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ABSTRACT 

Britta Elyse Jones: DNA Methylation Patterns as a Biomarker of Disease 
Relapse and Remission in Patients with ANCA-Associated Vasculitis 

(Under the direction of Ronald J. Falk) 

 

This dissertation is focused on the role of DNA methylation in anti-neutrophil 

cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV), an autoimmune condition 

characterized by vascular inflammation and organ damage. Pharmacologically induced remission 

is complicated by relapses. Potential triggers of relapse are immunological challenges and 

environmental insults, both of which are associated with changes in epigenetic silencing 

modifications. Alterations in histone modifications implicated in gene silencing are associated 

with aberrant autoantigen expression.  

In Chapter 1 I establish a link between DNA methylation, a model epigenetic gene 

silencing modification, and autoantigen gene expression and disease status in AAV, by 

measuring gene-specific DNA methylation of the autoantigen genes, myeloperoxidase (MPO) 

and proteinase 3 (PRTN3), in leukocytes of AAV patients followed longitudinally (n=82) and 

healthy controls (n=32). Patients with active disease demonstrated hypomethylation of MPO and 

PRTN3 and increased expression of the autoantigens; in remission DNA methylation generally 

increased. Longitudinal analysis divided AAV patients into two groups based on whether DNA 

methylation increased or decreased from active disease to remission. In patients with increased 

DNA methylation, MPO and PRTN3 expression correlated with DNA methylation. Kaplan-
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Meier estimate of relapse revealed patients who increased DNA methylation at the PRTN3 

promoter had a significantly greater probability of a relapse-free period, independent of ANCA 

serotype. Patients with decreased DNA methylation at the PRTN3 promoter were more likely to 

relapse with a hazard ratio of 4.55. Changes in the DNA methylation status of the PRTN3 

promoter predict likelihood of stable remission and may explain autoantigen gene regulation.  

Chapter 2 focuses on gene-specific DNA methylation patterns of purified neutrophils and 

CD14+ monocytes isolated from patients with AAV. I measured DNA methylation at MPO and 

PRTN3 along with the mRNA expression of those genes and found evidence that DNA 

methylation in monocytes may be contributing to the altered methylation patterns seen in 

Chapter 1 from total leukocytes while altered expression of autoantigen genes in neutrophils may, 

instead, be impacted by histone modifications. Efforts to isolate T cells uncovered a CD3- CD4- 

fraction of cells in our CD4-enriched isolation from active patients exhibiting high autoantigen 

gene expression which may further contribute to the disease etiology of AAV. 
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PROLOGUE: DNA METHYLATION IN AUTOIMMUNE DISEASE 
 

Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a 

systemic autoimmune condition characterized by vascular inflammation and organ damage. 

Observations from in vitro and experimental animal models indicate a pathogenic role for ANCA, 

which can activate neutrophils and monocytes, causing destructive necrotizing vascular 

inflammation (1). The necrotizing vasculidities associated with ANCA include granulomatosis 

with polyangiitis (GPA), microscopic polyangiitis (MPA), eosinophilic granulomatosis with 

polyangiitis (EGPA) and renal limited necrotizing and crescentic glomerulonephritis (2). The 

etiology and pathogenesis of AAV are influenced by genetic factors, environmental exposures, 

infections and characteristics of the innate and adaptive immune system. ANCA target antigens 

in the cytoplasm of neutrophils and monocytes. Myeloperoxidase (MPO) and proteinase 3 (PR3) 

are two prominent autoantigen targets of ANCA; it is the interaction between ANCA and target 

autoantigens that induces AAV.  

AAV is characterized by therapy-induced disease remission, which may be punctuated by 

periods of disease relapse (3-7). Relapses can be triggered by immunological challenges and 

environmental insults, both of which are associated with changes in epigenetic silencing 

modifications. Specific factors that promote remission or permit disease relapse are unknown; 

however, because expression of autoantigen genes is elevated during active disease, clues to 

disease states emerge from understanding mechanisms regulating autoantigen expression (8). 

Recent research on transcriptional dysregulation from our laboratory found increased autoantigen 
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mRNA that coincided with de novo protein synthesis of MPO and PR3 in neutrophils (9). Our 

group previously proposed a model wherein these normally silenced genes are upregulated as a 

consequence of reduction in the histone modification histone H3 lysine 27 trimethylation 

(H3K27) (10). This modification is associated with DNA methylation, raising the possibility of 

combinatorial mechanisms responsible for autoantigen gene silencing. Thus, there is reason to 

believe that altered epigenetic modifications have the ability to impact the pathogenesis of AAV.  

 When Conrad Waddington first postulated that environmental signals might have the 

ability to modify genes and determine the fate of a single cell, he thought an additional layer of 

information must exist around or above the genome—the epigenome (11). Genes had yet to be 

visualized at this point in the early 20th century, thus this postulation and the accompanying 

concept of epigenetics were cast aside in favor of more testable hypotheses in a field soon to 

become developmental biology. It was not until 1975 that DNA methylation was explored as a 

potential epigenetic regulator (12, 13). By the late 20th century, epigenetics came to describe 

modifications of the DNA or associated proteins that carry information during cell division, 

exclusive of DNA sequence variation (14). Today, the methylation of the fifth position of 

cytosine is one of the most mechanistically understood epigenetic modifications (15). DNA 

methylation patterns are established and modified in response to environmental factors by three 

main DNA methyltransferases (DNMTs); the loss of any one of these enzymes is lethal in mice 

(16). 

 The field of epigenetics, which includes the study of DNA methylation, holds the 

potential to explain mechanisms involved in aging, human development, cancer, heart disease 

mental illness and autoimmunity. Epigenetics is now considered to be at the “epicenter of 

modern medicine” by some investigators who believe the field may ultimately play a greater role 
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in disease than genetics (17). Just as Conrad Waddington first theorized, scientists continue to 

study epigenetics in an effort to better explain the relationship between the genome and the 

environment. Inclusion of epigenetics in studies of the etiology of human diseases is thought to 

uncover modifications useful in disease prevention and therapy. Already, DNA 

methyltransferase inhibitors are being used in the treatment of hematologic cancers; 

demonstrating a combination of immune-checkpoint-inhibitor agents and epigenetic modulators 

(18, 19). Unlike sequence mutations, epigenetic changes are, by definition, reversible. Thus, the 

greatest promise of epigenetics in the field of medicine lies in the possibility of new therapies. 

Chromatin modifications 

Chromatin is made up of DNA and proteins that form chromosomes in the nucleus of the 

cell. There are two types of chromatin modifications: histone modifications and ATP-dependent 

chromatin remodeling complexes. A nucleosome is comprised of about 200 base pairs of DNA 

wrapped around a core of histone proteins, which can be chemically modified. Covalent 

modifications by specific enzymes to the histone proteins allow transcriptional regulatory 

proteins access to condensed genomic DNA to alter gene expression. Proteins work with 

transcription factors in activating or silencing genes by acetylation or deacetylation of histones, 

respectively (17). ATP-dependent chromatin remodeling complexes regulate gene expression by 

moving or restructuring nucleosomes (20). Additionally, the density of nucleosome packing 

along DNA can also influence epigenetic changes and impact gene expression. The mechanisms 

of maintaining chromatin modifications during cell division are more complicated than for 

maintaining DNA methylation (21, 22). 
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In response to environmental factors, DNA methylation patterns are established and 

modified by a complex interplay of DNMT1, 3A and 3B that catalyze the transfer of methyl 

groups to DNA. DNA methyltransferases can be divided into maintenance methyltransferases 

(DNMT1) and de novo methyltransferases (DNMT3A and 3B). During DNA replication, 

DNMT1 propagates symmetrically methylated CpGs through recognition of the nascent strand 

opposite a previously methylated position. DNMT1 functions throughout the life of an organism 

to maintain the methylation pattern established by the de novo methyltransferases. DNMT1 can 

accumulate errors over successive rounds of cell division which can lead to aberrant expression 

of previously silenced genes (23). 

De novo methyltransferases, DNMT3A and DNMT3B, add methyl groups to previously 

unmethylated CpGs and are known to be active during germ cell development and early 

embryogenesis, when DNA marks are re-established after phases of genome demethylation (24). 

Thus, both DNMT3A and 3B are capable of mediating methylation-independent gene repression. 

With regard to disease etiology, the replication of DNA methylation patterns during mitosis is 

sensitive to the environment.  

DNA methylation  

Epigenetic changes have profound effects on gene expression by modifying the 

accessibility of DNA to transcription factors (25). In mammals, cytosine methylation is restricted 

to the symmetrical CpG context (26, 27). Compared to other epigenetic modifications, CpG 

methylation is thought to be relatively stable; but it can be affected by environmental changes as 

well as genetic mutations, leading to epigenetic instability and disease. Three conserved 

enzymes: DNMT1, 3A and 3B are responsible for the deposition and maintenance of methyl 
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groups that are essential for normal development (28, 29). Of the 28 million CpGs in the 

mammalian genome, 60-80% are methylated. Clusters of CpGs averaging 1,000 base pairs long 

and characterized by elevated cytosine and guanine base composition are referred to as CpG 

islands (CGIs). CGIs comprise fewer than 1% of total genomic DNA (30), yet these CGIs are 

present at transcription start sites of more than half of all human genes (31, 32). Despite growing 

interest in the study of changes in DNA methylation, the vast majority of genomic methylation 

patterns are relatively static across tissues and throughout life; exceptions include the germ line 

and pre-implantation development.  

In contrast to the rest of the genome, where CpG dinucleotides are heavily methylated 

and rapidly lost through deamination, CpG sites within CGI promoters are normally free from 

DNA methylation and do not have an elevated mutation rate (32, 33). These genes show 

differences in their patterns of transcription initiation and are reported to have higher levels of 

activation-associated chromatin modifications. CGI promoters are not usually repressed by DNA 

methylation; instead they are silenced by histone (H3K27) methylation (34, 35). Genes with CGI 

promoters have a characteristic transcription-associated chromatin organization. Active genes 

with CGI promoters have a distinct step-like series of modified nucleosomes after the 

transcription start site (36). The maintenance of an unmethylated state at a promoter overlapping 

with a CGI requires DNMTs to be excluded; a maintenance that is heavily influenced by 

transcription factor binding. CGIs can accrue heritable methylation if they are truncated or 

depleted of known transcription factor binding sites (37, 38). Transfer of a specificity protein 1 

binding site into an endogenously methylated locus induces local demethylation, confirming 

dominance of transcription factor binding over DNA methylation (37). Histone modifications, 

variants and nucleosome positioning work alongside DNA methylation to regulate gene 
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expression by modifying the accessibility of promoter regions to transcription machinery (39, 

40).  

Forty-five percent of all human gene promoters do not contain a sufficiently dense 

population of CpGs to constitute CGIs, yet the role of DNA methylation in the control of non-

CGI promoters in normal and pathological processes is not fully understood (41). The regulation 

of non-CGI promoters by DNA methylation plays an important role in the establishment and 

maintenance of cell identity (42). Despite their low CpG density, genes with non-CGI promoters 

share many epigenetic features also associated with CGI promoter genes. Active non-CGI 

promoters display a nucleosome-depleted region immediately upstream of the transcription start 

site. The epigenetic signatures comprising DNA methylation, histone marks and nucleosome 

occupancy of non-CGI promoters are almost identical to CGI promoters. This suggests that 

aberrant methylation patterns of non-CGI promoters may also impact altered gene expression, 

contributing to disease processes such as tumorigenesis and autoimmunity (14, 23, 43).  

Both of the autoantigen genes, MPO and PRTN3, are considered to have non-CGI 

promoters. Proteinase 3 contains enough CpGs in the promoter to allow for quantification of 

DNA methylation in the promoter as well as in the three CGIs across the gene body. 

Myeloperoxidase contains two CGIs in the gene body and fewer than 6 CpGs in the promoter. 

Previous studies measuring DNA methylation at CGIs that are remote from annotated 

transcription start site showed evidence of promoter function, indicating strong correlation 

between these CGIs and transcription initiation (44, 45). The CGIs at intragenic regions are more 

frequently methylated during development and may contribute more nuanced regulatory 

functions (46). 
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Quantification of DNA methylation is crucial for understanding the roles gene expression 

and silencing play in the development of autoimmunity. This quantification was made more 

accessible with the development of a technique wherein genomic DNA is treated with sodium 

bisulfite, which converts unmethylated cytosines to uracil and leaves methylated cytosines 

unchanged (47). The bisulfite conversion method is the basis of many platforms used to measure 

the amount of CpG methylation from genome-wide to gene-specific interrogation (48).  

Tools for measuring DNA methylation can be divided into genome-wide platforms and targeted 

or gene-specific platforms. Genome-wide methylation studies are increasingly being referred to 

as epigenome-wide association studies (EWAS) and include a number of different microarray-

based methods. Following bisulfite conversion of genomic DNA, the Illumina Infinium 

methylation assay uses two site-specific probes for the methylated and unmethylated loci 

followed by single-base extension of the probes to incorporate a fluorescently-labeled ddNTP; 

the ratio of fluorescent signals from methylated and unmethylated sites determines the level of 

DNA methylation at close to 500,000 CpG sites (49). High-throughput sequencing now enables 

complete methylomes to be elucidated in a variety of cells and tissues (50). One of the most 

commonly used platforms for targeted quantification of DNA methylation is bisulfite sequencing 

in which primers are designed around regions of interest containing multiple CpG dinucleotides 

(51). EWAS techniques are not always the most cost-effective for local DNA methylation studies. 

In this body of work I utilized the EpiTYPER® DNA methylation analysis technology (Agena 

Bioscience) which allows for the design of amplicons up to 600 base pairs in length and 

interrogating ten to hundreds of CpGs. After bisulfite-conversion of genomic DNA, primers are 

used to amplify the target regions (amplicons). Treatment with reverse primers containing the T7 

promoter tag allows for in vitro RNA transcription followed by base-specific RNA cleavage. 
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Cleavage products derived from a template with a methylated cytosine will differ from products 

derived from a template with an unmethylated cytosine by 32 Daltons. This difference in 

cleavage products is detected using matrix assisted laser desorption/ionization time of flight 

(MALDI-TOF) mass spectrometry, and the ratio of fragments determines the percent 

methylation. 

DNA methylation in autoimmune diseases 

 In essence, autoimmunity is the loss of self tolerance and is associated with a number of 

risk factors. It is thought to develop when genetically predisposed individuals encounter 

environmental agents that trigger a disease. Despite the many years since Dr. Waddington’s 

initial hypothesis relating the environment to gene modifications, researchers continue to believe 

that interactions between the genetic elements and epigenetic changes caused by environmental 

agents may be responsible for inducing autoimmune disease. The list of genetic loci with the 

ability to predispose an individual to certain autoimmune conditions continues to grow; yet 

alongside that growing list is the evidence that genetic sequence mutations do not explain the 

entirety of autoimmune disease development. Autoimmune disease concordance in identical 

twins is often incomplete, indicating a requirement for additional factors, presumably from the 

environment (52, 53). Environmentally-induced epigenetic changes, particularly DNA 

methylation, have already been shown to contribute to the environment-host interaction in some 

autoimmune diseases (54).  

 Systemic lupus erythematosus (SLE) is one of the most thoroughly researched 

autoimmune diseases; some form of lupus erythematosus is estimated to affect five million 

people worldwide. There is evidence that impaired T cell methylation occurs in SLE patients 
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along with the knowledge that DNA demethylating drugs can cause a lupus-like disease. 

Specifically, procainamide and hydralazine inhibit DNA methylation and are known to cause 

antinuclear antibodies (ANAs) in most people and a lupus-like disease in a genetically pre-

disposed subset (55, 56). Hydralazine can also cause systemic vasculitis and for this reason, 

patients treated with hydralazine have been excluded from these studies (57).  

DNA demethylation has been shown to predict changes in T cell gene expression, 

contributing to the pathogenesis of lupus. T cells from SLE patients with active disease have 

hypomethylated DNA due to decreased DNMT1 (58-60). The demethylation of CD4+ T cells in 

SLE patients can cause increased expression of CD11a and CD70 (61, 62). CD11a expression 

leads to T cell autoreactivity while CD70 expression stimulates B cells to produce autoantibodies. 

