
Bayesian Modeling of Uncertainty in Ensembles of Climate Models

Richard L. Smith∗, Claudia Tebaldi†, Doug Nychka‡and Linda O. Mearns‡

August 12, 2008

Abstract

Projections of future climate change caused by increasing greenhouse gases depend critically

on numerical climate models coupling the ocean and atmosphere (GCMs). However, different

models differ substantially in their projections, which raises the question of how the different

models can best be combined into a probability distribution of future climate change. For

this analysis, we have collected both current and future projected mean temperatures produced

by nine climate models for 22 regions of the earth. We also have estimates of current mean

temperatures from actual observations, together with standard errors, that can be used to

calibrate the climate models. We propose a Bayesian analysis that allows us to combine the

different climate models into a posterior distribution of future temperature increase, for each

of the 22 regions, while allowing for the different climate models to have different variances.

Two versions of the analysis are proposed, a univariate analysis in which each region is analyzed

separately, and a multivariate analysis in which the 22 regions are combined into an overall

statistical model. A cross-validation approach is proposed to confirm the reasonableness of

our Bayesian predictive distributions. The results of this analysis allow for a quantification of

the uncertainty of climate model projections as a Bayesian posterior distribution, substantially

extending previous approaches to uncertainty in climate models.
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1 Introduction

Global climate models (GCMs) are complex computer programs that simulate the physics and

chemistry of the atmosphere and oceans to obtain projections of temperature and other meteo-

rological variables under various assumptions about the composition of the atmosphere and other

influences such as variations in solar energy. They have successfully explained past variations in

the earth’s temperature and are used to simulate future variations in climate under various as-

sumptions about emissions of greenhouse gases and other man-made substances (such as sulfate

aerosols) that are known to influence climate. These future simulations, known as projections, are

an important tool in tracing the influence of human activity on the Earth System. An excellent

reference source for climate models and climate science more generally are the Assessment Reports

of the Intergovernmental Panel on Climate Change, the most recent of which is IPCC (2007).

All the major climate models project increases in both global and regional mean temperatures

throughout the twenty-first century, under differing assumptions (or scenarios) about future trends

in population growth and economic and technological development, among other factors. The

consistency of these results across different climate models has greatly strengthened the belief that

many climate scientists have in global warming, but there are also considerable variations among

climate models, which raises the question of how different climate models can best be combined to

derive climate projections with appropriate measures of uncertainty.

In this paper, we explore these issues for several datasets compiled by Giorgi and Mearns (2002),

which consist of current (1961–1990) and future (2071–2100) projections of the mean temperature in

22 regions for nine climate models, which form the suite of models assessed in the IPCC 2001 report

(Giorgi et al. (2001)). The 22 regions are depicted in Figure 1 and the nine climate models are

summarized in Table 1; more details about the model calculations were given by Giorgi and Mearns

(2002). Also shown — in the last column of Table 1 — is the “climate sensitivity” parameter, which

is defined to be the mean warming of the whole earth, in equilibrium conditions, associated with a

doubling of atmospheric carbon dioxide compared with pre-industrial conditions. As can be seen

in Table 1, the nine models have quite different climate sensitivities, the lowest three being for the

models MRI, CSM and PCM. As will be seen later, these models consistently produce the lowest

projections for future warmings.

Also part of the data are estimates of the true temperature averages for the 22 regions for 1961–

1990, based on observational data, with associated standard errors. The datasets are prepared for
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two seasons of the year, DJF (December, January, February) and JJA (June, July, August) to allow

some contrast between summer and winter conditions. The future projections are also prepared

for two different scenarios of future emissions of greenhouse gases, the so-called SRES A2 and B2

scenarios. These scenarios, originally prepared as part of the IPCC Special Report on Emissions

Scenarios (Nakićenović et al. (2000), IPCC (2001)), represent two (of many) possible projections of

future emissions, with the A2 scenario representing faster growth and consequently higher emissions.

In this paper we address the issue of constructing a probability density function (pdf) for the

mean temperature difference between the two time periods in each of the 22 regions. Our approach

is Bayesian and takes account of the fact that different models have different variances that are

a priori unknown. The approach is directly motivated by the Giorgi-Mearns (2002) “reliability

ensemble average” (REA) which is reviewed in Section 3.

The method proposed here has two forms: the “univariate” approach treats each of the 22

regions as a separate variable while the “multivariate” approach treats them together, in particular

by pooling information across regions in estimating the variances of the models. A version of the

univariate approach has been presented previously (Tebaldi et al. 2005, 2004), but is extended here

to allow verification of the model by cross-validation. The multivariate approach is developed for

the first time in this paper.

Before going into details, we set some general context for this paper within the field of climate

science research. In IPCC (2007), a report charged with assessing the state of the science on climate

change, Chapter 11 is dedicated to regional projections (Christensen et al. (2007)). Unlike previous

IPCC reports (e.g., Giorgi et al., 2001), which offered only a qualitative summary of inter-model

agreement about regional mean projections, this one included discussion of two formal statistical

assessments of uncertainty derived from multi-model ensembles for regional projections, one due

to Tebaldi et al. (2005, 2004) which was a precursor to the present approach, the other due to

Greene et al. (2006). Both approaches have been criticized for relying too much on the comparison

between observed and modeled regional trends in the 20th century; for example the Tebaldi et al.

(2005) approach sometimes produces unrealistically low estimates of uncertainty in future model

projections. As shown at the end of Section 6, we now believe that to be an artifact of the method,

that the new approaches presented in this paper overcome. In summary, the improved robustness

of our methods and the inclusion of a cross-validation step should go a long way to resolve criticisms

of earlier approaches, and will facilitate the step from methodological exercise to actual application

in studies of impacts where probabilistic information is crucial to effective decision making.
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The rest of the paper is organized as follows. Section 2 summarizes existing approaches to the

assessment of uncertainty in climate models. Section 3 reviews the REA. Sections 4 and 5 present

the details of our Bayesian approach in both its univariate and multivariate forms. Section 6 dis-

cusses the overall goodness of fit and presents a comparison between the univariate and multivariate

approaches. Finally Section 7 summarizes our conclusions and suggestions for future work.

The Bayesian methods proposed in Sections 4 and 5 have been programmed in R (R Devel-

opment Core Team (2008)), and are publicly available, along with the datasets, from the website

http://www.image.ucar.edu/˜nychka/REA.

2 Approaches to Uncertainty in Climate Change

Climate scientists recognize the need to take account of uncertainty in presenting projections of

future climate. A report like IPCC (2007) must integrate many individual pieces of research into an

overall assessment, and for this purpose they recommend assessing the likelihood of a future event

using broad categories, e.g. “virtually certain” (>99% probability of occurrence), “very likely”

(> 90%), “likely” (> 66%), and so on, but they emphasize that “likelihood may be based on

a quantitative analysis or on an elicitation of expert views”. However, individual papers within

the climate science field have increasingly used a wide range of rigorous statistical approaches

including both frequentist and Bayesian analyses. In this section, we summarize a few of the

leasing developments.

