ABSTRACT

KEVIN M. BOYLE. Numerical Calculation of Aspiration Efficiency of Aerosols into Thin Walled Sampling Inlets. (Under The Direction of Dr. MICHAEL R. FLYNN)

Aspiration efficiency of particles from a flowing airstream into a thin walled sampling inlet is accurately predicted using a numerical model. The model combines the Boundary Integral Equation Method for predicting the velocity field into the inlet with an analytical solution to the particle equations of motion. A two and a three dimensional model are examined. Results for the three dimensional model correlate well with an empirical model of aspiration efficiency. The method can be generalized to a wide range of airstream, sampling inlet, and particle conditions.

TABLE OF CONTENTS

I.	BACKGROUND1	
11.	THEORY	
III.	METHOD13	
IV.	RESULTS	
v.	DISCUSSION	
VI.	CONCLUSION	
VII.	FUTURE WORK	
VIII.	APPENDIX	
IX.	REFERENCES118	

ACKNOWLEDGEMENTS

I would like to thank Dr. Michael R. Flynn, Department of Environmental Sciences and Engineering, for his guidance and constant encouragement throughout the course of this project. I am also grateful to Dr. David Leith and Dr. Russell W. Wiener for their comments and suggestions regarding the content and preparation of this report.

I extend my sincerest appreciation to my wife, Ellen, and daughter, Sarah, for their understanding and support throughout this project.

I would also like to thank the United States Air Force for providing the opportunity and financial support needed to complete my program of study.

This research was funded by the U.S. Environmental Protection Agency under grant NO. 44213.

NUMERICAL CALCULATION OF INERTIAL ASPIRATION EFFICIENCY OF AEROSOLS INTO THIN-WALLED SAMPLING INLETS

by

Kevin M. Boyle

Unbiased sampling of airborne particulate from a flowing stream requires that the size distribution and concentration of aerosol collected be identical to that of the aerosol in the free stream. Sampling errors occur during aspiration of the aerosol from the free stream to the face of the inlet and during transmission of the aerosol along the sample tube. Additional losses or gains may occur due to particle bounce from the front edge of the sample tube. In this paper, a numerical model for determining the aspiration component of overall sampling efficiency for any arbitrarily shaped thin edged inlet is presented.

BACKGROUND

Sampling errors due to aspiration occur when particles fail to enter the sampling inlet with the air. Particles have inertia which may prevent them from accelerating, decelerating, or changing their direction fast enough to move with the air (Agarwal and Liu, 1980). Particles also possess additional motion due to gravity. Aerosol aspiration efficiency, Ea, is defined in equation (1) as the ratio of particle concentration entering the sampling inlet, Ci, to the particle concentration at an undisturbed upstream location, Co, (Belyaev and Levin, 1972).

$$Ea = \frac{Ci}{Co}$$
(1)

One effect on aspiration efficiency would be loss or gains of particles due to bounce off the front of the sampling inlet. By modeling the system as a thin walled sampling inlet, particle rebound effects are assumed negligible and do not contribute to the overall aspiration efficiency (Belyaev and Levin, 1974).

Both numerical modeling and physical experiments have attempted to describe aspiration efficiency. Belyaev and Levin (1972, 1974) used flash illumination to photograph particle trajectories and develop equations to predict inertial aspiration efficiency. Durham and Lundgren (1980), developed aspiration equations from experimental data for aspiration efficiency during anisokinetic sampling with nozzle misalingment and sampler inlet velocity different from oncoming wind velocity. Their equations account for the projected area of the nozzle when it is misaligned. Jaysekera and Davies (1980) and Davies and Subari (1982) also performed experiments and derived aspiration equations which were similar to the equations of Belyaev and Levin.

Extensive measurements of sampling efficiency were made by Tufto and Willeke (1982), and Okazaki, Wiener, and Willeke (1987a, 1987b, 1987c) for both isoaxial and non-

isoaxial aerosol sampling conditions. Based on this data and work cited above, Hangal and Willeke (1990) proposed a unified model to predict aspiration efficiency, Ea. The general expression , equation(2), is:

$$Ea = 1 + (R \cos \theta - 1)f$$
(2)

where R is the velocity ratio, Θ is the sampling angle and f is an inertial parameter. For the case of 0° sampling angle the inertial parameter, f, is based on the work of Belyaev and Levin (1974) and is shown in equation (3).

f = 1 - 1 /[1 + (2 + 0.617/R) Stk] (3)
R = Uo/Ui
Uo is the free stream velocity
Ui is the inlet velocity
Stk is the Stokes number

For 0° to 60° sampling angle the parameter is based on the work of Durham and Lundgren (1980), equation (4).

f = [1 - 1/[1 + (2 + 0.617/R)stk']][1 - 1/[1 + 0.55stk' exp(0.25stk')]]/[1 - 1/[1 + (2.617)stk']] (4)

where

$$stk' = Stk exp (0.0220)$$
 (5)

To model the movement of particles in air it is necessary to model the airflow field and derive a method to track particles placed in the air stream. (Agarwal and Liu,

з

1980). Numerical models of air flow fields and particle trajectory paths have been developed by Agarwal and Liu (1980), Addlesee (1980), and Dunnett and Ingham (1986, 1988). Agarwal and Liu determined the theoretical flow field into a thin walled sampling inlet considering both particle inertia and gravitational settling. A numerical calculation procedure was used to solve the axisymmetric Navier-Stokes equations and particle motion equations.

Addlesee, (1980) studied the intake efficiency of a Casella cascade impactor. The impactor was modeled as a two dimensional infinite slot with no end effects. A solution to the flow field was developed by assuming that viscous forces were not significant and calculating stream lines using potential theory. From the flow field developed, the particle equations of motion were solved assuming that Stokes law is applicable (Re < 1). The equations were put into finite difference form and solved by relaxation.

Dunnett and Ingham (1986) developed a mathematical theory to predict aspiration efficiency of two dimensional blunt bodies using the Boundary Integral Equation Method. Once the velocity field of the system was known, the particle equations of motion are solved assuming that the Reynolds number is always less than 1.0 and thus Stokes' drag could be applied. The equations were put in finite difference form and solved numerically. In 1988 they expanded the two dimensional solution to an axisymmetric blunt body sampler and numerically predicted aspiration

efficiency by particle tracking using finite difference techniques.

Flynn and Miller (1989) used the boundary integral equation method to model air flow into local exhaust hoods. Their solutions follow the same logic as Dunnett and Ingham and give good agreement with analytic solutions for flow into an infinitely flanged rectangular hood with a constant velocity at the hood face, and with other empirical models. The advantage of their model was that it reduced a 3 dimensional air flow solution to a 2D area solution along the boundary of a specified domain.

This research employs the model of Flynn and Miller to estimate the air flow into a sampler inlet, and then applies the solution for the particle equations of motion developed by Alenius (1989) to determine aspiration efficiency. The particle motion equations are described in the THEORY section which follows.

The referenced numerical models to calculate aspiration efficiency were limited by the geometry of the solution domain and employed finite difference techniques to solve the particle equations of motion. By combining the 3D airflow solution of Flynn and Miller with the analytic solution to the equations of motion proposed by Alenius (1989), this model can calculate particle trajectories into a thin edged inlet. This model has a significant advantage over other models as it does not require finite difference discretization to calculate particle trajectories and has the flexibility to be developed for any arbitrarily shaped domain and sampling inlet over a wide range of particle size and velocity conditions.

2015-23

2.2.1

THEORY

To model particle flow, a method for determining the characteristics of the flow field into an arbitrarily shaped and oriented sampling inlet is required. Once the flow field is described, particles can be placed into the field, assigned initial conditions, and tracked. From the trajectories, an estimate of the aspiration efficiency can be made and compared with previous models or experimental data.

The boundary integral equation method (BIEM) is a method of solving a potential flow problem for any arbitrarily shaped domain. The assumptions in the development are inviscid, incompressible, irrotational flow which leads to the following expressions:

and;

 $\operatorname{curl} V = 0$ (irrotational flow). (7)

Irrotational vector fields possess a potential function such that the vector is equal to the gradient of the potential, ϕ , and thus

 $V = \text{grad } \phi.$ (8)

(9)

By combining the above equations

grad•V = grad•(grad ¢) or grad²¢ = 0

Equation (9) is Laplace's equation. By applying the divergence theorem and Green's second identity, an equation can be derived which relates the velocity potential an any singular point (P) to the potential and normal derivatives of potential along the boundary of a specified domain.

The derivation (Liggett and Liu, 1983) yields the following equations which form the basis of the Boundary Integral Equation Method for two and three dimensional domains.

2D: $a\phi(P) = \int_{\Gamma} \left[((\phi/R) \ \delta R/\delta n) - ((\ln R) \ \delta \phi/\delta n) \right] dS$ (10) 3D: $-a\phi(P) = \int_{\Omega} \left[(\phi(\delta(1/R)/\delta n)) - ((1/R)\delta\phi/\delta n) \right] dA$ (11)

The above equations can be written in discrete form in either two (Liggett and Liu, 1983) or three dimensions (Flynn and Miller, 1989). After specifying either ϕ or $\delta\phi/\delta n$ at each node on a discretized boundary of N nodes, equation (10) or (11) is written for each node by successively placing the singular point (P) at each node on the boundary. This results in a system of N equations in N unknowns which are solved simultaneously to give the unknown

value of ϕ or $\delta\phi/\delta n$ at each node on the boundary. Once the boundary values are known, (P) can be located at any internal location and the left hand side of equation (10) or (11) differentiated to give the velocity at the internal point.

Once the velocity field is determined, particles can be placed in the air stream and their motion tracked. This model uses an analytical solution to the particle equations of motion developed by Alenius (1989). The general form of .the equation is:

$$d^2r/dt^2 - [Q(Re)/\tau(u-(dr/dt))] - g = 0$$
 (12)

where bold face variables denote vector quantities.

In the above equation, the following notation is used: d^2r/dt^2 (=dv/dt) is the acceleration of the particle

- Q(Re) is a dimensionless factor based on the Reynolds number and the drag coefficient
 - τ is the particle relaxation time in air
 - u is the air velocity at the particle location
- dr/dt=v is the velocity of the particle
 - g is the earth's gravity
 - 0 is the null vector
 - r is the particle position vector

The general equation presented is not analytically solvable. The reason is that the factor Q(Re) and the air velocity u vary along the trajectory of the particle and thus indirectly with time t. If the air velocity at the points where the particle is successively located can be described as a linear function of the time that has elapsed and Q(Re) is assumed to be constant over the time interval, an analytical solution to the general equation can be obtained. This condition is approximately met if the motion of the particle is successively calculated using sufficiently small time intervals. A complete derivation is presented in the appendix. The analytic solution is:

$$v(t+t') = u_a t' + u_b - (u_b - v(t)) exp - [Q(Re)t'/\tau]$$
 (13)

$$r(t+t') = r(t)+u_a/2t'^2+u_bt' -(u_b-v(t))\tau/Q(Re)(1-expQ(Re)t'/\tau)$$
(14)

where t' is the size of the time step and u_a and u_b have been added to simplify the appearance of the equation:

$$u_a = (u(t) - u(t-t'))/t'$$
 (15)

 $u_b = u(t) - (u_a - g)\tau/Q(Re)$. (16)

Particles can now be tracked in any domain in which the air field is known, and the efficiency of aspiration determined. Aspiration efficiency is calculated as the ratio of particles entering the inlet to particles in the undisturbed flow field far upstream, equation (1). Figure 1 shows a conceptual stream tube of particles flowing in an

Figure 1. Conceptual Stream Tube. The flux of particles through the upstream plane equals that of particles passing the face of the sampler inlet. airstream of given velocity, Uo, into an inlet sampling at a constant velocity, Ui. The boundaries of the stream tube represent all particle trajectories which just enter the tube. These trajectories are called critical trajectories. Particles located outside this tube would not be drawn into the inlet. The flux of particles passing through the upstream plane of the stream tube is particle concentration, Co, multiplied by the stream tube cross sectional area, Ao, times the freestream velocity, Uo. By equating the flux of particles through the plane of the

stream tube upstream from the inlet to that through the plane of the sampler face, Ci Ai Ui, the expression in equation (17) is obtained.

Co Ao Uo = Ci Ai Ui (17) From equation (1), Ea = Ci/Co, thus:

Ea = Ao Uo/Ai Ui (18)

In equation (18), the characteristics of the sampler inlet, Ai and Ui, are known as well as the free stream velocity, Uo. By determining the coordinates of the critical trajectory start points in the free stream, an estimate of Ao and Ea can be made. This can be done by iteratively assigning particle locations in the free stream and tracking each particle in the domain until the critical trajectories are located.

METHOD

The model was developed using a simple two dimensional problem which was then expanded to a more complex three dimensional case. Both isoaxial and non-isoaxial inlet orientations were modeled. Non-isoaxial conditions consisted of orienting the inlet at a pitch angle of 30° to the freestream.

Two Dimensional Model

The two dimensional problem was modeled as an infinite slot. The coordinate system to visualize in two dimensions is an x-y cartesian system with the origin located at the center of the inlet. The positive x direction extends along the centerline of the hood face and the y direction is up and down, with gravity acting in the -y direction.

The air flow into the slot was modeled using the boundary integral equation method which provided a solution everywhere on the boundary of the domain for the potential and the normal derivative of potential. From the boundary solution, the exact velocity components at any internal point were calculated.

A FORTRAN computer program for the two dimensional boundary integral equation solution, written by Liggett and Liu (1983), was used for the 2D solution. The program, called GM8, returned the boundary values and the local air velocity components within the domain needed to calculate particle trajectories. GM8 was combined with a subroutine

written to solve the Alenius solution to the equations of motion, (11) and (12), and track particles within the domain. Figure 2 shows the flow of logic in the program.

The boundary of the domain in the simple 2-D case is shown in figure 3. The origin of the coordinate axes are located at the center of the sampling inlet. The upper lower, front and rear boundaries of the domain are at a distance of 20 inlet diameters from the inlet face. The remaining boundary consists of a rectangular indentation to represent the sampling nozzle of diameter equal to its width.

In figure 3, the boundary conditions are marked. The upper, lower, and rear boundary are situated far enough away from the sampling inlet to have potential due exclusively to the free stream velocity, or:

 $\phi = Uox(x) + Uoy(y) \tag{19}$

where Uox and Uoy are the magnitude of the free stream velocity components and x,y are the location coordinates. The boundary condition on the line opposite the hood face is $\delta\phi \setminus \delta n =$ Uox, the free stream velocity normal to the surface. On the upper and lower edges of the sampling inlet the boundary conditions are $\delta\phi \setminus \delta n = 0$, no flow through the walls of the nozzle. At the face of the inlet $\delta\phi \setminus \delta n$ is equal to sampling velocity, Ui.

For the situation where an inlet pitch angle was introduced, the domain was not rotated 30° and a new

Figure 2. Flow diagram for the two dimension and 3 dimensioal program logic.

Figure 3. 2D model boundary with coordinate axes, boundary condtions, and sample discretization shown. ϕ = potential, $\delta\phi/\delta n$ = normal derivative of potential (air velocity).

boundary calculated. Rather boundary conditions were adjusted to represent the freestream, Uo, as the resultant of the free stream normal to the front boundary, Uox, and a crossdraft, Uoy. This required a coordinate system conversion where the gravity vector in the x and y direction were $-g \sin(\theta)$ and $-g \cos(\theta)$ respectively, θ was the angle of misalignment and g the magnitude of the gravity vector. The origin of this coordinate system was still centered at the inlet face.

The solution required the domain to be discretized into nodal elements as shown in figure 3. Much finer discretization than presented in the example is required because numerical accuracy during calculation of internal points suffers when the internal point is within 1 element length of the boundary.

The initial conditions assigned to the particles in the free stream are that they are falling at their terminal settling velocities and moving in the air stream (Addlesee, 1980) at the velocities calculated by the BIEM solution. Terminal settling velocity (Vts) was calculated using Stokes' Law:

$$Vts = \tau g \tag{20}$$

where τ is the particle relaxation time (Reist, 1984) and g is the acceleration due to gravity.

In two dimensions, it was necessary to define the location, in the free, stream of the upper and lower

critical trajectories to calculate aspiration efficiencies. This is because in two dimensions equation (18) reduces to:

Ea = do Uo/di Ui (21) where di is the inlet diameter, and do is the distance between the upper and lower critical trajectories. Internal air velocity coordinates were calculated using BIEM, then the particle position and velocity were predicted using the analytical solution and the process repeated. The critical trajectories were determined by selecting a point far upstream and tracking a particle from this point either into (capture) or past (miss) the inlet. Once a missed and captured trajectory were found the average of the two starting points determined the next point. Convergence occurred when the distance between the particle trajectory start point which is captured and that which escapes is less than a preset value. The program was designed to locate both an upper and lower critical trajectory corresponding to the upper and lower edges of the sampling inlet. The distance, s, between the upper and lower critical trajectories, do, was determined using the distance formula, equation (22).

 $s = ((x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2)^k \quad (22)$ Three Dimensional Model

In three dimensions, Uo, Ai, and Ui are given and Ao is determined to calculate aspiration efficiency, equation (18). Ao is the area of the trajectory tube at an upstream location where the air flow is not influenced by the

sampling velocity. This area represents the boundary of the stream tube at an upstream location in which particles will enter the sampling inlet (Fig 1).

The shape of the three-dimensional domain is a square sided volume of half-width equal to 20 inlet widths. Extending from the rear wall of the volume into the center of the volume for a distance of 20 inlet widths is a sampling inlet with a square cross section. An equal area square is used to model a circular inlet to simplify the 3D boundary discretization. The origin of the cartesian coordinate system is located at the center of the inlet. The x direction extends away from the hood face along its centerline. The z coordinate represents the height of the domain and the y coordinate represents the width.

For boundary conditions, the potential is specified on the front, rear, top, bottom and side faces of the 3D domain. The velocity is specified over the inlet face as Ui, and at the walls of the inlet tube as 0 cm/sec. As in 2D, the boundaries of the 3D domain are situated far enough away from the inlet to have potential due exclusively to the free stream:

$\phi = Uox(x) + Uoz(z)$ (23)

Here, Uox represents the velocity perpendicular to the front face of the domain and Uoz is the crossdraft vector used when the sampling angle did not equal zero. As in 2D, the gravity components in the coordinate system must be adjusted when a crossdraft is used to model the sampling angle.

The flow field is defined using the same theory as in two dimensions but using a FORTRAN program written by Flynn and Miller (1989) to solve the BIEM problem for three dimensions.

Particle trajectories were calculated in the same manner as in two dimensions with BIEM providing the local air velocity components at the particle location. The particles were assigned initial conditions as described in the 2D section and the equations of motion, with a third dimension added, were solved to predict the particle's next position and velocity. The program logic is the same as that shown in figure 2.

Because the domain is now in three dimensions, the region cannot be discretized into lines between nodes, rather, the boundary must be divided into areas. Flynn and Miller (1989) used triangular elements on the boundary. Examples of the discretization input files for the boundary are presented in the appendix.

The critical trajectories in 3D were determined by selecting a point far upstream and tracking a particle from this point either into the inlet (capture) or out of the domain (miss). The start point is a specified number of inlet diameters, XDIN, in front of the inlet and in the direction of the resultant velocity vector in the x-z plane. For 0°, this point is along the x axis at x=XDIN, y=0, z=0, because Uo = Uox for this condition. For all other angles

the first trajectory start point, figure 4, is calculated as:

$$x = XDIN \cos(\Theta)$$

$$y = 0.0$$
 (24)

$$z = XDIN \sin(\Theta)$$

The rationale for choosing this start point is to obtain a capture trajectory around which starting points for the critical trajectories can be centered. If this first point does not yield a capture, the start point is incrementally adjusted up or down along a line perpendicular to the free stream and the trajectory is recalculated. The process is repeated until a first capture identified.

Once a capture trajectory is found, a series of start points at which to begin critical trajectories are defined at a distance far enough away from the coordinates of the first capture to have a high probability of a miss. These points are located a specified distance, AA, from the coordinates of the first capture (x1,y1,z1) in incremental degree steps, α , around a semicircle in the plane perpendicular to the free stream, figure 5. Critical trajectories for only one half the area were calculated due to the symmetry of the problem.

The equations for these points are:

 $x = x1 + (AA \sin(\theta) \sin(\alpha))$ $y = AA \cos (\alpha)$ (25) $z = z1 + (AA \cos(\theta) \sin(\alpha))$

Figure 4. Location of initial trajectory start point. (X1,Y1,Z1) is initially placed at a distance XDIN in front of the inlet along a line perpencular to Uo in the X-Z plane.

Trajectory start points

 $x = x1 + (AA sin(\Theta) sin(\alpha))$

 $y = AA \cos(\alpha)$

 $z = z1 + (AA \cos(\Theta) \sin(\alpha))$

 Θ = angle of misalignment

Figure 5. Trajectory start points are located on a semicircle centered around (X1,Y1,Z1) at degree increments, α , along rays a distance AA from the center. (-90° $\leq \alpha \leq 90°$)

If the start points defined in equation (25) result in a capture, the start point is incrementally adjusted farther from the initial capture point and the trajectory is recalculated until a miss identified.

Each first capture and initial miss coordinate combination results in a ray the end points of which define the upper and lower bounds of the critical trajectory and all rays are contained in the same plane perpendicular to the free stream. From this point, the starting coordinates of the last miss and last capture trajectory are averaged to determine the coordinates of the next start point on the ray. The process is repeated until the convergence criteria was satisfied. Critical trajectories are found for each starting point around the semicircle.

The output of the particle tracking routine is a series of points representing the critical trajectories which define Ao. The area, Ao, is calculated numerically with a FORTRAN program using the trapezoid rule. From Ao, Ea is calculated using equation (18).

The models, both 2D and 3D, were verified by comparing the computed aspiration efficiency with the unified aspiration model proposed by Hangal and Willeke (1990), equation (2).

The Programs

The two dimensional program was compiled and run using Microsoft Fortran version 2. The entire aspiration efficiency calculation was run using one program. This

program initially calculates the boundary solution for the domain then calls subroutines to calculate particle velocity and position, and internal air velocity components at the particle's location. All 2D simulations were run on a Dell 386 personal computer and took approximately 15 minutes to complete. Each program run calculates approximately 30 separate trajectories with approximately 100 points calculated per trajectory.

Figure 6 shows an example of the output of the 2D program with particle positions plotted as trajectories. The particle trajectories were plotted using a simple routine written in BASIC (see appendix). The distance between the upper and lower critical trajectories was the basis of determining the aspiration efficiency as defined in equation (22). A commented version of the 2D program is contained in the appendix.

The 3D program is much more complex than the 2D version because of the addition of a third dimension and the resulting complexities of solving the BIEM equations. Because of this, 3D simulations were run on a Convex Super Computer. The 3D simulations were run using two FORTRAN programs. The first program, 4PTGQ.F, is the BIEM boundary solution program. The input for this program was a boundary node and element file for each combination of sampling velocity, Ui, wind velocity, Uo, and sampling angle, 0. The input file contained 367 nodes, N, leading to N linear equations and N unknowns which were solved using a four

26 · · · · · · ******* **** *** ····· 9012572 EFF UO = = -250 DP = DIN = THETA UI = 1 = 29.9991 1000

Figure 6. Sample of 2D trajectory plots. Trajectories originate in the plane of the freestream perpendicular to Uo.

point gaussian quadrature. This program took 5.5 minutes to run on the Convex and returned potential and velocity values for each node on the boundary of the domain.

Once the output to 4PTGQ.F was received, it was imported as input to the 3D particle tracking program, TRK15.F. This program consists of a driver to specify particle location, test for convergence, and call subroutines to perform the BIEM internal air velocity, particle position, and particle velocity calculations. TRK15.F was designed to calculate 13 trajectories at 15° (α = 15° in equationkk (25)) increments around a semicircle surrounding the initial capture point (see figure 5). This leads to the calculation of approximately 10 trajectories per starting point, over the 13 starting points specified by the degree increment, α , with 20-30 points along each trajectory to determine the fate of the particle. A typical combination of program variables shown below took 68 minutes of computer time on the Convex:

 $\begin{array}{rrrr} Uo &=& 500 \ \text{cm/sec} \\ Ui &=& 250 \ \text{cm/sec} \\ \text{particle diameter} &=& 5 \ \mu\text{m} \\ \theta &=& 30 \ \text{degrees} \\ \text{time step} &=& 0.0005 \ \text{seconds} \\ \text{convergence criteria} &=& 0.05 \ \text{cm} \end{array}$

The output of TRK15.F is a series of points which defines a region in the freestream inside of which all particles are aspirated to the face of the sampling inlet. Figures 7 and 8 show an example of the 3D model output.