Additionally, defects acquired in the T cell extracellular signal-regulated kinases (ERK) pathway 

are sufficient to cause lupus-like autoimmunity, likely through the down regulation of DNMTs in 

T cells (63). Together, these and other studies demonstrate that demethylation in CD4+ T cells is 

sufficient to cause autoimmunity (23). 

There is altered DNMT1 mRNA expression in SLE, rheumatoid arthritis (RA) and 

multiple sclerosis (MS) (64). While significantly less is understood about the role of epigenetics 

in RA and MS, there is evidence that altered DNA methylation occurs in both of these 

autoimmune diseases as well as AAV. Rheumatoid arthritis is believed to be driven by a T cell 

response to an environmental trigger and studies have shown aberrant gene expression in 

synovial fibroblasts that lack genetic mutations, suggesting epigenetic mechanisms may play a 

role in the disease etiology (65). Additionally, synovial fibroblasts isolated from RA patients 

have demethylated DNA along with increased expression of repetitive DNA elements normally 
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silenced by methylation (66); this demethylation may lead to the generation of auto-reactive T 

and B cell clones, similar to those seen in lupus (58).  

Multiple sclerosis is a chronic neurodegenerative autoimmune disease caused by a 

combination of genetic and environmental factors. Studies of individuals with comparable 

genetic backgrounds but living in different geographic regions revealed significant differences in 

disease prevalence, suggesting a role for epigenetics in MS (67). The inflammation and 

demyelination in relapsing-remitting MS may be related to the increased differentiation of T 

cells toward a T-helper 17 phenotype, an epigenetically regulated pathophysiological mechanism. 

There may also be a role for increased histone acetylation in the exacerbation of progressive MS 

(68). 

Lupus, RA and MS are all autoimmune diseases with both a genetic and environmental 

component; while our understanding of the genetic mutations that impact disease prevalence is 

rapidly growing, our understanding of how the environment contributes to disease development 

is largely unknown. Added to this list of autoimmune diseases is ANCA-associated vasculitis, a 

systemic autoimmune disease characterized by episodes of destructive vascular and extravascular 

inflammation (69-73). Aberrantly elevated autoantigen expression suggests a critical factor in 

AAV is the dysregulation of autoantigens, possibly due to epigenetic modifications at MPO and 

PRTN3 (the gene that encodes PR3) (8, 74-76). Thus, both ANCAs and autoantigen expression 

are important for the development of AAV. 

In normal mature neutrophils, the autoantigens are stored in cytoplasmic granules and 

their expression is dramatically reduced or completely silenced. Two well-known epigenetic 

modifications capable of inducing gene silencing are histone 3 lysine 27 trimethylation 

(H3K27me3) and DNA methylation (77-79). The relationship between H3K27me3, Polycomb 
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Repressive Complex 2, the H3K27 methyltransferase, and DNA methylation is complex 

including evidence in stem cells and cancer for combinatorial associations between H3K27me3 

and DNA methylation (34, 80, 81). The dysregulation of MPO and PRTN3 in patients with active 

AAV has been linked to reduced H3K27me3 (10). Whether DNA methylation regulates MPO 

and PRTN3 expression has not been investigated in the context of AAV.  

Immune cell types in AAV 

 MPO and PR3 are the two most prominent target antigens for ANCA in AAV and are 

found in the granules of neutrophils and the lysosomes of monocytes. The genes encoding the 

autoantigens, MPO and PRTN3, are silenced in normal mature neutrophils and monocytes, but 

aberrantly expressed in patients with AAV. Clinical evidence along with both in vitro and in vivo 

studies suggest that neutrophils are an important effector cell in the pathogenesis of AAV (2, 82). 

Activated neutrophils have been identified in kidney glomeruli taken from renal biopsies of 

AAV patients. Additionally, the number of activated intraglomerular neutrophils correlates with 

the severity of renal injury, as inferred from serum creatinine levels (83). In vitro studies have 

shown ANCA can activate cytokine-primed neutrophils and cause degranulation, the release of 

inflammatory cytokines and damage to the surrounding endothelial cells (69, 84-86). Neutrophils 

comprise a majority (45-65%) of total leukocytes in the peripheral blood of healthy individuals. 

Infection, disease and pharmaceutical therapy can impact the percentage of neutrophils in the 

peripheral blood. Patients with AAV can have fluctuating neutrophil counts in their peripheral 

blood due, in part, to the use of therapies, like corticosteroids, which can impact neutrophil count 

(87).  
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Primed neutrophils activated by ANCA can initiate an inflammatory amplification loop 

and cause destructive necrotizing lesions. Acute injury then initiates a response to the injury by 

monocytes that transform to macrophages and recruit T cells, which are key to creating 

granulomatous inflammation (88). Monocytes can also be activated by ANCA, leading to the 

production of proinflammatory cytokines that can further attract and activate neutrophils, 

amplifying tissue injury (89-91). Murine studies have found that monocytes alone are not 

sufficient to cause acute necrotizing lesions (92). 

 T cells are another major cell type involved in the pathogenesis of AAV; the 

dysregulation of T cells can permit B cells and plasma cells to produce autoantibodies. T cells 

are critically involved in the genesis of the ANCA autoimmune response by inducing both a 

pathogenic autoantibody response via B cells as well as through ineffective suppression of the 

autoimmune ANCA response by regulatory T cells (93). Our research group has recently 

observed disruption of the suppressive regulatory T cell network in patients with AAV along 

with an increase in the frequency of a distinct proinflammatory effector T cell subset (94). 

Murine studies have shown neutrophils activated by ANCA can deposit MPO in glomeruli, 

thereby involving autoreactive anti-MPO CD4+ T cells in the induction of glomerular lesions 

(95).  

 In general, lymphoid cells depend on DNA methylation to be able to proliferate and 

respond to extracellular signals. Conditional Dnmt1-knockout in naïve B and T cells hinders 

their proliferative capacity (96-98). DNMT1 is likely more important in immune cell regulation 

than during erythropoiesis. Dnmt1-null naïve CD4+ T cells upregulate cytokines normally 

methylated and silenced, while Dnmt1-null CD8+ T cells upregulate CD4+ T cell cytokines (98, 

99).  
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 There is growing interest in characterizing the role of immune cell subsets involved in the 

pathogenesis of autoimmune disorders such as SLE, RA, MS and AAV (100). Although, the 

dynamic cell heterogeneity present in this patient population suggests purified cell populations 

would be a more accurate basis for understanding disease pathogenesis and etiology, there is 

likely much to be learned from examining DNA methylation in total leukocytes, especially since 

a careful study has not been reported in AAV. 

Central hypothesis 

The role of epigenetic modifications in the pathogenesis of autoimmune diseases is 

poorly understood compared to genetics; however, a number of studies in the past decade have 

further characterized aberrations in DNA methylation and histone modifications in autoimmune 

diseases including SLE, RA, MS and AAV. The central hypothesis of this body of work is that 

altered DNA methylation profiles exist in patients with AAV and contribute to the pathogenesis 

of this disease. This body of work incorporates two main sub-hypotheses: at loci within MPO 

and PRTN3 i) changes in leukocyte DNA methylation exist between healthy controls and 

patients with AAV and correlate with MPO and PRTN3 mRNA expression ii) DNA methylation 

patterns in purified neutrophils and CD14+ monocytes differ between healthy individuals and 

patients with AAV. 

The central hypothesis and sub-hypotheses will be addressed in the following two 

chapters. In Chapter 1, I establish a link between DNA methylation, autoantigen gene expression 

and disease status in AAV by measuring gene-specific DNA methylation in leukocytes of the 

autoantigen genes, MPO and PRTN3. Epigenome-wide DNA methylation is measured in both 

AAV patients and healthy controls; differential methylation is found to be specific to a small 
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fraction of the genes interrogated. I find differential expression of DNMT1 in patients with AAV. 

I also find gene-specific DNA methylation associates with MPO and PRTN3 mRNA expression 

in this patient cohort. In Chapter 2, I focus on which cell populations are responsible for MPO 

and PRTN3 mRNA expression. I isolated neutrophils and CD14+ monocytes from patients with 

AAV and found differential DNA methylation and mRNA expression at loci within MPO and 

PRTN3. In an effort to purify CD4+ T cells from AAV patients, I discovered a sub-population of 

cells within the CD4-enriched isolation that are capable of expressing both autoantigen genes in 

patients with active disease. The search for the specific cell type responsible for the expression of 

MPO and PRTN3 is ongoing but I have confirmed it is not a progenitor cell and that it may 

contain either or both CD45 and HLA-DR on the surface.  
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Chapter 1 

CHANGES IN GENE-SPECIFIC DNA METHYLATION PREDICT STABLE 
REMISSION IN PATIENTS WITH ANCA-ASSOCIATED VASCULITIS1 

Introduction 

Anti-neutrophil cytoplasmic autoantibodies (ANCAs) target antigens in the cytoplasm of 

neutrophils and monocytes. Two prominent ANCA autoantigens are myeloperoxidase (MPO) 

and proteinase 3 (PR3). The interaction between ANCA and target autoantigens induces ANCA-

associated vasculitis (AAV), a systemic autoimmune disease characterized by episodes of 

destructive vascular and extravascular inflammation (69-71). AAV is associated with aberrantly 

elevated expression of target autoantigens (8, 74-76). In normal mature neutrophils, the 

autoantigens are stored in cytoplasmic granules and their expression is dramatically reduced or 

completely silenced. The elevated autoantigen expression observed specifically in patients with 

AAV suggests that a critical factor in the disease is the dysregulation of autoantigens. Thus, both 

ANCAs and autoantigen expression are important for the development of AAV. 

Another prominent feature of AAV is that therapy-induced disease remission may be 

punctuated by periods of disease relapse (3-7). It remains to be understood what factors promote 

remission or permit disease relapse; however, the elevated expression of autoantigens during 

active disease suggests mechanisms regulating autoantigen expression may be important in 
                                                

1This chapter consists of material from a manuscript submitted to the Journal of the American 
Society of Nephrology May 2016. 
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understanding disease states (8). At the transcriptional level, the dysregulation of MPO and 

PRTN3 (the gene that encodes PR3) has been linked to alterations in histone modifications that 

are associated with gene silencing (10). The role of DNA methylation, a model epigenetic 

modification capable of inducing stable gene silencing, has not been investigated in the context 

of AAV (77, 78). Hence, the role of gene-specific DNA methylation in the regulation of MPO 

and PRTN3 expression during the natural history of AAV is not known.   

I do not presently know whether DNA methylation changes during the course of disease 

or remains static, yet different from healthy individuals. The presence of static hypomethylation 

in AAV patients would be consistent with the concept that an epigenetic state predisposes 

individuals to disease. Alternatively, dynamic alterations in the DNA methylation profile that 

occur with changes in disease status may indicate a role for epigenetic modifications in disease 

status. Characterization of DNA methylation in AAV patients would bolster the understanding of 

the molecular mechanisms involved in disease pathogenesis and inform disease prognosis. 

In this study I investigated DNA methylation associated with AAV-related autoantigen 

genes, MPO and PRTN3, in patients with AAV. A longitudinal analysis showed that (i) MPO 

and PRTN3 DNA methylation was reduced in patients with active disease and associated with 

mRNA expression of these genes and (ii) MPO and PRTN3 DNA methylation increased during 

disease remission and associated with reduced transcription of these genes. The dynamics of 

DNA methylation at the PRTN3 promoter revealed AAV patients with increased DNA 

methylation during disease remission at the PRTN3 promoter had an increased probability of a 

relapse-free period (p<0.0001). Patients with decreased DNA methylation at the PRTN3 

promoter were 4.55 times more likely to relapse (p=0.0001); this suggests changes in DNA 

methylation at the PRTN3 promoter can predict long-term prognosis for AAV patients. 
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Materials and Methods 

Study Design 

The objective of this study was to characterize the DNA methylation patterns in paired 

patients with AAV through states of disease activity and remission. This was an observational 

study of DNA methylation changes, both globally and at specific loci. AAV patients were 

enrolled at UNC–Chapel Hill clinics and followed in the Glomerular Disease Collaborative 

Network (101, 102). Patients and healthy volunteers were recruited, according to the guidelines 

of the Institutional Review Board (IRB study #97-0523) by the University of North Carolina 

Office of Human Research Ethics. Study subjects gave informed, written consent and 

participated according to UNC IRB guidelines. I stopped collecting patient samples once I 

achieved a statistically significant difference between active patients and healthy controls and a 

statistically significant hazard ratio for patients with decreased DNA methylation at the PRTN3 

promoter. I used a power analysis to calculate the sample size (n=100) necessary to achieve a 

reliable measurement of DNA methylation changes in patients with AAV. Preliminary data from 

a smaller sample size was used to recalculate our power analysis and change our sample size to 

80 unique patients. De-identified patient and healthy control samples were assigned randomly to 

plates for DNA methylation analysis and run in duplicate on separate plates. Paired samples from 

the same patient were rarely run on the same plate or in the same batch. Generally, samples were 

processed in the order that they were retrieved from the freezer or the order in which the patients 

presented at clinic. Investigators who quantified the results were blinded with regard to the type 

of patient or control being analyzed.  
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Patient Cohort 

Patients were diagnosed according to the Chapel Hill Consensus Conference (103, 104). 

ANCA serotypes were determined by indirect immunofluorescence and antigen-specific PR3 and 

MPO enzyme-linked immune-absorbent assays (ELISA) (105). Disease activity was determined 

by the 2003 Birmingham Vasculitis Activity Score (BVAS) in conjunction with clinical signs of 

activity. In this study, patients with a BVAS of 0 and no clinical or laboratory evidence of active 

disease were considered to be in remission. Active disease was defined as a BVAS >0 with 

clinical and/or laboratory evidence of disease (106). A total of 82 patients with AAV and 32 

healthy controls were chosen for this study based on the availability of paired active/remitting 

disease samples, clinical data and laboratory data (Table 1.1). Patients with suspected or 

confirmed drug-induced forms of AAV, that were ANCA negative by ELISA, or had 

overlapping disease were excluded. Patients taking known epigenetic modifiers were also 

excluded from this study. Patient demographics were similar between healthy controls and AAV 

patients with regard to age, gender and race.  

AAV patients were selected for this study based on the availability of total leukocyte 

DNA and RNA collected at a point of clear disease activity or disease remission (on or off 

therapy). In addition to the presence of DNA and RNA samples for each patient, I also ensured 

there was adequate clinical information including BVAS and a list of immunosuppressant 

therapies the patient was taking at the time of each sample collection. For longitudinal studies I 

selected patients for whom samples were available at a time of disease activity and remission and 

were, on average, 18 months apart. These criteria were established prospectively. No outliers 

have been excluded from this study.  

Sample Age Sex Race mRNA Expression 
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PRTN3 MPO DNMT1 
1 47 M W NA NA NA 
2 57 M W 16.05 105.72 1.22 
3 52 M W NA NA NA 
4 66 F A NA NA NA 
5 52 F W NA NA NA 
6 22 F W 2.09 33.12 1.84 
7 56 F W 28.29 66.92 0.75 
8 51 F W NA NA NA 
9 59 F W NA NA NA 
10 69 M W 19.56 66.98 0.84 
11 67 M W 1.85 38.93 1.21 
12 65 M W 51.72 102.3 0.81 
13 51 F W 28.64 29.89 1.18 
14 59 F B 9.69 33.14 0.71 
15 58 F W NA NA NA 
16 57 F W 5.56 38.14 0.97 
17 57 F W 14.79 77.65 0.9 
18 54 M W 45.4 118.73 1.49 
19 22 M A NA NA NA 
20 22 M W 8.07 25.14 0.79 
21 58 F W 11.29 42.73 0.87 
22 26 M B 2.46 25.03 1.03 
23 22 M A NA NA NA 
24 58 F W 26.67 24.77 0.7 
25 56 F W 1.81 28.46 0.86 
26 77 M W 15.06 34.61 0.84 
27 69 M W 13.74 58.12 0.56 
28 56 M W 10.71 35.89 NA 
29 64 F W NA NA NA 
30 56 M W 33.21 175.38 0.76 
31 47 M W 50.53 156.82 0.92 
32 57 F W NA NA 0.85 
Table 1.1. Healthy individual demographics. Age, gender, race and mRNA expression of PRTN3, 

MPO and DNMT1 for each of 32 healthy controls.  

