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Abstract
SIDDHARTHA MANDAL: FUNCTIONAL DATA ANALYTIC

INFERENCE FOR SYSTEMS GOVERNED BY DIFFERENTIAL
EQUATIONS WITH APPLICATIONS

(Under the direction of Dr. Pranab K. Sen
and Dr. Shyamal D. Peddada)

The objective of this dissertation research is to develop formal statistical method-

ology for analyzing systems governed by ordinary differential equations (ODE). Ordi-

nary differential equations are commonly used to describe a wide variety of biological

and physiological phenomena. They arise in the description of gene regulatory net-

works, study of HIV dynamics and other infectious diseases and toxicology . This

work is motivated by physiologically based pharmacokinetic (PBPK) models in tox-

icology which are deterministic models used to describe chemical kinetics in human

or animal physiology. These models relate the concentration of chemicals in tissues

and blood to their rates of change and physiological parameters, such as tissue vol-

ume and blood flow, and metabolic parameters among others, through a system of

ODEs. Usual strategies of analyzing such models involve non-linear least squares

methodology which can potentially be computationally intensive. Often, some of the

existing procedures for modeling ODEs do not necessarily account for inter and intra-

individual variability that are common in multi-subject experiments. Using functional

data analytic methods, in this dissertation research, we provide a formal statistical

framework for drawing statistical inferences regarding subject specific and population

specific parameters in models governed by a system of ODE. One of the main features

of the proposed methodology is to cast the problem in a constrained inferential frame-

work and thus avoid solving the differential equations, which is often challenging and
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time consuming. Such a formulation allows for the possibility that all components

of the ODE may not adequately describe the underlying biological phenomena. The

proposed framework also allows the researcher to estimate both within and between

subject variability, while drawing statistical inferences at the individual as well as the

population level. We make as few assumptions as possible while taking into account

the underlying structure in the data. The proposed framework allows researchers to

compare parameters among several populations, such as different dose groups, while

adjusting covariates, whether discrete or continuous. Such inferences were not possi-

ble until now. We illustrate the proposed methodology using some simulated datasets

as well as a real dataset on benzene concentration in exhaled breath.

iv



Acknowledgements
This dissertation work could not have been made possible without the support of

a few people, whom I would like to acknowledge. First and foremost I would like to

acknowledge my advisors Dr. Pranab K. Sen and Dr. Shyamal D. Peddada for being

excellent mentors throughout the period of my dissertation research. Dr. Sen was

instrumental in introducing me to the opportunity to work at National Institute of

Environmental Health Sciences which has been immensely helpful not only for the

research but also for professional development. Also he always encouraged me in

research and never let panic creep in even in the toughest of situations, which are

ever so common in graduate life. I could approach him at anytime with any sort of

problem and he would always listen carefully and advise with a smile on his face.

Dr. Peddada introduced me to the fascinating research problem in toxicology

which dealt with a real world problem related to mechanistic modeling. Coming

from a statistical background, the problem was particularly novel to me with its mix

of statistics and biology. As a mentor, Dr. Peddada was always approachable and

showed immense interest in my research. He always found time whenever I had ques-

tions or needed help in my research and was extremely supportive and encouraging

towards any new ideas. Dr. Peddada also took keen interest in my writing and pre-

sentation skills and devoted a lot of time to correct my manuscripts and giving me

tips to improve.

I would like to thank my committee members, Dr. Amy Herring, Dr. Mary Paine

and Dr. John S. Preisser. They were extremely helpful and appreciative in evaluating

my work and provided helpful suggestions to enhance the quality of my work. Both

v



Dr. Herring and Dr. Preisser took a lot of interest in my work and their questions

and criticisms were of great help. Dr. Paine provided valuable inputs regarding the

toxicological aspects of the work and it certainly helped me broaden my outlook. The

detailed comments she provided have enriched the dissertation greatly.

The time I spent at UNC Chapel Hill and NIEHS has been a wonderful experience

and I consider myself lucky to have been part of two such dynamic research environ-

ments. I have been lucky to be in company of some wonderful people at both places.

I would especially like to thank the library at UNC whose huge journal collections

have been my main source of reference. Also the town of Chapel Hill has been a

wonderful place to live at.

A special thanks to Prof. Debasis Kundu and my other teachers at IIT Kanpur

for helping me build a strong foundation for the research and academic career in

statistics. Last but not least I would like to thank my parents and friends for all the

support they have shown during the last four years. A special thanks to Sangita,

Shyamal, Somenath, Ayon and Debartha for hours spent in wonderful discussions,

both funny and serious.

vi



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Physiologically Based Pharmacokinetic Modeling . . . . . . . . . . . 5

2.1.1 General Model Structure . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Issues with Data and Design . . . . . . . . . . . . . . . . . . . 12

2.2 Non-linear Least Squares and Bayesian Approaches . . . . . . . . . . 14

2.3 Functional Data Analytic Approaches . . . . . . . . . . . . . . . . . . 16

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 ESTIMATION METHODOLOGY IN DIFFERENTIAL

EQUATION MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Individual Parameter Estimation . . . . . . . . . . . . . . . . 22

3.2.2 Population Parameter Estimation . . . . . . . . . . . . . . . . 25

3.3 Asymptotic Properties of the Proposed Estimators . . . . . . . . . . . 27

3.4 Variations in Design of Experiments . . . . . . . . . . . . . . . . . . . 31

vii



3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 ACCOMMODATING COVARIATES IN DIFFERENTIAL

EQUATION MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Existing Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Non-linear Regression Problem . . . . . . . . . . . . . . . . . 35

4.1.2 Covariate Effects in PBPK Modeling . . . . . . . . . . . . . . 38

4.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Incorporation of Covariates . . . . . . . . . . . . . . . . . . . 42

4.2.2 Asymptotic Theory for the Proposed Estimators . . . . . . . . 46

4.2.3 Testing Covariate Effects . . . . . . . . . . . . . . . . . . . . . 50

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 DATA EXAMPLES : SIMULATED AND REAL DATA . . . . . . 53

5.1 Simulated Example : Based on Benzene PBPK Model . . . . . . . . . 53

5.1.1 Results of Simulation Study . . . . . . . . . . . . . . . . . . . 54

5.2 Real Data : Benzene Inhalation Experiment . . . . . . . . . . . . . . 55

5.2.1 Method and Results . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Simulated Data : Covariate Effects in a Compartmental Model . . . . 60

5.3.1 Pharmacokinetic Model Description . . . . . . . . . . . . . . . 60

5.3.2 Study Design for Simulations . . . . . . . . . . . . . . . . . . 61

5.3.3 Results of the Simulated Example . . . . . . . . . . . . . . . . 63

5.4 Benzene Inhalation Experiment : Covariate Analysis . . . . . . . . . 64

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 FUTURE RESEARCH DIRECTIONS . . . . . . . . . . . . . . . . 68

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

viii



List of Tables

2.1 Values of physiological parameters for benzene PBPK model
for human subjects (Travis et al. (1990)). . . . . . . . . . . . . . . . . 10

2.2 Some applications of the proposed methodology. . . . . . . . . . . . . 13

2.3 Main features of some recent papers based on Ramsay et al.
(2007) compared to the proposed methodology. . . . . . . . . . . . . 18

3.1 Notations used in this work. . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Population parameter estimation results . . . . . . . . . . . . . . . . 54

5.2 Estimated values of the metabolic parameters for each indi-
vidual in the study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Population parameter estimation results in simulation of co-
variate effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Individual parameter estimation results for benzene data with
dose as a continuous covariate. . . . . . . . . . . . . . . . . . . . . . . 65

ix



List of Figures

1.1 A physiologically based pharmacokinetic model for volatile
compounds (Travis et al. (1990)). . . . . . . . . . . . . . . . . . . . . 3

5.1 Exhaled breath data for benzene inhalation experiment. Con-
centration of benzene in exhaled breath (in µg/m3) was mea-
sured post-exposure. The black dotted line represents the
exposure stoppage time of 120 minutes. . . . . . . . . . . . . . . . . . 56

5.2 Individual parameter fits showing the estimated exhaled breath
concentration (in µg/m3) of benzene (solid black lines) for the
four individuals obtained by solving the differential equations
with the estimated individual parameter values. . . . . . . . . . . . . 57

5.3 Population fitted exhaled breath concentration of benzene
with 95% prediction intervals. The solid curve is obtained
from the solution of the system of differential equations in
(2.2)-(2.8) using the value of the population parameter esti-
mate. The vertical lines represent the prediction intervals. . . . . . . 58

5.4 Predicted compartmental concentrations (in µg/m3) over time.
These plots are obtained by solving the differential equa-
tion model given by (2.2)-(2.8) with the estimated population
model parameter estimates. . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 A two compartment pharmacokinetic model with linear and
non-linear kinetics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.6 The simulated behavior of the observable state variable (Com-
partment 1) for different exposure concentrations under a log-
linear covariate model for the two compartment pharmacoki-
netic model. Exposure concentrations (excon) are in units of
mg/L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.7 Population predicted exhaled breath concentration of ben-
zene along with 95% prediction intervals for a typical person
given an exposure concentration of 161.5µg/m3 of benzene.
The vertical black solid lines represent the 95% prediction
intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

x



Chapter 1

MOTIVATION

Many biological and chemical systems or processes can often be described using a

system of ordinary differential equations (ODE). Some common areas of application

include gene regulatory networks, viral dynamics, modeling of infectious diseases, im-

munology and toxicology. Researchers developing gene regulatory networks are often

interested in studying the changes in mRNA and protein concentrations over time

(Polynikis et al. (2009)). The rate of change in the concentration of mRNA of a

particular gene (and it’s related protein) depends on the instantaneous concentra-

tions, degradation and transcription rates, which can be mathematically expressed

through mass balance equations using ODE. The system of ODE involved in a net-

work provides a mathematical model for the gene regulatory network. In immunology,

a question of interest is to study the effect of viral infection on the human immune re-

sponse system. Viral infection induces a response in the system that converts normal

lymphocytes to antibody producing cells that resist and destroy viruses. The changes

in concentration of these cells over time, which can be modeled using ODE, provide

valuable information on immune response (Oprea et al. 2000). Similarly, in the case

of HIV infection, one may study the dynamics of viral infection by observing the pop-

ulation of naive cells, infected cells or viral load and their changes over time (Perelson



(2002)). Again ODE can be used to mathematically describe the phenomenon. There

are numerous such examples in biological and physical sciences where the underlying

processes are described using a system of ODE containing unknown model parameters

that are to be statistically estimated. In this dissertation we focus on applications

to toxicology where researchers model chemical kinetics, or the flow of chemicals in

human or animal body using a system of ODE. Although this work is motivated by

an application in toxicology, as described in this dissertation, the methodology devel-

oped here can be adapted to other contexts such as those described above.

Humans are exposed to a vast array of compounds, some of which are potentially

toxic and even carcinogenic while some are potentially beneficial to human health. In

classical toxicology researchers often investigate the toxicity of a chemical by deter-

mining the proportion of animals with adverse response (such as tumors or lesions)

at a given dose of the chemical. A pharmacologist may conduct similar studies but

is often interested in the opposite challenge, namely, to identify the efficacy of a

drug. Although such studies are important to determine whether a particular chemi-

cal is toxic or beneficial, they do not necessarily explain a chemical’s mode of action.

For example, when an animal is exposed to a chemical in the classical 2-year bioassay

conducted by the National Toxicology Program, a toxicologist can determine whether

the animal had a particular lesion or not. From the observed outcome, they cannot

determine how the body processed the chemical, although such determinations are

extremely important to understand the underlying mechanisms or mode of action of

the compound. As noted in Reddy et al. (2005), toxicologists and pharmacologists are

often interested in quantitatively investigating factors that determining the processes

of absorption, distribution, metabolism and excretion (ADME) in various parts of the

body such as, stomach, blood, liver, kidney etc. “Pharmacokinetics may be simply

defined as what the body does to the drug” (Benet (1984)).
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Suppose a person inhales a volatile chemical compound such as benzene. Then

the flow of the chemical through the person’s body can be described using the flow

diagram in Figure 1.1. The diagram is a schematic representation of human phys-

iology. Note that there exist variations to Figure 1.1 available in the literature to

describe kinetics of benzene and other volatile chemicals in general. A flow diagram

as shown in Figure 1.1 can be mathematically modeled using a system of ODE (as

described in Section 2.1).

Alveolar air

Lung Blood

Slowly perfused
tissue

Richly perfused
tissue

Fat

Bone Marrow

Liver

Exhaled airInhaled Air

Metabolites

Arterial BloodVenous Blood

Figure 1.1: A physiologically based pharmacokinetic model for volatile compounds
(Travis et al. (1990)).