Figure 7. Plot of critical trajectory start points in their starting plane. The area inside the curves is the estimate of Ao in equation (14). The area is assumed symmetrical about $\xi = 0.0$.

Figure 8. Plot of critical trajectory start point in their starting plane. The area inside the curves is the estimate of Ao in equation (14). Z', Y' represent the local coordinate system centered at (X1,Y1,Z1).

Figure 7 is an example of output for an isoaxial set of conditions. The plot consists of the location of the critical trajectories in the y-z plane at a constant value of x (distance in front of the sampling inlet) equal to XDIN in equation (24). In this case, x is constant because the sampling angle is 0° and the freestream is flowing in a direction perpendicular to the plane at x = XDIN.

The plot in figure 8 represents the area in the freestream, Ao, which is perpendicular to the freestream resultant velocity for the case when the sampling angle was .30°. In this case, a simple plot of the y-z coordinates would not represent the actual area of Ao as x was not constant over the plane of interest. To solve this problem the critical trajectory coordinates were converted to a local coordinate system centered around the coordinates of the initial capture point. First the distance, s, between the first capture point and the critical trajectory coordinate on each of the 13 rays defined by a, the incremental angle, was calculated using the distance formula, equation (22). After the distances between the points were calculated, the x and y coordinates of the critical trajectories determined using the following relations:

$Y' = s \cos \alpha$ $Z' = s \sin \alpha$

(26)

The local coordinates were then used to numerically calculate the area using the FORTRAN program, AREA.F.

RESULTS

Several combinations of free stream velocity, Uo, inlet size, di, inlet sampling velocity, Ui, sampling pitch angle (misalignment to the free stream), and particle aerodynamic diameter, dae, were run through the 2D and 3D programs. Table 1 summarizes the input variables which coincide with input parameters used by Wiener (1987).

TABLE 1 Model Input Parameters

di cm	Uo cm/sec	Ui cm/sec	dae micron	theta degrees
.32	250	125	5.0	0
1.0	500	250	40.0	30
	1000	500		
		1000		

The two dimensional program was run for 96 combinations of particle size (dae), velocity ratio (Uo/Ui), sampling angle (θ), and inlet diameter (di). The results are summarized in the appendix.

A linear regression of the BIEM predicted aspiration efficiency on the empirical aspiration efficiency calculated from the unified aspiration model, equation (2), was performed for all 2D data collected, for all 0° combinations, and all 30° combinations. The results are summarized in table 2. Figures 9, 10, and 11 are plots of

the 2D aspiration simulation versus the unified aspiration model, equation (2).

TABLE 2

Two Dimensional Model Linear Regression Results

	CAT	EGORY	SLOPE	Y INT	LCL(1)	UCL(2)	R2(3)
	·A11	Data	0.842	0.074	0.788	0.895	0.917
	A11	0°	0.963	0.077	0.941	0.986	0.993
	A11	30°	0.664	0.118	0.599	0.729	0.911
(1)	LCL -	95% 1	ower cont	fidence	limit for	slope	
(2)	UCL -	95% u	pper con	fidence	limit for	slope	
(3)	R2 -	corre	lation co	nefficie	ant		

The 3D results are presented in the appendix and summarized in figures 12, 13, and 14. Table 3 contains the linear regression results which compare the numerical prediction of aspiration efficiency with the unified model of Hangal and Willeke, 1990.

TABLE 3

Three Dimensional Model Linear Regression Results

	CAT	EGORY	SLC	PE	Y	INT	LCL	(1)	UCL(2)	R2(3)
	A11	Data	1.0	62	-0.	062	1.0	26	1.099	0.995
	A11	0°	1.0	59	-0.	026	1.03	36	1.082	0.999
	A11	30°	1.0	64	-0.	096	0.98	30	1.148	0.991
(1)	LCL -	95%	lower	con	fide	ence	limit	for	slope	
(2)	UCL -	95%	upper	con	fide	ence	limit	for	slope	

(3) R² - correlation coefficient

Figure 9. 2D results, all data. Plot of the predicted efficiency developed from the BIEM and Alenius theories against the empirical unified aspiration efficiency model of Hangal and Willeke (1990).

Figure 10. 2D results, isoaxial data. Plot of the predicted efficiency developed from the BIEM and Alenius theories against the empirical unified aspiration efficiency model of Hangal and Willeke (1990).

Figure 12. 3D results, all data. Plot of the predicted efficiency developed from the BIEM and Alenius theories against the empirical unified aspiration efficiency model of Hangal and Willeke (1990).

Figure 13. 3D results, isoaxial data. Plot of the predicted efficiency developed from the BIEM and Alenius theories against the empirical unified aspiration efficiency model of Hangal and Willeke (1990).

Figure 14. 3D results, non-isoaxial data. Plot of the predicted efficiency developed from the BIEM and Alenius theories against the empirical unified aspiration efficiency model of Hangal and Willeke (1990).

DISCUSSION

The two dimensional model showed good agreement with the unified aspiration model for the isoaxial conditions. From table 2, the slope of the regression line for the 0° sampling angle is 0.96. A slope of 1.0 would indicate perfect agreement with the unified model. The largest error in the 2d model occurred when the velocity ratio was less than 1. In this case, the inlet velocity was 2 to 4 times greater than the wind velocity leading to large changes in air velocity and direction as the particles approached the inlet face.

The nonisoaxial 2D model was tested for a 30° sampling angle and showed poor agreement with the unified model. The percent difference between the unified model aspiration efficiency and the predicted aspiration efficiency was as large as -71%. The slope of the regression line for this set of conditions was .66.

Overall, the 2D model fairly represented the aspiration efficiency of aerosols into a thin edged inlet. The regression equation, slope of 0.84, was biased due to the poor agreement of the 30° model with the unified model.

As shown in table 3, the three dimensional solution performed significantly better in all categories when compared to the 2D model. The slopes of the regression lines were close to 1.0 for all cases indicating that the computer model accurately calculates aspiration efficiency.

values when compared to the unified aspiration efficiency model. Table 4 shows a comparison of the 2D percent error with that of the 3D model for the same combinations of velocity ratios, sampling angle and particle diameter. As can be seen, in most cases, the 3D model led to an improvement in the aspiration efficiency value.

UO	UI	THETA	DP	2D ERR	3D ERR
1000	125	0	5	22%	2%
1000	125	0	40	4%	5%
250	1000	0	5	12%	-9%
250	1000	0	40	26%	9%
1000	125	30	40	-39%	5%
250	1000	30	5	-11%	-11%
250	1000	30	40	-3%	-10%
500	500	0	5	1%	3%
500	500	30	5	-10%	0%
500	250	0	5	11%	6%
500	250	30	5	-6%	7%
500	125	0	5	26%	4%
500	125	30	5	17%	10%

TABLE 4 Comparison of 2D Model Error with the 3D Results

Some error was introduced into the above comparison because the unified model of aspiration efficiency was developed for circular, thin edged inlets. This may have some effect on the comparison of calculated efficiency with the aspiration efficiency derived from the computer. This does not, however, affect the model calculation of efficiency because the actual areas using the square inlet were used in equation (18).

Boundary discretization, particle start point, convergence criteria, and time step (t') were the most important parameters in determining accurate solutions. Boundary discretization had to be dense enough so that calculations of internal velocities were performed at distances greater than the distance between nodes on the nearest boundary (Flynn and Miller, 1989). This was accomplished by developing a 2D boundary consisting of 75 nodes with dense discretization near the inlet face and along the inlet sides. The appendix contains a sample input file for the 2D boundary discretization. With this discretization, few aberrations in internal velocity calculations were seen. This was not the case for the 3D solution.

The three dimensional model boundary discretization was proportional to the 2D discretization with the sides of the triangular elements equal in length to the distance between nodes in the 2D discretization. This led to an input file containing 367 nodes defining 693 elements. As described by Flynn and Miller, the triangular elements are defined by numbering the element with the node numbers corresponding to the vertices of the triangular element in a clockwise fashion looking out of the domain. This was done for approximately 1/2 of the elements starting at the inlet face and along the walls of the inlet using a triangular element generating program written for this problem. The remainder of the element input file was fashioned using

LOTUS spreadsheets because of the complex interactions of common nodes along the edges of each facet of the cube and at its corners.

Even with this dense 3D boundary discretization, internal calculation of air velocities at points less than 0.05 cm from the face and walls of the inlet were extremely inaccurate with the values being orders of magnitude larger than the freestream velocity. This led to large errors in the prediction of particle location which is dependent in part on accurate calculation of air velocity at the particle's current location. To avoid this error, capture criteria for the particle was extended by a factor of 0.05 cm in front of the inlet face and around its edges. This in effect enlarged the face area, Ai, to 1.11 cm² for a square inlet of side equal to 1.0 cm. This enlarged area was the area used in the aspiration efficiency equation (18).

The effect of enlarging this area was to alter the actual average air velocity moving into the "inlet". Over the face of the inlet the air velocity was specified as Ui. Over the thin layer defining the addition to the actual inlet, the average velocity had a value which was a function of the free stream velocity and the sampling velocity. Because of this there is some error in the specification of Ui in equation (184) and hence Ea.

Another problem with the 3D boundary discretization involves the interface of a surface of the boundary where the velocity is specified with another surface where the

velocity is also specified, but is different than that of the first surface. In the final model, this occurred only at the nodes surrounding the edges of the face of the sampling inlet. Here, the velocity over the face was specified as the sampling velocity, Ui, and the velocity on the edge of the tube and along its length was specified as 0 cm/sec. This caused a discontinuity of velocity at the edges of the sampling inlet. The effect of the discontinuity was to cause inaccuracies in interpolation of velocities over the elements involved. This interpolation error was minimized by inserting a very thin row of elements just inside the edges of the inlet. For the final model the width of this small layer was 0.001 cm.

Particle start points were important because the aspiration efficiency calculation requires the critical trajectory start points to be in the free stream. It was found that at distances of 6 inlet diameters from the inlet, local air velocity and direction was within 5% of the specified free stream velocity. This agrees with the findings of Belyaev and Levin (1972) and held true for both 2D and 3D models.

When determining the location of critical trajectories, the distance between the last capture trajectory start point and last miss trajectory start point was compared to the convergence criteria. Once the distance reached a preset criteria, the points were averaged to give the start point of the critical trajectory. The convergence criteria for

the 2D model was set at 0.01 cm after iterations at criteria smaller than this caused a less than 1% change in the calculated efficiency. The convergence criteria for the 3D model led to good agreement with the unified model when set at 0.05 cm.

The time step was the most critical factor in developing accurate particle trajectories. Time steps that were too large resulted in predictions of trajectories that were too coarse to accurately predict the particle movement. Unnecessarily small time steps caused excessive computing time. Through a series of program tests, 0.0003 seconds was chosen as the time step for the 2D model with a further reduction by a factor of 10 once the particle came within 1 inlet diameter of the sampling inlet to account for the large velocity changes near the face of the inlet.

The time step and the convergence criteria for the 3D model were not as sensitive in the determination of the aspiration efficiency as they were in the 2D case. Since the 3D model more realistically represented the physics of the problem, accurate solutions were obtained for time steps ranging from 0.001 to 0.0003 seconds with the time step being halved when the particle was within 1 inlet diameter of the inlet face.

Because the size of the time step indirectly predicts the distance the particle will move; positions predicted when the air is turning and accelerating will not lie on the the actual trajectory. This is clearly seen in the 3D model

for velocity ratios of 2 and 4 where the estimate of Ea was consistently larger than the unified model prediction. In this case, the air is approaching the inlet faster than the inlet is sampling and must diverge around the inlet. Particle trajectories will also diverge but the predicted position will lie slightly inside of the actual trajectory. This causes an overestimate of Ao leading to an increase in the prediction of Ea.

When running the model under certain conditions, the time step and capture criteria became very critical in determining whether a trajectory resulted in a miss or capture. In the three dimensional model, when Uo = 1000, Ui = 125 cm/sec, and Θ = 30°, the best estimate of aspiration efficiency was off by 39% when compared to the unified model. Under these conditions the air flow is approaching the inlet at 8 times the sampling rate causing significant divergence of the air streamlines around the face of the inlet. This situation combined with the sampling angle results in particle trajectories which move virtually straight up in the positive z direction at locations within 0.1 cm of the inlet face when the particle is approaching the inlet from above the centerline. The air velocity in this area is also moving very fast. The combination of high velocity particle and steep angle of approach toward the sample inlet can easily lead to a predicted particle location which jumps across the numerical edges of the sampling inlet. A miss trajectory is recorded for this

situation when in actuality a capture should have occurred. This causes an underestimation of Ao leading to a prediction of Ea which is too small. This situation occurred for the last four rays around the start point semicircle and is the reason for the poor performance of the model under these conditions. This situation can be eliminated by reducing the size of the time step but would lead to a large increase in computing. The same problem was seen in the 2D model and prevented identification of an upper critical trajectory.

By specifiying an incremental angle of 15° in the 3D model, the program was limited to locating 13 critical trajectories. The effect of decreasing a has not been analyzed but would lead to a finer outline of the critical trajectory stream tube and a more accurate calculation of Ao. One anomaly in the output was seen when the ray specified conincided with the corners of the inlet. Critical trajectories associated with these rays tended to lie outside range of critical trajectories on either side of this point. In one program test, eliminating these rays from the program improved the model result from a 26% to a 4% error.

The results presented in this paper show that the solutions agree with the unified empirical model of Hangal and Willeke (1990). The advantage of this model is that it can be expanded to situations beyond that investigated. These situations include modeling a yaw angle, multiple inlets, and inlets of different geometry. Modeling a yaw

angle as opposed to a pitch angle would require only a shift in the direction of the gravity component in the currently available boundary file. Modeling of multiple inlets and differing inlet geometries could be accomplished by reworking boundary files to represent the new inlet configurations.

CONCLUSION

The boundary integral equation method can be used to accurately describe the air flow field into a thin edged inlet. Once the flow is described, Alenius's (1989) analytical solution to the particle equations of motion can be used to locate critical aerosol trajectories and accurately predict aspiration efficiency. A simple two dimensional model described here can accurately predict aspiration efficiency for small particles when the velocity ratio is close to 1. In this case, the critical trajectories are symmetric about the center of the inlet. When an angle of misalignment is introduced and/or the velocity ratios differ significantly from 1.0, a three dimensional model is required to describe critical trajectories and thus aspiration efficiency.

The 3D model can accurately predict aspiration efficiencies which are in good agreement with the unified aspiration efficiency model for all forward sampling angles proposed by Hangal and Willeke (1990). Further refinements to the model should improve the accuracy of aspiration efficiency estimates.

Finally, this model has the capability of predicting aspiration efficiencies for inlets of differing shapes and orientations including multiple inlets, yaw angles, and inlets of differing geometry. By reworking the boundary input files, inlets of any geometry, location, sampling angle and size can be studied using these programs.

FUTURE WORK

Successful calculation of particle trajectories depends on several adjustable variables in the program including boundary discretization, calculation time step, convergence criteria, and capture criteria. While this paper demonstrates that the method can accurately track particles for given conditions, the above variable have not been tested to determine their optimum values. A study of these variables will help determine the contribution of each to the overall error in the program.

Boundary discretization of the 3D domain required to solve the BIEM problem can be difficult due to the number of triangular elements required. Also, when constructing a closed domain, a number of common nodes appear along the edges of each face of the boundary and at the corners. This can lead to cases where one node is contained in up to 6 distinct triangular elements. Boundary files for this project were manually prepared for about 50% of the domain. Full automation of this process would greatly increase the applicability of this method.

Finer discretization at the face of the inlet and along the walls of the inlet will decrease the distance a particle can come within the inlet and inlet sides before internal air velocity calculations no longer represent the conditions. In this project, that distance was 0.05 cm. This will lead to a significant increase in the number of

nodes and triangular elements required to describe the boundary and may increase the size of the boundary file by as much as 50% and subsequently increase computing time. Finer discretization may be avoided by adding an interpolation scheme to the program. This subroutine would be invoked when the particle entered the volume around the face of the inlet where internal velocity calculations showed large error. While this will cause some error in the prediction of internal velocity, it is expected it will be less than that of assuming a captured trajectory has occurred when the particle enters this area.

Rediscretization of the inlet and walls to more closely represent a circular inlet may also lead to a better comparison of the model with the unified aspiration efficiency equation. This could be done by modelling the inlet as an equal area hexagon or octagon. Automation of the boundary file would be paramount in this case as the discretization would become extremely tedious.

It may be necessary to add a routine to the program to automatically decrease the time step if the distance between successive points becomes large or the particle jumps across the boundaries of the inlet. Alternatively, the path of the particle can be analyzed to see if it crossed the inlet and a routine added to the capture criteria which records a capture when this situation occurs.

The boundary input files and start point routines were designed for positive sampling angles only. The program is

not general enough to support negative (downward pointing) inlet orientations. However, by simply changing the sign on the gravity vector and representing the negative angle as a positive angle, predictions of aspiration efficiency may be obtained.

Combination of the 3D boundary solution program with the particle tracking routine and the area integration routine would further streamline the efficiency calculations. Currently, 3 FORTRAN programs are used to calculate aspiration efficiency.

Calculation of Particle Trajectories:

Particle transport is influenced by a gravity force and a drag force due to the friction of the surrounding air. By Newton's second law, particle mass times acceleration is equal to the sum of the forces on the particle,

$$\mathbf{EF} = \mathbf{ma}$$

(1)

where F is the force, a is the acceleration and bold face quantities represent vectors.

The frictional force can be expressed by the following equation:

$$Fd = -Cd(Re) Ap pl vr vr$$
(2)
CC 2

where

Cd(Re)	is	the dimensionless friction factor dependent on the Reynolds number
cc	is	the Cunningham slip correction
Ap	is	the projected area of the particle
p 1	is	the density of the medium (air)
vr	15	the magnitude of the particle relativ velocity

vr is the particle velocity relative to the air.

Cd(Re) is dependent on the particle Reynold's number,

$$Re = \frac{vr \, dp \, pl}{\mu l} \tag{3}$$

where

dp is the particle diameter (assumed spherical)

µl is the viscosity of the air.

Several expressions for Cd(Re) can be found in the literature (Reist, 1984) with most yielding no major deviation (Alenius, 1987). For this project the expressions used by Alenius are incorporated into a simplifying expression:

Cd(Re)=24/Re Q(Re)

where Q(Re) is defined as:

(4)

Q(Re) = 1 for 0 < Re <= 0.5 $Q(Re) = 1 + 0.15 Re^{0.687}$ for 0.5 < Re <= 800 Q(Re) = 0.44 Re/24 for 800 < Re < 20000.

By combining equations (3) and (4) into equation (2) and introducing the expression for particle relaxation time, τ , a simplified expression for the drag force becomes:

$$Fd/m = Q(Re)/\tau vr$$
 (5)

where

$$\tau = \frac{dp^2 pl CC}{18 \mu l} \tag{6}$$

From equations (1) and (5) the particle motion can be described as:

$$d^2r/dt^2 - [Q(Re)/\tau(u-(dr/dt))] - g = 0$$
 (7)

where

r is the particle position vector g is the acceleration due to gravity u is the air velocity at the point where the particle is located.

Equation (7) is analytically solvable if the factor Q(Re) is constant and the air velocity u at the points where the particle is successively located can be described as a linear function of the time that has elapsed until the particle reached the point. This condition can be approximately met it the motion is calculated in sufficiently small time steps.

If we introduce an expression for the linear behavior of the air velocity over the time interval being studied, then:

$$u(t) = (u(t)-u(t-t')/t'+b)$$

where

t is time t' is the length of the time step b is some initial value of velocity

For ease of writing we define the first part of the above expression as ua:

$$ua = (u(t)-u(t-t')/t')$$
 (9)

Now if we let $A=Q(Re)/\tau$ equation (7) can be rewritten as:

$$dv/dt - A(uat+b) + Av - g = 0$$

recognizing that d2r/dt2 = dv/dt,

or,
$$dv/dt + Av = A(uat+b) - g$$
 (10)

If equation (10) is multiplied through by $e^{\lambda t}$ the left hand side of the equation will be a derivative.

$$e^{\lambda t}(dv/dt) + e^{\lambda t}(Av) = (e^{\lambda t})A(uat+b) - g(e^{\lambda t})$$

Integrating both sides of the above equation from t1 to t2 gives:

$$\mathbf{v}_{(t2)}\mathbf{e}^{\lambda t2} - \mathbf{v}_{(t1)}\mathbf{e}^{\lambda t1} = [(uat2)\mathbf{e}^{\lambda t2} - (ua/A)\mathbf{e}^{\lambda t2} + (b)\mathbf{e}^{\lambda t2} + (g/A)\mathbf{e}^{\lambda t2}] - [(uat2)\mathbf{e}^{\lambda t1} - (ua/A)\mathbf{e}^{\lambda t1} + (b)\mathbf{e}^{\lambda t1} + (g/A)\mathbf{e}^{\lambda t1}]$$
(11)

(8)

Adding $v_{(t1)}e^{\lambda t1}$ to both side of the equation, dividing through by $e^{\lambda t2}$ and simplifying gives an expression for $v_{(t2)}$:

$$v_{(t2)} = uat2 - ua/A + b + g/A$$

- {(uat1) - ua/A + b + g/A - $v_{(t1)}e^{\lambda(t1-t2)}$ (12)

If we define a simplifying term,

$$u_b = u(t) - (u_a - g)\tau/Q(Re)$$

and define t1 as t, and t2 as the time at the end of the times step, t' (t2 = t + t'), substitute the air velocity at time t for b, and replace A with $Q(Re)/\tau$, then the solution is:

$$v(t+t') = u_a t' + u_b - (u_b - v(t)) exp - [Q(Re)t'/\tau]$$
 (13)

Integrating the equation (13) again will give the particle position:

 $r(t+t') = r(t)+u_a/2t'^2+u_bt'$

$$-(\mathbf{u}_{b}-\mathbf{v}(t))\tau/Q(\operatorname{Re})(1-\exp Q(\operatorname{Re})t'/\tau)$$
(14)

Equation (13) and (14) are analytical solutions to the particle equations of motion and are used in both the 2D and 3D particle tracking subroutines.

2D Boundary Discretization Sample:

1

Potential specified on top and rear sides. Velocity specified over front, bottom, inlet face and sides.

	DIN THETA UI UO UOX UOY	1 30 1000 -250 -216.5064 125	cm degrees cm/sec cm/sec	(inlet diama (nozzle ang) (sampling ve (wind veloci (x component (y component	eter) le) elocit lty) t of U	ΞΥ) 10)
ODE	x	Y	PHI	DPHI	ID	ICT
1	20	15	0	-216.5064	3	0
2	20	10	0	-216,5064	3	0
3	20	5	0	-216.5064	3	0
4	20	0	0	-216.5064	3	0
5	20	-5	0	-216.5064	3	0
6	20	-10	0	-216.5064	3	0
7	20	-15	0	-216.5064	3	0
8	20	-20	0	-216.5064	3	0
9	19.99	-20	0	-125	3	0
10	15	-20	0	-125	3	0
11	10	-20	0	-125	3	0
12	5	-20	0	-125	3	0
13	0	-20	0	-125	з	0
14	-5	-20	0	-125	3	0
15	-10	-20	0	-125	3	0
16	-15	-20	0	-125	3	0
17	-20	-20	1830.13	0	2	1
18	-20	-15	2455.13	0	2	0
19	-20	-10	3080.13	0	2	0
20	-20	-5	3705.13	0	2	0
21	-20	-0.5	4267.63	0	2	2
22	-17.5	-0.5	0	0	3	0
23	-15	-0.5	0	0	3	0
24	-12.5	-0.5	0	0	3	0
25	-10	-0.5	0	0	3	0
26	-7.5	-0.5	0	0	3	0
27	-5	-0.5	0	0	3	0
28	-4.5	-0.5	0	0	3	0
29	-4	-0.5	0	0	3	0
30	-3.5	-0.5	0	0	3	0
31	-3	-0.5	0	0	3	0
32	-2.5	-0.5	0	0	3	0
33	-2	-0.5	0	0	3	0
34	-1.5	-0.5	0	0	3	0
25	-1	-0.5	0	0	3	0

36	-0.5	-0.5	0	0	3	0
37	0	-0.5	0	0	3	0
38	0	-0.499	0	1000	3	0
39	0	-0.375	0	1000	3	0
40	0	-0.25	0	1000	3	0
41	0	-0.125	0	1000	3	0
42	0	0	0	1000	3	0
43	0	0.125	0	1000	3	0
44	0	0.25	0	1000	3	0
45	0	0.375	0	1000	3	0
46	0	0.499	0	1000	3	0
47	0	0.5	0	0	3	0
48	-0.5	0.5	0	0	3	0
49	-1	0.5	0	0	3	0
50	-1.5	0.5	0	0	3	0
51	-2	0.5	0	0	3	0
52	-2.5	0.5	0	0	3	0
53	-3	0.5	0	0	3	0
54	-3.5	0.5	0	0	3	0
55	-4	0.5	0	0	3	0
56	-4.5	0.5	0	0	3	0
57	-5	0.5	0	0	3	0
58	-7.5	0.5	0	0	3	0
59	-10	0.5	0	0	3	0
60	-12.5	0.5	0	0	3	0
61	-15	0.5	0	0	3	0
62	-17.5	0.5	0	0	3	0
63	-20	0.5	4392.63	0	2	1
64	-20	5	4955.13	. 0	2	0
65	-20	10	5580.13	0	2	0
66	-20	15	6205.13	0	2	0
67	-20	20	6830.13	0	2	0
68	-15	20	5747.6	0	2	0
69	-10	20	4665.06	0	2	0
70	-5	20	3582.53	0	2	0
71	0	20	2500	0	2	0
72	5	20	1417.47	0	2	0
73	10	20	334.94	0	2	0
74	15	20	-747.6	0	2	0
75	20	20	0	-216.5064	3	2

3D Boundary Discretization Sample:

.

