the sham 

lesion during the first 20-min test interval of the reinstatement test (Tukey p < 0.05).   

The ANOVA of inactive lever responses on the reinstatement test day and preceding 

extinction day revealed a significant context main effect (F(1,39) = 5.666, p = 0.022), but no 

context X lesion interaction effect (F(1,39) = 0.742, p = 0.342) or lesion main effect (F(1,39) = 

1.195, p = 0.661) (Fig 6C).  Thus, re-exposure to the cocaine-paired context increased 

inactive lever responding relative to responding in the extinction context independent of 

lesion condition. Furthermore, there were no differences between the lOFC lesion and sham 

groups in inactive lever responding in the cocaine paired context relative to responding in the 

extinction context. 

 

Cocaine-primed Reinstatement of Cocaine-seeking Behavior: Exposure to an intraperitoneal 

cocaine priming injection produced a robust increase in active lever responding in both the 

lOFC lesion and sham lesion groups relative to saline priming injections (Fig 7).  The 2X2 

ANOVA of active lever responses exhibited by the lOFC lesion and sham group following 

pretreatment with either cocaine-priming or saline injections prior to exposure to the 

extinction context revealed a priming injection main effect (F(1,41) = 43.693, p < 0.001), but 

no priming injection X lesion interaction (F(1,37) = 0.378, p = 0.542) or lesion main effect 

(F(1,37) = 1.566, p = 0.219) (Fig 7A).  Hence, cocaine-priming injections enhanced active 

lever responding in both groups in the extinction context relative to saline injections.  

Furthermore, there were no differences in active lever responding between the lOFC lesion 

and sham control groups following cocaine-priming or saline injections relative to the sham 

control group.         
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 The 2X2 ANOVA of inactive lever responses exhibited by the lOFC lesion and sham 

group following pretreatment with either cocaine-priming or saline injections on the cocaine-

primed reinstatement day indicated no priming injection X lesion (F(1,37) = 0.378, p = 0.542), 

priming injection main (F(1,37) = 2.042, p = 0.161), or lesion main effect (F(1,37) = 1.566, p = 

0.219) (Fig 7B).  Hence, cocaine-priming injections did not alter inactive lever responding 

relative to saline injections in either group.  Furthermore, there were no differences in 

inactive lever responding between the lOFC lesion and sham groups.  

 

Locomotor Activity: The ANOVA of photobeam breaks across the six, 20-min intervals of 

the locomotor test session revealed a time main effect (F(5,195) = 78.827, p < 0.001), but no 

lesion X time interaction effect (F(5,195) = 1.458, p = 0.807) or lesion main effect (F(1,39) = 

1.038, p = 0.315) (Fig 8).  Both lOFC lesion and sham groups exhibited a decrease in motor 

activity after the first 20-min interval of the locomotor test session (interval 1 > interval 2-6; 

Tukey p < 0.001).  Furthermore, there was no difference between the lesion and sham groups 

in motor activity. 

 
 
Experiment 3 

Self-Administration Responding: There were no pre-existing differences in lever responding 

or cocaine intake between groups that subsequently received the lOFC lesion or sham 

manipulation (Fig 9).  The mean ± SEM daily cocaine intake for the post-training lOFC 

lesion and sham group was 22.00 ± 2.10 and 24.60 ± 3.29 infusions, respectively (14.66 ±  

1.40 and 16.40 ± 2.19 mg/kg per session).  Consistent with this, the ANOVA of active lever 

responses for the last 7 days of self-administration training indicated no pre-existing group X 
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day interaction (F(6,108) = 0.813, p = 0.562), day main  (F(6,108) = 1.564, p = 0.165) or group 

main effects  (F(1,18) = 0.462, p = 0.506) (Fig 9A).  Similarly, the ANOVA of inactive lever 

responses indicated no group X day interaction (F(6,108) = 0.753, p = 0.608), day main (F(6,108) 

= 0.989, p = 0.436), or group main effect  (F(1,18) = 2.998, p = 0.100) (Fig 9B).  Finally, the 

ANOVA for daily cocaine intake revealed a significant day main effect (F(6,108) = 4.550, p < 

0.001), but no group X day interaction (F(6,108) = 1.243, p = 0.290) or group main effect 

(F(1,18) = 0.466,  p = 0.504).  Thus, both the lOFC lesion and sham control groups exhibited a 

similar escalation in cocaine intake over the last 7 days of cocaine self-administration 

training (Tukey, p < 0.05; day 7 > day 1-3).  However, there were no pre-existing differences 

in cocaine intake between groups that subsequently received the lOFC lesion or sham 

manipulation. 