Using such a model and the available data, a toxicologist is often interested in

understanding the chemical kinetics of benzene. Thus the typical problem of interest

is to estimate the unknown parameters of the model, along with their uncertainty
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estimates, that are specific to subject as well as population. Researchers are often

also interested in comparing the model parameters between two or more groups after

adjusting for covariates. The goal of this dissertation work is therefore to develop a

formal statistical framework and methodology for addressing these issues. Although

this dissertation work is motivated by data from toxicology, the methodology is fairly

general and can be applied to other contexts, such as those mentioned earlier.
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Chapter 2

LITERATURE REVIEW

2.1 Physiologically Based Pharmacokinetic Modeling

Pharmacokinetics of a chemical can be modeled through systems of differential equa-

tions that represent mass balance equations for the flow of chemicals. Unlike in

usual statistical methodology, the model is specified to describe the derivatives of

the response variable and not the response itself. Due to the absence of closed form

solutions to the system of differential equations in most complex systems, we do not

have an explicit model describing the dependence of the response on the parameters

of interest from differential equation models. Hence the need for novel statistical

methods for analysis of the class of models governed by differential equations, not

necessarily restricted to pharmacokinetic modeling. For the current review, we shall

mainly focus on dynamic systems in toxicological and pharmacological areas.

The analysis of chemical kinetics can be compartmental or non compartmental.

Non-compartmental methods rely on estimating the total exposure to a chemical.

One such non-compartmental technique to estimate the total exposure is to study

the area under the curve (AUC) of a concentration-time graph (Denker et al. 2002).

For other metrics such as area under the moment curve (AUMC) or mean residence



time (MRT), one may refer to Dunne and King (1989). On the other hand compart-

mental models try to estimate the concentration-time graph using kinetic models.

The main idea behind compartmental pharmacokinetic models is that the animal or

human body can be thought of as a collection of interconnected compartments, usu-

ally the organs or tissues. Blood serves as the medium of transport for the chemical

between these compartments. The chemical flow typically is modeled through first

order kinetic mass balance equations that relate the rate of change of the concen-

tration of drug in each compartment to the present concentrations. Usually, these

equations are first order linear and/or non-linear differential equations with several

parameters. Pharmacokinetic modeling deals with understanding of chemical kinetics

through estimation and inference about these parameters. More specifically, popu-

lation pharmacokinetic modeling deals with studying the sources of variability that

affects the pharmacokinetics of a chemical for a group of individuals or a species. The

main objectives of population PK analysis is to identify and quantitatively estimate

variabilities affecting the pharmacokinetics for a population (Steimer et al. (1994),

Davidian and Giltinan (1995)).

In general pharmacokinetic modeling, volume of distribution and clearance are two

of the most important parameters that define the kinetics of a chemical while being of

biological use. For intravenous administration of a chemical, volume of distribution is

the volume in which a chemical is distributed immediately after administration in the

physiology. Clearance is the volume of blood/plasma that is cleared of the chemical

per unit time. There exist multi-compartment PK models involving multiple volumes

of distribution and clearances for each compartment. In spite of being useful to de-

scribe the pharmacokinetics of a population, the PK models and parameters are not

targeted to reflect the actual physiological and anatomical structures. This gave rise

to physiologically based pharmacokinetic (PBPK) modeling. These are models that
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incorporate physiological knowledge along with the processes of absorption, distri-

bution, metabolism and excretion (Reddy et al. (2005)). The differential equations

defining the model are characterized by parameters that reflect the physiology, for in-

stance tissue volumes or partition coefficients. This makes the model physiologically

more realistic or interpretable and eventually facilitates the applicability to varying

situations. In cases where the efficacy or toxicity of a chemical compound is highly

related to the concentration in the target tissue rather than the plasma concentration,

PBPK models are more useful than their PK counterparts (Yang et al. (2004)). Fur-

ther, one can infer about mechanistic behavior for the chemical of concern through

these models (Reddy et al. (2005)). An important use of PBPK models is extension

between different dose levels, routes of exposure and even between species (Gargas

et al. (2000)). Humans are commonly exposed to chemicals at low dose levels, for

instance through occupational exposure for a longer time. Simulating such an exper-

iment in laboratory settings would turn out to be infeasible. In such cases, PBPK

models can be used to extend the results from the animal studies using higher doses.

In some cases, a mere change in the value of the parameter would be enough while in

other cases the model structure might need to be changed (For instance, in case of a

pregnant woman, equations for the fetus need to be included).

PBPK models have been developed for several classes of chemical compounds,

such as halogenated alkanes, hydrocarbons, aromatic compounds, environmental pol-

lutants and metals to name a few. For example, O’Flaherty et al. (2001) described

a PBPK model for Chromium VI, Gentry et al. (2004) described it for arsenic and

Kawahara et al. (1999) for the drug digoxin. These models have different character-

istics due to the inherent chemical nature of the compounds and consequently the

organs involved in the ADME of the compound. The models also vary according to

the route of exposure or path of administering the dose (such as inhalation, dermal,
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gavage or intravenous). PBPK models are constantly subject to change in model

structure to incorporate possible metabolic pathways and metabolite formation to

obtain a better understanding of the underlying true phenomena.

The importance of PBPK modeling with respect to public health stems from a

number of facts. Chemicals such as lead or arsenic have adverse health effects in

humans (Porba et al. (2011)). Pollutants such as PERC or TCE have widespread

occupational uses while drugs contain several chemicals which may be beneficial or

harmful for the human physiology. PBPK models provide a framework to answer

questions about the mechanism of actions of such chemicals (Sweeney et al. (2009)).

These models also find use in risk assessment studies since behavior of the chemicals

change with dose levels, species or route of exposure (Haddad et al. (2001)). Valid

methods describing the chemical actions would be advantageous in categorizing risk

associated with these attributes. The widespread application of differential equa-

tion models as noted above makes it an important area for development of formal

statistical methodology for estimation and testing purposes.

2.1.1 General Model Structure

The examples stated earlier and their modeling approaches have a few things in

common. They are all defined by a set of differential equations governing the dynamic

processes. The general structure of a model defined through differential equations is

illustrated below.

Consider a model with p compartments. Let Z = (Z1, Z2, . . . , Zp)
′ denote the

vector of state variables in the p states. The system of differential equations that

describe the rate of change in Z at time t be given by:

Ż = F(Z, t,θ), (2.1)
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where Ż = d
dt

Z denotes the rate of change in Z at time t, F(.) is a p × 1 vector of

known functions, θ = (θ1, θ2, . . . , θm)′ is a m× 1 vector of unknown parameters.

Here we provide the differential equations for the PBPK model of benzene that

we are trying to analyze using the data from the benzene inhalation experiment.

This would help illustrate the general model structure that we have presented. The

PBPK model for benzene inhalation is a five compartment model as shown in Figure

1.1. The inhaled benzene gets absorbed into the lung blood and is transported to

the various compartments through arterial blood. Benzene is transported back into

lungs through venous blood. There is no direct exchange of benzene between com-

partments. Metabolites form within the metabolizing compartments, bone marrow

and liver.

In the model equations, Aj denotes the amount of the chemical in the jth compart-

ment, CVj is the concentration of the chemical in the venous blood at the jth tissue

exit, Qj denotes blood flow rate, Vj is the volume and pj is the partition coefficient

for the jth compartment. Qt and Qalv are the total blood flow and the alveolar blood

flow respectively. Pb denotes the blood:air partition coefficient. Among the metabolic

parameters, Vmax denotes the maximum metabolism rate and km is the concentration

at which reaction rate is half of Vmax for metabolizing sites. Cart, Cven and Cexh

represent the concentration of benzene in arterial blood, venous blood and exhaled

breath respectively. The physiological parameters describing the PBPK model for

benzene as proposed by Travis et al. (1990) are listed in Table 2.1. Body weight is

denoted as bwt in the table.

For non-metabolizing sites, namely richly perfused tissues(rpt), slowly perfused

9



Table 2.1: Values of physiological parameters for benzene PBPK model for human
subjects (Travis et al. (1990)).

Physiological parameter (Units) Symbol Value
Total cardiac output (l/min) Qt 6.2
Alveolar blood flow (l/min) Qalv 5
Tissue blood flow rates (l/min)

Richly perfused tissue Qrpt 0.44*Qt

Slowly perfused tissue Qspt 0.15*Qt

Fat Qfat 0.05*Qt

Bone marrow Qbm 0.05*Qt

Liver Qliv 0.25*Qt

Tissue volumes (kg)
Richly perfused tissue Vrpt 0.25*bwt
Slowly perfused tissue Vspt 0.58*bwt
Fat Vfat 0.19*bwt
Bone marrow Vbm 0.05*bwt
Liver Vliv 0.026*bwt

Blood:Tissue partition coefficients
(dimensionless)

Richly perfused tissue prpt 1.49
Slowly perfused tissue pspt 2.03
Fat pfat 1.49
Bone marrow pbm 16.22
Liver pliv 1.49

Blood:Air partition coefficient (di-
mensionless)

Pb 7.4

tissues(spt) and fat, the differential equations are

dAj
dt

= Qj(Cart − CVj), j ∈ {rpt, spt, fat}. (2.2)

(2.2) represents mass balance equations for the three classes of tissues using first order

kinetics. Here the rate of change in the amount of benzene in these tissues is directly

proportional to the instantaneous concentration in the tissue. Blood flow serves as

the rate constant since benzene is being delivered through blood.
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Bone marrow (bm) and liver (liv) are possible metabolizing sites for benzene.

Along with the usual first order kinetics, these compartments have an extra term that

shows non-linear Michaelis-Menten kinetics for the formation of metabolites such as

phenol. The equations for these sites and the metabolites (met) are as follows:

dAj
dt

= Qj(Cart − CVj)−
Vmax(j)CVj

(km(j) + CVj)
, j ∈ {bm, liv}, (2.3)

dAmet
dt

=
Vmax(bm)CVbm

(km(bm) + CVbm)
+

Vmax(liv)CVliv
(km(liv) + CVliv)

. (2.4)

The concentrations in venous and arterial blood are expressed as

Cven =

∑
j∈{rpt,spt,fat,bm,liv}

QjCVj

Qt

, (2.5)

Cart =
QtCven +QalvCin

Qt + Qalv

pb

, (2.6)

Cexh = Cart/Pb. (2.7)

Concentration in the venous blood at jth tissue exit is expressed as

CVj =
Aj
Vjpj

. (2.8)

(2.2)-(2.8) represent the PBPK model for benzene inhalation shown in Figure 1.1.

We relate this system of ODE with the notation of the general model structure. The

amount of benzene in the tissue compartments such as fat, liver etc. is considered as

Z. The functional dependence (linear and/or non-linear) of the rates of change on

the state variables, parameters as shown in (2.2)-(2.8) constitute F. In case of PBPK

models, the actual number of parameters are large, more than 30 in some cases.

Treating all parameters as unknown often renders the problem as inestimable due to

sparsity of data. To circumvent this problem, often in case of animal or human PBPK
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models, most of the physiological parameters are derived from toxicological literature

or previous studies. For example, the blood or tissue volume, blood flow through

tissues are similar for humans in general. Hence these physiological parameters are

derived from literature or previous studies and held constant while constructing and

analyzing the PBPK models. On the other hand some parameters like metabolic con-

stants or Michaelis-Menten constants are not experimentally determined and hence

serve as the parameters of interest. In order to analyze the PBPK model, we assume

that it is identifiable with respect to these unknown parameters. In the benzene

PBPK model, the metabolic parameters Vmax (in µg/min) and km (in µg/l) for liver

and bone marrow compartments comprise the unknown parameter θ.

We can similarly formulate the gene regulatory network problem in this frame-

work. Z would represent mRNA and protein concentrations of genes that are mea-

sured over time as well as the genes that are not measured but are known to be in

the gene regulatory network. The question of interest is to infer about the unknown

parameters (θ) which characterize the ODE describing the gene regulatory network.

Most often these parameters are rates of the processes of transcription, translation or

degradation of mRNA or proteins.

Several other applications such as viral dynamics, infectious disease modeling and

immunology use ODE systems to model biological phenomena. We summarize the

formulation of these applications in terms of state variables, functions and parameters

for a few such areas in Table 2.2.

2.1.2 Issues with Data and Design

Experimental design and data available are important facets of this research. Toxi-

cological studies usually record the incidence of adverse reactions (tumors or lesions)
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Table 2.2: Some applications of the proposed methodology.

State variable Functions Parameters

Gene
regulatory
network

mRNA
concentrations or
gene expressions

Factors of
translation,

transcription,
degradation etc.

Rates of the
factors affecting
concentration or

expression

Viral
dynamics

Density of naive
cells, infected

cells, dead cells

Factors of
infection, death

etc.

Rates of viral
infection,

susceptibility etc.

Infectious
diseases

Number of
susceptible,

infectious and
cured people

Factors
influencing birth,
death, infection

Rates of contact,
transition

Immunology Proportion of
centroblasts,
centrocytes

Factors of
mutation,
selection,

proliferation

Rates of
mutation,

selection etc.