RNA and DNA isolation from total leukocytes 

Total circulating leukocyte RNA was obtained from EDTA-treated whole blood using 

RNA STAT-60 (Tel-Test “B”, Friendswood, TX, USA). Qiagen reagents (Chatsworth, CA) 
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including the RNeasy Mini Kit and RNase-Free DNase Set, were used to isolate RNA from total 

leukocytes. Sodium citrate-treated whole blood was used to isolate DNA from total leukocytes. 

For DNA isolation I used Cell Lysis Solution, Protein Precipitation Solution, DNA Hydration 

Solution (all Puregene Accessories, available through Qiagen) and RNase A from bovine 

pancreas (Sigma-Aldrich, St. Louis, MO). 

DNA methylation studies 

Total leukocyte DNA was bisulfite-converted in duplicate using the EZ DNA 

Methylation Kit (Zymo Research, Orange, CA). Bisulfite-treated DNA samples were used in 

three separate platforms for measuring DNA methylation: EpiTyper MassARRAY (Agena, La 

Jolla, CA), bisulfite sequencing (Zymo Research) and Illumina Infinium HumanMethylation450 

BeadChip (Illumina, Inc.). 

Targeted MALDI-TOF mass spectrometry (EpiTYPER®, Agena Bioscience) was carried 

out at seven amplicons within MPO, PRTN3, LTF and ELANE (Figure 1.1B,C; Figure 1.2). 

Primer pairs were designed using EpiDesigner software (www.epidesigner.com) (Table 1.2). A 

cohort of 82 AAV patients and 32 healthy individuals were run on this platform, in duplicate. In 

accordance with the standard protocol and following amplification of 650ng of bisulfite-

converted DNA, in duplicate, the PCR products underwent the SAP treatment and T-cleavage 

reaction in preparation for quantitative analysis of DNA methylation. Mean DNA methylation 

was measured by averaging the CpGs in each individual amplicon.  
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Figure 1.1. Relative DNMT1 expression and DNA methylation at PRTN3 and MPO loci 

comparing active to remission states. (A) Two-fold decrease in mean DNMT1 expression in 

active patients (red) compared to healthy controls (green); mean expression in remitting patients 

(blue) was 1.5-fold higher than active patients. Bars shown are mean and standard deviation; 

p<0.025 is considered significant after accounting for multiple testing. (B) Three PRTN3 

amplicons covering: the promoter, a CGI and intron 2, a CGI and exon 5. (C) Two MPO 
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amplicons covering: a CGI and exon 7; a CGI and exon 5-6. Gene is shown in black, amplicons 

in blue, CGIs in green. Amplicon-wide cross-sectional DNA methylation patterns at the (D) 

PRTN3 promoter and (E) MPO CGI/exon 5-6. Green circles are healthy controls; squares are 

PR3-ANCA patients; triangles are MPO-ANCA patients; active patients are red; patients in 

remission are blue. Bars shown are median with interquartile range; p<0.0125 is considered 

significant after accounting for multiple testing. 

 

 

Figure 1.2. Amplicon locations within ELANE and LTF. (A) Amplicon shown covering part of a 

CGI and exon 2 within the ELANE. (B) Amplicon shown covering a CGI and exon 1 within the 

LTF. Gene is shown in black, amplicon in blue, CGIs in green.  

A 
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Gene Primer 
PRTN3 
(Taqman) 

Forward 5'-TGT CAC CGT GGT CAC CTT CTT-3' 
Reverse 5'-CCC CAG ATC ACG AAG GAG TCT AT-3' 
Probe FAM-TTG CAC TTT CGT CCC TCG CCG-TAMRA 

MPO 
(Taqman) 

Forward 5'-CCA GGA AGC CCG GAA GAT-3' 
Reverse 5'-CGG AAG GCA TTG GTG AAG A-3' 
Probe FAM-TGC CCA CGT ACC GTT CCT ACA ATG ACT C-
TAMRA 

DNMT1 
(Taqman) 

Thermo Fisher cat. #4331182 

PRTN3 (amplicon 
5, methylation) 

Forward 5’-aggaagagagTTAAAGGGGGAAGAAAATTTTTAGA-3’ 
Reverse 5’-cagtaatacgactcactatagggagaaggct 
ATTACCCAATACCCAAACTAAATCC-3’ 

PRTN3 (amplicon 
20, methylation) 

Forward 5’-aggaagagagAAGTGTTGTTGGGTGGGTTTTT-3’ 
Reverse 5’-cagtaatacgactcactatagggagaaggct 
AACACCTTAATCCACCCCAACTT-3’ 

PRTN3 (amplicon 
22, methylation) 

Forward 5’- 
aggaagagagTTGTGATGGTATTATTTAAGGAATAGATTT-3’ 
Reverse 5’-cagtaatacgactcactatagggagaaggct 
CCTCCCCTCCCTATATAAAAAAAAC-3’ 

MPO (amplicon 
11, methylation) 

Forward 5’- aggaagagagGTTGGGGGTGGTTGTAGGAAT -3’ 
Reverse 5’-cagtaatacgactcactatagggagaaggct 
CAACTAACCCCATTACATAAACATAAA-3’ 

MPO (Amplicon 
12, methylation) 

Forward 5’-aggaagagagAAGTTGATTTGTTAGGAAGTAGGGG-3’ 
Reverse 5’- cagtaatacgactcactatagggagaaggct 
AACCTCTCTCTATACCTCAAATCCC-3’ 

LTF (amplicon 3, 
methylation) 

Forward 5’-GGA GTT TTG TTT TGT TTT AGG GTT T-3’ 
Reverse 5’-CTC CTA TTC CTC CCC ATA TAA AAA A-3’ 

ELANE (amplicon 
5, methylation 

Forward 5’-TGG TGG GGG ATT TAG AGG TT-3’ 
Reverse 5’-AAC TAC AAA AAC ACC ATA AAA AAC CA-3’ 

Table 1.2. Primers used for Taqman mRNA expression studies and DNA methylation studies. 
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Targeted bisulfite sequencing for DNA methylation analysis was done on a replication 

cohort of 77 patient samples and 19 samples from healthy individuals (96 samples) at six of the 

same loci studied interrogated using the Agena platform. Sixteen primers were designed, 

synthesized (Integrated DNA Technologies) and validated by Zymo Research (Table 1.3). 

Targeted amplification of these samples was performed according to manufacturer’s protocol 

(Zymo Research).  

Gene_Amplicon Chromosome Browser position 
PRTN3_005 19 840498    840945 
PRTN3_022 19 847822    848215 
PRTN3_020 19 843571    843964 
MPO_11 17 56356480  56356874 
MPO_12 17 56355180  56355526 
LTF_003 3 46506126  46506547 
ELA_005 19 852792  852954 
Table 1.3. Gene coordinates for each of the seven loci studied. 

 

Illumina Infinium HumanMethylation450 BeadChips were used to analyze DNA 

methylation on a genome-wide scale in ten longitudinally paired AAV patients and four age-

matched healthy individuals (24 samples). This platform allows for interrogation of >485,000 

methylation sites per sample, covering 99% of RefSeq genes. After bisulfite treatment, the 

Mammalian Genotyping Core at UNC-Chapel Hill performed the remaining assay steps 

following the specifications and using the reagents supplied by the manufacturer (107).  

Taqman mRNA expression studies  

Quantitative detection of DNMT1 mRNA levels from patient samples was determined as 

relative to three healthy control samples run on each plate. Quantitative detection of MPO and 

PRTN3 mRNA levels from patient samples was determined using a standard curve. The standard 
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curve for MPO mRNA levels was generated using HL60 cells, a cell positive for MPO mRNA, 

diluted with Jurkat cells, a cell line negative for MPO mRNA. The standard curve for PRTN3 

mRNA levels was generated using THP-1 cells, a cell positive for PTRN3 mRNA, diluted with 

Jurkat cells, a cell line negative for PRTN3 mRNA. MPO and PRTN3 mRNA levels for patients 

and healthy donor samples were determined by 2-ΔΔCt calculations and expressed relative to 

standard curves. Primers and probes for MPO and PRTN3 can be found in Table 1.2. 

Cytochrome c oxidase (COX5B) was used as mRNA internal control (8). Primers and probes 

were purchased from Applied Biosystems (Applied Biosystems, Foster City, CA) and Integrated 

DNA Technologies, Inc. (Coralville, IA). Quantitative RT-PCR assays were performed on an 

ABI PRISM 7900HT sequence detection system using the TaqMan EZ RT-PCR kit (Applied 

Biosystems) (Yang, et al., manuscript submitted). Elevated expression of these autoantigen genes 

is considered 2 standard deviations above the mean expression of healthy individuals; for PRTN3 

high expression is >90, for MPO high expression is >180.  

Genome-wide DNA methylation analysis 

Analysis of the Illuminia Infinium HumanMetylation450 BeadChip array was performed 

in R (108) using the minfi package (109) and the UCSC hg19 knownGene genome annotation 

(110). The red and green intensities were converted to methylation data using background 

correction and SWAN normalization (111). Probes with single nucleotide polymorphisms at the 

CpG interrogation site or at the single base extension were omitted from analysis. Beta values 

were logit transformed to draw boxplots and compare DNA methylation at specific sites. These 

boxplots where made using the default R settings for the boxplot function. 
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Statistical Analysis 

Comparisons between two independent groups were done using Wilcoxon rank sum test. 

Bonferroni corrections were used in situations with multiple comparisons between groups. Mean 

DNA methylation was measured by averaging the CpGs in each individual amplicon. 

Methylation at individual CpGs was found to be either static or dynamic in a pattern mirroring 

that shown in the mean DNA methylation. Log transformed correlation for DNA methylation 

and the expression of autoantigen genes was done by Spearman correlation coefficients. Kaplan-

Meier curves with log rank tests were used to display and compare relapse-free survival times. 

These curves were used to evaluate the proportional hazards assumption, and then proportional 

hazards models were used to model the effect of DNA methylation (PRTN3 promoter, PRTN3 

promoter CpG13, or MPO CGI/exon 5-6) on time to relapse. Potential confounders were 

modeled controlling for DNA methylation with one additional variable at a time. Univariate 

predictors of flare are reported as hazards ratios and 95% confidence intervals with a two-sided 

P-value of 0.05 or less considered statistically significant. DNA methylation change between the 

active and remission groups was analyzed with signed-rank test on all available longitudinal 

samples within patients (n=65) and then limited to the first pair collected chronologically for 

individuals (n=60). Results were almost exactly the same, thus results displayed include the full 

number of pairs. All analyses were done by R and SAS 9.4 (SAS Institute, Cary, NC, USA). 
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Results 

Decreased DNMT1 expression in AAV patients 

Our investigation of DNA methylation in patients with AAV began by exploring 

alterations in the expression of the DNA methyltransferase 1 gene (DNMT1). Previous gene 

expression studies demonstrated that expression of DNMT1 was decreased in patients with AAV 

compared to healthy individuals (Yang, et al., manuscript submitted). I confirmed differential 

DNMT1 expression by quantitative real-time PCR in leukocytes collected from a cohort of AAV 

patients during disease activity and remission (Table 1.4). The relative mean DNMT1 expression 

among AAV patients during disease activity was two-fold less than the mean expression among 

healthy individuals (p<0.0001) (Figure 1.1A). The mean DNMT1 expression of AAV patients in 

disease remission was 1.5-fold higher than patients with active disease.  

Genome-wide studies show differential DNA methylation is restricted to specific loci  

I then carried out genome-wide DNA methylation studies to determine if reduced 

DNMT1 expression in AAV patients with active disease resulted in genome-wide 

hypomethylation. Genome-wide DNA methylation was measured with the Illumina Infinium 

HumanMethylation450 BeadChip. The M value median and range among patients with active 

disease and healthy individuals were nearly identical, indicating no obvious differences in 

genome-wide DNA methylation despite differences in DNMT1 expression (Figure 1.3A). 
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Table 1.4. Demographics summary for AAV patient cohort. Gender, race and diagnosis 

information for each patient group alongside BVAS and corticosteroid use for active and 

remitting samples. 

 

 

PR3, proteinase 3; MPO, myeloperoxidase; MPA, microscopic polyangiitis; GPA, granulomatosis with polyangiitis; EGPA, 
eosinophilic granulomatosis with polyangiitis; Lim, renal limited vasculitis; BVAS; Birmingham Vasculitis Activity Score;  
CS, corticosteroids. 

Table 1. Demographics summary for PR3-ANCA and MPO-ANCA patients as well as the healthy control 
cohort. Gender, race and diagnosis information for each patient group alongside BVAS and corticosteroid 
use for active and remitting samples. 

 

 

 

 

Variables 
 

Healthy individuals 
(32) 

PR3-ANCA  
patients (42) 

MPO-ANCA patients 
(40) 

Age                                             N  32    
Mean ± SD 52.78±14.61    

Median(IQR) 56.50(51.00, 59.00)    
Sex                                     Female 16(50.00%) 17(40.48%) 19(47.50%) 

Male 16(50.00%) 25(59.52%) 21(52.50%) 
Race                              Caucasian 27(84.38%) 35(83.33%) 32(80.00%) 

Other  5(15.63%) 7(16.67%) 8(20.00%) 
Diagnosis                           EGPA   0(0.00%) 2(5.00%) 

GPA   27(64.29%) 8(20.00%) 
LIM   0(0.00%) 12(30.00%) 

MPA   15(35.71%) 18(45.00%) 
Sample number    98 86 

Active Samples   42 35 
Active samples taking CS  18 16 

Remitting samples   56 51 
Active samples taking CS  14 9 

Active, new onset   10(10.20%) 11(12.79%) 
Long-term remission, off 
therapy 

  12(12.24%) 18(20.93%) 

Age of active sample                 N    42 35 
Mean ± SD   56.21±14.53 53.51±20.22 

Median(IQR)   57.00(50.00, 67.00) 57.00(33.00,69.00) 
Age of remission sample          N   56 51 

Mean ± SD   57.57±16.75 52.47±18.99 
Median(IQR)   59(46.50, 71.00) 54.00(38.00,66.00) 

Active sample BVAS                N   42 35 
Mean ± SD   8.07±6.91 9.49±6.42 

Median(IQR)   6.00(2.00,13.00) 8.00(6.00,12.00) 
Remission sample BVAS         N   56 51 

Mean ± SD   0±0 0.11±0.43 
Median(IQR)   0.00(0.00,0.00) 0.00(0.00,0.00) 
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Figure 1.3. Epigenome-wide DNA methylation in patients with AAV. (A) Mean M value 

(log(methylated signal/unmethylated signal)) at 485,512 CpGs for 4 healthy controls (left, green) 

6 PR3-ANCA active patients (middle, purple) and 4 MPO-ANCA active patients (right, blue). 

Median methylation at all CpG dinucleotides in healthy controls (left, green) compared to AAV 

patients (right, red) at (B) PRTN3, (C) MPO, (D) ELANE, (E) LTF and (F) BPI. For each graph, 

the line represents the median, the box the first and third quartiles, and the whiskers represent the 

maximum and minimum (A, B, D) values or 1.5 interquartile range (C, E, F). 
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Differential DNA methylation at autoantigen genes 

DNA methylation at most loci, genome-wide, was unchanged between patients and 

healthy controls; however, gene-specific differences in DNA methylation status were detected at 

MPO and PRTN3. The median DNA methylation at all CpG dinucleotides in MPO and PRTN3 

was less in AAV patients with active disease than healthy controls (Figure 1.3B,C). I then 

determined how many other genes contained differential DNA methylation comparable to MPO 

and PRTN3. To do this, I identified the CpGs with the largest decrease in mean M value in active 

patients compared to healthy controls within MPO and PRTN3. The mean M values at these 

CpGs were compared to the decrease in M value between active patients and healthy controls at 

CpGs of all other genes. Of 19,654 unique genes, a greater decrease in DNA methylation in 

active samples was found for only 849 genes and 1,050 genes compared to MPO and PRTN3, 

respectively (Table 1.5). Approximately 96% of genes exhibited a smaller decrease in DNA 

methylation in active patients compared to healthy controls. These results strongly suggest that 

DNA methylation changes in AAV patients are restricted to specific loci, including MPO and 

PRTN3.  