 

Extinction Responding: There were no pre-existing differences in extinction learning 

between groups that subsequently received the lOFC lesion or sham manipulation (Fig. 9B).  

Both groups needed a similar mean number of days to reach the extinction criterion (t(18) = 

0.900, p = 0.380; Sham mean = 7.09 + 0.30, Lesion mean = 7.00 + 0.00; data not shown).  

Similarly, the ANOVA of active lever responses on the first 7 days of extinction training 

revealed a significant day main effect (F (6,108) = 17.234, p = 0.001), but no group X day 

interaction (F (6,108) = 0.508, p = 0.485) or group main effect (F (1,18) = 0.193, p = 0.666).  

Hence, active lever responses declined across extinction sessions at similar rates in both 

groups (day 1 > day 2-7; Tukey, p < 0.01).  In contrast, the ANOVA of inactive lever 

responding indicated a significant group X day interaction effect (F (6,108) = 2.503, p = 0.026) 

as well as a day main effect (F (6,108) = 8.251, p < 0.000), but no group main effect (F (1,18) = 
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2.890, p = 0.106).   Hence, the group that subsequently received sham lesions made 

significantly more inactive lever responses on extinction day 1 than the group that 

subsequently received NMDA-induced lOFC lesions (day 1 > day 2-7; Tukey, p < 0.05).  

However, there were no significant differences between groups on extinction days 2-7.   

Following the induction of post-training NMDA or sham lesions, extinction 

responding exhibited by the lesion and sham groups was similar to the previously established 

extinction baseline. In order to re-obtain the extinction criterion (≤ 25 active lever 

presses/session for 2 consecutive sessions), both groups required a similar mean number of 

days (t(20) = 0.102, p = 0.920; Sham mean = 2.82 + 0.519, Lesion mean = 2.75 + 0.313; data 

not shown).   

 

Context-induced Reinstatement of Cocaine-seeking Behavior: Re-exposure to the cocaine-

paired context elicited robust lever responding in both the lOFC lesion and sham groups (Fig 

10).  The ANOVA of active lever responses on the reinstatement test day and preceding 

extinction day revealed a significant context main effect (F(1,18) = 54.450, p < 0.00), but no 

context X lesion interaction (F(1,18) = 1.277, p = 0.273) or lesion main effect (F(1,18) = 1.259, p 

= 0.277).  Hence, both groups exhibited more active lever responding upon exposure to the 

cocaine-paired context relative to the extinction context, and lOFC lesions failed to alter 

active lever responding relative to the sham lesions.  A 2X6 ANOVA of active lever 

responses across the six 20-min intervals of the reinstatement session further confirmed that 

there was a significant time main effect (F(5,90) = 16.469, p < 0.001), but no time X lesion 

interaction (F(5,90) = 0.591, p = 0.707) or lesion main effect (F(1,18) = 1.282, p = 0.272) (Fig 

10B).  Hence, active lever responses declined at a similar rate in both groups during the 
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reinstatement session (interval 1 > intervals 3-6; Tukey, p < 0.01).  Furthermore, there was 

no difference between the lOFC lesion and sham groups in active lever responding. 

The ANOVA of inactive lever responding on the reinstatement test day and preceding 

extinction day indicated no significant context X lesion interaction (F(1,18) = 0.056, p = 

0.815), context main (F(1,18) = 3.341, p = 0.085), or lesion main effect (F(1,18) = 1.774, p = 

0.200) (Fig 10C).  Thus, the groups did not exhibit a change in inactive lever responding in 

the cocaine-paired context relative to the extinction context.  Furthermore, there was no 

difference between the lOFC lesion and sham groups in inactive lever responding.     