Toxicology Amounts or
concentration of

chemicals

Factors of
chemical

processes, eg:
absorption,
metabolism

Metabolic
parameters,

Rates of reaction

in exposed subjects, after exposure to a dose of a chemical. On the other hand, stud-

ies recording chemical concentrations in the body measure the concentration of the

chemical over time in fluids such as blood or urine. Tissue samples are usually not
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available, since getting repeated samples from liver, kidney or muscles from human or

animal subjects is not feasible. However in certain animal studies, where the animals

are sacrificed at the end of the study, tissue samples may be available. Hence in

analysis of PBPK models, data are available for at most two or three compartments.

Measurement times are another important aspect of design and data. Chemical

concentrations are measured at specified time points after exposure to dose. Com-

partments that are measured may not have same measurement times. For example,

it is easy to get urine measurements more frequently, however getting blood measure-

ments too frequently may be difficult in case of rats and mice. For the same reason,

subjects may be measured at only a subset of the measurement times. The frequency

of dosing is also important since some studies are single dosage while others are mul-

tiple dosage studies. All these factors must be taken into account while planning the

analysis of differential equation models.

2.2 Non-linear Least Squares and Bayesian Approaches

In this section we describe some existing methods to analyze PBPK models. One

of the most widely used method is the non-linear least squares method as used in

Parham et al. (2002). The overall idea of this approach is to minimize the distance

between the data and the solution of the system of differential equations. Since the

differential equations do not have an explicit solution, the method involves the numer-

ical optimization of the differential equations using algorithms such as Nelder-Mead

algorithm or the Runge-Kutta method and obtaining the residual sum of squares be-

tween the data and predicted values of the observed compartments. Mathematically,

θ̂ = arg minθ ‖ Z − Z(θ) ‖2, where Z(θ) is the numerical solution of the system

given by (2.1) for a particular θ. It is a non-linear optimization problem and there

are several computational and statistical challenges associated with this approach.
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Notable computational difficulties include lack of convergence or convergence to local

solution, computation time, convergence to local solutions due to irregular surface of

the residual sum of squares, especially for stiff differential equation systems (Ramsay

et al. (2007)). Due to these issues, it is difficult to obtain valid estimates of vari-

ability, drawing statistical inferences and testing hypotheses about the parameters of

interest.

In the last two decades, significant research has been conducted in the field of

non-linear regression in repeated measurements (Davidian and Giltinan 1995). This

methodology has been applied to models defined by differential equations (Tornøe

et al. 2004). As in the non-linear least squares methodology, these methods also rely

on solving the system of differential equations and often using their first order Taylor

series expansion as the regression function in a non-linear regression setup. In a mixed

effects scenario, a hierarchical model is developed with the data centered around the

numerical solution of the differential equations system and information is pooled over

all individuals to obtain parameter estimates in a likelihood framework. This method

still requires the solution of the differential equations and also is computationally

intensive due to the integration over the random effects for each individual.

An alternative to the above approaches is the Bayesian methodology (Bois 2000).

Hierarchical models are used to obtain the posterior distributions of the model pa-

rameters. There are three levels of modeling in this approach, namely individual

model, parameter model and error model. Individual model specifies the distribution

of the response variables, usually taken to be normal or lognormal. The solution

of the system of differential equations is taken as the location of these distributions

while the error model specifies the variability in the individual model. The prior

distribution of parameters and the individual model provide the joint distribution of

the data and the parameters, which is used to obtain the posterior distributions of
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the model parameters. It is clear in this approach that it relies on the accuracy of the

system of differential equations to model the phenomenon in the individuals and the

population as a whole. Also diagnostics for these models have not been developed

yet.

Recently in 2006 the US Environmental Protection Agency (EPA) conducted an

international workshop entitled, “The International Workshop on Uncertainty and

Variability in PBPK Models” to evaluate the available statistical methodology for

analyzing PBPK models. In a publication resulting from the workshop, Barton et al.

(2007) concluded that there is a need for a formal statistical methodology for ana-

lyzing PBPK models and to derive uncertainty estimates associated with parameter

estimates.

2.3 Functional Data Analytic Approaches

Ramsay (1996) introduced a functional data analytic (FDA) method to solve the

problem of parameter estimation in differential equation models known as Principal

Differential Analysis (PDA). The methodology consists of approximating the state

variables in the differential equations through some basis functions. These are linear

combinations of some functions of time, such as polynomials or cubic splines. These

approximations are made such that they also satisfy some regularization conditions.

Usually the approximations are penalized by placing some constraints on the second

or higher order derivatives of the approximations. The model parameters are esti-

mated by minimizing the residuals using the data and the approximated values of the

response variables. These methods have been mainly used in engineering dynamics

problems, such as the constantly stirred tank reactor problems.

On similar lines, a smoothing approach for parameter estimation in differential

equation models was proposed by Ramsay et al. (2007). In this paper, the authors
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used a basis expansion using B-splines to approximate the state variables like previous

instances. However, here the differential equations are treated as a regularization cri-

terion, accompanied by a regularization parameter. So one could decide on how much

confidence could be placed on the model itself. This comprised the inner optimization

of the method. The outer optimization comprised of minimizing the predicted resid-

uals. Approximate sampling variances of the parameter estimates were provided and

behavior of the parameter estimates were studied when the value of the regularization

parameter was large.

Poyton et al. (2006), Varziri et al. (2008b) carried forward the work on Principal

Differential Analysis by introducing an iterated version. They carried out a simultane-

ous optimization procedure on the basis parameters as well as the model parameters.

To arrive at the properties of the estimates, they used a maximum likelihood approach

and denoted the estimator by Approximate Maximum Likelihood Estimator(AMLE).

Varziri et al. (2008a) used AMLE in presence of unmeasured states and stationary and

non-stationary model disturbances. These methods were shown to work on several

engineering problems. However these were primarily for population estimation only.

Individual inferences and estimation of variance components were not addressed in

these works.

Liang and Wu (2008) approached a similar problem in a slightly different man-

ner. A two stage smoothing approach was employed. They used local polynomial

smoothing to approximate the response variables. But there was no regularization of

the basis parameters based on the differential equations. Instead, for estimating the

model parameters, the estimated values of the response variables and their deriva-

tives were plugged into the differential equation system and the residual error in the

differential equation system was minimized. No data points are involved in this stage

of the methodology and hence it was named Pseudo Least Squares estimator. So it
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was a method which was not exactly the same but close to the measurement error

approach. Consistency and asymptotic normality were proved for the estimator un-

der certain regularity conditions. The method was applied to simulated examples

and also real data on HIV CD4 cell counts. This methodology requires all the state

variables in the system of differential equations to be observable, which is rarely the

case in toxicological modeling situations. Also the population estimation methodol-

ogy was not discussed in this paper. In Table 2.3 we summarize the main features of

the above discussed papers and our contribution.

Table 2.3: Main features of some recent papers based on Ramsay et al. (2007) com-
pared to the proposed methodology.

Feature
Varziri et al. Liang and Wu Proposed

(2008b) (2008) Methodology

1. Allows for unobservable compo-
nents.

Yes No Yes

2. Basis approximation uses the data
and the differential equations.

Yes No Yes

3. Subject specific inference. No Yes Yes
4. Population based inference. Yes No Yes
5. Separate estimation of variance

components.
No No Yes

In this paper we extend Ramsay (1996) and Ramsay et al. (2007) methodology

to conduct formal statistical inferences by taking into account potential correlations

between and within compartments in a subject as well as between and within subject

variability. Although the focus of this paper is on analyzing PBPK models, the

methodology is sufficiently general and can be applied to other contexts according to

the formulations described in Table 2.2.
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2.4 Summary

Statistical treatment of differential equation models is a relatively newer area of re-

search with respect to theory and methodology while boasting of a wide range of

applications in public health and other fields. Traditional methods of analysis are

ridden with problems of several kinds and hence newer methodology based on func-

tional data analysis is an important alternative. Addressing issues such as parameter

identifiability and design of experiments are important foundations while developing

statistical methodology for these models and accounting for variability and uncer-

tainty provides a complete statistical framework on these basic foundations.

In Chapter 3, the proposed estimation methodology based on functional data anal-

ysis is provided with the necessary details and justification for its use. Asymptotic

properties are also shown in the same chapter. Chapter 4 describes the statistical

methodology to incorporate covariate effects in models defined through systems of

differential equations. In Chapter 5, all the proposed methodologies are illustrated

using simulated data examples and a real life study based on the same Benzene PBPK

model. Chapter 6 describes some of the future research problems that follows from

the current work.
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Chapter 3

ESTIMATION METHODOLOGY
IN DIFFERENTIAL EQUATION

MODELS

Modeling of systems of differential equations is different from usual statistical mod-

eling in the sense that the model in consideration does not describe the response

variable directly. The mathematical model describes the rate of change in response

variables and often the dependence of the response on the parameters are not known

explicitly. Some variants may also include algebraic equations that relate the response

variables themselves, along with the differential equations. This unique situation de-

mands a novel approach that combines the traditional statistical methods with newer

methods of functional data analysis. Motivated by the assessment in Barton et al.

(2007), this chapter intends to provide a statistically rigorous framework for analyzing

PBPK models. We cast the statistical problem in a general framework by exploiting

the functional data analytic methods available in the literature. In this chapter, we

present the proposed methodology for estimation of the individual and population

parameters and variability in the estimates along with confidence intervals.



3.1 Description

As described earlier, the state variables are related to each other through differential

equations. Due to unavailability of explicit solutions, the functional data analytic

approach provides an alternative way to solve this problem. The state variables,

whether observed or unobserved are approximated using basis functions, which are

functions of time. This provides a familiar platform based on regression which is

used to estimate the model parameters, first on an individual basis and finally for

population parameters. The proposed methodology thus tries to strike a balance

between the data available and the system of differential equations that we consider.

Table 3.1 defines the common notations that will be used in this thesis henceforth.

Other notations will be defined as they are used.

Table 3.1: Notations used in this work.

Symbol Meaning
Z State variables
Zo Observable state variables
Zu Unobservable state variables
Y Data on observable state variables
θ Model parameter
α Basis parameter

φ(Φ) Basis function(s)
λ Regularization parameter
i Index for individuals
j Index for states
k Index for time points

3.2 Methodology

We describe the methodology as two components, individual and population estima-

tion of model parameters.
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3.2.1 Individual Parameter Estimation

Let p denote the total number of states (or compartments) in a PBPK model. As

often is the case, suppose only d out of p compartments are measurable for the ith sub-

ject, i = 1, 2, .., n. Suppose Zi(t) = (Zi1(t), Zi2(t), . . . , Zid(t), Zi(d+1)(t), . . . , Zip(t))
′ =

(Zo
i (t),Z

u
i (t))

′ denotes the vector of state variables in the p states at time t, where

Zo denotes the observable and Zu denotes the unobservable part. Let the system of

differential equations that describe the rate of change in Zi be given by:

Żi = F(Zi, t,θi), (3.1)

where Żi = d
dt

Zi denotes the rate of change in Zi at time t, F(.) is a p × 1 vector of

known functions, θi = (θi1, θi2, . . . , θim)′ is the vector of unknown parameters.

Let the observed value of the true state variable Zo
i be denoted by Yi. Thus we

have

Yi = Zo
i + ei, (3.2)

where ei is the component that captures the intra-individual variation in the data.

In some experimental settings where none of the compartments are observed directly,

the observed variable may be a function of the state variables in the model. For

instance, if concentration in exhaled breath is the the only observed variable, it can

be expressed as a weighted average of the concentrations in the other compartments,

which are not observed. Such a case would imply Yi = g(Zu
i ) + ei, where g(.) is a

known function from the specified model.

One may assume that eij are independently distributed for all i with mean 0 and

aj × aj covariance matrix Σij(t). It is reasonable to assume that the intra-individual

correlation between measurements would decrease with amount of separation in time.
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Hence as commonly used in time-series models for a parsimonious description of

dependence in data (for example, Box, 2008), we let

Corr(eij(t1), eij′(t2)) =

 ρ
|t1−t2|
i(j) j = j′;

ρ
|t1−t2|
i(j,j′) j 6= j′.

Lastly we model inter-individual variability by imposing a hierarchical structure on

θi. We shall assume that θi are identically and independently distributed with mean

θ and covariance matrix Ψ, which estimates the inter-individual variability.

We begin by estimating parameters for each individual subject. For notational

simplicity, we drop the indices for individuals. The functional basis approach (Ramsay

et al. 2007) is used to approximate the state variables Z in (3.1). This amounts to

selecting a class of basis functions, such as spline or polynomials, to approximate Zi.

In this article we use B-splines as the basis functions. Let Z̃ij(t), j = 1, . . . , p be the

approximate value of compartment j at time t, described through Lj basis functions.

Then

Z̃ij(t) = (Z̃o
ij(t), Z̃

u
ij(t))

′ =

Lj∑
l=1

φijl(t)αijl = φij
′(t)αij ,

where φij(t) is a vector of basis functions and αij is a vector of unknown basis pa-

rameters.