 

Table 1.5. Genome-wide DNA methylation supports differential methylation at MPO and 
PRTN3. 

 

 

 Largest mean M-
value difference  
(Active v HC) 

Genes with 
larger mean M 
value difference 

Unique 
genes 

% Genes 
hypomethyl v 
autoantigen genes 

MPO -1.67 849 19654 3.8% 
PRTN3 -1.42 1050 4.1%  
Table 2. Genome-wide methylation supports differential methylation at MPO and PRTN3. 
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To test if the changes in DNA methylation at MPO and PRTN3 were a feature of other 

neutrophil granule genes, methylation was measured locally at CpG islands (CGIs) in neutrophil 

elastase (ELANE), lactotransferrin (LTF) and bactericidal/permeability-increasing protein (BPI), 

three neutrophil granulocyte genes with altered mRNA expression in patients with AAV and are 

known target antigens of ANCA in patients with inflammatory bowel disease (IBD) and 

rheumatoid arthritis (RA) (8, 112, 113). I found smaller differences in DNA methylation between 

AAV patients and healthy controls in the neutrophil granulocyte gene ELANE than those found 

at MPO and PRTN3 (Figure 1.3D). The genome-wide DNA methylation studies found no 

difference between patients and healthy controls at BPI or LTF (Figure 1.3E,F). 

 

AAV patient-derived leukocytes exhibit hypomethylation of loci within MPO and PRTN3 

Based on the data from the genome-wide DNA methylation study, I screened our larger 

cohort of paired samples from patients during disease activity and remission for methylation 

changes at MPO and PRTN3. DNA methylation was measured on bisulfite-converted DNA from 

total leukocytes using the MassARRAY method which profiles methylation of multiple CpGs at 

specific loci (114). Three loci in PRTN3 and two loci in MPO were analyzed (Figure 1.1B,C). 

While the PRTN3 promoter does not contain a typical CGI, it does contain 15 CpGs that overlap 

binding sites for transcription factors that regulate myeloid gene expression. The other two 

analyzed regions in PRTN3 included CGIs: one is contained in exon 2 and the alternative 

promoter which I reported was active in AAV patients with active disease (115), the other is 

contained within exon 5 and the 3’UTR. DNA methylation at the 3’ boundary of genes encoding 

the 3’UTR can regulate transcriptional activity (116, 117). In MPO, a CGI spanning exons 5 and 

6 was chosen as a region of interest based on our previous report of DNA methylation at this 
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region (10). The second region screened in MPO contains a CGI that spans exon 7. Data from 

ENCODE indicates both regions are DNase I sensitive and enriched in transcription factor 

binding sites, suggesting transcriptional regulatory properties. These amplicons cover CpGs that 

were also interrogated using the genome-wide DNA methylation platform (Illumina Infinium 

HumanMethylation450 BeadChip). The MPO promoter was not probed because the promoter is 

CpG-poor with only seven CpGs within 500 base pairs of the transcription start site; of those 

CpGs, six are in a repetitive sequence that prevented designing a reliable amplicon for the 

MassARRAY platform.  

Consistent with the genome-wide DNA methylation study, I found that MPO- and PR3-

ANCA patients with active disease were hypomethylated compared to healthy individuals at four 

loci within MPO and PRTN3 (p<0.0001) (Figure 1.1D,E; Figure 1.4A,B). However, DNA 

methylation at these sites rebounded when patients were sampled during disease remission. I 

then looked at DNA methylation at ELANE, LTF and a CGI overlapping the alternative promoter 

of PRTN3. Overall, I found low DNA methylation, which remained static with no discernable 

differences between patient serotype, healthy controls or disease status (Figure 1.5). To 

determine if the platform used to measure DNA methylation influenced the observed changes, I 

validated a subset of the samples analyzed by MassARRAY with bisulfite sequencing. These two 

platforms for measuring DNA methylation produced comparable methylation patterns between 

healthy controls, active and remitting patient samples at identical CpGs (Figure 1.6). Thus, DNA 

methylation at MPO and PRTN3 is reduced in patients with active AAV compared to patients in 

remission and healthy individuals, and the changes in DNA methylation occurred at specific loci 

within MPO and PRTN3.  
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Figure 1.4. DNA methylation at additional loci within PRTN3 and MPO. Cross-sectional 

methylation at (A) PRTN3 CGI/exon 5 and (B) MPO CGI/exon 7. Healthy controls (green 

circles); PR3-ANCA patients (squares); MPO-ANCA patients (triangles); active patients are red 

and patients in remission are blue; bars shown are median with interquartile range; p<0.0125 is 

considered significant after accounting for multiple testing. Mean longitudinal methylation 

change from disease activity to remission at (C) PRTN3 CGI/exon 5: PR3-ANCA patients 1.49%, 

MPO-ANCA patients 4.36%; and (D) MPO CGI/exon 7: PR3-ANCA patients 1.22%, MPO-

ANCA patients 9.31%. Error bars are standard deviation; p-values shown are as different from 

zero, where p<0.025 is significant after accounting for multiple testing. 
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Figure 1.5. DNA methylation at loci within additional granulocyte genes. Green circles are 

healthy controls; squares are PR3-ANCA patients; triangles are MPO-ANCA patients; active 

patients are red and patients in remission are blue. (A) Cross-sectional and (B) longitudinal 

methylation at CGI/intron 2 in PRTN3. (C) Cross-sectional and (D) longitudinal methylation at a 

CGI/exon 1 in lactotransferrin (LTF). (E) Cross-sectional and (F) longitudinal methylation at a 

CGI and exon 2 in elastase (ELANE). Bars are median methylation (A,C,E) or median 

longitudinal methylation change from disease activity to remission (B,D,F). 
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Figure 1.6. DNA methylation platform comparison. Bisulfite sequencing compared to 

MassARRAY. (A) Cross-sectional methylation at CpG 1 PRTN3 promoter for (A) bisulfite 

sequencing and (B) MassARRAY. Green circles are healthy controls; squares are PR3-ANCA 

patients; triangles are MPO-ANCA patients; active patients are red and patients in remission are 

blue. Bars are median and interquartile range for all three graphs; p<0.0125 is considered 

significant, accounting for multiple testing. 
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sectional measurements suggests that DNA methylation in total leukocytes has a minor influence 

on expression of these autoantigen genes; however, following patients longitudinally may be 

more valuable than measuring expression and methylation at a single point in time. 

 

 

Figure 1.7. Correlation of DNA methylation and mRNA expression at DNMT1. Healthy controls 

(green circles); MPO-ANCA patients (blue triangles) and PR3-ANCA patients (purple squares). 

Log transformed correlation between methylation at the (A) PRTN3 promoter and DNMT1 

expression (n=179; r= 0.4858) and (B) correlation between methylation at MPO CGI/exon 5-6 

and DNMT1 expression (n=177; r= 0.5464). 
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Figure 1.8. Correlation of DNA methylation and mRNA expression at PRTN3 and MPO. Total 

leukocytes from healthy controls (green circles); MPO-ANCA patients (blue triangles) and PR3-

ANCA patients (purple squares). Log transformed correlation between DNA methylation at the 

(A) PRTN3 promoter and PRTN3 expression (n=187; r= -0.2828) and (B) DNA methylation at 

MPO CGI/exon 5-6 and MPO expression (n=186; r= -0.3155).  
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ANCA patients is similar to that at the PRTN3 promoter (4.36%) but not in PR3-ANCA patients 

(1.85%) (p=0.0008 and 0.12, respectively) (Figure 1.9B). Similarly, changes in DNA 

methylation at both PRTN3 CGI/exon 5 and MPO CGI/exon 7 were significantly different from 

zero in MPO-ANCA patients, but not different from PR3-ANCA patients (Figure 1.4C,D).  

Thus far, all DNA methylation values shown are averaged values of the 13-39 CpGs 

within each locus studied. Closer analysis shows that individual CpGs within each locus are 

characterized by either static or dynamic DNA methylation patterns that are similar to those seen 

in the averaged methylation data. The DNA methylation patterns at individual dynamic CpGs 

within the PRTN3 promoter (Figure 1.10A,C) and MPO CGI/exon 5-6 (Figure 1.10B,D) mirror 

the patterns seen when averaging the CpGs across an amplicon in both cross-sectional and 

longitudinal analyses. The longitudinal analysis of DNA methylation revealed that although 

patients were more likely to have increased DNA methylation when in remission, there were 

patients with decreased DNA methylation during remission. Importantly, this segregates patients 

into two groups where the role of DNA methylation was examined separately. 

  



 39 

 

Figure 1.9. Longitudinal change in DNA methylation from disease activity to remission. Mean 

and standard deviation shown; p-values are as different from zero, where p<0.025 is significant 

after accounting for multiple testing. PR3-ANCA patients are squares and MPO-ANCA patients 

are triangles. Mean DNA methylation change at the (A) PRTN3 promoter: PR3-ANCA patients 

4.03%, MPO-ANCA patients 3.69% and the (B) MPO CGI/exon 5-6: PR3-ANCA patients 

3.06%, MPO-ANCA patients 4.93%. 
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Figure 1.10. DNA methylation changes at individual CpGs within the PRTN3 promoter and 

MPO CGI/exons 5-6. Green circles are healthy controls; squares are PR3-ANCA patients; 

triangles are MPO-ANCA patients; active patients are red and patients in remission are blue. 

Bars shown are median with interquartile range; p<0.0125 is significant after accounting for 

multiple testing. Cross-sectional methylation at (A) CpG 7, 8 PRTN3 promoter and (B) CpG 38 

MPO CGI/exons 5-6. Mean longitudinal methylation change from disease activity to remission 

at (C) CpG 7, 8 PRTN3 promoter: PR3-ANCA patients 3.85%, MPO-ANCA patients 5.57% and 

(D) CpG 38 MPO CGI/exons 5-6: PR3-ANCA patients 2.11%, MPO-ANCA patients 5.95%. For 

longitudinal graphs, p-values shown are as different from zero where p<0.025 is significant after 

accounting for multiple testing, bars are mean and standard deviation.  
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Autoantigen gene expression correlates with gene-specific DNA methylation in AAV 

patients  

I investigated the relationship between autoantigen mRNA expression and DNA 

methylation in patients with increased gene-specific DNA methylation and patients with 

decreased gene-specific DNA methylation. Stratifying paired patient data by DNA methylation 

increase (Figure 1.11A,E) or decrease (Figure 1.11B,F) revealed two levels of association 

between autoantigen mRNA expression and DNA methylation. The correlation between PRTN3 

mRNA expression in patients with increasing DNA methylation at the PRTN3 promoter is much 

stronger (r= -0.3390, p=0.0013) (Figure 1.11C) than the patients with decreasing methylation (r= 

-0.08322, p=0.63) (Figure 1.11D); this correlation is also stronger than that seen in the entire 

cohort (Figure 1.8A). The same trend is found at MPO CGI/exon 5-6: patients with increasing 

DNA methylation correlate with MPO mRNA expression (r= -0.3735, p=0.0004) (Figure 1.11G) 

while patients with decreasing methylation do not correlate (r= -0.08508, p=0.64) (Figure 1.11H). 

These data suggest DNA methylation plays a stronger role in regulating expression in patients 

who exhibit increased gene-specific DNA methylation during disease remission.   
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Figure 1.11. AAV patients stratified by DNA methylation increase or decrease. Paired patients 

with (A) increased DNA methylation and (B) decreased DNA methylation in disease remission 

at the PRTN3 promoter. (C) DNA methylation at the PRTN3 promoter compared to expression 
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of PRNT3 in patients with increased methylation in disease remission (panel A) (r= -0.3390). (D) 

DNA methylation at the PRTN3 promoter compared to expression of PRNT3 in the samples with 

decreased methylation in disease remission (panel B) (r= -0.08322). Paired patients with (E) 

increased methylation and (F) decreased methylation in disease remission at MPO CGI/exon 5-6. 

(G) DNA methylation at MPO CGI/exon 5-6 compared to expression of MPO in patients with 

increased methylation in disease remission (panel E) (r= -0.3735). (H) DNA methylation at MPO 

CGI/exon 5-6 compared to expression of MPO in patients with decreased methylation in disease 

remission (panel F) (r= -0.08508). P-values of <0.05 are considered significant. 

Change in DNA methylation at the PRTN3 promoter is an indicator of relapse in AAV  

I then questioned if the change in DNA methylation could inform disease prognosis. 

Within our longitudinal cohort, 65 patients continued to be followed in our clinic. Thirty-four of 

these patients remain in stable disease remission with a mean clinical follow-up time of 27 

months since entering disease remission. Of the paired patients who relapsed, the average time to 

relapse was 31 months (SEM ±4.9) for those exhibiting increased gene-specific DNA 

methylation and 16 months (SEM ±2.7) for those exhibiting decreased gene-specific DNA 

methylation. I compared time to relapse in patients with increased DNA methylation to those 

with decreased methylation at each locus using Kaplan-Meier survival curves. The analysis using 

the change in DNA methylation at the PRTN3 promoter revealed that the relapse-free probability 

was higher among patients (n=50) with increased DNA methylation upon disease remission than 

among patients (n=15) with decreased DNA methylation (p<0.0001) (Figure 1.12A). At MPO 

CGI/exon 5-6, the relapse-free probability was slightly higher among patients with increased 

DNA methylation than among patients with decreased methylation, yet the probability of relapse 

was not significantly different between the two groups (p=0.41) (Figure 1.12B).  
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I further subdivided the patients with increased or decreased DNA methylation by 

serotype to determine if ANCA specificity contributed to relapse-free probability. At the PRTN3 

promoter, the relapse-free probability partitioned patients based on change in DNA methylation 

rather than ANCA serotype. At MPO CGI/exon 5-6, the relapse-free probability was not 

significantly different after dividing patients by ANCA serotype (p=0.60) (Figure 1.12C,D). 

Stratifying patients based solely on MPO-ANCA or PR3-ANCA serotype showed similar 

relapse-free probability that was not statistically significant (p=0.81) (Figure 1.12E). This 

suggests an increase in DNA methylation in disease remission at the PRTN3 promoter indicates a 

better disease prognosis than a decrease in DNA methylation at this locus.  
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Figure 1.12. DNA methylation and probability of relapse. AAV patients stratified by DNA 

methylation change and followed until next relapse or last clinic follow-up at the (A) PRTN3 

promoter and (B) MPO CGI/exon 5-6; decreased DNA methylation in red, increased DNA 

methylation in blue. AAV patients stratified by DNA methylation change and serotype and 

followed until next relapse or last clinic follow-up at the (C) PRTN3 promoter and (D) MPO 
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CGI/exon 5-6; MPO-ANCA patients with decreased DNA methylation in orange, MPO-ANCA 

patients with increased DNA methylation in dashed purple, PR3-ANCA patients with decreased 

DNA methylation in green, PR3-ANCA patients with increased DNA methylation in dashed 

gray. (E) AAV patients stratified by serotype and followed until next relapse or last clinic 

follow-up at the PRTN3 promoter; PR3-ANCA patients in pink, MPO-ANCA patients in black. 

Numbers at bottom of graphs correspond to the number of patients in each group who have not 

relapsed and have been followed up in clinic. P-values <0.05 are considered significant. 

 

Risk of relapse is highest in AAV patients with decreased DNA methylation at the PRTN3 

promoter 

Proportional hazard models of time to relapse showed that patients with decreased DNA 

methylation at the PRTN3 promoter were 4.55 times more likely to relapse, regardless of 

serotype (95% CI 2.09, 9.91; p=0.0001). The change in DNA methylation at MPO CGI/exon 5-6 

was not predictive of relapse with a hazard ratio of 1.41 (95% CI 0.62, 3.20; p=0.41) (Table 1.6). 

When multivariate analyses were performed to control for additional variables including age, 

autoantigen gene expression, diagnosis (microscopic polyangiitis-MPA, granulomatosis with 

polyangiitis-GPA), organ involvement and serotype, the hazard ratio for relapse among patients 

that decreased DNA methylation versus patients that increased methylation at the PRTN3 

promoter remained significant and did not change from the univariate analysis (Table 1.6). Based 

on this analysis, the change in DNA methylation at the PRTN3 promoter indicates the likelihood 

of relapse among patients with AAV.  

