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1.0 INTRODUCnON

1.1 Use of Aquifi^ Tracer Tests

Due to the increasing number of lawsuits being ffled related to groundwater contamination sites,

predictions concerning the source of the contamination, its present course and future destination

have become the bread and butter of the subsurface hydrology business. In order to procure funding

for most contamination remediation efforts, culpable parties and those at risk by the migration of

the plume must be identified. The tools most often used to make these predictions are groundwater

models.

Mathematical groundwater models require that the user input many site specific aquifer parameters

that are used to describe the contaminant transport hydraulics and the subsurface conditions over

a site. These parameters include hydraulic conductivity, hydrodynamic dispersion, and contaminant

sorption and decay, either chemical or biological.    ^

The hydraulic conductivity of an aquifer is a property of a water bearing formation that is defined

as the capacity of a porous medium to transmit water. The conductivity when used in model

calculations with the gradient and porosity determines the average direction and rate of groundwater

flow. The transport of solutes in the direction of the flowing groundwater is called advection.

Hydraulic conductivity can vary over a site not only in a horizontal plane but also vertically. In

order to obtain accurate modeling results over a large area with different conductivities, these

variations should be taken into account

Hydrodynamic dispersion describes the spreading and dilution of a contaminant fi'om the path that

it would be expected to follow according to the bulk motion of the flowing groundwater. The

spreading can occur in the longitudinal direction (the direction of the flowing groundwater) and in

1
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a transverse direction (perpendicular to the principle direction of flow). Hydrodynamic dispersion

occurs due to mechanical mixing of the groundwater during advection and due to molecular diffusion
of the contaminant

Aquifer tracer tests may be performed to identify the spatial variability of hydraulic conductivity

within an aquifer, and to estimate the effective hydrodynamic dispersion using tracer breakthrough

data obtained during the test. This can be accomplished by packing off sections of fully penetrating

well screens and performing tracer tests at different vertical locations within the aquifer. By

separately analyzing these data sets, a set of hydraulic parameters can be estimated for each selected
screened interval.

12.        Purpose of Present Study

The main objective of this study was to obtain a better understanding of the groundwater flow

pattern that is present at a particular area of a research site by measuring certain aquifer

parameters. The groundwater at the site had become contaminated with gasoline due to the failure

of underground storage tanks and associated piping. One of the first phases of the field study

involved the installation of groundwater monitoring wells; these included two pairs of wells

specifically designed for tracer studies. Two two-well field tracer studies were then performed using

each pair of welk.

The tracer tests had three objectives: (1) estimate aquifer parameters of the area in question, (2)

compare the field results to literature values; and (3) to confirm the field results with modeling.
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2.0 PRINCIPLES OF CONTAMINANT TRANSPORT

2.1 Intiodiictioii

In order to adequately understand contaminant transport in groundwater, the processes and
equations that are used to describe groundwater flow must be studied. The groundwater flow
equations form the basis for the transport equations because the bulk of the contamination in the
groundwater will propagate in the direction of and at a velocity equal to the average linear
groundwater velocity. This process is known as advection.

In addition to advection, localized processes that affect the transport of solutes within a groundwater
system are also very important to contaminant transport modeling. The phenomena of contaminant
dispersion, sorption, and reaction are included in the contaminant transport equations to further
describe these additional transport processes. The correct inclusion of these properties into a
model is essential to adequately describe the location, shape, and concentration of a propagating
contaminant plume.

22,        Groundwater Flow Equations

The derivations of the equations used in groundwater flow applications are based on the
conservation principles dealing with mass, momentum, and energy. The basic law of flow is Darcy's
law. When Darcy's law is combined with an equation of continuity that describes the conservation
of fluid mass during flow through a porous medium, a partial differential equation of flow is the
result (Freeze and Cherry, 1979). Different forms of the flow equation result for steady-state,
transient, and saturated versus unsaturated flow conditions.
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The following sections review the three most commonly used forms of the groundwater flow

equations. The sections are a summary of Chapter 2, Section 2.11, "Groundwater" by R. Allan

Freeze and John A. Cherry (1979).

22.1     Steatty-State Saturated Flow

The equation of groundwater flow under steady-state conditions through an anisotropic saturated

porous medium:

i(K,!L)+i(is*) + i(K,^) = o (1)
dx. dK dy dy dz dz

The terms x and y refer to the principal horizontal axes with z representing the vertical axis. The

hydraulic head at any point in the three-dimensional flow field is represented by h. The subscripted

value of hydraulic conductivity, K, refers to the hydraulic conductivity in the direction of the three

principle axes.

\.

For the case of an isotropic medium, the hydraulic conductivities in the x, y, and z directions will

be equal, ie., K^^ = IC = K^.. Further simplification of the equation is possible if it can be assumed

that the aquifer medium is homogeneous as well.

Therefore, for the case of steady-state flow through a homogeneous, isotropic medium the equation

reduces to:

^h    4.       ^h    4.    ^     =     0     (2)
ax^ ay2 az2

This equation is known as the Laplace equation. The solution to the equation, the function h(x,y,z),

is the hydraulic head, (h), at the point (x,y,z) in the flow field. The usual application of this

equation is to a field site that has been divided into a 2-dimensional grid with each point in the grid

having a known location described by the coordinates (x,y). The solution to the equation, the value

NEATPAGEINFO:id=065C5CEB-DD37-4F12-9CF7-330E677049A5



-\

of the hydraulic head, is then calculated for a range of depths (z) within the aquifer. Contour maps

of the local groundwater equipotential lines at specific depths (z) within the aquifer, can be then

generated.

?.?..?.     Transient Saturated Row

For the case of a transient flow condition, the time rate of change of the hydraulic head will be

changing with time and must be accounted for in the equation. The groundwater flow equation used

to describe transient flow through a saturated anisotropic porous medium is as follows:

3      ,     3hv 3/3h. d   .       3h. 3h
_ (K, _) + _ (Ky _) 4. _ (K, !i)       = S3 _ (3)
dx. ax dy dy d^ 3^ 3t

The term S^ is the specific storage term defined as the volume of water that a unit volume of a

saturated aquifer releases from storage under a unit decline in hydraulic head. The dimensions of

S^arepL]-!. \

For the special case of homogeneous and isotropic media, the equation reduces to:

3^h       + 3^h       ^ d^h       — S3 3h     ^4\
3x2 g^ gjj2 K a

Further reduction of the equation is possible for the special case of a horizontal confined aquifer

of thickness b. The storage coefficient, S, is defined as:

S = S3b      (5)

In words, the storage coefficient or storativity of a saturated confined aquifer is the volume of water

that is released fi'om storage per unit surfece area of aquifer per unit decline in hydraulic head. The

storage coefficient is dimensionless.
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The transmissivity, T, of a confined aquifer is a parameter used as a measure of the available yield

of a confined aquifer. T is defined as:

T = Kb   (6)

The dimensions of transmissivity are [L'^/T].

Inserting the storage coefficient and the transmissivity into the equation, and assuming a

2-dimensional analysis is required, the equation for the special case of a horizontal confined aquifer

of thickness b, reduces to:

6^h       ^ d^h       _ S dh     ^j\
ax^ dy^ T a

The solution to the equation, h(x, y, t) predicts the groundwater hydraulic head at any point on a

horizontal plane through the aquifer at any time, t.

23        Contaminant Transport Processes

23.1     Physical Processes

23.1.1   Advection

Advection is the process by which a dissolved solute or contaminant is carried by and in the direction

of the flowing groundwater. The bulk of the contamination is transported by this process.

The rate of the transport is equal to the average linear groundwater velocity, v, where v = v/n, v

being the specific discharge and n the porosity (Freeze and Cherry, 1979).
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23.12. HydnDdynamic Dispersion

Dispersion is a mixing process that causes the spreading of the contaminant from its advective path.
This phenomenon is caused in part by mechanical mixing and in part by molecular diffusion from

thermal-kinetic energy of the solute. The spreading causes dilution of the contaminant The

dispersion caused by mechanical mixing of the groundwater alone is called mechanical dispersion.

On a microscopic scale, mechanical dispersion is caused by three processes. The first is mixing of

the molecules due to the varying velocities of the molecules in the individual pore spaces between

particles. This is due to the frictional forces exerted on the molecules from the media. The second

process is caused by the varying pore sizes between media causing the molecules to move at different

pore velocities around the particles. The third process is related to the irregular and differing

shapes of the pore channels.

The spreading of the contaminant in the direction of the bulk of the flowing groundwater is called

longitudinal dispersion, whereas spreading in directions perpendicular to the direction of

groundwater flow is referred to as transverse dispersion. As can be expected, the dispersion in the

longitudinal direction is usually much larger than its transverse counterpart.

When using a 2-dimensional contaminant transport model, if the principal axes are aligned with the

direction of flow, the x direction, the dispersion in the x direction is the longitudinal dispersion and

in the y or z direction is the transverse.
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For the one-dimensional case, the coefficient of hydrodynamic dispersion can be expressed in terms

of two components (Freeze and Cherry, 1979):

Dj = a«v + D*      (10)

where: D^ is the coefficient of hydrodynamic dispersion, [L^/T]

a* is the dispersivity, [L]

D* is the coefficient of effective molecular diffusion for the solute in the porous medium,

[L2/T]

V is the pore velocity in the longitudinal direction, [L]

When doing transport modeling in 2 and 3-dimensions, the dispersion terms for each of the principle

directions are used along with all the off-diagonal terms, ie., D^ Dyy, D^, D^ Dy^ D^, D^ Dy^,
and D^y. Equations for all six dispersion terms can be found in Chapter 7-3 of Bear, 1979.

23.2     Qiemical Processes

232.1   Diffusion

Molecular diffusion is a microscopic physicochemical mixing process caused by varying concentration

gradients. Diffusion in solutions is the process whereby ionic or molecular constituents move under

the influence of their kinetic activity in the direction of their concentration gradient (Freeze and

Cherry, 1979). During fluid motion, such as flowing groundwater, diffusion acts as an additional

mechanism to provide solute mixing.

In the absence of concentration gradients, no diffusion occurs.
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The coefficient of molecular diffusion, D, comes &om Pick's first law which can be stated as follows

(Freeze and Cherry, 1979):

F = -D(dC/dx)      (11)

where: F = mass flux of the solute, [M/L^

D = aqueous diffusion coefficient, [L'^/T]
C = solute concentration, [M/L^]

dC/dx = concentration gradient, [M/L ]

The diffusion coefficients for ions in aqueous solutions have been well documented and are available

in many standard chemistry textbooks. Some of the major ions in groundwater (Na"*", K"*", Mg"*"^,
Ca'''^ Cr, HCO3", SO^'*''^) have diffiision coefficients in the range of 1 X 10'^ to 2 X 10"^ m/s @
25 degrees Celsius (Freeze and Cherry, 1979). The coefficients are temperature dependent For ions

in porous media, however, the "apparent" diffusion coeffiicients are much smaUer than in water due

to adsorption and because the ions follow longer paths of diffusion caused by the presence of

particles in the solid matrix (Freeze and Cherry, 1979).

The apparent diffusion coefficient for nonadsorbed particles in porous media, D , is represented by

the following (Freeze and Cherry, 1979):

D* = S>D      (12)

where 2> is an empirical coefficient which accounts for the effects of the solid matrix on the

diffusion.   In laboratory studies, experimental values for 2) of between 0.5 and 0.01 have been

commonly observed (Freeze and Cherry, 1979).

2.4        The Advective-Dispersive Equation

The principle differential equation used to describe the transport of solutes, either naturally
occurring dissolved minerals or artificially introduced tracers or pollutants, through a porous media

9
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is called the advective-dispersive equation. One commonly used form of this equation is given below
(for a complete derivation of the advective-dispersive equation, see Freeze and Cherry, 1979,
Appendix X):

ac    r    a'^c a^c       a^c-i  r   ac     ac      ac -i_=LDx _ + Dy _+ D, _j-[v^_ + Vy_ + v,_J  -q/n      (13)
at ds?        dy^        d^ ax      ay      az

where: C = concentration of solute = mass of solute/unit volume of solution

q = rate of change of solute mass (sink)/unit volume of porous media
V = pore or seepage velocity

n = porosity of the media

D = (D^ D^ D2):dispersion coefficients

The sink term q refers to the rate of loss of mass of solute/unit volume of porous media. The
changes usually occurring to a dissolved contaminant in groundwater include sorption ontoylnto the
media and losses due to chemical reactions and/or biological degradation. The form of Equation
13 above assumes that the aquifer medium in question is homogeneous, isotropic, and saturated. The
flow conditions are assumed to be steady, and Darcy's Law is applicable. The equation also assumes
that the effective transport mechanisms present are advection and dispersion. The solution to
Equation 13 is a prediction of the concentration of the solute in question at a desired point in time
at a known location.