Let αi = (αi1, . . . ,αip)
′ and Φ = diag(φi1

′(t), . . . ,φip
′(t)). Hence the approxi-

mated state variable for the ith individual is

Z̃i(t) = (Z̃i1(t), . . . , Z̃ip(t))
′ = Φiαi. (3.3)

The basis parameter vector αi are determined such that Z̃o
i closely mimics the data

and the state variables Z̃i satisfies the system of differential equations. Hence both

Z̃i and Z̃o
i are functions of the nuisance parameters αi.
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The objective is to estimate the unknown parameter θi for each individual, how-

ever, αi and ρi are unknown nuisance parameters that need to be estimated. We

begin by estimating αi, ρi and λi such that the “distance” between the observed Yi

and the approximated value Z̃o
i is minimized subject to Z̃i satisfying the underlying

differential equations, in similar lines as a ridge regression problem. We can formulate

the problem of obtaining the approximation as follows:

minαi,ρi‖Σ(ρi)
−1/2(Yi − Z̃o

i (αi))‖2
2 subject to {αi : Φ̇iαi = F(Φiαi, t,θi)}

Thus, for a given θi, we minimize H(αi, ρi, λi) with respect to αi, ρi and λi:

H(αi, ρi, λi) =(Yi − Z̃o
i (αi))

′Σ(ρi)
−1(Yi − Z̃o

i (αi)) (3.4)

+ λi

∫
(Φ̇iαi − F(Φiαi, t,θi))

′(Φ̇iαi − F(Φiαi, t,θi))dt.

In the above expression, λi is a regularization parameter which is estimated in the

above objective function. The estimators α̂i, ρ̂i and λ̂i obtained by minimizing (3.4)

are implicit functions of θi. Hence the estimated state variables
̂̃
Zi and therefore

̂̃
Zo
i

are implicit functions of θi. For notational simplicity, we denote the predicted value of

the observable state variable by
̂̃
Zo
i (θi). Using the estimators derived by minimizing

(3.4), we minimize the following quadratic form to estimate the model parameter θi:

S(θi) = (Yi − ̂̃Zo
i (θi))

′Σ(ρ̂i(θi))
−1(Yi − ̂̃Zo

i (θi)). (3.5)

Expressions (3.4) and (3.5) are iteratively optimized until convergence. Using Taylor

series expansion of θ̂i,we obtain an approximate covariance matrix of θ̂i|θi given by(
dθ̂i
dZo

i

)
Σi(ρ̂)

(
dθ̂i
dZo

i

)′
, henceforth denoted by Γ(θi) in this paper.
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3.2.2 Population Parameter Estimation

Using the estimators obtained for each individual subject, we now describe the method

to estimate the population parameters. Towards this, as commonly done in non-linear

mixed effects models, we assume the following hierarchical model structure for θ̂i and

θi.

Assumptions A:

(A.1) θ̂i|θi are independently distributed with mean θi and covariance Γ(θi).

(A.2) θi|θ are i.i.d with mean θ and covariance Ψ.

Consider the marginal distribution of θ̂i. Moments of the marginal distribution are

E(θ̂i) = Eθ(E(θ̂i|θi)) = θ.

Cov(θ̂i) = Ψ +

∫
Γi(θi)p(θi|θ)dθi

= Vθ.

Thus our population level model is,

θ̂i = θ + δi, Cov(δi) = Vθ. (3.6)

This is a Type III nonlinear marginal model described in Demidenko (2004). Our

objective is to estimate the population parameter θ and the covariance matrix of

the estimator of θ. Since Vθ is a function of θ, the classical iterated weighted least

squares type methodology is not applicable here. Demidenko (2004) suggests a Total

Generalized Estimating equation approach for such a formulation.
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Note that the score equation ∂l
∂θ

= 0 reduces to

n∑
i=1

[
V−1
θ (θ̂i − θ) +

1

2
G′[(V−1

θ (θ̂i − θ)⊗V−1
θ (θ̂i − θ))− vec(V−1

θ )]
]

= 0, (3.7)

where G = ∂vec(Vθ)
∂θ

. The Fisher information matrix is given by Iθ = V−1
θ + 1

2
G′(V−1

θ ⊗

V−1
θ )G.

However TGEE is difficult to implement in the present problem, since the explicit

form of Vθ is unknown and a likelihood framework may not be appropriate in this

case. Hence we resort to the an empirical Bayes based technique and MINQUE

methodology (Rao, 1972) to solve the problem.There exists a well developed literature

on MINQUE and has been used in a wide range of contexts. In Zhang et al. (2000)

MINQUE based methodology was developed for estimating variance components in

non-linear mixed effects models, under heteroscedastic as well as homoscedastic errors.

We exploit their methodology for deriving the starting values for θ and Ψ for solving

(3.7) iteratively. Note that MINQUE of Zhang et al. (2000) is itself is an iterative

procedure involving iteration between two equations.

Ψ̂ =
1

n

n∑
i=1

(θ̂i − θ̂)(θ̂i − θ̂)′ and

θ̂ =
( n∑
i=1

(Ψ̂ + Γ̂i)
−1
)−1

n∑
i=1

(Ψ̂ + Γ̂i)
−1θ̂i. (3.8)

Equivalently it can be implemented as noted below. We start with initial estimates

of θ and Ψ, obtained from

θ̂(0) = 1
n

n∑
i=1

θ̂i and Ψ̂(0) = 1
n

n∑
i=1

(θ̂i − θ̂(0))(θ̂i − θ̂(0))
′.

We iterate between the two following steps:

Step 1 : Update estimate of θi as

θ̂i,(c+1) = (Γ̂−1
i + Ψ̂−1

(c))
−1(Γ̂−1

i θ̂i + Ψ̂−1
(c) θ̂(c)),
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where Ψ̂(c) and θ(c) are the estimates from the cth iterate.

Step 2: Update the population parameter estimates as

θ̂(c+1) = 1
n

n∑
i=1

θ̂i,(c+1) and Ψ̂(c+1) = 1
n

n∑
i=1

(θ̂i − θ̂(c+1))(θ̂i − θ̂(c+1))
′.

Let Ψ̂ and θ̂ denote the estimates upon convergence. Let V̂θ = Ψ̂ + 1
n

n∑
i=1

Γ(θ̂i).

3.3 Asymptotic Properties of the Proposed Estimators

To explore the properties of the proposed estimators we need certain regularity as-

sumptions as mentioned in Nagaraj and Fuller (1991).

Assumptions B:

(B.1) The components of the model function F(.) are continuous and twi-

ce differentiable for θ0 ∈ B, a closed ball, where θ0 is the true par-

ameter vector.

(B.2) The matrix of partial derivatives D(θ) =
dF

dθ
is of full rank with p-

robability 1 in a neighborhood of θ0.

(B.3) The matrix Bt = H
−1/2
t Λ(t)′Λ(t)H

−1/2
t and B−1

t converges to posi-

tive definite matrices for large t, where Ht = diag(hiit) is a sequen-

ce of diagonal matrices such that hiit →∞ as t→∞.

The iterative individual parameter estimation problem can be viewed as a con-

strained linear regression problem subject to non-linear constraints dictated by the

system of differential equations. Since the observed data is a perturbation of the
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approximated observable state variables, we have

Yi = Z̃o
i (αi) + εi, subject to f(αi,θi) = 0. (3.9)

Owing to the fact that Zi = Φiαi, (3.9) can be formulated as

Yi = Λiθ
∗
i + εi, subject to f(θ∗i ) = 0. (3.10)

Then the unconstrained least square estimate θ̂
∗
i = θ∗i + [Λ′iΛi]

−1Λ′iεi.

Lemma 3.1 (Nagaraja and Fuller, 1991): Under Assumptions B, H
1/2
t (θ̂i − θi) =

Op(1), where θi is the true parameter value for the ith individual.

Hence as the number of time points increase, the individual parameter estimates θ̂i

is consistent for the true individual parameter value θi.

The individual parameter estimates obtained are θ̂i, i = 1, . . . , n. Using delta

method, we obtain an approximate covariance matrix of the estimator as Γ(θi). Cor-

responding estimator of the covariance is Γ(θ̂i). Since θ̂i is consistent, by delta

method, Γ(θ̂i) is consistent for Γ(θi), since Γ(.) is a continuous function. This can be

easily shown since f(.) is continuous and θ̂i is a continuous function of Yi.

We make certain model assumptions for the population parameter estimation in

Assumption A in Section 3.2.2. Therefore the marginal covariance of θ̂i is

E[θ̂i − θ][θ̂i − θ]′ = E[θ̂i − θi + θi − θ][θ̂i − θi + θi − θ]′

= E[θ̂i − θi][θ̂i − θi]
′ + E[θi − θ][θi − θ]′

= E[Γ(θi)] + Ψ. (3.11)

From convolution of density functions and Assumption (A.2), E[Γ(θi)] is a function

of θ only. Hence θ̂i are independent and identically distributed random variables.
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The iterative population parameter estimation involves calculating θ̂ and Ψ̂. Let

Wi =
( n∑
i=1

(Ψ + Γi)
−1
)−1

(Ψ+Γi)
−1 and Ŵi =

( n∑
i=1

(Ψ̂ + Γ̂i)
−1
)−1

(Ψ̂+Γ̂i)
−1. Then

θ̂ =
n∑
i=1

Ŵiθ̂i and θ̃ =
n∑
i=1

Wiθ̂i. To prove the consistency of θ̂, we first prove the

consistency of θ̃ and then appeal to Slutsky’s theorem.

From the Noether’s condition for weighted least square estimators, if

(i) max1≤j≤n[w′nj(W
′
nWn)−1wnj]→ 0 as n→∞ and

(ii) lim
n→∞

n−1(W′
nWn) = V∗, finite and positive definite,

then θ̃ is consistent for θ for large n.

The weights Wi need to be estimated in our case. Hence we study the behavior

of the variance components that serve as weights.

Theorem 3.1 Under Assumptions A and B,

(a) Ψ̂
pr−→ Ψ as t, n→∞

(b) 1
n

n∑
i=1

Γ(θ̂i)
pr−→ E[Γ(θi)] as t,n →∞

Proof : (a) Ψ̂ is the sum of square of residuals in the marginal individual parameter

estimates.

Ψ̂ =
1

n

n∑
i=1

(θ̂i − θ̂)(θ̂i − θ̂)′

=
1

n

n∑
i=1

(θ̂i − θ + θ − θ̂)(θ̂i − θ + θ − θ̂)′

=
1

n

n∑
i=1

{(θ̂i − θ)(θ̂i − θ)′ + (θ − θ̂)(θ − θ̂)′

+ (θ̂i − θ)(θ − θ̂)′ + (θ − θ̂)(θ̂i − θ)′}. (3.12)
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Consider the first term in (3.12).

1

n

n∑
i=1

(θ̂i − θ)(θ̂i − θ)′

=
1

n

n∑
i=1

(θ̂i − θi + θi − θ)(θ̂i − θi + θi − θ)′

=
1

n

n∑
i=1

(θ̂i − θi)(θ̂i − θi)
′ +

1

n

n∑
i=1

(θi − θ)(θi − θ)′ +
1

n
cross products. (3.13)

The second term in (3.13) converges to Ψ due to Assumption (A.2) as n → ∞.

The rest of the terms converge to 0 as t → ∞ due to the individual level parameter

consistency and as n→∞. Hence Ψ̂
pr−→ Ψ as n, t→∞.

(b) To prove (b) it is enough to show that for any two m × 1 vector a1 and a2,∣∣∣a′1[ 1
n

n∑
i=1

Γ(θ̂i)− E[Γ(θi)]
]
a2

∣∣∣ pr−→ 0 as t, n→∞.

∣∣∣a′1[ 1

n

n∑
i=1

Γ(θ̂i)− E[Γ(θi)]
]
a2

∣∣∣ (3.14)

=
∣∣∣a′1[ 1

n

n∑
i=1

Γ(θ̂i)−
1

n

n∑
i=1

Γ(θi)
]
a2 + a′1

[ 1

n

n∑
i=1

Γ(θi)− E[Γ(θi)]
]
a2

∣∣∣
= |Z1 + Z2|

≤ |Z1|+ |Z2|.

Consider Z1 = a′1

[
1
n

n∑
i=1

{Γ(θ̂i) − Γ(θi)}
]
a2. Recall for each i, Γ(θ̂i) − Γ(θi) are

marginally independent and identically distributed random variables and Γ(θ̂i) −

Γ(θi) = op(1) for large t. Consider a random variable

Ui =

 a′1{Γ(θ̂i)− Γ(θi)}a2 if |a′1{Γ(θ̂i)− Γ(θi)}a2| < ε

0 otherwise
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Note that
n∑
i=1

P (Ui 6= a′1{Γ(θ̂i)−Γ(θi)}a2) <∞. By Khintchine equivalence lemma,

Strong Law of Large Numbers(SLLN) holds for both sequences of random variables

or none. For large values of t, E(Ui) = 0. Hence we can apply Khintchine Strong

Law of Large Numbers on Ui for large n. Since SLLN holds for Ui, i = 1, . . . , n, it

holds for a′1{Γ(θ̂i)− Γ(θi)}a2. Hence |Z1|
pr−→ 0.