Uncertainties in climate change projections are broadly of three types (Meehl et al. (2007)),

(a) natural climate variability, (b) uncertainties in the responses to climate forcing factors, such

as changes in atmospheric levels of greenhouse gases and sulfate aerosols, and (c) uncertainties in

future emissions of greenhouse gases and other factors that could influence climate. The first two

types of uncertainty are typically assessed in “detection and attribution” studies, which calibrate

climate models based on their fit to existing observational data and which attempt to decompose

observed changes into components associated with greenhouse gases, aerosols, solar fluctuations,

and other known influences on the earth’s climate, as well as internal variability, which is the inher-

ently stochastic component of the climate system. The review paper by IDAG (2005) summarized

research over several years on these topics. Further discussion is contained in chapter 9–11 of the

2007 IPCC report (Hegerl et al. (2007), Meehl et al. (2007), Christensen et al. (2007)). As an

example of a specific paper using this approach, Allen et al. (2000) used several climate models
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to estimate mean climate changes up to 2046, with confidence intervals that take into account

both natural variability and the uncertainty in the regression coefficients. Their results showed

reasonable agreement across models, but they did not attempt to combine the results of different

models. See also Levine and Berliner (1999), Berliner et al. (2000), for a more rigorous statistical

discussion of detection and attribution approaches.

Uncertainties in emissions were assessed by SRES (Nakićenović et al. (2000)), who developed

numerous scenarios representing different assumptions about population growth and economic and

technological developments. However, the SRES authors declined to assess probabilities associated

with the different scenarios. Subsequent commentators such as Schneider (2001) and Webster (2003)

have argued that a probabilistic assessment by experts, even if imperfect and controversial, would be

invaluable in generating informed assessments of climate impacts. A full discussion and assessment

of this controversy is in Parson et al. (2007). On the other hand, Stott and Kettleborough (2002)

applied the same method as Allen et al. (2000) to four SRES scenarios up to 2050, and after

taking uncertainties of the individual projections into account, found little discrepancy among the

projections associated with different scenarios. They argued that this was because of the smaller

divergence among emission scenarios in the first half of the century, and the time lag between

changes in emissions and changes in climate, and one could expect greater discrepancies among

scenarios after 2050.

Wigley and Raper (2001) derived probabilistic projections of future climate change by running

a simplified climate model under different combinations of model parameters (including climate

sensitivity) and emissions scenarios. They used subjectively determined prior distributions for

the physical parameters needed to run the GCM, and (controversially) assumed that all SRES

scenarios were equally likely. Their approach was Bayesian in the sense of using subjectively

determined probabilities, but not in the more formal sense of calculating posterior distributions

based on observational data. Other authors including Forest and co-authors (2000, 2001, 2002)

and Webster et al. (2003) have taken an approach closer to formal Bayesian methods, combining

detection and attribution methods with a subjectively-determined prior on model parameters to

derive a posterior distribution for future climate changes. Forest et al. (2002) implicitly criticized

the use of subjective-judgment priors by Wigley and Raper (2001), highlighting the need for “an

objective means of quantifying uncertainty in the long-term response”. More recent material is

summarized in Meehl et al. (2007), Christensen et al. (2007) and Tebaldi and Knutti (2007).

Santer et al. (1990) appear to have been the first authors to suggest explicitly that formal
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statistical methods, such as confidence intervals and hypothesis tests, should be applied to combine

the results of different climate models, and their ideas have been applied in subsequent reports

on climate change such as Wigley (1999), and a publicly available computer package (Hulme et

al. (2000)) for generating and interpreting climate models. Räisänen (1997) proposed a test of

significance which, in each grid cell, computes the deviation from the global mean climate change,

separately for each model, and then performs a t test to determine whether the deviation in that

grid box is significantly different from 0, assuming that the model responses are independently

distributed about the true mean. Räisänen and Palmer (2001) used model ensembles to generate

probabilistic projections that could be assessed according to various decision-theoretic criteria.

However, none of these authors allowed explicitly for the different variances of different climate

models.

Apart from the preceding literature on climate change, the field of ensemble-based weather

forecasting has advanced extensively in recent years, and new statistical approaches have been

developed in that context, especially in a series of papers by Gneiting, Raftery and co-workers (Gel

et al. 2004, Gneiting and Raftery 2005, Gneiting et al. 2005, Raftery et al. 2005, Berrocal et al.

2007, Sloughter et al. 2007, Wilson et al. 2007). The central concept of their methodology is laid

out in Gneiting et al 2005, and uses the central formula of Bayesian model averaging,

p(y) =
K∑

k=1

p(y | Mk)p(Mk | yT )

where, in this context, y denotes the quantity to be forecast, M1, ..., MK denote K models — here

identified with K forecasts from an ensemble — and p(Mk | yT ) denotes the posterior probability

of model k given training data yT (i.e. past values of the weather field). Thus their prediction

equation becomes

p(y | f1, ..., fK) =
K∑

k=1

wkgk(y | fk)

where wk is the posterior probability that forecast k is best given the training data. For the densities

gk, they assume normality with a mean ak +bkfk and a variance σ2, where ak and bk are interpreted

as bias correction terms from the kth model. Based on a spatial-temporal field of past observations

for each model, they are able to estimate the parameters ak, bk and σ2, the weights wk, and hence

complete the probabilistic forecast based on the ensemble.

This approach is conceptually different from ours, but there are some similarities. Both ap-

proaches use weighted averages of the ensemble members, but in the Gneiting-Raftery approach
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these are interpreted as posterior probabilities while we, in equation (1) and subsequently, use

weights λi which are interpreted as inverse variances of the individual models. Also, because we

typically do not have multiple replications to use as training data, we are unable to incorporate a

bias correction analogous to their ak + bkfk formula. However in the multivariate version of our

model (section 5), we are able to incorporate a bias term for each model and also for each variable

being predicted.

We should also point out the recent paper by Gneiting et al. (2007), which has addressed

more systematically the assessment of probability forecasts. Although we are not aware of this

paper when the present research was being done, there are in fact a number of common elements.

Gneiting et al. discuss the well-known use of probability integral transforms (PITs) as a means

of calibrating forecasters (see e.g. Dawid 1984, Seillier-Moiseiwitsch and Dawid 1993), which we

use extensively in our subsequent development of cross-validation statistics (Sections 4.1, 5.1),

though they also point out disadvantages to the PIT approach. In particular, it seems clear that

simply requiring forecasters to be well-calibrated, in the sense that the PIT of the forecasts closely

approximates a uniform distribution, is not a sufficient requirement for a good forecasting system,

and some additional requirement of “sharpness” is needed. In fact, this requirement in some

form has been recognized for a long time, e.g. Murphy (1972), DeGroot and Fienberg (1983).

Its principal application in the present paper is in Section 6, where we directly use the width of

predictive intervals calculated under the univariate and multivariate approaches to compare the

two approaches.

Summarizing, there is growing acceptance of the need for statistical, and even Bayesian, ap-

proaches to the assessment of uncertainty in climate change, but methods that rely too heavily

on subjective probability assessments, especially with respect to emissions scenarios, are viewed

with suspicion. Moreover, Bayesian methods have been developed for turning ensembles into prob-

abilistic forecasts in the context of numerical weather prediction, for which there is typically far

more extensive data than we are able to use in our approach. The present paper advances these

methodologies by proposing a Bayesian approach to the combination of projections from different

climate models, but as far as possible, using uninformative prior distributions. We do not make

any attempt to place a prior distribution on emissions scenarios, instead focussing on two of the

SRES scenarios to compare the results.
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3 The Reliability Ensemble Average

In this section we review the approach of Giorgi and Mearns (2002), which also serves to introduce

notation for our Bayesian development in Sections 4 and 5.

Suppose there are M climate models, Xj is a projection of some current climate variable gener-

ated by model j, and Yj a projection of some future climate variable generated by model j. We also

have an observation X0 of the true current climate, with some associated measure of variability ε.