Solving the equation requires approximation of the partial differentials by iterative numerical
techniques using finite difference and finite element modeling or the use of analytical methods.
Some analytical solutions exist for cases such as tracer slug injection into a column, with and without
adsorption. (For a discussion of some of the currently available analytical solutions, see Section 7-9
in Bear, 1979.)

10
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Equation 13 can be used to model a field tracer test by predicting the expected concentration of the
tracer as a function of time at the point of withdrawal assuming that the tracer is conservative. By
attempting to match the model results with the actual field breakthrough data, the aquifer
parameters that were estimated in order to run the model can now be determined more accurately.
Numerous model runs using different aquifer parameters may have to be made in order to achieve
a close match of the two data sets.

3Ja       FIELD TRACER TESTS

3wl        Types of Tracers

In their paper presented at a 1955 American Water Works Association meeting in Sacramento,
California, Warren J. Kaufman and Gerald T. Orlob discuss characteristics of an ideal groundwater
tracer. The authors site the following properties:
"      ͣ      ͣ , \ " ; ͣͣ \

1. A satisfactory tracer should be susceptible to quantitative determination in very low
concentrations;

2. It should be entirely absent from the injected water or present only at low
concentrations in the displaced water;

3. It must not react with the injected or displaced waters to form a precipitate;
4. It must not be absorbed by the porous medium; and
5. It must be cheap and readily available.

Although the authors were referring to the tracing of groundwater movement under natural gradient
conditions for the purpose of watershed development and protection, their ideal tracer properties
still hold true for the complicated forced and natural gradient groundwater tracing work that is
common practice today.

11
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Bear (1979) describes an ideal tracer as one that is inert with respect to its liquid and solid

surroundings and that does not affect the liquid's properties. In reality, however, the introduction

of a tracer into an aquifer does cause changes to the groundwaters' density and viscosity. In

situations where an artificial tracer is introduced in relatively low concentrations, the ideal tracer

assumption may be appropriate. In other cases for example where the groundwater density may vary

significantly within the aquifer due to seawater intrusion, the assumption that the chloride

introduced by the intrusion will behave as an ideal tracer is not valid.

3.1.1     Temperatoie Tracers

Water temperature has the potential to be a fairly useful tracer although it has not been used

extensively. The method seems to have the most potential in granular media, firactured rock, and

karst regions (Davis et al., 1985). Temperature tracers have been used to trace vertical groundwater

movement in boreholes (Keys and MacCarey, 1971; Sorey, 1971), and to trace the artificial recharge

of a naturally heated lake water into an aquifer forriiation (Keys and Brown, 1978).

A problem with using temperature tracers exists, however, due to changes in the density and viscosity

of groundwater caused by temperature changes. These changes affect the flow rate and the direction

of the groundwater. Experiments conducted in a laboratory setting have attempted to illustrate

these effects (Davis et al., 1985). In order to minimize these negative effects, the temperature

difference between the tracer and the background should be kept as small as possible.

3.L2     Dye Tracers

Various organic dyes have been used for surface water and groundwater tracing since the late 1800's

with extensive use of fluorescent dyes beginning around 1960 (Davis et al., 1985). Dyes are easy to

use and have high detectibility, however, dyes travel slower than water due to adsorption and

therefore are not conservative as are ionic or radioactive tracers (Davis et al., 1985). Some of the

12
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more commonly used dyes include fluorescein, pyranine, lissamine FF, rhodamine WT, and sulfo
rhodamine B. A number of factors have been shown to interfere with the measurement of

fluorescent dye concentration. These factors include temperature, pH, alkalinity, and salinity (Davis
et al., 1985). Sorption and toxicity problems with the dye tracers have also been researched (Smart
and Laidlaw, 1977).

Although dyes are more often used for surface water work, groundwater tracer experiments using
dyes have been conducted. An experiment conducted using three different fluorescent dye tracers
ran into problems when the injection slug of tracer was introduced too slowly and the dye was
diluted below detection limits (Naymik and Sievers, 1985). Better results from groundwater tracing
experiments can be obtained using conservative ionic or radioactive tracers.

3.13     Ionic tracers
\

Ionic compounds have been employed extensively and Successfully as groundwater tracers. The most
common and successful species used include chloride (CI"), bromide (Br"), lithium (Li"*"), ammonium
(NH^"*"), magnesium (Mg'*"''), potassium (K"*"), iodide (I"), sulfate (S04~), organic anions (such as
benzoate), and fluorinated organic anions (Davis et al., 1985). Ionic tracers, especially anions, are
considered to be conservative under most aquifer conditions. Anionic tracers are considered to be
conservative because the anions usually will not decompose in the system, adsorb to the media, nor
undergo emion exchange.

Cations, on the other hand, have the tendency to react with the media by undergoing the process
of cation exchange. This process occurs when naturally occurring background cations such as
sodium and calcium are displaced and forced into solution by the introduction and the binding of
the tracer cations.

13
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Under certain conditions, more than one ionic tracer should be used. In one of his papers on the
3-dimensional natural gradient tracer tests that were performed at the Canadian Forces Base Borden
in Ontario, Canada, Freyberg (1986) discusses his reasons for using both chloride and bromide as
tracers. The author explains that a contaminant plume containing elevated levels of chloride ions,
but negligible levels of bromide ions, is emanating from an abandoned landfill upgradient from the
experimental site. The plume is thought to lie below the experimental zone. By inspecting the
chloride:bromide concentration ratios for the samples collected during the experiment, the author
was able to identify the intersecting regions between the experimental and the landfill plumes.

Freyberg (1986) also discusses how the use of the two nonreactive tracers thought to behave so
identically, provided additional information on aspects of sampUng variability. Different analysts
performed the data reduction for the two ions which allowed for observation of any variability by
the analyst's judgment

In their paper on groundwater contaminant migration from a landfill, Sudicky et al., (1986) describe
their reasons for choosing a chloride tracer for their field experiments with a natural gradient
dispersion test The authors cite that chloride was selected for the tracer because it meets most of
the criteria for an ideal tracer. In addition, chemical analyses for chloride ion are inexpensive with
analytical precision being generally high.

3.1.4     Radionuclide Tracers

The majority of radioactive tracers used today are from sources of contamination already present
in the aquifers. According to one source the use of artificially introduced radioactive tracers has
declined in many countries including the United States (Davis et al., 1985). Field detection of
radioactive tracers is possible at very low concentrations using fairly simple field equipment (Molz
et al., 1986).   In addition, tracers can be selected that have half-lives so short that they are

14
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essentially decayed after a few hours or a few days (Davis et al., 1985).

32       Types of Tracer Tests

It is generally agreed that tracer tests are currently the most reliable field methods for obtaining

data to describe dispersion in groundwater (Molz et aL, 1986). All tracer tests fall into one of two

categories; forced or natural gradient

Natural gradient tests involve the introduction of a conservative tracer into an aquifer and

monitoring the movement of the tracer under natural groundwater flow conditions. Because the

natural movement of groundwater is in most cases very slow, the projected duration of a natural

gradient tracer test over even a small horizontal distance can take from weeks to months to

complete. For this reason, forced gradient tests have been developed to allow tracer tests to be

completed within much shorter time frames.

Forced gradient tracer tests introduce much higher hydraulic gradients than are present under

natural flow conditions into the aquifer through the use of one or a series of pumping wells. The

increased groundwater flow rate which is a response to the pumping stress, forces the groundwater

to flow much faster than it would under natural flow conditions allowing a shorter duration test.

The two most common types of forced gradient tracer tests are single-well and two-well tests.

32.1     Single-Well Tracer Tests

Figure 3-1 illustrates a typical set-up for a single-well tracer test. The term "single-well" refers to

the fact that only one pumping well is required to perform the test (Molz et al., 1986).

15
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FIGURE  3.1

SINGLE WELL TRACER TEST

(Ref:  Davis etaU 1985)
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During the test, a tracer solution having a known concentration, Cjn(t), is injected at a known rate,
Qjjj, for a known period of time into a well that is fully penetrating and screened over the entire
thickness of the aquifer. After a certain period of time, the flow may be reversed and the tracer
solution is pumped from the welL The recovered tracer solution pumped from the well at
concentration, Com(t), may be used to develop a breakthrough curve of concentration vs. time data.
In many cases it may be useful to calculate the percentage of tracer recovered.

In cases were the vertical conductivity distribution in the aquifer is desired, multi-level sampling
wells can be used in conjunction with the injection well. Concentration vs. time measurements are
then made at the different isolated points in each observation well during the experiment (Molz et
al., 1986). Horizontal hydraulic conductivities are estimated using the tracer travel time and tracer
concentration data measured at each vertical sampling interval

3.2.2     Two-Well Tracer Tests "^

Figure 3-2 illustrates a typical two-well tracer test set-up. This configuration uses two wells, one for
injection of the tracer solution and one for simultaneous withdrawal. The wells shown fuUy
penetrate over the entire thickness of the aquifer.

Tracer solution in injected into the source well at a known concentration and flowrate. Water is
pumped from the withdrawal well usually at the same rate. The concentration of the tracer pumped
from the withdrawal well is recorded over time to develop a breakthrough curve for the test.

Usually the tracer injection period is short compared to the duration of the entire test (Molz et al.,
1986).

17
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TWO WELL TRACER TEST

(Ref:  Davis et aU 1985)
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Two-well tests may be carried out in either a recirculating or non-recirculating mode (Molz et al.,
1986). In the recirculating mode, the water pumped from the withdrawal well is reinjected back into
the injection welL The injection concentration of tracer solution in this case will be equal to the
sum of the tracer solution plus the concentration of the withdrawn water from the aquifer.

By using multi-level observation weUs to collect groundwater samples during the test, horizontal
conductivities may be estimated from the concentration and time data.

4J0        FIELD DATA COLLECnON

4^1        Description of Field Site

This study was conducted at the Terrawa Terrace site located at Camp Lejeune, North Carolina
(Figures 4.1, 4.2, and 4.3). Geologically, the site is located within the North Carolina coastal plain
which is characterized by sandy soils and a shallow groundwater table. Boring logs and published
soil data maps indicate that approximately 200 feet of fine to medium grained sands mixed with
varying amounts of clay (Mayer and Miller, 1988) comprise the surficial unconfined aquifer which
is underlain by a confining layer. The average depth to groundwater at the site is approximately 25
feet

A gas station at the site has been identified as the source of subsurface gasoline contamination
caused by leaking underground storage tanks and associated piping. It is estimated that
approximately 7400 gallons of leaded and unleaded gasoline were released between September 1985
and July 1986.
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After the release was discovered, a consultant was retained to perform groundwater contamination

assessment and remediation services. Eleven monitoring wells were installed during the initial

phase of the investigatioiL Eventually, a pump and treat system designed to remove free gasoline

from the surface of the water table and to remove dissolved gasoline constituents from the

groundwater was designed and constructed at the site. The underground storage tanks were

removed in May 1987 and the area served as a groundwater contamination research site.

During July and August of 1987, a UNC research team installed 16 additional groundwater

monitoring weUs including twelve multi-level sampling wells. A map of the site included as Figure

4.3 shows the well locations as of December 1987.

42,       Tracer Test Procedure

4.2.1     WeUs

Two two-well tracer tests were performed at the site using two different pairs of weUs. Test No.

1 was conducted on August 25, 1987 using wells A-11 and A-13. Test No. 2 test took place on

November 12,1987 using wells A-10 and A-12. During the two tracer tests, the existing groundwater

recovery and treatment system continued to operate. The average groundwater pumping rate from

the recovery well as measured before the start of each tracer test was approximately 10 gpm. It is

assumed that this average rate was maintained during the two tests.