 

Locomotor Activity Testing: A 2X6 ANOVA of photobeam breaks across the six 20-min 

intervals of the locomotor test session revealed a significant time main effect (F(5,90) = 

63.456, p < 0.001), but no lesion X time interaction (F(5,90) = 0.204, p = 0.960) or lesion main 

effect (F(1,18) = 0.052, p = 0.822) (Fig 11).  Both the lOFC lesion and sham groups exhibited 

a similar decrease in motor activity following the first 20-min interval of the locomotor test 

session (interval 1 > interval 2-6; Tukey p < 0.001).  Furthermore, there was no difference 

between lesion and sham groups in motor activity during the locomotor activity test.   

 

 

 

 

 

 

 



 
 
 
 
 

CHAPTER IV 

DISCUSSION 

 

The findings in the present study highlight the complex role that the lOFC – a 

structure functionally homologous to the human medial PFC – plays in guiding drug-seeking 

behavior, providing the first evidence that the lOFC is critical for regulating context-induced 

reinstatement of cocaine seeking (Gallagher et al., 1999; Goldstein et al., 1997; Elliot et al., 

2000).  Functional inactivation of the lOFC – but not the mOFC – disrupted the ability of a 

cocaine-paired context to reinstate extinguished cocaine-seeking behavior (Fig 2, 3).  In 

contrast, pre-training lOFC lesions augmented reinstatement of cocaine seeking in the 

cocaine-paired context, but failed to alter cocaine-primed reinstatement in the extinction 

context (Fig 5, 6).  Finally, lOFC lesions induced after self-administration and extinction 

training failed to alter context-induced cocaine-seeking behavior (Fig 10).  While these 

complex patterns of effects may seem contradictory, they likely reflect the intricate 

constellation of cognitive impairments produced by OFC damage in humans.  Moreover, they 

suggest that manipulations of the lOFC have profoundly different effects on motivation for 

cocaine based on either the type or timing of the lOFC manipulation, as will be discussed in 

the subsequent paragraphs.  
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Functional inactivation of the lOFC, but not mOFC, impairs context-induced reinstatement 

of cocaine seeking  

In the present study, temporary functional inactivation of the lOFC severely impaired 

the expression of cocaine context-induced cocaine-seeking behavior. Conversely, functional 

inactivation of the mOFC failed to alter context-induced cocaine seeking.  Such results are 

consistent with our previous findings that lOFC functional inactivation – but not mOFC 

functional inactivation – prevents explicit cocaine-paired CSs from eliciting cocaine seeking 

(Fuchs et al., 2004).  Taken together, these findings suggest that the rat OFC is a functionally 

heterogeneous brain region with respect to guiding cocaine seeking and imply the selective 

involvement of the lOFC in this behavior.  Furthermore, cocaine cue-induced motivation for 

cocaine reinforcement critically relies on the functional integrity of the lOFC when the lOFC 

is intact during the formation of cocaine-cue associations.  It is unlikely that BM-induced 

functional inactivation of the lOFC decreased cocaine-seeking behavior due to non-specific 

reductions in motor behavior even though this manipulation slightly depressed motor activity 

in a novel context.  Namely, decreased motor activity was not observed during the first 20-

min interval of the locomotor test (Fig 3A) when functional inactivation of the lOFC 

produced the most robust impairment in active lever responding (Fig 2B).  In addition to the 

different time course of effects on motor activity and active lever responding, lOFC 

functional inactivation failed to alter inactive lever responding. Thus, overall, the present 

findings suggest that neural activity in the lOFC is necessary for recalling the motivational 

significance of cocaine-conditioned stimuli or utilizing this information to guide cocaine-

seeking behaviors. 
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 Pre-training lOFC lesions fail to alter either cocaine self-administration or extinction 

training  

While the functional inactivation experiment provides critical information about the 

acute role of the lOFC in guiding cocaine seeking, cocaine users typically present with 

protracted structural, physiological, and functional abnormalities in prefrontal cortical 

regions (Volkow and Fowler, 2000; Volkow et al., 1991; Franklin et al 2002; Bolla et al., 