INPUT FILE FOR 3D CASE, 367 NODE, 693 ELEMENTS

Potential specified at all faces except at boudary of tube and at the face. Four corners specified with potential.

ε	1		
	۲	٦.	
	ъ	,	

DIN	1	cm	(inlet diameter)
THETA	30	degrees	(nozzle angle)
UI	1000	cm/sec	(sampling velocity)
UO	-250	cm/sec	(wind velocity)
UOX	-216.5064		(x component of UO)
UOY	0		(y component)
UOZ	125		(z component)

NODE	x	120	Y	z	PHI	DPHI	ID	ICT	
1		0	-0.5	-0.5	0	0	2	0	
2		0	-0.5	-0.499	0	0	2	0	
3		0	-0.5	-0.375	0	0	2	0	
4		0	-0.5	-0.25	0	0	2	0	
5		0	-0.5	-0.125	0	0	2	0	
6		0	-0.5	0	0	0	2	0	
7		0	-0.5	0.125	0	0	2	Ő	
8		0	-0.5	0.25	0	0	2	Ő	
9		0	-0.5	0.375	õ	ő	2	ñ	
10		õ	-0.5	0.499	õ	õ	2	ñ	
11		0	-0.5	0.5	ñ	ñ	2	ñ	
12		õ	-0.499	-0.5	ñ	0	2	ő	
13		õ	-0.499	-0 499	ñ	1000	2	0	
14		ñ	-0 499	-0 375	0	1000	2	0	
15		ő	-0.400	-0.25	0	1000	2	0	
16		0	-0.499	-0.125	0	1000	4	0	
17		0	-0.499	-0.125	U	1000	2	0	
17		0	-0.499	0	0	1000	2	0	
18		0	-0.499	0.125	0	1000	2	0	
19		0	-0.499	0.25	0	1000	2	0	
20		0	-0.499	0.375	0	1000	2	0	
21		0	-0.499	0.499	0	1000	2	0	
22		0	-0.499	0.5	0	0	2	0	
23		0	-0.375	-0.5	0	0	2	0	
24		0	-0.375	-0.499	0	1000	2	0	
25		0	-0.375	-0.375	0	1000	2	0	
26		0	-0.375	-0.25	0	1000	2	0	
27		0	-0.375	-0.125	0	1000	2	0	
28		0	-0.375	0	. 0	1000	2	õ	
29		õ	-0.375	0.125	ñ	1000	2	ň	
30		ñ	-0.375	0 25	0	1000	2	ő	
31		ő	-0.375	0 375	0	1000	2	ő	
32		0	-0.375	0.000	0	1000	2		
32		0	-0.375	0.499	0	1000	2	0	
33		0	-0.375	0.5	0	0	4	0	
34		0	-0.25	-0.5	0	1000	4	0	
35		0	-0.25	-0.499	0	1000	2	0	
36		0	-0.25	-0.375	0	1000	2	0	
37		0	-0.25	-0.25	0	1000	2	0	
38		0	-0.25	-0.125	0	1000	2	0	
39		0	-0.25	0	0	1000	2	0	
40		0	-0.25	0.125	0	1000	2	0	
41		0	-0.25	0.25	0	1000	2	0	
42		0	-0.25	0.375	0	1000	2	0.	
43		0	-0.25	0.499	0	1000	2	0	
44		0	-0.25	0.5	0	0	2	0	
45		0	-0.125	-0.5	0	0	2	0	
46		0	-0.125	-0.499	0	1000	2	0	
47		0	-0.125	-0.375	0	1000	2	0	
48		0	-0.125	-0.25	0	1000	2	0	
40		õ	-0.125	-0,125	0	1000	2	0	
50		0	-0 125	0	0	1000	2	0	
50		0	-0 125	0 125	0	1000	2	ő	
51		0	-0.125	0.25	0	1000	2	0	
52		0	-0.125	0.25	0	1000	2	0	
53		0	-0.125	0.3/5	0	1000	2	0	
	•								

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54	0	-0.125	0.499	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	0	-0.125	0.5	0	0	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	0	0	-0.5	0	0	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	0	0	-0.499	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	58	0	0	-0.375	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59	0	0	-0.25	0	1000	2	0
61 0 0 0 1000 2 62 0 0 125 0 1000 2 64 0 0 0.375 0 1000 2 64 0 0 0.375 0 1000 2 66 0 0 0.499 0 1000 2 66 0 0.125 -0.5 0 0 2 67 0 0.125 -0.375 0 1000 2 69 0 0.125 -0.25 0 1000 2 70 0 0.125 0.100 2 7 0 0.125 0.1000 2 71 0 0.125 0.125 0 1000 2 73 0 0.125 0.125 0 1000 2 74 0 0.125 0.5 0 0 2 79 <t< td=""><td>60</td><td>0</td><td>0</td><td>-0.125</td><td>0</td><td>1000</td><td>2</td><td>0</td></t<>	60	0	0	-0.125	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	0	0	0	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	62	0	0	0.125	0	1000	2	0
64 0 0 0.375 0 1000 2 65 0 0 0.5 0 0 2 66 0 0.125 -0.5 0 0 2 68 0 0.125 -0.375 0 1000 2 69 0 0.125 -0.25 0 1000 2 70 0 0.125 -0.125 0 1000 2 71 0 0.125 0.125 0 1000 2 73 0 0.125 0.125 0 1000 2 74 0 0.125 0.25 0 1000 2 76 0 0.125 0.375 0 1000 2 77 0 0.25 -0.5 0 0 2 78 0 0.25 -0.25 0 1000 2 80 0 0.25 0.375 0 1000 2 81	63	0	0	0.25	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64	0	0	0.375	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	65	0	0	0.499	0	1000	2	0
67 0 0.125 -0.5 0 0 2 69 0 0.125 -0.375 0 1000 2 70 0 0.125 -0.25 0 1000 2 71 0 0.125 0.125 0 1000 2 72 0 0.125 0.125 0 1000 2 73 0 0.125 0.125 0.1000 2 74 0 0.125 0.25 0.1000 2 76 0 0.125 0.375 0 1000 2 76 0 0.125 0.499 0 1000 2 78 0 0.25 -0.5 0 2 79 0 0.25 -0.25 0 1000 2 80 0 0.25 -0.25 0 1000 2 81 0 0.25 0.25 0 1000 2 81	66	0	0	0.5	0	0	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67	0	0.125	-0.5	0	0	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	68	0	0.125	-0.499	0	1000	2	0
7000.125 -0.25 010002 71 00.125 -0.125 010002 72 00.1250.125010002 73 00.1250.125010002 74 00.1250.25010002 75 00.1250.375010002 76 00.1250.499010002 76 00.1250.5002 78 00.25 -0.5 002 79 00.25 -0.499 010002 80 00.25 -0.25 010002 81 00.25 -0.125 010002 82 00.25 -0.125 010002 83 00.25 0.125 010002 84 00.25 0.125 010002 85 00.25 0.125 010002 86 00.25 0.5 002 90 00.375 -0.375 010002 91 00.375 -0.375 010002 92 00.375 -0.125 010002 94 00.375 -0.375 010002 94 00.3750.12501	69	0	0.125	-0.375	0	1000	2	0
7100.125-0.125010002 72 00.1250.125010002 73 00.1250.125010002 74 00.1250.25010002 75 00.1250.375010002 76 00.1250.499010002 77 00.1250.5002 78 00.25-0.5002 79 00.25-0.375010002 80 00.25-0.25010002 81 00.25-0.125010002 82 00.250.125010002 83 00.250.125010002 84 00.250.125010002 85 00.250.375010002 86 00.250.375010002 86 00.250.5002 90 00.375-0.25010002 91 00.375-0.25010002 92 00.3750.125010002 94 00.3750.25010002 95 00.3750.375010002 96 </td <td>70</td> <td>0</td> <td>0.125</td> <td>-0.25</td> <td>0</td> <td>1000</td> <td>2</td> <td>0</td>	70	0	0.125	-0.25	0	1000	2	0
7200.1250010002 73 00.1250.125010002 74 00.1250.25010002 75 00.1250.375010002 76 00.1250.499010002 77 00.1250.5002 78 00.25 -0.5 002 79 00.25 -0.499 010002 80 00.25 -0.375 010002 81 00.25 -0.125 010002 83 00.25 -0.125 010002 84 00.250.125010002 84 00.250.125010002 84 00.250.125010002 86 00.250.375010002 86 00.250.375002 90 00.375 -0.5 002 91 00.375 -0.25 010002 92 00.375 -0.25 010002 93 00.375 -0.25 010002 94 00.3750.125010002 94 00.3750.375010002	71	0	0.125	-0.125	0	1000	2	0
7300.1250.125010002 74 00.1250.25010002 75 00.1250.375010002 76 00.1250.499010002 77 00.1250.5002 78 00.25 -0.5 002 79 00.25 -0.499 010002 80 00.25 -0.375 010002 81 00.25 -0.125 010002 83 00.25 -0.125 010002 84 00.250.125010002 84 00.250.25010002 85 00.250.25010002 86 00.250.375010002 87 00.250.375002 90 00.375 -0.499 010002 91 00.375 -0.125 010002 92 00.375 -0.125 010002 93 00.375 -0.125 010002 94 00.3750.125010002 96 00.3750.25010002 97 00.3750.375010002<	72	0	0.125	0	0	1000	2	0
7400.1250.25010002 75 00.1250.375010002 76 00.1250.499010002 77 00.1250.5002 78 00.25-0.5002 79 00.25-0.499010002 80 00.25-0.375010002 81 00.25-0.25010002 82 00.25-0.125010002 83 00.250.125010002 84 00.250.125010002 85 00.250.375010002 86 00.250.375010002 86 00.250.5002 90 00.375-0.5002 91 00.375-0.375010002 92 00.375-0.125010002 93 00.375-0.25010002 94 00.3750.125010002 94 00.3750.25010002 96 00.3750.375010002 98 00.3750.375010002 98 <td>73</td> <td>0</td> <td>0.125</td> <td>0.125</td> <td>0</td> <td>1000</td> <td>2</td> <td>0</td>	73	0	0.125	0.125	0	1000	2	0
7500.1250.375010002 76 00.1250.499010002 77 00.1250.5002 78 00.25 -0.5 002 79 00.25 -0.499 010002 80 00.25 -0.375 010002 80 00.25 -0.375 010002 81 00.25 -0.25 010002 82 00.25 -0.125 010002 83 00.25 0.125 010002 84 00.250.125010002 84 00.250.125010002 85 00.250.125010002 86 00.250.375010002 88 00.250.5002 90 00.375 -0.375 010002 91 00.375 -0.25 010002 93 00.3750.125010002 94 00.3750.375010002 96 00.3750.375010002 98 00.3750.499010002 98 00.3750.499010002 <td>74</td> <td>0</td> <td>0.125</td> <td>0.25</td> <td>0</td> <td>1000</td> <td>2</td> <td>0</td>	74	0	0.125	0.25	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75	0	0.125	0.375	0	1000	2	0
7700.1250.5002 78 00.25 -0.5 002 79 00.25 -0.499 010002 80 00.25 -0.375 010002 81 00.25 -0.25 010002 82 00.25 -0.125 010002 83 00.25 0.125 010002 84 00.250.125010002 85 00.250.25010002 86 00.250.375010002 86 00.250.375010002 86 00.250.5002 90 00.375 -0.5 002 91 00.375 -0.25 010002 92 00.375 -0.25 010002 93 00.375 -0.25 010002 94 00.3750.125010002 96 00.3750.375010002 97 00.3750.375010002 98 00.3750.375010002 98 00.3750.499010002 98 00.3750.375010002 <td>76</td> <td>0</td> <td>0.125</td> <td>0.499</td> <td>0</td> <td>1000</td> <td>2</td> <td>0</td>	76	0	0.125	0.499	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77	0	0.125	0.5	0	0	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78	0	0.25	-0.5	0	0	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79	0	0.25	-0.499	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80	0	0.25	-0.375	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	0	0.25	-0.25	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82	0	0.25	-0.125	· 0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	0	0.25	0	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	0	0.25	0.125	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85	0	0.25	0.25	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86	0	0.25	0.375	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87	0	0.25	0.499	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88	0	0.25	0.5	0	0	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89	0	0.375	-0.5	0	0	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	0	0.375	-0.499	0	1000	2	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	0	0.375	-0.375	0	1000	2	0
93 0 0.375 -0.125 0 1000 2 94 0 0.375 0 0 1000 2 95 0 0.375 0.125 0 1000 2 96 0 0.375 0.125 0 1000 2 97 0 0.375 0.375 0 1000 2 98 0 0.375 0.499 0 1000 2	92	0	0.375	-0.25	0	1000	2	0
94 0 0.375 0 0 1000 2 95 0 0.375 0.125 0 1000 2 96 0 0.375 0.25 0 1000 2 97 0 0.375 0.375 0 1000 2 98 0 0.375 0.499 0 1000 2	93	0	0.375	-0.125	0	1000	2	0
95 0 0.375 0.125 0 1000 2 96 0 0.375 0.25 0 1000 2 97 0 0.375 0.375 0 1000 2 98 0 0.375 0.499 0 1000 2	94	0	0.375	0	0	1000	2	0
96 0 0.375 0.25 0 1000 2 97 0 0.375 0.375 0 1000 2 98 0 0.375 0.499 0 1000 2	95	0	0.375	0.125	0	1000	2	0
97 0 0.375 0.375 0 1000 2 98 0 0.375 0.499 0 1000 2	96	0	0.375	0.25	0	1000	2	0
98 0 0.375 0.499 0 1000 2	97	0	0.375	0.375	0	1000	2	0
	98	0	0.375	0.499	0	1000	2	0
99 0 0.375 0.5 0 0 2	99	0	0.375	0.5	0	0	2	0
100 0 0.499 -0.5 0 0 2	00	0	0.499	-0.5	0	0	2	0
101 0 0.499 -0.499 0 1000 2	01	0	0.499	-0.499	0	1000	2	0
102 0 0.499 -0.375 0 1000 2	02	0	0.499	-0.375	0	1000	2	0
103 0 0.499 -0.25 0 1000 2	03	0	0.499	-0.25	0	1000	2	0
104 0 0.499 -0.125 0 1000 2	04	0	0.499	-0.125	0	1000	2	0
105 0 0.499 0 0 1000 2	05	0	0.499	0	0	1000	2	0
106 0 · 0.499 0.125 '0 1000 2	06	0	· 0.499	0.125	.0	1000	2	0
107 0 0.499 0.25 0 1000 2	07	0	0.499	0.25	0	1000	2	0

.

•

108	0	0.499	0.375	0	1000	2	0	
109	0	0.499	0.499	Ō	1000	2	õ	
110	0	0.499	0.5	0	0	2	Ō	
111	0	0.5	-0.5	0	0	2	Ō	
112	0	0.5	-0.499	0	ō	2	õ	
113	0	0.5	-0.375	õ	õ	2	õ	
114	0	0.5	-0.25	Ō	Ő	2	õ	
115	Ő	0.5	-0.125	Ő	õ	2	õ	
116	0	0.5	0	õ	Ő	2	õ	
117	0	0.5	0.125	Ő	õ	2	õ	
118	0	0.5	0.25	õ	ō	2	õ	
119	0	0.5	0.375	0	Ő	2	õ	
120	Ō	0.5	0.499	Ő	0	2	õ	
121	0	0.5	0.5	Ő	ő	2	ñ	
122	-0.5	-0.5	-0.5	Ő	ő	2	ñ	
123	-1	-0.5	-0.5	Ő	ő	2	ñ	
124	-1.5	-0.5	-0.5	ő	ő	2	õ	
125	-2	-0.5	-0.5	ő	ő	2	ň	
126	-2.5	-0.5	-0.5	ő	ň	2	ñ	
127	-3	-0.5	-0.5	ő	ñ	2	0	
128	-3.5	-0.5	-0.5	ő	ő	2	ñ	
129	-4	-0.5	-0.5	ñ	ő	2	ő	
130	-4.5	-0.5	-0.5	ñ	ñ	2	ñ	
131	-5	-0.5	-0.5	ő	ő	2	0	
132	-0.5	0.0	-0.5	0	0	2	0	
133	-0.5	0	-0.5	0	0	2	0	
134	-1.5	0	-0.5	0	0	2	0	
135	-1.5	0	-0.5	0	0	2	0	
136	-2 5	0	-0.5	. 0	0	2	0	
137	-2.5	0	-0.5	. 0	0	2	0	
139	-3.5	0	-0.5	0	0	2	0	
130	-3.5	0	-0.5	0	0	2	0	
140	-4 5	0	-0.5	0	0	2	0	
140	-4.5	0	-0.5	0	0	2	0	
141	-0.5	0.5	-0.5	0	0	2	ñ	
142	-0.5	0.5	-0.5	0	0	2	0	
143	1.5	0.5	-0.5	0	ő	2	0	
144	-1.5	0.5	-0.5	0		2	0	
145	-2 5	0.5	-0.5	0	0	2	0	
140	-2.5	0.5	-0.5	0	0	2	0	
147	-5	0.5	-0.5	0	0	2		
148	-3.5	0.5	-0.5	0	0	2	0	
149	-4	0.5	-0.5	0	0	2	0	
150	-4.5	0.5	-0.5		0	2	0	
151	-5	0.5	-0.5	0	0	2	0	
152	-0.5	0.5	0		0	2	0	
153	-1	0.5	0	0	0	2	0	
154	-1.5	0.5	0		0	2	0	
155	-2	0.5	0	0	0	2	0	
156	-2.5	0.5	0	0	0	2	0	
157	-3	0.5	0	0	0	2	0	
158	-3.5	0.5	0	0	0	2	0	
159	-4	0.5	0	0	0	2	0	
160	-4.5	0.5	0	0	0	2	0	
161	-5	0.5	0	0	0	2	0	

162	-0.5	0.5	0.5	0	0	2	0	
163	-1	0.5	0.5	0	0	2	0	
164	-1.5	0.5	0.5	0	0	2	0	
165	-2	0.5	0.5	0	0	2	0	
166	-2.5	0.5	0.5	0	0	2	0	
167	-3	0.5	0.5	0	0	2	0	
168	-3.5	0.5	0.5	0	0	2	0	
169	-4	0.5	0.5	0	0	2	0	
170	-4.5	0.5	0.5	0	0	2	0	
171	-5	0.5	0.5	0	0	2	0	
172	-0.5	0	0.5	0	0	2	0	
173	-1	0	0.5	0	0	2	0	
174	-1.5	0	0.5	0	0	2	0	
175	-2	0	0.5	0	0	2	0	
176	-2.5	0	0.5	0	0	2	0	
177	-3	0	0.5	0	0	2	0	
178	-3.5	0	0.5	0	0	2	0	
179	-4	0	0.5	0	0	2	0	
180	-4.5	0	0.5	0	0	2	0	
181	-5	0	0.5	0	0	2	0	
182	-0.5	-0.5	0.5	0	0	2	0	
183	-1	-0.5	0.5	0	0	2	0	
184	-1.5	-0.5	0.5	0	0	2	0	
185	-2	-0.5	0.5	0	0	2	0	
186	-2.5	-0.5	0.5	0	0	2	0	
187	-3	-0.5	0.5	0	0	2	0	
188	-3.5	-0.5	0.5	0	0	2	0	
189	-4	-0.5	0.5	0	0	2	0	
190	-4.5	-0.5	0.5	. 0	0	2	0	
191	-5	-0.5	0.5	0	0	2	0	
192	-0.5	-0.5	0	0	0	2	0	
193	-1	-0.5	0	0	0	2	0	
194	-1.5	-0.5	0	0	0	2	0	
195	-2	-0.5	U	0	0	2	0	
196	-2.5	-0.5	0	0	0	2	0	
197	-3	-0.5	0	0	0	2	0	
198	-3.5	-0.5	0	0	0	2	0	
199	-4	-0.5	0	0	0	2	0	
200	-4.5	-0.5	0	0	0	2	0	
201	-5	-0.5	-0.5	0	0	2	0	
202	-/.5	-0.5	-0.5	0	0	2	0	
203	12 5	-0.5	-0.5	0	ő	2	0	
204	-12.5	-0.5	-0.5	0	0	2	ñ	
205	-15	-0.5	-0.5	0	ő	2	0	
200	-17.5	-0.5	-0.5	4268	ñ	1	1	
207	-20	-0.5	-0.5	4200	ñ	2	'n	
208	-7.5	0.5	-0.5	0	0	2	0	
209	12 5	0.5	-0.5	0	0	2	0	
210	-12.5	0.5	-0.5	0	0	2	0	
211	17 5	0.5	-0.5	0	0	2	0	
212	-17.5	0.5	-0.5	4268	0	1	1	
213	-20	0.5	0.5	4200	0	2	ò	
214	-1.5	0.5	0.5	0	0	2	0	
215	-10	0.5	0.5	0	0	4	0	

•

216	-12.5	0.5	0.5	0	0	2	0
217	-15	0.5	0.5	0	0	2	0
218	-17.5	0.5	0.5	0	0	2	0
219	-20	0.5	0.5	4393	0	1	1
220	-7.5	-0.5	0.5	0	0	2	0
221	-10	-0.5	0.5	0	0	2	0
222	-12.5	-0.5	0.5	0	0	2	0
223	-15	-0.5	0.5	0	0	2	0
224	-17.5	-0.5	0.5	0	0	2	0
225	-20	-0.5	0.5	4393	0	1	1
226	-20	-20	-20	1830	0	1	0
227	-20	-20	-10	3080	0	1	0
228	-20	-20	0	4330	0	1	0
229	-20	-20	10	5580	0	1	0
230	-20	-20	20	6830	0	1	0
231	-20	-10	-20	1830	0	1	0
232	-20	-10	-10	3080	0	1	0
233	-20	-10	0	4330	0	1	0
234	-20	-10	10	5580	0	1	0
235	-20	-10	20	6830	0	1	0
236	-20	0	-20	1830	0	1	0
237	-20	-0.501	0.501	4393	0	1	0
238	-20	-0.501	0	4330	0	1	0
239	-20	0.501	-0.501	4268	0	1	0
240	-20	0	10	5580	0	1	0
241	-20	0	20	6830	0	1	0
242	-20	0	-10	3080	0	1	0
243	-20	0.501	0.501	4393	0	1	0
244	-20	0.501	0 501	4330	0	1	0
245	-20	-0.501	-0.501	4268	0	1	U
246	-20	10	-20	1830	U	1	0
247	-20	10	-10	3080	0	1	0
248	-20	10	0	4330	0	1	0
249	-20	10	10	5580	0	1	0
250	-20	10	20	6830	U	1	0
251	-20	20	-20	1830	0	1	0
252	-20	20	-10	3080	0		0
253	-20	20	10	4330	0	-	0
254	-20	20	10	5560	0	-	0
255	-20	20	20	1030	0	-	0
256	20	-20	20	-1850	0	-	0
257	10	-20	20	334.9	0	-	0
258	0	-20	20	2500	0	-	0
259.	-10	-20	20	4005	- 0		
260	20	-20	10	-3000	0		
261	10	-20	10	1250	0		
262	0	-20	10	2415	0	1	0
263	-10	-20	10	-4390	0	1	0
264	20	-20	0	-4330	0	1	0
265	10	-20	0	-2105	0	1	0
266	0	-20	0	2165	0		0
267	-10	-20	10	-5500	0		0
268	20	-20	-10	-3415	0	1	0
260	10	-20	-10	-3413	0		0