Each pair of welk consists of an injection well and a withdrawal well. The injection wells, weUs A-

12 and A-13, are constructed of 48 feet of 2 inch diameter stainless steel casing with 2 feet of slotted

stainless steel screen. The withdrawal wells, wells A-10 and A-U, are constructed of 50 feet of 4

inch diameter stainless steel casing with 2 ft. screen sections. Construction details of the two

different types of weUs are shown on Figure 4.4.
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4:12     Equipment Used

In order to be certain that the pumps controlling the rate of tracer solution injection and the rate

of groundwater withdrawal are producing identical yields, it is imperative during a tracer test that

the injection and withdrawal flow rates be continuously monitored. In addition, sampling ports must

be conveniently located to allow for frequent sample collection of tracer solution and withdrawn

groundwater. With these ideas in mind, a tracer test control box was designed and constructed as

shown in Figure 4.5.

To monitor and control the groundwater withdrawal rate from the pumping well, the box contained

a flowmeter, a sampling port, and control valve. The groundwater was pumped from the withdrawal

well using a stainless steel submersible pump. The tracer solution was pumped from the mixing

tanks to the injection well via the magnetic motor pump housed in the control box. The injection

line was also equipped with a flow control valve, a sampling port and an instantaneous readout

flowmeter. An inline filter housing was plumbed in for use during a subsequent experiment. A filter

cartridge was not placed in the housing during the two tracer tests. An equipment layout illustrating

the hardware setup during the two tests is shown in Figure 4.6. The hardware setup for the two

tests was identical.

4.23     Tracer Test No. 1

Tracer Test No.l was started at approximately 11:00 am on August 25, 1987 and continued for a

duration of 25.5 hours. Prior to the start of the test, 90 gallons of tracer solution were prepared

using groundwater from the site. A measured amount of sodium chloride was added to bring the

concentration of the solution equal to 250 mg/L of chloride plus whatever background chloride

concentration was present (approximately 15 mg/L Q-). A total of 85.16 grams of chloride were

injected over the duration of the test.
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Tf^s-

The tracer solution was injected via the injection well, well A-13, at a flowrate of 0.25 gallons per

minute (gpm) and the groundwater was withdrawn from the pumping well, well A-11, at a flowrate

of 0.25 gpm. The flow rate was controlled by fine tuning with the control valves. When all of the

tracer solution was injected, the influent line was switched to vessels containing background

groundwater. For the duration of the test, the background groundwater was continuously injected

at the 0.25 gpm flowrate to maintain a steady state system.

Groundwater samples from the pumping well were collected every 15 minutes for the duration of

the test. A mobile on-site laboratory was set up to analyze the samples for chloride concentration.

A complete listing of the data collected from Tracer Test No. 1 is included as Appendix A. The

analytical method used to analyze the samples for chloride concentration was Method A

(Mercurimetric Titration), ASTM D 512 - 80.

By reducing the collected data, the breakthrough cti^^e, shown in Figure 4.7, was developed.

4i4     Tracer Test No. 2

Tracer Test No. 2 was started at approximately 6:34 am on November 12, 1987 and continued for

a duration of 30 hours. Prior to the start of the test, 120 gallons of tracer solution were prepared

using groundwater from the site. A measured amount of sodium chloride was added to bring the

concenfration of the solution equal to 250 mg/L of chloride plus whatever background chloride

concentration was present (15 mg/L C1-). A total of 113.55 grams of chloride were injected over the

duration of the test

The tracer solution was injected into the injection well, well 12, and the groundwater was withdrawn

from the pumping well, well 10, at a flowrate of 0.5 gallons per minute (gpm). The flow rate was

controlled by fine tuning with the confrol valves. As was done during the first tracer test, when all
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of the tracer solution was injected, background groundwater was injected at the same flowrate to
maintain a steady state system.

Groundwater samples from the pumping well were collected every 30 minutes for the duration of
the test. The mobile on-site laboratory used for Tracer Test No. 1 was used to analyze the samples
for chloride concentration. A summary of the parameters for Tracer Tests No. 1 and 2 is as follows:

Flowrate

Injection Well

Withdrawal well

Radial Distance

Test Duration

Tracer Injection Time

Injected tracer volume

Tracer concentration

Mass of Injected Tracer

TRACER TEST NO. 1

0.25 gpm

A-13 (2" O.D.)

A-11 (4" O.D.)

3.84 feet

25.5 hours

6 hours ^\

90 gallons

250 mg/L chloride

85.162 grams

TRACER TEST NO. 2

0.5 gpm

A-12 (2" O.D.)

A-10(4"O.D.)

2.63 feet

30 hours

4 hours

120 gallons

250 mg/L chloride

113.549 grams

By reducing the collected data, the breakthrough curve, shown in Figure 4.8, was developed. A
complete listing of the data collected from Tracer Test 2 is included as Appendix B. The analytical
method used to analyze the samples for chloride concentration was Method A (Mercurimetric
Titration), ASTM D 512 - 80.
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43        Discussion of Results

The test parameters selected prior to Tracer Test No. 1 were chosen using the most reliable site

data available. The breakthrough curve obtained from the test data was not as complete as it could

have been because the "tail" of the curve did not approach the abscissa asymptotically. Additional

data should have been collected until the flattening of the curve had been obtained. Although the

samples collected were being analyzed in the field within a short time, the duration of the test, the

fi-equency of sampling, and the field laboratory conditions which prohibited sample analysis at night,

all contributed to misjudging what the true length of the test should have been.

In order to correct this problem for Tracer Test No. 2, the injection and withdrawal flow rate was

doubled to allow for the capture of more tracer solution in a shorter period of time. It was ako

decided to lengthen the minimum duration of the test to 30 hours. By incorporating these two

changes into the tracer test procedure, the plotted breakthrough data from Test No. 2 as shown in

Figure 4.8 appear to be more representative of a complete test

It is interesting to note the percent of the total mass of injected chloride recovered from each test;

37 percent for Tracer Test #1 and 52 percent for Tracer Test #2. With both injection and

withdrawal wells only about three feet (one meter) apart, the tracer solution injected in the center

of the screened interval of both of the injection weUs, the submersible pumps installed in the center

of the screened intervals of the withdrawal wells, and both wells having approximately the same

screened interval, it would seem logical to expect to recover most if not all of the injected tracer

during each of the tests.

Factors that could account for the difference in the amount of the tracer recovered between Test

#1 and Test #2 include the difference in the flow rates and the duration of pumping.

32

NEATPAGEINFO:id=4DBD1114-DD5F-41BB-8516-89EAFAF1A9C0



Another factor that may have influenced the tracer test results is the construction of the withdrawal

well for Test #2, well #A-11. The construction of this well is somewhat suspect due to problems

that occurred in the field during drilling. The completed depth of the well is approximately 18

inches less than the other weUs making the screened interval o&et somewhat as compared to the

other tracer wells. The percent of total mass of tracer recovered during Test #2 may have been

even greater if the injection well had been completed to the same depth as the withdrawal well.

Because the point of injection of the tracer was at 50 feet below grade under a standing water

column of approximately 25 feet, the tracer was injected under pressure. The hydraulics of injecting

0.25 to 0.5 gallons per minute of solution probably caused a radial flow of the solution to spread in

all directions. Whether the pumping stress caused by the withdrawal well was strong enough to

overcome the spreading of the tracer and pull it back toward the withdrawal well in the duration

of the test could account for the majority of the tracer loss.

\

The other obvious possible cause of tracer loss is the apparent pumping stress induced by the

recovery well located approximately 40 feet from the tracer wells. Water levels in the monitoring

wells as measured around the time of the first tracer test are shown on Figure 4.9. Using this data

and assuming that they are representative of steady state conditions and that the surface horizontal

gradient is approximately equal to the gradient at 50 feet below grade, an estimate of the horizontal

groundwater velocity in the vicinity of the tracer test wells can be calculated. Assuming a hydraulic

conductivity of 1 x 10 ft/sec (Mayer and Miller, 1988), an effective porosity of 0.40 (typical for

sandy coastal plain aquifers), a horizontal gradient in the vicinity of the tracer wells of approximately

0.018 (as estimated from Figure 4.9) and assuming Darcy's Law applies, the horizontal velocity can

then be calculated to be approximately 4.5 x 10"^ ft/sec. Assuming that the duration of the tracer

tests was approximately 30 hours, the groundwater would have moved less than 6 inches horizontally

due to the induced recovery well pumping stress during the duration of the tracer test Each tracer
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withdrawal well is located between the recovery well and its respective tracer injection welL If the

groundwater moved 6 inches in the direction toward the pumping well during each tracer test, one

would ©q)ect that this would assist in the capture of the tracer as opposed to causing the tracer to
be lost

The loss of the tracer could also be attributed to the presence of a vertical gradient in the vicinity

of the tracer test wells caused by the recovery well. In their modeling study of the hydraulics of the

pumping recovery well at the Camp Lejeune site, Mayer and Miller (1988) determined that a vertical

gradient did exist in the vicinity of the pumping well. The recovery well is screened at an interval

of approximately 40 to 45 feet below grade (Mayer and Miller, 1988), whereas the tracer test wells

are screened at 50 feet below grade and are located approximately 40 feet away from the recovery

well. Using the data from the simulated hydraulic heads as a function of elevation in the immediate

vicinity of the recovery well (Mayer and Miller, 1988) at a depth of 50 feet below grade, a vertical

gradient due to the recovery well pumping stress of approximately 0.0075 and a vertical velocity of

1.8 X 10 ft/sec can be estimated. The actual vertical gradient in the vicinity of the tracer wells will

be significantly less than at the recovery well as demonstrated in the areal graphical vertical head

distributions shown in the referenced paper. Therefore, during the 30 hour duration of the tracer

tests, it is estimated that the groundwater may have moved less than 3 inches vertically upward due

to the stress induced by the recovery well. The stresses induced by the recovery well probably did
have some effect on the movement of the tracer and could be accountable for some of the losses.

However, these losses as estimated herein appear to be negligible. The effects of density and

temperature differences were assumed to be negligible and were not taken into account in the

analysis.
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5.0 METHOD OF DATA ANALYSIS

5.1 Descriptioii of Ttaca Test Simulatioii

By using equations that attempt to simulate the breakthrough response, certain aquifer parameters

can be estimated. These equations are usuaUy solved using computer models. To estimate the

aquifer parameters using the tracer test breakthrough data, the preferred method of analysis was the

use of a readUy available public domain computer based curve matching model. With the assistance

of the International Groundwater Modeling Center (IGWMC) of the Holcomb Research Institute

at Butler University in Indianapolis, Indiana, the available models were identified. The list was

narrowed to one potential model, since analytical solutions have not been derived for conditions

similar to those investigated in this study. The model chosen for further evaluation was the

Computer Aided Tracer Test Interpretation Code, "CATTI" by J.P. Sauty and W. Kinzelbach, May

1988. The model is a computer code used to estimate aquifer transport parameters from tracer test

data by either manual adjustment or by automatic least-square determination. CATTI is a

nonproprietary code and is distributed through the IGWMC

Since the CATTI documentation did not provide a complete description of the underlying theory

of the model, the author of the model, J. Sauty, was contacted in France. He was able to supply an

additional reference (Sauty and Kinzel, 1988) which was carefully reviewed. Upon further review,

it was determined that the CATTI program was an empirical solution, which was based upon a

radially symmetric flow field. This was a clear violation of the conditions under which the

experimental data was collected.

Also, CATTI simulates breakthrough data from either instantaneous or continuous tracer injection

tests for the case of radial flow, however, the actual field tests involved injecting tracer over a 4 to

6 hour period. The injections were neither instaneous nor continuous. After reviewing these model

limitations an alternate scheme was sought.
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52,       Tracer Transport Modeling

Since efforts to locate a satisfactory analytical solution failed, a numerical approach was deemed

necessary. Several models exist in the public domain to simulate the tracer tests performed.