2003; Matochick et al., 2003; London et al., 2000).  These abnormalities may chronically 

alter OFC output and underlie pathological drug-seeking and drug-taking behaviors observed 

in former cocaine addicts.  Hence, we also examined the effects of lOFC lesions on context-

induced cocaine seeking in order to provide a better model for the human condition.  In 

accordance with our earlier study, the present findings suggest that pre-training lOFC lesions 

failed to alter either the acquisition or maintenance of cocaine-reinforced instrumental 

behavior (Fuchs et al., 2004).   Thus, long-term loss of lOFC output does not alter the 

primary reinforcing effects of cocaine nor does it impede the acquisition of response-drug, 

context-response, and context-drug associations that are theorized to maintain cocaine self-

administration behavior (Stewart, 1983).  Such results are consistent with previous studies 

examining the effects of lOFC lesions on the acquisition of cocaine self-administration as a 

function of cocaine dose (Hutcheson and Everitt, 2003; for review, Schoenbaum and 

Shaham, 2008) and on the acquisition of responding for natural reinforcers (Gallagher et al., 

1999; McDannald et al., 2005; Ostlund and Balleine, 2007; Schoenbaum et al., 2002).  

Similar to the lack of effects of lOFC lesions on cocaine-reinforced lever responding, 

pre-training lOFC lesions failed to alter either the extinction of lever responding in a novel 

context or the mean number of days required to reach the extinction criterion. While this 
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finding is consistent with results from our previous study (Fuchs et al., 2004), it appears to 

contrast with some reports that OFC damage causes perseveration of non-rewarding 

responses in humans and impairs performance on reinforcer devaluation and reversal 

learning tasks in animals (Bechara et al., 1994; Hatfield et al., 1996; Gallagher et al., 1999; 

Pickens et al., 2003, 2005; Izquierdo et al., 2004) as well as producing a resistance to 

extinction (Izquierdo and Murray, 2005).  However, perseverative errors induced by lOFC 

lesions in devaluation and reversal tasks primarily reflect an inability to shift behavioral 

responding to a previously unrewarded stimulus, which requires the modification of existing 

CS-no reward association rather than a deficit in inhibiting non-rewarded responses (Tait and 

Brown, 2007).  Hence, lOFC-lesioned rats might have relied on an intact ability to either 

form new context-response, no-reward associations or utilize state-dependent learning, i.e. 

the presence or absence of cocaine-related interoceptive cues in the present study, to 

adaptively inhibit lever responding.   

 

Pre-training lOFC lesions enhance context-induced reinstatement of cocaine-seeking 

behavior 

 In contrast to the effects of lOFC functional inactivation on context-induced cocaine 

seeking, pre-training lOFC lesions augmented context-induced reinstatement of cocaine-

seeking behaviors relative to sham lesions.  This effect appeared to stem from enhanced 

context-induced motivation for cocaine rather than perseverative responding.  Consistent 

with this, lOFC lesions significantly potentiated responding during the first 20 minutes of 

cocaine-context re-exposure rather than decreasing the rate of decline, or extinction, in 

cocaine-seeking behaviors during the course of the test session. Because findings from the  
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lOFC functional inactivation experiment indicated the lOFC regulates the motivational 

effects of cocaine-conditioned contextual cues, the mechanism by which pre-training lOFC 

lesions enhanced cue-induced reinstatement bears explication.  Unlike transient, functional 

inactivation of the lOFC, NMDA-induced lesions permanently eliminate lOFC neural output 

to other elements of the relapse circuitry.  Prolonged cell loss in the lOFC may elicit 

compensatory neural adaptations that, in turn, contribute to heightened context-induced 

incentive motivation for cocaine.  Previous studies have suggested that other behavioral 

deficits commonly associated with lOFC damage, such as behavioral inflexibility, may stem 

from neuroplasticity in brain regions connected with the lOFC.  For instance, 

neurophysiological evidence indicates that neural activity in the lOFC indirectly promotes 

behavioral flexibility by facilitating associative encoding in the amygdala (Patton et al., 

2006).  As a result, unilateral lesions of the lOFC impair cue-selective firing in the 

basolateral amygdala during reversal learning, and lOFC lesion-induced impairments in 

reversal learning are rescued by BLA lesions (Schoenbaum et al., 1999; Stalnaker et al., 

2007).  Hence, compensatory neuroadaptations may develop in regions of the 

mesocorticolimbic reward circuitry following lOFC lesions and this may account for 

potentiated context-induced cocaine seeking observed in the present study, as well as 

enhanced cue-induced motivation for cocaine in former cocaine users (McLaughlin and See, 

2003; Fuchs et al., 2005; Bonson et al., 2002).   