The role of the most commonly prescribed therapy in this cohort, corticosteroids, 

specifically prednisone, in DNA methylation was examined. Fifty-seven of 184 patient blood 
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samples in this study were collected while the patient was taking prednisone. DNA methylation 

of active samples on and off prednisone (n=34 and 46, respectively) show a comparable mean 

methylation at CpG 7, 8 of the PRTN3 promoter (p=0.14) (Figure 1.13), indicating DNA 

hypomethylation is largely independent of prednisone therapy in patients with active disease.  

In this cohort, polymorphonuclear cell (PMN) counts were only available for 57% 

(104/184) of the samples, including 22 patient pairs. In this small subset of patients, I found the 

same association between DNA methylation and PMN count in both the PRTN3 promoter and 

MPO CGI/exon 5-6; yet only the PRTN3 promoter was found to be predictive of stable remission. 

These preliminarily findings suggest PMN count does not explain the observation that a change 

in DNA methylation at the PRTN3 promoter predicts relapse probability. 

As described above, the change in DNA methylation was calculated by taking the 

average methylation across all CpGs covered by an amplicon, but individual CpGs show 

dynamic changes. I tested whether changes in DNA methylation at dynamic CpGs in MPO 

CGI/exon 5-6 associated with different flare-free rates or likelihood of relapse. Unfortunately, 

none of the CpGs tested were predictive. Within the PRTN3 promoter, none of the 13 individual 

CpGs interrogated were found to be more predictive of relapse than the mean DNA methylation 

change; however, the hazard ratio for relapse among patients that decreased versus patients that 

increased methylation at CpG 13 was 3.43 (95% CI 1.56, 7.56; p=0.0022) (Table 1.6). This 

pinpoints a single cytosine residue where a change in DNA methylation may be prognostic.
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*P values were calculated using each hazard model adjusted by DNA methylation (PRTN3 Promoter, PRTN3 Promoter CpG13 or MPO CGI/exon 5-6). 

1MPO-ANCA (n=30) compared to PR3-ANCA patients (n=35); 2Age at time of first sample (usually active); 3GPA (n=27) compared to all grouped MPA (n=29), 
Renal Limited (n=7) and EGPA (n=2); 4Expression at time of disease remission, subtracted from expression at time of disease activity; positive changes 
compared to negative changes; 5Samples on prednisone (active n=34; remission n=23) compared to those not taking prednisone (active n=43; remission n=84); 
6Lung involvement (n=33); upper respiratory involvement (n=36); kidney involvement (n=50). 

Table 1.6. Hazard Ratios for the role of methylation change in flare-free probability at PRTN3 and MPO. Hazard ratio, 95% CI and p-

value for decreased DNA methylation change at the PRTN3 promoter (mean methylation and methylation at CpG 13) and MPO 

CGI/exon 5-6 taking into account additional variables including serotype, age, diagnosis, corticosteroid therapy and organ 

involvement.

 

  PRTN3 Promoter PRTN3 Promoter CpG13 MPO CGI/exon 5, 6 

  Controlled variables HR(95%CI) p-value* HR(95%CI) p-value* Hazards ratio p-value* 
Methylation   4.55(2.09, 9.91) 0.0001 3.43(1.56, 7.56) 0.0022 1.41(0.62, 3.20) 0.41 

 Serotype1 1.43(0.64, 3.21) 0.38 1.29(0.59, 2.86) 0.52 1.07(0.46, 2.49) 0.88 
 Age2 0.99(0.97, 1.01) 0.36 0.99(0.97, 1.01) 0.28 0.99(0.97, 1.02) 0.59 
 Diagnosis3 2.16(0.99, 4.75) 0.0541 1.97(0.90, 4.31) 0.0906 2.39(1.09, 5.24) 0.0289 
 PRTN3 expression change4 1.60(0.62, 4.15) 0.34 1.39(0.54, 3.57) 0.50 1.08(0.43, 2.73) 0.87 
 MPO expression change4 0.99(0.39, 2.54) 0.99 0.85(0.34, 2.14) 0.73 0.68(0.27, 1.70) 0.41 
 Corticosteroid Therapy5       
 Active samples 0.93(0.43, 1.99) 0.84 0.91(0.42, 1.95) 0.80 0.74(0.35, 1.55) 0.42 
 Remission samples 1.44(0.50, 4.12) 0.50 0.98(0.37, 2.60) 0.97 0.82(0.31, 2.16) 0.68 
 Organ involvement6       
 Lung 0.97(0.46, 2.07) 0.94 1.10(0.52, 2.32) 0.81 1.07(0.51, 2.28) 0.85 
 Upper Respiratory 1.52(0.70, 3.27) 0.29 1.67(0.78, 3.56) 0.18 1.75(0.81, 3.77) 0.15 
 Kidney 0.93(0.31, 2.86) 0.91 0.73(0.26, 2.00) 0.54 1.53(0.53, 4.41) 0.43 

 

*P values were calculated using each hazard model adjusted by Methylation (PRTN3 Promoter, PRTN3 Promoter CpG13 or MPO CGI/exon 5, 6). 

1MPO-ANCA (n=30) compared to PR3-ANCA patients (n=35) 

2Age at time of first sample (usually active) 

3GPA (n=27) compared to all grouped MPA (n=29), Renal Limited (n=7) and EGPA (n=2)  

4Expression at time of disease remission, subtracted from expression at time of disease activity; positive changes compared to negative changes 

5Samples on prednisone (active n=34; remission n=23) compared to those not taking prednisone (active n=43; remission n=84) 

6Lung involvement (n=33); upper respiratory involvement (n=36); kidney involvement (n=50)  

Table 3. Hazard Ratios for the role of methylation change in flare-free probability at PRTN3 and MPO. Hazard ratio, 95% CI and p-value for 
decreased methylation change at the PRTN3 promoter (mean methylation and methylation at CpG 13) and MPO CGI/exon 5, 6 taking into 
account additional variables including serotype, age, diagnosis, corticosteroid therapy and organ involvement. 
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Figure 1.13. Role of prednisone in DNA methylation. (A) DNA methylation at CpG 7, 8 

of the PRTN3 promoter for all samples collected from active patients prescribed 

prednisone (circles) and patients not prescribed prednisone (squares); red indicates new 

onset active AAV patients. Bars shown are median DNA methylation with interquartile 

range; p<0.05 is considered significant. 
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Discussion 

In this study I measured DNA methylation in patients with AAV during active disease 

and remission to determine the dynamics of this epigenetic modification during disease. The 

initial rationale for investigating DNA methylation was based on preliminary data that indicated 

DNMT1 mRNA expression was reduced in AAV patients. I confirmed DNMT1 mRNA was 

reduced in patients with active disease, and demonstrated DNMT1 was expressed at levels 

comparable to healthy individuals when patients were in remission. AAV is not the only 

autoimmune disease characterized by decreased expression of DNMT1 (60, 64). 

One of our primary measurements in this study was the change in DNA methylation from 

active disease to remission, which revealed two groups of patients: those that increase 

methylation, and those that decrease methylation. Upon entering remission this dichotomy has 

striking consequences. First, at all loci studied in MPO and PRTN3, except for the PRTN3 

promoter, DNA methylation changes segregated patients by serotype. More PR3-ANCA patients 

decrease DNA methylation at PRTN3 CGI exon 5 and MPO CGI exon 5-6 than MPO-ANCA 

patients. This suggests that in addition to prior studies indicating genetic differences between 

MPO-ANCA and PR3-ANCA patients (118), differences in ANCA specificities may also have 

an epigenetic component. Second, DNA methylation changes divided patients by those with 

autoantigen expression that correlated with DNA methylation and those with expression that did 

not correlate with methylation. The correlation between autoantigen gene expression and DNA 

methylation was much greater for patients with increased methylation compared to patients with 

decreased methylation; it is plausible that DNA methylation regulates transcription of 

autoantigen genes only among some patients. Finally, most intriguing is the finding that DNA 

methylation changes indicated the likelihood a patient would relapse. At the PRTN3 promoter, a 
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decrease in DNA methylation upon disease remission indicates a higher probability a patient will 

relapse in the future regardless of ANCA serotype, compared to patients that increased 

methylation in disease remission. Thus, an increase in DNA methylation at the PRTN3 promoter 

marks stable remission. 

A comprehensive search for a prognostic biomarker of disease remission in AAV would 

include epigenetic changes because the epigenome is labile and susceptible to immunological 

challenges and environmental exposure, which may trigger disease relapse. The role of DNA 

methylation, histone modifications and other epigenetic modifications are increasingly explored 

in autoimmune diseases (64). Specifically, abnormal DNA methylation of immune cells is 

known to contribute to the etiology of systemic lupus erythematosus (SLE) (119-124), RA (125-

131) and MS (132-136). Hypomethylation of gene promoters in SLE patients has been shown to 

associate with disease activity (137, 138). Hypomethylation of interleukin-6 and interleukin-10 

promoters has been suggested to play a role in the pathogenesis of RA (139, 140).  

I found prognostic value in quantifying DNA methylation changes at the PRTN3 

promoter in patients with AAV. It is likely that an epigenetic modification such as DNA 

methylation impacts the regulation of autoantigen gene expression in AAV. In patients with 

decreased methylation an alternative epigenetic modification could explain why expression of 

the autoantigen genes does not appear to be influenced by DNA methylation; however, in this 

group of patients I observed a relatively small change in expression.  

Markers of disease status in patients with AAV have been found in other cohort studies 

(141-143). When I controlled for additional variables, including markers of disease status, none 

of the following demographic metrics were found to correlate with stable remission better than 

change in methylation at the PRTN3 promoter in AAV patients: serotype, diagnosis, age, 



 

 52 

autoantigen gene expression, organ involvement or corticosteroid therapy. Despite the majority 

of patients taking some form of immunosuppressive therapy, none of the patients in this study 

were taking known epigenetic modifiers, such as hydralazine. Future studies measuring DNA 

methylation exclusively in patients off therapy will need to be carried out to definitively address 

whether therapy contributes to changes in methylation. Our hazard ratio analysis found that 

corticosteroid use, specifically prednisone, did not alter the predictive value of DNA methylation 

change at the PRTN3 promoter. 

I measured DNA methylation in two platforms at three additional genes (ELANE, LTF 

and BPI) chosen as controls because of similarities to MPO and PRTN3 in AAV. Along with 

MPO and PRTN3, the expression of these genes is elevated in patients with AAV, and 

circulating antibodies against elastase and lactotransferrin have been identified as causes of 

perinuclear ANCA staining pattern. Anti-elastase antibodies have been reported in patients with 

SLE and drug-induced SLE (144-146). ANCA directed against BPI, an endotoxin-binding 

protein of polymorphonuclear granulocytes, are associated with a cytoplasmic ANCA staining 

pattern and have been reported in patients with IBD as well as those with cystic fibrosis (CF) 

(113, 147). Generally, DNA methylation changes observed at these genes were not similar to 

those measured at MPO and PRTN3, which I conclude demonstrates the specificity of DNA 

methylation changes at MPO and PRTN3. Differences in DNA methylation pattern between the 

methylation platforms at ELANE are likely due to differences in probe location. The genome-

wide DNA methylation platform measured CpG sites across ELANE while local methylation 

studies only examined CpGs in the CGI/exon 2. 

The PRTN3 promoter is unique in that it does not show differences between serotypes. 

An increase in DNA methylation (from disease activity to remission) at the PRTN3 promoter is 



 

 53 

predictive of stable remission in both MPO- and PR3-AAV patients. A scarcity of CpGs within 

the MPO promoter prevented the study of DNA methylation at the MPO promoter in the three 

platforms utilized here; however, it remains possible that DNA methylation changes at this 

promoter are similar to those seen at the PRTN3 promoter. Interestingly, the only prognostic 

value for DNA methylation was found in the promoter of PRTN3; none of the CGIs examined in 

MPO, PRTN3, ELANE and LTF were predictive of stable remission. Changes in DNA 

methylation at CpGs in the PRTN3 promoter may disrupt binding sites for transcription factors. 

Within the PRTN3 promoter I was able to identify a single CpG that was predictive comparable 

to the mean DNA methylation change. This CpG (13) resides within the consensus binding sites 

for two transcription factors: upstream stimulatory factor (USF) and specificity protein 1. This 

suggests a location where DNA methylation could disrupt transcription factor binding, and 

previous studies in autoimmunity have demonstrated the importance of methylation at individual 

CpGs. For instance, hypomethylation at two CpG sites in the promoter of interferon-induced 

protein 44-like (IFI44L) was found to be a highly sensitive and specific diagnostic marker in 

patients with SLE compared to healthy controls and other autoimmune diseases (148).  

A previous study reported that in patients with active AAV compared to healthy 

individuals the MPO and PRTN3 genes had reduced levels of the histone modification H3 lysine 

27 trimethylation (H3K27me3), which is associated with gene silencing. H3K27me3 was 

measured at regions within MPO and PRTN3 in neutrophils from 15 patients, and there was a 

modest correlation between the level of H3K27me3 and MPO or PRTN3 gene expression (10). 

H3K27me3 mediated silencing of MPO and PRTN3 genes was explored further in vitro using 

myelo-monocytic cell lines. Here, I measured DNA methylation at regions within MPO and 

PRTN3 from 82 patients, where 65 were paired active-remission samples, and found that changes 
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in DNA methylation at PRTN3 promoter were predictive of relapse probability. Both studies 

describe a role in AAV for epigenetic alterations at autoantigen genes. These observations may 

be linked mechanistically since DNA methylation/DNMT1 and H3K27me3/Polycomb 

Repressive Complex 2 act together at the same genes in cancer and embryonic stem cells (149).  

While this study investigated the link between DNA methylation and expression or the 

maintenance methyltransferase, DMNT1, other enzymes are also responsible for DNA 

methylation. Ten-Eleven Translocation family enzymes (coded by genes TET1, TET2 and TET3) 

are involved in the repression of pro-inflammatory cytokines (150); decreased expression of 

TET2 mRNA as well as protein has been reported in the peripheral blood mononuclear cells 

(PBMCs) of patients with multiple sclerosis (MS) (133). DNA methyltransferase and TET 

family enzymes are involved in the formation of a 5-methylcytosine and 5-

hydroxymethylcytosine, respectively. The transcribed gene bodies generally associate with 5-

hydroxymethylcytosine (151-154). Down-regulation of DNMT1 and TET2 in the PBMCs of 

patients with MS has been linked to aberrant DNA methylation of the gene promoters (133). 

Future studies in patients with AAV would examine the expression of the TET genes as well as 

DNA methylation at the promoters of both TET and DNMT genes. Unpublished data from our 

group did not find differential expression of DNMT3a or DNMT3b when comparing patients to 

healthy controls.  

A limitation of this study is the use of total leukocytes containing varying percentages of 

different cell types. Among hematopoietic cell types, DNA methylation is known to differ; 

therefore, it is possible changes in the proportions of a particular cell type could drive the 

methylation pattern I observed. Neutrophils are likely candidates for altering cell proportions 

because neutrophil counts fluctuate during inflammation and neutrophils play a key role in the 
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pathogenesis of AAV (92). To this end, the role of neutrophil counts in disease prognosis has 

been investigated. A cohort of 64 patients with GPA studied in 1993 found leukocyte count to be 

a significant predictor of survival free of renal failure (155). However, a recent study by Hogan 

et al. reported that while a rise in neutrophil count in combination with C-reactive protein levels 

and PR3-ANCA titers was predictive of relapse, neutrophil count alone was not an informative 

biomarker (156). In contrast, our study shows that change in DNA methylation at the PRTN3 

promoter is sufficient to indicate the likelihood of relapse. In future studies testing the 

contribution of different cell types to DNA methylation changes in patients with AAV will 

elucidate critical cell populations responsible for the methylation changes I observed. Significant 

progress in generating comprehensive functional methylome maps of individual leukocyte 

subsets has already been made along with the identification of cell-subset specific 

hypomethylated regions that correlate with gene transcription levels (157).  

I recognize the absolute changes in DNA methylation measured here are relatively small. 