270	0	-20	-10 -1250	0	1	0	
271	-10	-20	-10 915.1	0	1	0	
272	20	-20	-20 -6830	0	1	0	
273	10	-20	-20 -4665	0	1	0	
274	0	-20	-20 -2500	0	1	0	
275	-10	-20	-20 -335	0	1	0	
276	20	-10	20 -1830	0	1	0	
277	20	-10	10 -3080	0	1	0	
278	20	-10	0 -4330	0	1	0	
279	20	-10	-10 -5580	0	1	0	
280	20	-10	-20 -6830	0	1	0	
281	20	0	20 -1830	0	1	0	
282	20	0	10 -3080	0	1	0	
283	20	0	0 -4330	0	1	0	
284	20	0	-10 -5580	0	1	0	
285	20	0	-20 -6830	0	1	0	
286	20	10	20 -1830	0	1	0	
287	20	10	10 -3080	0	1	0	
288	20	10	0 -4330	0	1	0	
289	20	10	-10 -5580	0	1	0	
290	20	10	-20 -6830	0	1	0	
291	20	20	20 -1830	0	1	0	
292	20	20	10 -3080	0	1	0	
293	20	20	0 -4330	0	1	0	
294	20	20	-10 -5580	0	1	0	
295	20	20	-20 -6830	0	1	0	
296	10	-10	-20 -4665	0	1	0	
297	0	-10	-20 -2500	0	1	0	
298	-10	-10	-20 -335	0	1	0	
299	10	0	-20 -4665	0	1	0	
300	0	0	-20 -2500	0	1	0	
301	-10	0	-20 -335	0	1	0	
302	10	10	-20 -4665	0	1	0	
303	0	10	-20 -2500	0	1	0	
304	-10	10	-20 -335	0	1	0	
305	10	20	-20 -4665	0	1	0	
306	0	20	-20 -2500	0	1	0	
307	-10	20	-20 -335	0	1	0	
308	0	-20	-20 -2500	0	1	0	
309	19.999	-10	-20 -6830	0	1	. 0	
310	19.999	0	-20 -6830	0	1	0	
311	19.999	10	-20 -6830	0	1	0	
312	19.999	20	-20 -6830	0	1	U	
313	10	20	-10 -3415	0	1	0	
314	0	20	-10 -1250	0	1	0	
315	-10	20	-10 915.1	0	1	0	
316	10	20	0 -2165	0	1	0	
317	0	20	0 0	0	1	0	
318	-10	20	0 2165	0	1	0	
319	10	20	10 -915	0	1	0	
320	0	20	10 1250	0	1	0	
321	-10	20	10 3415	0	1	0	
322	10	20	20 334.9	0	1	0	
323	0	20	20 2500	0	1	0	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 1 0 1 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0
331 10 -10 20 334.9 0 1 332 0 -10 20 2500 0 1	1 0
332 0 -10 20 2500 0 1	
	0
333 -10 -10 20 4665 0 1	0
334 20 -19.999 19.999 -1830 0 1	0
335 20 -19.999 10 -3080 0 1	0
336 20 -19.999 0 -4330 0 1	0
337 20 -19.999 -10 -5580 0 1	0
338 20 -19,999 -19,999 -6830 0	1 0
339 20 -10 -19,999 -6830 0 1	1 0
340 20 0 -19,999 -6830 0	1 0
341 20 10 -19,999 -6830 0 1	0
342 20 19 999 -19 999 -6830 0	1 0
343 20 10 000 -10 -5580 0 1	i õ
344 20 10 000 0 -4330 0	
345 20 10 000 10 -3090 0 1	
245 20 19.999 10 -5000 0	
20 19.999 19.999 1050 0	
347 20 10 19.999 -1830 0	
	0
350 -20 0 0.501 4393 0	
351 -20 0 -0.501 4268 0	0
352 -20 -19.999 -19.999 1830 0	0
353 -20 -19.999 -10 3080 0 1	0
354 -20 -19.999 0 4330 0 1	0
355 -20 -19.999 10 5580 0 1	0
356 -20 -19.999 19.999 6830 0 1	1 0
357 -20 -10 -19.999 1830 0 1	0
358 -20 -10 19.999 6830 0 1	1 0
359 -20 0 -19.999 1830 0 1	1 0
360 -20 0 19.999 6830 0	0
361 -20 10 -19.999 1830 0 1	0
362 -20 10 19.999 6830 0	0
363 -20 19,999 -19,999 1830 0	0
364 -20 19,999 -10 3080 0	1 0
365 -20 19,999 0 4330 0	1 0
366 -20 19,999 10 5580 0	1 0
367 -20 19,999 19,999 6830 0	1 0

ELEM	NODE1	NODE2	NODES	NODE4
1	1	2	13	13
2	2	3	13	13
3	3	4	14	14
4	4	5	15	15
5	5	7	10	10
5	0	6	19	19
	8	0	10	10
9	9	10	20	20
10	10	11	21	21
11	1	13	12	13
12	3	14	13	13
13	4	15	14	14
14	5	16	15	15
15	6	17	16	16
16	7	18	17	17
· 17	8	19	18	18
18	9	20	19	19
19	10	21	20	20
20	11	22	21	21
21	12	13	23	13
22	13	14	24	24
24	15	16	25	25
25	16	17	27	27
26	17	18	28	28
27	18	19	29	29
28	19	20	30	30
29	20	21	31	31
30	21	22	32	32
31	13	24	23	24
32	14	25	24	24
33	15	26	25	25
34	16	27	26	26
35	17	28	27 .	27
30	18	29	20	20
37	20	31	30	30
30	21	32	31	31
40	22	33	32	32
41	23	24	34	24
42	24	25	35	35
. 43	25	26	36	36
44	26	27	37	37
45	27	28	38	38
46	28	29	39	39
47	29	30	40	40
48	30	31	41	41
49	31	32	. 42	42
50	32	33	43	43
51	24	35	34	35
52	25	30	35	36
53	26	31	50	30
.

ELEM	NODE1	NODE2	NODES	NODE4
5	4 27	38	37	37
5	28	39	38	38
5	29	40	39	39
5	30	41	40	40
5	31	. 42	41	41
5	32	43	42	42
6	34	35	45	35
6	34	36	45	46
6	36	37	47	47
6	37	38	48	48
6	38	39	49	49
6	5 39	40	50	50
6	40	41	51	51
6	8 41	42	52	52
6	42	43	53	53
7	43	44	54	54
7	1 35	46	45	46
7	2 36	47	46	46
73	3 37	48	47	47
7.	4 38	49	48	48
7	5 39	50	49	49
7	5 40	51	50	50
7	7 41	52	51	51
7	8 42	53	52	52
7	9 43	54	53	53
8	0 44	55	54	54
8	1 45	46	56	46
8	2 46	47	57	57
83	3 47	48	58	58
8	4 48	49	59	59
8	5 49	50	60	60
8	6 50	51	61	61
8	7 51	52	62	62
8	B 52	53	63	63
8	9 53	54	64	65
9	0 54	55	00	57
9	1 40	5/	50	57
9	2 4/	50	58	58
9	48	59	50	59
9	4 49	61	60	60
9	5 50	62	61	61
9	7 51	63	62	62
9	0 52	64	63	63
9	0 54	65	64	64
10	9 54	66	65	65
10	1 56	57	67	57
10	2 57	58	68	68
10	3 50	50	69	69
10	4 50	60	70	70
10	5 60	61	71	71
10	6 61	62	72	72

ELEM	NODE1	NODE2	NODES	NODE4
107	62	63	73	73
108	63	64	74	74
109	64	65	75	75
110	65	66	76	76
111	57	68	67	68
112	58	69	68	68
113	59	70	69	69
114	60	71	70	70
115	61	72	71	71
116	62	73	72	72
117	63	74	73	73
118	64	75	74	74
119	65	76	75	75
120	66	77	76	76
121	67	68	78	68
122	68	69	79	79
123	69	70	80	80
124	70	71	81	81
125	71	72	82	82
126	72	73	83	83
127	73	74	84	84
128	74	75	85	85
129	75	76	86	86
130	76	77	87	87
131	68	79	78	79
132	69	80	79	79
133	70	81	80	80
134	71	82	81	81
135	72	83	82	82
136	73	84	83	83
137	74	85	84	84
138	75	86	85	85
139	76	87	86	86
140	77	88	87	87
141	78	79	89	79
142	79	80	90	90
143	80	81	91	91
144	81	82	92	92
145	82	83	93	93
146	83	84	94	94
147	84	85	95	95
148	85	86	96	96
149	86	87	97	97
150	87	88	98	98
151	79	90	89	90
152	80	91	90	90
153	81	92	91	91
154	82	93	92	92
155	83	94	93	93
156	84	95	94	94
157	85	96	95	95
158	86	97	96	96
150	87	98	97	97

ELEM	NODE1	NODE2	NODES	NODE4
160	88	99	98	98
161	89	90	100	90
162	90	91	101	101
163	91	92	102	102
164	92	93	103	103
165	93	94	104	104
166	94	95	105	105
167	95	96	106	106
168	96	97	107	107
169	97	98	108	108
170	98	99	109	109
171	90	101	100	101
172	91	102	101	101
173	92	103	102	102
174	93	104	103	103
175	94	105	104	104
176	95	106	105	105
177	96	107	106	106
178	97	108	107	107
179	98	109	108	108
180	99	110	109	109
181	100	101	111	101
182	101	102	112	102
183	102	103	113	103
184	103	104	114	104
185	104	105	115	105
186	105	106	116	106
187	106	107	117	107
188	107	108	118	108
189	108	109	119	109
190	109	121	120	109
191	101	112	111	101
192	102	113	112	102
193	103	114	113	103
194	104	115	114	104
195	105	116	115	105
196	106	117	116	106
197	107	118	117	107
198	108	119	118	108
199	109	120	119	109
200	109	110	121	109
201	122	1	56	56
202	123	122	132	132
203	124	123	133	133
203	125	124	134	134
205	126	125	135	135
205	127	126	136	136
200	128	127	137	137
207	120	128	138	138
200	129	120	130	130
209	121	120	140	140
210	100	122	56	56
211	132	122	132	132
212	133	123	132	132

ELEM	NODE1	NODE2	NODE3	NODE4
213	134	124	133	133
214	135	125	134	134
215	136	126	135	135
216	137	127	136	136
217	138	128	137	137
218	139	129	138	138
219	140	130	139	139
220	141	131	140	140
221	132	56	111	111
222	133	132	142	142
223	134	133	143	143
224	135	134	144	144
225	136	135	145	145
226	137	136	146	146
227	138	137	147	147
228	139	138	148	148
229	140	139	149	149
230	141	140	150	150
231	142	132	111	111
232	143	133	142	142
233	144	134	143	143
234	145	135	144	144
235	146	136	145	145
236	147	137	146	146
237	148	138	147	147
238	149	139	148	148
239	150	140	149	149
240	151	141	150	150
241	142	111	116	116
242	143	142	152	152
243	144	143	153	153
244	145	144	154	154
245	146	145	155	155
246	147	146	156	156
247	148	147	157	157
248	149	148	158	158
249	150	149	159	159
250	151	150	160	160
251	152	142	116	116
252	153	143	152	152
253	154	144	153	153
254	155	145	154	154
255	156	146	155	155
256	157	147	156	156
257	158	148	157	157
258	159	149	158	158
259	160	150	159	159
260	161	151	160	160
261	152	116	121	121
262	153	152	162	162
263	154	153	163	163
264	155	154	164	164
265	156	155	165	165

ELEM	NODE1	NODE2	NODE3	NODE4
267	158	157	167	167
268	150	158	168	168
269	160	159	169	169
270	161	160	170	170
271	162	152	121	121
272	163	153	162	162
273	164	154	163	163
274	165	155	164	164
275	166	156	165	165
276	167	157	166	166
277	168	158	167	167
278	169	159	168	168
279	170	160	169	169
280	171	161	170	170
281	162	121	66	66
282	163	162	172	172
283	164	163	173	173
284	165	164	174	174
204	166	165	175	175
205	167	166	175	175
200	169	167	177	177
207	160	160	170	170
200	170	160	170	170
209	170	170	100	1/9
290	172	162	100	100
291	172	162	172	172
292	175	103	172	172
293	174	165	173	175
294	175	105	174	175
295	170	167	175	175
290	170	169	177	177
297	178	100	170	170
298	1/9	109	170	170
299	180	170	1/9	1/9
300	181	1/1	100	100
301	172	170	102	182
302	1/3	172	102	102
303	174	173	103	184
304	175	174	104	185
305	175	175	105	185
306	177	170	100	187
307	178	177	107	107
308	1/9	170	100	100
309	180	1/9	189	109
310	181	180	190	190
311	182	172	100	102
312	183	173	102	102
313	184	174	183	103
314	185	175	184	184
315	186	176	185	185
316	187	177	186	186
317	488	178	187	187
318	189	179	188	188

ELEM	NODE 1	NODE2	NODES	NODE4
319	190	180	189	189
320	191	181	190	190
321	182	11	6	6
322	183	182	192	192
323	184	183	193	193
324	185	184	194	194
325	186	185	195	195
326	187	186	196	196
327	188	187	197	197
328	189	188	198	198
329	190	189	199	199
330	191	190	200	200
331	192	182	6	6
332	193	183	192	192
333	194	184	193	193
334	195	185	194	194
335	196	186	195	195
336	197	187	196	196
337	198	188	197	197
338	199	189	198	198
339	200	190	199	199
340	201	191	200	200
341	192	6	1	1
342	193	192	122	122
343	194	193	123	123
344	195	194	124	124
345	196	195	125	125
346	197	196	126	126
347	198	197	127	127
348	100	198	128	128
340	200	100	120	120
350	201	200	130	130
351	122	192	100	1.50
352	122	103	122	122
352	123	104	122	123
355	. 125	105	124	124
354	125	195	124	124
355	120	107	125	125
350	120	109	120	120
357	120	190	120	120
358	129	199	120	120
359	130	200	129	129
360	131	201	130	150
361	202	131	151	151
362	203	202	208	208
363	204	203	209	209
364	205	204	210	210
365	206	205	211	211
366	207	206	212	212
367	208	202	151	151
368	209	203	208	208
369	210	204	209	· 209
370	211	205	210	210
371	212	206	211	211
		- A		

	-1
-	-

EM	NODE1	NODE2	NODES	NODE4
372	213	207	212	212
373	208	151	171	171
374	209	208	214	214
375	210	209	214	214
376	211	210	216	216
377	212	211	217	217
378	213	212	218	218
379	214	208	171	171
380	215	209	214	214
381	216	210	215	215
382	217	211	216	216
383	218	212	217	217
384	219	213	218	218
385	214	171	191	191
386	215	214	220	220
387	216	215	221	221
388	217	216	222	222
200	210	217	222	222
209	210	217	223	223
390	219	210	224	224
391	220	214	191	191
392	221	215	220	220
393	222	216	221	221
394	223	217	222	222
395	224	218	223	223
396	225	219	224	224
397	220	191	131	131
398	221	220	202	202
399	222	221	203	203
400	223	222	204	204
401	224	223	205	205
402	225	224	206	206
403	202	220	131	131
404	203	221	202	202
405	204	222	203	203
406	205	223	204	204
407	206	224	205	205
408	207	225	206	206
409	352	353	357	357
410	353	354	232	232
411	354	355	233	233
412	355	356	234	234
413	353	232	357	232
414	354	233	. 232	232
415	355	234	233	233
416	356	358	234	234
417	357	232	359	359
418	232	245	242	242
419	233	237	238	233
420	234	358	240	240
421	232	242	359	242
422	232	233	245	233
423	233	234	237	233
424	358	360	240	240
464				