Interestingly, the behavioral effects of pre-training lesions reported here appear to 

contrast with our previous study in which lOFC lesions did not alter explicit CS-induced 

cocaine-seeking behaviors (Fuchs et al., 2004).  However, the differential effects of lOFC 

lesions on context- vs CS-induced cocaine seeking may stem from critical differences 
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between these studies in the type of cue being utilized.  While response-contingent explicit 

CSs can maintain drug seeking by providing conditioned reinforcement or by signaling 

imminent drug effects, contexts act as occasion setters or discriminative stimuli that signal 

drug availability contingent upon responding (Bouton and Bolles, 1979, Crombag and 

Shaham, 2002; Fuchs et al., 2005).  Explicit CSs and contexts engage partially distinct neural 

systems to guide the expression of cocaine-seeking behavior (Fuchs et al., 2005; Bossert et 

al., 2007). Thus, lOFC lesions may produce compensatory neuroadaptations that 

differentially affect these distinct neural systems.  Accordingly, lOFC lesions appear to 

impair behavior maintained by conditioned reinforcement given that lOFC lesions disrupt 

responding for cocaine on a second-order reinforcement schedule, produce an insensitivity to 

CS omission on a second-order task when primary reinforcement is available, and prevent 

Pavlovian cues from facilitating instrumental performance (Hutcheson and Everitt, 2003; 

Pears et al., 2003; Ostlund and Balleine, 2007).  In contrast, lOFC lesions do not prevent the 

processing of discriminative stimuli given that lOFC-lesioned rats exhibit normal acquisition 

of instrumental discrimination learning, perform odor discriminations in a go, no-go task, and 

displayed normal acquisition of lever pressing for unsignalled cocaine in the present study 

(Chudasama and Robbins, 2003; Schoenbaum et al., 2002).  However, lOFC lesion-induced 

neuroadaptions may enhance context-induced motivation for cocaine reinforcement, which 

manifests differently depending on the presence or absence of an explicit cocaine-paired CS.   

Hence, lOFC lesion-induced enhancement in context-induced motivation for cocaine may 

have been obscured in the previous study by lOFC lesion-induced attenuation in responding 

maintained by conditioned reinforcement.  However, this effect is observed in the absence of 
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a CS in the current study, resulting in an overall augmentation of context-induced cocaine 

seeking in the lOFC lesion group. 

 

Pre-training lOFC lesions fail to alter cocaine-primed reinstatement of cocaine-seeking 

behavior 

Much like lOFC lesions did not alter the primary reinforcing properties of cocaine 

during self-administration training, lOFC lesions failed to potentiate reinstatement initiated 

by a single cocaine priming injection. These findings suggest that lOFC lesions specifically 

enhance context-induced motivation for cocaine, but fail to alter the reinforcing significance 

and motivational properties of cocaine itself.  Interestingly, this finding contrasts with 

previous evidence that lOFC lesions induce perseveration in drug seeking behavior following 

cocaine priming (Fuchs et al., 2004).  However, procedural differences may underlie this 

apparent discrepancy.  Importantly, in the previous study cocaine-priming injections were 

administered immediately before exposure to a cocaine-paired context (i.e. the extinguished 

drug-associated context), whereas in the current study cocaine-primed injections were 

administered before exposure to a no-cocaine-paired context (i.e. the extinction context).  

Hence, perseverative responding in the prior study may have stemmed, at least in part, from 

an interaction between (A) the primary motivational properties of cocaine and (B) the effects 

of lOFC lesions on conditioned motivational properties of the cocaine-paired context.  

Because both GABA agonist-induced and tetrototoxin-induced functional inactivation of the 

lOFC fails to alter cocaine-primed cocaine seeking, lOFC output does not appear critical for 

cocaine-primed reinstatement (Fuchs et al., 2004; Capriles et al., 2003).  Thus, in summary, 

pre-training lOFC lesions may elicit neuroadaptations that specifically enhance context-
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induced reinstatement without altering cocaine-primed reinstatement of cocaine-seeking 

behaviors.  