The groundwater hydraulics in the vicinity of the tracer wells were simulated using the McDonald-

Harbaugh "Modular Three-Dimensional Finite-Difference Ground-water Flow Model" (McDonald

and Harbaugh, 1988). In order to run this model, a finite difference grid was set up around the

vicinity of the pair of wells used for Tracer Test #1. The model grid was set up with 17 columns

with a total dimension of 33.83 feet, 34 rows with a total dimension of 38.83 feet, and nine layers

with a total dimension of 134 feet The grid was set up with varying size cells with the sizes of the

cells decreasing as they approach the location of the wells. Cell sizes ranged firom 2x2 inches to

6x6 feet The ocact dimensions of the model grid including each cell block are included in the

MAIN.DAT input file included in Appendix C. Using the site parameters for hydraulic conductivity,

the model was run to simulate steady state flow conditions. The model was set up with a constant

head boundry on the perimeter and no flow boundaries on the top and bottom. The screened

interval was used as a separate layer. The simulation was run neglecting any effects from the

recovery welL

The hydraulic gradient as calculated from this three dimensional groundwater flow simulation for

the screened interval of both wells is shown in Figure 5.1. According to the modeling results, no

significant influences from the tracer withdrawal well were evident more than 15 feet from the wells.

The hydraulic gradient appears to be very steep in the direct vicinity of the well screens indicating

that the velocities of the tracer particles decrease as they leave the injection well and move toward

the withdrawal welL The particles then begin accelerating as they approach the withdrawal well. The

gradient does not extend very far from the wells indicating that the tracer particles exiting the side

of the well screen away from the withdrawal well would travel very slowly toward that well.
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Assuming that the tracer particles move perpendicularly toward the equipotential lines, it appears

from the results shown in Figure 5.1, that the tracer would indeed move radially outward from the

well.

To track the path of the particles and to generate time of travel information to confirm whether the

percentage of tracer recovered during the tracer tests was reasonable, the three dimensional particle

tracking program, MODPATH, was used. MODPATH (Pollock, 1989) is a post-processing package

developed to compute three dimensional path lines based on steady-state simulations obtained from

the U.S. Geological Survey Modular Three-Dimensional Finite-Difference Ground-water Flow

Model.

MODPATH uses a semi-analytical partical tracking scheme based on the assumption that each

directional velocity component varies linearly within a grid cell. Given the initial position of a

partical anywhere in a cell, the coordinates of any other points along its pathinline within the cell,

and the time of travel between them, can be computed by the model (Pollock, 1989).

Data is input to MODPATH through a combination of files and interactive dialogue. The model

input data includes the input files BAS.DAT, BCF.DAT, WEL.DAT, OCDAT, SIP.DAT and the

output files BUDGET.OUT and HEAD.OUT used and generated in the execution of the Modular

Three-Dimensional Finite-Difference Ground-water Flow Model. MODPATH also requires the

data file MAIN.DAT. A detailed descriptiuon of the input parameters for these two files are

included in the model user manual (Pollock, 1989). A copy of each of the input files used to run

the simulation is included in Appendix C A companion program, MODPATH-PLOT, was used to

generate the graphical presentation of the MODPATH particle tracking output as shown in Figures

5.2 through 5.6.
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0 2S 99.9987 99.9987 99.9987 99.9987 99.9988 99.9989 99.9991 99.9993
0 26 99.9986 99.9986 99.9986 99.9987 99.9987 99.9988 99.9990 99.9992
0 27 99.9985 99.9985 99.9985 99.9986 99.9986 99.9987 99.9989 99.9991
0 28 99.9984 99.9984 99.9984 99.9984 99.9985 99.9986 99.9988 99.9990
0 29 99.9982 99.9982 99.9982 99.9982 99.9983 99.9984 99.9987 99.9989
0 30 99.9979 99.997V 99.9979 99.9979 99.9980 99.9981 99.9985 99.9987
0 31 99.9975 99.9975 99.9975 99.9975 99.9976 99.9978 99.9981 99.9984
0 32 99.9969 99.9970 99.9970 99.9970 99.9970 99.9972 99.9976 99.9980
0 33 99.9963 99.9963 99.9963 99.9963 99.9964 99.9965 99.9969 99.9973
0 34 99.9958 99.9958 99.9958 99.9958 99.9958 99.9959 99.9962 99.9964
1 HEAD IN UYER 3 *T END OF TIME STEP 1 IN STRESS PERICO 1

7 81 2 3 4 5 6 »

o"i" "iooiooi"" "iooioof" .....iooioM..... "iooiow"" """iooiooi " "'ioo!oo9 "" "ioolooi"' '"ioolow"" "'iooiow'""
0 2 100.005 100.007 100.010 100.012 100.012 100.012 100.012 100.012 100.012
0 3 100.(NK 100.007 100.010 100.013 100.014 100.014 10O.014 100.014 100.014
0 4 100.003 100.006 100.010 100.013 100.014 100.014 100.015 100.015 100.015
0 5 100.003 100.005 100.008 100.012 100.013 100.014 100.014 100.014 100.014
0 6 100.002 100.004 100.007 100.0V1 100.012 100.013 100.013 100.013 100.013
0 7 100.002 100.004 100.007 100.010., 100.011 100.012 100.012 100.012 100.012
0 8 100.002 100.003 100.006 100.009 100.011 100.011 100.011 100.012 100.012
0 9 100.002 1M.003 100.006 100.009 100.010 100.011 100.011 100.011 100.011
0 10 100.001 100.003 100.005 100.008 100.009 100.010 100.010 100.010 100.010
0 11 100.001 100.003 100.005 100.007 100.009 100.009 100.010 100.010 100.010
0 12 100.001 100.002 100.005 100.007 100.008 100.009 100.009 100.009 100.009
0 13 100.001 100.002 100.004 100.006 100.007 100.008 100.008 100.008 100.008
0 14 100.001 100.002 100.004 100.006 100.007 100.007 100.007 100.007 100.007
0 IS 100.001 100.001 100.003 100.004 100.005 100.006 100.006 100.006 100.006
0 16 100.000 100.001 100.002 100.003 100.004 100.004 100.004 100.004 100.004
0 17 100.000 100.000 100.(Ml 100.001 100.001 100.001 100.001 100.001 100.001
0 18 99.9997 99.9995 99.9992 99.9988 99.9986 99.9985 99.9985 99.9984 99.9985
0 19 99.9993 99.9989 99.9979 99.9968 99.9962 99.9960 99.9959 99.9959 99.9959
0 20 99.9W0 99.9983 99.9969 99.9953 99.99U 99.9941 99.9939 99.9939 99.9939
0 21 99.9988 99.9979 99.9961 99.9942 99.9931 99.9927 99.9925 99.9924 99.9924
0 22 99.9987 99.9977 99.9956 99.9934 99.9923 99.9918 99.9916 99.9915 99.9915
0 23 99.9985 99.9974 99.9952 99.9928 99.9916 99.9911 99.9909 99.9908 99.99U8
0 24 99.9984 99.9972 99.9948 99.9923 99.9910 99.9904 99.9902 99.9901 99.9901
0 25 99.9983 99.9970 99.9944 99.9918 99.9904 99.9898 99.9896 99.9895 99.9895
0 26 99.9982 99.9968 99.9941 99.9913 99.9899 99.9893 99.9890 99.9889 99.9889
0 27 99.9980 99.9965 99.9936 99.9907 99.9892 99.9886 99.9884 99.9883 99.9883
0 28 99.9978 99.9962 99.9930 99.9899 99.9885 99.9879 99.9876 99.9875 99.9875
0 29 99.9975 99.9957 99.9923 99.9891 99.9876 99.9870 99.9867 99.9866 99.9866
0 30 99.9971 99.9951 99.9914 99.9880 99.9866 99.9861 99.9858 99.9857 99.9857
0 31 99.9965 99.9942 99.9903 99.9871 99.9859 99.9854 99.9852 99.9851 99.9851
0 32 99.9957 99.9932 99.9895 99.9869 99.9860 99.9857 99.9855 99.9855 99.9855
0 33 99.9946 99.9924 99.9897 99.9883 99.9879 99.9877 99.9876 99.9876 99.9876
0 34 99.9938 99.9926 99.9916 99.9912 99.9911 99.9910 99.9910 99.9910 99.9910
1 NEM IN LAYER 3 AT END OF TINE STEP 1 IN STRESS PERICO 1

16 1710 11 12 13 14 15

o"i' "'iooiooi'" """iooiow' ......VM.w" "iooiow" ""ioolow" '""iooiooi"' ""iooioof " 100.006 "
0 2 100.012 100.012 100.012 100.012 100.012 100.010 100.007 100.005
0 3 100.014 100.014 100.014 100.014 100.013 100.010 100.007 100.004
0 4 100.015 100.015 100.014 100.014 100.013 100.010 100.006 100.003
0 5 100.014 100.014 100.014 100.013 100.012 100.008 100.005 100.003
0 6 100.013 100.013 100.013 100.012 100.011 100.007 100.004 100.002
0 7 100.012 100.012 100.012 100.011 100.010 100.007 100.004 100.002
0 8 100.012 100.011 100.011 100.011 100.009 100.006 100.003 100.002

0 13 100.695 100.521 100.341 100.193 100.078 100.019 100.005 100.002
0 14 100.525 100.431 100.300 100.175 100.071 100.017 100.004 100.001
0 IS 100.356 100.312 100.235 100.143 100.059 100.014 100.003 100.001
0 16 100.205 100.187 100.149 100.096 100.040 100.010 100.002 100.001
0 17 100.067 100.062 100.051 100.034 100.014 100.003 100.001 100.000
0 18 99.9332 99.9379 99.9488 99.9658 99.9854 99.9965 99.9992 99.9997
0 19 99.7952 99.8130 99.8509 99.9040 99.9599 99.9904 99.9978 99.9992
0 20 99.6441 99.6876 99.7653 99.8565 99.9413 99.9857 99.9967 99.9988
0 21 99.4747 99.5692 99.6994 99.8246 99.9291 99.9825 99.9959 99.9985
0 22 99.3045 99.4787 99.6590 99.8067 99.9220 99.9804 99.9953 99.9983
0 23 99.1401 99.4151 99.6345 99.7957 99.9172 99.9789 99.9949 99.9981
0 24 98.9928 99.3805 99.6217 99.7887 99.9134 99.9775 99.9945 99.9980
0 25 99.1274 99.4026 99.6229 99.7858 99.9105 99.9763 99.9941 99.9978
0 26 99.2788 99.4537 99.6356 99.7867 99.9086 99.9752 99.9937 99.9977
0 27 99.4325 99.5280 99.6610 99.7919 99.9074 99.9740 99.9932 99.9975
0 28 99.5772 99.6227 99.7050 99.8055 99.9078 99.9726 99.9926 99.9972
0 29 99.7053 99.7242 99.7660 99.8307 99.9115 99.9714 99.9919 99.9968
0 30 99.8116 99.8185 99.8357 99.8686 99.9210 99.9708 99.9909 99.9963
0 31 99.8941 99.8961 99.9016 99.9137 99.9384 99.9718 99.9899 99.9956
0 32 99.9461 99.9466 99.9480 99.9514 99.9596 99.9759 99.9892 99.9946
on 99.9758 99.9758 99.9761 99.9767 99.9785 99.9831 99.9895 99.9935
034 99.9885 99.9885 99.9885 99.9886 99.9889 99.9896 99.9913 99.9930
1 NFAD IN UTER 6 AT END OF TIME STEP 1 IN STRESS PERIOD 1