425 242 351 239 242 426 234 240 237 237 427 242 239 247 247 428 350 240 243 240 430 239 244 241 247 431 243 249 248 247 433 242 247 361 248 432 240 360 249 249 433 242 247 361 246 434 244 243 248 249 435 243 240 249 249 436 360 362 249 249 435 243 240 247 248 247 436 361 247 363 247 248 435 247 248 365 264 248 440 249 365 246 249 <th>ELEM</th> <th>NODE1</th> <th>NODE2</th> <th>NODE3</th> <th>NODE4</th>	ELEM	NODE1	NODE2	NODE3	NODE4
426 234 240 237 237 427 242 239 247 247 428 350 240 243 240 430 239 248 247 247 431 243 249 248 247 431 243 249 248 248 432 240 360 249 249 433 242 247 361 246 434 244 243 248 248 435 243 240 249 249 436 360 362 249 249 437 361 247 363 247 438 247 248 365 248 440 249 365 364 248 4439 247 364 363 247 441 247 364 363 247 444 362 367 366 365 444 362 367 366	425	242	351	239	242
427 242 239 247 244 428 350 240 243 240 429 359 248 247 247 431 243 249 248 248 432 240 360 249 248 433 242 247 361 246 433 242 247 361 246 434 244 243 248 248 435 243 240 249 249 436 360 362 249 249 436 360 362 249 249 437 361 247 248 364 248 439 248 249 365 248 440 249 365 364 248 443 249 365 364 248 443 249 365 364 248 441 262 367 366 365 444 362 367 3	426	234	240	237	237
428 350 240 243 240 429 359 242 361 242 430 239 248 247 247 431 243 249 248 247 432 240 360 249 249 433 242 247 361 246 434 244 243 248 249 435 243 240 249 249 436 360 362 249 249 437 361 247 363 247 438 247 248 365 264 440 249 366 365 248 440 249 366 365 248 443 249 366 365 248 443 249 366 365 248 443 249 366 365 249 444 362 <	427	242	239	247	247
429 359 242 361 242 430 239 248 247 247 431 243 249 248 248 432 240 360 249 248 433 242 247 361 246 434 244 243 248 248 435 243 240 249 249 436 360 362 249 249 437 361 247 363 247 438 247 248 364 248 439 248 249 365 246 440 249 366 365 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 366 445 256 <	428	350	240	243	240
430 239 248 247 247 431 243 249 248 248 432 240 360 249 249 433 242 247 361 246 434 244 243 249 249 436 360 362 249 249 436 361 247 363 247 438 247 248 364 248 439 248 249 365 246 440 249 362 366 249 441 247 364 363 247 443 249 365 364 248 443 249 366 365 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 366 445 256 257 260 260 446 257 258 261 261 447 258 259 262 262 448 259 263 262 262 448 259 263 262 265 450 228 267 261 261 451 259 263 262 265 455 266 266 265 265 453 260 261 264 <t< td=""><td>429</td><td>359</td><td>242</td><td>361</td><td>242</td></t<>	429	359	242	361	242
431 243 249 248 248 248 432 240 360 249 249 433 242 247 361 246 434 244 243 248 249 435 243 240 249 249 436 360 362 249 249 437 361 247 363 247 438 247 248 365 248 440 249 365 248 440 249 365 364 441 247 364 363 441 247 364 363 441 247 366 366 442 248 365 364 443 249 366 365 444 362 367 366 445 256 257 260 261 261 261 444 362 367 366 366 445 259 230 263 263 263 262 261 261 450 259 262 265 455 262 261 261 451 259 262 265 455 262 265 265 455 262 265 265 455 262 265 266 456 265 456 2	430	239	248	247	247
432 240 360 249 249 433 242 247 361 246 434 243 244 243 248 435 243 240 249 249 436 360 362 249 249 437 361 247 363 247 438 247 248 364 248 439 248 249 365 248 440 249 362 366 247 441 247 364 363 247 442 248 365 364 248 443 249 366 365 248 443 249 366 365 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 366 445 256 257 260 260 444 362 367 266 265 446 257 258 262 261 448 259 230 263 263 449 257 261 266 266 450 258 262 261 261 451 259 263 265 265 455 262 265 266 265 455 262 265 266 <t< td=""><td>431</td><td>243</td><td>249</td><td>248</td><td>248</td></t<>	431	243	249	248	248
433 242 247 361 246 434 244 243 248 248 435 243 240 249 249 436 360 362 249 249 437 361 247 363 247 438 247 248 364 248 439 248 249 365 246 440 249 362 366 249 441 247 364 363 247 443 249 366 365 248 443 249 366 365 249 441 247 364 363 247 443 249 366 365 249 444 362 367 366 366 445 257 258 261 261 447 258 259 262 262 449 257 <	432	240	360	249	249
434 244 243 248 248 435 243 240 249 249 436 360 362 249 249 437 361 247 363 247 438 247 248 364 248 439 248 249 365 248 440 249 362 366 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 366 445 256 257 260 260 446 257 258 262 261 261 451 <	433	242	247	361	246
435 243 240 249 249 436 360 362 249 249 437 361 247 363 247 438 247 248 364 248 439 248 249 365 248 440 249 362 366 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 365 445 256 257 260 260 446 257 258 261 261 447 258 259 262 262 448 257 261 260 263 449 257 261 260 260 450 258 262 261 261 451 259 263 263 263 453 260 261 264 266 455 262 263 265 265 455 262 263 265 265 455 262 266 265 265 456 265 266 265 265 455 265 266 265 265 456 265 266 265 265 456 265 266 269 269 461 264 265 268 <t< td=""><td>434</td><td>244</td><td>243</td><td>248</td><td>248</td></t<>	434	244	243	248	248
436 360 362 249 249 437 361 247 363 247 438 247 248 364 248 439 248 249 365 248 440 249 362 366 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 366 445 256 257 260 260 446 257 258 261 261 447 258 259 262 262 448 259 230 263 263 449 257 261 260 260 450 258 262 261 261 451 259 263 263 263 453 260 261 264 264 454 261 265 265 265 455 262 265 266 265 456 265 266 265 266 456 2265 266 266 266 460 229 228 277 271 464 267 228 271 271 465 265 266 266 266 466 266 270 273 273 471 270 270 270 <	435	243	240	249	249
437 361 247 363 247 438 247 248 364 248 439 248 249 365 248 440 249 362 366 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 366 445 256 257 260 260 446 257 258 262 262 448 259 230 263 263 449 257 261 260 260 450 258 262 261 261 451 259 230 2263 263 452 230 229 263 263 453 260 261 264 264 454 261 262 265 265 455 262 266 265 265 455 262 266 265 266 456 265 266 266 265 459 263 267 268 268 462 265 266 266 265 459 265 266 266 265 463 266 267 270 273 464 267 228 271 271 464 267 228 277 <	436	360	362	249	249
438 247 248 364 248 439 248 249 365 248 440 249 362 366 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 365 445 256 257 260 260 446 257 258 261 261 447 258 259 262 262 448 259 230 263 262 448 259 261 261 261 449 257 261 260 260 450 258 262 261 261 451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 454 261 265 265 265 455 262 263 266 266 456 263 229 228 267 267 457 261 265 266 269 268 462 265 266 269 269 463 266 267 271 271 464 267 228 271 271 465 265 269 268 268 466 266 <t< td=""><td>437</td><td>361</td><td>247</td><td>363</td><td>247</td></t<>	437	361	247	363	247
439 248 249 365 248 440 249 362 366 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 365 249 444 362 367 366 365 249 444 362 367 366 365 249 444 362 367 366 365 249 444 362 367 366 366 260 444 362 367 260 260 261 444 362 257 261 261 261 448 259 230 263 262 265 265 450 259 263 266 265 265 265 453 260 263	438	247	248	364	248
440 249 362 366 249 441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 366 445 256 257 260 260 446 257 258 261 261 447 258 259 262 262 448 259 230 263 263 449 257 261 260 260 450 258 262 261 261 451 259 263 263 263 453 260 261 264 264 454 261 262 265 265 455 262 263 266 266 456 263 229 267 267 457 261 265 265 265 455 262 266 265 265 459 263 267 270 270 461 264 265 268 268 462 265 266 269 269 463 265 266 269 269 466 266 270 271 271 468 228 227 271 271 468 228 227 271 271 471 270 274 273 <t< td=""><td>439</td><td>248</td><td>249</td><td>365</td><td>248</td></t<>	439	248	249	365	248
441 247 364 363 247 442 248 365 364 248 443 249 366 365 249 444 362 367 366 366 445 256 257 260 260 446 257 258 261 261 447 258 259 262 262 448 259 230 263 263 449 257 261 260 260 450 258 262 261 261 451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 454 261 262 265 265 455 262 263 2267 267 456 263 229 267 267 456 263 267 267 267 456 265 266 265 266 450 229 228 277 270 464 267 270 270 269 269 465 266 267 270 270 466 266 270 273 273 470 269 270 273 273 471 270 271 271 274 474 270 274 273 275 477 271 275 <	440	249	362	366	249
442 248 365 364 248 443 249 366 365 249 444 362 367 366 366 445 256 257 260 260 446 257 258 261 261 447 258 259 262 262 448 259 230 263 263 449 257 261 260 260 450 258 262 261 261 451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 454 261 262 265 265 455 262 263 2266 265 456 263 229 267 267 457 261 265 266 265 459 263 267 266 265 459 263 267 270 270 461 266 267 270 270 461 267 228 227 271 271 465 266 269 269 269 466 266 269 272 269 466 266 269 273 273 470 269 273 273 273 471 270 271 274 274 474 270 274 <	441	247	364	363	247
443 249 366 365 249 444 362 367 366 366 445 256 257 260 260 446 257 258 261 261 447 258 259 230 263 263 448 259 230 263 263 449 257 261 260 260 450 258 262 261 261 451 259 263 263 263 453 260 229 263 263 453 260 261 264 264 453 260 261 264 264 455 262 263 266 265 455 262 263 266 266 456 263 229 267 267 457 261 265 266 265 459 263 267 266 266 450 229 228 267 267 461 264 265 268 268 462 265 266 269 269 463 266 270 270 270 464 267 227 271 271 465 265 269 268 269 470 268 269 272 269 470 269 273 273 273 471 270 271 <t< td=""><td>442</td><td>248</td><td>365</td><td>364</td><td>248</td></t<>	442	248	365	364	248
444 362 367 366 366 445 256 257 260 260 446 257 258 261 261 447 258 259 262 262 448 259 230 263 263 449 257 261 260 260 450 258 262 261 261 450 258 262 261 261 451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 454 261 262 265 265 455 262 263 266 265 455 262 263 229 267 457 261 265 266 265 456 263 229 267 267 457 261 265 266 265 459 263 267 266 266 460 229 228 271 270 461 264 265 266 269 463 266 267 270 270 464 267 228 271 271 465 265 269 268 268 466 266 270 273 273 470 269 270 273 273 471 270 271 274 <t< td=""><td>443</td><td>249</td><td>366</td><td>365</td><td>249</td></t<>	443	249	366	365	249
445 256 257 260 260 446 257 258 261 261 447 258 259 262 262 448 259 230 263 263 449 257 261 260 260 450 258 262 261 261 451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 454 261 262 265 265 455 262 263 266 266 456 263 229 267 267 457 261 265 266 265 459 263 267 267 267 457 261 265 266 265 459 263 267 267 267 461 264 265 266 266 460 229 228 277 270 463 266 267 270 270 464 265 266 269 269 467 267 271 270 270 468 228 227 271 271 469 268 269 272 269 470 269 273 273 273 471 270 274 274 274 474 270 274 275 <t< td=""><td>444</td><td>362</td><td>367</td><td>366</td><td>366</td></t<>	444	362	367	366	366
446 257 258 261 261 447 258 259 262 262 448 259 230 263 263 449 257 261 260 260 450 258 262 261 261 451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 454 261 262 265 265 455 262 263 266 266 456 263 229 267 267 457 261 265 264 264 458 262 266 265 266 459 263 267 266 265 459 263 267 266 266 460 229 228 267 267 461 264 265 268 268 462 265 266 269 269 463 266 267 270 270 464 267 228 271 271 468 228 227 271 271 469 268 269 272 269 470 269 273 273 273 471 270 274 273 273 474 270 274 274 274 474 270 274 275 <t< td=""><td>445</td><td>256</td><td>257</td><td>260</td><td>260</td></t<>	445	256	257	260	260
447 258 259 262 262 262 448 259 230 263 263 449 257 261 260 260 450 258 262 261 261 451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 453 260 261 265 265 455 262 263 2265 265 455 262 263 2266 266 456 263 229 267 267 457 261 265 266 265 458 262 2266 265 266 459 263 267 266 265 459 263 267 266 266 460 229 228 267 267 461 264 265 268 268 462 265 266 269 269 463 266 267 270 270 464 267 228 277 271 468 228 227 271 271 468 228 269 273 273 470 269 270 273 273 471 270 271 274 274 474 270 274 274 274 475 271 275 <td>446</td> <td>257</td> <td>258</td> <td>261</td> <td>261</td>	446	257	258	261	261
448 259 230 263 263 263 449 257 261 260 260 450 258 262 261 261 451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 454 261 262 265 265 455 262 263 266 266 456 263 229 267 267 457 261 265 264 264 458 262 266 265 265 459 263 267 266 266 460 229 228 267 267 461 264 265 268 268 462 265 266 269 269 463 266 267 270 270 464 267 228 271 271 465 266 270 269 269 466 266 270 273 273 470 269 272 269 269 470 269 272 269 272 471 270 271 271 274 472 271 271 275 275 473 269 272 269 272 474 270 274 274 274 475 271 275 <t< td=""><td>440</td><td>258</td><td>259</td><td>262</td><td>262</td></t<>	440	258	259	262	262
449 257 261 260 260 450 258 262 261 261 451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 454 261 262 265 265 455 262 263 2266 266 456 263 229 267 267 457 261 2265 264 264 457 261 265 265 265 459 263 267 266 265 459 263 267 266 266 460 229 228 267 267 461 264 265 268 268 462 265 266 269 269 463 266 267 270 270 464 267 228 271 271 465 265 269 268 268 466 266 270 270 270 466 228 227 271 271 468 228 227 271 271 470 269 272 269 470 269 273 273 471 270 274 274 472 271 271 275 473 279 275 275 476 227 226	447	259	230	263	263
450 258 262 261 261 451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 454 261 262 265 265 455 262 263 2266 266 456 263 229 267 267 457 261 265 264 264 458 262 266 265 265 459 263 267 266 266 460 229 228 267 267 461 264 265 268 268 462 265 266 269 269 463 266 267 270 270 463 266 267 270 270 464 267 228 271 271 465 265 269 268 268 466 266 270 269 269 467 267 271 270 271 468 228 227 271 273 470 269 270 273 273 471 270 271 274 274 472 271 275 275 275 473 271 275 275 275 475 271 275 275 275 477 334 335 349 <	440	257	261	260	260
451 259 263 262 262 452 230 229 263 263 453 260 261 264 264 453 260 261 264 264 454 261 262 265 265 455 262 263 2266 266 456 263 229 267 267 457 261 265 266 265 459 263 267 266 265 459 263 267 266 266 460 229 228 267 267 461 264 265 268 268 462 265 266 269 269 463 266 267 270 270 464 267 228 271 271 465 266 269 268 268 466 266 270 270 270 468 228 227 271 271 469 268 269 272 269 470 269 273 272 269 471 270 271 274 274 472 271 275 275 275 475 271 275 275 275 477 334 335 349 349	450	258	262	261	261
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	451	259	263	262	262
453 260 261 264 264 264 454 261 262 265 265 455 262 263 2266 2267 456 263 229 267 267 457 261 265 264 264 458 262 266 265 265 459 263 267 266 266 460 229 228 267 267 461 264 265 268 268 462 265 266 269 269 463 266 267 270 270 463 266 267 270 270 465 265 269 268 268 466 266 270 269 269 466 266 270 270 270 468 228 227 271 271 468 228 227 271 271 470 269 270 273 273 471 270 271 274 274 472 271 227 275 275 473 269 273 272 269 474 270 274 273 273 475 271 275 275 275 476 227 226 275 275 477 334 335 349 349	452	230	229	263	263
454 261 262 265 265 455 262 263 2266 266 456 263 229 267 267 457 261 265 264 264 458 262 266 265 265 459 263 267 266 266 460 229 228 267 267 461 264 265 268 268 462 265 266 269 269 463 266 267 270 270 464 267 228 271 271 465 265 269 268 268 466 266 270 269 269 467 267 271 270 270 468 228 227 271 271 468 228 269 272 269 470 269 270 273 273 471 270 271 274 274 472 271 227 275 275 473 269 273 272 269 474 270 274 273 273 475 271 275 275 275 475 271 275 275 275 476 227 226 275 275 477 334 335 349 349	453	260	261	264	264
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	450	261	262	265	265
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	455	262	263	266	266
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	455	263	229	267	267
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	450	261	265	264	264
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	458	262	266	265	265
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	450	263	267	266	266
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	455	229	228	267	267
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	461	264	265	268	268
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	462	265	266	269	269
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	463	266	267	270	270
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	464	267	228	271	271
466 266 270 269 269 467 267 271 270 270 468 228 227 271 271 469 268 269 272 269 470 269 270 273 273 471 270 271 274 274 472 271 227 275 275 473 269 273 272 269 474 270 271 274 274 475 271 227 275 275 475 271 274 273 273 475 271 275 274 274 475 271 275 274 274 475 271 275 274 274 476 227 226 275 275 477 334 335 349 349	465	265	269	268	268
467 267 271 270 270 468 228 227 271 271 469 268 269 272 269 470 269 270 273 273 471 270 271 274 274 472 271 227 275 275 473 269 273 273 273 474 270 274 273 273 475 271 275 275 275 475 271 275 274 274 475 271 275 274 274 475 271 275 274 274 475 271 275 274 274 476 227 226 275 275 477 334 335 349 349	465	266	270	269	269
468 228 227 271 271 469 268 269 272 269 470 269 270 273 273 471 270 271 274 274 472 271 227 275 275 473 269 273 272 269 474 270 274 275 275 475 271 275 273 273 475 271 275 274 273 475 271 275 274 274 475 271 275 274 274 475 271 275 274 274 476 227 226 275 275 477 334 335 349 349	467	267	271	270	270
469 268 269 272 269 470 269 270 273 273 471 270 271 274 274 472 271 227 275 275 473 269 273 272 269 474 270 274 273 273 474 270 274 273 273 475 271 275 274 273 475 271 275 274 274 475 271 275 274 274 475 271 275 274 274 475 271 275 274 274 476 227 226 275 275 477 334 335 349 349	467	228	227	271	271
403 269 270 273 273 470 269 270 271 274 274 471 270 271 274 274 472 271 227 275 275 473 269 273 272 269 474 270 274 273 273 474 270 274 273 273 475 271 275 274 274 475 271 275 274 274 476 227 226 275 275 477 334 335 349 349	400	268	269	272	269
470 270 271 274 274 471 270 271 275 275 472 271 227 275 275 473 269 273 272 269 474 270 274 273 273 475 271 275 274 274 475 271 275 274 274 476 227 226 275 275 477 334 335 349 349	403	269	270	273	273
472 271 227 275 275 473 269 273 272 269 474 270 274 273 273 475 271 275 274 273 475 271 275 274 274 476 227 226 275 275 477 334 335 349 349	470	270	271	274	274
473 269 273 272 269 473 270 274 273 273 474 270 274 273 273 475 271 275 274 274 476 227 226 275 275 477 334 335 349 349	471	271	227	275	275
474 270 274 273 273 474 270 274 273 273 475 271 275 274 274 476 227 226 275 275 477 334 335 349 349	472	260	273	272	269
474 271 275 274 274 475 271 275 274 274 476 227 226 275 275 477 334 335 349 349	475	270	274	273	273
476 227 226 275 275 477 334 335 349 349	4/4	271	275	274	274
477 334 335 349 349	4/5	227	226	275	275
	4/0	334	335	349	349

ELEM	NODE1	NODE2	NODES	NODE4
478	335	330	279	279
4/9	330	330	270	270
400	340	330	277	277
401	349	279	277	277
402	330	270	279	279
403	337	279	270	270
404	330	340	273	277
405	277	279	292	202
480	278	270	283	283
488	270	330	284	284
400	277	282	348	282
409	278	283	282	282
490	279	284	283	283
492	330	340	284	284
493	347	348	282	282
494	282	283	287	287
495	283	284	288	288
496	284	340	289	289
497	282	287	347	287
498	283	288	287	287
499	284	289	288	288
500	340	341	289	289
501	347	287	346	287
502	287	288	345	288
503	344	288	289	289
504	341	343	289	289
505	345	346	287	287
506	344	345	288	288
507	343	344	289	289
508	341	342	343	343
509	308	273	309	308
510	273	274	296	296
511	274	275	297	297
512	275	226	298	298
513	273	296	309	309
514	274	297	296	296
515	275	298	297	297
516	226	231	298	298
517	309	296	310	310
518	296	297	299	299
519	297	298	300	300
520	298	231	301	301
521	296	299	310	310
522	297	300	299	299
523	298	301	300	300
524	231	236	301	301
525	310	299	311	311
526	299	300	302	302
527	300	301	303	303
528	301	236	304	304
529	299	302	311	311
530	300	303	302	302

ł

•

ELEM	NODE1	NODE2	NODES	NODE4
531	301	304	303	303
532	236	246	304	304
533	311	302	312	312
534	302	303	305	305
535	303	304	306	306
536	304	246	307	307
537	302	305	312	312
538	303	306	305	305
539	304	307	306	306
540	246	251	307	307
541	272	308	280	308
542	308	309	280	309
543	280	309	285	309
544	309	310	285	309
545	285	310	290	310
546	310	311	290	310
547	290	311	295	311
548	311	312	295	311
549	295	305	294	305
550	305	306	313	313
551	306	307	314	314
552	307	251	315	315
553	305	313	294	313
554	306	314	313	314
555	307	315	314	315
556	251	252	315	315
557	294	313	293	313
558	313	314	316	316
559	314	315	317	317
560	315	252	318	318
561	313	316	293	316
562	314	317	316	316
563	315	318	317	317
564	252	253	318	318
565	293	316	292	316
566	316	317	319	319
567	317	318	320	320
568	318	253	321	321
569	316	319	292	319
570	317	320	319	319
571	318	321	320	320
572	253	254	321	321
573	292	319	291	319
574	319	320	322	322
575	320	321	323	323
576	321	254	324	324
577	319	322	291	322
578	320	323	322	322
579	321	324	323	323
580	254	255	324	324
581	291	322	286	322
582	322	323	325	325
583	323	324	326	326

ELEM	NODE1	NODE2	NODES	NODE4
584	324	255	327	327
585	322	325	286	322
586	323	326	325	325
587	324	327	326	326
588	255	250	327	327
589	286	325	281	325
590	325	326	328	328
591	326	327	329	329
592	327	250	330	330
593	325	328	281	325
594	326	329	328	328
595	327	330	329	329
596	250	241	330	330
597	281	328	276	328
598	328	329	331	331
599	329	330	332	332
600	330	241	333	333
601	328	331	276	328
602	329	332	331	331
603	330	333	332	332
604	241	235	333	333
605	276	331	256	331
606	331	332	257	257
607	332	333	258	258
608	333	235	259	259
609	331	257	256	256
610	332	258	257	257
611	333	259	258	258
612	235	230	259	259
613	256	335	334	334
614	260	264	335	335
615	264	268	336	336
616	268	272	337	337
617	349	256	334	334
618	256	260	335 .	335
619	264	336	335	335
620	268	337	336	336
621	272	338	337	337
622	276	256	349	349
623	338	272	339	339
624	272	280	339	339
625	281	276	349	349
. 626	281	349	348	348
627	339	280	340	340
628	280	285	340	340
629	286	281	348	348
630	286	348	347	347
631	340	285	341	341
632	285	290	341	341
633	291	286	347	347
634	291	347	346	346
635	295	342	341	341
636	290	295	341	341

ELEM	NODE1	NODE2	NODE3	NODE4
637	291	346	345	345
638	292	291	345	345
639	344	292	345	345
640	293	292	344	344
641	293	344	343	343
642	294	293	343	343
643	295	294	343	343
644	295	343	342	342
645	226	353	352	352
646	226	227	353	353
647	227	228	353	353
648	228	354	353	353
649	228	229	354	354
650	229	355	354	354
651	229	230	355	355
652	. 230	356	355	355
653	231	226	357	357
654	226	352	357	357
655	356	230	358	358
656	230	235	358	358
657	236	231	357	357
650	236	257	350	350
650	250	225	359	309
059	330	235	300	300
660	235	241	360	300
661	246	236	359	359
662	246	359	361	361
663	360	241	362	362
664	241	250	362	362
665	251	246	361	361
666	251	361	363	363
667	255	367	362	362
668	250	255	362	362
669	251	363	364	364
670	252	251	364	364
671	252	364	365	365
672	253	252	365	365
673	366	253	365	365
674	254	253	366	366
675	255	254	366	366 .
676	255	366	367	367
677	207	245	238	238
678	225	207	238	238
679	225	238	237	237
680	225	237	350	350
681	219	225	350	350
682	219	350	243	243
683	219	243	244	244
684	213	219	244	244
685	213	244	239	239
686	351	213	239	239
687	207	213	351	351
689	350	237	240	240
600	245	351	242	242
009	243	551		

Two Dimensional Model Output

Time Step = 0.003 seconds Convergence Criteria = 0.001

100 C 10 C 10 C			10.00	10.00	MODEL	UNIFIED
UO, cm/sec	Ui, cm/sec	Theta	d, um	D, cm	Eff.	MODEL EFF
250	125	0	5	1.00	1.17	1.0420
250	125	0	40	1.00	1.71	1.7372
500	125	0	5	1.00	1.55	1.2268
500	125	0	40	1.00	3.40	3.5187
1000	125	0	5	1.00	2.39	1.9534
1000	125	0	40	1.00	7.04	7.3689
250	250	0	5	1.00	0.99	1.0000
250	250	0	40	1.00	1.00	1.0000
500	250	0	5	1.00	1.20	1.0806
500	250	0	40	1.00	1.81	1.8487
1000	250	0	5	1.00	1.69	1.4217
1000	250	0	40	1.00	3.58	3.7384
250	500	0	5	1.00	0.89	0.9710
250	500	0	40	1.00	0.64	0.6013
500	500	0	5	1.00	0.99	1.0000
500	500	0	40	1.00	1.00	1.0000
1000	500	0	5	1.00	1.26	1.1492
1000	500	0	40	1.00	1.87	1.9182
250	1000	0	5	1.00	0.82	0.9412
250	1000	0	40	1.00	0.46	0.3665
500	1000	0	5	1.00	0.86	0.9453
500	1000	0	40	1.00	0.60	0.5564
1000	1000	0	. 5	1.00	0.99	1.0000
1000	1000	0	40	1.00	1.00	1.0000
250	125	0	5	0.32	1.25	1.1205
250	125	0	40	0.32	1.83	1.8976
500	125	0	5	0.32	1.83	1.6106
500	125	0	40	0.32	3.72	3.8271
1000	125	0	5	0.32	3.41	3.3106
1000	125	0	40	0.32	7.64	7.7848
250	250	0	5	0.32	0.98	1.0000
250	250	0	40	0.32	0.98	1.0000
500	250	0	5	0.32	1.25	1.2150
500	250	0	40	0.32	1.87	1.9460
1000	250	0	5	0.32	2.05	2.0147
. 1000	250	0	40	0.32	3.82	3.9110
250	500	0	5	0.32	0.85	0.9194
250	500	0	40	0.32	0.58	0.5376
500	500	0	5	0.32	0.98	1.0000
500	500	0	40	0.32	1.00	1.0000
1000	500	0	5	0.32	1.37	1.3540
1000	500	0	40	0.32	1.92	1.9723
250	1000	0	5	0.32	0.76	0.8426
250	1000	0	40	0.32	0.36	0.2917
500	1000	0	5	0.32	0.81	0.8612
500	1000	0	40	0.32	0.54	0.5195

83

•

Two Dimensional Model Output

Time Step = 0.003 seconds Convergence Criteria = 0.001

22.2 1		S. 610	Sec. 6.1		MODEL	UNIFIED
UO, cm/sec	U1, cm/sec	Theta	d, um	D, cm	Eff.	MODEL EFF
1000	1000	0	5	0.32	0.98	1.0000
1000	1000	0	40	0.32	0.99	1.0000
250	125	30	5	0.32	0.87	1.0405
250	125	30	40	0.32	1.28	1.6996
0		30	0	0.32		ERR
500	125	30	40	0.32	2.63	3.4431
0		30	0	0.32		ERR
1000	125	30	40	0.32	5.58	6.9082
250	250	30	5	0.32	0.89	0.9918
250	250	30	40	0.32	0.72	0.8711
500	250	30	5	0.32	0.67	1.0796
500	250	30	40	0.32	1.32	1.7273
0	1000	30	0	0.32		ERR
1000	250	30	40	0.32	2.79	3.4572
250	500	30	5	0.32	0.85	0.9595
250	500	30	40	0.32	0.43	0.4494
500	500	30	5	0.32	0.76	0.9842
500	500	30	40	0.32	0.74	0.8664
0		30	0	0.32	0.74	FRR
1000	500	30	40	0.32	1 55	1 7308
250	1000	30	5	0 32.	0.81	0 9299
250	1000	30	40	0 32	0 30	0 2305
500	1000	30	40	0 32	0.77	0 0241
500	1000	30	40	0.32	0 45	0 4320
1000	1000	30	5	0 32	0.70	0 9704
1000	1000	30	40	0.32	0.81	0.8660
250	125	30	40	1.02	0 70	1 0130
250	125	20	40		0.75	1 5025
250	125	30	40		0.75	1.0025
500	125	20	40	-	0.09	3 1660
1000	125	20	40	-	0.90	1 3050
1000	125	30	40		4 00	6 7622
1000	125	30	40		4.09	0.7022
250	250	30	5		0.95	0.9973
250	250	30	40	1	0.03	1.0260
500	250	30	5	1	0.97	1.0200
500	250	30	40	1	1.05	1.04/4
1000	250	30	0	1	0.53	1.1049
1000	250	30	40	1	2.10	3.3993
250	500	30	5	1	0.90	0.9863
250	500	30	40	1	0.48	0.5927
500	500	30	5	1	0.89	0.9947
500	500	30	40	1	0.66	0.8803
1000	500	30	0	1	0.85	1.0516
1000	500	30	40	1	1.17	1.7150
250	1000	30	5	1	0.87	0.9748
250	1000	30	40	1	0.41	0.4184

84

Two Dimensional Model Output

Time Step = 0.003 seconds Convergence Criteria = 0.001

UO,cm/sec	Ui,cm/sec	Theta	d, um	D, cm	MODEL Eff.	UNIFIED MODEL EFF
500	1000	30	5	1	0.87	0.9733
500	1000	30	40	1	0.45	0.4862
1000	1000	30	5	1	0.86	0.9896
1000	1000	30	40	1	0.69	0.8685
Uo = wind	velocity					
Ui = inlet	velocity					
theta = sa	mpling and	le				
d = partic	le diamete	er				

D = inlet diameter

3D RESULTS FOR DIN = DIAMETER STOKES NUMBER OF EQUAL AREA CIRCLE AND = TO .5555 IS USED TO CALCULATE

INLET AREA: 0.56

BIEM AN TRAJ n IJ AREA = time step convergence R A step /ergence criteria = area Ao in freestream aspiration efficiency from model aspiration efficiency from Hangal (1990)