From Assumption (A.2), θi are i.i.d random variables. By Strong Law of Large

numbers 1
n

n∑
i=1

Γ(θi)
pr−→ E[Γ(θi)], which implies |Z2|

pr−→ 0. Hence (3.14) converges

in probability to 0 as n, t→∞.

Hence using Slutsky’s theorem and Theorem A.1, the proposed population variance

estimate V̂θ = Ψ̂ + 1
n

n∑
i=1

Γ(θ̂i) is consistent for Vθ as t, n→∞.

3.4 Variations in Design of Experiments

Toxicological studies often differ with respect to design of the study. Such varying

situations need to be accounted for in the proposed methodology for the differen-

tial equation models fitted to the data. Consider an experiment where the response

variable for each individual is measured at different times. This is a common occur-

rence in both animal and human studies. For instance, blood measurements from

mice may be drawn at different time points for groups of mice. Consequently, for

the ith individual in the study, the measurement time points are {t1, . . . , tni
}. The

individual parameter estimation procedure would thus be based on the individual

measurement sets only. The intra-individual correlation structures (Σi) would be ap-

propriately modified to retain the same structure only with different orders (ni×ni).

Hierarchical model assumptions about θ̂i and θi remain unchanged. The proposed

methodology would apply in the same way for this situation due to the formulation

of the problem based only on the model parameters.
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A different (but not exclusive) situation that might arise in such studies is the

measurement of multiple compartments with different observation times for each

compartment. For example, a study might be observing chemical concentrations

in both exhaled breath and blood. Exhaled breath measurements are usually more

easily available than blood observations. These situations can be readily incorpo-

rated in the provided formulation. In this case the data for an individual would be

(Yblood,Yexh)
′, where Yblood represents the concentrations in blood and Yexh are the

concentrations in exhaled breath at respective measurement times. Further, this sit-

uation may warrant the choice of different basis functions for the two compartments.

Hence we can visualize and tackle different design situations arising in toxicological

studies in context of differential equation models with the proposed methodology.

3.5 Discussion

Modeling systems of differential equation plays an important role especially in con-

text of pharmacokinetic and toxicokinetic modeling. Although such models are widely

used in a variety of contexts, as noted in the recent EPA workshop and the result-

ing publication (Barton et al. 2007) there does not exist a well developed statistical

methodology for drawing inference on the model parameters. This research, which

exploits the functional data analytic approach of Ramsay et al. (2007), takes the first

step towards a formal statistical theory and methodology. Specifically, an impor-

tant contribution of the proposed methodology is that it accounts for; (i) inter and

intra-individual variability, (ii) the dependence within subjects and between com-

partments/states. Secondly, our methodology overcomes the computational burden

of usual strategies by avoiding the problem of numerically solving a system of differen-

tial equations. This in turn also alleviates situations where the differential equations

explain the behavior of the chemical better in some compartments than others. In
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Chapter 5, the proposed methodology has been illustrated using simulated data ex-

amples and real data example based on a benzene inhalation experiment.
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Chapter 4

ACCOMMODATING
COVARIATES IN

DIFFERENTIAL EQUATION
MODELS

Most toxicological studies investigating the response to chemicals in human or ani-

mals also record covariate information on the individuals in the study. These may

include variables such as age, dose or weight. A question of interest to researchers

would be whether and how these variables affect the chemical phenomena. Often

chemical kinetics differ with changes in dosage or age of the subject. Some chemical

processes might be expressed more when the dose is low than higher doses. In this

chapter we try to provide approaches for covariate inclusion and testing in context to

the differential equation models described in the earlier chapters.

4.1 Existing Literature

Models governed by systems of differential equations can be visualized as a form of

non-linear regression problem with an unknown functional form of the regression at



the response. Hence we first explore the literature for methods of covariate inclusion

and testing in the non-linear regression problem and then focus on the methods for

the same in differential equation modeling.

4.1.1 Non-linear Regression Problem

In usual strategies for estimation in differential equation models, the problem of in-

terest is treated as a non-linear parameter estimation problem, where the dependence

of response on the parameters is the solution to the system of differential equations.

Consider a non-linear regression problem,

Y = f(U,θ) + ε, (4.1)

where f represents the non-linear regression function. Here U represents the covari-

ates. Usually in such a problem, the functional form f is known. The estimation

procedures involve minimizing the residual sum of squares,

SS = (Y − f(U,θ))′(Y − f(U,θ)), (4.2)

with respect to θ. The estimate of θ thus depends on the covariates U. However the

dependence is an implicit one and thus testing for the covariate effects is difficult.

One has to compare models by inclusion and exclusion of covariates, using likelihood

ratio statistics. Note that the usual model selection criterion like AIC would not work

in such situations due to the absence of a nested model structure.

A more recent methodology, namely varying coefficient models, developed for

incorporation of covariate effects was proposed by Hastie and Tibshirani (1993) and

later used by Sentürk and Müller (2006). They developed this methodology in the

context of linear regression models. More recently, Cui et al. (2009) developed the

35



varying coefficient model methodology to solve the problem of covariate adjusted non-

linear regression.

Originally, Hastie and Tibshirani (1993) proposed the varying coefficient model

to incorporate effects of latent covariates in the parameters of the linear regression

problem. The framework suggested that the coefficients in a linear regression model

be allowed to vary as smooth functions of some covariates. So the modified linear

regression model in a simple Gaussian univariate case can be represented as

Y = X1β1(R1) + . . .+Xpβp(Rp) + ε, (4.3)

where X and R are two kinds of covariates in the model, explicit and implicit. The

response is modeled as a linear function of the explicit covariates but the coefficients

are functions of the implicit ones. So the parameters (β(.)) represent an interaction

between these two classes of covariates. The estimation procedure in this case used a

penalized spline approach to estimate the unknown functions (β(.)) which served as

estimates for effects of the explicit covariates (X) adjusted for the implicit covariates

(R). The paper also highlighted some general models that can be described through

the same formulation.

Sentürk and Müller (2006) and Cui et al. (2009) approached the problem from

the response modification angle. According to them, the response variable and the

predictors are modified by the latent covariates through multiplicative factors. Math-

ematically, the general non-linear model in this varying coefficient framework can be
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expressed as

Y = f(X, β) + ε, (4.4)

Ỹ = ψ(R)Y,

X̃r = φr(R)Xr, r = 1, . . . , q,

where Y is an unobservable response, X = (X1, . . . , Xq)
′ is an unobservable predictor,

β is the unknown model parameter, f is a known continuous function and Ỹ and X̃r

are the actual observable response and covariates. Further, ψ(.) and φr(.) are the

unknown distorting functions of the observed variable R. The methodology involves

estimation of the distorting function non-parametrically by regressing the predictors

and response on the distorting covariate, under some restricting conditions on the

expected values of ψ(R) and φr(R). The predicted response ( ˆ̃Y ) and predictors ( ˆ̃Xr)

are subsequently used in a non-linear parameter estimation framework to minimize a

L2 norm under (4.4).

All these state of the art methodologies in the area of covariate adjustment model

the response in terms of covariates. Also in case of the non-linear problem men-

tioned in Cui et al. (2009), the functional form of the regression function is given.

Further, the distorting functions are multiplicative in nature which might not be a

right choice in all situations. More importantly in all the cases, the dependence of

the response on the covariates is explicitly known. Also the model parameters here

directly measure the effect of the covariates on the response. Although these meth-

ods are effective ways to deal with covariate effects in non-linear regression models,

alternative methods must be explored to study covariate effects in models defined by

system of differential equations due to the peculiarities in the model structure and

formulation that distinguishes them from the usual non-linear regression model.
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4.1.2 Covariate Effects in PBPK Modeling

The focal point of a physiologically based pharmacokinetic model is a system of dif-

ferential equations that define the kinetics of a chemical in the physiology over time.

Covariates affecting the kinetics often take a secondary position in the analysis. In

a non-linear mixed effects framework or Bayesian approach to estimate parameters

in a system of differential equations, the key element is the numerical solution to the

ODE system. To include covariates in the analysis, the dependence of the system on

covariates must be explicitly known. This is often not the case in PBPK models.

Models defined by differential equations and in the special case of PBPK mod-

els, knowledge about the parameters determines the system completely. However,

in the analysis of covariate effects in PBPK models, the effect of covariates on the

parameters of interest are not often analyzed, even though this seems to be the more

intuitive way of differentiating between PBPK models for different groups based on

their covariate value. Most methods investigate the effect of covariates on the re-

sponse variable through a mixed effects or Bayesian framework. We look at a few

references to illustrate the state of the art in incorporation of covariate effects in

PBPK models, using both the non-linear least squares and the Bayesian approaches.

Joerger (2012) in a recent paper on pharmacokinetic modeling reviews the latest

approach to include covariates in a PBPK model for analysis using non-linear mixed

effects modeling techniques. The paper centers around the pharmacokinetic modeling

of anti-cancer drugs. Covariates are extremely important in cancer studies to provide

a more accurate modeling while taking into account the variability induced by the

variation in the covariate values. Some major covariates in pharmacokinetic studies

for anti-cancer drugs include weight, gender, glomerular filtration rate and body sur-

face area. The paper lists explicitly the relationships between the pharmacokinetic

parameters and some of the covariates (both categorical and continuous) of interest
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for specific anti-cancer drugs. For example, in the pharmacokinetics of busulfan in

children, the clearance parameter (CL) is related to weight (WT) in the following

way :

CL = 4.04L/h/20kg · (WT/20)0.74.

In case of a drug pemetrexed, the clearance parameter (CL) is mathematically related

to the glomerular filtration rate (GFR) according to the following :

CL = 43 + 47.2 · (GFR/92.6).

These structural dependencies of the parameters on the covariate are fed into the

non-linear mixed effects framework through the solution of the system of the dif-

ferential equations. As is evident from the above examples, specific covariates are

explicitly included in the PBPK model itself. Thus solving the system numerically

would provide an implicit functional dependence on the covariates. This approach to

covariate modeling is feasible only if the mathematical relationships are well known

from literature. For a more general covariate analysis of any system of differential

equations, this approach would not be applicable due to lack of knowledge about the

dependencies.

The Bayesian methodology for analyzing PBPK models also take covariates into

account in a similar way. In a recent publication, Mörk et al. (2009) describe a

Bayesian analysis of a washin-washout PBPK model for acetone. The authors use

a Bayesian hierarchical model to study the chemical kinetics for acetone in human

physiology. The PBPK model for acetone used in this paper describes the kinetics

of acetone through multiple tissue compartments and observes the concentration of

acetone in arterial blood and exhaled breath. Some of the covariates considered were

39



body weight, height and endogenous acetone levels. These covariates featured explic-

itly in the system of differential equations describing the PBPK model. The Bayesian

model assumptions used the solution of the differential equations as the location for

the distribution of the data points. Hence as in the non-linear mixed effects approach,

the covariate effects are only present if one knows the actual mathematical formula-

tion of the covariates in the PBPK model. Problems would arise if the covariates are

not present in the original system of differential equations.

In both the approaches described above, testing for particular covariate effects is

impossible due to the peculiarities in the formulation of the problem. In contrast to

a regression problem (Y = Xβ + ε), there are no parameters that describe the effect

of a covariate in a differential equation model. This makes it difficult to test whether

the covariates have an effect on the response. Further, if one is interested in testing

the effects of covariates on the parameters of interest in the PBPK model, these ap-

proaches are not appropriate. Hence tests of hypothesis on the effects of covariates

have not been formulated in case of models defined by system of differential equations

and is a relevant research problem.

To summarize, testing of covariate effects in non-linear models has been an es-

pecially challenging problem often due to lack of explicit structural form of depen-

dence. This deficiency is more stark in the case of models dictated by differential

equations. Especially in case of physiologically based pharmacokinetic models where

the unknown parameters are usually metabolic parameters or rate constants, the de-

pendence on covariates of interest are more difficult to infer. This calls for a more

structured methodology to test for covariate effects in PBPK models, and models

governed by differential equations in general. In this chapter, we propose a method

for covariate inclusion, estimation of the model parameters while accounting for the

covariates and testing of hypothesis about covariate effects in differential equation
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models, in light of the functional data analytic approach used in Chapter 3. The

methodology has been illustrated using simulated data examples and a real dataset

from a benzene inhalation study.