7 a1 2 3 4 5 6 9

o"i" "iooloof" "ioolooa".....iooioio..... "iooloii" "iooioii " "iooloii "" "iooloii" "'iooloii"' ""iooloii""
0 2 100.006 100.010 100.016 1OO.019 100.021 100.021 100.021 100.022 100.022
0 3 100.005 100.010 100.021 100.032 100.036 100.038 100.039 100.039 100.039
0 4 100.004 100.009 100.023 100.041 100.051 100.055 100.056 100.057 100.057
0 5 100.003 100.008 100.022 100.045 100.060 100.067 100.071 100.072 100.072
0 6 100.003 100.007 100.021 100.046 100.065 100.075 100.080 100.082 100.082
0 7 100.003 100.006 100.019 100.045 100.066 100.078 100.085 100.087 100.088
0 8 100.002 100.006 100.018 100.043 100.065 100.079 100.087 100.090 100.091
0 9 1W.002 100.005 100.017 100.041 100.063 100.078 100.087 100.091 100.092
0 10 100.002 100.005 100.016 100.040 100.062 100.076 100.086 100.091 100.092
0 11 100.002 100.005 100.015 100.038 100.059 100.074 100.083 100.089 100.091
0 12 100.002 100.004 100.014 100.036 100.057 100.071 100.080 100.085 100.086
0 13 100.001 100.004 100.013 100.033^ 100.053 100.066 100.075 100.079 100.080
0 14 100.001 100.003 100.011 100.030 100.048 100.060 100.067 100.070 100.071
0 15 100.001 100.003 100.009 100.024 100.039 100.049 100.055 100.057 100.057
0 16 100.001 100.002 100.006 100.017 100.027 1M.033 100.036 100.038 100.038
0 17 100.000 100.001 100.002 100.006 100.010 100.012 100.013 100.013 100.014
0 18 99.9996 99.9992 99.9976 99.9939 99.9902 99.9880 99.9868 99.9864 99.9863
0 19 99.9991 99.9980 99.9936 99.9832 99.9730 99.9667 99.9633 99.9620 99.9618
0 20 99.9987 99.99 n) 99.9905 99.9753 99.9604 99.9507 99.9453 99.9430 99.9425
0 21 99.9985 99.9963 99.9882 99.9699 99.9519 99.9399 99.9327 99.9294 99.9288
0 22 99.9983 99.9958 99.9867 99.9665 99.9468 99.9335 99.9252 99.9210 99.92000 23 99.9981 99.9954 99.9856 99.9641 99.9433 99.9292 99.9201 99.9152 99.9139
0 24 99.9979 99.9950 99.9846 99.9619 99.9404 99.9259 99.9164 99.9111 99.90920 2S 99.9978 99.9947 99.9836 99.9600 99.9380 99.9235 99.9142 99.9092 99.90780 26 99.9976 99.9943 99.9827 99.9585 99.9363 99.9220 99.9132 99.9088 99.9079
0 27 99.9974 99.9939 99.9817 99.9568 99.9349 99.9212 99.9133 99.9097 99.9090
0 28 99.9972 99.9934 99.9804 99.9552 99.9342 99.9219 99.9153 99.9126 99.9121
0 29 99.9968 99.9926 99.9790 99.9542 99.9352 99.9251 99.9202 99.9183 99.9179
0 30 99.9963 99.9917 99.9777 99.9548 99.9396 99.9324 99.9292 99.9280 99.92780 31 99.9956 99.9906 99.9^/2 99.9590 99.9493 99.9452 99.9434 99.9428 99.9427
0 32 99.9946 99.9898 99.9790 99.9681 99.9634 99.9616 99.9609 99.9606 99.96060 33 99.9935 99.9899 99.9842 99.9804 99.9790 99.9786 99.9784 99.9783 99.9783
0 34 99.9930 99.9914 99.9899 99.9891 99.9889 99.9888 99.9888 99.9888 99.9888
1 NEAO IN LAYER 6 AT EM) OF TIME STEP 1 IN STRESS PERIOD 1

16 17» « 12 13 14 15

o'T*"io6!oii"* '""looloii" .....iooioii..... "i66!oii'"" ""'iooloii " ""ioo!oio"' "'iooloos" "* iooloof
0 2 100.022 100.021 100.021 100.021 100.019 100.016 100.010 100.006
0 3 100.039 100.039 100.038 100.036 100.032 100.021 100.010 100.005
0 4 100.057 100.056 100.055 100.051 100.041 100.023 100.009 100.004
0 5 100.072 100.071 100.067 100.060 100.045 100.022 100.008 100.0030 6 100.082 100.080 100.075 100.065 100.046 100.021 100.007 100.0030 7 100.087 100.085 100.078 100.066 100.045 100.019 100.006 100.003
0 a 100.090 100.087 100.079 100.065 100.043 100.018 100.006 100.0020 9 100.091 100.087 100.078 100.063 100.041 100.017 100.005 100.0020 10 100.091 100.086 100.076 100.062 100.040 100.016 100.005 100.002
0 11 100.069 100.083 100.074 1W.059 100.038 100.015 100.005 100.0020 12 100.085 100.080 100.071 100.057 100.036 100.014 100.004 100.002
0 13 100.079 100.075 100.066 1W.053 100.033 100.013 100.004 100.002
0 14 100.070 100.067 100.060 100.048 100.030 100.012 100.003 100.001

U 14
0 15
0 16

too:

100.006
100.004

T00;007

100.006
100.004

ioe:oo7
100.006
100.004

100.007
100.005
100.004

100.006
100.005
100.003

100.004
100.003
100.002

100.002
100.001
100.001

100.001
100.001
100.001
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!swBgraff!r>!?Br?^5r-^-

0     12
122222222

100
6.0000   4.5000
0.3333   0.5000

100
8.0000    4.0000
0.1667   0.1667
O.ZSOO   0.1667
1.2500    2.0000

100
28.0000 13.0000

96.

0     50     23

1.0 (10F8.4)
3.0000 1.5000
0.7500    1.5000
1.0 (10F8.4)
2.0000 1.2500
0.1667 0.2500
0.1667 0.1667
4.0000    8.0000
1.0 (10F8.4)
6.0000   3.0000

0.7500
3.0000

0.7500
0.3333
0.1667

0.5000
4.5000

0.5000
0.4167
0.1667

0.3333
6.0000

0.3333
0.5000
0.2500

0.2500    0.1667   0.2500

0.2500
0.5000
0.3333

0.1667
0.4167
0.5000

0.1667
0.3333
0.7500

2.0000 3.0000 6.0000 13.0000 50.0000

100                K17I2)

0             0.3
0             0.3
0             0.3
0             0.3
0             0.3
0             0.3
0             0.3
0             0.3
0             0.3

MAIN.DAT
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FORTNAN UNIT 100 • c:\saaplt\MAIN.OAT
FORTRAN UNIT 12 - c:\u^>tt\b.iwl
FORTRAN UNIT SO « c:\t«^)l*\BU06ET.aUT
FORTRAN UNIT 23 • c:\sanple\HEADS.OUT
Current K configuration nfiport* 71500 •leatntt in th* A trriy.

NCOPATH " Version 1.2 -- April 27, 1990

MAXIMUM NUMBER OF PARTICLES IS    3310
7U99 ELEMENTS OUT OF   74500 USED IN THE >A" ARRAY

17 COLUMNS      34 ROUS        9 UYERS
IGRID (GRID TYPE CODE} IS 1

0 CONFINING UYERS

lUNIT ARRAY:         0    12      0      0      0 0 50    23

LAYCON CLAYER TYPE COOES):
122222222

NO CONFINING UYERS.    NCON « 0 FOR ALL UYERS.

OELR ARRAY NOW BEING READ...
DATA WAS READ BUT NOT PRINTED

OELC ARRAY HOU BEING READ...

DATA WAS READ BUT NOT PRINTED

DELZ ARRAY NOW BEING READ...
DATA WAS READ BUT NOT PRINTED

BOTTOM ELEVATION OF UYER 1  IS P6000E+02

IBOUND ARRAY FOR UYER  1 NOU BEING READ.
• 1 .\ •1 •1 -1 -1     -1     -1     -1 -1     -1     -1     -1

1         1         1^1

-1 -1 -1 -1 -1 -1 1     -1     -1     -1     -1 -1     -1     -1     -1

IBOUWI ARRAY FOR UYER
CONSTANT VALUE OF

2 NOU BEING RFAD...
1

IBOUNO ARRAY FOR UYER
CONSTANT VALUE OF

3 NOW BEING READ...
1

IBOUNO ARRAY FOR UYER

CONSTANT VALUE OF
4 NOU BEING READ...

1

CONSTANT VALUE OF

5 NOW BEING READ...
1

SUMMARY.PTH
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IBOUND ARRAY FOR LAYER  6 NOU BEING READ...
CONSTANT VALUE OF        1

IBOmO ARRAY FOR LAYER  7 NCU BEING READ...
CONSTANT VALUE OF        1

IBOUW ARRAY FOR LAYER  8 NCU BEING READ.
CONSTANT VALUE OF        1

ͣ BOUND ARRAY FOR LAYER  9 NOU BEING READ...
CONSTANT VALUE OF        1

POROSITY ARRAY FOR LAYER  1 NOU BEING READ.
CONSTANT VALUE OF  .30000E'»00

POROSITY ARRAY FOR UYER  Z NOU BEING READ..
CONSTANT VALUE OF  .30000E+00

POROSITY ARRAY FOR UYER  3 NOU BEING READ.
CONSTANT VALUE OF  .SOOOOE-KIO

POROSITY ARRAY FOR LAYER  4 NOU BEING READ...
CONSTANT VALUE OF  .SOOOOE-HXI

POROSITY ARRAY FOR LAYER  S NOU BEING READ.
CONSTANT VALUE OF  .SOOOOE-^OO

POROSITY ARRAY FOR UYER  6 NOU BEING READ.
CONSTANT VALUE OF  .SOOOOE-HX)

POROSITY ARRAY FOR UYER  7 NOU BEING READ..
CONSTANT VALUE OF  .SOOOOE+OO

POROSITY ARRAY FOR UYER  8 NOU BEING READ.
CONSTANT VALUE OF  .SOOOOE-^OO

POROSITY ARRAY FOR UYER  9 NOU BEING READ.
CONSTANT VALUE OF  .3000K+00

HEADS NOU BEING READ FOR UYER 1

HEADS NOU BEING READ FOR UYER 2

HEADS NOU BEING READ FOR UYER 3

HEADS NOU BEING READ FOR UYER 4

HEADS NOU UINC READ FOR UYER 5

HEADS NOU BEING READ FOR UYER 6

HEADS NOU BEING READ FOR UYER 7

HEADS NOU BEING READ FOR UYER 8

HEADS NOU BEING READ FOR UYER  9
HEADS HAVE BEEN READ
*••• HEADS FOR INDIVIDUAL CELLS CAN BE CHECKED USING THE CELL-BY-CELL OPTION

FLOU RATES FROM THE BCF PACKAGE NOU BEING READ..
BCF FLOU RATES HAVE BEEN READ

UELL DATA NOU BEING READ...
UELL DATA HAS BEEN READ

•»** FLOW RATES FROM BCF AND ALL STRESS PACKAGES HAVE BEEN READ ****
**** INTERCELL FLOU RATES CAN BE CHECKED USING THE CELL-BY-CELL OPTION '

NEATPAGEINFO:id=E92B9F84-5963-4F65-8669-F5DA724BDF52



FORTRAN UNIT 100 • c:\>mpla\MAIH.DAT
FORTRAN UNIT 12 • c:\saaple\b.iMl
FORTRAN UNIT 50 • c:\saiiple\BUOGET.OUT
FORTRAN UNIT 23 • c:\saapla\HEADS.OUT
Current PC configuration su|iportt 75000 tlenenta in tha A array.

MCOPATH-PIOT •• CKS Graphic* Varaion 1.0 — March 1, 1990

MAXIMUM NUHBER OF PARTICLES IS   16000
48298 ELEMENTS OUT OF   75000 USED IN "A* ARRAY

17 COLUMNS      34 ROUS 9 LAYERS 0 CONFINING UYERS

IGRID GRIC TYPE COOE) IS 1

lUNIT ARRAY: 0    12 0 0 0     0 50 23

LATCON (LAYER TYPE COOES):

1    2 2   2   2 2   2 J 2

NO CONFINING LAYERS. tCON • 0 FOR ALL LAYERS.

OELR ARRAY NOU BEING READ
DATA WAS READ BUT NOT PRINTED

DELC ARRAY NOW BEING READ
DATA WAS RFAD BUT NOT PRINTED

DELZ ARRAY NOU BEING READ
DATA WAS READ BUT NOT PRINTED

BOTTOM ELEVATIOH OF UYER 1  IS .96000E+02

IBOUND ARRAY  rot LAYER 1  NOU BEING READ.
-1 -1 -1 -1 • 1 -1 -1 -1      -1      -1      - -1      -1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1\     1        1 1        1      -1
-1 1   \ 1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 111-1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 1        1      -1
-1 1        1        1 11-1
-1 1        1        1 11-1
-1 1        1        1 11-1
-1 1        1        1 11-1
-1 1        1        1 11-1
-1 1        1        1 11-1
-1 1        1        1 11-1
-1 1        1        1 11-1
-1 -1 -1 -1 -1 -1 -1      - -1      -1      -1      - 1      -1      -1      -1

LAYER 2 NCU BEING READ.
CONSTANT MLUE Of 1

I BOUND ARRAY FOR UYER 3 NOW BEING READ.
CONSTANT VALUE OF 1

IBOUNO ARRAY FOR LAYER 4 NOW BEING READ.
CONSTANT VALUE OF 1

IBOUNO ARRAY FOR LAYER 5 NOU BEING READ. ..