In a typical application, Xj is the mean temperature or precipitation simulated by the jth GCM

in a particular region for the period 1961–1990, X0 is the corresponding value calculated from the

observational climate record with standard error ε, and Yj is either the corresponding variable cal-

culated for 2071–2100 or the difference between the 2071–2100 and 1961–1990 values. (Giorgi and

Mearns typically took the latter as their variable of interest; we generally prefer to define Yj directly

as the predicted 2071–2100 mean, but later will interpret our results in terms of projected climate

change, which is analogous with Giorgi and Mearns.) We view Xj and Yj as random variables in

the sense that, as the index j ranges over all possible models, we observe a range of both current

and future projections and can make inferences about their distributions.

If we assume Var(Yj) = σ2/λj , with σ2 unknown but λj (for the moment) assumed known, then

a suitable ensemble estimate of the future climate state is

Ỹ =
∑M

j=1 λjYj∑M
j=1 λj

. (1)

Routine calculations show that an unbiased estimator of the variance of Ỹ is

δ̃2
Y =

∑M
j=1 λj(Yj − Ỹ )2

(M − 1)
∑M

i=1 λj

, (2)

so δ̃Y may be interpreted as a standard error.

Giorgi and Mearns called λj the “reliability” of model i and formula (1) the “reliability ensemble

estimator” or REA. Their presentation of (2) omitted the factor M − 1 in the denominator.

To estimate the reliabilities, Giorgi and Mearns proposed

λi = (λm
B,iλ

n
D,i)

1/mn (3)

where

λB,i = min
(

1,
ε

|Xi −X0|
)

, λD,i = min

(
1,

ε

|Yi − Ỹ |

)
, (4)

where |Xi−X0| is the “bias” of model i, |Yi−Ỹ | the “convergence” of model i, and the parameters m

and n control the relative importance given to these two quantities (Giorgi and Mearns suggested
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m = n = 1). The justification for introducing ε is, loosely, to avoid giving a model too much

credit when, purely by chance, either the bias or the convergence is much smaller than the natural

variability ε.

Giorgi and Mearns proposed an iterative procedure to find a set of weights λi satisfying the

relations (1)–(4). In most cases, stability is achieved with a few iterations.

Although this procedure appears to lack formal statistical justification, Nychka and Tebaldi

(2003) showed that it can be interpreted as a robust estimator, choosing Ỹ to minimize a sum of

the form
∑

Ci|Yi − Ỹ |1−1/n for suitable weights Ci. In the case n = 1, this reduces to a weighted

median.

By using the data directly to assess uncertainty, but avoiding the assumption that all climate

models have the same variability, the Giorgi-Mearns approach potentially improves on previous

attempts to assess uncertainty in climate models. Nevertheless it has several seemingly ad hoc

features, in particular its treatment of bias and convergence. From a Bayesian viewpoint, we would

prefer to express uncertainty via a posterior density than simply a point estimate and standard

error.

4 Univariate Model

The first version of our analysis is univariate in the sense that it treats each of the model output

variables Xi and Yi as univariate random variables. In practice we will apply this model separately

to each of the 22 regions. In Section 5, this will be extended to a multivariate analysis, in which

we combine the 22 regions into a single overall model.

A version of the univariate analysis has been presented previously (Tebaldi et al. 2005), but

there are several modifications in the present approach, which we discuss after outlining the basic

method.

As in Section 3, we assume X0 is the current observed mean temperature, Xj is the current

modeled mean temperature for a particular region for model j = 1, ...,M , and Yj is the future

modeled mean temperature for model j = 1, ..., M . In the following, N [µ, σ2] will denote the

normal distribution with mean µ and variance σ2; U [a, b] the uniform distribution on the interval

[a, b]; and G[a, b] the gamma distribution whose density is proportional to xa−1e−bx. With these

definitions we assume

X0 ∼ N [µ, λ−1
0 ], (λ0 known) (5)
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Xj ∼ N [µ, λ−1
j ], (6)

Yj | Xj ∼ N [ν + β(Xj − µ), (θλj)−1], (7)

where parameters µ, ν, β, θ, λj have prior distributions

µ, ν, β ∼ U(−∞,∞), (8)

θ ∼ G[a, b], (9)

λ1, ..., λM ∼ G[aλ, bλ], (10)

aλ, bλ ∼ G[a∗, b∗]. (11)

Here the hyperparameters a, b, a∗, b∗ are chosen so that each of θ, aλ, bλ has a proper but diffuse

prior. In practice we set a = b = a∗ = b∗ = 0.01.

We discuss briefly the rationale for these assumptions. The λjs represent reliabilities for the

M models and have the same interpretation as in Section 3. The parameter θ (typically, between

0 and 1) represents a differential between the reliabilities of current and future model projections.

We could not estimate a statistical model in which the reliabilities of future observations were

completely arbitrary, but we can estimate a posterior distribution for θ under the assumption that

the variances are as in (6) and (7). We choose λ0 so that λ
−1/2
0 is the estimated standard deviation

of X0 − µ. Since this estimate is based on plentiful observational data, there is no loss of model

accuracy by treating it as known.

The regression parameter β is a convenient way of introducing correlation between Xi and

Yi. If β = 0, this is equivalent to assuming Xi and Yi are independent. Under this assumption,

the weighted average (1) is directly justifiable as an estimator for ν, assuming λj are known.

Alternatively, as already noted in Section 3, Giorgi and Mearns actually defined Yj to be the

difference between future and present climate under model j. That is equivalent to assuming β = 1

in the present notation. We take the view that the correlation between Xi and Yi is best treated as

unknown and arbitrary, which is equivalently represented by (7) with arbitrary unknown β. Tebaldi

et al. (2005) discussed further the role of this parameter and made comparisons with cases when

β was fixed at 0 or 1.

The parameters µ and ν are means (respectively, for Xj and for Yj − β(Xj − µ)) that are

assumed to be the same for all models. Our approach therefore makes no explicit allowance for

model bias — in other words, we are assuming that any deviations between model projections

and the corresponding true climate values can be characterized by the variance terms in (6) and
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(7). However in the absence of either (informative) prior knowledge about the performance of each

model, or replications of either Xj or Yj for a given model, such bias terms would not be identifiable.

In Section 5, we do include bias terms as part of our development of a multivariate model.

The main difference between the present model and the one given in Tebaldi et al. (2005) is

in the prior distribution for λ1, ..., λM . Here we assume they are G(aλ, bλ) with aλ, bλ having a

hyperprior distribution of their own, whereas Tebaldi et al. (2005) simply assumed aλ = bλ = 0.01.

Exactly why this apparently small change to the prior distribution makes a critical difference in

the model interpretation will be explained in Section 4.1.