4.2 Problem Description

Models governed by differential equations are inherently different from usual statis-

tical models such as regression models in terms of covariate inclusion. Consider a

simple linear regression model given by

Y =Xβ + ε. (4.5)

Here covariates X are included explicitly in the model and the effect of the covariates

are expressed through the parameters β. This model thus makes it convenient to test

effects of the covariates on the response Y. However in case of the models we have

been considering, neither the parameters nor the covariates are as in (4.5). Consider

the model

Ż = F(Z, t,θ). (4.6)

The model parameter θ in (4.6) are physiological or metabolic parameters and not

indicative of the covariate effects. Another important aspect to be noted here is that

there are no explicit covariates in the differential equation model (4.6). These are the

two main questions that motivate the work done in this chapter.

The main objectives of this section is to explore methodology to incorporate co-

variates in differential equation models, specifically physiologically based pharmacoki-

netic (PBPK) models and develop methodology to investigate effect of covariates on
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the parameters and/or response variables, based on the functional data analytic esti-

mation methodology proposed in Chapter 3. This would facilitate the formulation for

measuring the effects of covariates in a sound statistical framework without having

to solve or simulate the system of differential equations.

4.2.1 Incorporation of Covariates

The primary question is the formulation of the problem as to how the covariates

feature in the model. The covariates may affect the parameters and/or response. In

this chapter, we develop a methodology where the model parameters are dependent

on the covariates. This would implicitly mean that the response or state variables

are dependent on the covariates only through the model parameters. Suppose there

are q covariates to be considered. Suppose θi = (θi1, . . . , θim)′ denote the m × 1

model parameter, ηi be a vector of order m(q + 1) × 1 and Ui be the (q + 1) × 1

covariate vector for the ith individual, taking into account the intercept term also.

Let {g : Rm(q+1) → Rm} be a one-one link function between θi and ηi. The proposed

formulation implies

θi = g(Ui,ηi). (4.7)

Hence the entire problem setup now focuses on ηi. The simplest model that we

can adopt is when g(.) is linear, that is θi = diag(Ui, . . . , Ui)ηi = Uiηi. Often in

PBPK models, the parameters of interest are metabolic parameters or rate constants

which are always strictly positive. Hence the dependence of model parameters on the

covariates need to be modeled differently. One such formulation can be log(θik) =

Uiηik, where θik and ηik are the kth component of θi and ηi respectively. This

approach to the problem provides a simple yet intuitive approach to address questions
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regarding the effect of covariates on model parameters.

The model in (4.6) is now expressed as

Żi = F(Zi, t, g(Ui,ηi)). (4.8)

The complete state variable Z is comprised of observable (Zo) and unobservable state

variables (Zu). Data on the observable state variables for the ith individual are

denoted by Yi. Hence, for each individual Yi = Zo
i + εi, where εi denotes the intra-

individual error for the ith individual with mean 0 and covariance matrix Σ(ρi). As

in the previous chapter we impose a structure on Σ(ρi) to obtain a parsimonious

representation of intra-individual variability.

Using basis function expansion for the state variables Zi, we obtain a similar

individual parameter estimation procedure as described in Section 3.2.1. Let the

basis functional expansion of Zi be denoted by Z̃i = Φiαi, where Φi is a function of

time. Hence both Z̃o
i and Z̃u

i re functions of αi. We have to minimize the distance

between the data and the approximation while ensuring that the approximations

minimize the error in the differential equations. Therefore, the objective functions

for estimation of the transformed parameters are

S1(αi, ρi, λi) =(Yi − Z̃o
i (αi))

′Σ(ρi)
−1(Yi − Z̃o

i (αi)) (4.9)

+ λi

∫
(Φ̇iαi − F(Φiαi, t, g(Ui,ηi)))

′(Φ̇iαi − F(Φiαi, t, g(Ui,ηi)))dt

and

S2(ηi) = (Yi − ̂̃Zo
i (ηi))

′Σ(ρ̂i(ηi))
−1(Yi − ̂̃Zo

i (ηi)). (4.10)
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In the individual estimation procedure, the intermediate parameter estimates, α̂i, ρ̂i

and λ̂i are all functions of ηi and Ui. Hence the predicted value of Z̃o
i is a function

of ηi. We minimize Equations (4.10) to obtain the estimated parameters, denoted as

η̂i, which are functions of the individual data Yi and the individual covariates Ui.

Hence using delta method, we have

η̂i(Yi, Ui) ' η̂i(Z
o
i , Ui) + (Yi − Zo

i )
dη̂i(Yi, Ui)

dYi

∣∣∣
Yi=Zo

i

.

Cov(η̂i(Yi, Ui)) '
[dη̂i(Yi, Ui)

dYi

∣∣∣
Yi=Zo

i

]
Cov(Yi)

[dη̂i(Yi, Ui)

dYi

∣∣∣
Yi=Zo

i

]′
.

Corresponding estimate of the actual model parameters is θ̂i = g(Ui, η̂i) and by

delta method, it’s asymptotic covariance is given by [g′(Ui, η̂i)]Cov(η̂i,Ui)[g
′(Ui, η̂i)]

′,

where g′(.) is the derivative of g(.) with respect to ηi.

We assume that the conditional distribution of η̂i|ηi have mean ηi and covariance( dη̂i

dZo
i

)
Σ̂i

( dη̂i

dZo
i

)′
(denoted by Γ(ηi, Ui)), which depends on the covariate Ui for the ith

individual and the true individual parameter ηi. Also to indicate that the individuals

are sampled from a common population, we assume that the true individual parame-

ter ηi has a distribution with mean η and covariance matrix W. Hence the marginal

distribution of η̂i is centered at η and has a covariance matrix W + Eη[Γ(ηi, Ui)],

which is a function of the population level parameter η and the individual covariate

value Ui. Hence marginally the estimated individual parameter values are indepen-

dent but not identically distributed. As for the actual model parameters θi, they are

not identically distributed as in the previous chapter.

We shall use the proposed methodology to perform population estimation on the

modified parameters ηi. Consider the following model for η̂i.

η̂i = η + ζi, (4.11)
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where ζi are independent with mean 0 and covariance W + Eη[Γ(ηi, Ui)]. For nota-

tional simplicity, we denote Eη[Γ(ηi, Ui)] by Ωi(η).

Stacking the n linear models for η̂i we get


η̂1

...

η̂n

 = 1n ⊗ η + ζ, (4.12)

where ζ is the vector containing ζ1, . . . , ζn. Further,

E[ζ] = 1n ⊗ 0.

Cov[ζ] =



W + Ω1(η) 0 · · · 0

0 W + Ω2(η) · · · 0

...
...

. . .
...

0 0 · · · W + Ωn(η)



= I⊗W +



Ω1(η) 0 · · · 0

0 Ω2(η) · · · 0

...
...

. . .
...

0 0 · · · Ωn(η)



= V1 + V2.

The MINQUE theory for estimation of variance components provides an estimator for

W and η, which are the population level parameters. We use the iterative estimation
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methodology described in Chapter 3 to obtain the population estimators, Ŵ and η̂.

Estimator of the covariance of η̂ is Ŵ + 1
n

∑n
i=1 Ω̂i, denoted by V̂. The methodology

is illustrated in Chapter 5 using simulated data examples and a real data example

from the benzene inhalation experiment.

4.2.2 Asymptotic Theory for the Proposed Estimators

First, we consider the asymptotic theory for individual parameter estimation. It can

be formulated in a similar vein as in Chapter 3 as a constrained non-linear parameter

estimation problem. The consistency of the estimated individual parameter values

(η̂i) and the associated covariance matrix is Γ(ηi, Ui) is shown under the Assumptions

B.

Assumptions B:

(B.1) The components of the model function F(.) are continuous and twice

differentiable for η0 ∈ B, a closed ball, where η0 is the true parameter

vector.

(B.2) The matrix of partial derivatives D(η) =
dF

dη
is of full rank with

probability 1 in a neighborhood of η0.

(B.3) The matrix Bt = H
−1/2
t Λ(t)′Λ(t)H

−1/2
t and B−1

t converges to positive

definite matrices for large t, where Ht = diag(hiit) is a sequence

of diagonal matrices such that hiit →∞ as t→∞.

Lemma 4.1 Under Assumptions B, H
1/2
t (η̂i − ηi) = Op(1) as t→∞.

Using Lemma 2.1 and delta method, the individual covariance matrix Γ(η̂i, Ui) con-

verges to Γ(ηi, Ui) in probability.
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Lemma 4.2 Ω̂i
pr−→ Ωi as t→∞ for all i.

Proof To prove this lemma we need the following compactness condition on the

individual covariance matrices.

E
[
sup|ε|<δ‖Γ′(ηi + ε, Ui)− Γ′(ηi, Ui)‖

]
→ 0, as δ → 0,

where Γ′(.) represents the derivative of Γ(.) with respect to ηi. The above condition

requires that
∥∥∥∂2Γ(ηi,Ui)

∂η2
i

∥∥∥ is bounded. Under these conditions,

Ω̂i = E(Γ(η̂i, Ui))

= E[Γ(η̂i − ηi + ηi, Ui)]

= E[Γ(ηi, Ui)] + E[E((η̂i − ηi)Γ
′(ηi, Ui))|ηi]

→ E[Γ(ηi, Ui)] as t→∞ (Using Lemma 2.1)

= Ωi

We now explore the large sample theory for the estimator of the population pa-

rameter η under the model specified by (4.12). We rewrite the model as

y∗ = M∗η + ζ∗, (4.13)

where

y∗ = (V1 + V2)−1/2(η̂1, . . . , η̂n)′,

M∗ = (V1 + V2)−1/2[I : · · · : I]′ =
n∑
i=1

(W + Ωi)
−1/2

and

ζ∗ = (V1 + V2)−1/2ζ.
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We assume here that η is independent of ζ∗ for developing the theory. Under Model

4.13, the generalized least square estimate of η is given by

η̃ = (M∗′M∗)−1M∗′y∗

= η + (M∗′M∗)−1M∗′ζ∗

= η + (
n∑
i=1

(W + Ωi)
−1)−1

n∑
i=1

(W + Ωi)
−1ζi

Let m∗i be the ith column of M∗. If the variance components are known in this

framework, under the following conditions,

max1≤i≤n
[
m∗i
′(

n∑
i=1

(W + Ωi)
−1)m∗i

]
→ 0 as n→∞, and

lim
n→∞

n−1(
n∑
i=1

(W + Ωi)
−1) = G(finite and positive definite),

the estimate of η, denoted by η̃ is asymptotically normal and

√
nt(η̃ − η)

D−→ N (0,G−1)

However in the covariate setup explained earlier, the variance components V1 and V2

are unknown functions of η and the covariates Ui, and is estimated by V̂. Consider

the estimator η̂ with the plug-in estimator of the covariance.

η̂ = η +
( n∑
i=1

(Ŵ + Ω̂i)
−1
)−1

n∑
i=1

(Ŵ + Ω̂i)
−1ζi

Theorem 4.1 : Under the model in (4.7), let η̂ be the proposed estimator. Under

the above Assumption B,
√
nt(η̂ − η̃)

pr−→ 0 as nt→∞.
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Proof :

η̂ − η̃ =
[ n∑
i=1

(Ŵ + Ω̂i)
−1)−1 −

n∑
i=1

(W + Ωi)
−1)−1

]
[I′ : · · · : I′]V̂−1V1/2ζ∗

+
( n∑
i=1

(W + Ωi)
−1
)−1

[I′ : · · · : I′][V̂−1 −V−1]V1/2ζ∗.

We need two conditions for the result to hold :

(i) Largest eigenvalue of VV̂−1 are Op(1).

(ii) Largest eigenvalue of
(∑n

i=1 (W + Ωi)
−1
)(∑n

i=1 (Ŵ + Ω̂i)
−1
)−1

are op(1).

To evaluate these conditions we need to prove the following:

max
1≤i≤n

‖Ω−1
i Ω̂i − I‖ → 0 as t, n→∞.

Consider any two non-null vectors x and y.Then,

x′
[
Ω−1
i Ω̂i − I

]
y

'x′
[
Ω−1
i {Ωi + E[(η̂i − ηi)Γ

′(ηi)]} − I
]
y

=x′E
[
E{(η̂i − ηi)Γ

′(ηi)|ηi}
]
y

=x′E
[
E{(η̂i − ηi)|ηi}Γ′(ηi)

]
y

→0. [Using Lemma 2.1]

This implies (W + Ωi)
−1(Ŵ + Ω̂i)− Ip

pr−→ 0. Hence both conditions (i) and (ii) hold

and the theorem holds.
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4.2.3 Testing Covariate Effects

Consider a study on multiple individuals that measures concentration of a chemical in

blood. We are interested in fitting a physiologically based pharmacokinetic (PBPK)

model to these data. The individuals in the study may have different values of the

covariates such as age, weight, gender or dose. Our objective is to test whether the

model parameter (and consequently the PBPK model) varies with the values of the

covariates. For example, if θm and θf represent the model parameters for male and

female subjects, a question of interest would be to test whether they are equal. In

case of a continuous covariate such as dose, one might be interested to test whether

the parameters change with dose.