It is possible that small cell populations could be driving DNA methylation changes in a 

heterogeneous population of leukocytes. Future measurement of longitudinal DNA methylation 

in healthy controls would establish a normal standard deviation over time that can be used as a 

threshold for determining aberrant methylation changes in patients. Development of a receiver 

operating characteristic curve would establish sensitivity and specificity of changes in DNA 

methylation prior to clinical implementation. A replication cohort of paired patients would allow 

for the validation of these findings. A recent publication on paired AAV patients was smaller in 

size and duration of follow-up (158), yet it is difficult to obtain access to a cohort with 

accompanying extensive clinical follow-up comparable to the one reported here. In the absence 
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of a replication cohort, a blinded validation study would need to be carried out to demonstrate 

the predictive value for PRNT3 promoter methylation in patients with AAV. 

Improved understanding of epigenetic alterations in AAV patients would increase the 

understanding of molecular mechanisms involved in disease pathogenesis and inform disease 

prognosis. Recent analysis of data collected from the rituximab versus 

cyclophosphamide/azathioprine for AAV (RAVE) trial found serial PR3-ANCA titers to be 

useful in anticipation of severe relapses; specifically in patients with renal involvement, alveolar 

hemorrhage or in patients treated with rituximab (159). There remains a need for a prognostic 

indicator that is applicable to AAV patients, as a whole. Previous work to identify potential 

biomarkers of disease relapse has been limited to cohorts comprised of patients with the same 

diagnosis or the same serotype (4, 159). Studies with paired patient samples and thorough 

clinical data are optimal for determining the value of a potential prognostic indicator.  

To test whether changes in DNA methylation are associated with disease state and 

prognosis I studied a longitudinal cohort of heterogeneous AAV patients, including those with an 

MPA or GPA diagnosis as well as equal numbers of both ANCA serotypes, alongside their 

corresponding clinical information. Currently clinical criteria distinguish the disease status of 

patients; I characterized DNA methylation patterns at the autoantigen genes, MPO and PRTN3, 

and show DNA methylation changes further stratify disease remission status. In patients with 

ANCA-associated vasculitis I show DNA methylation changes at the PRTN3 promoter are a 

potential biomarker of stable remission.  
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  Chapter 2 

THE SEARCH FOR CELL TYPES RESPONSIBLE FOR AUTOANTIGEN GENE 
EXPRESSION IN AAV 

 

Despite the relative ease in isolating leukocyte DNA and RNA for methylation and 

expression studies, the limitations caused by alterations in cell heterogeneity are not to be 

overlooked. To this end, I focused significant research efforts on measuring DNA methylation in 

cell types responsible for expression of autoantigen genes in patients with AAV. Surprisingly, 

these studies led us to a cell type capable of high autoantigen gene expression and present in our 

CD4-enriched population, yet lacking CD3 and CD4 on the surface. Characterization of this cell 

type is still underway; here I present evidence that it is not a progenitor cell but possibly a 

subtype of monocyte.  

Introduction 

 Our interest in neutrophils and monocytes in the setting of ANCA-associated vasculitis 

stems from the known aberrant expression of autoantigen genes, MPO and PRTN3, by these cell 

types (8, 160). Multiple experiments have shown that ANCA activate both neutrophils and 

monocytes and cause them to attack vessels, leading to vasculitis (71). ANCA bind antigens in 

the primary granules of neutrophils and the peroxidase-positive lysosomes of monocytes (82). A 

timeline of vascular and extravascular lesions in AAV would begin with neutrophil-rich 
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necrotizing inflammation; these neutrophils quickly undergo apoptosis and necrosis before being 

replaced by monocytes, macrophages and T cells (82). Monocytes, once activated by ANCAs, 

release pro-inflammatory cytokines monocyte chemoattractant protein-1 and interleukin 8 (IL-8, 

a neutrophil chemoattractant) (91). Cytoplasmic-ANCA (c-ANCA) plays an important role 

inducing monocyte IL-8 release by binding to monocyte PR3 and cross-linking Fcγ receptors; 

this process recruits and targets neutrophils. Previous research has suggested that epigenetic 

modifications associated with gene silencing may be dysfunctional and play a role in the aberrant 

transcription of MPO and PRTN3 in mature neutrophils circulating in the peripheral blood (10). 

Monocytes make up a mere 3-8% of leukocytes; any aberrations in DNA methylation or 

mRNA expression would likely be muted in studies of total leukocytes. Monocytes are involved 

with adaptive immunity and antigen presentation to activate T cells (161).  

 In addition to the highly studied roles of neutrophils and monocytes in the disease 

pathogenesis of AAV, this autoimmune response is facilitated by insufficient T cell regulation 

(82). Regulatory T cells (Tregs) are immunosuppressive and function to down-regulate the 

induction and proliferation of effector T cells. Tregs maintain tolerance to self-antigens and are 

identified by the surface markers: CD4, CD25 and Foxp3 (transcription factor forkhead box P3). 

Regulatory T cells prevent autoimmunity resulting from excessive activation of naïve and 

effector T cells, both of which respond to pathogens (162, 163). The transcription factor Foxp3 

governs Treg development and function; mutations in or deletions of the gene encoding Foxp3, 

FOXP3, result in severe autoimmune disease along with failure to make CD25+CD4+ Tregs 

(164, 165). The promoter of human FOXP3 contains several transcription factor binding sites 

including nuclear factor of activated T cells (NF-AT) and AP-1 (which is involved in a wide 

range of cellular processes). These transcription factor binding sites positively regulate FOXP3 
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expression after triggering the T cell receptor (TCR) (166). Within the non-coding part of 

FOXP3, there are CpGs that are demethylated in Tregs but methylated in naïve and effector T 

cells; there is an inverse occurrence of acetylated histones in these cell types (167). These studies 

provide evidence that the expression of FOXP3 must be stabilized by epigenetic modifications to 

support the development of a permanent suppressor cell lineage of regulatory T cells.  

 Exploring the role of purified populations of cells isolated from the peripheral blood in 

disease pathogenesis is becoming more feasible as new platforms make isolating cells more 

accessible and EWAS becomes more widely utilized. There is a need for genome-wide DNA 

methylation data combined with gene expression analysis from purified cell subsets; to this end, 

a collaboration of research groups recently created a functional genome-wide methylome map of 

five different cell types isolated from healthy individuals (168). This research lays the 

groundwork for understanding where aberrant epigenetic profiles exist in a disease setting. Here, 

I examine the gene-specific DNA methylation profiles in neutrophils, monocytes and CD4+ T 

cells along with mRNA expression of these genes and are able to further corroborate these data 

in an autoimmune setting. The objective of this study was to characterize the DNA methylation 

patterns in purified cell types collected from the peripheral blood of paired active and remission 

AAV patients. 
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Materials and Methods 

Study Design 

AAV patients were enrolled at UNC–Chapel Hill clinics and followed in the Glomerular 

Disease Collaborative Network (101, 102). Patients and healthy volunteers were recruited, 

according to the guidelines of the Institutional Review Board (IRB study #97-0523) by the 

University of North Carolina Office of Human Research Ethics. Study subjects gave informed, 

written consent and participated according to UNC IRB guidelines. De-identified patient and 

healthy control samples were assigned randomly to plates for DNA methylation analysis and run 

in duplicate on separate plates. Investigators who quantified the results were blinded with regard 

to the type of patient or control being analyzed.  

Patient Cohort 

Patients were diagnosed according to the Chapel Hill Consensus Conference (103, 104). 

ANCA serotypes were determined by indirect immunofluorescence and antigen-specific PR3 and 

MPO ELISA (105). Disease activity was determined by the 2003 BVAS in conjunction with 

clinical signs of activity. In this study, patients with a BVAS of 0 and no clinical or laboratory 

evidence of active disease were considered to be in remission. Active disease was defined as a 

BVAS >0 with clinical and/or laboratory evidence of disease (106). A total of 32 patients with 

AAV and 13 healthy controls were included in this study based on the availability of paired 

active/remitting disease samples, clinical data and laboratory data. Patients with suspected or 

confirmed drug-induced forms of AAV, that were ANCA negative by ELISA, or had 

overlapping disease were excluded. Patients taking known epigenetic modifiers were also 

excluded from this study. Patient demographics were similar between healthy controls and AAV 
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patients with regard to age, gender and race and are a subset of the cohort described in Tables 1.1 

and 1.4.  

In these longitudinal studies I selected patients for whom samples were available at a 

time of disease activity and remission and were, on average, three months apart. These criteria 

were established prospectively. No outliers have been excluded from this study. In addition to 

the presence of DNA and RNA samples for each patient, I also ensured there was adequate 

clinical information including BVAS and a list of immunosuppressant therapies the patient was 

taking at the time of each sample collection.  

Isolation of immune cell types 

Peripheral blood was collected in two 10ml sodium heparin tubes (14-18mls of blood). 

For every 5mls whole blood, 1ml of HetaSep™ (Stem Cell Technologies) was added before 

centrifugation (92g, 6min, no brake). The nucleated cells above the red blood cell pellet were 

placed over Histopaque 1077 (Sigma) and centrifuged (400g, 30min, no brake). The buffy coat 

containing PBMCs was washed before isolating cell types using magnetic microbeads for cell 

sorting using. The Human CD14 Positive Selection Kit was used to sort out the CD14+ 

monocytes and then the CD4 T cell Enrichment Kit was used to sort the CD4+ T cells from the 

CD14-depleted PBMCs as previously described (EasySep™, Stem Cell Technologies) (168, 

169).  

In parallel, neutrophils were isolated from the two red blood cell/granulocyte pellets 

remaining after the Histopaque spin. After washing, neutrophils were isolated from each of these 

pellets in a separate manner either for RNA extraction or DNA extraction. For DNA extraction, 

lysis buffer (155mM NH4Cl, 12mM NaHCO3, 0.1mM EDTA) was added to the pellet and 

incubated on ice for 30 minutes (168). After washing, 600μl RLT buffer from the AllPrep 
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DNA/RNA Mini Kit (Qiagen, Chatsworth, CA) was added to the neutrophil pellet (350μl for the 

monocyte and CD4 T cell-enriched pellets) and frozen at -80°C, according to the manufacturer’s 

instructions. The Qiagen AllPrep DNA/RNA Mini Kit was used to isolate neutrophil DNA as 

well as both DNA and RNA from the CD14+ monocytes and the CD4-enriched T cells. For 

RNA extraction from the neutrophils, 5mls of DI water was added to the pellet and inverted 

several times to lyse the red blood cells, next the same volume of 2X PBS was added and the 

sample was mixed and centrifuged (300g, 10min). STAT-60 (Tel-Test “B”, Friendswood, TX, 

USA) was added to the neutrophil pellet for RNA extraction.  

Peripheral blood was also sampled from healthy individuals taking granulocyte colony-

stimulating factor (G-CSF); these blood samples were processed as described above to isolate the 

CD4 T cell-enriched population for flow cytometry and mRNA expression studies. 

DNA methylation studies 

DNA from monocyte, neutrophil and T cell-enriched cell populations was bisulfite-

converted in duplicate using the EZ DNA methylation kit (Zymo Research, Orange, CA). DNA 

methylation was measured in the bisulfite-treated DNA samples using the EpiTyper 

MassARRAY (Agena, La Jolla, CA). Here, targeted MALDI-TOF mass spectrometry 

(EpiTYPER®, Agena Bioscience) was carried out at three amplicons within MPO and PRTN3. 

Primer pairs were designed using EpiDesigner software (www.epidesigner.com) (Table 1.2). A 

cohort of 32 unique AAV patients and 13 healthy individuals were run on this platform in 

duplicate. In accordance with the standard protocol and following amplification of 650ng of 

bisulfite-converted DNA, the PCR products underwent the SAP treatment and T-cleavage 

reaction in preparation for quantitative analysis of DNA methylation. Mean DNA methylation 

was measured by averaging the CpGs in each individual amplicon. 
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Taqman mRNA expression studies  

For quantitative RT-PCR, cell type RNA was analyzed from 15 PR3-ANCA patients, 17 

MPO-ANCA patients and 13 healthy controls. Quantitative detection of MPO and PRTN3 

mRNA levels from patient samples was determined using a standard curve. The standard curve 

for MPO mRNA levels was generated using HL60 cells, a cell positive for MPO mRNA, diluted 

with Jurkat cells, a cell line negative for MPO mRNA. The standard curve for PRTN3 mRNA 

levels was generated using THP-1 cells, a cell positive for PTRN3 mRNA, diluted with Jurkat 

cells, a cell line negative for PRTN3 mRNA. MPO and PRTN3 mRNA levels for patients and 

healthy donor samples were determined by 2-ΔΔCt calculations and expressed relative to standard 

curves. Primers and probes for MPO and PRTN3 were previously published and Cytochrome c 

oxidase (COX5B) was used as mRNA internal control (8). Quantitative detection of MPO and 

PRTN3 mRNA levels was determined by 2-ΔΔCt calculations, with COX5B as the mRNA internal 

control, and expressed as fold change of reference control samples. Primers and probes were 

purchased from Applied Biosystems (Applied Biosystems, Foster City, CA). Quantitative RT-

PCR assays were performed on an ABI PRISM 7900HT sequence detection system (Applied 

Biosystems), using the TaqMan EZ RT-PCR kit (Applied Biosystems).  

Flow Cytometry 

The CD4 T cell-enriched population was washed and resuspended in HBSS, 2% FBS, 

0.1% sodium azide and stained with surface markers (Table 2.1). Cells were acquired on a BD 

LSRII and data was analyzed by FlowJo software (Tree Star, Inc.). After staining for CD3 and 

CD4, cells negative for both markers in the CD4 T cell-enriched population were sorted on a 

Becton Dickinson FACSAriaII equipped with FACSDiva 7 software (BD Biosciences). 

Cytospun samples were stained with hematoxylin and eosin. 
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Surface 
Marker Source 

CD1c Biolegend 
CD3 Biolegend 
CD4 Biolegend 
CD8 Biolegend 
CD11b Biolegend 
CD11c Biolegend 
CD13 eBioscience 
CD14 eBioscience 
CD16 eBioscience 
CD33 Biolegend 
CD34 Biolegend 
CD45 eBioscience 
CD56 Biolegend 
CD64 Biolegend 
CD68 Biolegend 
CD123 Biolegend 
CD141 Biolegend 
CD161 eBioscience 
HLA-DR BD Pharmingen 
Table 2.1. Surface markers measured by flow cytometry in CD4-enriched population. 

RNA Sequencing 

The CD4-enriched populations collected from two longitudinal AAV patient pairs were 

RNA sequenced and differentially expressed genes were analyzed. I investigated differentially 

expressed genes in these pairs using Ingenuity Pathway Analysis (IPA) software package 

(Ingenuity Systems).  

Statistical Analysis 

Comparisons between two independent groups were done using Wilcoxon rank sum test. 

Bonferroni corrections were used in situations with multiple comparisons between groups. Mean 

DNA methylation was measured by averaging the CpGs in each individual amplicon. 

Methylation at individual CpGs was found to be either static or dynamic in a pattern mirroring 

that shown in the mean DNA methylation. Log transformed correlation for DNA methylation 

and the expression of autoantigen genes was analyzed by Spearman correlation coefficients.  
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Results 

Increased PRTN3 expression in monocytes and neutrophils of AAV patients 

 Using purified cell populations, I measured the expression of autoantigen genes, MPO 

and PRTN3, along with DNA methylation at loci within these genes. Previous research indicates 

aberrant expression of these genes stems from monocytes and neutrophils. Total leukocyte 

studies (Chapter 1) confirmed increased mRNA expression of both genes in some patients with 

active disease, compared to healthy individuals. In a small cohort of patients I see a trend of 

increased MPO expression in neutrophils isolated from AAV patients during disease activity 

(Figure 2.1A). There is a 7.5-fold increase of PRTN3 mRNA expression in neutrophils isolated 

from AAV patients with active disease, compared to healthy individuals (Figure 2.1C). In 

monocytes there is no difference in MPO mRNA expression between healthy controls and active 

AAV patients, though remission patients do show a trend of increased expression (Figure 2.1B). 