Under the model (5)–(11), the joint density of θ, µ, ν, β, aλ, bλ, X0 and (λj , Xj , Yi, j = 1, ..., M)

is proportional to

θa+M/2−1e−bθe−
1
2
λ0(X0−µ)2aa∗−1

λ e−b∗aλba∗−1
λ e−b∗bλ ·

·
M∏

j=1

[
baλ
λ λaλ

j e−bλλj

Γ(aλ)
· e− 1

2
λj(Xj−µ)2− 1

2
θλj{Yj−ν−β(Xj−µ)}2

]
. (12)

Define

µ̃ =
λ0X0 +

∑
λjXj − θβ

∑
λj(Yj − ν − βXj)

λ0 +
∑

λj + θβ2
∑

λj
, (13)

ν̃ =
∑

λj{Yj − β(Xj − µ)}∑
λj

, (14)

β̃ =
∑

λj(Yj − ν)(Xj − µ)∑
λj(Xj − µ)2

. (15)

In a Monte Carlo sampling scheme, all the parameters in (12), with the exception of aλ and bλ,

may be updated through Gibbs sampling steps, as follows:

µ | rest ∼ N

[
µ̃,

1
λ0 +

∑
λj + θβ2

∑
λj

]
, (16)

ν | rest ∼ N

[
ν̃,

1
θ

∑
λj

]
, (17)

β | rest ∼ N

[
β̃,

1
θ

∑
λj(Xj − µ)2

]
, (18)

λj | rest ∼ G

[
a + 1, b +

1
2
(Xj − µ)2 +

θ

2
{Yj − ν − β(Xj − µ)}2

]
, (19)

θ | rest ∼ G

[
a +

M

2
, b +

1
2

∑
λj{Yj − ν − β(Xj − µ)}2

]
. (20)

For the parameters aλ, bλ, the following Metropolis updating step is proposed instead:

1. Generate U1, U2, U3, independent uniform on (0, 1).
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2. Define new trial values a′λ = aλeδ(U1−1/2), b′λ = bλeδ(U2−1/2). The value of δ (step length) is

arbitrary but δ = 1 seems to work well in practice, and is therefore used here.

3. Compute

`1 = Maλ log bλ −M log Γ(aλ) + aλ

∑
log λj − bλ

∑
λj + a∗ log(aλbλ)− b∗(aλ + bλ),

`2 = Ma′λ log b′λ −M log Γ(a′λ) + a′λ
∑

log λj − b′λ
∑

λj + a∗ log(a′λb′λ)− b∗(a′λ + b′λ).

This computes the log likelihood for both (aλ, bλ) and (a′λ, b′λ), allowing for the prior density

and including a Jacobian term to allow for the fact that the updating is on a logarithmic

scale.

4. If log U3 < `2 − `1 then we accept the new (aλ, bλ), otherwise keep the present values for the

current iteration, as in a standard Metropolis accept-reject step.

This process is iterated many times to generate a random sample from the joint posterior

distribution. In the case where aλ, bλ are treated as fixed, the Metropolis steps for these two

parameters are omitted and in this case the method is a pure Gibbs sampler, as in Tebaldi et al.

(2005). For the version presented here, an R program (REA.GM.r) to perform the sampling is

available for download from http://www.image.ucar.edu/˜nychka/REA.

4.1 Cross-Validation in the Univariate Model

A difficulty with this kind of Bayesian analysis is how to validate the statistical assumptions. Of

course, direct validation based on future climate is impossible. However the following alternative

viewpoint is feasible: if we think of the given climate models as a random sample from the universe

of possible climate models, we can ask ourselves how well the statistical approach would do in

predicting the response of a new climate model. This leads to a cross-validation approach. In

effect, this makes an assumption of exchangability among the available climate models.

In more detail, suppose someone gave us a new climate model for which the projected current and

future temperature means were X† and Y †. Conditionally on the hyperparameters µ, ν, β, θ, aλ

and bλ, the distribution of Y † −X† is derived from (i) λ† ∼ G[aλ, bλ], (ii) Y † −X† | λ† ∼
N [ν−µ, {(β− 1)2 + θ−1}/λ†]. By mixing this conditional predictive distribution over the posterior

distribution of (µ, ν, β, θ, aλ, bλ), we obtain a full posterior predictive distribution.

This suggests a cross-validatory approach in which each climate model j in turn is dropped

from the analysis, a predictive distribution for Y †−X† calculated from the remaining eight climate
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models, and this is applied to the observed value of the dropped model Yj − Xj . In practice we

apply a probability integral transformation to convert this value to a standard uniform Uj , and

then assess the goodness of fit using standard tests such as Kolmogorov-Smirnov. Details are as

follows:

1. For each j ∈ {1, ...,M}, rerun the REA.GM procedure without model j.

2. The hyperparameter values in the nth row of the REA.GM output, say a
(n)
λ , b

(n)
λ , ν(n), µ(n), β(n), θ(n),

correspond to one draw from the posterior distribution. Therefore, draw a random λj,n ∼
G[a(n)

λ , b
(n)
λ ] and calculate

U
(n)
j = Φ





Yj −Xj − ν(n) + µ(n)

√
{(β(n)

x − 1)2 + θ(n)−1}(λj,n)−1



 .

3. Let Uj be the mean value of U
(n)
j over all n draws from the posterior distribution. This is

therefore an estimate of the predictive distribution function, evaluated at the true Yj −Xj .

If the model is working correctly, Uj should have a uniform distribution on (0, 1).

4. Recompute steps 1–3 for each region, so we have a set of test statistics Uij , i = 1, ..., R, j =

1, ..., M .

5. Plot the Uij ’s to look for systematic discrepancies, and apply standard tests of fit, such as

Kolmogorov-Smirnov, for a formal test that the predictive distribution is consistent with the

data.

This procedure is encoded in the REA.CV function, also available from

http://www.image.ucar.edu/˜nychka/REA.

Note that it is essential, for this procedure, that the values of aλ and bλ define a realistic posterior

distribution for the λj ’s. This is a critical difference from the earlier approach of Tebaldi et al.

(2005), where aλ and bλ were simply defined in such a way as to produce an uninformative prior

distribution (the paper actually took aλ = bλ = 0.01). Within that approach, no cross-validation

appears to be possible.

4.2 Example

Some results from applying the univariate analysis just described are summarized in Figures 2 and 3.

In Figure 2 six regions (Southern AUstralia, the AMaZons, Central AMerica, GReenLand, Western
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AFrica and South ASia) are chosen to exemplify the quality of the posterior distributions of future

temperature change derived through our analysis. For reference, the 9 individual GCM projections

are shown as circles along the x-axis. The black curves pertain to the posterior distributions

estimated by the region-specific analysis of the univariate model presented above, for winter (DJF)

projected temperature change, under the A2 scenario. (The red curves, to be discussed later, are

based on the corresponding multivariate analysis.) As far as can be assessed, the PDFs are smooth

envelopes of most of the individual projections. However, in some of the regions (SAU, GRL and

SAS in this example), individual GCM values may behave as outliers, as a result of the statistical

assumptions by which the estimate of each GCM’s reliability parameter, λj , bears a direct relation

to that GCM’s degree of agreement with the rest of the ensemble’s projections.

Figure 3 is a graphical representation of the cross-validation exercise, that we perform for all

four combinations of seasons and scenarios in our dataset. Each of the image plots represents a

matrix of Uij values, for the 22 regions (along the horizontal dimension) and the 9 models (along

the vertical dimension). In general, the models with low climate sensitivity in Table 1 also produce

low values of the test statistic (blue end of the color scale) which those with high sensitivity produce

high values of the test statistic (red end of the color scale), but this effect is not universal, e.g.

MRI which has the lowest climate sensitivity is not at the blue end of the scale. It is obvious that

the Uij statistics are not independent from region to region, but the intent of the cross-validation

statistics is that within each row, the values of Ui1, ..., Ui9 are approximately independent draws

from a uniform distribution on (0,1). In Section 6, we consider formal goodness-of-fit statistics.

5 Multivariate Model

A disadvantage of the approach so far is that each of the 22 regions is treated as an entirely

separate data analysis. The data available for any one region consist solely of the nine climate

model projections Xj and Yj , plus a single observational value X0, and the analysis is open to the

objection that it is trying to produce rather complicated inferences based on a very limited set

of data. In this section, we propose an extension of the method in which the data for all climate

models and regions are treated within a single statistical model. The hope is that we will be able to

estimate some of the variance parameters more precisely and hence not have such diffuse predictive

distributions.