Suppose we are interested in testing whether the parameters are dependent on the

1× q covariate vector Ui. Let θi = (θi1, . . . , θim) be a m× 1 model parameter vector

for the ith individual. The hypothesized model with a linear link function is

θik = η0
ik + Uiη

∗
ik, k = 1, . . . ,m and i = 1, . . . , n.

Hence,

θi = η0
i + diag(U1, . . . , Ui)η

∗
i

= η0
i + Uiη

∗
i ,

where η∗i is of order mq × 1.

We assume that the true parameters ηi are independent and identically distributed

with mean η = (η0,η∗)′ and covariance matrix W. Accordingly, a general test of

hypothesis that no covariate effect is present can be written as H0 : Lη = 0 against

Ha : Lη 6= 0, where L is an appropriately chosen matrix. Consider the marginal

distribution of η̂i, which has mean η and covariance W +Ωi. The test statistic based
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on the η̂is would test whether these estimated parameter values are coming from a

distribution with a mean that has η∗ as 0.

The test statistic for such a test is given by

F =
(Lη̂ − Lη)′(Ĉov(η̂))−1(Lη̂ − Lη)

mq
,

where Ĉov(η̂) = Ŵ + 1
n

∑n
i=1 Ω̂i. Under H0,

F =
η̂′L′(Ĉov(η̂))−1Lη̂

mq

H0∼ Fmq,n−mq.

We shall reject H0 at 100α% level of significance if the observed value of the test

statistic is greater than Fmq,n−mq(α).

4.3 Discussion

We have presented a methodology to evaluate effects of covariates on models governed

by differential equations. We extend the functional data analytic estimation method-

ology presented in Chapter 3 to a covariate testing framework. Both estimation and

testing of hypotheses for the parameters are developed in the presence of covariates.

We overcome the usual difficulties in testing for covariate effects in such complicated

models where the explicit form of dependence of response on the covariates is not

available. Since the solution of the system of differential equations is not required in

the proposed methodology, the covariates do not need to be included in the model. A

linear dependence of the model parameters on the covariates is used in this work. Due

to this approach, tests of hypotheses about covariate effects can be performed more

directly than in the approaches for non-linear regression. However, a non-parametric

51



methodology for testing covariate effects may be explored if no specific form of the

functional dependence is assumed.

52



Chapter 5

DATA EXAMPLES :
SIMULATED AND REAL DATA

In this section we present all the data examples, both simulated and real, to illustrate

the methodologies described in the previous chapters. The estimation methodology

described in Chapter 3 is illustrated using simulated data from the benzene PBPK

model and the benzene inhalation data. The methodology presented in Chapter 4

is illustrated using simulated data from a two compartment pharmacokinetic model

and is also tested on the benzene inhalation data example.

5.1 Simulated Example : Based on Benzene PBPK Model

In this section, we present simulated data based on the PBPK model of benzene

described earlier. The simulated example is designed according to the real data

example used in this paper. We simulated a random sample of four subjects such

that each subject is exposed to 161µg/m3 benzene through inhalation for two hours,

following which the subjects were provided with clean breathing air. Concentration

of benzene in exhaled breath at 5, 15, 30, 60, 90, 120 and 150 minutes post-exposure

is the response variable for each individual. The PBPK model is described in Section

2.1 and Equations (2.2)-(2.8) represent the differential equation model of interest.



We obtain population parameter estimates of the metabolic parameters along with

estimates of their variability.

We treat the maximum metabolic rates in liver and bone marrow as unknown

parameters. So θ = (Vmax(liv), Vmax(bm), km(liv), km(bm))
′ and it’s true population value

is taken as θ0 = (387, 80, 1.2, 17)′. We assume that the individual parameter values

θi
iid∼ N4

(
θ0, diag(50, 3, .01, .1) + J

)
, where J is a matrix of 1’s.

Concentration in venous blood (Xi) is obtained by solving the benzene PBPK

model equations given by Equations (2.2)-(2.8) using θi as the parameter. Finally

the data Yi is generated from N7(Xi,R). Here R is an intra-individual covariance

structure. We choose the (t, t′)th element of R as rt,t′ = 5 ∗ (0.2)|t−t
′|. We look at 200

datasets consisting of four individuals each.

Linear combinations of nine B-splines of order four are used to approximate the

concentration of benzene in each compartment and the metabolites concentration.

Simulated annealing is applied to obtain the basis and model parameter estimates for

each individual. We use the iterative methodology described in Section 3.2.2 to obtain

the population parameter estimates and the corresponding variability estimates.

5.1.1 Results of Simulation Study

Table 5.1: Population parameter estimation results

Vmax(liv) Vmax(bm) km(liv) km(bm)

Units µg/min µg/min µg/l µg/l
True value 387.5 80 1.2 17
Estimate 386.4 80.05 1.33 12.99
Rel. MSE 1.13 0.67 0.87 0.76
Rel. Bias -0.58 0.05 0.11 -0.27

Results of the simulation study, summarized in Table 5.1, suggest that the pro-

posed methodology has a small relative bias and relative MSE (relative to true value
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of the parameter) for a sample size as small as 5.

The estimated coverage probability for a 90% joint confidence region of θ centered

at θ̂ is 0.915 (s.e.= 0.0197). This suggests that even with a sample size as small as

five the proposed methodology yields reasonably accurate confidence regions for the

population parameter.

5.2 Real Data : Benzene Inhalation Experiment

Benzene is an ubiquitous chemical reported to be carcinogenic to humans and animals.

It is an important study chemical due to its extensive industrial usage and production

leading to widespread occupational exposure. Certain sources of non-occupational

exposure have also been identified, such as automobile exhaust and cigarette smoke.

Epidemiological evidence suggests an increased incidence of leukemia due to benzene

and its metabolites. It is of interest to us to investigate the mode of action of ben-

zene in human physiology. Several pharmacokinetic models have been proposed to

model the flow of benzene (Travis et al. (1990), Woodruff and Bois (1993)). These

are compartmental models with main tissues and metabolizing sites serving as the

compartments and blood acting as the mode of delivery within these tissues. The five

tissue groups are (1) Richly perfused tissues, (2) Slowly perfused tissues, (3) Fat, (4)

Liver and (5) Bone marrow. In case of a benzene pharmacokinetic model, it is com-

mon practice to include bone marrow as a separate tissue compartment since it is a

potential metabolizing site for a carcinogen like benzene. A schematic representation

of one such model is shown in Figure 1.1.

The differential equations describing the benzene PBPK model are given by (2.2)-

(2.8). We are using data from a benzene inhalation experiment on four individuals

where each individual was exposed to certain concentration of benzene through in-

haled air for two hours. At the end of two hours, benzene exposure was stopped and
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subjects were provided clean breathing air. Benzene concentrations (in µg/m3) were

measured in exhaled breath at 5, 15, 30, 60, 90, 120 and 150 minutes post exposure.

We use the benzene PBPK model mentioned earlier. The data are shown in Figure

5.1.
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Figure 5.1: Exhaled breath data for benzene inhalation experiment. Concentration
of benzene in exhaled breath (in µg/m3) was measured post-exposure. The black
dotted line represents the exposure stoppage time of 120 minutes.

Our objective of interest is to estimate and infer about the parameters describing

the physiologically based pharmacokinetic model using the exhaled breath concentra-

tion data.

5.2.1 Method and Results

For individual parameter estimation, nine B-splines of order four are used for approx-

imating each of the six compartments in the model. The observed time points are

used as the knots for fitting splines. The regularization parameter, λ, is taken to be

unknown and estimated for each individual within the individual estimation method-

ology. Using the estimated θ̂i, we obtain the following fits from the solution of the

system of differential equations. In Table 5.2, we present the estimated parameter
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Figure 5.2: Individual parameter fits showing the estimated exhaled breath concen-
tration (in µg/m3) of benzene (solid black lines) for the four individuals obtained by
solving the differential equations with the estimated individual parameter values.

values for each individual in the study.

Table 5.2: Estimated values of the metabolic parameters for each individual in the
study.

Vmax(liv) Vmax(bm) km(liv) km(bm)

Individual 1 503.45 99.19 1.28 3.59
Individual 2 146.82 20.3 0.88 62.67
Individual 3 399.95 99.13 0.26 0.49
Individual 4 499.45 98.37 2.45 1.45

The estimated values of the intra-individual correlation coefficients ρi for the four

subjects are 0.146, 0.2434, 0.623 and 0.025. Estimated values of λ for the four individ-

uals are 2.38×10−5, 1.98×10−4, 1.06×10−4 and 1.37×10−6. The population parameter

estimates obtained are as follows:

V̂max(liv) = 387.41 µg/min, V̂max(bm) = 79.25 µg/min, k̂m(liv) = 1.22 µg/l, k̂m(bm) =

17.04 µg/l.
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V̂θ =



20556.87 4957.96 −307.30 471.16

4957.96 1292.01 −78.07 77.02

−307.30 −78.07 4.77 −7.08

471.16 77.02 −7.08 190.22


.

Consider an individual of weight 130 lbs given an exposure concentration of 161

µg/m3 for two hours. The post exposure population curve for such an individual with

the prediction intervals at observed time points are shown in Figure 5.3.
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Figure 5.3: Population fitted exhaled breath concentration of benzene with 95% pre-
diction intervals. The solid curve is obtained from the solution of the system of
differential equations in (2.2)-(2.8) using the value of the population parameter esti-
mate. The vertical lines represent the prediction intervals.

We analyze the predicted behavior of benzene as explained by the predicted sys-

tem of differential equations, obtained through the described methodology, in Figure

5.4. We consider the post exposure concentration of benzene in the different com-

partments of the PBPK model and exhaled breath across time with the solution of

the PBPK model using the estimated population parameters.

We investigate a few important features of the predicted model. For all the com-

partments and exhaled breath, the concentration reaches a peak at 120 minutes and
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Figure 5.4: Predicted compartmental concentrations (in µg/m3) over time. These
plots are obtained by solving the differential equation model given by (2.2)-(2.8) with
the estimated population model parameter estimates.

decreases post exposure. These plots give us an idea as to how and where the benzene

is being processed. Both fat and slowly perfused compartments show a slow decrease

in concentration than others, indicating an affinity of benzene towards these class

of tissues. As for the metabolizing sites, liver and bone marrow, the concentrations

decrease rapidly. This could indicate formation of metabolites of benzene in these

two sites. Also the rate of metabolization appears to be faster in liver than in bone

marrow. The ratio of the estimates of Vmax to those of km for the two metaboliz-

ing sites is 317.5 for liver and 4.66 for bone marrow. This might indicate different

enzymatic processes and activity in the two sites. The information here provides an

insight into the kinetic behavior of benzene which was one of our main objectives.

Further data on enzymatic reactions or metabolite concentrations could enhance the

quality of the inference in the given setup.

59



5.3 Simulated Data : Covariate Effects in a Compartmental
Model

We present here a simulated data example based on a compartmental pharmacoki-

netic model to study the effect of covariates and illustrate the estimation methodology

presented in Chapter 4.

5.3.1 Pharmacokinetic Model Description

The model used for illustration is a two compartment pharmacokinetic model repre-

sented by Figure 5.5. The chemical is being absorbed through Compartment 1. Only

Compartment 1 

Compartment 2 

Vmax, km 

ka k10 
cin 

Figure 5.5: A two compartment pharmacokinetic model with linear and non-linear
kinetics.

a fraction of the given chemical concentration gets absorbed in Compartment 1 at a

rate of ka. The chemical gets removed from Compartment 1 at a rate k10. Further,

there is a formation of metabolites according to a non-linear Michaelis-Menten kinet-

ics in Compartment 2.
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The system of differential equations describing the compartmental model shown

in Figure 5.5 is given by (5.1). The rates of change in concentration of chemical in

the two compartments (c1, c2) and the excreted concentration (c3) are given by

Compartment 1 :
dc1

dt
= kacin − k10c1 −

Vmaxc1

km + c1

,

Compartment 2 :
dc2

dt
=

Vmaxc1

km + c1

,

Excreted chemical :
dc3

dt
= k10c1,


ODE Model (5.1)

where cin represents the exposure concentration which is non-zero up to four hours of

exposure and zero after that. The parameters k10 and ka are assumed to be known

and fixed at 0.2 and 0.9 respectively. The metabolic parameters Vmax and km com-

prise the unknown parameters (θ).

5.3.2 Study Design for Simulations

For simulating a dataset based on covariates, we design a study for n(= 5) individuals.

Each of these n individuals are subjected to one of the four exposure concentrations

(3, 5, 7, 10 mg/L) of interest. A continuous exposure is provided for four hours and

after that the exposure is stopped. The concentration in Compartment 1 is observed

both during and after exposure for each subject at 1, 1.5, 2, 3, 4, 5 and 7 hours

from the beginning of the study. The concentration in Compartment 1 is the only

observable quantity. To build a covariate effect of exposure concentration, we assume

that the unknown parameters are functions of the exposure concentration (excon) for
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each individual,

log(Vmax(i)) = η0v + η1v ∗ exconi

log(km(i)) = η0k + η1k ∗ exconi.