 

Post-training lOFC lesions fail to alter context-induced reinstatement of cocaine-seeking 

behaviors 

Pre-training lOFC lesions and post-training lOFC functional inactivation may have 

differentially altered context-induced cocaine seeking because 1) these manipulations occur 

at different points relative to the formation of context-response-cocaine associations, 2) 

compensatory neuroadaptations require time to develop after the lesioning procedure, or 3) 

these manipulations produce fundamentally different neurochemical effects.   When 

assessing these possible explanations, the results of the post-training lOFC lesion experiment 

failed to support the first possibility given that post-training lOFC lesions, unlike lOFC 

functional inactivation, failed to attenuate context-induced cocaine-seeking behaviors relative 

to sham lesions.  In fact, both the post-training lOFC lesion and sham group exhibited robust 

cocaine-seeking behaviors upon re-exposure to the cocaine-paired context.  These effects 

may have stemmed from incubation, a reliable time-dependent increase in cue-induced 

cocaine-seeking behavior following experimenter-imposed abstinence from cocaine during 

the post-lesion recovery period (Tran-Nguyen et al., 1998; Grimm et al., 2001).  

Furthermore, it is unlikely that post-training lOFC lesions and functional inactivation 

differentially altered context-induced reinstatement due to differences in their neurochemical 

effects because this would not account for differences between the post-training and pre-

training lOFC lesion groups. Specifically, post-training lOFC lesions, unlike pre-training 

lOFC lesions, failed to potentiate context-induced cocaine-seeking behaviors.  Hence, we can 
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conclude that the lOFC lesions triggered neuroadaptations that enhanced context-induced 

motivation for cocaine, but that these neuradaptations require more time to develop than the 

period available between lesion induction and reinstatement testing in experiment 3.  

Therefore, animals with post-training lOFC lesions might display an intermediate state of 

neuroplasticity that was sufficient to increase motivation for cocaine and compensate for 

decreased cocaine-seeking behavior stemming from acute loss of lOFC function.   Such 

findings suggest that long-term loss of OFC output in humans may underlie enhanced cue-

induced neural reactivity observed in former cocaine users.   

 

The role of the OFC in drug relapse behaviors 

 Overall, the preceding findings indicate that the lOFC exerts a complex regulatory 

influence over the incentive motivational effects of cocaine-paired cues (Jentsch and Taylor 

1999). The finding that the lOFC appears to play a different role in explicit CS-induced, 

context-induced, and cocaine-primed cocaine-seeking behavior is consistent with the idea 

that different reinstatement triggers induce drug-seeking behavior via partially distinct neural 

mechanisms.  Because context-induced cocaine-seeking behavior is attenuated by acute 

lOFC functional inactivation, but is enhanced by chronic loss of lOFC output, 

neuroadaptations elicited in other elements of the relapse circuitry during associate learning 

processes may account for enhanced motivation for cocaine reinforcement. Importantly, the 

lOFC may regulate cocaine seeking via its robust connections with the basolateral amygdala 

(BLA), hippocampus, prefrontal cortex, thalamus, basal ganglia, and nucleus accumbens core 

(Krettek and Price, 1977; Groenewegen et al., 1990; Ray and Price, 1992, 1993; Carmichael 

and Price, 1995; Haber et al., 1995).  Of these brain regions, the dorsal hippocampus plays a 
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selective role in context-induced reinstatement (Fuchs et al., 2005; 2007), the amygdala and 

ventral hippocampus are critical for context-induced and CS-induced reinstatement (Sun and 

Rebec, 2003, See et al., 2001, Fuchs et al., 2005; Lasseter et al., in prep), and the prefrontal 

cortex and nucleus accumbens are necessary for both drug-primed, CS-induced, and context-

induced reinstatement (McFarland and Kalivas, 2001; McLaughlin and See, 2003; Fuchs et 

al., 2005; 2007; 2008).  The differential effects of pre-training lOFC lesions on these forms 

of reinstatement suggest that different reinstatement triggers may engage distinct subcircuits 

within the lOFC, and these may, in turn, develop a different set of neuroadaptations 

following lOFC damage.  We hypothesize that the existence of such subcircuits may explain 

the concomitant presence of chronic hypofrontality and enhanced cocaine-cue neural 

activation in the OFC in humans and rats (Volkow and Fowler, 2000; Franklin et al 2002, 