Expression of PRTN3 is increased five-fold in monocytes isolated from active AAV patients 

(Figure 2.1D). Thus, there is a significant increase of PRTN3 expression in both neutrophils and 

monocytes isolated from patients with active disease. 
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Figure 2.1. Relative MPO and PRTN3 expression in monocytes and neutrophils. Relative MPO 

expression of healthy controls (green), active patients (red) and remitting patients (blue) in (A) 

neutrophils and (B) monocytes. Relative PRTN3 expression in (C) neutrophils and (D) 

monocytes. Bars shown are mean and standard deviation; only p<0.05 are considered significant 

and shown. 

 

Static DNA methylation of neutrophils at the PRTN3 promoter and CGI/exon 5 
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with few variations between healthy controls and patients with AAV (Figure 2.2A). Despite an 

increase in relative expression of PRTN3 mRNA in neutrophils (Figure 2.1C) there was no 

correlation between methylation and expression in neutrophils within this small patient cohort 

(Figure 2.2C). DNA methylation of CD14+ monocytes at the PRTN3 promoter was only slightly 

higher than neutrophils, but here AAV patients appear to be hypomethylated compared to 

healthy controls (Figure 2.2B); this pattern mirrors that seen in total leukocytes (Figure 1.1D). At 

the PRTN3 promoter, DNA methylation and PRTN3 mRNA expression correlate in monocytes, 

despite the relatively small cohort (Figure 2.2D).  

 Comparable to the PRTN3 promoter, DNA methylation of neutrophils at PRTN3 

CGI/exon 5 is low and unchanging between AAV patients and healthy controls (Figure 2.3A). 

DNA methylation at this locus in PRTN3 does not correlate with PRTN3 mRNA expression 

(Figure 2.3C). Monocyte DNA methylation in patients with AAV is decreased when compared 

to healthy controls and PRTN3 mRNA expression correlates with the DNA methylation (Figure 

2.3B,D). Together these preliminarily data indicate that while both neutrophils and monocytes 

isolated from AAV patients are capable of expressing MPO and PRTN3, DNA methylation is 

only dynamic in monocytes at loci within PRTN3 and this methylation correlates well with 

mRNA expression of PRTN3.  
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Figure 2.2. Neutrophil and monocyte methylation and expression at PRTN3 promoter. Mean 

cross-sectional methylation at PRTN3 promoter in (A) neutrophils and (B) monocytes. Healthy 

controls (green circles), MPO-ANCA patients (blue triangles) and PR3-ANCA patients (purple 

squares). Log transformed correlation between methylation at the PRTN3 promoter and PRTN3 

mRNA expression in (C) neutrophils (n=42; r= -0.0096) and (D) monocytes (n=45; r= -0.3315).  
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Figure 2.3. Neutrophil and monocyte methylation and expression at PRTN3 CGI/exon 5. Mean 

cross-sectional methylation at PRTN3 CGI/exon 5 in (A) neutrophils and (B) monocytes. 

Healthy controls (green circles); MPO-ANCA patients (blue triangles) and PR3-ANCA patients 

(purple squares). Log transformed correlation between methylation at PRTN3 CGI/exon 5 and 

PRTN3 mRNA expression in (C) neutrophils (n=42; r= -0.1387) and (D) monocytes (n=44; r= -

0.3756). 
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MPO mRNA expression in total leukocytes. DNA methylation in purified neutrophils at MPO 

CGI/exon 7 was nearly identical to methylation at the PRTN3 loci, low and unchanging between 

patients and healthy controls (Figure 2.4A); here the DNA methylation did not correlate with 

MPO mRNA expression (Figure 2.4C). In monocytes there is a significant decrease in DNA 

methylation in active AAV patients compared to healthy controls at MPO CGI/exon 7, despite 

the overall methylation remaining low compared to total leukocytes (Figure 2.4B). Given that 

MPO mRNA expression did not change between healthy controls and patients (Figure 2.1B) it is 

not surprising that DNA methylation at MPO CGI/exon 7 does not correlate with expression of 

this gene (Figure 2.4D).  

 

CD4-enriched population shows high autoantigen gene expression 

 The third cell type I isolated from AAV patients was CD4+ T cells; these cells were 

negatively enriched from a CD14-depleted population. While purity of this population was high 

(>90%) in healthy individuals and most patients in disease remission, the quality of the isolation 

was diminished in many patients with active disease and for this reason I refer to this fraction as 

CD4-enriched cells. I measured mRNA expression of PRTN3 in these cells and saw a significant 

15-fold increase in expression in AAV patients with active disease compared to healthy controls 

(Figure 2.5A). The PRTN3 promoter was >40% methylated in these cells and active patients 

tended to have less methylation than healthy controls (Figure 2.5B). The PRTN3 mRNA 

expression correlated well with DNA methylation at the promoter indicating that the cells in this 

fraction may contribute to the correlation seen in total leukocytes (Figure 2.5C).  
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Figure 2.4. Neutrophil and monocyte methylation and expression at MPO CGI/exon 7. Mean 

cross-sectional methylation at MPO CGI/exon 7 in (A) neutrophils and (B) monocytes. Healthy 

controls (green circles), MPO-ANCA patients (blue triangles) and PR3-ANCA patients (purple 

squares). Log transformed correlation between methylation at MPO CGI/exon 7 and MPO 

mRNA expression in (C) neutrophils (n=48; r= 0.1094) and (D) monocytes (n=48; r= 0.06887). 
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Figure 2.5. DNA methylation and expression in the CD4-enriched population. (A) Relative 

PRTN3 mRNA expression in the CD4-enriched population for healthy controls compared to 

AAV patients. Bars are mean ± standard deviation. (B) Mean cross-sectional methylation at the 

PRTN3 promoter in the CD4-enriched population. (C) Log transformed correlation between 

methylation at the PRTN3 promoter and PRTN3 mRNA expression of the CD4-enriched 

population (n=47; r=-0.3964). Healthy controls (green circles), MPO-ANCA patients (blue 

triangles) and PR3-ANCA patients (purple squares).  
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CD4-enriched population does not contain progenitor-like cells 

 Cell sorting the CD4-enriched population isolated from active AAV patients prior to 

measuring mRNA expression in each of the sub-populations confirmed the high expression of 

autoantigen genes, MPO and PRTN3, was originating from a cell lacking both CD3 and CD4 on 

the surface and was thus not a T cell. This population of CD3-/CD4- cells present in our CD4 

enrichment was both small (anywhere from 4-20% of the cells in the CD4 enrichment from 

active AAV patients) and confounding. Not all AAV patients with active disease have high 

expression of the autoantigen genes, even when measuring expression in total leukocytes. 

Additionally, the population of CD3-/CD4- cells in healthy individuals is a mere 7% of the total 

population of enriched T cells and does not express MPO or PRTN3. To further study this 

population of MPO and PRTN3 expressing cells I identified a population of healthy donors 

treated with granulocyte colony-stimulating factor (G-CSF) as a possible surrogate sample 

source. G-CSF is a glycoprotein that stimulates the bone marrow to produce granulocytes and 

stem cells and then release them to the peripheral blood; it also stimulates the proliferation and 

differentiation of neutrophils (170). 

The CD4-enriched cell fraction was isolated from G-CSF donors using the same protocol 

as for AAV patients and the cells were stained with surface markers (Table 2.1) and quantified 

using flow cytometry. At first glance, G-CSF donors appeared to be an adequate surrogate for 

studying these CD3-/CD4- cells as the CD4-enriched population showed consistently high 

expression of the autoantigen genes and the size of the CD3-/CD4- cell fraction was comparable 

to active AAV patients (19% in G-CSF donors, 17.8% in AAV patients) (Figure 2.6A,F,K; Table 

2.2). However, G-CSF samples were found to express approximately 20 times the level of MPO 

and PRTN3 seen in AAV patients with active disease; further analysis with surface cell markers 



 

 74 

show the presence of progenitor-like cells staining for CD33, CD34 and CD13 (not shown) in the 

CD3-/CD4- fraction sorted from G-CSF donors; AAV patients and healthy individuals contained 

minimal staining for all three of those markers (Figure 2.6B,C,G,H,L,M; Table 2.2). 

Cytospinning the CD3-/CD4- fraction of this cell population in G-CSF donors revealed a 

heterogeneous population containing cells that resemble monocytes yet none of these sample 

sources showed significant staining for canonical monocyte surface markers, including CD14 

(Figure 2.7). Together, these data indicate that the CD3-/CD4- fraction of cells in G-CSF donors 

were likely progenitor cells and that AAV patients with active disease do not contain progenitor 

cells in the CD4-enriched isolation.  

 In an effort to characterize the CD3-4- fraction in the CD4-enriched population of AAV 

patients with active disease I sought to determine if these cells contained surface markers 

characteristic of monocytes, granulocytes or peripheral blood dendritic cells (Table 2.1). Of five 

active AAV patients analyzed, the CD3-/CD4- population contained an average of 27.4% HLA-

DR+ cells (human leukocyte antigen, D related) (range: 5-69%) and 57.8% CD45+ cells (range: 

40-76%) (Figure 2.6D,E,I,J,N,O; Table 2.2). I saw up to 66% of the CD3-/CD4- population stain 

double positive for HLA-DR and CD45 (not shown). Given the prior positive selection for CD14 

monocytes, it seemed unlikely that the CD4-enriched population would contain CD14+ 

monocytes and I was able to confirm minimal CD14 and CD16 surface staining by flow 

cytometry. At this point I conclude that the CD3-/CD4- fraction of cells found in the CD4-

enriched population contains heterogeneous staining for CD45 and HLA-DR; however, 

limitations in the sample size and population size of these cells make determining which sub-

population expresses MPO and PRNT3 mRNA very challenging. 
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Figure 2.6. Flow cytometry surface staining in CD4-enriched populations. (A-E) Healthy 

controls, (F-J) G-CSF donors, (K-O) AAV patients with active disease. (A,F,K) CD3-/CD4- 

population in each sample type; (B,G,L) CD33 staining; (C,H,M) CD34 staining; (D,I,N) HLA-

DR staining; (E,J,O) CD45 staining.  

Sample 
Source 

N CD3-/CD4- 
cells 

CD33 CD34 HLA-DR CD45 Ave MPO 
mRNA Exp 

Ave PRTN3 
mRNA Exp 

HC 6 7.3 15.3 7.1 25.0 72.0 30.0 15.9 
G-CSF 7 19.0 61.5 57.0 40.0 87.0 16,708.4 13,035.6 
AAV 5 17.8 1.0 2.0 27.4 57.8 811.4 649.8 
Table 2.2. CD4-enriched population in different sample sources. The CD4-enriched population 

in healthy individuals, G-CSF donors and AAV patients was investigated using flow cytometry 

to determine the size of and surface markers on the CD3-/CD4- cells; numbers shown are 

percentages of the CD3-/CD4- population. The expression of MPO and PRTN3 mRNA in the 

total CD4-enriched population were measured. 
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Figure 2.7. Cells from the CD3-/CD4- fraction isolated from G-CSF donors.  

 

RNA sequencing of paired CD4-enriched samples in patients with AAV 

 After determining that G-CSF donors were not an adequate surrogate for studying the 

CD3-/CD4- fraction present in the CD4-enrichment I searched for a platform that would allow us 

to quantify gene expression changes between paired AAV patient samples at times of disease 

activity and remission. I sequenced two paired CD4-enriched RNA samples in which the 

expression of MPO and PRTN3 was high in the active samples. This small pilot study allowed 

for the confirmation of active MPO and PRTN3 transcripts unique to AAV patients with active 

disease in this CD4 enriched population (Figure 2.8A,B). Expression of CD4 in this population 

remained constant regardless of disease activity in these AAV patients (Figure 2.8C). RNA 

sequencing revealed which genes were most differentially expressed between disease states in 

these two paired patients. Ingenuity Pathway Analysis was utilized to create a preliminary map 

of pathways either up-regulated or down-regulated in the differentially expressed genes (Figure 

2.9).   
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Figure 2.8. RNA sequencing of paired CD4-enriched populations from AAV patients. These 

browser images show gene expression in the CD4-enriched population isolated from two paired 

AAV patients in states of disease activity and remission for (A) PRTN3, (B) MPO and (C) CD4 

in the form of mapped read profiles from RNA-seq data. 
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Figure 2.9. Pathway analysis of CD4-enriched populations from AAV patients. Longitudinal 

AAV pairs from two patients exhibiting high autoantigen gene expression corresponding disease 

activity. The differentially expressed gene signatures were mapped showing down-regulated 

genes (green) and up-regulated genes (red). Ingenuity Pathway Analysis software package 

(Ingenuity Systems).  
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Discussion 

 Studies on purified cell populations are needed to elucidate the complete pathogenesis of 

AAV and the role of epigenetic modifications. There is ease in the collection and isolation of 

leukocytes, but dynamic alterations in cell heterogeneity, as a product of both disease 

pathogenesis and therapeutic interventions, add a level of uncertainty to these studies. The 

combination of known aberrant expression of autoantigen genes, MPO and PRTN3, by 

neutrophils and monocytes in patients with AAV (8, 160), combined with limitations in blood 

volume from patients led us to focus on isolating neutrophils, CD14+ monocytes and CD4+ T 

cells from a small cohort of AAV patients at times of disease activity and remission. I measured 

expression of MPO and PRTN3 along with DNA methylation at these genes in each of these 

three populations.  

Neutrophils generally make up a majority of leukocytes, but the DNA methylation at 

MPO and PRTN3 in these cells does not correlate with the expression of these autoantigen genes. 

Thus, DNA methylation in neutrophils is likely not driving the aberrant autoantigen gene 

expression characteristic of AAV. It remains possible that histone modifications may impact the 

expression of MPO and PRTN3 seen in neutrophils from patients with AAV. Static, low DNA 

methylation in neutrophils suggests that this large cell population is muting the dynamic DNA 

methylation patterns occurring in other cell populations.  

While CD14+ monocytes comprise a significantly smaller fraction of total leukocytes 

than neutrophils, elevated PRTN3 expression has been reported in monocytes from patients with 

AAV (160). The DNA methylation at both PRTN3 loci, the promoter and the CGI overlapping 

exon 5, is decreased in patients with active disease and correlates with mRNA expression of 

PRTN3. These data suggest that DNA methylation of PRTN3 in CD14+ monocytes may impact 
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the expression of PRTN3 in patients with AAV. Comprehensive methylome maps of various 

murine hematopoietic cell populations showed that myelopoiesis and lymphopoiesis result in 

different terminal DNA methylation patterns (171). Myeloid commitment is characterized by less 

global DNA methylation than lymphoid commitment, a finding I corroborate at gene-specific 

locations.  

Perhaps most surprisingly, I saw extremely high mRNA expression of both MPO and 

PRTN3 in the CD4-enriched population, isolated from patients with AAV during disease activity. 

In this enriched population I saw a correlation between mRNA expression of PRTN3 and DNA 

methylation at the PRTN3 promoter. While dysregulation of T cells in AAV patients has been 

studied in the past, these cells are not known to express these autoantigen genes. Further studies 

revealed the presence of a CD3-/CD4- fraction of cells in this T cell-enriched population 

expressing MPO and PRTN3. While this fraction is expanded in active patients, not all patients 

express these genes during disease activity. Ultimately, I found considerable differences between 

this CD3-/CD4- fraction of cells within the CD4-enriched population isolated from active AAV 

patients and G-CSF donors. The G-CSF donors contain a heterogeneous population that included 

cells with progenitor surface markers; while the cells in this CD3-/CD4- fraction from patients 

with AAV show minimal surface expression of these markers.  

Recent studies exploring the prevalence of low density granulocytes has described these 

cells as a source of granulocyte gene expression signatures in PBMCs isolated from AAV 

patients with active disease as well as SLE patients (172, 173). Flow cytometry isolation of these 

cells has defined them as CD14low with either CD15 or CD10 surface staining. It is possible that 

the cell type I have isolated may be a low density granulocyte as I have seen minimal CD14 

surface staining and have not measured CD15 or CD10 by flow cytometry. 