We assume we have current and future climate model projections, Xij and Yij , which, in addition
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to representing different models j = 1, ..., M , also represent different variables i = 1, ..., R. In the

subsequent discussion, Xij and Yij represent the current and future projection of model j for

the temperature average over region i. We also assume that Xi0 is the current observed mean

temperature in region i, i = 1, ..., R, which is an estimate of the true current mean temperature

with known standard deviation λ
−1/2
0i .

Note that in the current application, the index i is associated with the ith region — the model

is “multivariate” in the sense that the projections of temperature over different regions are treated

as a multivariate response. We could also consider using the same approach for an analysis that

is multivariate in the sense of jointly modeling different meteorological variables, but that has not

been attempted in the present application.

The assumed model in this case is of the following form:

Xi0 ∼ N [µ0 + ζi, λ
−1
0i ], (21)

Xij ∼ N [µ0 + ζi + αj , (ηijφiλj)−1], (22)

Yij | Xij ∼ N [ν0 + ζ ′i + α′j + βi(Xij − µ0 − ζi − αj), (ηijθiλj)−1]. (23)

With the exception of λ0i (which is again treated as a known constant) these random variables

depend on unknown parameters whose joint prior densities are assumed to be as follows:

µ0, ν0, ζi, ζ
′
i, βi, β0 ∼ U(−∞,∞), (24)

θi, φi, ψ0, θ0, c, aλ, bλ ∼ G[a, b], (25)

λj | aλ, bλ ∼ G[aλ, bλ], (26)

ηij | c ∼ G[c, c], (27)

αj | ψ0 ∼ N [0, ψ−1
0 ], (28)

α′j | αj , β0, θ0, ψ0 ∼ N [β0αj , (θ0ψ0)−1], (29)

all mutually independent unless explicitly indicated otherwise.

The following discussion is intended to illuminate our reasons for making these specific assump-

tions. The general philosophy behind our approach is to make the statistical model as general as

possible, subject to being identifiable and estimable, as judged by our ability to construct predictive

distributions. Or to turn Einstein’s famous quote on its head, we believe the model should be “as

complicated as possible, but not more so.”

Regarding the mean terms in (21)–(23), we interpret µ0 and ν0 as global mean values, and the

parameters ζi and ζ ′i as region-specific departures from the global mean for the present and future

15



time periods. The parameters αj and α′j represent global biases associated with a particular climate

model: we have already seen that the different climate models have different climate sensitivities

and are therefore expected to differ systematically in some of their projections (models with large

climate sensitivities tend to project more warming than those with small climate sensitivities).

Note, however, the different structure for the prior distributions of (αj , α
′
j) as compared with those

for (ζi, ζ
′
i). In the case of ζi and ζ ′i, we take the view that the prior should be as uninformative as

possible and therefore take a uniform prior density over (−∞,∞). This also reflects the fact that

the different regions are physically very different from each other and there is no reason to adopt

a statistical model that assumes that the warming in a polar region such as Alaska is in any way

correlated with the warming in equatorial regions. For the climate model parameters αj and α′j ,

however, we are adopting the same viewpoint as Section 4, whereby the different climate models in

our survey are treated as a random sample from a supposedly infinite population of climate models,

whose parameters are linked through hyperparameters ψ0, β0, θ0.

Another way of thinking about this distinction is in terms of the well-known statistical phe-

nomenon of shrinkage. Our model shows a tendency to shrink the values of αj and α′j towards a

common mean, which is natural if we think of these as samples from a population of climate models.

However, for the region effects, there is a much less compelling reason to do any shrinkage. The

models consistently project more warming for polar regions such as Alaska; we have every reason

to believe this is a true physical effect (e.g. it’s supported by current data on the melting of the

polar ice caps), and there is no reason to shrink our projections towards a common mean. In pre-

liminary studies, we have experimented extensively with variations on these assumptions; assuming

a hyperprior for (ζi, ζ
′
i) does indeed produce shrinkage (sometimes projecting polar warming of 2–3

K less than we get with a uniform prior) but we do not find this physically meaningful. On the

other hand, the hyperprior assumption for αj and α′j makes it possible to construct a predictive

distribution for a new climate model, which is the basis of our proposed cross-validation technique

in Section 5.1.

Now let us turn to the variance assumptions in (21)–(23). Consider first the special case ηij ≡ 1,

which can also be achieved by letting c →∞ in (27). In this case, the variance of climate model j

in region i factorizes as (φiλj)−1. We call this the factorization assumption. In contrast with the

model of Section 4, where there were 22 × 9 = 198 separate variance parameters to estimate, in

this model there are only 22 + 9 = 31 such parameters. Therefore, if this assumption is correct,

we should be able to estimate the individual variance parameters much more precisely, resulting in
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tighter posterior distributions for the quantities we ultimately want to estimate.

However, there is a clear disadvantage to this assumption, in that it assumes the same pattern

of variation among climate models holds across all regions. For example, if climate model A has

twice the variance of climate model B in one region, it will have twice the variance in every region.

In preliminary discussions of these analyses, climate modelers have repeatedly expressed skepticism

that such a simple assumption is correct.

Therefore, we introduce ηij as a multiplicative interaction term: the value of ηij for a specific

region × climate model combination reflects the extent to which the variance for that region ×
climate model differs from what would hold under the factorization assumption. We assume a

common gamma prior for all the ηij , and there is no loss of generality in assuming this prior

distribution has mean 1, so we make the gamma shape and scale parameters a common value

c. We can think of c as a tuning parameter; the limiting cases c → ∞ and c → 0 correspond,

respectively, to the factorization model and to the case where the region × climate model variances

are completely unconstrained, which is in effect the assumption of Section 4. Our hope is that by

taking some intermediate value of c, we will be able to improve on Section 4 without making the

unrealistic factorization assumption.

In preliminary analyses, we have experimented with different approaches to the parameter c,

for example, simply fixing c to be some common-sense value (such as 0.1, 1 or 10) while finding

reasonable consistency across analyses with different values of c. However, treating c as a hyper-

parameter with its own prior distribution, given by (25), seems to be the most general and flexible

approach. In the results to be reported later, we generally find the median posterior value of c to

be greater than 10, confirming that the factorization assumption is not too far from reality (and

at the same time, that the present model likely is an improvement on that of Section 4), but still

allowing that there may be some region × climate model combinations where the variance is very

different from the factorization assumption.

We have chosen to give more attention to the assumptions in the equations (21)—(29) than to

the actual analysis, which is similar to Section 4. In particular, we use Gibbs sampling to update

most of the unknown parameters but a Metropolis update for aλ, bλ and c. The method is available

as an R program (REAMV.GM.r) from http://www.image.ucar.edu/˜nychka/REA. Details of the

updating steps are in the Appendix (Section 10).
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5.1 Cross validation in the Multivariate Model

As with the univariate model, we can calculate cross-validation statistics by dropping one climate

model at a time, constructing predictive distributions for the dropped climate model based on the

other eight climate models, using this predictive distribution via a probability integral transforma-

tion to convert the actual data from the dropped climate model to a uniform distribution on [0, 1],

and then performing goodness of fit tests.

In this case, the variable that we use for cross-validation is Yij −Xij , the projected increase in

region i for model j. Note that

Yij −Xij | rest ∼ N

[
ν0 − µ0 + ζ ′i − ζi + α′j − αj ,

1
ηijλj

{
(βi − 1)2

φi
+

1
θi

}]
.