 Covariate effects. (5.2)

The true population parameter values for η = (η0v, η1v, η0k, η1k)
′ is (0.50, 0.20, 1.00, 0.20)′.

Figure 5.6 shows the behavior of the observable state variable under the above covari-

ate model for different exposure concentrations. The new individual parameters (ηi)
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Figure 5.6: The simulated behavior of the observable state variable (Compartment 1)
for different exposure concentrations under a log-linear covariate model for the two
compartment pharmacokinetic model. Exposure concentrations (excon) are in units
of mg/L.

are generated from a four variate normal distribution with mean (0.50, 0.20, 1, 0.20)′

and covariance matrix W where

W =



0.01 0.001 0.005 0

0.001 0.01 0 0.005

0.005 0 0.05 0.001

0 0.005 0.001 0.01


.
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The generated parameter values (ηi) are used in (5.2) to solve the system of ODEs

(5.1) to obtain a location parameter for the response distribution. To introduce

intra-individual variability, a random multivariate normal error term with mean 0

and covariance matrix Σ of order seven is added to the mean response for each

individual. The (k, k′)th element of Σ is

Σkk′ =


√
sk k = k′,√
(sksk′)0.1

|tk−tk′ | k 6= k′,

where k, k′ = 1, . . . , 7 and s = (s1, . . . , s7)′ = (.05, .3, .3, .3, .4, .001, .00001)′. The

simulations were repeated for 100 datasets, with five individuals in each, based on

the same study design.

5.3.3 Results of the Simulated Example

Individual and population parameter estimation is carried out according to the method-

ology described in Chapter 4. Linear combinations of nine B-spline functions of order

four are used to approximate the state variables. The results of the population esti-

mation are summarized in Table 5.3. The estimated coverage probability for a 90%

Table 5.3: Population parameter estimation results in simulation of covariate effects.

η0v η1v η0k η1k

True value 0.50 0.20 1.00 0.20
Estimate 0.507 0.213 0.984 0.21

Rel. MSE (%) 1.5 1.72 3.16 1.40
Rel. Bias (%) 1.46 6.43 -1.56 4.82

joint confidence region of η centered at η̂ is 0.925 (s.e.= 0.0263). This suggests that

even with a sample size as small as five the proposed methodology yields reasonably

accurate confidence regions for the population parameter.
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5.4 Benzene Inhalation Experiment : Covariate Analysis

We consider the experiment conducted by Yu (1995) on Benzene inhalation to study

the effect of covariates on kinetics of benzene. We consider the PBPK model given

by (2.2)-(2.8) as the system for modeling the kinetic process. Recall that the PBPK

model does not specifically mention any covariates that may affect the parameters

involved. For the purpose of illustration, we take exposure concentration as a contin-

uous covariate in this experiment.

In this experiment, four individuals were given four different exposure concen-

trations of benzene through inhaled air for two hours, following which the exposure

was stopped and concentration of benzene was measured in exhaled breath at specific

time points. Benzene concentrations (in µg/m3) were measured in exhaled breath at

5, 15, 30, 60, 90, 120 and 150 minutes post exposure. We are interested in inferring

about the parameters in the PBPK model while adjusting for covariates. We consider

the metabolic parameters Vmax(liv) and Vmax(bm) as the unknown parameters in the

PBPK model. All other parameters are assumed to be known.

We assume the following model to incorporate covariates in the PBPK model.

Vmax(liv) = η01 + η11 ∗ excon,

Vmax(bm) = η02 + η12 ∗ excon,

 (5.3)

where excon represents exposure concentration. Hence the new parameter to be

estimated is η = (η01, η11, η02, η12)′ for each of the four individuals. The individual

estimation results are shown in Table 5.4.

We use the individual parameter estimates to perform a population estimation for

η. Using the iterative algorithm mentioned in Chapter 4 and Chapter 5, we obtain

the population parameter estimates as η̂0v = 387.57, η̂1v = 0.0093, η̂0k = 80.02 and
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Table 5.4: Individual parameter estimation results for benzene data with dose as a
continuous covariate.

η0v η1v η0k η1k

Individual 1 499.85 0.0059 99.85 0.0049
Individual 2 150.45 0.0048 20.22 0.0070
Individual 3 399.99 0.0048 100.00 0.0051
Individual 4 499.98 0.0216 100.02 0.0043

η̂1k = 0.0053.

The estimated population variability is given by the matrix



20405.80 0.504 4725.55 −0.14

0.504 7.565275× 10−5 0.090 −1.35× 10−5

4725.55 0.090 1192.03 −0.033

−0.14 −1.35× 10−5 −0.033 2.87× 10−5


.

The population predicted curve for a typical subject with weight of 130 lbs given

an exposure concentration of 161.5 µg/m3 under the same study scheme is shown in

Figure 5.7 with 95% prediction intervals at the observed time points.

In order to test whether the covariate effects estimated in this real example are

significant, we use the Wald type test developed in Chapter 4. The test of hypothesis

can be written as

H0 :

η1v

η1k

 =

0

0

 .

We can rewrite the null hypothesis as H0 : Lη = 0, where L =

0 1 0 0

0 0 0 1

.

The test statistic is F = (Lη̂−Lη)′(Ĉov(η̂))−1(Lη̂−Lη)
2

. The observed value of F under

H0 is 1.495. Comparing with the null distribution which is F2,4−2, observed F is
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Figure 5.7: Population predicted exhaled breath concentration of benzene along with
95% prediction intervals for a typical person given an exposure concentration of
161.5µg/m3 of benzene. The vertical black solid lines represent the 95% prediction
intervals.

statistically insignificant at 95% level of significance. Hence in light of the given

sample and linear covariate model, we may conclude that exposure concentration

does not affect the metabolic parameters significantly. However, in cases where more

data are available, we may consider more detailed models with more parameters to

map the relation between the model parameters and covariates.

5.5 Discussion

In this chapter, numerical results from the simulated examples and the real data ap-

plications have been presented. First, we summarize the findings from the numerical

examples to illustrate the methodology developed in Chapter 3. From the results of

both the simulated data example based on the benzene PBPK model and the real

benzene inhalation data, we observe that the individual parameter estimation pro-

vides close basis approximations to the observed data points. We obtained estimates

of both intra and inter-individual variability along with the individual and population
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parameter estimates. We also construct valid prediction intervals for the population

curve at the observed time points thus providing a complete statistical framework for

this problem. The methodology does away with the need to solve the system of dif-

ferential equation in order to obtain parameter estimates. This reduces computation

time considerably and also takes into account the fact that the differential equations

may not capture underlying biological phenomenon accurately. Using the popula-

tion parameter estimates, we have shown the prediction for the chemical kinetics of

benzene in observable as well as unobservable compartments using the population

parameter estimates. The methodology has been shown to work well for sample sizes

as small as four and this is an advantage in many toxicological studies, where number

of subjects are small.

The proposed methodology also provides a foundation for inclusion and estimation

of covariate effects and thus provides a feasible alternative to existing methodologies

for models governed by system of differential equations. This has been illustrated

through the simulated data examples and the real benzene inhalation data. We pre-

sented simulated examples based on a compartmental model using covariates. In case

of a single covariate, the results provide small relative mean squared errors and biases

for the true population values. Hence we can capture the covariate effects well in

case they are truly affecting the parameter values and hence the differential equation

model. The methodology when applied to the benzene inhalation data with a linear

model of dependence, does not reveal any significant effect of exposure concentration

on the maximum metabolic rates for bone marrow and liver.
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Chapter 6

FUTURE RESEARCH
DIRECTIONS

Keeping with the present and planned work on developing methodology for modeling

systems of differential equations, we present in this chapter some directions for fu-

ture research some of which can serve as ideas for postdoctoral work. The objective

of this dissertation was to develop a formal methodology for analyzing systems gov-

erned by differential equations which can be applied to a variety of areas. The current

work tries to estimate and infer about the population model parameters taking into

account the intra and inter-individual variability that may exist in the data. The

underlying system/phenomenon was represented using a multi-compartment system

of ordinary differential equations (ODE). Individuals were observed for measurements

on one or more of the compartments over time. The methodology consisted of individ-

ual parameter estimation and population parameter estimation using the estimated

individual parameter values under a hierarchical model structure. The inclusion and

testing of covariates in models defined by differential equations is also accomplished

in this work. A functional data analytic methodology has been developed in this

work motivated by physiologically based pharmacokinetic modeling which enhances



the literature on analysis of such models. The statistical framework allows for infer-

ence avoiding the solution for differential equations which is novel in case of PK and

PBPK modeling situations. Toxicologists can use the methodology to infer about

individuals separately as well as the population while making minimal assumptions

about the distributions of the data even for small sample sizes, while obtaining valid

variance component estimates. Apart from toxicology and pharmacology, the pro-

posed methodology has potential for use in several other fields that involve modeling

using differential equations to infer about individual and population patterns.

The methods developed here are for a general class of models defined by a sys-

tem of ordinary differential equations. Often in modeling of biological, chemical or

environmental phenomena, other classes of differential equations such as partial dif-

ferential equations (PDE), stochastic differential equations (SDE) or time delayed

differential equations are used for mathematical modeling. Each of these classes of

equation have different structures and hence the statistical methodology for analyzing

these systems needs attention. The functional data analytic methodology is yet to be

extended to apply to such situations and hence serves as an important methodological

area of research.

Often complex networks comprise of several interconnected modules where each

module can be modeled using systems of differential equations. For instance, in

studying the pharmacokinetics of a pregnant mother, one has to take into account

the chemical kinetics in the fetus. Also in metabolic pathways, different chemical

processes take place simultaneously or in a synchronized manner. For example, in

different metabolizing sites of the human body, several enzymes metabolize various

chemicals. In order to achieve a better understanding of chemical kinetics and mech-

anism of action, these information need to be incorporated along with pharmacoki-

netics. Developing a statistical methodology for such problems require the synthesis
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of results from the differential equations systems defining different modules in the

system.

Physiologically based pharmacokinetic modeling in itself presents ample opportu-

nities for methodological research. Design of studies for PBPK model analysis is one

of the valid questions. There are several unobserved compartments with one or two

observable response variables in a typical pharmacokinetic study. This often poses

a problem in analyzing high dimensional ODEs especially in genetic models. More

research is needed to develop better designs for analysis using such models.

Exposure to harmful chemicals is often occupational and long-term in nature for

human subjects. In some other cases, there may also be exposure to mixture of chem-

icals over a certain period of time. For instance, exposure to pollutants in air involves

exposure to different kinds of chemical. Also there may exist multiple routes of expo-

sure like dermal, ingestion and inhalation. These situations call for more realistic and

complex models that account for such varied conditions. The proposed methodology

need to be modified for analyzing such models and infer about the relative harms

being caused by these exposures.

Analysis of gene regulatory networks (GRN) is a flourishing area of research. Or-

dinary differential equations serve as a major technique in modeling regulatory net-

works. A recent paper (Polynikis et al. 2009) compares different modeling approaches

for modeling GRN. Simplified ODE models based on quasi-steady-state assumption of

mRNA concentrations and non-linear Hill functions are used to describe the processes

of translation, transcription and degradation. A sample ODE system from (Polynikis

et al. 2009) is shown below. For each gene i, two ODEs are used to describe the

rate of change in transcribed mRNA concentration (ri) and the rate of change in the
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translated protein (pi).

Transcription :
dri
dt

= F (fRi (p1), . . . , fRi (pn))− γiri,

Translation :
dpi
dt

= fPi (ri)− δipi,

where i = 1, . . . , n. The functions fRi (pi) describe the dependence of mRNA concen-

tration on protein concentration and are usually non-linear. Translation is described

by the function fPi (ri). The other terms represent the degradation of mRNA and

protein. The structure of the problem lends itself perfectly to the functional data an-

alytic methodology for estimation of the parameters in this model. However, the high

dimensionality of the problem needs to be balanced with the data available since gene

expression profiles may not be available for all genes. The methodology developed

in this dissertation may be used to identify or reconstruct the regulatory networks

involving the candidate genes, taking into account the covariates that may occur in

a genetic study.

Similarly, study of viral dynamics poses a problem that can be modeled using

systems of differential equations and hence is a potential area of application for the

proposed methodology. Consider a group of subjects being treated for influenza. We

might be interested in studying the dynamics of the infection by flu virus and its

effects on the human physiology from the start of treatment till remission or death.

A system of differential equations can be formulated to capture the rates of change

in the densities of näıve cells, infected cells and viral load. The infection process

involves näıve cells getting infected by the virus, and these infected cells may die or

recover over time. These processes may be affected by the rates of infection, rate

of death and/or the factors determining the proliferation of the virus. Individual

immune response and treatment received in form of medications also have an effect
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on infections. Developing and analyzing such ODE based models in such fields would

help in enhancing and validating the methodology developed in this dissertation.
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