Bolla et al., 2003, Matochick et al., 2003, London et al., 2000, Zavala et al., 2007;  Hearing 

et al., 2008).  Exploring how lOFC damage contributes to cognitive and behavioral 

impairments in the lOFC-lesioned rat may help elucidate potential treatment strategies for 

humans dealing with addiction to cocaine.  Future studies will be necessary to determine 

which of the above brain regions exhibits an obligatory functional interaction with the lOFC 

in regulating cue-induced cocaine-seeking behaviors. Of particular interest will be to 

systematically investigate the nature of lOFC lesion-induced neuroadaptive changes in the 

relapse circuitry and to assess the distinct contribution of these putative neuroadaptations to 

addictive behavior. 
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Figure 1.  Histological Schematics. A: Photomicrographs of representative brains from rats 
that received bilateral cannula aimed at the lOFC and mOFC, as well as representative lOFC 
lesions shown at 10X and 20X magnification  B:  Schematic representation of cannula 
placements in the brains of rats from experiments 1-3, as well as the extent of the largest 
(dark shaded areas) and smallest (light shaded areas) lesions. The triangle symbols represent 
the most ventral point of the injection cannula tracks. The open and closed triangle symbols 
represent animals that received saline and cocaine priming injections, respectively, in 
Experiment 2. The numbers represent the approximate distance (in millimeters) from 
bregma, based on the atlas of Paxinos and Watson (1997).  
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Figure 2.  Functional inactivation of the lOFC attenuates context-induced reinstatement of 
extinguished cocaine-seeking behavior.  Rats received intra-lOFC BM or VEH treatment 
immediately before re-exposure to either the cocaine-paired context (COC CTX) or 
extinction context (COC CTX).  A: Active lever responses (mean/1h + SEM) during the 
extinction and reinstatement test sessions.  B: Time course of active lever responses (mean + 
SEM) in the cocaine-paired context during the reinstatement test session.  C:  Inactive lever 
responses (mean/1h + SEM) during the extinction and reinstatement test sessions. The 
asterisk represents a significant difference relative to responding in the extinction context 
(ANOVA context main effect, p < 0.001; Tukey, p < 0.01).  Daggers represent a significant 
difference relative to VEH  treatment in responses during exposure to the cocaine-paired 
context (Tukey, p < 0.01). Sample sizes: lOFC functional inactivation, n = 10 
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Figure 3.  Functional inactivation of the mOFC fails to alter context-induced reinstatement 
of extinguished cocaine-seeking behavior.  Rats received BM or VEH treatment into the 
mOFC immediately before re-exposure to either the cocaine-paired context (COC CTX) or 
extinction context (COC CTX).  A: Active lever responses (mean/1h + SEM) during the 
extinction and reinstatement test session.  B: Time course of active lever responses (mean + 
SEM) in the cocaine-paired context during the reinstatement test session.  C:  Active lever 
responses (mean/2h + SEM) during the extinction and reinstatement test session.  The 
asterisk represents a significant difference relative to responding in the extinction context 
(ANOVA context main effect, p < 0.001; Tukey, p < 0.01). Sample sizes: mOFC functional 
inactivation, n = 8 
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Figure 4.  Functional inactivation of the lOFC, but not mOFC, attenuates locomotor activity 
measured as the number of photobeam breaks (mean + SEM) triggered by the movement of 
subjects in a novel context.  A: Effects of lOFC functional inactivation on photobeam breaks 
(mean + SEM). B: Effects of mOFC functional inactivation on photobeam breaks (mean + 
SEM). The dagger represents a significant difference relative to VEH pretreatment (ANOVA 
treatment main effect, p = 0.038).  Sample sizes: lOFC, n = 10; mOFC, n = 8. 
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Figure 5. Pre-training lOFC lesions fail to alter responding during self-administration or 
extinction training. A: Active and inactive lever responses and cocaine intake (mean + SEM) 
during the last three days of cocaine self-administration training. B: Active and inactive lever 
responses (mean/2h + SEM) during cocaine self-administration (SA) (last 7 days) and 
extinction training (EXT) (first 7 days).  During self-administration training, active lever 
responses resulted in the delivery of a cocaine infusion (0.2 mg/0.1 ml) and inactive lever 
responses had no programmed consequences.  During extinction training, active and inactive 
lever responses had no programmed consequences. Sample sizes: lOFC lesion n = 22; lOFC 
sham, n = 19.  
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Figure 6.  Pre-training lOFC lesions potentiate context-induced reinstatement of 
extinguished cocaine-seeking behavior.  A: Active lever responses (mean/2h + SEM) during 
self-administration (SA, last 3 days), extinction (EXT CTX, last day behavioral test) and 
during the reinstatement test session (COC CTX).  B: Time course of active lever responses 
(mean + SEM) in the cocaine-paired context during the reinstatement test session.  C:  
Inactive lever responses (mean/2h + SEM) during self-administration (SA, last 3 days), 
extinction (EXT CTX, last day behavioral test) and during the reinstatement test session 
(COC CTX).  Asterisks represent significant differences relative to responding in the 
extinction context (ANOVA context main effect, p < 0.001). Daggers represent significant 
differences relative to the sham group (ANOVA lesion simple main effect, p < 0.001; Tukey 
p < 0.05).  Sample sizes: lOFC lesions n = 22; lOFC sham, n = 19. 
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Figure 7.  Pre-training lOFC lesions fail to alter cocaine-primed reinstatement of 
extinguished cocaine-seeking behavior.  Intraperitoneal cocaine priming injections (10 
mg/kg, i.p.) or saline injections were administered prior to placement in the extinction 
context.  A: Active lever responses (mean/2h + SEM) during the cocaine-primed 
reinstatement test (PRIME REIN) and the preceding extinction session (EXT).  B: Inactive 
lever responses (mean/2h + SEM) during the cocaine-primed reinstatement test and the 
preceding extinction session.  Double daggers denote a significant difference relative to 
saline injections (Tukey, p < 0.01).  Sample sizes: lOFC lesion-cocaine, n = 11; lOFC lesion-
saline, n = 11; lOFC sham-cocaine, n = 9; lOFC sham- saline priming, n = 10. 
 