For the jth-model cross validation, we run the Gibbs/Metropolis simulation described in Section

10 for N iterations leaving out climate model j. For every set of parameters saved as the nth

iteration, we generate corresponding values of λ
(n)
j , α

(n)
j , α

′(n)
j and η

(n)
ij as

λ
(n)
j ∼ G

[
a

(n)
λ , b

(n)
λ

]

α
(n)
j ∼ N

[
0,

1

ψ
(n)
0

]

α
′(n)
j ∼ N

[
β

(n)
0 α

(n)
j ,

1

ψ
(n)
0 θ

(n)
0

]
,

η
(n)
ij ∼ G

[
c(n), c(n)

]
.

From these values we compute the statistic

Uij =
1
N

N∑

n=1

Φ




Yij −Xij − (ν(n)
0 − µ

(n)
0 )− (ζ ′(n)

i − ζ
(n)
i )− (α′(n)

j − α
(n)
j )√

(λ(n)
j η

(n)
ij )−1

{
(φ(n)

i )−1(β(n)
i − 1)2 + (θ(n)

i )−1
}


 . (30)

As with the univariate analysis, we then perform various goodness of fit tests on the statistics Uij .

If the model is a good fit, the results within each row should be consistent with independent draws

from the uniform distribution on [0, 1].

5.2 Results

The solid red lines in Figure 2 are PDFs of posterior densities for DJF temperature change under

scenario A2 derived through the multivariate model just described, for the six regions chosen as

examples. As indicated by the six pairs of curves in Figure 2, the comparison with the univariate
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model shows substantial agreement of the two posterior estimates. These results are representative

of all 22 regions.

With regard to the other parameters of interest in the model, we show in Figures 4 and 5 the

posterior distribution of the hyperparameters c, aλ and bλ. As previously discussed, the tuning

parameter c reflects the degree of interaction among the variances in different climate models and

regions. For all four datasets analyzed, the median values of c are larger than ten, suggesting a

significant interaction effect (and highlighting the advantage of the multivariate model).

The convergence of the MCMC algorithm to its underlying stationary distribution was tested

through standard diagnostics available in CODA, which is available as a downloadable package

within R (R Development Core Team (2008)). All the individual components of the Markov chain

for the univariate model pass the convergence tests. We show in Figures 6 and 7 the traces of three

easily interpretable and relevant parameters (temperature change, future and current temperature)

for two regions, ALA and NAS, representative of the entire set of 22 regions. The stationarity in

mean and variance of the time series is evident by eye and confirmed by CODA.

For some of the individual model parameters in the multivariate approach, the traces of the

sampled values show non-stationary behavior and significant auto- and cross-correlation. The high

auto-correlation (within a single parameter chain) was addressed by running the MCMC simulation

for a large number of iterations (125000), and saving only one out of every 100 samples, after dis-

carding the first 25000. The non-stationary behavior and large cross-correlation across parameters

is attributable to the structure of the statistical model, where some parameters are tightly coupled,

but never affects the interpretable quantities of interest, which result from aggregating the individ-

ual parameters (e.g. ∆Ti ≡ ν0−µ0 +ζ ′i−ζi). For all quantities of interest, traces appear stationary

and the diagnostic tests confirm it. In the right columns of Figures 6 and 7 we show traces of the

quantities from the multivariate model corresponding to the parameters of the univariate model in

the left-columns.

We have also run the cross-validation exercise for the multivariate model. Figure 8 is a graphical

representation of the U-statistics values determined for the four sets of estimates (DJF and JJA

under SRES A2, DJF and JJA under SRES B2). Here as in Figure 3 a good model fit would

generate values across each of the 22 horizontal bands in every panel not significantly different

from a random draw of nine variates from a uniform distribution on (0, 1). The results again seem

to show a pattern consistent with what would be expected from the climate sensitivities — in fact,

this pattern is more consistent than the one in Figure 3 (for example, with model MRI, which has
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the lowest climate sensitivity, the Uij statistics are consistently small).

6 Comparisons of univariate and multivariate approaches

In this section, we make some direct comparisons of the univariate and multivariate approaches,

focussing on three issues, (a) goodness of fit, (b) width of the posterior densities, (c) robustness.

Goodness of fit is assessed using the cross-validatory statistics discussed in Sections 4.1 and 5.1.

If the statistical model is correct, these statistics Uij should be consistent with a uniform distribution

on (0, 1). It is evident from Figures 3 and 8 that these are not independent from region to region (for

example, a model with low climate sensitivity tends to produce low values of Uij across all regions).

However, the values of Uij , j = 1, ..., 9 should be approximately independent for each region

i. This hypothesis is assessed using four common goodness of fit statistics: Kolmogorov-Smirnov

(henceforth, K-S), Cramér-von Mises (C-vM), Anderson-Darling (A-D) and a correlation test (Cor)

in which the test statistic is 1 minus the correlation coefficient of the ordered {Uij , j = 1, .., 9}
with the values 0.1, 0.2,...,0.9. The latter is analogous to the Shapiro-Wilk test often used with

normally distributed data; we subtract the correlation coefficient from 1 so that (as with the other

tests) small values correspond to a very close fit between the empirical and theoretical distribution

functions.

For each of the four tests and each of the season/scenario combinations, Table 2 computes the

number of regions (out of 22) on which the univariate model resulted in a smaller (better) test

statistic than the multivariate model. Overall, this happened in about one-third of the possible

cases, implying a clear though not overwhelming superiority for the multivariate model.

We can also perform formal goodness of fit tests by simulation. For each i, 50000 simulated

independent samples of Uij , j = 1, .., 9, were drawn from the uniform distribution, and the same

test statistics calculated. These were used to calculate empirical p-values. Table 3 shows the

number of regions (out of 22) in which this procedure led to a rejection of the null hypothesis

of uniformity, for each of the univariate and multivariate procedures, for all four goodness of fit

tests, and for each season/scenario combination. A two-sided .05-level test was used. This analysis

showed more rejections for the multivariate analysis than for the univariate analysis. However,

with only one exception, all the rejections occurred in the lower tail of the test statistic, implying

that the agreement between the empirical and theoretical distributions was better than would be

obtained by random sampling.
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This conclusion was unexpected, but we are inclined not to over-interpret it. The calculation

of p-values assumes independence across different climate models for each region, but it is evident

that such an assumption cannot be literally correct. (For example, the Uij statistics for climate

model j depend on parameter estimates computed from the other eight models.) Therefore, our

p-values can only be regarded as approximate. We regard Table 3 as confirming the overall fit of

our statistical model, in either its univariate or multivariate manifestations.

We next turn to the question of whether the multivariate approach leads to tighter predictive

densities than the univariate approach — to the extent that “shrinkage” reduces the variance

of posterior densities, we would expect this to be the case. An obvious tool for comparison is the

inter-quartile range, defined as the difference between the 75th and 25th percentiles of the empirical

predictive distribution obtained from the MCMC output. Analogously to the IQR but giving more

emphasis to the tails, we also consider test statistics that we call I15R (difference between the 85th

and 15th percentiles) and I5R (difference between the 95th and 5th percentiles). We prefer robust

statistics such as these to moment-based measures of scale such as standard deviation because the

latter are more likely to be influenced by a few outliers in the MCMC sample.

The results of this comparison are summarized in Table 4. In each cell, we compute the mean

ratio of IQR, I15R or I5R in the predictive distribution obtained from the univariate method

(numerator) that of the multivariate method (denominator). We also show (in parentheses) the

number of regions (out of 22) that the multivariate method resulted in a smaller IQR, I15R or

I5R than the univariate method. Consistently, the multivariate method performed better in more

than half the regions and the average ratio of scale parameters was greater than 1, indicating the

multivariate method should be preferred.