CONSTANT VALUE OF 1

SUMMARY.PLT
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I BOUND ARRAY FOR LAYER  6 NOU BEING READ.
CONSTANT VALUE OF       1

ͣ BOUND ARRAY FOR UYER
CONSTANT VALUE OF

7 NOU BEING READ...
1

ͣ BOUND ARRAY FOR UYER
CONSTANT VALUE OF

8 NOU BEING READ...
1

ͣ BOUND ARRAY FOR UYER
CONSTANT VALUE OF

9 NOU BEING RFAD...
1

HEADS NOU BEING READ FOR UYER 1

HEADS NOU BEING READ FOR UYER 2

HEADS NOU BEING READ FOR UYER 3

HEADS NOU BEING READ FOR UYER «

HEADS NOU BEING READ FOR UYER 5

HEADS NOU BEING READ FOR UYER 6

HEADS NOU BEING READ FOR UYER 7

HEADS NOU BEING READ FOR UYER 8

HEADS NOU BEING READ
HEADS HAVE BEEN RFAD

FOR UYER 9

UELL DATA BEING READ...

UELL DATA HAS BEEN READ.
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APPENDIX D

PARTICLE TRACKING FIGURES
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^ ?^

0 1 2 FEET

TWO WELL TRACER TEST  - 8 HOURS
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^

?s^z ^

0 1     2 FEET

1 M I I I___________I

TWO WELL TRACER TEST - 10 HOURS
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r.

0 1 2 FEET

1 I I  I I I__________I

TWO WELL TRACER TEST -  12 HOURS
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nnnnrn^uj

r^

0 1 2 FEET

1 M  I I I_______I

TWO WELL TRACER TEST - 14 HOURS
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^
^

2 FEET

TWO WELL TRACER TEST -  16 HOURS
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-- ^'-^^"^^^^^^^^" -

0 1 2 FEET

1 I I I I I_________I

TWO WELL TRACER TEST  -   18 HOURS

NEATPAGEINFO:id=76F7FD0D-CED9-4632-881C-E35502BD82AB



%

9

0 1 2 FEET

1 M  I I  I_______I
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Using the three dimensional groundwater flow data and the MODPATH model, a simulation of the

path of the tracer transport was modeled for Tracer Test #1. Figure 5.2 is the plot of the well

locations within the designated grid prior to the start of the tracer test Figures 5.3 through 5.6

illustrate the locations of the particles every two hours for the duration of the tracer test A

complete set of particle tracking figures is included in Appendix D. The location of the particles

at the end of the tracer test sampling is shown in Figure 5.6.

By reducing the data from these figures, a graph of Percent of Tracer Recovery vs. Time was

generated (Figure 5.7). The modeling results predict that after 25.5 hours of travel time,

approximately 45 percent of the tracer should have been recovered. As determined by the

breakthrough data, approximately 37 percent of the mass of the tracer was recovered after 25.5

hours for Tracer Test #1. Figures 5.8 and 5.9 show the results of the particle tracking simulation

after 240 hours and 1000 hours of pumping. The model predicts that even if the test was run for

1000 hours, less than 75 percent of the tracer would have been recovered.

The model also predicts that the first tracer should appear in the withdrawal well after 4.25 to 5

hours of injection. In the field, detection of the tracer in the withdrawal well occurred after 4.25

to 4.5 hours. A crossectional view through the tracer weUs showed that all the particles followed

a nearly flat path on their way to the withdrawal well. No particles migrated up or down in the

aquifer beyond the 2 ft. screened layer. This is most likely due to the minscule head difference

between the two wells as shown in Figure 5.1.

Tha agreement between first arrival times was quite good considering model parameters were

estimated independently. It should also be noted that the particle tracking method used did not

account for dispersion. This suggests that advective transport variations are the key phenomenon

for studies of this nature. This agrees with current theory.
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6.0 CONCLUSIONS

1. Methods were developed to conduct two-well tracer tests in the field.

2. An empirical method vras evaluated to reduce the field tracer data, but it was found to be

inappropriate for conditions used in the tracer tests performed.

3. A three dimensional flow and particle tracking model was used to simulate the flow field and

solute transport conditions of one tracer test

4. Good agreement between the experimental data and model predictions was achieved using

independent parameter estimation methods.

5. Variations in the velocity field were found to be the dominate factors affecting the distribution

of solute arrival times, which is consistent with current theory.
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RESULTS FROM FIRST TRACER TEST

FLOHRATE OF INJECTION AND WITHDRAWAL PUKPS: 0.25 SPM

INJECTION WELL: HELL 13 (2* WELL)
WITHDRAHAHL WELL: HELL 11 (4" HELL)

DURATION OF TEST; 25.5 HOURS

TRACER INJECTION TIME: 6 HOURS
AHOUNT OF TRACER INJECTED: SO GALLONS

INITIAL CONCENTRATION OF TRACER: 250 ag/L CHLORIDE

TOTAL AHOUNT OF CHLORIDE INJECTED: 85.1S2 GRAHS Ci

CHLORIDE CONCENTRATION (ag/L)  1
1  SAHPLE

1  NO.

DATE ELAPSED

1  TIHE FIRST SECOND

1 (HOURS) TITRATION TITRATION AVERAGE  1

!      1 3-25-37 !    0.00 14.7 0.0 14.7 1

J      2 3-25-37 1    0.27 14.7 14.3 1 .4 rt t

!      3 0-25-37 1    0.50 14.3 14,7 14,3 !

4 3-25-37 0.75 14.3 14.7 14,3 \

;     5 3-25-37 1    1.00 13.7 15.1 14,4 ;

!      6 a-25-37 1    1.25 14.3 0.0 14,S !

1             •?
1              / S-25-37 :    1,50 15.5 14.9 15,3 >

!      3 3-25-37 i    1,75 15.1 14.7 14.9 1

!      9 8-25-87 i    2.00 15.S 14.9 15.3 1

!     10 8-25-37 i    2.25 15,3 14.3 15.1 1

1    il 3-25-87 1    2.50 14.7 0.0 14.7 1

!     12 3-25-87 1    2.75 14.9 0.0 14.9 I

1     13 3-25-37 i    3.00 15.1 0.0 15.1 1

1     14 3-25-07 1    3.25 15.1 0.0 15,1 i

1     15 8-25-87 :    3.50 14.7 0.0 14,7 1

1      la 3-25-87 !    3.75 15.4 15.3 15,4 1

!     17 8-25-87 !    4.00 15.2 1S.3 13,3 !

!      IS 3-25-37 1    4.25 17.4 i£.3 17.2 1

NEATPAGEINFO:id=D628E6CC-B467-45C3-918D-7A12571F2267



01/01/30 iKACcKi

CHLORIDE CONCENTRATION (ig/L)  1
1  SAMPLE

!  NO.

DATE ELAPSED

TIHE FIRST SECOND

^(HOURS) TITRATION TITRATION AVERAGE  !

!     19 8-25-87 4.50 18.3 18.1 18.2 1

1     20 8-25-87 4.75 19.7 19.5 13.5 1

1      21 8-25-87 5.00 13.9 20.1 20.0 :

1     22 3-25-87 5.25 21.5 22.0 21.S !

!     23 8-25-87 5.50 23.6 23.1 23.4 1

1     24 8-25-87 5.75 24.3 23.8 24.1 I

1     25 8-25-87 6.00 26.1 25.7 25.9 !

!     2& 8-25-87 6.25 28.4 27.5 28.0 1

1     27 8-25-87 6.50 28.3 28.8 28.8 1

1     28 3-25-87 6.75 23.3 29.3 23.3 1

23 8-25-87 7.00 30.9 \  30.7 30.8 1

1     30 8-25-87 7.25 31.8 32.0 31.9 1

!     31 8-25-87 7.50 33.7 33.3 33.8 ;

1     32 3-25-87 7.75 35.1 34.8 35.0 1

!    ͣ 33 8-25-37 8.00 36.4 36.2 35.3 1

!     34 8-25-87 8.25 33.5 38.2 . 38.4 1

i     35 8-25-87 8.50 40.8 42.2 41.5 1

36 8-25-87 8.75 41.9 42.1 42.0 !

1     37 8-25-87 9.05 45.3 47.0 46.4 1

i              38 8-25-87 9.25 45.3 44.4 44.9 1

!     39 8-25-87 9.50 46.5 45.6 45.1 ,

!     40 8-25-37 9.75 47.9 47.0 47.5 •

! .    41 8-25-37 10.00 48.3 48.6 48.5 1

!     42 8-25-87 10.25 49.7 50.1 49.3

i     43 8-25-87 10.50 51.5 51.1 51.3
!
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01/01/30 TRACER1

CHLORIDE CONCENTRATION (jg/L)  1
1  SAMPLE DATE ELAPSED

!  NO. TII1E FIRST SECOND

(HOURS) TITRATION TITRATION AVERAGE  1

1     44 8-25-87 10.75 CO c 52.5 52,5 1

!     45 8-25-87 11.00 52.0 53,3 52.7 1

1     46 8-25-87 11.27 54.6 54.1 54.4 1

1     47 1 8-25-37 11.50 ; 54.6 1 53,9 54.3 1

!      48 8-25-87 11.75 54.5 ' 54,1 54.4 1

!     49 8-25-87 12.00 54.6 ' 54,5 54.5 1

I     50 8-25-87 12.25 54.1 53,4 53.3 1

!     51 8-25-87 12.50 54.5 53,9 54.2 1
1

!     52 8-25-87 12.75 54.3 54,5. 54.4 !

!     53 8-25-87 13.00 53.3 53,6

1

53.3 1

1 .    54 8-25-87 13.25 52.7 53,5 53.2 1

!     55 8-26-87 13.50 53.3 53.1 53,2 1

!     5& 8-25-87 13.75 53,3 52,7 53,0 1

!     57 8-26-87 14.00 52.4 52.9 52.7 1

!     58 8-26-87 14.25 51.9 52.5 52.2 1

!     59 8-25-87 14.50 52.4 52.4 52.4 1

!     SO 8-26-87 14.75 52.0 52.4 52.2 1

1     61 8-25-87 15.00 50.6 51.0 50.3 1

1     52 8-26-87 15.25 49.3 50.0 49.9 !

;          63 8-26-87 15.50 50.0 50.3 50.2 !

!     64 8-26-87 1   15.75 48.9 49.4 49.2 •

!     65 , 8-25-87 15.00 48.7 49,3 1    49.0

!     66 8-26-37 1   15.25 43.2 48.2 48.2

!     57 ' 8-26-87 !   16.50 46.8 47,5 !    47.2

!     53 : 3-25-37 1   15.75 45,7 46,0 I    46.4
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01/01/80 TRACERl

CHLORIDE CONCENTRATION (ag/L)  1
1  SAMPLE  !

ND.

DATE ELAPSED  ͣ

TIHE  ! FIRST SECOND

(HOURS)  ͣ TITRATION TITRATION AVERA6E  !

!      69 ! 8-26-87  i 17.00 1 46.0 46.0 1 46.0 !

1      70 8-26-87 17.25 ! 45.1 45.1 45.1 1

i      71 ! 8-26-87  ! 17.50 1 45.1 44.9 45.0 1

1      72 1 8-26-87 17.75 1 44.2 44.6 1 44.4 !

!     73 3-2&-B7 18.00 ! 43.4 43.0 43.2 1

!     74 8-26-37 18.25 ! 42.1 42.7 42.4 !

i     75 8-26-37 18.50 42.1 41.S 42.0 1

!     7B 8-26-87 18.75 40.9 40.6 40.3 !

!     77 8-26-87 19.00 40.6 40.9 40.8 1

1     73 8-26-37 19.25 40.2 40.3 40.5 !

!     79 3-26-87 19.50 39.9 39.5
\

39.7 1

1   ao 8-26-37 19.75 30.7 38.9 38.3 !