 

 81 

DNA methylation by DNMT1 has been found to have a direct role in regulation of the 

self-renewal of HSCs and the commitment to lymphoid lineages (174, 175). Multiple studies 

have been carried out characterizing the specific epigenetic modification patterns that correlate 

with active and repressed chromosomal regions in hematopoietic stem cells (HSCs) and 

differentiated cell populations (176-178). One such study isolated CD34+ HSCs, CD14+ 

monocytes and neutrophils from cord blood and compared them to CD34+ HSCs isolated from 

adult G-CSF donors. These and other studies identify specific epigenetic regulated pathways 

associated with HSC differentiation and provide evidence that these cells use DNA methylation 

to silence the myeloid differentiation program (174, 175, 178). These studies can also help to 

explain why G-CSF donors are not an adequate surrogate sample source in studies of patients 

with active AAV.  

After confirming that the CD3-/CD4- fraction of the CD4-enriched population in AAV 

patients is distinct from that seen in G-CSF donors, I worked to further characterize the surface 

markers on this sub-population of interest. Additional surface staining and flow cytometry 

confirmed the presence of a wide range of CD45+ and HLA-DR+ surface staining on the 

heterogeneous fraction of CD3-/CD4- cells in active AAV patients. Given the prior CD14 

positive selection, I was able to confirm a lack of CD14+ monocytes in the CD4-enriched 

population, by flow cytometry. Our efforts to determine which sub-population expressed MPO 

and PRTN3 mRNA was limited by the population size of these cells and blood volume that could 

be collected from patients with active AAV.  

The identification of cell-subset-specific hypomethylated regions (HMRs) that correlate 

with gene transcription levels suggests HMRs may regulate corresponding cell functions. DNA 

methylation impacts cellular differentiation during hematopoiesis; myeloid commitment is 
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associated with less global DNA methylation than lymphoid cells (171, 179). In turn, the 

commitment of a cell to a lymphoid lineage is associated with higher levels of DNA methylation. 

Given the impact of DNA methylation on gene expression, the extent of hypomethylation may 

reflect a degree of transcriptional plasticity. In healthy adults, neutrophils are fully differentiated 

and have stable transcriptional profiles and are characterized by extensive genome-wide 

hypomethylation compared to lymphoid cells. Lymphoid lineages generally encompass a more 

heterogeneous population that includes naïve cells with the ability to further differentiate and are 

characterized by much higher genome-wide methylation than neutrophils. 

Future studies would include collection of these purified cell populations from additional 

paired patients with AAV for epigenome-wide DNA methylation studies in neutrophils and 

monocytes along with additional RNA sequencing of the CD4-enriched populations followed by 

a pathway analysis. Preliminarily, I have begun to utilize a single-cell gene expression platform 

(Fluidigm C1) to identify the individual cells in this CD4 enrichment containing high MPO and 

PRTN3 expression from this patient population; however, obtaining the ideal active AAV patient 

for this experiment early enough to allow for time to process the sample and cell sort the CD3-

/CD4- population is logistically challenging.  

Here I provide evidence that neutrophil expression of MPO and PRTN3 is not regulated 

by DNA methylation; it remains likely that histone modifications play a more substantial role, as 

previously documented by our group (10). I show preliminary evidence of two separate 

populations of cells with aberrant expression of MPO and PRTN3 as well as altered DNA 

methylation profiles at loci within PRTN3. These CD14+ monocytes and the CD3-/CD4- fraction 

of cells found in the CD4-enriched isolation could be driving the altered DNA methylation 

profiles seen in total leukocyte studies of Chapter 1. In a small cohort of patients I was able to 
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identify this CD3-/CD4- fraction of cells as a heterogeneous population containing a range of 

CD45 and HLA-DR on the surface. HLA-DR is a major histocompatibility complex (MHC) 

class II cell surface receptor used by antigen presenting cells to present protein fragments 

(processed antigen) to T cells. In healthy individuals, HLA-DR is found on a number of cells 

including B cells, dendritic cells, macrophages and monocytes as well as precursor T cells and 

CD4+ T cells. CD45, the leukocyte common antigen, is an essential regulator of T cell antigen 

receptor-mediated activation; CD45 is found on a wide range of cell types including 

granulocytes, lymphocytes, macrophages, monocytes and dendritic cells. Together these markers 

appear to suggest this cell fraction could include monocytes, though I was unable to identify any 

other monocyte surface markers via flow cytometry in this patient population. 
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SUMMARY 
 

The presented body of work has focused on the role of DNA methylation in the 

pathogenesis of ANCA-associated vasculitis. Chapter 1 characterizes DNA methylation 

alterations at AAV-related autoantigen genes, MPO and PRTN3, in peripheral blood leukocytes. 

This longitudinal analysis showed that DNA methylation at MPO and PRTN3 was reduced in 

patients with active disease and associated with mRNA expression of these genes. Remarkably, I 

discovered that gene-specific DNA methylation changes are associated with disease remission 

and relapse. Dynamic DNA methylation patterns subdivided a longitudinal cohort of patients 

into those who increased methylation while in remission and those who decreased methylation. 

A Kaplan-Meier estimate of relapse showed that patients who increased DNA methylation while 

in remission, at the PRTN3 promoter, had a significantly greater probability of maintaining stable 

remission, while patients who decreased DNA methylation were more likely to relapse. Thus, the 

DNA methylation status at the PRTN3 promoter may be a prognostic marker useful in managing 

patient therapy. This finding is important beyond the ANCA vasculitis community and may be 

applicable to other autoimmune diseases where the autoantibody and autoantigen are known. 

Chapter 2 describes DNA methylation patterns at MPO and PRTN3 in purified 

monocytes and neutrophils as well as a CD4-enriched population isolated from patients with 

AAV. Both monocytes and neutrophils were found to have low DNA methylation at these two 

genes and increased PRTN3 mRNA expression in patients with active disease. Monocytes were 

hypomethylated at both genes in patients with active AAV compared to healthy controls. At both 

loci interrogated in PRTN3, DNA methylation in monocytes correlated with the mRNA 

expression of PRTN3. These data suggest that DNA methylation does not regulate AAV-related 
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autoantigen gene mRNA expression in neutrophils of patients with AAV; instead histone 

modifications may play a larger role in regulating MPO and PRTN3 expression in neutrophils.  

The presence of a CD3-/CD4- cell fraction in the CD4-enriched population with very 

high expression of both MPO and PRTN3 indicate the possibility of an additional cell population 

contributing to disease pathogenesis. High DNA methylation at the PRTN3 promoter in the CD4-

enriched population shows trends of decreased methylation in patients with active disease. 

Additionally, the expression of PRTN3 correlated well with DNA methylation at the PRTN3 

promoter in this CD4-enriched population. Thus, there is reason to believe that dynamic DNA 

methylation in both monocytes and a CD3- CD4- cell type found in our CD4-enriched 

population are contributing to the methylation changes seen in leukocytes studied in Chapter 1.  
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EPILOGUE: DYNAMIC GENE-SPECIFIC DNA METHYLATION IN PATIENTS WITH 
AAV 

Altered leukocyte DNA methylation profiles in AAV 

 There are a number of common threads that run through autoimmune disorders, with 

regard to mRNA expression and DNA methylation. The alterations in mRNA expression and 

DNA methylation I describe in a cohort of patients with AAV have been described at different 

genes in other autoimmune disorders. Differential DNMT1 mRNA expression has previously 

been described in lupus, rheumatoid arthritis and multiple sclerosis (64). Promoter demethylation 

has been described in both PBMCs and cells isolated from the synovial fluid of patients with RA 

(180) and there is evidence for altered DNA methylation in MS as well (68). Cell-specific studies 

cite aberrant DNA methylation profiles in CD4+ T cells of SLE patients (121, 123, 124) and 

Tregs of RA patients (129). Thus, it is likely that the findings in Chapter 1 will contribute to a 

greater understanding of the etiology or prognosis of autoimmunity.  

 There are both genetic and environmental components involved in the pathogenesis of 

lupus, RA and MS; it is likely that these environmental components include epigenetic 

mechanisms. The past ten years have seen an increased focus on elucidating the role of 

epigenetic mechanisms in disease etiology in hopes that these studies can provide answers where 

genetics has fallen short. 

In a subset of patients with AAV, therapy-induced disease remission is punctuated by 

periods of disease relapse characterized by DNA hypomethylation at the autoantigen genes and 

increased mRNA expression of these genes. While specific factors that promote remission or 

permit disease relapse remain unknown, our longitudinal studies find patients that do not 

increase DNA methylation at the PRTN3 promoter upon disease remission are significantly more 
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likely to relapse. There is a strong correlation between DNA methylation and mRNA expression 

of MPO and PRTN3 in patients that increase DNA methylation upon disease remission 

indicating that DNA methylation likely impacts the regulation of autoantigen expression.  

Purified cell types with the potential to drive methylation changes in ANCA disease 

 As much as I aim to design logical, hypothesis-driven experiments, sometimes the most 

exciting part of research are the unexpected findings. In Chapter 2, I set out to elucidate the role 

of DNA methylation in purified cell types responsible for autoantigen gene expression by 

isolating neutrophils and CD14+ monocytes. As hypothesized, CD14+ monocytes show dynamic 

DNA methylation profiles at loci within the autoantigen genes; PRTN3 mRNA expression 

correlated particularly well with DNA methylation at the two PRTN3 loci interrogated. From this 

small patient cohort it is easy to speculate that these monocytes are contributing to the dynamic 

DNA methylation profiles described in the total leukocyte studies of Chapter 1. Preliminarily 

unchanging neutrophil DNA methylation, despite aberrant autoantigen gene expression in 

patients with active disease, suggests that perhaps another epigenetic pathway is responsible for 

the autoantigen gene expression characteristic of neutrophils in AAV. Indeed, I repeatedly 

mention studies by our own research group demonstrating a role for histone modifications 

upregulating gene expression; thus, it is possible that different epigenetic mechanisms are 

responsible for aberrant autoantigen gene expression in monocytes and neutrophils isolated from 

AAV patients.  

 Our interest in CD4+ T cells stems both from previous work by researchers in our group 

corroborating dysregulation of these cells in AAV as well as a number of studies supporting 

altered DNA methylation in T cells isolated from other autoimmune disorders. The high DNA 
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methylation A describe at the PRTN3 promoter of a CD4-enriched population is consistent with 

previous genome-wide DNA methylation studies (171). Despite confirming less pure 

enrichments in samples from patients with high disease activity, it is unlikely the drop in purity 

would impact these DNA methylation studies. However, the decreased purity of CD4+ T cells in 

the CD4-enriched population isolated from AAV patients with active disease corresponded with 

an expansion of CD3- CD4- cells with the ability to express high levels of autoantigen genes. 

Chapter 2 contains only the challenging beginnings of how to characterize the cell population 

present in this CD4-enrichement, but lacking both CD3 and CD4 on the surface. I was able to 

rule out the possibility that this cell type was a progenitor by comparing this population to that 

isolated from G-CSF donors. Exhaustive surface staining revealed a heterogeneous population 

present in this CD3-4- fraction containing a mixture of CD45 and HLA-DR. Given these 

findings, it is tempting to assume this cell is a monocyte, or at least ‘monocytoid,’ particularly 

given that the cells isolated from the G-CSF donors appear to be monocytes after cytospinning; 

yet all of the canonical monocyte markers tested were negative.  

The known characteristics of these cells matches well with previous descriptions of low 

density granulocytes that cluster with PBMCs upon density centrifugation and contain a 

granulocyte gene expression profile. These low density granulocytes were first documented in 

patients with active AAV last year, after previously being reported in SLE patients (172, 173). 

This hypothesis could be tested with additional flow surface staining for CD10 and CD15 in the 

CD4-enriched population isolated from active AAV patients exhibiting high autoantigen gene 

expression. 
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Future directions 

The unifying theme of epigenetics in disease is the disruption of normal phenotypic 

plasticity. Our understanding of the role of epigenetics in AAV is still preliminary; the goal of 

these and studies in other autoimmune disorders extends beyond characterization of aberrant 

epigenetic mechanisms and into the realm of immunotherapies including epigenetic modulators. 

One intensively studied approach to epigenetic therapy involves the use of agents that modify the 

epigenome globally, like inhibitors of DNA methylation or histone acetylation; however, it is 

likely that targeted epigenetic modifiers will be needed for these types of therapeutic approaches. 

DNMT inhibitors are already being investigated in the setting of cancer treatment, specifically 

azacitidine and decitabine for the treatment of acute myeloid leukemia (181). DNMT1 inhibitors 

could exacerbate AAV, making this disease setting a logical place to begin measuring DNA 

methyltransferase expression.  

 Future studies relevant to Chapter 1 would need to confirm the DNA methylation at the 

PRTN3 promoter seen in leukocytes from paired AAV patients either via a prospective study or a 

replication cohort at another institution. Ideally, this study would generate enough statistical 

power to develop a receiver operating characteristic curve to establish sensitivity and specificity 

of these DNA methylation changes that support clinical implementation. Additional longitudinal 

pairs would need to be measured for a receiver operating characteristic curve; a curve generated 

from the present data divided by methylation change at the PRTN3 promoter shows an area of 

0.65 under the curve (90% CI 0.5004, 0.7996; p=0.0799). The 65 patient pairs favor those with 

increased methylation (n=50), thus additional pairs with decreased DNA methylation at the 

PRTN3 promoter would be needed for future analysis utilizing a receiver operating characteristic 

curve. Longitudinal studies in healthy controls would enable the establishment of a normal 
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standard deviation of genome-wide DNA methylation in leukocytes, a resource with utility 

beyond the AAV community. It would also be informative to determine if any control variables 

predict relapse or remission in the sub-cohorts of patients with increased DNA methylation and 

those with decreased DNA methylation at the PRTN3 promoter. While isolating purified cell 

types is certainly one way negate the impact of cell heterogeneity in total leukocytes, simply 

having access to accurate differential cell counts on each leukocyte or lymphocyte sample would 

allow for alterations in cell populations to be statistically controlled in future studies.  

There may be other loci with more profound DNA methylation changes and regulatory 

consequences, in addition to MPO and PRTN3. Our EWAS studies in total leukocytes identified 

a number of loci more differentially methylated than those within MPO and PRTN3; further 

studies examining mRNA expression as it relates to DNA methylation of these genes would 

expand our understanding of the impact of the methylome on ANCA-associated vasculitis.  

The data presented in Chapter 2 open the door to a number of future studies, as 

translational science often does. The paired RNAseq data are representative of only two AAV 

patients; I have since collected 21 additional pairs, though not all with dynamic autoantigen gene 

expression. RNA sequencing a larger cohort of paired CD4-enriched samples would allow for a 

more complete analysis of the gene signature associated with active patients exhibiting high 

MPO and PRTN3 expression as well as the alterations in gene signature during disease remission. 

I have isolated monocytes and neutrophils from 25 paired AAV patients and extracted both DNA 

and RNA from these populations. Genome-wide DNA methylation studies would highlight 

differentially methylated regions and indicate where future gene-specific DNA methylation 

efforts should be focused. RNA sequencing purified monocytes and neutrophils was something I 

initially proposed. It would be interesting to profile the transcriptome in the neutrophil 
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population as these cells play a critical role in the pathogenesis of AAV yet exhibit static DNA 

methylation at the autoantigen genes. It is likely the dysregulation of other genes, perhaps those 

contributing to neutrophil activation, is more pronounced. 

Conclusions 

By measuring gene-specific DNA methylation of the autoantigen genes, I establish a link 

between DNA methylation and autoantigen gene expression and relate that to disease status in 

AAV. Patients with active disease demonstrated hypomethylation of MPO and PRTN3 and 

increased expression of the autoantigens; in remission DNA methylation generally increased. In 

patients with increased DNA methylation, MPO and PRTN3 expression correlated with DNA 

methylation. Patients who increased DNA methylation at the PRTN3 promoter had a 

significantly greater probability of a relapse-free period, while patients with decreased DNA 

methylation were nearly five times more likely to relapse. These changes in the DNA 

methylation status of the PRTN3 promoter predict likelihood of stable remission and may explain 

autoantigen gene regulation.  

I found evidence that DNA methylation may regulate MPO and PRTN3 mRNA 

expression in CD14+ monocytes. There may also be an additional cell type other than neutrophil 

or canonical monocyte where DNA methylation controls MPO and PRTN3 expression that 

resides in a CD3-/CD4- fraction following CD4 enrichment.  
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