However, examination of results for individual regions (not tabulated) shows a less clear-cut

picture. The ratios of IQR, I15R and I5R for individual regions show a wide variability, with many

values less than 1, and in three regions (SAU, SAH, SEA) the univariate method always beats the

multivariate method when assessed by IQR, I15R and I5R for both seasons and both emissions

scenarios. In contrast, for nine regions (AMZ, WNA, CNA, ENA, NEU, EAS, CAS, TIB, NAS)

the multivariate method is always better.

In summary, the overall comparison favors the multivariate method as producing tighter predic-

tive distributions, but this result is not uniform over all regions, so the comparison is not completely

clear-cut.

Finally, we compare the univariate and multivariate approaches from a robustness viewpoint,
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focussing on one specific region (WAF in JJA/A2), though we believe the discussion applies gen-

erally in cases where (as here) several climate models produced nearly identical predictions in the

original data. We artificially perturbed one of those models by adding 0.5, 1, 1.5, 2 K to the value

of its future projection, and performing the univariate and multivariate versions of the statistical

analysis over both the original and the perturbed datasets (a total of 10 analyses). We also ap-

plied this procedure to the original version of the univariate analysis as proposed by Tebaldi et al.

(2005). The results, in Figure 9, show that the Tebaldi et al. (2005) model displays a high degree

of sensitivity of the posterior density to the perturbations. This sensitivity is much reduced for the

present paper’s univariate approach, and reduced still further for the multivariate approach. Based

on that comparison, we believe that there are robustness advantages to either of the approaches of

the present paper, compared with that of Tebaldi et al. (2005).

7 Summary and Conclusions

In this paper, we have presented two approaches (univariate and multivariate) to the calculation

of posterior distributions for future climate change based on an ensemble of GCMs.

A feature of our approach is the use of cross-validation statistics to develop goodness-of-fit tests.

This feature was missing from the approach of Tebaldi et al. (2005), and we view that as a significant

advantage of the present method. Calculations of test statistics based on the cross-validations

generally confirm that the univariate and multivariate approaches both lead to adequate fits, with

the multivariate model showing a slightly better fit. Comparisons of the predictive distributions

themselves, as assessed through the robust scale measures IQR, I15R and I5R, also show slight

superiority of the multivariate model, though there is substantial variability from region to region

and in some regions the univariate approach leads to tighter predictive distributions.

In Figure 10, we use a color-coded map to summarize the actual predictive distributions (in

terms of the mean and several quantiles for the projected temperature change) for each combination

of region, season and scenario, using our multivariate approach. As examples of the interpretation of

these tables, consider the results for DJF under the A2 scenario. The largest projected increases in

mean temperature change are for the three northernmost regions (Alaska, Greenland, North Asia)

with posterior means of 7.0, 6.9 and 6.4 K respectively, compared with means in the range 2.9–5.0

K for the other 19 regions. We also calculate 95% posterior intervals for ALA, GRL and NAS are

respectively (5.0,9.2), (5.6,8.3), (4.6,8.1). When compared with the corresponding intervals for the
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other regions, these results seem to confirm rather decisively that these three regions will warm

substantially more than the overall global average, a conclusion that cannot be drawn from the

posterior means alone. These are the same regions as were identified for significant warmings in the

previous studies by Giorgi et al. (2001) and Tebaldi et al. (2005), but the present study provides

superior calculations of the posterior distribution and hence more precise summaries of uncertainty.

The corresponding results for JJA do not appear to show nearly such a strong polar region effect,

confirming that this phenomenon of strong polar warming is primarily a northern hemisphere winter

phenomenon. The results for the B2 scenario are qualitatively similar, but generally show less

warming over all regions, as would be expected from the fact that B2 represents a smaller increase

in greenhouse gas emissions compared with A2. Note, however, that for all region/season/scenario

combinations, the 95% posterior interval excludes 0, implying a clear warming effect over all regions.

There are of course some limitations to what these procedures can achieve. Although the

different climate modeling groups are independent in the sense that they consist of disjoint groups

of people, each developing their own computer code, all the GCMs are based on similar physical

assumptions and if there were systematic errors affecting future projections in all the GCMs, our

procedures could not detect that. On the other hand, another argument sometimes raised by so-

called climate skeptics is that disagreements among existing GCMs are sufficient reason to doubt the

correctness of any of their conclusions. The methods presented in this paper provide some counter

to that argument, because we have shown that by making reasonable statistical assumptions, we

can calculate a posterior density that captures the variability among all the models, but that still

results in posterior-predictive intervals that are narrow enough to draw meaningful conclusions

about probabilities of future climate change.

Future work will apply these methods to a wider range of climate models, including models from

the Fourth Assessment Report of IPCC (2007) and to regional climate models. There is a large

archive of Fourth Assessment model output available through the Program for Climate Model

Diagnosis and Intercomparison (http://www-pcmdi.llnl.gov) and results from these model runs

will be presented in future papers. At this time, the website http://www.rcpm.ucar.edu provides

regional analyses upon user’s specification of latitude/longitude boundaries using the modified

version of the univariate method that is described in Tebaldi et al. (2004), with large θ. These

regional results are based on the latest suite of models/scenarios runs from the PCMDI archive.

Work is in progress on implementing the method described in the current paper.
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10 Appendix: Derivation of Gibbs-Metropolis updating equations

for the multivariate model

We assume the statistical model defined by (21)—(29). Omitting unnecessary constants, the joint

density of all the parameters and random variables is

(caλbλ)a−1e−b(c+aλ+bλ) ·
[

R∏

i=0

θa−1
i e−bθi

]
·
[

R∏

i=1

φa−1
i e−bφi

]
·



M∏
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λaλ−1
j e−bλλj

baλ
λ

Γ(aλ)


 ·
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ψa−1

0 e−bψ0

]
·

·
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ij e−cηij

cc

Γ(c)


 ·
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− 1
2
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j


 ·
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θ0ψ0e
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2
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2


 ·

·
[
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i=1

e−
1
2
λ0i(Xi0−µ0−ζi)

2
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·
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i=1
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ηijφiλje

− 1
2
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2


 ·

·
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ηijθiλje

− 1
2
ηijθiλj{Yij−ν0−ζ′i−α′j−βi(Xij−µ0−ζi−αj)}2


 . (31)

Define

µ̃0 =∑
i λ0i(Xi0 − ζi) +

∑
i φi

∑
j ηijλj(Xij − ζi − αj)−

∑
i βiθi

∑
j ηijλj{Yij − ν0 − ζ ′i − α′j − βi(Xij − ζi − αj)}∑

i{λ0i + (φi + β2
i θi)

∑
j ηijλj} ,

(32)

ν̃0 =
∑

i θi
∑

j ηijλj{Yij − ζ ′i − α′j − βi(Xij − µ0 − ζi − αj)}∑
i θi{

∑
j ηijλj} ,

(33)

ζ̃i =
λ0i(Xi0 − µ0) + φi

∑
j ηijλj(Xij − µ0 − αj)− βiθi

∑
j ηijλj{Yij − ν0 − ζ ′i − α′j − βi(Xij − µ0 − αj)}

λ0i + (φi + β2
i θi)

∑
j ηijλj

,

(34)

ζ̃ ′i =
∑

j ηijλj{Yij − ν0 − α′j − βi(Xij − µ0 − ζi − αj)}∑
j ηijλj

, (35)

β̃0 =
∑

j α′jαj∑
j α2

j

, (36)

β̃i =
∑

j ηijλj(Yij − ν0 − ζ ′i − α′j)(Xij − µ0 − ζi − αj)∑
j ηijλj(Xij − µ0 − ζi − αj)2

, (i 6= 0), (37)
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∑
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The conditional distributions required for the Gibbs sampler are as follows:
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]
. (53)

Were aλ, bλ and c fixed, as in the univariate analysis, the iteration (40)–(53) could be repeated

many times to generate a random sample from the joint posterior distribution. Having added a

layer by making the three parameters random variates, two Metropolis steps are added to the
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iteration (40)–(53), as follows.