SI 8-26-87 20.00 40.1 39.4 39.3 1

82 8-26-37 20.25 39.2 38.9 39.1 1

I     83 8-26-87 20.50 39.4 38.5 39.0 1

1     84 8-25-37 20.75 33.3 38.0 33.2 1

1     S5 3-25-87 21.00 38.2 38.7 38.5 1

!     86 8-26-87 21.25 37.5 37.3 37.5 1

!     87 , 8-26-B7 1   21.50 37.3 37.6 37.5 1

I     88 1 8-26-87 1   21.75 36.7 1    36.4 1    36.6 1

!     39 8-26-87 22.00 36.4 35.4 36.4 1

1     90 ͣ 8-26-87 !   22.25 35.0 1    35.2 36.1 i

1     91 1 8-25-87 1   22.50 1    35.7 !    35.5 !    35.6 1

!     92 1 B-26-87 1    22.75 1    35.5 1    35.5 !    35.5 1

1     93 1 3-26-87 i   23.00 1    35.3 1    34.8 1    35.1
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01/01/80 TRACER1

!  SAHPLE
1  ND.

DATE ELAPSED

TIHE

CHLORIDE a;ncentration (ag/L)  '

FIRST SECOND

(HOURS) TITRATION TITRATION AVERAraE  1

1     94 8-25-87 23.25 35.5 34.8 35.2 1

!     95
1

8-26-87 23.50 34.1 34.4 34.3

1     96 8-26-87 23.75 34.2 34.1 34.2

1     97 3-26-B7 24.00 33.4 33.7 33.6

1     9B S-25-87 24.25 33.0 33,2 33.1 1

!     99 8-25-87 24.50 33.0 33.7 33.4

!     100 8-26-87 24.75 32.1 32.6 32.4

1     101
1

8-26-37 25.00 31.9 32.1 32.0

1     102
1

3-25-87 25.25 31.7 32.1 31.9 1

1     103
1
1

8-26-87 25.52 31.5 31.2 31.4 1
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RESOLTS FROM SECOND TRACER TEST

FLDHRATE OF INJECTION AND MITHDRAHAL PUHPS: 0.50 8PM

INJECTION HELL: HELL 12 (2' HELL)
HITHDRAHAHL HELL: HELL 10 (4" HELL)

DURATION OF TEST: 30 HOURS

TRACER INJECTION TIME: 4 HOURS
AMOUNT OF TRACER INJECTED: 120 GALLONS

INITIAL CONCENTRATION OF TRACER: 250 ig/L CHLORIDE

TOTAL AHOUNT OF CHLORIDE INJECTED: 113.549 GRAMS CI

!  SAMPLE

1  NO.

DATE ELAPSED

TIME

CHLORIDE CONCENTRATION (ag/L)  1

FIRST SECOND

(HOURS) TITRATION TITRATION AVERAGE  1

I       1 11-12-87 0.0 15.3 14.9 15.1

!      2 11-12-B7 0.5 14.7 14.6 14.7

1      3 11-12-87 1.0 15.3 14.9 15.1

!      4 11-12-37 1.5 21.2 '^ 20.5 20.9

5 11-12-37 2.0 27.1 27.1 27.1

!      6 11-12-B7 2.5 33.3 34.0 33.9

1      7 11-12-87 3.0 41.5 41.8 41.7

i   ' a 11-12-87 3.5 49.3 49.8 49.8

9 11-12-37 4.0 52.3 53.1 53.2

!     10 11-12-87 4.5 51.7 50.9 61.3

i      11 11-12-87 5.0 £3.3 52.8 53.1 '

12 11-12-87 5.5 55.7 66.1 55.9 1

1     13 11-12-B7 5.0 58.9 68.2 58.6

1      14 11-12-87 6.5 5S.I 55.1 65.1

1      15 11-12-87 7.0 63.8 53.8 53.3

IS 11-12-87 7.5 59.1 59.7 59.4

!      17 11-12-87 3.0 54.5 54.5 54.5

1      18 11-12-87 8.5 50.3 50.5 50.4

A<  .'I'.i   /HA TOACITDO
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CHLORIDE CONCENTRATION (ig/L)  1
1  SAHPLE

1  NO.

DATE ELAPSED

TIHE FIRST SECOND

(HOURS) TITRATION TITRATION AVERAGE  !

!      19 11-12-87 9.0 45.8 46.5 46.7 1

1      20 11-12-87 9.5 43.7 43.7 43.7 1

i      21 11-12-87 10.0 40.8 41.1 41.0 1

!     22 11-12-87 10.5 33.2 38.8 33.5 1

23 11-12-87 11.0 37.5 37.5 37.5 1

1     24 11-12-87 11.5 35.4 35.5 35.5 1

1     25 11-12-87 12.0 34.7 34.7 34.7 !
1

!     25 11-12-37 12.5 34.2 33.8

1

34.0 1

1     27 11-12-87 13.0 33.3 33.1 33.2 1

!     28 11-12-87 13.5 31.7 31.7 31.7 1

!   .  29 11-12-87 14.0 30.0 .^  30.4 30.2 1

i      30 11-12-87 14.5 29.1 29.5

1

29.3 1

;    31 11-12-87 15.0 29.0 29.0 29.0 1

I     32 11-12-87 15.5 27.9 23.1 28.0 1

1    , 33 11-12-87 16.0 27.1 27.1 27.1 1

!     34 11-12-87 15.5 25.2 25.8 25.0 1

1     35 11-12-87 17.0 25.3 25.0 25.9 I

!     36 l!-l3-e7 17.5 24.8 25.2 25.0 1

!      37 11-13-87 I    18.0 23.4 23.8 23.6 1

!     38 11-13-87 18.5 23.8 23.4 23.5 i

!     39 11-13-87 19.0 22.5 23.1 22.8 i

i     40 11-13-87 19.5 23.1 22.9 23.0 1

!     41 11-13-87 20.0 22.4 22.0 22.2 1

!     42 11-13-87 20.5 21.3 21.7 21.5 1

1     43 11-13-87 21.0 21.5 21.3 21.4 !

i\\ /At iQn T54rcp9
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1  SAilPLE  !

!  ND.
DATE  1 ELAPSED

Ti:iE

CHLORISE CONCENTRATIGN (aq/L)  !

FIRST SECOND

(HOURS) TITRATION TITRATION AVERAGE  1

r   44 11-12-87 21.5 21.2 20.3 21.0 1

1      45 11-13-B7 22.0 20.6 20.1 20.4 !

!      46 11-13-87 22.5 19.3 13.8 19.9 1

!      47 11-13-87 23.0 19.S 15.1 19.4 !

1      48 11-13-87 23.5 ' 18.3 13.1 ' 13.0 1

!      43 11-13-37 24.0 13.1 19.1 19.1 !

i      50 11-13-87 24.5 18.9 19.1 19.0 1

!      51 11-13-07 25.0 IB.9 18.9 18.9 1

52 11-13-87 25.5 18.5 18.5 IS.5 !

!     53 11-13-87 26.0 18.5 18.7 18.7 1

1     54 11-13-87 26.5 13.7 18.5 18.7 !

!     55 11-13-87 27.0 IB.O '^^  17.3 IS.O 1

!     55 11-13-37 27.5 17.7 13.0 17.9 •

!     57 11-13-37 28.0 13.0 17.3 13.0 1

1     58 11-13-87 28.5 17.5 17.5 17.5 !

!    '59 11-13-87 29.0 17.3 17.5 17.4

50 11-13-87 29.5 17.7 17.5 17.5 !

!      51 11-13-87 30.0 17.5 17.7 17.5
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24 hour pugping tett ilajlatlon
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0
0
0

0
0
0

0
0
0
0
0
0

1.0

34
)   0   0

1
H

ͣ1-1-1-
111
111
111
111
111
1 1 1
1 1 1
1 1 1
1 1 1
111
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
111
111
111
111
111
111
111
1 1 1
1 1 1
ͣ1-1-1-

1

1
1
1
1
1
1
1

.lOOE+03

.lOOE+03

.lOOE+03

.lOOE+03

.lOOE+03

.100E+03

.lOOE+03

.lOOE+03

.lOOE+03
1

17
9   0 0 22   0

BAS.DAT
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1 50
100000000

0 .100E*01
11 .100E*01(7G11.4) 12

6.000 4.500 3.000 1.500 .7500 .5000 .3333
.2500 .1667 .2500 .3333 .5000 .7500 1.500
3.000 4.500 6.000

11 .100E*01(7611.4) 12
8.000 4.000 2.000 1.250 .7500 .5000 .3333
.2500 .1667 .1667 .1667 .1667 .1667 .2500
.3333 .4167 .5000 .5000 .4167 .3333 .2500
.1667 .1667 .1667 .1667 .1667 .2500 .3333
.5000

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.7500
.864EM)1
.720E*a2
.421E*00
.112E+aS
.910E+00
.S18£*02
.192E*01
.2S9E*02
.346E*01
.173E*02
.346E*01
.2S9E*02
.192E*01
.518E+02
.9106*00
.n2E*03
.274E*00
.43a*03

1.250 2.000 4.000 8.000

\
\

BCF.DAT
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2 0
2
S 11 9   48.1
S 24 9 -4S.1

WEL.DAT
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so 5
1.0000       .10000E-03 1.00000

\
\

SIP.DAT
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-2 -2 23 0
0 111
10 10

\
\

OC.DAT
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1 U.S.  GEOLOGICAL SURVEY MODULAR  FINITE-DIFFERENCE GROUND-WATER MODEL
024 hour puiping t«*t tiaulition

9 LAYERS 34 ROUS 17 COLUMNS
1  STRESS PER10D($>  IN SINUUTION

MODEL TIME UNIT   IS DAYS
OI/O UNITS:
ELEMENT OF lUNlT:    1    23456789

I/O UNIT: 11 12   0   0   0   0   0   0 19
OBASI  " BASIC MODEL PACKAGE, VERSION 1, 9/1/87 INPUT READ FROM UNIT
ARRAYS RHS AND BUFF WILL SHARE MEMORY.
START HEAD WILL BE SAVED

51529 ELEIENTS  IN X ARRAY ARE USED BY BAS
51529 ELEMENTS OF X ARRAY USED OUT OF    100000

08CF1   — BLOCK-CENTERED  FLOU PACKAGE,  VERSION  1,  9/1/87 INPUT READ  FROM UNIT  11
STEADY-STATE SIMUUTION
CELL-BY-CELL FLOWS WILL BE RECORDED ON UNIT 50

LAYER    AQUIFER TYPE

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0022000000000000

1

1165 ELEMENTS IN X ARRAY ARE USED BY BCF
52694 ELEMENTS OF X ARRAY USED OUT OF 100000

OUEll -- WELL PACKAGE, VERSION 1, 9/1/87 INPUT READ FROM 12
MAXIMUM OF   2 WELLS

8 ELEMENTS IN X ARRAY ARE USED FOR WELLS
52702 ELEMENTS OF X ARRAY USED OUT OF 100000

0SIP1 -- STRONGLY IMPLICIT PROCEDURE SOLUTION PACKAGE, VERSION 1,
MAXIMUM OF 50 ITERATIONS ALLOWED FOR CLOSURE
5 ITERATION PARAMETERS

21013 ELEMENTS IN X ARRAY ARE USED BY SIP
73715 ELEMENTS OF X ARRAY USED OUT OF 100000

124 hour punping test slnulation ^.
0 "-

9/1/87 INPUT READ FROM UNIT 19

BOUNDARY ARRAY FOR LAYER 1 WILL BE READ ON UNIT 1 USING FORMAT: (1712)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

-1 -1

-1 1
-1 1
-1 1
-1 1
-1 1
-1 1
-1 1
-1 1

0 10 -1 1
0 11 -1 1
0 12
0 13
0 14
0 15

-1 1
-1 1
ͣ1 1
ͣ1 1

0 16 -1 1
0 17 -1 1
0 18 -1 1
0 19 -1 1

-1 1
-1 1
-1 1
-1 1
-1 1

1

0 20
0 21
0 22
0 23
0 24
0 25 -1
0 26 -1 1
0 27 -1 1

0 28 -1 1
0 29 -1 1
0 30 -1 1
0 31 -1 1
0 32 -1 1
0 33 -1 1

-1 -1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1

BECKY.HRD
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0 34 -1-1 -1 -1 -1 -1 -I -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
0                                                      BOUNDARY ARRAY • FOR UYER