 



 
 

50

0

500

1000

1500
Sham
Lesion

1 2 3 4 5 6
20-min Intervals

P
ho

to
be

am
 B

re
ak

s 
± 

S
E

M

 
Figure 8.  Pre-training lOFC lesions fail to alter locomotor activity measured as photobeam 
breaks (mean + SEM) triggered by the movement of subjects in a novel context.  Sample 
sizes: lOFC lesions, n = 22; lOFC sham, n = 19. 
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Figure 9. Lack of pre-existing differences during cocaine self-administration and extinction 
training between subjects that received post-training lOFC lesion or sham manipulation. A: 
Active and inactive lever responses and cocaine intake (mean + SEM) during the last three 
days of cocaine self-administration training. B: Active and inactive lever responses (mean/2h 
+ SEM) during cocaine self-administration (SA) (last 7 days) and extinction training (EXT) 
(first 7 days).  During self-administration training, active lever responses resulted in the 
delivery of a cocaine infusion (0.2 mg/0.1 ml) and inactive lever responses had no planned 
consequences.  During extinction training, active and inactive lever responses had no 
programmed consequences.  Sample sizes: lOFC lesions n = 9; lOFC sham, n = 11.  
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Figure 10.  Post-training lOFC lesions fail to alter context-induced reinstatement of 
extinguished cocaine-seeking behavior.  A: Active lever responses (mean/2h + SEM) during 
self-administration (SA, last 3 days), extinction (EXT, last day) and during the reinstatement 
test session (COC CTX).  B: Time course of active lever responses (mean + SEM) in the 
cocaine-paired context during the reinstatement test day.  C:  Inactive lever responses 
(mean/2h + SEM) during self-administration (SA, last 3 days), extinction (EXT CTX, last 
day) and during the reinstatement test day (COC CTX).  The asterisk  represents a significant 
difference relative to responding during the preceding extinction day (ANOVA context main 
effect, p < 0.001). Sample sizes: lOFC lesions n = 9; lOFC sham, n = 11.  
 
 
 
 



 
 

53

 

0

500

1000

1500
Sham
Lesion

1 2 3 4 5 6
20-min Intervals

P
ho

to
be

am
 B

re
ak

s 
± 

S
E

M

 
Figure 11.  Post-training lOFC lesions failed to alter locomotor activity measured as 
photobeam breaks (mean + SEM) triggered by the movement of subjects in a novel context. 
Sample sizes: lOFC lesions n = 9; lOFC sham, n = 11. 
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