For the sampling of aλ and bλ jointly, define U1, U2 two independent random variables distributed

uniformly over the interval (0, 1), and the two candidate values a′λ = aλeδ(U1− 1
2
) and b′λ = bλeδ(u2− 1

2
),

where δ is an arbitrary increment, chosen as δ = 1 in our implementation. We then compute

`1 = Maλ log bλ −M log Γ(aλ) + aλ

∑

j

log λj − bλ

∑

j

λj + a log(aλbλ)− b(aλ + bλ),

(54)

`2 = Ma′λ log b′λ −M log Γ(a′λ) + a′λ
∑

j

log λj − b′λ
∑

j

λj + a log(a′λb′λ)− b(a′λ + b′λ).

(55)

In (54) and (55) we are computing the log likelihoods of (aλ, bλ) and (a′λ, b′λ), allowing for the prior

densities and including a Jacobian term, allowing for the fact that the updating is taking place on

a logarithmic scale. Then, within each iteration of the Gibbs/Metropolis simulation, the proposed

values (a′λ, b′λ) are accepted with probability e`2−`1 if `2 < `1, or 1 if `2 ≥ `1.

Similarly, the updating of c takes place by proposing c′ = ceδ(U3− 1
2
), where U3 is a draw from a

uniform distribution on (0, 1), and computing

`1 = MRc log c−M log Γ(c) + c
∑

i

∑

j

log ηij − c
∑

i

∑

j

ηij + a log c− bc (56)

`2 = MRc′ log c′ −MR log Γ(c′) + c′
∑

i

∑

j

log ηij − c′
∑

i

∑

j

ηij + a log c′ − bc′. (57)

Then, within each iteration of the Gibbs/Metropolis simulation, the proposed value c′ is accepted

with probability e`2−`1 if `2 < `1, or 1 if `2 ≥ `1.

The iteration is repeated many times to generate a Monte Carlo sample from the posterior

distribution.
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Figures

Figure 1. The 22 regions used in this study.

Figure 2. Posterior densities for mean temperature change in six regions, DJF season, A2

scenario. Black curve: univariate approach. Red curve: multivariate approach. The black dots on

the bottom represent the individual GCM projections on which the analysis is based.

Figure 3. Color-coded Uij statistics for the univariate approach.

Figure 4. Posterior densities for c under the multivariate approach, together with Metropolis

acceptance probabilities, medians and IQRs.

Figure 5. Posterior densities for aλ and bλ under the multivariate approach, together with

Metropolis acceptance probabilities, medians and IQRs.

Figure 6: Trace plots of samples from individual chains of the MCMC algorithms. Three

parameters from the univariate model (left-hand side panels) are compared to the corresponding

parameters from the multivariate model (right-hand side panels). From top to bottom, left to right:

temperature change (∆T ≡ ν − µ), future (ν) and current temperature (µ) from the univariate

model; temperature change (∆T ≡ ν0 + ζ ′ − µ0 − ζ), future (ν0 + ζ ′) and current temperature

(µ0 + ζ) from the multivariate model. Values are in K. Temperature change is estimated under

scenario A2, in DJF, for region ALA (Alaska).

Figure 7: Same as Figure 6, for region NAS (Northern Asia).

Figure 8. Color-coded Uij statistics for the multivariate approach.

Figure 9: Sensitivity plots for Western Africa (WAF), season JJA, scenario A2. One model

projection (red dots) shifted in 0.5-K increments to assess the sensitivity of predictive density

to changes in original data. The original data value is given by the leftmost red dot and the

associated predictive density is the solid curve; remaining curves on each plot represent the new

predictive density after each shift. Top to bottom: method of Tebaldi et al. (2005); this paper’s

univariate approach; and this paper’s multivariate approach. The top panel shows that the Tebaldi

et al. (2005) model is extremely sensitive to changes in the relative position of the 9 GCM values.

However the corresponding plots for the current univariate version of the model (second panel) and

the multivariate version (third panel) show that both models’ performance is largely insensitive to

changes in a single data point, even for increasingly large perturbations. Additionally, a comparison

of the two sets of PDFs for the current models indicates that the multivariate model’s estimates

are relatively more robust to the perturbations, shifting less to the right with the movement of the

red mark than the set of PDFs from the univariate model.
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Figure 10 Predictive distribution for mean temperature change under the multivariate model.

Color-coded projections for each region represent (L–R) the 5% and 25% quantiles, the mean, the

75% and 95% quantiles of the predictive distribution for two seasons (DJF, JJA) and two emission

scenarios (A2, B2).
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Tables

Model Full Name Sensitivity

CCC Canadian Centre for Climate 3.59

CSIRO Commonwealth Scientific and Industrial Research Organisation (Australia) 3.50

CSM Climate System Model (NCAR, USA) 2.29

DMI Max Planck Institute for Meteorology (Germany) 3.11

GFDL Geophysical Fluid Dynamics Laboratory (USA) 2.87

MRI Meteorological Research Institute (Japan) 1.25

NIES National Institute for Environmental Studies (Japan) 4.53

PCM Parallel Climate Model (several institutions in USA) 2.35

HADCM Hadley Centre Coupled Model (U.K. Meteorological Office) 3.38

Table 1: Climate models used in this study, and their climate sensitivities in K.

Test K-S C-vM A-D Cor.

DJFA2 7 5 8 9

DJFB2 7 6 7 13

JJAA2 6 6 7 10

JJAB2 4 4 5 6

Table 2: Results of four goodness-of-fit statistics calculated from the Uij values. For each statistic

and each season/scenario combination, tabulated is the number of regions (out of 22) in which the

univariate procedure of Section 4 produced a smaller (better) test statistic than the multivariate

procedure of Section 5.
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Test K-S K-S C-vM C-vM A-D A-D Cor. Cor.

UNIV MULTIV UNIV MULTIV UNIV MULTIV UNIV MULTIV

DJFA2 1 2 3 2 3 3 0 3

DJFB2 2 3 1 3 3 3 1 1

JJAA2 0 3 0 4 1 3 0 2∗

JJAB2 1 3 2 4 2 5 0 1

Table 3: Formal tests applied to the goodness-of-fit statistics. In each case, tabulated are the

number of rejections of the test, at level .05 in a two-sided test, over 22 regions. All rejections are

in lower tail of test statistic except for one in the box marked∗.

IQR I15R I5R

DJFA2 1.11 (13) 1.09 (12) 1.12 (15)

DJFB2 1.04 (13) 1.04 (14) 1.05 (12)

JJAA2 1.05 (13) 1.04 (14) 1.00 (14)

JJAB2 1.10 (15) 1.08 (16) 1.08 (14)

Table 4: Comparisons of the IQR, I15R and I5R scale statistics applied to the posterior distribu-

tions of projected temperature changes for the univariate and multivariate approaches. The main

entry in each cell of the table is the ratio of statistics calculated for the univariate (numerator)

and multivariate (denominator) approaches, a value > 1 implying that the multivariate approach

resulted in a tighter posterior distribution overall. Also shown in parentheses is the number of

times (out of 22 regions) that the multivariate approach led to a smaller scale statistic than the

univariate approach.
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