Two Dimensional Particle Tracking Program

```
THIS PROGRAM COMBINES THE 2 DIMENSIONAL BIEM SOLUTION PROGRAM
C
   WRITTEN BY LIGGET AND LIU (1983) WITH THE ANALYTICAL SOLUTION
C
C
   TO THE PARTICLE EQUATIONS OF MOTION PROPOSED BY ALENIUS
C
   (1989) TO PLOT PARTICLE TRAJECTORIES INTO AN INLET.
C
      IMPLICIT REAL*8(A-H.O-Z)
      DIMENSION RLN(100,100), RN(100,100), F(100), ID(100).
     $TITLE(20),CRITX(2),CRITY(2)
      COMMON H(100,100), RHS(100), N.X(100), Y(100), XXNOW,
     $YYNOW, P(100), PN(100), PN1(5), PN2(5), ICT(100),
     $DPDY(600),DPDX(600),A.L.N1,N2,UO,DIN,DP,THETA,UI,XCRIT
     $, YCRIT, DT, XXNEW, YYNEW, XNOW1, YNOW1
      READ (7.7) TITLE
    7 FORMAT (20A4)
      PRINT 7777, TITLE
 7777 FORMAT (//1X,20A4)
      READ (7.*) KEY
      READ (7,*) N
      MP=N
      N1=1
      IF (KEY .EQ. 1) PRINT 6933.N
 6933 FORMAT(' NUMBER OF NODES =', 13/)
      IF (KEY .EQ. 1) PRINT 6938
 6938 FORMAT('....KEY TO INPUT DATA AND ID NUMBERS....
     1'/' X,Y ARE THE NODAL COORDINATES '/' P.PN ARE THE
     2POTENTIAL AND THE NORMAL DERIVATIVE AT THE NODE')
      IF (KEY .EQ. 1) PRINT 6939
 6939 FORMAT (' ID: IDENTIFIER FOR THE NODAL UNKNOWNS'/.
     1 '
                        =2 FOR P GIVEN'/.
     2 '
                         =3 FOR PN GIVEN'/)
      IF (KEY .EQ. 1) PRINT 6941
 6941 FORMAT(' ICT: NODAL CORNER TYPE IDENTIFIER'/.
                         =1 FOR PN GIVEN APPROACHING NODE'/.
     1'
                        =2 FOR PN GIVEN LEAVING NODE'/.
     2'
     3'
         .....ALL MOVEMENTS IN CLOCWISE SENSE......'/)
С
C
      NODAL DATA I/O
C
6932 L=N+1
      IF (KEY.EQ.1) PRINT 9953
 9953 FORMAT(' POINT',7X, 'X-COOD',6X, 'Y-COOD',5X,
     1'POTENTIAL', 3X, 'NORM DERV', 3X, 'ID', 8X, 'ICT')
      DO 6946 I=2.L
      READ (7,*) X(I).Y(I).P(I).PN(I).ID(I).ICT(I)
      IM1=I-1
 6946 IF (KEY.EQ.1) PRINT 9950. IM1.X(I),Y(I),P(I),PN(I),
     $ID(I), ICT(I)
 9950 FORMAT(15,5X,F10.4,2X,F10.4,2X,F10.4,2X,F10.4,2X,I5,
     15X.I5)
C
```

```
С
                                 CLEARING THE GLOBAL MATRIX
C
                  DO 17 I=1.N
                  DO 16 J=1,L
         16 H(I,J)=0.0
         17 F(I)=0.0
С
С
                                 BOUNDARY INTEGRATION
С
                  X(1) = X(L)
                  X(L+1)=X(2)
                  Y(1) = Y(L)
                  Y(L+1)=Y(2)
                  DO 200 I=2.L
                  II1=1
                  II2=1
                  PNJP=0.0
                  PJP=0.0
                  DO 140 J=2.L
                  IF(I.EQ.J) GOTO 130
                  IF(I.EQ.J+1) GOTO 135
                  IF(J.NE.L) GOTO 98
                  IF(I.EQ.2) GO TO 135
        98 R1=DSQRT((X(J+1)-X(J))**2+(Y(J+1)-Y(J))**2)
                  CO=(X(J+1)-X(J))/R1
                  SI = (Y(J+1) - Y(J))/R1
                 XIA=(Y(J)-Y(I))*SI+(X(J)-X(I))*CO
                  XIB=(Y(J+1)-Y(I))*SI+(X(J+1)-X(I))*CO
                 ETA=DABS((Y(I)-Y(J))*CO-(X(I)-X(J))*SI)
      100 IF(ETA.LT.1.E-5) GO TO 102
                 BTN=DATAN(XIB/ETA)
                  ATN=DATAN(XIA/ETA)
      105 ASQ=XIA**2+ETA**2
                 ALN=DLOG(ASQ)
                 BSQ=XIB**2+ETA**2
      106 BLN=DLOG(BSQ)
      107 ONE=BSQ*(BLN-1.)-ASQ*(ALN-1.)
                  TWO=XIB*BLN-XIA*ALN-2.*(XIB-XIA)+2.*ETA*(BTN-ATN)
                  SIGNRN = -(X(J) - X(I)) * (Y(J+1) - Y(J)) + (X(J+1) - X(J)) * (Y(J) + X(J)) * (Y(J)) * (Y(J) + X(J)) * (Y(J)) * (Y(J)
               $Y(I))
                 PJ=(XIB*(BTN-ATN)-.5*ETA*(BLN-ALN))/(XIB-XIA)
                  PJ=DSIGN(PJ,SIGNRN)
                  XBXA=DABS(XIB-XIA)
                  PNJ=TWO*XIB/(2.*XBXA)-ONE/(4.*XBXA)
                  IF(ICT(J).NE.1) GOTO 321
                  PN1(II1)=PN(J)
                  F(I-1)=F(I-1)+PNJP*PN(J)
                  II1=II1+1
                  PNJP=0.0
      321 IF(ICT(J).NE.2) GOTO 432
                  F(I-1)=F(I-1)+PNJ*PN(J)
                  PN2(II2) = PN(J)
                  II2=II2+1
                  PNJ=0.0
```

```
•
```

```
432 RN(I, J)=PJ+PJP
    RLN(I.J)=PNJ+PNJP
    PJP=(ETA*(BLN-ALN)*0.5-XIA*(BTN-ATN))/(XIB-XIA)
    PJP=DSIGN(PJP,SIGNRN)
    PNJP=ONE/(4.*XBXA)-TWO*XIA/(2.*XBXA)
    GO TO 140
102 BTN=0.0
    ATN=0.0
    GO TO 105
130 ALN=0.0
    BTN=0.0
    ATN=0.0
    XIB=DSQRT((X(I+1)-X(I))**2+(Y(I+1)-Y(I))**2)
    XIA=0.0
    ETA=0.0
    ASQ=0.0
    BSQ=XIB**2
    GO TO 106
135 XIA=-DSQRT((X(I)-X(J))**2+(Y(I)-Y(J))**2)
    BTN=0.0
    ATN=0.0
    XIB=0.0
    BLN=0.0
    BS0=0.0
    ASQ=XIA**2
    ALN=DLOG(ASQ)
    ETA=0.0
    GOTO 107
140 CONTINUE
   RN(I,2)=RN(I,2)+PJP
    IF(ICT(2).NE.1) GOTO 544
    F(I-1) = F(I-1) + PNJP * PN1(1)
    PNJP=0.0
544 RLN(I,2)=RLN(I,2)+PNJP
    ALPHA=(((X(I)-X(I-1))**2+(Y(I)-Y(I-1))**2+
   $(X(I)-X(I+1))**2+(Y(I)-Y(I+1))**2-(X(I+1)-
   $ X(I-1))**2-(Y(I+1)-Y(I-1))**2)/(2.*DSQRT(((X(I)
   $-X(I-1))**2+(Y(I)-Y(I-1))**2)*((X(I)-X(I+1
   $))**2+(Y(I)-Y(I+1))**2)))
    IF(DABS(ALPHA).LT.0.9999) GOTO 141
    ALPHA=3.14159265
    GOTO 170
141 ALPHA=DACOS(ALPHA)
    IF (DABS(X(I)-X(I-1)).GT.1.E-5) GOTO 144
    IF(Y(I).LT.Y(I-1)) GOTO 142
    IF(X(I+1).LT.X(I))ALPHA=6.28318531-ALPHA
    GOTO 170
142 IF (X(I+1).GT.X(I))ALPHA=6.28318531-ALPHA
    GOTO 170
144 A=(Y(I-1)-Y(I))/(X(I-1)-X(I))
    B=Y(I)-A*X(I)
    YA=A*X(I+1)+B
    IF(Y(I) .LT. Y(1-1)) GOTO 150
    IF(X(I) .LT. X(I-1)) GOTO 146
```

```
IF(YA .LT. Y(I+1))ALPHA=6.28318531-ALPHA
      GOTO 170
  146 IF(YA .GT. Y(I+1))ALPHA=6.28318531-ALPHA
      GOTO 170
  150 IF(X(I) .GT. X(I-1)) GOTO 152
      IF(YA .GT. Y(I+1))ALPHA=6.28318532-ALPHA
      GOTO 170
  152 IF(YA .LT. Y(I+1))ALPHA=6.28318531-ALPHA
  170 RN(I.I) =- ALPHA
  200 CONTINUE
   13 FORMAT(//)
С
С
       ASSEMBLING THE GLOBAL EQUATIONS
C
      DO 1000 I=1.N
      DO 2000 J=1.N
      IF(ID(J+1) .EQ. 2)H(I,J)=-RLN(I+1,J+1)
      IF(ID(J+1) . EQ. 3)H(I,J)=RN(I+1,J+1)
 2000 CONTINUE
С
C
       COMPUTING R-H-S VECTOR
C
      A=0.0
      DO 2001 J=1,N
      IF(ICT(J) .NE. 0)PN(J+1)=0.0
 2001 A=A-P(J+1)*RN(I+1,J+1)+PN(J+1)*RLN(I+1,J+1)
      H(I,L)=A+F(I)
 1000 CONTINUE
С
С
        SOLVING GLOBAL EQS FOR NODAL UNKNOWNS
č
      CALL EQSOL
С
С
        ALLOCATING EACH SOLUTION TO THE PROPER NODAL UNKNOWN
C
      JJ1=1
      DO 8003 J=2,L
      IF(ID(J) .EQ. 2) GOTO 8005
      P(J)=RHS(JJ1)
      JJ1=JJ1+1
      GOTO 8003
 8005 PN(J)=RHS(JJ1)
      JJ1=JJ1+1
 8003 CONTINUE
С
       OUTPUT BOUNDARY SOLUTION
С
C
      WRITE (6,13)
      WRITE (6,30)
   30 FORMAT('....COMPUTED RESULTS...
      do 7654 j=2,1
      write (6,*) j-1,pn(j),p(j)
 7654 continue
C
```

```
C
       PERFORM TRAJECTORY CALCULATION
С
С
      INPUT PARTICLE AND AIRSTREAM VARIABLES AND CONV. PARAMETERS
С
      DO 4000 K=1.2
         IF (K .EQ. 1) THEN
         A=1.
         ELSE IF (K .EQ. 2) THEN
         A=-1.
         ELSE
         ENDIF
         CALL PART
         CRITX(K)=XCRIT
         CRITY(K)=YCRIT
 4000 CONTINUE
      EFF =(((CRITX(1)-CRITX(2))**2+(CRITY(1)-CRITY(2))**2)**.5
     $*(-1)*U0)/(UI*DIN)
      WRITE (3.*) UO.UI.DP.DIN.THETA.EFF
      PRINT *, EFF
      STOP
      END
С
c
        LINEAR EQUATION SOLVER SUBROUTINE
C
      SUBROUTINE EQSOL
      IMPLICIT REAL *8(A-H.O-Z)
      DIMENSION M(100)
      COMMON A(100,100),X(100),N,X1(100),Y(100),XXNOW,
     $YYNOW,P(100),PN(100),PN1(5),PN2(5),ICT(100),
     $DPDY(600).DPDX(600).A1.L.N1.N2.UO.DIN.DP.THETA.UI
     $.XCRIT.YCRIT.DT.XXNEW.YYNEW.XNOW1.YNOW1
      DO 5 I=1.N
      M(I) = 1
      AMAX=A(I.1)
      DO 2 J=2.N
      IF(DABS(A(I,J)) .LE. DABS(AMAX)) GOTO 2
  100 AMAX=A(I.J)
      M(I)=J
    2 CONTINUE
      IF (AMAX .EQ. 0) GOTO 98
    3 NN=N+1
      DO 4 J=1.NN
    4 A(I.J) = A(I.J) / AMAX
      DO 5 IP=1.N
      IF(IP .EQ. I) GOTO 5
      MMM=M(I)
      ZMULT=A(IP,MMM)
      DO 6 J=1.NN
      IF(J .NE. MMM) GOTO 9
    8 A(IP, J)=0.0
      GOTO 6
    9 A(IP,J)=A(IP,J)-ZMULT*A(I,J)
    6 CONTINUE
    5 CONTINUE
```

```
DO 7 I=1.N
   NO=M(I)
 7 X(NO)=A(I,NN)
   RETURN
98 CONTINUE
   STOP
```

END

C C

С С

С С

С

C

C

С

С

С

c

c

CCC

С

C

SUBROUTINE FOR PARTICLE TRAJ. CALC., 2D

SUBROUTINE PART IMPLICIT REAL *8(A-H.O-Z) DIMENSION DPDXOL(600), DPDYOL(600), MAXI(150) COMMON H(100,100), RHS(100), N, X(100), Y(100), XXNOW, \$YYNOW,P(100),PN(100),PN1(5),PN2(5),ICT(100). \$DPDY(600), DPDX(600), A, L, N1, N2, UO, DIN, DP, THETA, UI \$.XCRIT, YCRIT, DT, XXNEW, YYNEW, XNOW1, YNOW1

VARIABLE IDENTIFICATION

UO = INITIAL FREE STREAM VELOCITY G = GRAVITYDP = PARTICLE DIAMETER, CM AV = AIR VISCOSITY DIN = INLET DIAMETER DT = TIME STEP LENGTH PDENS = PARTICLE DENSITY ADENS = AIR DENSITY VR = PARTICLE RELATIVE VELOCITY RE = REYNOLDS NUMBER DPDX. DPDY = AIR VELOCITY COMPONENTS VXP, VYP = PARTICLE VELOCITY COMPONENTS XX. YY = PARTICLE LOCATION COORDINATES THETA = NOZZLE ANGLE

```
READ (8,*) UO, DP, DIN, DT, THETA, UI, XDIN
READ (8.*) CVC
PRINT *, UO, DP, DIN, DT, THETA, UI, XDIN, CVC
G=-980.
dt1=dt
AV=.000183
PDENS=1.0
ADENS=.001205
DPL=10000.0*DP
CC=1+((2.*0.07/DPL)*(1.257+(0.4*EXP(-0.55*DPL/0.07))))
TAU=(DP**2*PDENS*CC)/(18*AV)
THETA1=-.01745277*THETA
THETA=.01745277*THETA
GX=G*SIN(THETA)
GY=G*COS(THETA)
MANY=599
NMANY=50
N2=0
IF (A .GT. 0.) THEN
```

```
YYNOW=XDIN*DIN*SIN(THETA1)
 XXNOW=XDIN*DIN*COS(THETA)
 ELSE
 YYNOW= XDIN*DIN*SIN(THETA1)+(.67*XDIN*DIN*COS(THETA)*A)
 XXNOW=XDIN*DIN*COS(THETA)+(.67*XDIN*DIN*SIN(THETA)*A)
 ENDIF
NCAPF=0
 IF (A .GT. 0) NFCAP=0
NMISS=0
CONV=9999
N1=1
PARTICLE POSITION AND VELOCITY COMPONENTS
DO 5000 J=1.NMANY
    NCAP=0
    N1 = 1
    N2=N2+1
    DO 4300 I=1.MANY
       CALL INSOLN
         IF (I .EQ. 1) THEN
            VXNOW=DPDX(I)+(TAU*GX)
            VYNOW=DPDY(I)+(TAU*GY)
         ENDIF
       VR=((VXNOW-DPDX(I))**2+(VYNOW-DPDY(I))**2)**0.5
       RE=VR*DP*ADENS/AV
       IF (RE .LE. 0.5) THEN
          QRE=1
       ELSE IF ((RE .GT. 0.5) .AND. (RE .LE. 800.)) THEN
          QRE=1+(0.15*RE**0.687)
       ELSE
          QRE=0.44*RE/24
       ENDIF
       IF (I .EQ. 1) THEN
          DPDXOL(I)=DPDX(I)
          DPDYOL(I)=DPDY(I)
       ELSE
          DPDXOL(I)=DPDX(I-1)
          DPDYOL(I)=DPDY(I-1)
       ENDIF
       if ((xxnow .1t. 1.5*din) .and. (xxnow .gt. -1.5*din)
$
       .and. (yynow .lt. 1.5*din) .and.
       (yynow .gt. -1.5*din)) then
$
          dt=dt1/10.
       else
          dt = dt1
       endif
       UAX=(DPDX(I)-DPDXOL(I))/DT
       UAY=(DPDY(I)-DPDYOL(I))/DT
       UBX=DPDX(I)-((UAX-GX)*(TAU/QRE))
       UBY=DPDY(I)-((UAY-GY)*(TAU/QRE))
       VXNEW=(UAX*DT)+UBX-((UBX-VXNOW)*
         EXP(-QRE*DT/TAU))
```

CCC

		VYNEW=(UAY*DT)+UBY-((UBY-VYNOW)*
	\$	EXP(-QRE*DT/TAU))
	1.0	XXNEW=XXNOW+(UAX/2*DT**2)+(UBX*DT)-
	\$	((UBX-VXNOW)*(TAU/QRE)*(1-EXP(-QRE*DT/TAU)))
		YYNEW=YYNOW+(UAY/2*DT**2)+(UBY*DT)-
	\$	((UBY-VYNOW)*(TAU/QRE)*(T-EXP(-QRE*DT/TAU)))
		IF (I .EQ. I) THEN
		ENDIE
		WRITE (4 5002) XXNOW YYNOW
5002		FORMAT (2F15, 10)
		IF (XXNEW .LT1.1*XDIN/2*DIN) THEN
		NCAP=2
		PRINT *. 'PARTICLE EXIT REAR BOUNDARY, MISS'
		GOTO 4301
		ELSE IF ((YYNEW .GT. 1.1*XDIN*DIN) .OR. (YYNEW .LT.
	\$	-1.1*XDIN*DIN)) THEN
		NCAP=2
		PRINT *, 'PARTICLE EXIT TOP/BOTTOM, MISS'
		GOTO 4301
		ELSE IF ((XXNEW .LT. 0.0) .AND. (XXNOW .GT. 0.0)
	\$.AND. (ABS(YYNEW) .LT. DIN/2)) THEN
		PRINT *. 'CAPTURE AT FACE'
		(ADS(YVNOW) GT DIN(2) AND (YVNEW IT O))
	*	(ABS(TTNOW) .GT. DIN/2) .AND. (XXNEW .LT. U))
	₽	NCAP=2
		PRINT * 'CONTACT TURE MISS'
		GOTO 4301
		ELSE
		NCAP=0
		ENDIF
		N1=N1+1
		XXNOW=XXNEW
		YYNOW=YYNEW
		VXNOW=VXNEW
1.0		VYNOW=VYNEW
4300		CONTINUE
		PRINT *, 'ERROR, DID NOT EXIT LOOP'
		PRINT *, XNOWI, YNOWI, NI
4301		CONTINUE
		MAXI(J)=NI
		COTO 50
		ELCE TE (NCAD FO 1) THEN
		NECAP=1
		YCAP=YNOW1
		XCAP=XNOW1
		YYNOW=YNOW1+(.67*XDIN*DIN*COS(THETA))
		XXNOW=XNOW1-((YNOW1-YYNOW)*TAN(THETA))
		GOTO 4999

```
ELSE IF ((NCAP .EQ. 2) .AND. (YYNOW .LE. -DIN/2.)) THEN
            YYNOW=YNOW1+(.1*DIN)
            XXNOW=XNOW1+((YYNOW-YNOW1)*TAN(THETA))
            GOTO 4999
         ELSE IF ((NCAP .EQ. 2) .AND. (YYNOW .GE. DIN/2.)) THEN
            YYNOW=YNOW1-(.1*DIN)
            XXNOW=XNOW1-((YNOW1-YYNOW)*TAN(THETA))
            GOTO 4999
         ELSE
         ENDIF
         IF (NMISS .GT. 0) THEN
 50
            GOTO 10
         ELSE IF (NCAP .EQ. 2) THEN
            NMISS=1
            YMISS=YNOW1
            XMISS=XNOW1
            GOTO 10
        ELSE IF (NCAP .EQ. 1) THEN
            YYNOW=YNOW1+(A*.1*DIN)
            XXNOW=XNOW1+((YYNOW-YNOW1)*TAN(THETA))
            XDIN=XDIN+(.1*XDIN)
            GOTO 4999
         ELSE
         ENDIF
         IF (NCAP .EQ. 1) THEN
            YCAP=YNOW1
            XCAP=XNOW1
         ELSE IF (NCAP .EQ. 2) THEN
            YMISS=YNOW1
            XMISS=XNOW1
         ELSE
         ENDIF
         CONV=((XMISS-XCAP)**2+(YMISS-YCAP)**2)**.5
         IF (YCAP .GT. YMISS) THEN
            YYNOW=(CONV/2*COS(THETA))+YMISS
            XXNOW=(CONV/2*SIN(THETA))+XMISS
         ELSE IF (YMISS .GT. YCAP) THEN
            YYNOW=(CONV/2*COS(THETA))+YCAP
            XXNOW=(CONV/2*SIN(THETA))+XCAP
         ELSE
         ENDIF
         IF (CONV .LT. CVC) THEN
          XCRIT=XXNOW
          YCRIT=YYNOW
          GOTO 5001
          ELSE
         ENDIF
         PRINT *, N2.NCAP, YNOW1, DPDX(1), DPDY(1)
4999
5000
      CONTINUE
               'TRAJECTORIES HAVE CONVERGED'
      PRINT *,
5001
      PRINT *, UO, DP, DIN, THETA, XCRIT, YCRIT
      RETURN
      STOP
      END
```

```
С
č
      SUBROUTINE TO CALC. VELOCITY AT PARTICLE LOCATION
C
      SUBROUTINE INSOLN
      IMPLICIT REAL *8(A-H.O-Z)
      DIMENSION U(600)
      COMMON H(100,100), RHS(100), N, X(100), Y(100), XXNOW.
     $YYNOW, P(100), PN(100), PN1(5), PN2(5), ICT(100),
     $DPDY(600),DPDX(600),A,L,N1,N2,UO,DIN,DP,THETA.UI.
     $XCRIT, YCRIT, DT, XXNEW, YYNEW, XNOW1, YNOW1
C
С
      PERFORMING BOUNDARY INTEG. FOR INTERNAL SOLUTION
Ċ
      DO 4200 I=N1.N1
      II1=1
      II2=1
      U(I)=0.0
      DPDX(1)=0.0
      DPDY(1)=0.0
      PNJP=0.0
      PNXJP=0.0
      PNYJP=0.0
      PJP=0.0
      PXJP=0.0
      PYJP=0.0
      DO 4140 J=2.L
      R2=DSQRT((X(J+1)-X(J))**2+(Y(J+1)-Y(J))**2)
      CO=(X(J+1)-X(J))/R2
      SI = (Y(J+1) - Y(J))/R2
      ETA=DABS((YYNOW-Y(J))*CO-(XXNOW-X(J))*SI)
      XIA=(Y(J)-YYNOW)*SI+(X(J)-XXNOW)*CO
      XIB = (Y(J+1) - YYNOW) * SI + (X(J+1) - XXNOW) * CO
      XBXA=XIB-XIA
      SIGNRN = -(X(J) - XXNOW) * (Y(J+1) - Y(J)) + (X(J+1) - X(J)) * (Y(J))
     $ -YYNOW)
      IF (SIGNRN .LT. 0)ETA=-ETA
      IF(DABS(ETA) .LT. 1.E-5) GOTO 4102
      BTN=DATAN(XIB/ETA)
      ATN=DATAN(XIA/ETA)
      GOTO 4105
 4102 BTN=0.0
      ATN=0.0
 4105 ASQ=XIA**2+ETA**2
      ALN=DLOG(ASQ)
      BSQ=XIB**2+ETA**2
      BLN=DLOG(BSQ)
      ONE=BSO*(BLN-1.)-ASQ*(ALN-1.)
      TWO=XIB*BLN-XIA*ALN-2.*(XIB-XIA)+2.*ETA*(BTN-ATN)
      PJ=(XIB*(BTN-ATN)-0.5*ETA*(BLN-ALN))/(XIB-XIA)
      PXJ=(-0.5*SI*(BLN-ALN+2.)-CO*(BTN-
     $ATN)+SI*(ETA**2+XIA*XIB)/ASQ)/(XIB-XIA)+ETA*CO/ASQ
      PYJ=(0.5*CO*(BLN-ALN+2.)-SI*(BTN- ATN)-CO*(ETA**2+XIA*
     $XIB)/ASQ)/(XIB-XIA)+ETA*SI/ASQ
```

PNJ=TWO*XIB/(2.*XBXA)-ONE/(4.*XBXA)

```
•
```

```
PNXJ=-CO+((ETA*CO-XIB*SI)*(BTN-ATN)+0.5*(XIB*CO+ETA
    $*SI)*(BLN-ALN))/XBXA
     PNYJ=-SI+((ETA*SI+XIB*CO)*(BTN-ATN)+0.5*(XIB*SI-
    $ETA*CO)*(BLN-ALN))/XBXA
     IF(ICT(J) .NE. 1) GOTO 4321
     U(I)=U(I)-PNJP*PN1(II1)
     DPDX(I)=DPDX(I)+PNXJP*PN1(II1)
     DPDY(I)=DPDY(I)+PNYJP*PN1(II1)
     II1=II1+1
     PNJP=0.0
     PNXJP=0.0
     PNYJP=0.0
4321 IF(ICT(J) .NE. 2) GOTO 4322
     U(I)=U(I)-PNJ*PN2(II2)
     DPDX(I)=DPDX(I)+PNXJ*PN2(II2)
     DPDY(I)=DPDY(I)+PNYJ*PN2(II2)
     I-I2=I12+1
     PNJ=0.0
     PNXJ=0.0
     PNYJ=0.0
4322 U(I)=U(I)+(PJ+PJP)*P(J)-(PNJ+PNJP)*PN(J)
     DPDX(I) = DPDX(I) + (PXJ+PXJP) * P(J) + (PNXJ+PNXJP) * PN(J)
     DPDY(I) = DPDY(I) + (PYJ+PYJP) * P(J) + (PNYJ+PNYJP) * PN(J)
     PJP=(ETA*(BLN-ALN)*0.5-XIA*(BTN-ATN))/(XIB-XIA)
     PXJP=(0.5*SI*(BLN-ALN-2.)+CO*(BTN-ATN)+SI*(ETA**2+
    $XIA*XIB)/BSQ)/(XIB-XIA)-ETA*CO/BSQ
     PYJP=(-0.5*CO*(BLN-ALN-2.)+SI*(BTN-ATN)-CO*(ETA**2+
    $XIA*XIB)/BSQ)/(XIB-XIA)-ETA*SI/BSQ
     PNJP=ONE/(4.*XBXA)-TWO*XIA/(2.*XBXA)
     PNXJP=CO+((-ETA*CO+XIA*SI)*(BTN-ATN)-0.5*(XIA*CO+ETA*
    $SI)*(BLN-ALN))/XBXA
     PNYJP=SI+(~(ETA*SI+XIA*CO)*(BTN-ATN)-0.5*(XIA*SI-ETA*
    $ CO)*(BLN-ALN))/XBXA
4140 CONTINUE
     U(I)=U(I)+PJP*P(2)
     DPDX(I) = DPDX(I) + PXJP*P(2)
     DPDY(I)=DPDY(I)+PYJP*P(2)
     IF(ICT(2) .NE. 1) GOTO 4195
     U(I)=U(I)-PNJP*PN1(1)
     DPDX(I)=DPDX(I)+PNXJP*PN1(1)
     DPDY(I)=DPDY(I)+PNYJP*PN1(1)
     PNJP=0.0
    PNXJP=0.0
     PNYJP=0.0
4195 CONTINUE
     U(I)=U(I)-(PNJP*PN(2))
     DPDX(I)=DPDX(I)+PNXJP*PN(2)
     DPDY(I)=DPDY(I)+PNYJP*PN(2)
     U(I)=U(I)/6.283185308
     DPDX(I)=DPDX(I)/6.283185308
     DPDY(I)=DPDY(I)/6.283185308
4200 CONTINUE
     RETURN
     END
```