0                                                      BOUNDARY ARRAY > FOR LAYER

0                                                      BOUNDARY ARRAY < FOR LAYER

0                                                 BOUNDARY ARRAY • FOR LAYER

0                                                      BOUNDARY ARRAY • FOR LAYER

0                                                      BOUNDARY ARRAY ͣ FOR LAYER

0                                                      BOUNDARY ARRAY ͣ FOR UYER

0                                                      BOUNDARY ARRAY ͣ FOR UYER

OAOUIFER HEAD WILL BE BEY TO 999.00    AT ALL NO-FLOW NODES (IBOUND>0).
0                                                   INITIAL HEAD •.  100.0000 FOR UYER

0                                                        INITIAL HEAD • ͣ  100.0000 FOR UYER

0                                                        INITIAL HEAD >  100.0000 FOR UYER

0                                                        INITIAL HEAD >>  100.0000 FOR UYER
0                                                        INITIAL HEAD ͣ .  100.0000 FOR UYER

0                                                   INITIAL HEAD ͣ .  100.0000 FOR UYER

0                                                        INITIAL HEAD >  100.0000 FOR UYER
0                                                   INITIAL HEAD >  100.0000 FOR UYER

0                                                   INITIAL HEAD ͣ  100.0000 FOR UYER
OHEAD PRINT FORMAT IS FORMAT NUMBER -2   DRAWDOWN PRINT FORMAT IS FORMAT NUMBER -2
OHEADS WILL BE SAVED ON UNIT 23   DRAWDOWNS WILL BE SAVED ON UNIT 0
QOUTPUT CONTROL IS SPECIFIED EVERY TINE STEP
0                                             COLUMN TO ROW ANISOTROPY •  1.000000

DELR WILL BE READ ON UNIT 11 USING FORMAT: (7011.4)

6.0000 4.5000 3.0000 1.5000 .75000 .50000 .33330
.33330 .50000 .75000 1.5000 3.0000 4.5000 6.0000

.25000 .16670 .25000

DELC WILL BE READ ON UNIT 11 USING FORMAT: (7G11.4)

8.0000 4.0000 2.onnn 1.2500 .75000     .50000 .iiiJO .25000 .16670 .16670
.16670 .16670 .16670 .25000 ;33330     .41670 .50000 .50000 .41670 .33330
.25000 .16670 .16670 .16670 .H6670     .16670 .25000 .33330 .50000 .75000
1.2500 2.0000 4.0000 8.0000

''

0 HYD. COND. ALONG ROWS ͣ >  8.640000 FOR UYER 1
0 BOTTOM i>  72.00000 FOR UYER 1

VERT HYD COND /THICKNESS >>  .4210000 FOR UYER 1

TRANSMIS. ALONG ROUS •  112.0000 FOR UYER 2

VERT HYD COND /THICKNESS <>  .9100000 FOR UYER 2
TRANSMIS. ALONG ROUS >•  51.80000 FOR UYER 3

VERT HYD COM) /THICKNESS •  1.920000 FOR UYER 3
TRANSMIS. ALONG ROWS <>  25.90000 FOR UYER 4

VERT HYD COND /THICKNESS ͣ  3.46U0U0 FOR UYER 4
TRANSMIS. ALONG ROWS ͣ ͣ  17.30000 FOR UYER 5

VERT HYD COND /THICKNESS ͣ  3.460000 FOR UYER 5
TRANSMIS. ALONG ROWS ͣ '  25.90000 FOR UYER 6

VERT HYD COND /THICKNESS <'  1.920000 FOR UYER 6

TRANSMIS. ALONG ROWS >  51.80000 FOR UYER 7
VERT HYD COND /THICKNESS •  .9100000 FOR UYER 7

TRANSMIS. ALONG ROUS ͣ  112.0000 FOR UYER 8
VERT HYD COND /THICKNESS .  .2740000 FOR UYER 8

TRANSMIS. ALONG ROWS <>  432.0000 FOR UYER 9

SOLUTION BY YHE STRONGLY IMPLICIT PROCEDURE

MAXIMUM ITERATIONS ALLOWED FOR CLOSURE •     50
ACCELERATION PARAMETER •    1.0000

HEAD CHANGE CRITERION FOR CLOSURE <    .lOOOOE-OS
SIP HEAD CHANGE PRINTOUT INTERVAL •      1
CALCUUTE ITERATION PARAMETERS FROM NOOEL CALCUUTED USEED
STRESS PERIOD NO.  1, LENGTH >  1.000000

2 WELLS

WJMBER OF TINE STEPS «   1

MULTIPLIER FOR DELT •     .000

INITIAL TIME STEP SIZE «  1.000000

UYER   ROW   COL   STRESS RATE  WELL NO.
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5    11
5    24

OAVERAGE SEED ͣ .00016713
MINIMLM SEED « .00000060
0

5 ITERATION PARAMETERS CALCULATED FROM AVERAGE SEED:

48.100
-48.100

.OOOOOOOE-^OO  .8862989E+00  .9S70721E+00  .9985301E*00  .9998329E+00
0

36 ITERATIONS FOR TIME STEP  1 IN STRESS PERIOD 1
OHAXIMUM HEAD CHANGE FOR EACH ITERATION:

0 HEAD CHANGE UYER.ROW.COL HEAD CHANGE UYER.ROU.COL HEAD CHANGE LAYER,ROU.COL HEAD CHANGE LAYER,ROU.COL HEAD CHANGE UYER.ROW.COL
-1.095   { 5^ 24, 9> .4232   ( 12, .4062   ( 10, 8> .1716   < 5, 16. -.2692   ( 8,
-.6535E-01 < 17, 4> -.722(«-01 ( 18, .4487E-ai ( 9, 10) .5958E-01 ( 5, -.5572E-01 ( 7,
.1263E-01 ( 16, 3) .1304E-01 ( 4, .1641E-01 ( 12, 3) -.1961E-01 < 2, -.1115E-01 ( 4,
.2654E-02 ( 8, 3) .2980E-02 ( 16, .3062E-02 ( 21, 4) .6146E-02 ( 8, .1036E-01 ( 4,
.9650E-03 ( 32, 1) .6432E-03 ( 31, .1269E-02 ( 12, 8) .2807E-02 ( 3, .2367E-02 C 33,
.2912E-03 C 1, 2) .2624E-03 ( 2, -.3490E-03 < 2. 21, 5) .1003E-02 ( 8, .9583E-03 ( 24,

-.1485E-03 ( 30, 1) .1060E-03 ( 4, -.1677E-03 < 8. 10, r> -.3089E-03 ( 8, .4567E-03 ( 12,
.5318E-04 < 20, 3)

OHEAD/DRAUDOWN PRINTOUT FLAG • 1    TOTAL BUDGET PRINTOUT FLAG
OOUTPUT FUGS FOR ALL UYERS ARE THE SAME:

HEAD   DRAWDOWN HEAD DRAWDOWN
PRINTOUT PRINTOUT SAVE   SAVE

CELL-BY-CELL FLOW TERN FLAG • 1

1       0     10

>  CONSTANT HEAD" BUDGET VALUES WILL BE SAVED ON UNIT 50 AT END OF TIME STEP 1, STRESS PERIOD 1
•FLOW RIGHT FACE ' BUDGET VALUES WILL BE SAVED ON UNIT 50 AT END OF TIME STEP 1, STRESS PERIOD 1
•FLOW FRONT FACE • BUDGET VALUES WILL BE SAVED ON UNIT SO AT END OF TIME STEP 1. STRESS PERIOD 1
•FLOW LOWER FACE • BUDGET VALUES WILL BE SAVED ON UNIT SO AT END OF TIME STEP 1. STRESS PERIOD 1
1                 HEAD IN UTER 1 AT END OF TIME STEP 1 IN STRESS PERIOD 1

1 2 3 4 5 6 7 8 9

0 1 "iooiooo"' "'iooiooo'" .....ioo.'ooo"" ""iooiooo "" '"ioolooo" .....ioo!o66 "" "'ioo!o66 " '"iooiooo"" '"iooiooo"'"
0 2 100.000 100.000 100.000 loo.ooa,

100.000 .
100.000 100.000 100.000 100.000 100.000

0 3 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 4 100.000 100.000 100.000 100.000 ' 100.000 100.000 100.000 100.000 100.000
0 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 6 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 7 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 8 100.000 100.000 100.000 100.000 lOO.WW 100.000 100.000 100.000 100.000
0 9 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 11 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 12 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 13 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 14 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 15 loo.mo 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 16 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 17 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 18 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 19 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 20 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 21 100.000 100.000 100.000 99.9999 99.9999 99.9999 100.000 100.000 100.000
0 22 100.000 100.000 100.000 99.9999 99.9999 99.9999 99.9999 100.000 100.000
0 23 100.000 100.000 99.WW 99.9999 99,9999 99.9999 99.9999 99.9999 99.9999
0 24 100.000 100;000 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
0 25 100.000 100.000 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
026 100.000 100.000 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
0 27 100.000 100.000 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
0 28 100.000 100.000 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
029 100.000 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
030 100.000 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
0 31 100.000 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
0 32 100.000 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
033 100.000 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999
034 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
1 HEAD IN UYER 1 AT EW OF TIME STEP 1 IN STRESS PERIOD 1

16 1710 11 12 13 14 15

0 1
0 2
0 3
0 4

100.000
100.000
100.000
100.000

100.000
100.000
100.000
100.000

100.000
100.000
100.000
100.000

100.000
100.000
100.000
100.000

100.000
100.000
100.000
100.000

100.000
100.000
100.000

100.000

100.000
100.000
100.000
100.000

100.000
100.000
100.000
100.000
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0 5 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 6 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 7 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 8 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 9 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 10 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 11 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 12 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 13 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 U 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 15 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 16 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 17 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 18 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 19 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 20 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 21 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 22 100.000 100.000 100.000 100.000 100.000 100.000 100.000 ͣ 100.000
0 23 99.9999 100.000 100.000 100.000 100.000 100.000 100.000 100.000
0 24 99.9999 99.9999 99.9999 99.9999 100.000 100.000 100.000 100.000
D 25 99.9999 99.9999 99.9999 99.9999 99.9999 100.000 100.000 100.000
n ?A OO OOQQ OO OOQO OO oooo OO oooo OO oooo c<^  nooo inn nnn inn n<^r\

0 Zo 59.5*99 99.9999 y9.y»99 99.9999 99.9999 99.9999 100.uoo lUO.OOU
0 29 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 100.000 100.coo
0 30 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 100.000
D 31 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 100.000
0 32 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 100.000
0 33 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 99.9999 100.000
0 y, 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000

7 81 2 3 4 5 6 9

0 1 "iooioos" "iooiooi'"' ""iooiooi...... 'iooiooi'"' "'iooiooA'" ""iooiooi"' 160.664 "166.664 ""i66!664""'
0 2 100.003 100.003 100.003 100.004 100.004 100.004 100.004 100.004 100.004
0 3 100.002 100.002 100.003 100.003 100.003 100.003 100.003 100.003 100.003
0 4 100.001 100.002 100.002 100.002 100.002 100.002 100.002 100.002 100.002
0 5 100.001 100.001 100.002 100.002 100.002 100.002 100.002 100.002 100.002
0 6 100.001 100.001 100.001 100.002 100.002 100.002 100.002 100.002 100.002
0 7 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001
0 S 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001
0 9 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001
0 10 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001
0 11 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001
0 12 100.000 100.001 100.001 100.001 100.001 100.001 100.001 100.001 100.001
n 1-y inn rinn inn nni inn   nm inn nn' .nn r.n. .nn rtn. .n- ^-- •"' ~"' '" "

- ., luu.wWW lUU.UUW luu.uu1 lUU.UUI lUU.UUI lou.uut tUu.uul luu.uut tUU.UUl

0 21 99.9994 99.9993 99.9992 99.9991 99.9991 99.9991

0 3 100.003 100.003 100.003 100.003 100.003 100.003 100.002 100.002
0 4 100.002 100.002 100.002 100.002 100.002 100.002 100.002 100.001
0 5 100.002 100.002 100.002 100.002 100.002 100.002 100.001 100.001
0 6 100.002 100.002 100.002 100.002 100.002 100.001 100.001 100.001
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1 2 FEET

I I I I

TWO WELL TRACER TEST  - 24 HOURS
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