Three Dimensional Model Programs:

PROGRAM 4PTGQ.F

00000	THIS IS A PROGRAM TO CALCULATE THE THREE DIMENSIONAL VELOCITY FIELD INTO LOCAL EXHAUST OPENINGS USING THE BIEM METHOD. WRITTEN BY MIKE FLYNN IN CONJUNCION WITH CASEY MILLER IN MARCH 1988
c	
	IMPLICIT REAL*8(A-H,O-Z) DIMENSION PHI(367),DPHI(367),ALPHA(367). 1ID(367),PREV(3),AE(691),VX(100),VY(100),VZ(100),R(367), 2H(367,367),U(367),X(367),Y(367),Z(367),NE(691.4),ICT(367). 3XX(100),YY(100),ZZ(100),ALTDPHI(691,3)
ccc	OPEN (5,FILE='INPUT.DAT') OPEN (3,FILE='INDAT2') OPEN (6,FILE='PRN') READ (5,*) N READ (5,*) M
	LL=N+1
.1001	DO 1001 I=1.N READ (5,*) X(I), Y(I), Z(I), PHI(I), DPHI(I), ID(I), ICT(I) CONTINUE READ (5,*)((NE(I,II),II=1,4),I=1,M) PRINT *, NE(691,1), NE(691,2), NE(691,3), NE(691,4)
c	CLOSE (3)
000000000	THE I LOOP GENERATES VALUES FOR THE COEFFICIENT MATRIX H AND THE KNOWN COLUMN VECTOR R. DIFFERENT VALUES FOR I CORRESPOND TO THE BASE POINT BEING POSITIONED AT A DIFFERENT NODE. VALUES FOR THE UNKNOWN COLUMN VECTOR U ARE ALLOCATED DEPENDING ON THE ID CODE AT THE START OF THE LOOP
C	DO 10 I=1,N R(I)=0.0 DO 20 J=1,N H(I,J)=0.0
20	CONTINUE DO 100 I=1.N IF(ID(I).EQ.1) THEN U(I)=DPHI(I)
	ELSE U(I)=PHI(I) ENDIF ALPHA(I)=0.0

C THE J LOOP CONTAINS THE SUMMATIONS OVER EACH ELEMENT C C INITIALLY THE AREA OF THE JTH ELEMENT IS CALCULATED C THIS IS AE(J). C DO 200 J=1.M DY21=Y(NE(J,2))-Y(NE(J,1))DY31=Y(NE(J,3))-Y(NE(J,1))DZ21=Z(NE(J.2))-Z(NE(J.1)) DZ31=Z(NE(J,3))-Z(NE(J,1))DX21=X(NE(J,2))-X(NE(J,1))DX31=X(NE(J,3))-X(NE(J,1))AE1=DY21*DZ31-DZ21*DY31 AE2=DZ21*DX31-DX21*DZ31 AE3=DX21*DY31-DY21*DX31 AE(J)=0.5*(DSQRT(AE1**2+AE2**2+AE3**2)) ASUM=0.0 C С C THE K LOOP CALLS THE PROGRAMS THAT PERFORM THE BOUNDARY С INTEGRATIONS FOR A SINGLE TRIANGULAR ELEMENT, SPINT C IS USED IF THE BASE POINT COINCIDES WITH THE ELEMENT C NODE THAT IS BEING CONSIDERED, GQUAD IS THE STANDARD C GAUSSIAN QUADRATURE. BOTH PROGRAMS RETURN A AND B. С C DO 300 K=1.3 IF(I.EQ.NE(J.K)) THEN CALL SPINT ELSE CALL GOUAD ENDIF IF(ID(NE(J.K)).EQ.1.AND.ICT(NE(J.K)).EQ.0) THEN H(I,NE(J,K))=H(I,NE(J,K))-BR(I)=R(I)-A*PHI(NE(J,K))ELSEIF(ICT(NE(J,K)).EQ.1.AND.ID(NE(J,K)).EQ.1.AND. \$ ID(NE(J,4)).EQ.2) THEN H(I,NE(J,K))=H(I,NE(J,K))R(I)=R(I)+B*DPHI(NE(J,4))-A*PHI(NE(J,K))ALTDPHI(J,K)=DPHI(NE(J,4)) ELSEIF(ICT(NE(J.K)).EQ.1.AND.ID(NE(J.K)).EQ.1.AND. \$ID(NE(J.4)).EQ.1) THEN H(I,NE(J,K))=H(I,NE(J,K))-BR(I)=R(I)-A*PHI(NE(J,K))ELSE H(I,NE(J,K))=H(I,NE(J,K))+A R(I)=R(I)+B*DPHI(NE(J,K))ENDIF ASUM=ASUM+A C C 300 CONTINUE ALPHA(I) =- ASUM+ALPHA(I)

200 CONTINUE


```
IF(ID(I).EQ.1) THEN
       R(I)=R(I)-ALPHA(I)*PHI(I)
      ELSE
       H(I,I)=H(I,I)+ALPHA(I)
      ENDIF
  100 CONTINUE
      DO 111 I=1.N
      H(I,LL)=R(I)
  111 CONTINUE
      CALL EQSOL
С
С
      AFTER RETURNING FROM EQSOL U(I) HAS BEEN WRITTEN
C
      OVER WITH THE SOLUTIONS, THESE ARE THEN ALLOCATED TO
C
      PHI(I) OR DPHI(I) AS FOLLOWS:
C
C
       OPEN (4, FILE='BOUND.OUT')
      DO 1000 I=1.N
      IF(ID(I).EQ.1) THEN
      DPHI(I)=U(I)
      ELSE
      PHI(I)=U(I)
      ENDIF
      WRITE (6,678) X(I),Y(I),Z(I),PHI(I),DPHI(I),ID(I),ICT(I)
      FORMAT (F15.5,',',F15.5,',',F15.5,',',F15.5,',',F15.5,','
678
 $15.'.'.15)
1000 CONTINUE
С
       CLOSE (4)
С
C
      READ IN THE INTERNAL POINTS FOR VELOCITY CALCULATIONS
С
      READ (5.*) NN
      DO 222 I=1.NN
      READ (5.*) XX(I). YY(I). ZZ(I)
  222 CONTINUE
С
С
      DECLARE AND INITIALIZE
C
      DO 1100 I=1.NN
      PVX=0.0
      PVY=0.0
      PVZ=0.0
      DO 2000 J=1.M
      PREVX=0.0
      PREVY=0.0
      PREVZ=0.0
      DO 3000 K=1.3
      DO 4000 L=1.3
      CALL INTERGQ
      IF(ICT(NE(J,K)).EQ.1.AND.ID(NE(J,K)).EQ.1
     $.AND.ID(NE(J.4)).EQ.2) THEN
       DPHIDE=ALTDPHI(J.K)
      ELSE
       DPHIDE=DPHI(NE(J,K))
      ENDIF
```

```
PREV(L)=(A*PHI(NE(J,K))-B*DPHIDE)
4000 CONTINUE
     PREVX=PREVX+PREV(1)
     PREVY=PREVY+PREV(2)
     PREVZ=PREVZ+PREV(3)
3000 CONTINUE
     PVX=PVX+PREVX
     PVY=PVY+PREVY
    PVZ=PVZ+PREVZ
2000 CONTINUE
    COEF1=-0.079577471
     VX(I)=COEF1*PVX
    VY(I)=COEF1*PVY
    VZ(I)=COEF1*PVZ
1100 CONTINUE
    OUTPUT INTERNAL DATA TO FILE
    print *, 'internal velocities:'
     OPEN (4, FILE='INT.OUT')
    DO 444 I=1.NN
    WRITE (6,*) VX(I),VY(I),VZ(I)
444 CONTINUE
     CLOSE (4)
    CONTINUE
    STOP
    END
    SUBROUTINE GOUAD
    IMPLICIT REAL*8(A-H.O-Z)
    DIMENSION W(13), CHI(13), ETA(13), F(13),
   1H(367,367),U(367),X(367),Y(367),Z(367),
   2NE(691,4),XX(100),YY(100),ZZ(100),AE(691)
    COMMON H,U,MP,X,Y,Z,NE,XX,YY,ZZ,I,J,K,L,A,B,AE
    A=0.D00
    B=0.000
    W(2)=.520833333333333333
    W(3) = W(2)
    W(4) = W(2)
    CHI(2)=.6000000000000000
    CHI(3)=.200000000000000
    CHI(4)=CHI(3)
    ETA(1)=CHI(1)
    ETA(2) = CHI(3)
    ETA(3) = CHI(2)
    ETA(4) = CHI(3)
    DO 4400 II=1.4
     IF(K.EQ.1) THEN
     F(II)=CHI(II)
    ELSEIF (K.EQ.2) THEN
```

CCC

c

С

C


```
F(II)=ETA(II)
      ELSE
       F(II)=1.D00-ETA(II)-CHI(II)
      ENDIF
      A1=(X(NE(J.1))*CHI(II)+X(NE(J.2))*ETA(II)+X(NE(J.3))
     $*(1.D00-CHI(II)-ETA(II))-X(I))
      B1=(Y(NE(J.1))*CHI(II)+Y(NE(J.2))*ETA(II)+Y(NE(J.3))
     $*(1.D00-CHI(II)-ETA(II))-Y(I))
      C1=(Z(NE(J,1))*CHI(II)+Z(NE(J,2))*ETA(II)+Z(NE(J,3))
     $*(1.D00-CHI(II)-ETA(II))-Z(I))
      R=DSQRT(A1**2+B1**2+C1**2)
      FF=F(II)*(1.D00/R)*W(II)
      B=B+FF
      IF(I.EQ.NE(J,1).OR.I.EQ.NE(J,2).OR.I.EQ.NE(J,3)) THEN
       GOTO 4400
      ELSE
       CONTINUE
      ENDIF
      AY1=Y(NE(J,1))-B1-Y(I)
      AY2=Y(NE(J,2))-B1-Y(I)
      AZ1=Z(NE(J,1))-C1-Z(I)
      AZ2=Z(NE(J,2))-C1-Z(I)
      AX1=X(NE(J,1))-A1-X(I)
      AX2=X(NE(J,2))-A1-X(I)
      A2=AY1*AZ2-AZ1*AY2
      B2=AZ1*AX2-AX1*AZ2
      C2=AX1*AY2-AY1*AX2
      G1=A1*A2+B1*B2+C1*C2
      G2=DSORT (A2**2+B2**2+C2**2)
      G=F(II)*W(II)*(-G1/(R**3*G2))
      A=A+G
 4400 CONTINUE
      A=AE(J)*A
      B=AE(J)*B
      RETURN
      END
С
      NOTE THE SIGN FOR G IS CORRECT HERE ONLY IF
C
C
      THE ELEMENTS HAVE BEEN NUMBERED COUNTERCLOCKWISE
С
      WHEN LOOKING OUT OF THE DOMAIN THIS CONVENTION
С
      MUST BE OBSERVED WHEN CREATING E(J,K)
C
C
C
C
      THE SUBROUTINE SPINT IS DESIGNED TO HANDLE THE SPECIAL
C
      INTEGRATIONS THAT OCCUR WHEN AN ELEMENT NODE COINCIDES
C
      WITH THE BASE POINT
С
С
      SUBROUTINE SPINT
      IMPLICIT REAL*8(A-H.O-Z)
      DIMENSION W(13), ETA(13), CHI(13), F(13),
     1H(367,367),U(367),X(367),Y(367),Z(367),
     2NE(691,4),XX(100),YY(100),ZZ(100),AE(691)
```



```
COMMON H.U.MP.X.Y.Z.NE.XX.YY.ZZ.I.J.K.L.A.B.AE
    A=0.D00
    B=0.D00
    BP=0.D00
    W(2)=.52083333333333333
    W(3) = W(2)
    W(4) = W(2)
    CHI(2)=.6000000000000000
    CHI(3)=.200000000000000
    CHI(4)=CHI(3)
    ETA(1)=CHI(1)
    ETA(2) = CHI(3)
   ETA(3)=CHI(2)
   ETA(4) = CHI(3)
   DO 500 II=1.4
    IF (K.EQ.1) THEN
    F(II)=CHI(II)
   ELSEIF (K.EQ.2) THEN
    F(II)=ETA(II)
   ELSE
    F(II)=1.D00-ETA(II)-CHI(II)
   ENDIF
    A1=(X(NE(J,1))*CHI(II)+X(NE(J,2))*ETA(II)+X(NE(J,3))
  $*(1.D00-CHI(II)-ETA(II))-X(I))
   B1=(Y(NE(J.1))*CHI(II)+Y(NE(J.2))*ETA(II)+Y(NE(J.3))
  $*(1.D00-CHI(II)-ETA(II))-Y(I))
   C1=(Z(NE(J,1))*CHI(II)+Z(NE(J,2))*ETA(II)+Z(NE(J,3))
  $*(1-CHI(II)-ETA(II))-Z(I))
   R=DSQRT(A1**2+B1**2+C1**2)
   BPRM31=W(II)*(F(II)-1.D00)*(1.D00/R)
   BP=BP+BPRM31
500 CONTINUE
   P1P2=DSQRT((X(NE(J,1))-X(NE(J,2)))**2+
  $(Y(NE(J,1))-Y(NE(J,2)))**2+(Z(NE(J,1))-Z(NE(J,2)))**2)
   P1P3=DSQRT((X(NE(J,1))-X(NE(J,3)))**2+
  $(Y(NE(J,1))-Y(NE(J,3)))**2+(Z(NE(J,1))-Z(NE(J,3)))**2)
   P2P3=DSQRT((X(NE(J,2))-X(NE(J,3)))**2+
  $(Y(NE(J,2))-Y(NE(J,3)))**2+(Z(NE(J,2))-Z(NE(J,3)))**2)
    IF (K.EQ.1) THEN
    BS=DABS(P1P3)
   ELSEIF (K.EQ.2) THEN
    BS=DABS(P1P2)
   ELSE
    BS=DABS(P2P3)
   ENDIF
   XXX1=0.D00
    YYY2=0.D00
    XXX2=BS
    IF (K.EQ.1) THEN
     BSS=DABS(P1P2)
    ELSEIF(K.EQ.2) THEN
     BSS=DABS(P2P3)
```


CCC

```
ELSE
      BSS=DABS(P1P3)
     ENDIF
     IF(K.EQ.1) THEN
      BSSS=DABS(P2P3)
     ELSEIF(K.EQ.2) THEN
      BSSS=DABS(P1P3)
     ELSE
      BSSS=DABS(P1P2)
     ENDIF
     THETA1=DACOS((BS**2+BSS**2-BSSS**2)/(2.D00*BS*BSS))
     YYY3=BSS*DSIN(THETA1)
     XXX3=BSS*DCOS(THETA1)
     QSQS=DABS(XXX3-XXX2)
     IF (QSQS.LT.0.0001) THEN
      PREBS=BSS
      BSS=BS
      BS=PREBS
      XXX2=BS
      YYY3=BSS*DSIN(THETA1)
      XXX3=BSS*DCOS(THETA1)
    ELSE
      CONTINUE
    ENDIF
    EM=(YYY3-YYY2)/(XXX3-XXX2)
    BB=-EM*BS
2121 ALP1=(1.D00/(DSQRT(1.D00+EM**2)))
    ALP2=(-EM/(DSQRT(1.D00+EM**2))).
     TNALF2=ALP2/(1.D00+ALP1)
     TNTHT1=DSIN(THETA1)/(1.D00+DCOS(THETA1))
    B3NUMR=(TNTHT1+TNALF2)/(1.D00-TNTHT1*TNALF2)
    BSTR3=((BB/(DSQRT(1.D00+EM**2)))*DLOG(DABS(B3NUMR/TNALF2)))
    B=(AE(J)*BP)+(BSTR3)
    RETURN
    END
    SUBROUTINE INTERGO
     IMPLICIT REAL*8(A-H.O-Z)
    DIMENSION W(13), ETA(13), CHI(13), F(13),
    1H(367,367),U(367),X(367),Y(367),Z(367),
    2NE(691,4),XX(100),YY(100),ZZ(100),AE(691)
    COMMON H.U.MP.X.Y.Z.NE,XX.YY,ZZ,I,J,K,L,A,B,AE
    A=0.0
    B=0.0
    W(1)=-0.56260000000000
    W(2)=.52083333333333333
    W(3) = W(2)
    W(4) = W(2)
    CHI(2)=.600000000000000
     CHI(3)=.200000000000000
    CHI(4)=CHI(3)
```



```
ETA(1)=CHI(1)
    ETA(2)=CHI(3)
    ETA(3) = CHI(2)
    ETA(4) = CHI(3)
    DO 400 II=1.4
    IF(K.EQ.1) THEN
    F(II)=CHI(II)
    ELSEIF (K.EQ.2) THEN
    F(II)=ETA(II)
   ELSE
    F(II)=1.-ETA(II)-CHI(II)
   ENDIF
   A1=(X(NE(J,1))*CHI(II)+X(NE(J,2))*ETA(II)+X(NE(J,3))
   $*(1-CHI(II)-ETA(II))-XX(I))
   B1=(Y(NE(J,1))*CHI(II)+Y(NE(J,2))*ETA(II)+Y(NE(J,3))
   $*(1-CHI(II)-ETA(II))-YY(I))
   C1=(Z(NE(J,1))*CHI(II)+Z(NE(J,2))*ETA(II)+Z(NE(J,3))
   $*(1-CHI(II)-ETA(II))-ZZ(I))
   R=DSQRT(A1**2+B1**2+C1**2)
    IF(L.EQ.1) THEN
    RNUM=A1
   ELSEIF(L.EQ.2) THEN
    RNUM=B1
   ELSE
    RNUM=C1
   ENDIF
   FF=F(II)*(RNUM/R**3)*W(II)
   B=B+FF
   AY1=Y(NE(J,1))-B1-YY(I)
   AY2=Y(NE(J,2))-B1-YY(I)
   AZ1=Z(NE(J,1))-C1-ZZ(I)
   AZ2=Z(NE(J.2))-C1-ZZ(I)
   AX1=X(NE(J,1))-A1-XX(I)
   AX2=X(NE(J.2))-A1-XX(I)
   A2=AY1*AZ2-AZ1*AY2
   B2=AZ1*AX2-AX1*AZ2
   C2=AX1*AY2-AY1*AX2
   GG1=DSQRT(A2**2+B2**2+C2**2)
    IF(L.EQ.1) THEN
   CF1=A2
   ELSEIF(L.EQ.2) THEN
   CF1=B2
   ELSE
   CF1=C2
   ENDIF
   T1=1./(R**3*GG1)
   T3=T1**2
   T6=A1*A2+B1*B2+C1*C2
   G=F(II)*W(II)*((-3*RNUM*R*GG1*T6*T3)+(CF1*T1))
   A=A+G
400 CONTINUE
   A=AE(J)*A
   B=AE(J)*B
   RETURN
```
END

C

```
SUBROUTINE EQSOL
    IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSION M(367).H(367.367).U(367)
    COMMON H,U,MP,X,Y,Z,NE,XX,YY,ZZ,I,J,K,L,A,B
    DO 5 II=1.MP
    M(II)=1
    AMAX=H(II,1)
    DO 2 JJ=2.MP
    IF(DABS(H(II,JJ)).LE.DABS(AMAX)) GOTO 2
100 AMAX=H(II,JJ)
   M(II)=JJ
 2 CONTINUE
    IF(AMAX.EQ.0) GOTO 98
 3 NN=MP+1
   DO 4 JJ=1.NN
 4 H(II, JJ)=H(II, JJ)/AMAX
    DO 5 IP=1.MP
    IF (IP.EQ.II) GOTO 5
   MMM=M(II)
   ZMULT=H(IP,MMM)
   DO 6 JJ=1.NN
    IF (JJ.NE.MMM) GOTO 9
 8 H(IP,JJ)=0.0
   GOTO 6
 9 H(IP,JJ)=H(IP,JJ)-ZMULT*H(II,JJ)
 6 CONTINUE
 5 CONTINUE
   DO 7 II=1,MP
   NO=M(II)
 7 U(NO)=H(II.NN)
   RETURN
98 PRINT 'no solution'
   STOP
   END
```

Program TRK15.F

ç	THIS PROGRAM CALCULATES THE EFFICIENCY OF ASPIRATION
C	OF PARTICLES INTO AN ARBITRARY SHAPED SAMPLING INLET
С	USING BIEM TO CALCULATE THE AIR FLOW PATTERNS AND THE
C	EQUATIONS BY ALENIUS TO PREDICT PARTICLE LOCATION AND
C	AND VELOCITY AFTER A SMALL TIME STEP HAS ELAPSED.
C	
C	THE PROGRAM REQUIRES THE OUTPUT OF THE BIEM BOUNDARY
c	SOLUTION (APTGO F) AS INPUT IN OPDER TO USE THE SHELL
č	SUBDOUTINE TO CALCULATE INTEDNAL VELOCITIES AT THE
č	DADTICLE LOCATION
č	PARTICLE LOCATION.
5	THE ATTER OF THE ADDAVA FOR THE ADDAVA WARTING TO TO
C	THE SIZES OF THE ARRAYS FOR THE ARRAY VARIABLES IS
C	DEPENDENT ON THE NUMBER OF NODES AND ELEMENTS USED
C	TO FORMULATE THE BOUNDARY OF THE DOMAIN.
C	
	IMPLICIT REAL *8(A-H,O-Z)
	DIMENSION X(367), Y(367), \$Z(367), PHI(367)
	\$, DPHI (367), ID (367), ICT (367), NE (693, 4), AE (693)
	COMMON UD. UI. DIN. DP. THETA1. DTA. VX. VY. VZ. XX1. YY1. 771.
	SNCAP XX YY 77 MP X Y 7 NF T J K L A B AF XDIN
	SPHI DPHI ID ICT N M
C	
c*	***************************************
c	
č	INDUT VADIABLES.
c	INFOI VARIABLES:
0	10 - WIND VELOCITY CHISEC
č	DD - DADIOLE DIANETED CH
č	DP = PARICLE DIAMETER, CM
C	DIN = INLET DIAMETER, CM
Ċ	DTA = INITIAL TIME STEP, SEC
C	THETA1 = ANGLE OF MISALIGNMENT, DEGREES
C	UI = INLET SAMPLING VELOCITY, CM/SEC
C	XDIN = NUMBER OF INLET DIAMETERS AWAY FROM FACE
C	FOR TRAJECTORY START PTS
C	N = NUMBER OF NODES
C	M = NUMBER OF ELEMENTS
c	X Y 7 = COORDINATES OF NODES
č	PHI DPHI = VALUE OF POTENTIAL OR NORMAL DERIVATIVE
č	A TE HNKNOWN
č	TO TOT - BOUNDARY CODES SEE ADTGO E
0	NE - ADDAY NAME FOD ALL THE TOTANOU AD ELEMENTS FACH
C	NE = ARRAY NAME FOR ALL THE TRIANGULAR ELEMENTS. EACH
C	ELEMENT IS IDENTIFIED BY THE NODE NUMBER OF
С	EACH CORNER LISTED IN A CLOCKWISE DIRECTION
C	LOOKING OUT OF THE DOMAIN. A FOURTH INTERGER
C	IN THIS ARRAY SPECIFIES WHETHER POTENTIAL OF
C	VELOCITY IS KNOWN OVER THE ELEMENT.
C	
ć	X Y 7 PHI DPHI ID, AND ICT CORRESPOND TO THE OUTPUT OF
č	THE BIEM BOUNDARY SOLUTION FROM 4PTGO.
C*	***************************************
0	
C	DEAD DECULDED INDUT DATA
C	KEAD REQUIRED INFOI DATA

```
READ (5,*) UO, DP, DIN, DTA, THETA1, UI, XDIN
      READ (5.*) CVC.CINC
      READ (5,*) N
      READ (5,*) M
      DO 1001 I=1,N
      READ (5,*) X(I), Y(I), Z(I), PHI(I), DPHI(I), ID(I),
     $ICT(I)
 1001 CONTINUE
      READ (5,*)((NE(I,II),II=1,4),I=1,M)
      THETA=THETA1*.017453292
C
С
C
     THE J LOOP CONTAINS THE SUMMATIONS OVER EACH ELEMENT
C
     INITIALLY THE AREA OF THE JTH ELEMENT IS CALCULATED
C
     THIS IS AE(J).
C
      DO 200 J=1,M
      DY21=Y(NE(J,2))-Y(NE(J,1))
      DY31=Y(NE(J.3))-Y(NE(J.1))
      DZ21=Z(NE(J,2))-Z(NE(J,1))
      DZ31=Z(NE(J,3))-Z(NE(J,1))
      DX21=X(NE(J,2))-X(NE(J,1))
      DX31=X(NE(J,3))-X(NE(J,1))
      AE1=DY21*DZ31-DZ21*DY31
      AE2=DZ21*DX31-DX21*DZ31
      AE3=DX21*DY31-DY21*DX31
      AE(J)=0.5*(DSQRT(AE1**2+AE2**2+AE3**2))
  200 CONTINUE
      CALCULATE FIRST STARTING POINT
C
С
      NCAP=0
      NTRAJ=0
      XX=XDIN*DIN*COS(THETA1*(-1))
      YY=0.0
      ZZ=XDIN*DIN*SIN(THETA1*(-1))
250
      CONTINUE
      NTRAJ=NTRAJ+1
      IF (NTRAJ .EQ. 15) THEN
      PRINT *, "first Capture not found", NTRAJ
      GOTO 3000
     . ENDIF
      CALL TRAJ
C
С
      CHECK FOR FIRST CAPTURE
С
      IF (NCAP .EQ. 1) THEN
           GOTO 1000
      ELSE IF ((NCAP .EQ. 2) .AND. (ZZ .GT. 0.0)) THEN
           XX=XX1-(CINC*SIN(THETA1))
           YY=0.0
           ZZ=ZZ1-(CINC*COS(THETA1))
           GOTO 250
```

```
ELSE
           XX=XX1+(CINC*SIN(THETA1))
           YY=0.0
           ZZ=ZZ1+(CINC*COS(THETA1))
        GOTO 250
        ENDIF
1000
      PRINT *, "NO. OF TRAJ FCAP =".NTRAJ
C
C
      BEGIN CRITICAL TRAJECTORY CALCULATIONS
C
      XFCAP=XX1
      YFCAP=YY1
      ZFCAP=ZZ1
      PRINT *, "1st cap:", ", ", xfcap, ", ", yfcap, ", ", zfcap
      XCAP=XX1
      YCAP=YY1
      ZCAP=ZZ1
C
C
      STEP = NUMBER OF DEGREES BETWEEN RAYS ON SEMICIRCLE
             OF STARTING POINTS. NSTEP = NUMBER OF STEPS
C
      STEP=15.
      NSTEP=13
      nsum=35
      NCOUNT=0
с
С
      INITIAL CAPTURE TRAJECTORY HAS BEEN FOUND. THIS SECTION OF
THE
С
      PROGRAM CALCULATES TRAJECTORY STARTING POINTS AT SUCCESSIVE
С
      LOCATIONS AROUND A SEMICIRCLE ABOUT THE COORDINATES OF THE
С
      FIRST CAPTURE
C
      DO 3000 JJ=1.NSTEP
      NCOUNT=NCOUNT+1
      theta2=(-90+((ncount-1)*step))*.017453292
      AA=.67*XDIN*DIN
      XX=XFCAP+(AA*SIN(THETA2)*SIN(THETA1))
      YY=(AA*COS(THETA2))*(-1)
      ZZ=ZFCAP+(AA*SIN(THETA2)*COS(THETA1))
      XCAP=XFCAP
      YCAP=YFCAP
      ZCAP=ZFCAP
      NFMISS=0
C
         ONCE A START POINT IS CALCULATED, THE KK LOOP PLOTS
С
C
         SUCCESSIVE TRAJECTORIES UNTIL THE CONVERGENCE CRITERIA
С
         IS SATISFIED.
C
         DO 2900 KK=1.NSUM
1500
         CALL TRAJ
         IF ((NFMISS .EQ. 0) .AND. (NCAP .EQ. 1)) THEN
               AA=CINC+AA
               XX=XFCAP+(AA*SIN(THETA2)*SIN(THETA1))
               YY = (AA * COS(THETA2)) * (-1)
```

ZZ=ZFCAP+(AA*SIN(THETA2)*COS(THETA1)) GOTO 1500 ELSE NFMISS=1 ENDIF IF (NCAP .EQ. 2) THEN XMISS=XX1 YMISS=YY1 ZMISS=ZZ1 ELSE XCAP=XX1 YCAP=YY1 ZCAP=ZZ1 ENDIF С c S IS THE DISTANCE BETWEEN THE LAST CAPTURE AND LAST С MISS. S IS COMPARED TO CVC AND LOOP EXITED IF S < CVC. C S=SQRT((XCAP-XMISS)**2+(YCAP-YMISS)**2+ (ZCAP-ZMISS)**2) \$ IF (S .LT. CVC) THEN GOTO 2990 ELSE XX=(XMISS+XCAP)/2 YY=(YMISS+YCAP)/2 ZZ=(ZMISS+ZCAP)/2 ENDIF if (kk .eq. nsum) print *, "no convergence, s =",s 2900 CONTINUE 2990 XCRIT=(XMISS+XCAP)/2 YCRIT=(YMISS+YCAP)/2 ZCRIT=(ZMISS+ZCAP)/2 С C EACH CRITICAL TRAJECTORY COORDINATE IS WRITTEN TO THE C OUTPUT UNIT. C write (6,*)"crit".".".ncount.".".xcrit.",".ycrit.".".zcrit 3000 CONTINUE STOP END С С C SUBROUTINE TRAJ C THIS SUBROUTINE TAKES A SINGLE PARTICLE STARTING С POINT, ASSIGNS THE INTIAL VELOCITY VALUES TO THE С PARTICLE, AND TRACKS THE PARTICLE TO THE FACE OF THE C INLET (CAPTURE) OR OUT OF THE BOUNDARY (MISS) С C IMPLICIT REAL *8(A-H.O-Z) DIMENSION VXOL(1600), VYOL(1600), VZOL(1600), 1X(367),Y(367),Z(367),PHI(367),DPHI(367),ID(367) 2, ICT(367), NE(693,4), AE(693)

```
С
C
```

С C

\$

```
print *. M
G=-980.
DT=DTA
AV=.000183
PDENS=1.0
ADENS=.001205
DPL=10000.0*DP
CC=1+((2.*0.07/DPL)*(1.257+(0.4*EXP(-0.55*DPL/0.07))))
TAU=(DP**2*PDENS*CC)/(18*AV)
GX=G*SIN(THETA1)
GZ=G*COS(THETA1)
GY=0
   MANY=9999
   NCAP=0
   N1=1
   DO 4300 I=1.MANY
         CALL SHELL
         IF (I .EQ. 1) THEN
            VXNOW=VX+(TAU*GX)
            VYNOW=VY+(TAU*GY)
            VZNOW=VZ+(TAU*GZ)
            XX1=XX
            YY1=YY
            ZZ1=ZZ
         ENDIF
      VR=((VXNOW-VX)**2+(VZNOW-VZ)**2
          +(VYNOW-VY)**2)**0.5
      RE=VR*DP*ADENS/AV
      IF (RE .LE. 0.5) THEN
          QRE=1
      ELSE IF ((RE .GT. 0.5) .AND. (RE .LE. 800.)) THEN
          QRE=1+(0.15*RE**0.687)
      ELSE
          QRE=0.44*RE/24
      ENDIF
       IF (I .EQ. 1) THEN
          VXOL(I)=VX
          VYOL(I)=VY
          VZOL(I)=VZ
      ELSE
          VXOL(I) = VXOL(I-1)
          VZOL(I)=VZOL(I-1)
          VYOL(I)=VYOL(I-1)
       ENDIF
       if ((XX .1t. 1.5*din) .and. (XX .gt. (-1.5)*din)
       .and. (YY .lt. 1.5*din) .and. (YY .gt. (-1.5)*din)
       .AND. (ZZ .LT. 1.5*DIN) .AND. (ZZ .GT. (-1.5)*DIN))
       then
$
```

DT=DTA/2. else DT=DTA endif UAX=(VX-VXOL(I))/DT UAZ=(VZ-VZOL(I))/DT UAY=(VY-VYOL(I))/DT UBX=VX-((UAX-GX)*(TAU/QRE)) UBY=VY-((UAY-GY)*(TAU/QRE)) UBZ=VZ-((UAZ-GZ)*(TAU/QRE)) VXNEW=(UAX*DT)+UBX-((UBX-VXNOW)* EXP(-QRE*DT/TAU)) VYNEW=(UAY*DT)+UBY-((UBY-VYNOW)* EXP(-QRE*DT/TAU)) VZNEW=(UAZ*DT)+UBZ-((UBZ-VZNOW)* EXP(-QRE*DT/TAU)) Ś XXNEW=XX+(UAX/2*DT**2)+(UBX*DT)-((UBX-VXNOW)*(TAU/QRE)*(1-EXP(-QRE*DT/TAU))) ZZNEW=ZZ+(UAZ/2*DT**2)+(UBZ*DT)-((UBZ-VZNOW)*(TAU/QRE)*(1-EXP(-QRE*DT/TAU))) \$ YYNEW=YY+(UAY/2*DT**2)+(UBY*DT)-((UBY-VYNOW)*(TAU/QRE)*(1-EXP(-QRE*DT/TAU))) \$ IF (XXNEW .LT. (-1.1)*XDIN/2*DIN) THEN NCAP=2 PRINT *. 'PARTICLE EXIT REAR BOUNDARY. MISS' GOTO 4301 ELSE IF ((ZZNEW .GT. 1.1*XDIN*DIN) .OR. (ZZNEW .LT. (-1.1)*XDIN*DIN)) THEN . NCAP=2 PRINT *, 'PARTICLE EXIT TOP/BOTTOM, MISS' GOTO 4301 ELSE IF ((YYNEW .GT. 1.1*XDIN*DIN) .OR. (YYNEW .LT. (-1.1) * XDIN*DIN)) THEN NCAP=2 PRINT *, 'PARTRICLE EXIT SIDE, MISS' GOTO 4301 ELSE IF ((XXNEW .LT. 0.05*din) .AND. (XX .GT. 0.05*din) \$.AND. (ABS(ZZNEW) .LT. DIN/2+.05) .AND. \$ \$ (ABS(YYNEW) .LT. DIN/2+.05)) THEN NCAP=1 PRINT *. 'CAPTURE AT FACE' GOTO 4301 ELSE IF ((ABS(ZZNEW) .LT. DIN/2+.05) .AND. (ABS(YYNEW) .LT. DIN/2+.05) .AND. \$ \$ (XXNEW .LT. 0.0)) \$ THEN NCAP=2 PRINT *, 'CONTACT TUBE, MISS' GOTO 4301 ELSE NCAP=0 ENDIF N1=N1+1

c

c

```
XX=XXNEW
             YY=YYNEW
             ZZ=ZZNEW
             VXNOW=VXNEW
             VYNOW=VYNEW
             VZNOW=VZNEW
4300
      CONTINUE
4301
      RETURN
      END
C
С
C
      SUBROUTINE SHELL
С
Ĉ
 THIS SUBROUTINE CALCULATES THE INTERNAL AIR VELOCITY
  COMPONENTS IN 3 DIMENSIONS AT THE LOCATION THAT THE PARTICLE
Ć
С
 IS LOCATED USING THE BIEM INTERNAL SOLUTION ROUTINE.
                                                           IT
C FURTHERC CALLS SUBROUTINE INTERGQ TO PERFORM THE INTERNAL
С
 GAUSSIAN QUADRATURE.
C
C
      IMPLICIT REAL*8(A-H.O-Z)
      DIMENSION PREV(3), AE(693), NE(693,4),
     1X(367),Y(367),Z(367),PHI(367),DPHI(367),ID(367)
     2, ICT (367), ALTDPHI (693,3)
      COMMON UO, UI, DIN, DP, THETA1, DTA, VX, VY, VZ, XX1, YY1, ZZ1.
     $NCAP.XX.YY.ZZ.MP.X.Y.Z.NE.I.J.K.L.A.B.AE.XDIN.
     $PHI.DPHI.ID.ICT.N.M
      MP=N
С
C
С
      DECLARE AND INITIALIZE
С
      PVX=0.0
      PVY=0.0
      PVZ=0.0
      DO 2000 J=1.M
      PREVX=0.0
      PREVY=0.0
      PREVZ=0.0
      DO 3000 K=1.3
      DO 4000 L=1.3
      CALL INTERGO
      IF(ICT(NE(J,K)).EQ.1.AND.ID(NE(J,K)).EQ.1
     $.AND.ID(NE(J,4)).EQ.2) THEN
       DPHIDE=DPHI(NE(J,4))
      ELSE
       DPHIDE=DPHI(NE(J,K))
      ENDIF
      PREV(L)=(A*PHI(NE(J,K))-B*DPHIDE)
 4000 CONTINUE
      PREVX=PREVX+PREV(1)
      PREVY=PREVY+PREV(2)
      PREVZ=PREVZ+PREV(3)
```

```
3000 CONTINUE
     PVX=PVX+PREVX
     PVY=PVY+PREVY
     PVZ=PVZ+PREVZ
2000 CONTINUE
     COEF1=-0.079577471
     VX=COEF1*PVX
     VY=COEF1*PVY
     VZ=COEF1*PVZ
1100 CONTINUE
 444 CONTINUE
     CLOSE (4)
     RETURN
     END
     SUBROUTINE INTERGO
     IMPLICIT REAL*8(A-H, 0-Z)
     DIMENSION W(13), ETA(13), CHI(13), F(13), NE(693,4),
    1X(367), Y(367), Z(367), PHI (367), DPHI (367), ID (367), ICT (367)
    2.AE(693)
     COMMON UO.UI.DIN.DP.THETA1.DTA.VX.VY.VZ.XX1.YY1.ZZ1,
    $NCAP,XX,YY,ZZ,MP,X,Y,Z,NE,I,J,K,L,A,B,AE,XDIN,
    $PHI, DPHI, ID, ICT, N, M
     A=0.0
     B=0.0
     W(1)=.333333333333333333333
     W(2) = W(1)
     W(3) = W(2)
     CHI(1)=.666666666666666666666
     CHI(2)=.166666666666666666
     CHI(3)=CHI(2)
     ETA(1)=.1666666666666666
     ETA(2)=.1666666666666666
     ETA(3)=.66666666666666666
     DO 400 II=1.3
     IF(K.EQ.1) THEN
      F(II)=CHI(II)
     ELSEIF (K.EQ.2) THEN
      F(II)=ETA(II)
     ELSE
      F(II)=1.-ETA(II)-CHI(II)
     ENDIF
     A1=(X(NE(J,1))*CHI(II)+X(NE(J,2))*ETA(II)+X(NE(J,3))
    $*(1-CHI(II)-ETA(II))-XX)
     B1=(Y(NE(J,1))*CHI(II)+Y(NE(J,2))*ETA(II)+Y(NE(J,3))
    $*(1-CHI(II)-ETA(II))-YY)
     C1=(Z(NE(J,1))*CHI(II)+Z(NE(J,2))*ETA(II)+Z(NE(J,3))
    $*(1-CHI(II)-ETA(II))-ZZ)
     R=DSQRT(A1**2+B1**2+C1**2)
```

IF(L.EQ.1) THEN

C

C

CCC

```
•
```

```
RNUM=A1
    ELSEIF(L.EQ.2) THEN
     RNUM=B1
    ELSE
     RNUM=C1
    ENDIF
    FF=F(II)*(RNUM/R**3)*W(II)
    B=B+FF
    AY1=Y(NE(J.1))-B1-YY
    AY2=Y(NE(J,2))-B1-YY
    AZ1=Z(NE(J,1))-C1-ZZ
    AZ2=Z(NE(J,2))-C1-ZZ
    AX1=X(NE(J,1))-A1-XX
    AX2=X(NE(J,2))-A1-XX
    A2=AY1*AZ2-AZ1*AY2
    B2=AZ1*AX2-AX1*AZ2
    C2=AX1*AY2-AY1*AX2
    GG1=DSQRT(A2**2+B2**2+C2**2)
    IF(L.EQ.1) THEN
    CF1=A2
    ELSEIF(L.EQ.2) THEN
    CF1=B2
    ELSE
    CF1=C2
    ENDIF
    T1=1./(R**3*GG1)
    T3=T1**2
    T6=A1*A2+B1*B2+C1*C2
    G=F(II)*W(II)*((-3*RNUM*R*GG1*T6*T3)+(CF1*T1))
    A=A+G
400 CONTINUE
    A=AE(J)*A
    B=AE(J)*B
    RETURN
```

END

Program AREA.FOR

```
C THIS CODE CALCULATE THE AREA UNDER A CURVE USING TRAPIZOIDAL
RULE.
С
C INPUT
  N ; NUMBER OF INPUT POINTS
С
  X : X-COORD. OF THE POINT
Y : Y-COORD. OF THE POINT
С
C
C
C OUTPUT ---> AREA ON THE SCREEN.
С
$DEBUG
      IMPLICIT REAL*8(A-H.O-Z)
      DIMENSION X(37),Y(37)
      READ (7,*) N
      DO 100 I=1.N
      READ (7,*) y(1),x(1)
100
      CONTINUE
      SUM=0.0
      DO 200 I=1,N-1
         DX=X(I+1)-X(I)
         IF(DX.GT.0.000000D0) THEN
                                      .
             T=1.0
         ELSE
             T=-1.0
         ENDIF
         TEMP=DABS(DX)*DABS(Y(I+1)+Y(I))/2.D0
200
         SUM=SUM+T*TEMP
      write(*,1001) SUM
1001
      format(e20.5)
      STOP
      END
```

Trajectory Plotting Program in BASIC

Program PART.BAS

```
10 OPEN "filename of traj coords" FOR INPUT AS #1
20 OPEN "flename of efficiency data" FOR INPUT AS #2
30 CLS
40 SCREEN 1
50 WINDOW (-6,-12)-(12,12)
60 INPUT #2, UO, UI, DP, DIN, THETA, EFF
70 THETA = 57.29577951#*THETA
80 LINE (0, DIN/2)-(0, -DIN/2)
90 LINE (0, DIN/2)-(-6, DIN/2)
100 LINE (0,-DIN/2)-(-6,-DIN/2)
110 WHILE NOT EOF(1)
120 INPUT #1, XX,YY
130 PSET (XX, YY)
140 WEND
150 CLOSE #1
160 CLOSE #2
170 KEY OFF
180 LOCATE 19,8:PRINT "EFF = ";EFF
190 LOCATE 20,8:PRINT "UO = ";UO
200 LOCATE 21,8:PRINT "DP = ";DP
210 LOCATE 22,8:PRINT "DIN = ";DIN
220 LOCATE 23,8:PRINT "THETA = ";THETA
230 LOCATE 24,8:PRINT "UI = ";UI
240 A$=INKEY$: IF A$="C" THEN 260 ELSE 250
250 IF A$="X" THEN 270 ELSE 240
260 LPRINT CHR$(12)
270 END
```

REFERENCES

Addlesee, A. J., "Anisokinetic Sampling of Aerosols at a Slot Intake", Journal of Aerosol Science, Vol. 11, pp. 483-493 (1980).

Agarwal, J. K., Liu, B. Y. H., "A Criterion for Accurate Aerosol Sampling in Calm Air", American Industrial Hygiene Association JOURNAL, Vol. 41, pp. 191-198 (1980).

Alenius, S, "Calculation of Particle Motion in an Air Stream, Particularly Outside Exhausts," <u>Study Report 1987:2</u>, Swedish National Board of Occupational Safety and Health, Tesearch Department, Technical Unit, Ventilation and Heating Section, 1987.

Alenius, S, Jansson, A., "Air Flow and Particle Transport into Local Exhaust Hoods, A Verified Computer Model", <u>Arbete</u> <u>och Halso 1989:34</u>, Ventilation Division, National Institute of Occupational Health, S-171 84 Solna, Sweden, 1989.

Belyaev, S. P., Levin, L. M., "Investigation of Aerosol Aspiration by Photographing Particle Tracks Under Flash Illumination", Journal of Aerosol Science, Vol. 3, pp. 127-140 (1972).

Belyaev, S. P., Levin, L. M., "Techniques for Collection of Representative Aerosol Samples", Journal of Aerosol Science, Vol. 5, pp. 325-338 (1974).

Davies, C. N., Subari, M., "Aspiration Above Wind Velocity of Aerosols With Thin-Walled Nozzles Facing and at Right Angles to the Wind Direction", Journal of Aerosol Science, Vol. 13, No. 1, pp. 59-71 (1982).

Dunnett, S. J., Ingham, D. B., "A Mathematical Theory to Two-Dimensional Blunt Body Sampling", Journal of Aerosol Science, Vol. 17, No. 5, pp. 839-853 (1986).

Dunnett, S. J., Ingham, D. B., "The Human Head as a Blunt Aerosol Sampler", Journal of Aerosol Science, Vol. 19, No. 3, pp. 365-380 (1988).

Durham, M. D., Lundgren, D. A., "Evaluation of Aerosol Aspiration Efficiency as a Function of Stokes Number, Velocity Ratio and Nozzle Angle", Journal of Aerosol Science, Vol. 11, pp. 179-188 (1980).

Flynn, M. R., Miller, C. T., "The Boundary Integral Equation Method (BIEM) for Modeling Local EXhaust Hood Flow Fields", American Industrial Hygiene Association JOURNAL, Vol. 50(5), pp. 281-288 (1989). Fuchs, N. A., "Review Papers Sampling of Aerosols", Atmospheric Environment, Vol. 9, pp. 697-707 (1975).

Hangal, S, Willeke, K, "Aspiration Efficiency: Unified Model for All Forward Sampling Angles", Environmental Science and Technology, Vol. 24, pp. 688-691 (1990).

Ingham, D. B., "The Entrance of Airborne Particles into a Blunt Sampling Head", Journal of Aerosol Science, Vol 12, No. 6, pp. 541-549 (1981).

Jayasekera, P. N., Davies, C. N., "Aspiration Below Wind Velocity of Aerosols with Sharp Edged Nozzles Facing the Wind," Journal of Aerosol Science, Vol. 11, pp. 535-547.

Liggett, J.A. and Liu, P.L.F., The Boundary Integral Equation Method for Porous Media Flow, G.A. Unwin, London, 1983.

Liu, B. Y. H., Zhang, Z. Q., Kuehn, T. H., "A Numerical Study of Inertial Errors in Anisokinetic Sampling", Journal of Aerosol Science, Vol. 20, No. 3, pp. 367-380 (1989).

Okazaki, K., Wiener, R. W., Willeke, K., "Isoaxial Aerosol Sampling: Nondimensional Representation of Overall Sampling Efficiency", Environmental Science and Technology, Vol. 21, pp. 178-182, (1987a).

Okazaki, K., Wiener, R. W., Willeke, K., "Non-Isoaxial Aerosol Sampling: Mechanisms Controlling the Overall Sampling Efficiency", <u>Environmental Science and Technology</u>, Vol. 21, pp. 183-187, (1987b).

Reist, P. C., Introduction to Aerosol Science, Macmillan, New York, 1984.

Okazaki, K., Wiener, R. W., Willeke, K., "The Combined Effect of Aspiration and Transmission on Aerosol Sampling Accuracy For Horizontal Isoaxial Sampling", <u>Atmospheric</u> Environment, Vol. 21, No. 5, pp. 1181-1185 (1987c).

Tufto, P. A., Willeke, K., "Dynamic Evaluation of Aerosol Sampling Inlets", Environmental Science and Technology, Vol. 16, pp. 607-609, (1982).

Weiner, R. W., "The Influence of Wind Condition and Inlet Size on Aerosol Particle Collection", disseration submitted to the Division of Graduate Studies of the University of Cincinnati, Cincinnati, OH, 1987, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.